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Preface

In this age of Internet technology, software has become an indispensable part of
our everyday life. With the paradigm shift of businesses, education, defence, health-
care, etc. from physical to digital platforms, our reliance on software has grown
in leaps and bounds. Development of highly reliable software at reasonable prices
with quick deliveries has emerged as the prime objective of IT firms. Optimization
techniques/tools have gained popularity among IT managers and software devel-
opers for decision-making while meeting multiple needs of the users. Optimization
is a set of mathematical techniques where the constraints affecting the decisions
are identified and included in the model while maximizing gains or minimizing
costs and risks. The use of optimization techniques for the judicious allocation of
resources and strategic decisions pertaining to software release schedules, software
versions management, and warranty/maintenance policies is a relatively new field of
study. The main focus of this book is the evaluation and optimization of key deci-
sions related to the software development process. This book consists of 16 chapters
featuring a broad range of topics including Software Reliability Modeling, Estima-
tion and Prediction, Optimal Allocation and Selection Decisions, and up-gradations
problems. Each chapter is written by well-known researchers and IT practitioners to
present the recent trends and research opportunities in the area of software reliability
engineering. More specifically,

Chapter “Software ReliabilityModeling andMethods: A State of the Art Review”
provides a comprehensive review of probabilistic software reliability models with
different groups with major focus on Nonhomogeneous Poisson Process (NHPP)-
based software reliability models which address various aspects related to software
development practices, such as testing efficiency, testing coverage, multiple fault
types, time-delay fault removal, and environmental factors. In chapter “Software
Reliability Growth Models Incorporating Software Project/Application’s Character-
istics as a Power Function with Change Point,” it discusses a framework based on
error-removal phenomenon model by incorporating the software project/application
characteristics as a parameter. This chapter also describes a software reliability
growth model developed under a change point scenario, which is then utilized to
develop release time policy balancing reliability and expected cost incurred during
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software application development. Chapter “Robust Multi-Response Based Soft-
ware Reliability Modeling” discusses robust multi-response-based software relia-
bility modeling and also illustrates the methodology on a large-scale communica-
tion software system. The two responses under study are time-between-detection of
defects and effort. Optimization using response surface methodology is performed
on overall desirability value.

Chapter “Multi-criteria Decision Making in Optimal Software Testing-Alloca-
tion Problem” presents optimal testing-resource allocation for the module testing
in the software testing phase based on multi-attribute utility theory. The authors
have optimized the utilities for the reliability, testing-resource, and testing-cost for
resource allocation. Chapter “Release Planning Analysis Through Testing Coverage
and Fault Reduction Factor Based Models with Change Point Perspective” presents
software reliability growth model and associated software release time problem after
the incorporation of testing coverage and Fault Reduction Factor (FRF) simulta-
neously. The release planning problem consists of minimization of the develop-
ment cost subject to the reliability aspiration level. Chapter “Understanding Inter-
actions Among Software Development Attributes and Release Planning Problem
Through ISM and MAUT” presents a study to analyze the relationship among
different attributes of the software development process and its importance from the
customer’s perspective. A hierarchical model is described to evaluate the importance
of attributes at various levels along with their interrelationships using Interpretive
Structural Modeling (ISM). An optimal release problem with multiple objectives is
developed using Multi-attribute Utility Theory (MAUT). Chapter “Software Relia-
bilityModeling and Assessment Integrating TimeDependent Fault Reduction Factor
in Random Environment” describes a software reliability model with the considera-
tion that the operating environment of software is different from the controlled testing
environment and affects software execution and its reliability significantly. It also
discusses optimal planning of software release time with cost and reliability criteria.
Chapter “Multi-objective Release Time Problem for Modular Software using Fuzzy
Analytical Hierarchy Process” deals with optimal release time problem for amodular
software system considering the relative importance of the modules. To obtain the
modular weights, Fuzzy Analytical Hierarchy Process (FAHP) is used.

The planning and implementation of software development processes go hand in
handwith the user’s expectations. Chapter “Neutrosophic AHPApproach for Budget
Constrained Reliability Allocation Among Modules of Software System” describes
a reliability allocation model by integrating analytical hierarchical process and reli-
ability maximization model based on the budget and reliability constraints. The
comparisons at different levels of hierarchy are performed under aNeutrosophic envi-
ronment. Chapter “Testing Resource Allocation for Software System: An Approach
IntegratingMEMV-OWA andDEMATEL” deals with testing-resource allocation for
a modular software system based on DEMATEL (Decision-Making Trial and Eval-
uation Laboratory). The module weights have been determined by using Maximal
Entropy Minimum Variance Ordered Weighted Averaging (MEMV-OWA) method.
Chapter “Modeling Allocation Problem for Software with Varied Levels of Fault
Severity” describes a resource allocation problem with the objective of maximiza-
tion of removal of fault content from a modular software. The allocation problem
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takes into account the different levels of severity of faults and module-wise cost is
considered to be dependent on its severity level.

Chapter “Integration of FAHP and COPRAS-G for Software Component Selec-
tion” includes a structural decision-making mechanism for selecting Commercial
Off-the-Shelf (COTS) components based on multiple attributes. Multiple Criteria
Decision-Making (MCDM) techniques have been implemented to determine the
critical weights of the attributes using Fuzzy Analytical Hierarchy Process (FAHP)
followed by Complex Proportional Assessment of alternatives with Grey Relations
(COPRAS-G). In chapter “Estimation and Testing Procedures for the Reliability
Functions of Exponentiated Generalized Family of Distributions and a Character-
ization Based on Records,” characterization based on record values for exponenti-
ated generalized family of distributions is provided. Two measures of reliability are
considered. Point as well as interval estimates for unknown parameter(s) of relia-
bility based on records are discussed. A number of parameter estimation methods
are compared through simulation.

Chapter “Modelling of Non-linear Multi-objective Programming and TOPSIS
in Software Quality Assessment Under Picture Fuzzy Framework” presents non-
linear multi-objective programming and TOPSIS-based software quality assessment
under picture fuzzy framework. The quality of open-source software system is
assessed by taking into account performance, cost-based criteria, and on the basis
of feedback gathered from the users and the software experts. Chapter “Require-
ment Barriers to Implement the Software Projects in Agile Development” deals
with the study and analysis of different requirement barriers, which causes prob-
lems in agile implementation. The study is based on responses gathered through
interviews of developers and testers and presents the roadmap for the software
managers to take appropriate steps for effective software implementation. Chapter
“Ranking of Multi-release Software Reliability Growth Model Using Weighted
Distance-Based Approach” consists of weighted distance-based approach to rank the
multi-release SRGMs using the MaximumDeviation Method (MDM) and Distance-
Based approach (DBA). The models are ranked based on selection criteria having
different priority weights and composite distance values.

This book will be an important resource of information for the postgraduate
students, researchers, academicians, and software industry experts. Using optimiza-
tion modeling, IT consultants, SRE research community, and system analysts can
definitely make efficient software performance assessment and related strategic
decisions related to software project budget utilization, delivery planning, software
versioning to name a few.
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Software Reliability Modeling
and Methods: A State of the Art Review

Mengmeng Zhu and Hoang Pham

Abstract The increasing dependence of our modern society on software systems
has driven the development of software products to be more competitive and time-
consuming. At the same time, large-scale software development is still considered a
complex, effort-consuming, and expensive activity, given the influence of the transi-
tions in software development, which are the adoption of software product lines, soft-
ware development globalization, and the adoption of software ecosystems.Hence, the
consequences of software failures become costly and even dangerous. In this chapter,
we thus review probabilistic software reliability models with different groups. Since
nonhomogeneous Poisson process (NHPP) based software reliability models have
been successful tools in practical software reliability engineering, this chaptermainly
focuses on the review of NHPP based software reliability models that address
various concerns in software development practices, such as testing efficiency, testing
coverage, multiple fault types, time-delay fault removal, and environmental factors.

Keywords Nonhomogenous Poisson process · Software reliability growth model ·
State of the art review

1 Introduction

In today’s technological world, almost everyone is directly or indirectly in contact
with computer software. Computers have been rapidly expanding to a wide array of
complex machinery and equipment applied in our everyday safety, security, infras-
tructure, transportation system, and financial management. Since software product
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is extensively involved in various industries and service-based applications, the
increasing dependence of our modern society on software-driven systems has led
the development of software product to be very competitive and time-consuming
(Febrero et al. 2016). Unlike hardware systems, software cannot break down or wear
out during its life cycle but can fail or malfunction under certain configurations
within specific conditions (Hartz et al. 1997). Hence, the development, measure-
ment, and qualifying of software are challenging yet critical in such a fast-growing
technological society.

In 1980,Lehman (1980) summarized theLawsofProgramEvolution. Thefirst law,
Continuing Change, expressed the universally observed fact that large programs are
never completed. They just continue to evolve until the more cost-effective updated
version replaces the systems. The second law, Increasing Complexity, could also
be viewed as an instance of the second law of thermodynamics. As an evolving
program is continually changed, its complexity, reflecting deteriorating structure,
increases as well, unless the mission is done, or maintenance is needed. The third
law, The Fundamental Law of Program Evolution, is subject to dynamics that make
the programming process, measures system attributes and collaborative projects,
and self-regulating with statistically proven trends and invariances. The fourth law,
Conservation of Organizational Stability (Invariant Work Rate), and the fifth law,
Conservation of familiarity, both lead to the third law. The fourth lawmore focuses on
the steadiness of multiloop self-stabilizing systems. A well-established organization
is good at avoiding dramatic change and particularly discontinuities in the increasing
growth of an organization. Especially in the past two decades, the complexity of the
task that the software system performs has grown dramatically, faster than hardware
due to the fast-paced high technology development (Catelani et al. 2011).

Amodern software product is prone to include a large number of modules, system
components, and Lines of Code (LOC) (Catelani et al. 2011; Han et al. 2012; Chang
et al. 2014; Chatterjee et al. 1997; Chatterjee and Singh 2014). The size of a software
product is no longer measured in terms of thousands of LOC, but millions of LOC.
The latest investigation states that more than 10 Microsoft commercial software
products could have more than 600 million LOC (Dang et al. 2011). In view of such
a great amount of LOC, the complexity of software product, domain knowledge of
programmer/tester, testingmethodologies, testing coverage, and testing environment
should be all carefully taken into account in software development.

Since the inception of electronic computing in the late 1940s, the development
race of the computer industry has led to an unprecedented process (Patterson and
Hennessy 2013). Powerful, inexpensive computer workstations replaced the drafting
boards of circuits and computer designers.Moreover, an increasing number of design
steps were automated. Computer and communication industries have grown into
the largest, amongst the new rising industries in the twentieth century (Moravec
1998). Hardware advances have allowed software programmers to create wonderful
coding and develop new features and functionality (Moravec 1998). However, there
exists uneven progress between software and hardware in the computer revolution
in the past few decades. Based on the latest technology review, hardware is leaving
software behind. As a matter of fact, software is relied on a less firm foundation,
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at the same time, carries a larger burden than hardware in operation. Given the
current technology in manufacturing and electrical engineering, software has more
potentials to allow designers to contemplatemore ambitious systems in consideration
of a broader multidisciplinary scope (Lyu 1996, 2007).

The nonperformance and failures of a software system are inconvenient, some-
times can lead to severe consequences, especially in the application of aerospace
engineering and national defense systems. In March 2015 (COMPUTERWORLD
2020), a software glitch carried in the software package of Lockheed Martin F-
35 Joint Strike Fighter aircraft had made the aircraft could not correctly detect the
target. The sensor on the plane cannot distinguish the difference between singular
and multiple threats. Additionally, different F-35 aircraft provide different detection
information even they are aiming at the same threat, which depends on the angles
they are aiming at and what their sensors have received. The delivery date had to be
postponed as well because of this issue.

Software failures can also cause serious consequences in an automobile. Toyota
had to recall almost 2 million Prius hybrid vehicles, in order to fix a software
glitch along with its engine control units (ECUs) in February 2014 (COMPUT-
ERWORLD 2020). A malfunction within the car’s hybrid drive system caused by
a software glitch could, in certain circumstances, cut the system’s power and cause
the car to an unscheduled halt. A software glitch affecting the ECUs controlling
the motor/generator and the hybrid system could put extra thermal stress on certain
transistors under certain conditions. The same software issue recurred in July 2015,
which has resulted in the recall of 625,000 Prius cars globally. Software failures
have affected the healthcare system as well. Emergency services were unavailable
for around six hours across seven U.S. states in April 2014 (COMPUTERWORLD
2020). The incident had a major impact on 81 call centers, meaning about 6,000
people who made 911 calls that were not able to connect in these seven states. There
is a study announced by the Federal Communications Commission found that the
cause of service unavailable was an entirely preventable software error.

The nonperformance and failures of software are expensive. A study carried by
the National Institute of Standards & Technology in 2002 found that inadequate
infrastructures for fixing software bugs cost the U.S economy $59.5 billion every
year. What about the global cost of fixing software bugs every year? This study also
estimated that more than a third of software bugs could be eliminated by improving
software testing scheduling and methodology (Tassey 2002).

Hence, developing reliable software is a major challenge to the software industry,
information technology (IT) industry, and other related industries, which leads to the
fact that Software Reliability Engineering is popular in both academia and industry.
We thus discuss the recent trends in software development and the importance of
developing software reliability models in Sect. 2. Indeed, the deterministic and prob-
abilistic software reliability models are reviewed in Sect. 3. Since nonhomogeneous
Poisson process (NHPP) based software reliabilitymodels have been successful tools
in practical software reliability engineering, Sect. 4 thus focuses on the review of
NHPP based software reliabilitymodels that address various concerns in the software
development practices. Section 5 concludes this chapter.
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2 Software Reliability Engineering

2.1 Trends in Software Development

Large-scale software development is a very complex, effort-consuming, and expen-
sive activity. Even though many innovations and improvements have been proposed
on software architecting systems and development approaches, large-scale software
development is still largely unpredictable and error-prone (Bosch andBosch-Sijtsema
2010).

Bosch and Bosch-Sijtsema (2010) discussed three trends in software develop-
ment in 2010, which will further accelerate the complexity of large-scale software
development. The first trend is the increasing adoption of software product lines.
A software product line consists of a software platform shared by a group of prod-
ucts. Each software product can select and configure components in the platform
and extend the platform with desirable functionality. At the same time, the plat-
form consists of many components with the associated team. Each team takes charge
of one product or several products. Software development is taken place within
many teams in the organization. During the development cycle, the interactions
and communications among teams are much than traditional software development
teams. Some research identified the adoption of software product lines allows 50–
75% of development expenses reduction and decreases the defect density if the adop-
tion is successful (Hallsteinsen et al. 2008; Clements and Northrop 2002). However,
the adoption of software product lines also brings a new level of dependency on
organizations in software development. The second trend is software development
globalization. Companies often have multiple software development sites globally
or partnered with other remote companies especially located in India and China.
There are many advantages in terms of software development, e.g., cycle time reduc-
tion, travel cost reduction, fewer communication issues about user experiences, and
faster response to customers (Cascio and Shurygailo 2003). Nevertheless, software
development globalization also brings challenges given the culture difference, time
zone, software engineering maturity in every country, and technical skills between
different countries. The third trend is the adoption of software ecosystems.A software
ecosystem is defined as a set of businesses functioning as a unit and interacting with a
shared market for software and services. There are relationships amongst those units,
which are supported by a technological platform, operating through the exchange
of information, resources, and artifacts (Messerschmitt and Szyperski 2005; Jansen
et al. 2007). Software ecosystem also takes external developers, domain experts, and
users. Hence, community-centric collaboration and coordination are very impor-
tant, which are similar to the adoption of software product lines (the first trend in
software development). Thus, the dependencies between components will increase
and the complexity of software development will increase accordingly (Bosch and
Bosch-Sijtsema 2010).
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2.2 Importance of Software Reliability Model

Given the complexity of large-scale software development, how we can assure
software quality is one of the challenging problems in the industry. One of the
fundamental quality characteristics is reliability. It is generally accepted that reli-
ability is the key factor in software quality since it quantifies failures and misbe-
haviors of the product. As recognized in both industry and academia, reliability is
an essential measurement metric for developing a robust and high-quality software
product (Febrero et al. 2016; Lyu 1996, 2007). According to the definition given by
ANSI/IEEE, software reliability is defined as the probability that a software system
can perform its designed function without failure during a specified time on a given
set of inputs under defined environments (Lyu 1996).

On the other hand, the increasing complexity and shortened iteration cycle of soft-
ware products bring in a decrease in average market life expectancy (Tassey 2002).
Thus, since the 2000s, there is a great attention shift from hardware development and
testing to improve software quality and reliability with the purpose of winning more
market share. Moreover, high reliability is desirable if a software company plans
to reduce the total cost of software products from an economic point of view. It is
undoubtedly that lower reliability software product not only results in the negative
impact regarding customer satisfaction but also brings in the additional cost occurred
during the operation phase because fixing a software fault in the operation phase costs
more resources compared with in-house testing. Since the fixing cost for a software
fault in the operation phase ismuch higher than the in-house testing phase, most orga-
nizations try to minimize these expenditures occurred in the operation phase. That
is why many high technology organizations need to release multiple versions for a
software product instead of fixing software faults in the operation phase, to improve
product reliability and introduce new features to improve the user experience.

It is necessary to develop a practical and applicable model that can capture the
software failure growth trend, predict the number of failures and software reliability
given a specific period of operating time, propose the optimal release time of new
products, and schedule the delivery time for the next release based on the predeter-
mined level of reliability. Thus, software reliability models are applied to evaluate
software reliability and capture the failure growth trend in the past few decades.
There are several ways to measure software reliability. A practical and common one
is model software reliability by utilizing the past failure behaviors obtained from the
testing phase.

3 Software Reliability Models

Software failure data, collected mostly in the testing phase, are applied to study
the behavior of software systems, such as software reliability given a specific time
interval, failure growth rate, the number of remaining faults in the system, and the
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optimal release time. Hence, a great number of studies have been focused on the
development of software reliability models in the past four decades with various
assumptions, such as testingmethodology, testing coverage, fault removal efficiency,
fault dependency, and time-delay debugging.

The classification of software reliability models was presented by different
researchers (Bastani and Ramamoorthy 1986; Goel 1985; Musa et al. 1990; Mellor
1987). One of the widely utilized classification methodologies categorizes software
reliability models into two types: the deterministic models and the probabilistic
models (Pham 2000). The deterministic models are used to study: (1) the element
of a program by counting the number of distinct operators, operands, errors, and
instruction; (2) the control flow of a program by counting the branches; (3) the data
flow of a program (data sharing and passing). There are two well-known models:
Halstead’s software metric (Halstead 1977) and McCabe’s cyclomatic complexity
metric (McCabe 1976). These models provided an innovative and pioneering quan-
titative approach to analyze and measure the performance of software systems at
that time; however, a random event is not involved, hence, these models are not suit-
able to apply in modern software. The probabilistic models take into account failure
detection and failure removal as probabilistic events during software development.
The classification of the probabilistic software reliability models is given by Pham
(2000, 2007), Xie (1991): (1) error seeding; (2) failure rate; (3) curve fitting; (4)
reliability growth; (5) Markov structure; (6) time series; (7) NHPP.

In Sect. 3.1, we review the research articles regarding the probabilistic software
reliability models with groups stated as follows: error seeding, failure rate, curving
fitting, reliability growth, Markov structure, and time series. Since NHPP based
software reliabilitymodels have been successful tools in practical software reliability
engineering, this chapter mainly focuses on the review of NHPP based software
reliability models. Therefore, Sect. 3.2 introduces the general theory of NHPP and
Sect. 4 reviews a great number of NHPP software reliability models with different
considerations, such as testing effort, testing coverage, fault removal efficiency, fault
dependency, time-delay fault removal, environmental factor on affecting software
reliability, and multiple-release software.

3.1 Probabilistic Software Reliability Models

In the error seeding based software reliability model, the number of errors in a
program is estimated by applying the multi-stage sampling technique (Mills 1972;
Cai 1998; Tohma et al. 1991). Errors are categorized as indigenous errors and induced
(seeded) errors. The number of indigenous errors, which is unknown, is estimated
from the number of induced errors and the ratio of these two types of errors obtained
from software debugging data. We list three models in the group of errors seeding
based software reliability models.

Mills (1972) proposed an error seeding method to estimate the number of errors
in a program by introducing seeded errors into the program. If the probability of
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detecting both indigenous errors and induced errors are equal, then the probability
of k induced errors in r removed errors follows a hypergeometric distribution, given
as

P(k; N , n1, r) =

(
n1
k

)(
N

r − k

)
(
N + n1

r

) , k = 1, 2, . . . , r

where N is the total number of indigenous errors, n1 is the total number of induced
errors, r is the total number of errors removed during debugging, k is the total number
of induced errors in r removed errors, and r − k is the total number of indigenous
errors in r removed errors. Given the parameters n1,r , and k are known, themaximum
likelihood estimation (MLE) of N can be shown as (Huang 1984) N

∧

= �N0� + 1,
in which N0 = n1(r − k)/k − 1. Note that N0 and N0 + 1 are both MLEs of N
if N0 is an integer. Tohma et al. (1991) introduced a reliability model based on the
hypergeometric distribution to estimate the number of errors in the program. Later,
Cai (1998) modified Mills’ model by dividing software into two parts, Part 0 and
Part 1.

In the failure rate class, these studies (Jelinski and Moranda 1972; Schick and
Wolverton 1978; Moranda 1981) focused on how failure rates change at the failure
time during the failure intervals. The number of faults in the program is a discrete
function, thus, the failure rate of a program is a discrete function aswell. The Jelinski-
Morandamodel (Jelinski andMoranda 1972) is one of the earliest software reliability
models, which states the program failure rate at the i th failure interval is given by
λ(ti ) = ∅[N − (i − 1)], i = 1, 2, . . . , N , in which ∅ is a proportional constant
representing the contribution of one fault makes to the overall program, and N is the
number of initial faults in the program. The Schick-Wolverton model (Schick and
Wolverton 1978) modified the Jelinski-Moranda model by assuming the failure rate
at the i th time interval increases with time ti since the last debugging. Later, Moranda
(1981) proposed a reliability model considering the program failure rate function as
initially a constant D and decreases geometrically at failure times.

In the curve fitting class (Belady and Lehman 1976; Miller and Sofer 1985),
the models use statistical regression analysis to illustrate the relationship amongst
software complexity, the number of faults, and failure rate in the software. Linear
regression analysis, nonlinear regression analysis, or time series approach is applied
between the dependent and independent variables. Estimation of errors, complexity,
and failure rate are investigated in the modeling. Belady and Lehman (1976) intro-
duced a model by applying time series approach to estimate software complexity.
Miller and Sofer (1985) also proposed a model to estimate software failure rate by
assuming the failure rate is a monotonically non-increasing function.

In the reliability growth class (Coutinho 1973; Wall and Ferguson 1977), the
improvement of program reliability is measured and predicted via the testing phase
by reliability growth models. The failure rate is a function of time or the number of
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testing cases in this group of models. Coutinho (1973) pointed out that the failure rate
is a function of the cumulative number of failures and testing time.Wall and Ferguson
(1977) proposed a model that is similar to Weibull model to predict software failure
rate during testing.

In the group of Markov structure models (Goel and Okumoto 1979a; Littlewood
1979; Yamada et al. 1998; Goseva-Popstojanova and Trivedi 1999; Dai et al. 2005),
the assumption is that the failure of themodules is independent of each other.Goel and
Okumoto (1979a) proposed a linearMarkovmodel with imperfect debugging.Mean-
while, theygave the transition probability of themodel. Littlewoods (1979) developed
a reliability model incorporating the transitions between modules while operating.
Two types of failures are considered: failure from eachmodule, modeled as a Poisson
failure process, and failure from the interface betweenmodules. Yamada et al. (1998)
performed a software safety model to illustrate software’s time-dependent behavior
using theMarkov process. Goseva-Popstojanova and Trivedi (1999) proposed a soft-
ware reliability modeling framework that can consider the phenomena of failure
correlation and further studied its effects on the software reliability measures based
on the Markov renewal process. Dai et al. (2005) proposed a software reliability
model based on aMarkov renewal process for themodeling of the dependence among
successive software runs, in which four types of failures are allowed in the general
formulation. Meanwhile, the cases of restarting with repair and without repair are
considered.

In the time series model group (Chatterjee et al. 1997; Singpurwalla and Soyer
1985; Ho andXie 1998; Xie andHo 1999), autoregressive integratedmoving average
method is applied to study software reliability. Singpurwalla and Soyer (1985) intro-
duced several ramifications into a random coefficient autoregressive process of order
1 to describe software reliability. Besides, several research papers (Chatterjee et al.
1997; Ho and Xie 1998; Xie and Ho 1999) also used time series approach to address
software reliability prediction in the testing phase and operation phase.

3.2 General Theory of NHPP

Let N (t) be the cumulative number of software failures by time t. The counting
process {N (t), t ≥ 0} is said to be a NHPP with the intensity function λ(t), t ≥ 0.
The probability of exactly n failures occurring during the time interval (0, t) for the
NHPP is given by

P {N (t) = n} = [m(t)]n

n! e−m(t) for n = 0, 1, 2, . . .

where m(t) = E[N (t)] = ∫ t
0λ(s)ds. m(t) is the expected number of failures up to

time t, which is also known as the mean value function (MVF).
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Note that the forms of the MVF vary with different assumptions. In NHPP, the
stationary assumption is relaxed compared with the Poisson process. In other words,
N (t) is Poisson-distributed with a time-dependent failure intensity function λ(t),
while the Poisson process holds the stationary assumption, m(t) = λt .

A general NHPP model includes the following assumptions: (1) the failure
process has an independent increment; (2) the failure rate of the process is
given by P{N (t + �t) − N (t) = 1} = λ(t)�t + o(�t); (3) during a small
interval �t , the probability of more than one failure is negligible, that is
P{N (t + �t) − N (t) ≥ 2} = o(�t), in which o(�t) represents a quantity that tends
to be zero for a small �t. The instantaneous failure intensity function λ(t) is defined
as

λ(t) = lim
�t→0

R(t) − R(�t + t)

�t R(t)
= f (t)

R(t)

where R(t) = P[N (t) = 0] = e−m(t).

The MVF is expressed asm(t) = ∫ t
0λ(s)ds. One of the main objectives of NHPP

software reliabilitymodel is to derive appropriatem(t). The failure intensity function
is equivalent to the derivative of MVF, which is λ(t) = m ′(t). Different assumption
on the fault detection and fault removal process lead to different failure intensity
function λ(t). Reliability and other related measurements can be obtained by solving
the differential equation m ′(t). The least-square estimate or MLE are commonly
applied to estimate unknown parameters.

Software reliability R(t) is defined as the probability that a software failure does
not occur in (0, t), that is

R(t) = P[N (t) = 0] = e−m(t)

In general, during time interval (t, t + x), software reliability can be described
as

R(x |t) = P[N (t + x) − N (t) = 0] = e−[m(t+x)−m(t)]

4 NHPP Software Reliability Models

NHPP has been successfully applied to model software reliability since Goel and
Okumoto (1979b) firstly proposed their innovative model in 1979. Based on the
development of Goel-Okumoto model, many NHPP software reliability models
have been proposed in the past four decades to address different scenarios in soft-
ware fault detection and fault correction processes, such as testing coverage, fault
removal efficiency, fault dependency, time-delay fault removal, environmental factor
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on affecting software reliability, and multiple-release software. The failure processes
are described by NHPP property with the MVF at time t ,m(t), and the failure inten-
sity of the software program, λ(t), which is also the derivative ofMVF.Most existing
NHPP software reliability models are developed based on the model below

dm(t)

dt
= h(t)[N (t) − m(t)] (1)

wherem(t) denotes the expected number of software failures by time t, N (t) denotes
the total number of fault content by time t, and h(t) denotes the time-dependent fault
detection rate per unit of time. The underlying assumption of Eq. (1) is the failure
intensity is proportional to the residual fault content in the software. Depending on
the model considerations, N (t) and h(t) can be modeled as a constant or a time-
dependent function. Given many NHPP software reliability models are developed
based on Eq. (1), we thus review these models depending on the focused scenarios
in software development process. In the following sections, we rewrite the reviewed
models based on the format of Eq. (1), and the coefficients of the reviewed models
are nonnegative unless specified. The basic assumptions for the reviewed models
are as follows unless specified: (1) software fault detection follows the NHPP; (2)
the number of failures detected at any time t is proportional to the remaining faults in
the software program; (3) when a failure is detected, the error that caused the failure
is immediately removed; (4) all faults in a program are mutually independent from
the perspective of failure detection.

4.1 NHPP Exponential Models

The Goel-Okumoto model (Goel and Okumoto 1979b) assumed that the isolated
faults are removed prior to future test occasions and no new errors are introduced.
The Goel-Okumoto model thus has h(t) = b and N (t) = a in Eq. (1) to obtain the
MVF.Musa (1975) proposed a similar model to the Goel-Okumotomodel by consid-
ering the relationship between execution time and calendar time, which assumed that
h(t) = c/nT and N (t) = a in Eq. (1) to obtain the MVF, in which a is the number
of failures in the program, c is the testing compression factor, T is the meaning time
to failure at the beginning of the test, and n is the total number of possible failure
during the maintained life of the program.

Ohba (1984) proposed the hyper-exponential growth model in consideration of
different clusters of modules in a program. Each module contains a different initial
number of errors and different failure rates, which are all assumed as constants
in the software reliability model. It is well-known that the sum of an exponential
distribution is a hyper-exponential distribution. Thus, the system software reliability
model is more like the summation of each module’s reliability model. Similar to
the model proposed by Ohba (1984), Yamada and Osaki (1985) also proposed a
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software reliability model that considered software can be divided into K modules.
The probability of faults for each module will be taken into consideration. The fault
detection rate is the same within modules; however, it is various between modules.
The total number of errors in the software is assumed as a constant and there are no
new errors will be introduced during the fault detection process.

4.2 NHPP S-Shaped Models

In theNHPPS-shapedmodels, software reliability growth curve behaves as S-shaped.
The curve crosses the exponential curve frombelowand the crossing occurs only once
(Pham 2007). Time-dependent fault detection rate is applied in modeling software
reliability growth trends. The concept of the S-shaped model is proposed to describe
the changes of fault detection rate. Fault detection rate can be changed because
of the difficulty level to detect different types of faults or the working experience
that involves a learning process of software testers. Ohba et al. (1982) discussed a
general NHPP model with S-shaped MVF in which h(t) in Eq. (1) is treated as a
time-dependent function. Ohba and Yamada (1984) proposed the NHPP model with
the S-shaped MVF and considered the cumulative number of detected faults often
seems to perform S-shaped. They stated that some of the faults are not detectable
before some other faults are removed. The model proposed by Ohba and Yamada
(1984) is called the inflection S-shaped model, which assumes h(t) = b/(1+βe−bt )

and N (t) = a in Eq. (1), in which b and β represent failure detection rate and
inflection factor, respectively.

Around the same time, Yamada et al. (1983, 1984, 1986) proposed several soft-
ware reliability models considering the software fault detection process as a learning
process. Specifically, when software testers get more familiar with the testing envi-
ronment, specifications, and requirements, the fault detection rate will be higher.
For example, Yamada et al. (1984) proposed a model, called the delayed S-shaped
model, which assumed that h(t) = b2t/(bt + 1) and N (t) = a in Eq. (1), in which
b is the error detection rate per error in the steady-state. Nakagawa (1994) devel-
oped the connective NHPP model with S-curve forms. A group of modules called,
main route modules, are tested first, followed by other modules. Even the failure
intensity in the main route modules and other modules are similar, the failure growth
curve performs as S-curve since the detection starts at different time points. After-
ward, S-shaped reliability models are further developed in many studies (Chatterjee
et al. 1997; Chatterjee and Singh 2014; Pham 1993; Pham and Zhang 1997; Pham
et al. 1999). For example, Pham et al. (1999) developed the PNZ model in consid-
eration of both the imperfect debugging and the learning effects, which assumed
h(t) = b/(1 + βe−bt ) and N (t) = a(1 + αt) in Eq. (1), in which faults can
be introducted during the debugging process at a constant rate of α, a is the total
number of initial faults, and b and β have the same meanings as the model proposed
by Ohba and Yamada (1984). Chatterjee and Singh (2014) incorporated a logistic-
exponential testing coverage function in developing software reliabilitymodel,which
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assumed that h(t) = c′(t)/(1 − c(t)) − d(t), c(t) = (
ebt − 1

)k
/
[
1 + (

ebt − 1
)k]

,

d(t) = β/(1+βt), and N (t) = a in Eq. (1), in which k is the positive shape param-
eter, b is a positive scale parameter, d(t) is the fault introduction rate, modeled as a
decreasing function of time.

4.3 NHPP Imperfect Debugging Models

NHPP perfect debugging models often assume when a failure occurs, the fault that
caused the failure can be immediately removed, and no new faults are introduced
(Goel andOkumoto 1979a;Ohba andYamada 1984;Yamada et al. 1983;Hossain and
Dahiya 1993), whichmeans N (t) = a.Manymodels described inNHPP exponential
models and S-shaped models are also NHPP perfect debugging models, in which
N (t) is modeled as a constant.

The concept of imperfect debugging is based on the assumptions (Pham 2000,
2007): (1)when the detected errors are removed, it is possible to introduce new errors;
(2) the probability of finding an error in a program is proportional to the number of
remaining errors in the program. Many reliability models are proposed based on
NHPP imperfect debugging concept (Pham 2007, 1993; Yamada et al. 1984, 1991,
1992; Pham and Zhang 1997; Pham et al. 1999; Pham and Pham 2000; Inoue and
Yamada 2004; Jones 1996; Kapur et al. 2007, 2011; Teng and Pham 2006; Tokuno
and Yamada 2000; Fang and Yeh 2016; Xie and Yang 2003; Pham and Normann
1997). In the 1990s, Yamada et al. (1992) proposed two imperfect debugging models
considering two types of fault content functions N (t), which are N (t) = αeβt and
N (t) = α(1 + γ t), respectively, in which α is the number of initial fault content in
the program prior to software testing, β and γ are the increasing rates of the number
of the introduced faults to the program.

Software reliability models can belong to multiple categories, such as perfect
debugging, imperfect debugging, S-shaped, exponential, testing effort, testing
coverage, fault dependency, environmental factors, and software multiple-release.
As an example, we review models that belong to both the categories of NHPP imper-
fect debugging and S-shaped models. S-shaped models were initially proposed to
focus on the change of fault detection rate considering the difficulty level of detecting
different types of software faults and the efficiency of detecting faults based on soft-
ware testers’ learning process, we therefore name the models that belong to both
the categories of NHPP imperfect debugging and S-shaped models as NHPP imper-
fect debugging fault detection (IDFD) model. Besides the general assumptions of
NHPP software reliability models, the generalized NHPP IDFDmodels also include
the following assumptions: (1) the error detection rate differs among faults; (2) new
faults are introduced during debugging.

Pham and Normann (1997) provided a generalized solution of Eq. (1). Specific
MVF can be obtained by substituting different fault detection functions. The PNZ
model (Pham et al. 1999) described in Sect. 4.2 also belongs to the category of
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the NHPP IDFD model. Moreover, Pham and Zhang (1997) proposed a model with
N (t) = c + a(1 − e−αt ) and h(t) = b/(1 + βe−bt ) in Eq. (1). Pham (2000, 2007)
proposed a model by considering the fault introduction rate is an exponential func-
tion of the testing time, and the error detection rate follows a learning process, which
assumed that N (t) = αeβt and b(t) = b/(1 + ce−bt ) in Eq. (1). Later, Kapur et al.
(2011) proposed two general frameworks for developing NHPP software reliability
model in the presence of imperfect debugging and error generation. The first frame-
workwas formulated based on the assumption that there is no differentiation between
failure observation and fault removal process. h(t) and N (t) in Eq. (1) are modeled
as h(t) = pF ′(t)/(1− F(t)) and N (t) = A+αm(t), respectively, in which p is the
probability of perfect debugging, F(t) is the failure time distribution, A is the initial
number of faults, and α is a constant fault introduction rate. The second framework is
thus extended based on the assumption that there is a differentiation between failure
observation and fault removal process.

4.4 NHPP Software Reliability Models on Software Testing

The common way to improve software reliability is to focus on in-house testing.
Myers et al. (2011) defined software testing as a process of executing a program
with the intent of finding errors. There are two fundamental rules in software testing.
Firstly, it is intended to detect as many faults as possible during the in-house testing
phase and remove the detected faults from the software system. Secondly, software
failure data will be collected to predict system reliability, estimate the remaining
faults, and schedule the product delivery date.

Owing to the fact that software debugging, testing, and verification are accounted
for 50–70% of a software product’s development cost. Indeed, software testing is
always defined as a difficult and expensive section in software development (Ohmann
and Liblit 2017; Hailpern and Santhanam 2002). Software debugging cost even goes
higher if debugging is carried out in the operation phase. In practice, it is unlikely
to release bug-free software products owning to its natural characteristics. Post-
deployment failures are inevitable in complex software.

It is generally accepted that the longer time spent on software testing, the fewer
faults that softwarewill carry and themore reliable the softwarewill be.However, this
is not a practical approach. Exhaustive testing to execute all possible inputs unlikely to
happen since too many possible combinations result in little improvement in system
reliability (Weyuker 2004; Kaner et al. 2000). Moreover, full execution tracing is
usually impractical for complex software programs due to the limitation of cost and
resources (Ohmann and Liblit 2017). Furthermore, after software reaches a certain
level of refinement, any further effort on removing faults will cause an exponentially
increase in the total development cost but not much increase in reliability assessment
(Pham and Zhang 1999a, b). Thus, how to test software efficiently and meet the pre-
determined reliability is a challenging task for both researchers and practitioners.
In this section, we review NHPP software reliability models considering different
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scenarios in software testing, including testing coverage, testing efficiency, testing
effort, time-delay fault removal, and multiple fault types.

Testing Coverage Models—Software systems have been widely applied in
numerous safety-critical domains; however, large-scale software development is still
considered a complicated and expensive activity. Since the testing phase plays an
essential role in software development, a great number of software reliability models
focus on the specific scenarios in the software development process, such as testing
coverage, testing efficiency, testing resource allocation, and so on. Testing coverage
is a measure that enables software developers to evaluate the quality of the tested
software and determine how much additional effort is needed to improve the quality
and reliability (Pham 2007). At the same time, the information on testing coverage
can provide customers with a quantitative confidence criterion for software prod-
ucts. Pham and Zhang (2003) thus introduced a generalized model incorporating
the measurement of testing coverage into software reliability assessment, in which
h(t) = c′(t)/(1 − c(t)) in Eq. (1). This model indicates that the failure intensity
depends on both the rate, the coverage rate c’(t), and the percentage of the code that
has not yet been covered by testing by time t, expressed as 1-c(t). Note that different
functions of N (t) and c(t) can be plugged into Eq. (1) to obtain the MVF, given
the formula of h(t). One of the examples for the expressions of c(t) and N (t) is
c(t) = 1− (1 + bt)e−bt and N (t) = a(1+ αt). The model developed in Chatterjee
and Singh (2014), reviewed in Sect. 4.2, is based on the model developed in Pham
and Zhang (2003) by considering the fault introduction rate into h(t), expressed as
h(t) = c′(t)/(1 − c(t)) − d(t), in which d(t) is the fault introduction rate.

Inoue andYamada (2004) proposed an alternative evaluationmetric for the testing
coverage in their study and further proposed a software reliability model by formu-
lating the relationship between the alternative testing coverage evaluation function
and the number of detected faults. The testing coverage measures are classified into
several types, such as statement coverage, branch coverage, and path coverage. The
measure of testing coverage is defined as the proportion of the number of statements
that have been executed in the total number of statements. The software reliability
proposed by Inoue and Yamada (2004) assumed that h(t) = sc(t) and N (t) = a in
Eq. (1), inwhich c(t) ≡ dC(t)/dt ,C(t) = α(1−e−bsta t )/(1+ze−bsta t ), z = (1−r)/r ,
r = bini/bsta , α is the target value of testing coverage to be attained, bini is the initial
testing skill factor of the test case designers, and bsta is the steady-state testing
skill factor. Later, Li et al. (2008) incorporated logistic testing coverage function
to develop a software reliability model. The time-varying test coverage function
is expressed as C(t) = Cmax/(1 + Ae−at ), in which Cmax is the ultimate testing
coverage that can be achieved by testing, a is the parameter of testing coverage
increasing rate, and A is a constant. The proposed reliability model assumed that
N (t) = N and h(t) = C ′(t)/(1 − C(t)) in Eq. (1).

Testing Efficiency Models—Section 4.3 reviewed software reliability
models that addressed new faults are introduced into debugging based on the concept
of imperfect debugging. Moreover, imperfect debugging can also be understood as
the detected faults are removed at a certain rate instead of 100%. Jones (1996) stated
that the faults removal efficiency (FRE) is an important factor in software quality and
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process management, which can provide software developers with the estimation of
testing effectiveness and the prediction of additional effort. Note that FRE usually
ranges from 15 to 50% for unit test, 25–40% for integration test, and 25–55% for
system test (Pham 2007). Most software reliability models (Pham 2007) assumed
that the detected faults are removed 100%. However, fault removal is not always
100% in practice. Some represented models are reviewed below. Zhang et al. (2003)
proposed a generalized software reliability model based on imperfect debugging
considering new faults can be introduced while debugging and the detected faults
may not be removed completely. They defined the FRE in the study, which presented
a new idea for later research. The FRE is defined as the percentage of bugs elimi-
nated by reviews, inspections, and tests. Incorporating FRE into software reliability
analysis will not only improve the prediction accuracy of software metrics but also
define a tangible and quantifiable factor. The model proposed in Zhang et al. (2003)
is expressed as dm(t)/dt = b(t)[a(t) − pm(t)] and da(t)/dt = β(t)dm(t)/dt , in
which p is the FRE, which means p percentage of detected faults can be completely
eliminated during the debugging. Note that Zhang et al. (2003) provides a general
solution for their proposed model and a specific solution with b(t) = c/(1+ αe−bt )

and β(t) = β.
Kapur et al. (2007) proposed a software reliability model that incorporates testing

efficiency regarding testing efforts in the testing phase and usage function in the
testing phase. They (Kapur et al. 2007) assumed that: (1) when a software failure
occurs, an instantaneous repair effort starts with the fault content is reduced by one
with probability p and remains unchanged with probability 1 − p; (2) the number
of failures during the operation phase is dependent upon the usage function. Thus,
their proposed model considers h(t) = [

pb/(1 + βe−bW (t))
]
dW (t)/dt and N (t) =

a + αm(t) in Eq. (1), in which W (t) represents the cumulative testing effort in the
time interval (0, t]. Base on the model proposed in Zhang et al. (2003), Li and Pham
(2017) further proposed a software reliability model by incorporating FRE with
dm(t)/dt = h(t)[N (t)− pm(t)], h(t) = βc′(t)/(1− c(t)), and N (t) = a+αm(t),
in which β is proportionality constant and p is the FRE (same meaning as defined in
Zhang et al. (2003)). Later, Zhu and Pham (2016) proposed a new way to formulate
a software reliability model that addresses non-removed errors due to the experience
of software testers, expressed as dm(t)/dt = b(t)m(t)[1 − m(t)/L] − c(t)m(t), in
which b(t) is the fault detection rate per unit of time, L is the maximum number
of faults existed in the program, and c(t) is the non-removed error rate per unit of
time. Zhu and Pham (2016) provided a general solution for the proposed model and
a specific model with b(t) = b/(1 + βe−bt ), and c(t) = c.

Testing Effort Models—Yamada et al. (1991) proposed a software reliability
model by using exponential and Rayleigh curves to describe the behavior of the
amount of test effort spent on software testing. The proposed model (Yamada et al.
1991) is expressed as dm(t)/dt = rw(t)[a − m(t)], 0 < r < 1, andw(t) = αβe−βt

orw(t) = αβte−βt2/2, inwhichw(t) is the test effort function representing the current
test resource expenditures at testing time t , α and β are the coefficients associated
with exponential and Rayleigh function. Huang and Kuo (2002) investigated a soft-
ware reliability model based on the NHPP by incorporating a logistic testing effort
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function. They used the same base model (Yamada et al. 1991) and further proposed
a new logistic testing effort functionw(t) = N Aαe−αt/

[
1 + Ae−αt

]2
, in which N is

the total testing effort eventually consumed,α is the consumption rate of testing effort
expenditures in the logistic testing effort function, and A is a constant parameter.

Huang and Lyu (2005) studied the impact of the testing effort and testing effi-
ciency on modeling software reliability and the cost for optimal release time. The
model proposed in Huang and Lyu (2005) used the same basic model (Yamada
et al. 1991) and further considered a generalized logistic testing effort function
w(t) = N/

[
((k + 1)/β)/(1 + Ae−αkt )

]1/k
, in which N is the total amount of

testing effort eventually consumed, k is the structuring index whose value is larger
for better-structured software development efforts, A is the constant parameter in the
logistic testing effort function, β is a normalized constant, and α is the consump-
tion rate of testing effort expenditures in the logistic testing effort function. Huang
(2005) further proposed a software reliability model incorporating the testing effort
function in Huang and Lyu (2005) and the concept of change-point. Later, Lin and
Huang (2008) incorporated the concept of multiple change-points into Weibull-type
testing effort functions to propose a new software reliability model. Peng et al.
(2014) proposed software reliability models in terms of fault detection process and
fault correction process by incorporating testing effort function and imperfect debug-
ging. Peng et al. (2014) assumed that h(t) = b(t)w(t) for fault detection process,
in which b(t) is the fault detection rate per unit of testing effort at time t and w(t)
is the current testing effort expenditure at time t , and provided a general solution.
Peng et al. (2014) also proposed the MVF for fault correction process with debug-
ging delay m(t) = ∫ t

0λd(y)F(w(t) − W (y))dy, in which F(W (t) − W (y)) is the
probability that the fault detected at time y is corrected before time t , and λd(t) is
the fault intensity function of the fault detection process.

Time-delay Fault Removal Models—Time-delay fault removal models are
also discussed in many studies. Xie and Zhao (1992) generalized Schneidewind’s
model by assuming a continuous time-dependent delay function which quanti-
fies the expected delay in correcting the detected faults. Delay is treated as an
increasing function of time t. The faults are easy to be corrected in the early
stage of testing and become difficult to detect as time goes by. The MVF, md(t),
proposed in the fault detection process, is similar with Goel-Okumoto model, which
is md(t) = (α/β)(1− e−βt ). The MVF, mc(t), proposed in the fault correct process
is formulated as mc(t) = md(t − �t), t ≥ �t .

Hwang and Pham (2009) developed a generalized NHPP software reliability
model by considering quasi-renewal time-delay fault removal. They assumed that:
(1) time-delay is defined as the interval between fault detection and fault removal; (2)
time-delay is considered as a time-dependent function, described by a quasi-renewal
process with parameter α and the first interarrival time s1. This model provides a
more relaxed assumption in software testing and debugging, which is very close to
the practical testing and debugging process. Note that the testing resource allocation
during the testing phase, which is usually depicted by the testing effort function, is
affected not only by the fault detection rate but also the time to correct a detected
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fault. Moreover, Peng et al. (2014) not only incorporated the testing effort func-
tion and fault introduction into the fault detection process but also considered the
debugging delay in the fault correction process.

Multiple Fault Types Models—Many studies stated that there exists more than
one type of software fault in the program (Grottke et al. 2010; Laprie et al. 1990;
Avizienis 1985; Grottke and Trivedi 2005, 2007; Shetti 2003; Alonso et al. 2013;
Yazdanbakhsh et al. 2016; Deswarte et al. 1998; Laprie 1995). Different fault classes
are categorized by practitioners and researchers to describe the characteristics of
software faults that cause failures during the testing and operation phase (Grottke
et al. 2010; Laprie et al. 1990; Yazdanbakhsh et al. 2016; Deswarte et al. 1998;
Laprie 1995). The limits and challenges in the dependability of computer systems
in terms of the fault class, such as physical faults, design faults, and interaction
faults, are discussed in Yazdanbakhsh et al. (2016), Deswarte et al. (1998) as well.
Ohba (1984) discussed two types of software faults, mutually independent faults,
and mutually dependent faults. Tokuno and Yamada (2000) proposed an imperfect
debugging software reliability model with two types of software failures involved.
The first type is caused by the fault latent in the system, which is described by a
geometrically decreasing function; the second type fault is randomly regenerated in
the testing phase, which has a constant hazard rate. Lyu (1996) divided software
failures into four groups according to the severity including catastrophic failure (a
failure that may cause death or mission loss), critical failure (a failure that may cause
severe injury or major system damage), marginal failure (a failure that may cause
minor injury or degradation in mission performance), and minor failure (a failure
that does not cause injury or system damage but may result in system failure and
unscheduled maintenance).

Kapur and Younes (1995) considered the leading error and dependent error in
model development. The expressions of N (t) and h(t) in Eq. (1) for the MVF,
m1(t), for the leading error is written as N (t) = q1 and h(t) = b. The expressions
of N (t) and h(t) in Eq. (1) for the MVF, m2(t), for the dependent error is written as
N (t) = q1 and h(t) = cm1(t −T )/q, in which c is the dependent error removal rate,
T is the time-delay between the removal of the leading errors and the removal of the
dependent errors, and m1(t − T )/q represents the ratio of the leading error removed
to the initial error content at time t . Note that the cumulative number of software
failures detected and removed by time t will be the summation of m1(t) and m2(t).

Pham (1996), Pham and Deng (2003) also studied multiple failure types with
different detection rates. Three different types of errors are defined in Pham (1996),
Pham and Deng (2003) including critical errors, which are very difficult to detect and
remove; major errors, which are difficult to detect and remove; minor errors, which
are easy to detect and remove. The N (t) and h(t) in Eq. (1) defined in Pham (1996) are
N (t) = ni (t), h(t) = bi , and Eq. (1) is reformulated as dni (t)/dt = βi dmi (t)/dt , in
which i represents different types of errors defined and βi represents the type i error
introduction rate that satisfies 0 ≤ βi ≤ 1. Later, Pham and Deng (2003) further
considered the expression of h(t) can be modeled as a non-decreasing S-shaped
model, in which h(t) = bi/(1 + θi e−bi t ). Huang and Lin (2006) incorporated fault
dependence and delay debugging in the software reliability growth model. Huang
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and Lin (2006) considered all detected faults can be categorized as either leading
faults or dependent faults. For the leading faults, the expressions of N (t) and h(t) in
Eq. (1) are N (t) = a1 and h(t) = r , in which a1 is the total number of leading faults.
For the dependent faults, the expressions of N (t) and h(t) in Eq. (1) are N (t) = a2
and h(t) = θm1(t − ϕ(t))/a, in which m1(t) is the expected number of leading
errors, θ is the fault detection rate of dependent faults, a is the total number of initial
faults, and ϕ(t) is the delay-effect factor.

Grottke et al. (2010) studied the proportion of the various fault types including
Bohrbugs, non-aging-related Mandel bugs, aging-related bugs, and unknown bugs
and their evolvement with time based on the fault discovered in the onboard soft-
ware for 18 JPL/NASA space missions. However, they did not provide a quanti-
tative way to estimate the number of faults. Zhu and Pham (2017a) proposed a
new NHPP software reliability model by considering software fault dependency and
imperfect fault removal. Two types of software faults are defined, Type I (inde-
pendent) fault and Type II (dependent) fault, based on the consideration of fault
dependency. The assumptions in Zhu and Pham (2017a) are: (1) Type I fault is
detected and removed in Phase I. Type II fault is detected and removed in Phase
II. The un-removed Type I faults from Phase I are still not able to detect in Phase
II; (2) in both phases, there exists a certain portion of software faults that the soft-
ware development team is not able to remove. In Phase I, the MVF of Type I fault
is expressed as dm1(t)/dt = b1(t)[a1(t) − m1(t)] − c1(t)m1(t), t ≤ t0, in which
a1(t) is total software content, b1(t) is Type I fault detection rate, c1(t) is the non-
removable fault rate in Phase I. In Phase II, the MVF of Type II fault is expressed
as dm2(t)/dt = (b2(t)/a2(t))m2(t)[a2(t) − m2(t)] − c2(t)m2(t), t > t0, in which
a2(t) is total software content in Phase II, b2(t) is Type II fault detection rate, and
c2(t) is the non-removable fault rate in Phase II.

4.5 NHPP Multiple-Release Software Reliability Models

As software development moves further away from the rigid and monolithic model,
the importance of software multiple-release is brought to the vanguard. It is unlikely
to deliver all features that customers wanted in the single release because of the
limited budget, unavailable resources, estimated risk, and constrainedworking sched-
ules. Staying competitive in the market and keeping profitable for a software product
is difficult with having only a single release especially when rival releases a new
release carrying more attractive features and satisfying more customer requirements
(Saliu and Ruhe 2005). As a result of multiple releases planning, software orga-
nization will have more competitive and overwhelming advantages to balance the
competing stakeholder’s demands and benefits according to the available resource
(Ruhe and Momoh 2005; Svahnberg et al. 2010). On the other hand, a large soft-
ware system continually desires to align with the changing customer requirements
for the sake of market share. In order to obtain feedback from users, figure out
what customers really look for, and assign a lower software development cost, a
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certain portion of increments on the requirements for a multiple-release product is
essential for the growth of an organization (Maurice et al. 2006; Greer and Ruhe
2004; Missbauer 2002). Thus, software organization needs to modify parts of the
existing modules to extend the current functionality, usability, and understandability
by adding new features and correcting the problems from the previous releases (Al-
Emran and Pfahl 2007; Gorschek and Davis 2008). Additionally, agile software
development is getting more attention in recent years. Agile is an iterative and team-
based approach, which emphasizes the rapid delivery of an application in complete
functional components (Lotz 2018). The wide adoption of agile methodology also
promotes software multiple-release.

Furthermore, most software products are not introduced into the market with full
capacities at their initial release. New features will be added and existing features will
be enhanced after launched software for a while. Hence, software multiple-release
is critical to keeping a software product stays competitive in the market. Modeling
and predicting software failure behaviors for single-release software systems have
been extensively studied in the past few decades. However, only a few researchers
studied multiple-release software reliability and introduced prediction models to
explain software fault detection process and fault removal process for multiple-
release software.

Garmabaki et al. (2011) incorporated different severities level used to describe the
difficulty of correcting faults in the upgrade process to develop a multi up-gradation
software reliability model. Faults are classified into two categories, simple fault, and
hard fault. The fault removal for the development of the new release depends on
the fault from the previous releases and the fault generated in that release. Hu et al.
(2011) considered the effect of multiple releases regarding the fault detection process
in software development. They assumed that there is no gap between the release of
the previous version and the development of the next version. In this work, in order
to study the effects of multiple releases on the fault dynamics during the whole
software development, they considered a scenario where a software development
team develops, tests, and releases software version by version. The field test of each
version continues after its release so that faults can continue to be detected and
corrected until the next version is ready to be tested. In case a fault is detected in the
field test of any version, it will be reported and corrected in both the current version
and its subsequent version.

Kapur et al. (2012) introduced the combined effect of schedule pressure and
resource limitations by the use of the Cobb–Douglas production function in software
reliability modeling. The Cobb–Douglas function illustrates the total production
output can be obtained by the amount of labor input, capital input, and total factor
productivity. An optimal release planning problem is formulated in this study for
software with multiple releases with the solution obtained by applying the genetic
algorithmmethod. Yang et al. (2016) incorporated fault detection and fault correction
process in multiple-release software reliability modeling. They considered there is a
time-delay in fault repair after detecting faults. The time-delay function is explained
by an exponential function or a gamma function. They also assumed the faults in a
new version including both the undetected faults from the last version and the newly
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introduced faults during the development process of the new version. Pachauri et al.
(2015) proposed a software reliability growth model by considering fault reduction
factor (FRF) and extended this idea to multiple-release software systems. FRF is
defined as the ratio of the total number of reduced faults to the total number of
failures. FRF is not a constant, which can be affected by other factors, such as
resources allocation.

The multiple-release software reliability models reviewed above mainly focused
on obtaining optimal release time by optimizing the software cost model without
considering the dependent relationship of software faults generated from different
releases. Therefore, Zhu andPham (2017b) focused on the development of amultiple-
release software reliability model considering the remaining software faults from the
previous releases and the newly introduced faults resulting from the newly introduced
features in the development of the next release. Additionally, the dependent fault
detection process is taken into account in this research. In particular, the detection
of a new software fault for developing the next release depends on the detection
of the remaining faults from the previous releases and the detection of the newly
introduced faults. They further discussed the behaviors of the proposed software
reliability model through mathematical proofs.

4.6 NHPP Environmental Factor Based Software Reliability
Models

Software development process has gone through a great change during the past one
and half decades. The rise of the Internet had led to rapid growth in the demand for
international information display and email systems on the World Wide Web. Soft-
ware programmers are required to handle various illustrations, maps, photographs,
and other images, plus simple animations at a rate we have never seen before. The
high technology has an ever-increasing impact on daily life, which drives the software
release cycle to become shorter than before, for instance,many companies have short-
ened their software release cycle from traditional 18 months to 3 months, in order
to respond to the fast-changing and competitive market (HP Applications Hand-
book 2012; Khomh et al. 2012). Moreover, as high technology gets more involved
in our everyday life, there are a wide variety of computational devices like mobile
phones, tablet PCs, laptops, desktops, and notebooks (Gallud et al. 2012), which
also brings more challenges to software developers, such as application mainte-
nance, device consistency, and dynamic version settings (Eisenstein et al. 2001).
Customers also have more requirements on the specific design and functionality of
the software product. A user-friendly interface, involved in the interaction amongst
users, designers, hardware systems, and software systems, has been emphasized to a
great extent nowadays. Furthermore, for practitioners and researchers, programming
skills, programming language, domain knowledge, and even the programmer orga-
nization and team size are different compared with a decade ago. Finally, software



Software Reliability Modeling and Methods … 21

development is distributed across multiple locations as the development of global-
ization (Ramasubbu and Balan 2007). However, such cross-site work patterns may
take a much longer time and require much more effort, even though the work size
and complexity are similar (Herbsleb et al. 2000, 2001; Herbsleb andMockus 2003).

Given the current trends of the software development process, which are the
adoption of software product lines, software development globalization, and the
establishment of software ecosystems, the complicated and human-centered soft-
ware development process needs to be addressed more appropriately. Meanwhile,
environmental factors play significant impacts on affecting software reliability during
the software development process (Zhang and Pham 2000; Zhang et al. 2001; Zhu
et al. 2015; Zhu and Pham 2017c; Misra et al. 2009; Chow and Cao 2008; Clarke
and O’Connor 2012; Sawyer and Guinan 1998; Roberts et al. 1998). Indeed, how
to define and incorporate single/multiple environmental factors that present a signif-
icant impact on reliability into the software reliability model is critical to address
modern software development in practice.

Environmental Factors in Software Development—Although no general defi-
nitionhas beengiven to definingwhat are the environmental factors affecting software
reliability during the software development process, there have been many related
works that defined different types of factors in software development from various
perspectives.

Zhang and Pham (2000) defined 32 environmental factors and characterized
the impacts of these environmental factors affecting software reliability during the
software development process for single-release software. These 32 environmental
factors are defined from the four phases of software development, general informa-
tion, and the interaction with hardware systems. Software development is divided
into four phases in this study: analysis phase, design phase, coding phase, and testing
phase. The authors conducted a survey investigation and obtained empirically quan-
titative and qualitative data from managers, software engineers, designers, program-
mers, and testers, who participated in software development practices. This study
also identified the important environmental factors in software development and
analyzed the correlations between these environmental factors. Later, Zhang et al.
(2001) provided an exploratory analysis to further analyze the detailed relationships
of these environmental factors. Zhu et al. (2015) revisited these 32 environmental
factors defined in Zhang and Pham (2000) and analyzed their impacts on software
reliability during software development based on a current survey distributed to soft-
ware development practitioners. As the application of agile development and the
increasing popularity of multiple-release software products in many organizations,
Zhu and Pham (2017c) further conducted another study to investigate the impact
level of these 32 environmental factors on affecting software reliability in the devel-
opment of multiple-release software to provide a sound and concise guidance to
software practitioners and researchers.

Sawyer and Guinan (1998) presented the effects on software development perfor-
mance that depend on the production method of software development and the social
process of how people work together in the software development environment.
Roberts et al. (1998) proposed five factors that are essential to implement a system
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development methodology, including organizational system development method-
ology transition, functional management involvement/support, use of models, and
external support. Chow and Cao (2008) collected the survey data from 109 agile
projects from a diverse group of organizations with different sizes, industries, and
geographic locations to provide empirical information for the statistical analysis.
Based on the multiple regression analysis, the critical success factors are identified
as a correct delivery strategy, a proper practice of agile software engineering tech-
niques, and a high-caliber team. Three other factors that could be critical to certain
success dimensions are identified as a good agile project management process, an
agile-friendly team environment, and strong customer involvement.

Misra et al. (2009) conducted a large-scale survey-based study to identify the
success factors from the perspective of agile software development practitioners
who have successfully adopted agile software development in their projects. This
study identified nine out of the fourteen hypothesized factors that have statistically
significant relationships with “success”. The important success factors are customer
satisfaction, customer collaboration, customer commitment, decision time, corporate
culture, control, personal characteristics, societal culture, and training and learning.
Clarke and O’Connor (2012) researched the situational factors affecting the software
development process. Rigorous data coding techniques from Grounded Theory have
been applied in this study. They concluded that the resulting reference framework
of situational factors consists of eight classifications and 44 factors that inform the
software process. On the other hand, this framework also provides useful information
for practitioners who are challenged with defining and maintaining the software
development process.

Environmental Factor based SoftwareReliabilityModels—Only a few studies
incorporated environmental factors, the random effect of the testing/operating envi-
ronments, or other factors, such as FRF that could be influenced by many environ-
mental factors, to develop software reliability models.

Teng and Pham (2006) presented a new methodology for predicting software
reliability in the field environment. A generalized random field environment (RFE)
software reliabilitymodel which can cover both the testing phase and operating phase
is proposed in this study by assuming all the random effect in the field environments
can be captured by a unit-free environmental factor. Two specific RFE software reli-
ability models are developed by the use of the generalized RFE software reliability
model, called the γ-RFE model and the β-RFE model, to describe different random
effects in the operation phase. Hsu et al. (2011) integrated the FRF into software
reliability models. The FRF is proposed by Musa (1975), which is generally defined
as the ratio of net fault reduction to failure experience (Musa 1980;Musa et al. 1987),
which could be influenced by many environmental factors, such as fault dependency,
human learning process, imperfect debugging, and delay debugging. The authors
firstly studied the trend of the FRF and considered it as a time-variable function,
and then incorporated the FRF in software reliability growth modeling to improve
the accuracy of failure prediction. Pachauri et al. (2015) also considered the impact
of FRF in developing a software reliability growth model. Pham (2014) incorpo-
rated the uncertainty of the operating environments into a software Vtub-shaped
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fault detection rate model. In particular, the fault detection rate in this study is repre-
sented by a Vtub-shape function, and the uncertainty of the operating environments
is represented by a random variable, modeled as a gamma distribution.

With the recent investigations of the significance of environmental factors in soft-
ware development, Zhu and Pham (2018) incorporated one of the top 10 significant
environmental factors from Zhu et al. (2015), Zhu and Pham (2017c), Percentage of
ReusedModules (PoRM), to be a random variable which has a random effect on fault
detection rate. This study introduced the Martingale framework, specifically, Brow-
nianmotion andwhite noise process into the stochastic fault detection process, which
is used to model the impact resulting from the randomness of PoRM. They further
proposed a single-environmental-factor software reliability model considering the
gamma-distributed PoRM and the randomness associated with PoRM. Later, consid-
ering the significance of the impacts from multiple environmental factors (Zhu et al.
2015; Zhu and Pham 2017c), Zhu and Pham (2020) proposed a generalized software
reliability model with multiple environmental factors and the associated random-
ness under the Martingale framework. The randomness is reflected in the process of
detecting software faults. Indeed, this is a stochastic fault detection process. Software
practitioners and researchers are able to obtain a specific multiple-environmental-
factors software reliability model according to the individual application envi-
ronments from the proposed generalized multiple-environmental-factors software
reliability model.

5 Conclusion

Given our modern societies are increasingly dependent on software systems, such
as transportation networks, smart grids, and healthcare systems, software systems
malfunction can result in cascading failures. Meanwhile, large-scale software devel-
opment is still a complex, effort-consuming, and expensive activity. The conse-
quences of software failures thus become costly and even dangerous. In this chapter,
we review probabilistic software reliability models with different groups. Consid-
ering the wide adoption of NHPP based software reliability models in practical
software reliability engineering, this chapter mainly focuses on the review of NHPP
based software reliability models that address various concerns in software devel-
opment practices, such as testing efficiency, testing coverage, multiple fault types,
time-delay fault removal, and environmental factors.
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Software Reliability Growth Models
Incorporating Software
Project/Application’s Characteristics
as a Power Function with Change Point

Shinji Inoue, Abhishek Tandon, and Prarna Mehta

Abstract Software Reliability is a high-handed aspect to ascertain the quality of
the system, which leads to development of tools that incorporates real time set-up.
One of the real time concepts is change point, which highlights on the fact that a
characteristic of the model changes during the testing time duration and it is signifi-
cant to incorporate its effect in the model developed to ameliorate the reliability of
the system. Moreover, faults are assumed to be independent and are incurred at any
arbitrary time but, in practical world, faults may occur due to many factors like the
testing environment, resource allocation, code complexity, testing team skill-set etc.
This rate tends to change with time and assuming it to be constant may not reflect
upon an actual output. Another conundrum that is taken care of is the release time of
the software project/application. The weightage that is implied by this optimization
planning is due to the fact that over testing may incur high cost to the firm whereas
under testing may lead to release of a project/application with high fixing cost faults
affecting the manufacturer by an elevated post-release cost. In this chapter, a frame-
work is proposed that extends error-removal phenomenon model by encapsulating
the software project/application characteristics as a parameter. A realistic software
development situation is also taken in account by considering the parameter not only
as a constant but a time dependent function. The suggested SRGMs are also moni-
tored under a change point scenario, which gives real-time edge to the problem, and
are then utilized to develop release time policy balancing reliability and expected cost
incurred by a project/an application. The models are validated using Tandem dataset
and performance measures are compared quantitatively with the standard models.
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On comparison of the results, the proposed model outperforms other extant models
with and without change point.

Keywords Software reliability · Software reliability growth model · Change
point · Power function · Release policy · Software testing phase

1 Introduction

The ambitious invention of a high performing and a high-defined quality software
system has given software engineers the liability to envisage a more complex system.
Software brings forth automation to a wide range of domain like medicine, banking
system, business houses, academics, security etc. thus, becoming an indispensable
element of any commercial or non-commercial field. With the increase in its appli-
cation, there is a need of improvising software at a higher speed to balance with
the requirements of the consumers, to keep up with the competitors in the market
and most significantly to maintain quality. Thus, reliability models are entailed to
assess and forecast the reliability of the software embedded in the system quanti-
tatively, elevating system’s reliability (Huang et al. 1999) and are also known as
Software Reliability growth models (SRGM). A SRGM that helps in rendering a
balanced amalgamation in terms of expense, reliability, productivity and perfor-
mance can be considered to be generic in nature and applicable to sundry software
project/application.

Many versions and forms of SRGM has been developed considering different
assumptions and objective of the underlying study, under perfect or imperfect debug-
ging conditions (Okumoto andGoel 1979).However, in the realworld, there aremany
other factors that influence the quality of the software with time for example testing
environment, complexity of the code, running environment, line of codes, testability
etc. Lai et al. (2011) stated past SRGMs fail to incorporate these factors into past
simulation. Thus, fault-detecting rate is influenced by external factors and it would
be favorable to take them into account in order to increase the performance rate of
a SRGM developed using past failure rate. In this study, these external factors are
included in the model developed and coined as software application/project charac-
teristic parameter. The given parameter is not only a function of software character-
istics but can also be a time dependent power function. The parameter measuring
the influence of the software project/application’s characteristic may not necessarily
be constant over the testing time period and is subject to change due to alteration in
testing plan at some time-point. This instance of time is termed as change-point. In
this chapter, SRGMs are formulated under the postulation of change point to create
a real-time problem.

The main concern of the management is scheduling the testing phase and release
of the project but are unaware of the latent faults remaining in the system even
after the completion of testing phase (Kapur et al. 2008a). However faults in a soft-
ware project/application are extensively eliminated during the testing phase of the
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system but excessive testing is uneconomical and impractical, thereby making the
optimal release planning as a powerful decision-making aspect in a business plan
(Lai et al. 2011). SRGM provides enumeration of faults that might be informative to
the management to curtail development cost or to anticipate the appropriate release
time of a software project/application (Huang 2005a). To précis, software release
planning is a vital managerial optimization problem that involves determination of
the optimal release time of the software such that the cost is minimized subject to a
reliability constraint. Kapur et al. (2009a) have discussed the significance of release
planning that if a product is subject early to or late release, then it may lead to either
high operational cost or high testing cost which is a loss for the business. In this study,
the expected number of faults obtained through SRGMs with and without change
point scenarios are employed to develop optimal release plans for the respective
models.

The objective of this study is condensed in three-fold. Firstly, a model is simulated
taking into account of change point concept and software project/application as a
power function. Secondly, models are assessed for its performance and efficiency
based on a real software fault dataset and comparison is made with some extant
models from the past literature. Thirdly, an optimization scheme is planned for the
release of the product using the models developed. The scheme specifies an optimal
combination of cost and reliability for a given software project/application, thereby
focusing on a rational release policy for the same.

This chapter is divided into sections, namely, in Sect. 2 a brief summary of the past
literature has been captured, followingwhich in Sect. 3 the suggestedmodel has been
explained, in Sect. 4 the proposed model is justified with a numerical illustration,
a release plan has been discussed in Sect. 5 using the developed models and lastly,
Sect. 6 concludes the given study.

2 Literature Survey

In this section, an abridgment of the related literature is furnished for each research
topic alluded in this study.

2.1 Software Reliability Growth Models

A SRGM follows NHPP distribution that gives an estimated count of faults for both
calendar as well as running timeline. In the past literature, a vast number of SRGMs
are available differentiating from each other by marginal changes in assumptions set
describing or tackling a testing related problem (Lai and Garg 2012). Yamada et al.
(1983) proposed an S-shaped model due the non-uniformity in reliability growth
that was also a succession to Okumoto and Goel (1979) model. Kareer et al. (1990)
proposed a modified S-shapedmodel that was based on the severity level of the faults
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manifesting a real time situation. Jeske and Zhang (2005) gave a realistic approach by
bridging a gap between theoretical and practical application of SRGM. Many earlier
SRGMs do not fit all failure datasets perfectly as stated byChiu et al. (2008) however,
incorporating learning effect into the model would enhance the results. Effects of
testing skills, strategy and environment on discrete SRGMs were well captured by
Kapur et al. (2008b). Kapur et al. (2009b) have presented a unified approach to
evaluate a wide range of SRGMs on the basis of hazard rate. A SRGM framework
demonstrated by Inoue and Yamada (2011) reflected the effect of rate of change in
the testing setting. Softwares are developed in an ideal environment nonetheless, it is
not the same while in the operating stage (Pham 2016). While Zhu and Pham (2018)
considered single environment factor and later on taking in account the effect of
multiple environmental factors on modeling and estimation (Zhu and Pham 2020).

2.2 Change Point

Zhao (1993) was motivated to apply change point concept in the field of software and
hardware reliability by including it SRGM. Huang (2005b) integrated logistic testing
effort and change point into the reliability modeling suggesting that the project head
to invest in tools and manpower that would aid in improving the reliability of the
software product. Singh et al. (2010) introduced S-shaped SRGMwith change point
thatmonitors the reliability ofOSS.Adiscrete SRGMwasmodeled byGoswami et al.
(2007) for different levels of bugs severity under change point. Kapur et al. (2009a)
have discussed a general framework with respect to altering rate of fault detection
with and without change point. In the study by Chatterjee et al. (2012), SRGM with
fluctuating introduction and detection rates have been examined under change point
scenario. Inoue et al. (2013) scrutinized the altering effect of testing environment on
change point based SRGM. Parr-curve was deployed by Ke et al. (2014) to analyze
reliability model with multiple change point. Nagaraju and Fiondella (2017) have
exemplified the significance of change point modeling by assessing different SRGM
with and without change point. Change point SRGMs depicts mathematically a real
life situation, however, Inoue andYamada (2018) utilizedMarkov process to enhance
the depiction. Chatterjee and Shukla (2017) used am improvised approach to regulate
the reliability assessment under change point effect.

2.3 Release Policy

SRGMs are implemented to enumerate uncertainty attached to a software
system, thus aiding a software developer to achieve a highly reliable software
project/application. But with increasing complexity in the software, it is hard for
the software engineers to deliver fault free. At the same time, these probabilistic
tools are utilized to estimate the optimal release time. The concept of optimal release
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policy was firstly implemented by Okumoto and Goel (1979). Following which,
many researchers started implementing the optimal release time concept along with
software reliability assessment as well as balancing cost parameters (Kapur and
Garg 1989). Shrivastava et al. (2020) proposed an optimization model to establish
the optimal release time as well as the testing stop time. Li et al. (2010) study not
only deals with multiple change point and release policies but, they have also made
an effort to do a sensitive analysis of the results. The failure data being uncertain and
vague, pushed the researchers to indulge in fuzzy sets.Under the fuzzy environment, a
release plan for the softwarewas givenbyPachauri et al. (2013). For a discreteSRGM,
a release policy was proposed by Aggarwal et al. (2015). Release time decision-
making can be sometime tricky when the past records are inconsistent, conversely
(Chatterjee and Shukla 2017) suggested a fuzzy based release schedule. Shrivastava
and Sachdeva (2019) proposed a generalized release policy under different testing
environment.

3 Methodology

In this study, a SRGM has been enhanced by considering a parameter as a power
function of time integrating with a change point scenario.

3.1 Notations

Symbols Description

X Preliminary faults existing in the software project/application in the time period (0, t]

X(t) For a given time period, say (0, t], expected number of observed faults

p Failure rate for a software project/application

q Residual fault detection rate

r1 Software project/application’s characteristics measuring factor before change point

r2 Software project/application’s characteristics measuring factor after change point

k A constant

t Time period

τ Change point
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3.2 Assumptions

Comprehending from the past literature (Huang et al. 1999; Huang 2005a; Yamada
et al. 1983; Kareer et al. 1990), in this study, SRGMs are developed, based on Non-
Homogenous Poisson Process (NHPP) where, X(t) is the mean value function or
the expected number of faults in the time interval (0, t]. The proposed models are
developed under the following assumptions,

• Due to the presence of the dormant faults, the software project/application is
subject to fail during the operational phase.

• A fault detected in the software project/application is removed instantaneously.
• On removal of certain faults, it is assumed that some latent dependent faults are

also eliminated in the process.
• The software project/application’s operational phase is considered to be as one of

the phases of the lifecycle.
• The failure or fault detection phenomenon incurred by the consumer or the testing

team is considered to be equivalent.
• Software project/application characteristics’ effect on the model is measured by

a parameter, which might change with time.

3.3 Model Development

Kapur andGarg (1992) proposed amodel that was based on the assumption that faults
detected can lead to observing residual faults in the systemwithout causing the system
to fail. This model has been extended by considering a parameter that characterizes
software project/application as a parameter namely, r1. Hence, the differential equa-
tion under the given assumptions for an expected number of faults in the system is
given,

dX(t)

dt
= r(t)[(p + X(t)

X
q)(X − X(t))] (1)

where, r(t) can be a constant or a time-dependent function that defines the software
project/application characteristics. Zhu and Pham (2020) developed a generic model
including environmental factor and on the similar lines (Inoue et al. 2013) amplified
fault detection rate with the help of environment factor in their cost model. Different
set up for the model in Eq. (1) has been considered in the study.

Model 1a:When r(t) is considered to be a constant without change point (BCP)

Let us consider,

r(t) = r1 (2)
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where, r1 is a constant value of the above defined parameter and r1 > 0. Substituting
(2) in (1), the differential equation for the expected number of faults in the system is
given by,

dX(t)

dt
= r1[(p + X(t)

X
q)(X − X(t))] (3)

The constant r1 implies that each fault is uniformly affected or influenced by
software project/application characteristics parameter. Solving (3), we obtain the
expected number of faults in the testing time interval (0, t], given the initial condition,
X(0) = 0, as,

X(t) = X[1 − e−(p+q)r1t]
[1 + q

p e
−(p+q)r1t] (4)

Model 1b: When r(t) is considered to be a constant with change point (ACP)

During the testing phase, a software project/application runs in a given environment
but it is not necessarily true that parameters remain uniform throughout. The instance
at which a change is observed in the pattern of the failure distribution is termed as
change point. In software reliability engineering, a change point occurs due to change
in testing pattern observed the testing team’s, change in resource allocation, improved
learning skills of the systemanalyst, or programmed testing codes (Kapur et al. 2008a;
Zhu and Pham 2020; Ke et al. 2014). In this study, software project/application
characteristics are not considered to be homogenous during the testing phase, hence
developing SRGM with a change point. Let the parameter be defined as,

r(t) =
{
r1, t < τ

r2, t ≥ τ

Considering the underlying assumptions and assuming that r(t) does not remain
homogeneous during the testing phase, the mean value function is given as,

X(t) =

⎧⎪⎪⎨
⎪⎪⎩

X [1−exp(−(p+q)r1)][
1+ q

p exp(−(p+q)r1)
] t < τ

X

[
1−

(
1+ q

p

)(
1+ q

p

)
exp(−r1τ)

]
[exp(−(p+q)r1τ)+(−(p+q)r2(t−τ))][

1+ q
p exp(−r1τ)

][
1+ q

p exp(−r2t)
] t ≥ τ

(5)

Model 2a: When r(t) is considered as a power function BCP

Next, let us consider as a power function of testing time which is given as,

r(t) = r1t
k (6)
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The form in (6) renders the suggested models generic and adaptable in nature
(Kapur et al. 2008a). Substituting (6) in (1), the differential equation is given as,

dX(t)

dt
= r1t

k[p + q
X(t)

X
][(X − X(t))] (7)

where, k ≥ 0 and the first component represents the varying relation between r1 and
t with varying value of k. If k = 0, the model reduces to Eq. (3). Taking the initial
condition as X(0) = 0, we get,

X(t) = X
[1 − exp(−r1(p + q) tk+1

k+1 )]
[1 + q

p exp
(
−r1(p + q) tk+1

k+1

)
]

(8)

Model 2b: When r(t) is considered as a power function ACP

The Eq. (3) has been extended by incorporating change point and power function
of r.

X(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X

[
1−exp

(
− (p+q)r1

k+1 tk+1
)]

[
1+ q

p exp
(
− (p+q)r1

k+1 tk+1
)] t < τ

X

[
1−

(
1+ q

p

)(
1+ q

p

)
exp(− r1

k+1 τ k+1)
][
exp

(
− (p+q)r1

k+1 τ k+1
)
+

(
− (p+q)r2

k+1 (t−τ)k+1
)]

[
1+ q

p exp(− r1
k+1 τ k+1)

][
1+ q

p exp(− r2
k+1 t

k+1)
] t ≥ τ

(9)

For simplification, in this study, only one change point has been considered in
both the models given by (5) and (9), however in the practical world, change points
are observed more than once in a testing phase.

4 Model Validation

In this section, the SRGMs given by (3), (5), (8) and (9) have been validated on
the basis of fault dataset given by Wood (1996). A change point has been observed
at the 8th week of testing in the dataset and change point models given by (5) and
(9) are evaluated accordingly. The parameters are estimated for each model and the
performances of the respective models are recorded for comparisons.

4.1 Dataset

The proposed models have been validated using Tandem dataset (Wood 1996) that
contains number of faults detected over a testing period of 20 weeks and cumulative
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Fig. 1 A plot for Tandem Dataset

sum of number of faults being 100. This dataset has been widely implemented in the
past literature for example, Park and Baik (2015), Sharma (2010), Roy et al. (2014).
From the data set, a change in the number of faults detected was observed at 8th week
of testing. Figure 1 depicts a graph plotting tandem data set where x-axis denote the
testing weeks whereas y-axis denote cumulative number of faults detected.

4.2 Parameter Estimation

The non-linear regression option in Statistical Package for social Science (SPSS)
aids in obtaining least square estimates of the parameters for a given SRGM. The
parameters are valued for a given testing time in weeks denoted by t and parameters
X, p, q, k, r, r1, and r2 delineated in Sect. 3 are estimated for respective SRGM. Table
1 represents the parameter estimation for without and with change point models.

In Table 1, “–” indicates null value of the parameter because they have no role play
in the respectivemodel. 35.1%and93.7%software project/application characteristics
are explained by the parameter r in model 1a and 2a respectively. However, without

Table 1 Parameter estimations for models before and after change point scenario

Models X p q r1 r2 k

Model 1a 110.829 0.222 0.268 0.351 – –

Model 1b 116.48 0.48 0.455 0.238 0.091 –

Model 2a 114.104 0.0046 0.431 0.937 – 0.377

Model 2b 112.375 0.113 0.464 0.552 0.432 0.394
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Table 2 Model comparisons
with respect to performance
measures

Models R2 MSE

Model 1a 0.989 8.971

Model 1b 0.993 5.442

Model 2a 0.991 7.183

Model 2b 0.997 2.076

change point, model 1b explains 23.8% andwith change point 0.91%,whereasmodel
2b shows the best result, combining the effect of r1 and r2, 98.4% characteristics are
explained.

A SRGM is said to perform well when it predicts the behavior of the system
accurately by using previous fault data (Roy et al. 2014). The simulations developed
were assessed with the help of performance measures, co-efficient of determination
(R2) and mean square of errors (MSE).

Looking at the R2 and MSE values of the proposed models in Table 2, model 2b
shows the best fit for the given dataset i.e. 99.7% of the variation in data is captured
by the proposed model and has the lowest MSE value (2.076).

4.3 Goodness of Fit Curves

See Figs. 2 and 3.
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Fig. 2 Actual versus predicted values for proposed models where r is considered constant BCP
and ACP
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Fig. 3 Actual versus predicted values for proposed models where r is power function of time BCP
and ACP

4.4 Comparison with the Previous Models

In order to validate the robustness of the proposed model, comparisons are drawn
with some conventional models, namely Goel Okumoto model (Okumoto and Goel
1979), S-shaped Yamada model (Yamada et al. 1983), Kapur Garg error removal
phenomenon model (Kapur and Garg 1992) respectively using the Tandem dataset.
For mathematical simplifications, the proposed model 1a has been compared with
the traditional models.

Table 3 depicts the comparison values for the different SRGMs with respect to
change point. Nonetheless, the MSE value is lowest for the proposed model without
as well as with change point than that of GO model and S-Shaped Yamada model
which implies that the proposed model has the least fitting error and hence exhibit
the best performance. Since the proposed model is an extension of Kapur and Garg
error phenomenonmodel, the comparisonmeasure is vital for this case. For the given
dataset, KGModel has MSE value 18.572 and 10.937 without and with change point
respectively, while those values for model 1a are nearly half of it i.e. the suggested

Table 3 Models’ performance comparison with respect to coefficient of determination

R2 MSE

BCP ACP BCP ACP

Model 1a 0.989 0.993 8.971 5.442

GO model 0.965 0.988 28.503 9.392

Yamada model 0.969 0.991 25.266 7.57

KG model 0.977 0.987 18.572 10.937



42 S. Inoue et al.

model has the capability to reduce the fitting error to half of that of the KGmodel. All
in all, the extended model is a better version of KG model. Looking at the R2 values,
the proposed model has the highest (0.989 and 0.993) without and with change point
cases in comparison to other models. Figures 4 and 5 reflects that the suggested
model is the closest fit of the data set without and with change point respectively.
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Fig. 4 A fitted curve for observed and estimated faults BCP given by proposed models and
compared with some existing model
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Fig. 5 A fitted curve for observed and estimated faults ACP given by proposed models and
compared with some existing model
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The result of the data analysis suggests that the extended version of the KG
model is an effective model that enriches the data set in terms of predicting accu-
racy and beautifully incorporates the effect of change point under perfect debugging
conditions.

5 Release Policy

With the completion of software testing phase, the software project/application is
prepared for its release into the market rising to problem of optimal release policy.
Protraction of testing phase implies detection of multiple faults, thus increasing the
development cost, increase in the quality and delay in the release of the software
project/application. The lag in release of the software may make the market restive,
at the same time cause a loss to the business. On the other hand, if the testing phase
is cut short, one can infer detection of a smaller number of faults implying decrease
in development cost, poor quality and rapid release of the software. The accelerated
release of the software may lead to loss of customers’ trust towards the firm that
might incur post-release high cost. In this study, one of the objectives is to minimize
software outlay with respect to a desired level of reliability, thereby obtaining the
optimal software release time. The outlay parameters used to illustrate release policy
is given as follows,

O1: Outlay of fault detection BCP in the testing environment (O1 > 0)
O′

2: Outlay of fault detection ACP in the testing environment O′
2 > 0)

O2: Outlay of fault detection in the operational environment (O2 > O′
2)

O3: Outlay of testing at arbitrary time point
T: stopping or release time of software project/application.
The expected outlay functionwithout change point comprises of expense acquired

by the software firm in order to detect fault BCP, during the operating phase and lastly,
an overall expense per unit timebefore the software project/application’s release time,
which is given by,

O(T) = O1∗X(T) + O2∗(X − X(T)) + O3∗T (10)

The expected outlay function with change point is composed of expense acquired
by the software firm in order to detect faults BCP, ACP, during the operating phase
and lastly, an overall expense per unit time before the software project/application’s
release time, which is given as,

O(T) = O1∗X1(τ ) + O′
2∗(X2(T) − X1(τ )) + O2∗(X − X2(T)) + O3∗T (11)

where, X1(t) and X2(t) are mean value fault detection function without and
with change point (τ) respectively. Henceforth, an optimization policy can be
mathematically formulated as following,
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Minimise O(T)

subject to Re(T) ≥ R∗ (12)

where, Re(T) is the reliability function and R* is the desiderated level of reliability at
the release time of software project/application’s (0 < R* < 1). The software project
developer establishes the desiderated reliability for the project in accordance to the
market requirement.

5.1 Numerical Illustration

The formulated optimization problem is solved usingMATLABwhere outlay param-
eters are assumed on the basis of past literature (Aggarwal et al. 2015; Shrivastava
and Sachdeva 2019). In order to implement the optimization problem given by (12),
we have considered tandem dataset, computed parameters of the Eqs. (4), (5), (8)
and (9) with the help of SPSS and given by the Table 1. The outlay parameters are
assumed to be as following,

O1 = 40,O′
2 = 50,O2 = 100,O3 = 20

With the help of MATLAB and Eq. (12), the expected release time and reliability
is computed for the four models and given by the Table 4.

The optimal release time for model 1a is 28.02 weeks with reliability 0.9823
and expected cost is 5111.01, and with change point (model 1b), the release time is
30.28weeks at 0.9638 reliability and total expected cost being 9116.40. Formodel 2a,
the optimal release time is 30.53, reliability attained is 0.9758 with the expected cost
being 5340.80, however with change point, the release time decreases to 28.33 weeks
and reliability reached is 0.9532 with the cost of 8901.80.

Table 4 Expected release
time and reliability of a
software project/application

Models T O(T) Re(T)

Model 1a 28.02 5111.01 0.9823

Model 1b 30.28 9116.4 0.9638

Model 2a 30.53 5340.8 0.9758

Model 2b 28.33 8901.8 0.9532
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5.2 Sensitivity Analysis

The expenses involved in testing phase may vary due to various external factors like
skills of developers, testing efforts, resource etc. Hence, one might be interested to
know which cost parameter plays an important role to improvise the reliability for
a given software project/application. Sensitivity analysis is a tool that aids in the
decision making of optimal input parameters in order to obtain improvised output
(Li et al. 2010). The uncertainty in failure data fails to comprehend the exact value
of the outlay parameters. This methodology permits the management to evaluate
the change in parameters over reliability, to assess testing strategy, to condense cost
values, to attain optimal resource apportionments (Castillo et al. 2008).

For the given study, software reliability growth models given by Eqs. (4), (5), (8)
and (9) have been considered, whose parameters are computed using Tandem failure
data sets and with the help of SPSS. Considering a desired reliability level to be
fixed at 0.95, the outlay parameters (O1,O′

2,O2,O3) are altered by −10 and 10%,
while monitoring its effect on the reliability, total expected cost as well as release
time (given by Table 5). The sensitivity of outlay parameters is analyzed by using
formula given by Li and Pham (2017). The relative changes observed with respect
to varying outlay parameters is given by Table 6.

For different values of O1,O′
2,O2,O3, the altered release time, cost as well as

reliability level are generated. Altering values of outlay parameters gives a guidance
to the management to strike a balance between the cost and reliability and obtain the
optimal release time. The sensitivity analysis of the stated release policy resulted in
a very close release time, but in real time situation, the policy implemented by the
management depends on the cost under consideration, SRGM adopted to describe
the fault process, aim of the release plan and lastly constraints to be taken care of.

FromFig. 6a, it can be clearly observed that a 10% increase in costO1, release time
decreases by 1.46%, overall cost increases by 8.52% and amarginal decrease of 0.1%
has been noted. However, when cost O2 is increased by 10%, release time increases
by 3.26%, that has 0.3% and 0.2% effect on total cost and reliability respectively.
On the other hand, with a 10% increase in O3, the release time declines by 2%,
increasing cost by 1% and reliability also declines by a mall fraction. The respective
trend was observed exactly opposite when the costs O1, O2, O3 were decreased by
10% for model 1(a) as depicted by Fig. 6b.

Form Fig. 6c, with an increase of 10% in cost O1, release time, expected cost
and reliability increases by 2.34%, 2.79% and 0.2% respectively. However, with an
increase of 10% in cost O′

2, release time and reliability declines by 2.29 and 0.2%,
while the cost shoots up by 6.15%. On the other hand, with an increase of 10% in
cost O2, release time is majorly affected by 3.74%, but a marginal change of 0.4%
and 0.3% on cost and reliability is observed. Lastly, with an increase of 10% in O3,
a decline of 2.7% and 0.2% is observed in release time and reliability along with
increase in cost by 0.6%. The respective trends were seen exactly opposite when cost
O1, O′

2, O2, O3 were decreased by 10% for model 1(b) as depicted by Fig. 6d except
when cost O1 decreased by 10%, the expected cost increased by 2.8%.
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Table 6 Relative change observed for respective model with respect to outlay parameters

O1 O′2 O2 O3

−10% 10% −10% 10% −10% 10% −10% 10%

Model
1a

T 0.0137 −0.0146 0.0000 0.0000 −0.0387 0.0326 0.0223 −0.0202

O(T) −0.0853 0.0852 0.0000 0.0000 −0.0042 0.0035 −0.0111 0.0109

Re(T) 0.0011 −0.0012 0.0000 0.0000 −0.0036 0.0026 0.0018 −0.0018

Model
1b

T −0.0392 0.0234 0.0199 −0.0229 −0.0496 0.0374 0.0220 −0.0207

O(T) 0.0281 0.0279 −0.0616 0.0615 −0.0050 0.0044 −0.0067 0.0066

Re(T) −0.0047 0.0024 0.0021 −0.0026 −0.0060 0.0037 0.0023 −0.0024

Model
2a

T 0.0163 −0.0173 0.0000 0.0000 −0.0456 0.0390 0.0266 −0.0239

O(T) −0.0835 0.0833 0.0000 0.0000 −0.0056 0.0048 −0.0116 0.0113

Re(T) 0.0014 −0.0016 0.0000 0.0000 −0.0046 0.0033 0.0023 −0.0024

Model
2b

T 0.0988 0.0988 0.1363 0.0988 0.0988 0.1732 0.1405 0.0988

O(T) −0.0275 0.0290 −0.0518 0.0683 0.0020 0.0142 0.0012 0.0153

Re(T) −0.0034 −0.0034 0.0004 −0.0034 −0.0034 0.0038 0.0008 −0.0034

From Fig. 6e, when O1 increases by 10%, release time decreases by 1.7%, total
cost does up by 8.3% and reliability decreases by 0.2%. While O2 increases by 10%,
release time, cost and relatability also increases by 3.9%, 0.4%and 0.3% respectively.
Lastly, with a 10% increase in O3, release time and reliability decreases by 2.3 and
0.2%, on the contrary, the expected cost increases by 1.1%. When the costs O1, O2,
O3 decreases by 10%, an exactly opposite trend is observed which is depicted by
Fig. 6f for model 2a.

From Fig. 6g, when cost O1, O′
2, O2, O3 increases by 10%, release time increase

significantly by 9.8%, 9.8%, 17.3%, 9.8% respectively, while the expected cost also
rises by 2.9%, 6.8%, 1.4% and 1.5%, but reliability declines by 0.3% for cost O1, O′

2,
and O3, on the other hand increases by 0.3% for O2. From Fig. 6h, it is observed that
when cost cost O1, O′

2, O2, O3 decreases by 10%, release time increases by 9.8%,
13.6%, 9.8% and 14.1% respectively, the total cost declines fpr O1 and O′

2 by 2.7%
and 0.5%, however increases in the case of O2 and O3 by 0.2% and 0.1%. Moreover,
reliability decreases by 0.3% when O1 and O2 decreases by 10% but increases by
0.04% and 0.08%, when cost O′

2 and O3 decrease by 10%.

6 Conclusion

In this chapter, a software reliability growth model has been comprehended with
respect to software project/application’s characteristics under a perfect debugging
environment. The stated characteristic has been considered as a constant as well as
a power function of time along with assessing the model without and with change
point. The parameters are estimated with the help of SPSS and comparison has been
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�Fig. 6 Relative change in release time, cost and reliability with respect to a Model 1a when there
is 10% increase in costs O1, O2 and O3 bModel 1a when there is 10% decrease in costs O1, O2 and
O3 c Model 1b when there is 10% increase in costs O1, O′

2, O2 and O3 d Model 1b when there is
10% decrease in costs O1, O′

2, O2 and O3 e Model 2a when there is 10% increase in costs O1, O2
and O3 f Model 2a when there is 10% decrease in costs O1, O2 and O3 g Model 2b when there is
10% increase in costs O1, O′

2 O2 and O3 h Model 2b when there is 10% decrease in costs O1, O′
2

O2 and O3

made with extant models from literature. An optimization formulation has also been
proposed for all the four models with respect to desiderated reliability and with
the aim of minimizing total expected outlay. Lastly, a sensitivity analysis has been
provided to validate the optimal result obtained.

Looking at the results, one can state that model with change point in both cases
when the software project characteristic is constant or a power function is an efficient
tool in terms of providing a realistic outlook and in comparison to other previous
models.

7 Future Scope

The limitation identified for the proposed model is that it has been validated on a
small dataset and the under an ideal testing environment. In order to generalize the
results, using large datasets would authenticate the efficiency of the proposed model.
Further research work can be implemented by considering various attributes like
testing effort, imperfect debugging, resource allocation etc.
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Robust Multi-Response Based Software
Reliability Modeling

Anusha Pai, Gopalkrishna Joshi, and Suraj Rane

Abstract In quality engineering, robustness indicates reduction in variability in
responses in an environment where some of the input parameters are difficult to
control. When these variations are minimized the product will be called robust
product. This chapter deals with developing a framework of Robust Multi-response
based software reliability modeling and later illustrates this methodology on a large
scale communication software system. The two responses under study are Time-
between-detection of defects; and effort which is defined as time period between
defect detection and defect elimination. The inputs considered are severity, change
request priority (CR Priority) and software development phase. S/N ratios are
computed on these responses. Desirability values are computed on these S/N ratios
and converted into single response called overall desirability value. Optimization
using response surface methodology is performed on overall desirability value and a
curve fitting based reliability model is developed. Reliability is defined on the basis
of Time-between-detection of defects and Time-between-detection-and-elimination
of defects. The approach will help the software engineers working on software devel-
opment projects, in understanding the impact of large number of input variables on
more responses simultaneously. The approach will also lead to a robust software
product and a reliability model relating input variables and responses.
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1 Introduction

One of the most important attributes of software quality is software reliability. Soft-
ware has become an indispensable component of most modern systems including
medical systems, household appliances, banking systems, defense organizations etc.
Its failure at the customer’s end has long lasting consequence on the customer’s
brand image. It is always a challenge for the software developers to build highly reli-
able software. Reliability is defined as the probability of failure free operation of a
program in a specified environment for a specified time (Musa et al. 1987). Software
development also has undergone changes from the traditional plan driven approach
to agile software development in order to tackle the rapidly changing and evolving
customer requirements. The agile development of software focuses on incremental
delivery wherein each release delivers a core product with limited functionalities.
Each subsequent release adds more functionality to the software product. Defects
occur during software development at various stages of development.

These defects need to be identified and corrected as early as possible in the devel-
opment cycle in order to reduce the cost of defect correction. Literature studies
have revealed a number of factors responsible for these defects some of which are
requirements and design metrics (Ma et al. 2014), static code features (Moeyersoms
et al. 2015), quality metrics (Arar and Ayan 2015), defect inflow data (Rana et al.
2016), McCabe metrics (Erturk and Sezer 2015) etc. It becomes essential to iden-
tify the causes of defects in the pursuit of producing defect free software. Hence
the first response studied in this work is time between the occurrences of defects.
This response needs to be minimized as much as possible. The second response
considered in the work is effort which is defined as the time span between when
the defect was logged in the system to the time when the defect was rectified and
removed from the system. This response also needs to beminimized as far as possible.
The two responses are combined into a single response by using desirability func-
tion. This is done in order to study the impact of the various input factors on the
combined response. In addition to studying the mean desirability value, Signal to
Noise ratio (S/N ratio) on the combined D is also computed to study the robustness
of the response variable to the effect of input factors. Response surface methodology
(RSM) is then applied on the combined response in developing a reliability model
relating the combined response to the input factors.

2 Literature Survey

This work demonstrates application of industrial engineering techniques like robust
engineering, desirability function approach and response surface methodology, in
software engineering. Genichi Taguchi, a Japanese engineer introduced the concept
of robust engineering as variance reducing technique (Su2013;Taguchi 1986; Phadke
1989; Ross 1996). This technique has found more applications in manufacturing and
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industrial engineering over the years. Software engineering has seen less applica-
tion of Taguchi Methods. Applications reported in literature on Taguchi in software
engineering are software quality testing (Besseris 2010), software defect cost (Lazic
and Kovic 2015), information security (Jeong and Yoon 2018) and software defect
management (Pai et al. 2019). The effect of interaction among parameters is impor-
tant in optimization studies. The most used experimental design is the full factorial
design 2n , where each parameter is studied at two levels (Myers and Montgomery
2002). The effect of physicochemical parameters in the study of desalination of
brackish water by using 23 full factorial design is proposed in (Gmar et al. 2017).

An important tool used in Taguchi methods called Signal-to-Noise ratio is consid-
ered as a measure of robustness. For each trial of Derringer’s desirability function
which is used for combining many responses into one response has been applied
in multiple-response optimization in various domains of research. This technique
is normally used in conjunction with other optimization techniques like Taguchi
Methods (Lin et al. 2012), artificial neural networks and genetic algorithms (Elsayed
and Lacor 2013), Response Surface Methodology (Islam et al. 2012). The applica-
tions cited in research are thermal engineering (Mohapatra et al. 2019), chemical
engineering (Kumari et al. 2018), forestry (Hazir et al. 2018) and manufacturing
(Kuram and Ozcelik 2013). Another optimization tool used in this paper is Response
Surface Methodology (RSM), which has been applied by many authors to study the
effect of input parameters on the response. Its application area is widely spread in
various sphere of research some of which are machining (Sivaiah and Chakradhar
2018), chemical engineering (Şimşek et al. 2018), energy (Samsuri and Bakri 2017)
and anthology (Chong and Gwee 2018).

3 Methodology

Full factorial design measures the response value for various combinations of input
parameters. The number of trials in the experiment depend on the number of factors
and their corresponding levels. Since the effect of three input factors with two factors
at 4 levels and one factor at 3 levels are studied, the number of trials in the experiment
are 42 × 31 = 48 trials as shown inFig. 1. For each trial,mean and signal-to-noise ratio
for each response is computed. S/N ratio is a metric used to measure the deviation of
the quality characteristic of interest. There are three different S/N ratios depending
on the type of characteristic being evaluated; Lower-is-better, Nominal-is-better and
Higher-is-better. The lower-is-better S/N Ratio is chosen for our study, as the aim
is to reduce the time between the occurrences of defects and to minimize the time
required to eliminate these defects. The Lower-is-better S/N Ratio is given in Eq. 1
(Ross 1996).

S/N = −10∗log10
(
1

n

n∑
i=1

y2i

)
(1)
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Fig. 1 Full factorial design

Since two responses are studied in this work, multi-response optimization of the
two responses using desirability function is performed (Derringer and Suich 1980).
Desirability function transforms the values of all responses of the trials to a scale free
value between 0 and 1 which are called individual desirability values. The individual
responses can be maximized using Eq. 2 and minimized using Eq. 3.

di =

⎧⎪⎨
⎪⎩

0 yi ≤ Li(
yi−Li

Ti−Li

)wti
Li < yi < Ti

1 yi ≥ Ti

(2)

di =

⎧⎪⎨
⎪⎩

1 yi ≤ Ti(
Ui−yi
Ui−Ti

)wti
Ti < yi < Ui

0 yi ≥ Ui

(3)

where the response variable is yi , the upper limit is Ui , the lower limit is Li ,
the target value is Ti , and wtiis 1 for a linear desirability function. The Overall
Desirability value, D can then be computed using Eq. 4.

D = (d1.d2. . . . dm)1/m (4)



Robust Multi-Response Based Software Reliability Modeling 57

Response SurfaceMethodology optimizes a response under study by obtaining the
optimal values of the various input parameters. RSM finds its application in design
and development of new products and in the improvisation of existing processes.
RSM is extensively used in studying the effect of several input factors on the response
or the quality characteristic under study. The relationship between the input factors
and the response can be fitted as a second-order model as shown in Eq. 5 (Myers and
Montgomery 2002).

Y = β0 + β1x1 + β2x2 + β3x3 + β11x1
2 + β22x2

2 + β33x3
2 + β12x1x2 + β23x2x3

+ β13x1x3 + ε (5)

where, ε is the error term assumed to have a normal distribution with mean zero
and variance σ2 and β’s is the set of unknown parameters. In order to estimate the
values of β in Eq. 5, data has to be collected on the system of study. Hence the data
collection phase has to be planned carefully for which Response Surface Designs
are valuable. Response Surface Methodology are used to optimize a response under
study, for selecting the optimal values of the various inputs in order to meet customer
specifications. Figure 2 depicts the methodology used in this work.

4 Implementation

The proposed methodology was implemented on the defect data of software prod-
ucts delivered from a large telecommunication organization. The embedded software
is installed in consumer electronic devices like IOT devices and smartphones. The
organizationwanted us to identifymission critical and safety critical software defects
before pre-production. The company used agile software development methodology
in the development of embedded software. The defect data consisted of 60,636 lines
of defects logged into their database for the period June 2018 to February 2019. The
total number of attributes in this systemwas 24. From among these 24 attributes, eight
were chosen based on the domain knowledge, discussion and brainstorming with
the agile team in the company. Analytic Hierarchy Process (AHP) (Saaty 1980) was
used to understand the hierarchical importance of determinants of defects in software
development or factors (Durmusoglu 2018). Hierarchy Process (AHP). The nature of
the assessment of factors is qualitative with judgments of stakeholders which include
agile coach, product owner, the programming team and the customer. A question-
naire was prepared to do the pair-wise comparison. Expert judgments have then been
solicited and subsequently compiled. The factors were ranked based on the geomet-
rical mean of the priority vectors of each questionnaire. The results of AHPwere then
discussed with the agile team from the company and in accordance with their recom-
mendation three factors; Severity, CR Priority and Software development Phase were
chosen for further analysis. The description and levels of factors are given in Table
1. The levels for these factors were decided by the domain experts in the company.
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Table 1 Factors, their levels and description

Input factor Level no Level label Description

CR priority (A) 1 Optional Since product acceptance
will not be impacted,
attention is not required

2 Necessary Since product acceptance
may be impacted if not
resolved, attention is
required

3 Urgent Due to actual impact to
internal or customer project
milestones for product
development, urgent
attention is required

Software development
phase (B)

1 Requirements Software product
requirements of the first
sprint are specified

2 Design Detailed design of the
software product is specified

3 Implementation Implementation of software
using appropriate
programming language to
meet the specified design

4 Testing and others phases Manual and automated
testing and maintenance of
software after release is
included in this phase

Severity (C) 1 Low An imperfection in the
implementation which does
not cause a crash, functional
failure or performance
degradation of the product

2 Medium The product exhibits
functional failure or
performance degradation
which is either not
repeatable or is only
associated with an internal
requirement or product
configuration

3 High The product fails to meet a
product requirement due to
a crash, functional failure or
performance degradation
but is usable

(continued)
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Table 1 (continued)

Input factor Level no Level label Description

4 Critical A crash, functional failure
or performance degradation
has rendered the product
unusable which is
consistently repeatable
under normal usage
conditions

The steps involved in implementing the methodology shown in Fig. 2 is listed in
this section. The first step is to identify the critical-to-quality (CTQ) characteristics in
the study.Time-between-defects andTime-to-eliminate-defects are the two responses
that we need to optimize. The second step identifies the input factors and their levels.
The input factors identified are CRpriority defined at three levels: optional, necessary
and urgent levels, Software development phase defined at four levels: requirements
phase, design phase, implementation phase, Testing and other phases, and severity
defined at four levels low, medium, high and critical. In the third step the full factorial
design consisting of 48 trials for the two factors at four levels and one factor at three
levels is chosen for the study. The fourth step computes the response values of the
CTQs for each of the 48 trials. In the fifth step the concept of desirability is applied
in order to combine the two responses into a single desirability value. The overall
desirability value for the mean and S/N Ratio of the combined response is then
computed. Response surface methodology is applied on the combined desirability
value for the mean and S/N Ratio and a curve fitting reliability model is obtained for
the robust multi-response optimization problem in sixth step. The developed model
is then checked for adequacy and lack of fit. The desirability values computed by
using the above stated procedure and using the full factorial design depicted in Fig. 1
are shown in Table 2.

5 Results and Discussion

As a part of statistical analysis, Analysis of Variance (ANOVA) was carried out
which provides better clarity about the formulated model. Statistical measures like
P-value and F-value are used for the significance testing of the prepared model. P-
value is normally known as probability value which interprets the significance of a
sample value equal to or more extreme than what was actually observed. Primarily
for any statistical analysis confidence level or level of significance is decided by the
analyst. For the current study, 95% confidence level with 5% of error or risk has been
considered i.e. level of significance, α is set to 0.05. By comparing P-value with the
level of significance (α), model significance is tested. If P-value of any model term
is lesser than or equal to 0.05, then it is to be assumed to be significant, otherwise it
is termed as insignificant. Thus, from the results presented in table 3 the significant
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Table 2 Full factorial design

Sr no CR priority Severity Software development phase D-mean D-S/N ratio

1 1 1 1 0.397 0.216

2 1 1 2 0.905 0.000

3 1 1 3 0.838 0.141

4 1 1 4 0.922 0.192

5 1 2 1 0.751 0.439

6 1 2 2 0.774 0.257

7 1 2 3 0.944 0.418

8 1 2 4 0.958 0.208

9 1 3 1 0.639 0.210

10 1 3 2 0.908 0.483

11 1 3 3 0.839 0.902

12 1 3 4 0.884 0.762

13 1 4 1 1.000 0.170

14 1 4 2 1.000 0.102

15 1 4 3 0.945 0.000

16 1 4 4 0.000 0.287

17 2 1 1 0.939 0.179

18 2 1 2 0.928 0.131

19 2 1 3 0.955 0.617

20 2 1 4 0.950 0.432

21 2 2 1 0.898 0.234

22 2 2 2 0.946 0.290

23 2 2 3 0.942 0.441

24 2 2 4 0.923 0.000

25 2 3 1 0.934 0.292

26 2 3 2 0.949 0.238

27 2 3 3 0.937 0.197

28 2 3 4 0.943 0.256

29 2 4 1 0.947 0.257

30 2 4 2 0.973 0.327

31 2 4 3 0.966 0.658

32 2 4 4 0.889 0.227

33 3 1 1 0.981 0.236

34 3 1 2 0.768 0.000

35 3 1 3 0.984 0.000

36 3 1 4 0.997 0.216

(continued)
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Table 2 (continued)

Sr no CR priority Severity Software development phase D-mean D-S/N ratio

37 3 2 1 0.705 0.376

38 3 2 2 0.942 0.223

39 3 2 3 0.855 0.208

40 3 2 4 0.838 0.426

41 3 3 1 0.609 0.171

42 3 3 2 0.919 0.350

43 3 3 3 0.844 0.456

44 3 3 4 0.849 0.682

45 3 4 1 0.000 0.169

46 3 4 2 0.781 0.190

47 3 4 3 0.099 0.192

48 3 4 4 0.376 0.346

Table 3 Analysis of variance for overall desirability-mean D (mean)

Source DF Adj SS Adj MS F-Value P-Value

Model 14 1.59 0.11 3.00 0.01

Linear 5 0.49 0.10 2.59 0.04

CR priority 1 0.04 0.04 1.11 0.30

Severity 1 0.27 0.27 7.04 0.01

Software development phase 3 0.18 0.06 1.60 0.21

Square 2 0.45 0.22 5.94 0.01

CR priority * CR priority 1 0.35 0.35 9.23 0.01

Severity * Severity 1 0.10 0.10 2.66 0.11

2-Way interaction 7 0.65 0.09 2.45 0.04

CR priority * Severity 1 0.31 0.31 8.19 0.01

CR priority * Software development phase 3 0.08 0.03 0.71 0.56

Severity *Software development phase 3 0.26 0.09 2.27 0.10

Error 33 1.25 0.04

Total 47 2.83

factors are Severity, the quadratic term CR Priority and the interaction term CR
Priority and Software Development Phase. Generally insignificant model terms have
less effect on output responses; therefore, these terms are normally discarded from
ANOVA table for better prediction relative to significant terms only.

The regression equation for the Overall Desirability for the mean of the combined
response of time-between-defects and time-to-eliminate-defects is given in Eq. 6. To
determine how well the model fits our data, goodness of fit statistics is used. S is the
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measure of the standard deviation of the distance between response values and the
fitted values. ‘S’ is used to assess how well the model describes the response and is
measured in the same unit as the response variable. Since the value of S is 0.19, the
model describes the Overall desirability-Mean quite well. A measure of the amount
of reduction in the variability of Overall desirability-Mean by using the regressor
variables CR priority, severity and software development phase in the model is given
by R2. Higher the R2 value, the better the model fits the data. The model has achieved
an R2 of 55.98%. R2 increases when more predictors are added to the model.

Overall Desirabili t y D (Mean) = −0.214 + 0.907A + 0.338C

− 0.094B1 − 0.161B2 + 0.187B3

+ 0.068B4 − 0.1808A ∗ A − 0.0457C ∗ C

− 0.0879A ∗ C − 0.0253A ∗ B1 + 0.0141A ∗ B2

− 0.0618A ∗ B3 + 0.0730A ∗ B4 + 0.0239C ∗ B1

+ 0.0856C ∗ B2 − 0.0143C ∗ B3 − 0.0953C ∗ B4 (6)

The fitted model is examined to make sure that it provides reasonable approx-
imation to the true system. This is accomplished using model adequacy checking.
The first among these is residual analysis. A model fits the data well if the differ-
ence between the observed values and the model’s predicted values are small and
not biased. Since the residuals in Fig. 3 lie approximately along a straight line, the
assumption of normality is satisfied.

Fig. 3 Normal probability plot of residuals for D (Mean)
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Fig. 4 Plot of residuals versus the predicted response for D (mean)

The plot of residuals versus the predicted response Overall desirability-mean is
presented in Fig. 4. The residuals have scattered randomly on the display, suggesting a
constant variance of the original observations for all values of theOverall desirability-
mean.

A surface plot is used to see how fitted response values relate to two continuous
variables based on model equation. A surface plot contains predictors on the x-axis
and the y-axis and a continuous surface that represents the fitted response values
on the z-axis. Figure 5 shows the surface plot of overall desirability-mean when
the software development phase is held at requirements phase. The plot shows that
overall desirability-mean D (mean) value can be achieved when severity is trending
towards critical level and CR priority between critical and necessary level. Figure 6
depicts the surface plot of overall desirability-mean when the software development
phase is held at design level. Between optional and necessary level for CR priority
and towards critical level for severity maximum overall desirability-mean can be
obtained. In Fig. 7, Overall desirability-mean is maximized when CR priority is
at urgent level and severity at critical level while holding the software development
phase at implementation level. In Fig. 8, software development phase is held at testing
and other phases level. Overall desirability-mean is maximum when CR priority is
between necessary and urgent level and severity is at low level.
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Fig. 5 Surface plot for software development phase-requirements gathering

Fig. 6 Surface plot for software development phase-design phase

Table 4 depicts ANOVA on overall Desirability of S/N ratio of the combined
response. The P-value of the quadratic term severity is the only significant factor
contributing towards variability in the response values. The goodness of fit statistics
for the model determines how well the model fits the data. The value of S is found
to be 0.19. A low value of S indicates that the model describes the response overall
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Fig. 7 Surface plot for software development phase-implementation

Fig. 8 Surface plot for software development phase-testing and other phases

desirability-S/N ratio pretty well. R2 value obtained for the model is 28.86%. Higher
R2 value is desirable, as the model fits the data better. R2 increases when more
predictors are added to the model. The regression equation for the overall desirability
D for S/ N ratio is given in Eq. 7.

D(S/N Ratio) = −0.092 + 0.027A + 0.346C

+ 0.051B1 − 0.167B2 + 0.185B3 − 0.068B4
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Table 4 Analysis of variance

Source DF Adj Adj F -value F -value

Model 14 0.53 0.04 0.96 0.52

Linear 5 0.21 0.04 1.08 0.39

CR priority 1 0.01 0.01 0.24 0.63

Severity 1 0.04 0.04 1.07 0.31

Software development phase 3 0.16 0.05 1.37 0.27

Square 2 0.22 0.11 2.81 0.08

CR priority * CR priority 1 0.00 0.00 0.07 0.79

Severity * Severity 1 0.22 0.22 5.54 0.03

2-Way interaction 7 0.09 0.01 0.34 0.93

CR priority * Severity 1 0.00 0.00 0.08 0.78

CR priority * Software development phase 3 0.04 0.01 0.38 0.77

Severity * Software development phase 3 0.04 0.01 0.38 0.77

Error 33 1.30 0.04

Total 47 1.82

− 0.0165A ∗ A − 0.0674C ∗ C + 0.0087A ∗ C

+ 0.0068A ∗ B1 + 0.0072A ∗ B2 − 0.0587A ∗ B3

+ 0.0447A ∗ B4 − 0.0425C ∗ B1 + 0.0325C ∗ B2

− 0.0010C ∗ B3 + 0.0110C ∗ B4 (7)

The Model Adequacy Checking is done using Residual Analysis. The residuals
in Fig. 9 plot approximately along a straight line, and so conclusion can be drawn
regarding the assumption of normality being satisfied and that there are no issueswith
normality. Figure 10 shows the residuals scattered at random suggesting a constant
variance of the observations for all values of the response overall desirability-S/N
ratio.

Surface plot in Fig. 11 holds software development phase at requirements and
reveals that overall desirability-S/N ratio is optimum when CR priority values range
from optional level to urgent level while severity ranges from medium to high level.
Figure 12 reveals optimum overall desirability-S/N ratio when CR priority ranges
between optional to urgent whilst severity ranges between medium to high levels
holding the third factor software development phase at design level, holding the
software development phase at implementation level, Fig. 13 shows optimum values
of overall desirability-S/N ratio when CR priority is at optional level and severity
ranging frommedium to high levels. Figure 14 shows maximum overall desirability-
S/N ratio is achieved when CR priority is moving towards urgent level and severity
values ranging between medium and high levels.
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Fig. 9 Normplot of residuals for D(S/N Ratio)

Fig. 10 Residuals versus fits for D(S/N ratio)
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Fig. 11 Surface plot for software development phase-requirements gathering

Fig. 12 Surface plot for software development phase-design phase

6 Conclusion

In this chapter, the effect of three input factors CR priority, severity and soft-
ware development phase on the two responses Time-between-defects and Time-
to-eliminate-defects have been evaluated. The two responses were combined using
Multi-response desirability function. Interaction between the input factors and
their influence on the combined response of overall desirability-mean and overall
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Fig. 13 Surface plot for software development phase-implementation phase

Fig. 14 Surface plot for software development phase-testing and other phases

desirability-S/N ratio has been assessed by the statistical response surface method-
ology model with full factorial design. A total of 48 runs were conducted in a
numerical simulation model as per the design of experiment using Minitab. A multi-
objective reliability model has been developed using RSM. Themodel can be used to
predict the desirability values of themean and theS/N ratios of the combined response
for any combination of the input factors. Adequacy of the model was checked by
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ANOVA analysis. The optimal levels of the input factors were assessed and a multi-
response optimization analysis was conducted for computing the minimum time-
between-defects and minimum-time-to-eliminate-defects logged into the system.
From this study, results were obtained which are summarized as:

1. The significant factors affecting the combined response of desirability of the
mean of time-between-defects and time-to-eliminate-defects are Severity, the
quadratic term CR Priority and the interaction term CR Priority and Software
Development Phase.

2. A software reliability model relating the input factors to the mean of the
overall desirability relating time-between-defects and time-to-eliminate-defects
is obtained.

3. Model adequacy checking and the model summary statistics with S = 0.19 and
R2 = 55.98% along with the normal probability plot of residuals and the plot of
residuals verses predicted response indicated that the model well fitted the data
under study.

4. The quadratic term Severity is the only significant factor contributing towards
variability in the combined response value of Overall Desirability-S/N ratio.

5. A reliability model relating the input factors to the Desirability value for
S/N Ratio of the combined response of the time-between-defects and time-
to-eliminate-defects is obtained.

6. Model Adequacy checking revealed the model fitted the data quite well, though
the R-sq value could be improved by adding more predictors in the model.

The thrust in any product development including software is in developing zero
defect product. The work in the chapter will guide the development team to under-
stand the effect of the input factors and their optimal levels at which the response of
interest produces the optimal result.
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Multi-criteria Decision Making
in Optimal Software Testing-Allocation
Problem

Shinji Inoue, Yuka Minamino, and Shigeru Yamada

Abstract We discussed estimating optimal testing-resource allocation for the mod-
ule testing in software testing phase by applying the notion of the multi-attribute
utility theory. Concretely, considering the utilities of software development man-
ager for the reliability, testing-resource and testing-cost, we define testing-resource
allocation problems for estimating optimal testing-resource allocation maximizing
the utility of the software development manager under the certain testing-strategy.
Finally, we show examples of the applications of our approaches by using actual
data, and give some consideration on our results and the importance of developing
testing management strategy in the software module testing.

1 Introduction

It is well-known that software testing located in the software development process
is resource-consuming process. The testing-resource means CPU time, man-month,
the number of test cases, and so forth. Generally, software testing consists of the
module, integration and system testing. Especially in the module testing, a lot of
testing-resource is needed to enhance software reliability of each software module
because the software modules are tested independently. Therefore, it is important
for software development managers to allocate the testing-resource in the module
testing efficiently. The optimal testing-resource allocation problem (Yamada and
Ohtera 1990; Nishiwaki et al. 1995; Yamada et al. 1995; Ichimori et al. 2002) is
known as one of the interesting problems for software development management.
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The optimal testing-resource allocation problems discuss how to allocate the testing-
resource for each module testing to conduct debugging activities more efficiently.
As for most of existing discussions on optimal testing-resource allocation problem,
the optimal testing-resource allocation is decided by minimizing the total number
of remaining faults in the all software modules under certain constraint of the total
testing-resource for conducting the whole module testing.

However, from the point of view of actual software development management,
it must be better to consider several evaluation criteria, not only the constraint of
the total testing-resource, for deciding the testing-resource allocation in the module
testing. As one of the approaches, we discuss optimal testing-resource allocation
problems based on the multi-attribute utility theory. The multi-attribute utility the-
ory has been often applied in discussion of software development management.
Especially, Kapur et al. (2012) applied the multi-attribute utility theory for devel-
oping an optimal software release problem and discussed the estimation procedure
for estimating optimal software release time maximizing the utility of the software
development manager. We discuss an application of multi-attribute utility theory to
the testing-resource allocation problem, which is one of the interesting issues on
software development management. Compared with the existing discussion on the
optimal testing-resource allocation approach (Nishiwaki et al. 1995; Yamada et al.
1995; Ichimori et al. 2002), our approach gives the another aspects in the software
develop management by proposing another optimal problem for testing-resource
allocation, such as multi-attribute maximization problem on estimating the optimal
testing-resource allocation in the module testing. Further, we show examples of the
applications of our approaches by using actual data, in which the multi-attribute
utility is formulated from the aspects of the reliability, testing-resource, and testing-
cost. And we give some considerations on our results and the importance to develop
testing management strategy in the module testing.

2 Section Heading

We introduce an existing approach for optimal testing-resource allocation problem
(Nishiwaki et al. 1995; Yamada et al. 1995; Ichimori et al. 2002). In this approach,
the software reliability growth process for each module is described by using the
testing-effort dependent software reliability growth model (Yamada 2014; Yamada
and Ohtera 1990). Let us denote the mean value function of the nonhomogeneous
Poisson process (Pham 2000) or the expected number of faults detected up to testing
time t by Z(t). The testing-effort dependent software reliability growth model is
given as

Z(t) = a(1 − exp[−r · T E(t)]), (1)

which is themeanvalue function of the non-homogeneousPoisson process. InEq. (1),
T E(t) is the total testing-effort expended up to time t , a is the initial faults content,
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and r is the software fault detection rate per expended testing-effort. Regarding the
function T E(t) in Eq. (1), we have

T E(t) =
∫ t

0
te(t)dt, (2)

where te(t) is the testing-effort expenditure expended at testing-time t . And the
expected number of remaining faults, n(t), is given as

n(t) = a − Z(t) = a · exp[−r · T E(t)]. (3)

The optimal testing-recourse allocation problem is discussed within the following
situation: (1) a software system consists of M independent software modules, (2) the
number of remaining faults in each module can be estimated by the testing-effort
dependent software reliability growthmodel, (3) the software developmentmanagers
have to allocate the testing-resource expenditures to each software module testing
efficiently, so that the total number of remaining faults in the software system may
be minimized.

Let di denote the amount of testing-resource expenditure spent for testing software
module, i (i = 1, 2, · · · , M). From Eq. (3), the expected number of remaining faults
in the software module i , which is denoted by ni is given as

ni = ai · exp[−ridi ], (4)

where ai is the initial fault content for the softwaremodule i and ri represents the fault
detection rate per expended testing-resource for the software module i (0 < ri < 1).
Then, the total expected number of remaining faults in the software system is

N =
M∑
i=1

ni . (5)

Then, the software testing-resource allocation problem is formulated as

min:
M∑
i=1

δi ai · exp[−ridi ]

subject to
M∑
i=1

di ≤ WP , di ≥ 0,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (6)

where WP is the planned total amount of the testing-resource and δi is the weight
representing the importance or complexity of the software module i . We should
note that the optimal testing-resource allocation problem in Eq. (6) is defined as
the minimization problem on the number of remaining faults in the whole software
modules under the constraint of the planned total amount of the testing-resource. For
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solving the Eq. (6), the Lagrange multipliers method is generally applied. Then, we
have

L =
M∑
i=1

δi ai · exp[−ridi ] + λ

(
M∑
i=1

di − WP

)
, (7)

whereλ is theLagrangemultiplier. The necessary and sufficient conditions for obtain-
ing the optimal solutions are

∂L

∂di
= −δi airi · exp[−ridi ] + λ = 0

∂L

∂λ
=

M∑
i=1

di − WP ≥ 0

λ

(
M∑
i=1

di − WP

)
= 0, λ ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (8)

Further, we assume A1 ≥ A2 ≥ · · · ≥ Ak−1 ≥ λ ≥ Ak ≥ Ak+1 ≥ · · · ≥ AM , where
Ai = δi airi (i = 1, , 2, · · · , M). Then, the optimal testing-resource allocation, d∗

i ,
is derived as

d∗
i = − 1

ri
(ln Ai − ln λ) (i = 1, 2, . . . , k − 1),

d∗
i = 0 (i = k, k + 1, . . . , M)

⎫⎬
⎭ , (9)

where ln λ is given as

ln λ =
∑M

i=1
1
ri
ln Ai − WP∑M
i=1

1
ri

. (10)

Consequently, the optimal testing-resource allocation is obtained as

d∗
i = max

{
0,− 1

ri
(ln Ai − ln λ)

}
(i = 1, 2, . . . , M). (11)

3 Proposed Approach

We propose another approaches for estimating optimal testing-resource allocation
with multi-attribute utility of software development manager. Now, we consider the
following situation:

(1) A software system consists of M independent software modules.
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(2) The number of remaining faults for each software module are estimated by the
testing-effort dependent software reliability growth model.

(3) The software development managers allocate the testing-resource to testing for
each software module for maximizing their utility, which consists of several
attributes being related to the software development management.

We now consider that the following attributes: the testing-resource and the soft-
ware reliability attributes, respectively. Regarding the testing-resource attribute, we
formulate

min : E =
∑M

i=1 di
WP

= W

WP
, (12)

since the softwaremanagers prefer to spend the testing-resource less than the planned
total amount of testing-resource. In Eq. (12), W is the testing-resource expenditure
spent up to the end of the module testing. Further, we give the software reliability
attribute as

max : R = 1 −
∑M

i=1 ai · exp[−ridi ]∑M
i=1 ai

= 1 − N∑M
i=1 ai

. (13)

Here we develop the utility function for each attribute based on the following cer-
tain situation on the software development management strategy: (1) for the testing-
resource attribute, at least 60% of the planned total amount of testing-resources
must be consumed, (2) for the software reliability attribute, at least 80% of software
faults should be removed, (3) the software development managers take the risk neu-
tral position for each attribute. Then, we set the lowest and highest consumptions
for the testing-resource attribute are EL = 0.6 and EH = 1.0, respectively. And the
lowest and highest requirements for the software reliability attribute are RL = 0.8
and RH = 1.0, respectively. Then, we obtain the following utility functions for each
attribute based on the notion of the risk neutral position:

u(E) = 2.5E − 1.5
u(R) = 5R − 4

}
. (14)

From Eq. (14), we define the following optimal testing-resource allocation prob-
lem with the additive multi-attribute utility function under the testing management
strategy:

max : u(E, R) = δR · u(R) − δE · u(E)

= δR · (5R − 4) − δE · (2.5E − 1.5)
subject to δR + δE = 1, di ≥ 0

⎫⎬
⎭ , (15)

where δR and δE are the weight parameters for the attributes R and E , respec-
tively. Consequently, we obtain the optimal testing-resource allocation, d∗

i (i =
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1, 2, . . . , M), by maximizing the multi-attribute utility function in Eq. (15). From
Eq. (15), the optimal testing-resource allocation, d∗

i , is obtained by

d∗
i = − 1

ri
ln

2.5δE
∑M

i=1 ai
5δRairiWP

(i = 1, 2, · · · , k − 1)

d∗
i = 0 (i = k, k + 1, . . . , M)

⎫⎬
⎭ , (16)

Then, we have

d∗
i = max

{
0,− 1

ri
ln

2.5δE
∑M

i=1 ai
5δRairiWP

}
(i = 1, 2, · · · , M). (17)

In Eq. (17), we should note that

B1 ≥ B2 ≥ · · · ≥ Bk−1 ≥ 2.5δE
∑M

i=1 ai
5δRWP

≥ Bk ≥ Bk+1 ≥ · · · ≥ BM , (18)

where Bi = airi (i = 1, 2, . . . , M).
Furthermore, we add the cost attribute for treating more practical situation. For

formulating the cost attribute, we set the following cost parameters:

c1: the debugging cost per fault discovered in the module testing,
c2: the debugging cost per fault undiscovered during the module testing (c1 < c2)
c3: the cost per unit of the testing-resource for the module testing.

Then, the cost function is given as

V = c1

M∑
i=1

ai (1 − exp[−ridi ]) + c2

M∑
i=1

ai exp[−ridi ] + c3

M∑
i=1

di , (19)

by following the notion of the testing-effort dependent software reliability growth
model. From Eq. (19), the cost attribute is given as

min: C = V

CP
, (20)

where CP represents the planned budget for software testing. And we add the fol-
lowing test management strategy: (4) for the cost attribute, at least 50% of the budget
must be consumed in themodule testing. The lowest and highest consumptions for the
cost attribute are CL = 0.5 and CH = 1.0. Further, we assume the following utility
function on the cost attribute: u(C) = 2C − 1, which is just one of the examples.

When we consider the three attributes, such as the testing-resource, software
reliability, and cost attributes, the optimal testing-resource allocation problem with
the three attributes is defined as
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max : u(E, R,C) = δR · u(R) − δE · u(E) − δC · u(C)

= δR · (5R − 4) − δE · (2.5E − 1.5) − δC · (2C − 1)
subject to δR + δE + δC = 1, di ≥ 0

⎫⎬
⎭ , (21)

where δC is the weight parameter for the cost attribute. From Eq. (21), the optimal
testing-resource allocation, d∗

i , is obtained by

d∗
i = − 1

ri
ln

2.5δE
WP

+ 2δCc3
CP

airi
{

5δR∑M
i=1 ai

+ 2(c2−c1)δC
CP

} (i = 1, 2, . . . , k − 1)

d∗
i = 0 (i = k, k + 1, . . . , M)

⎫⎪⎪⎬
⎪⎪⎭

. (22)

Then, we have

d∗
i = max

⎧⎪⎨
⎪⎩0,− 1

ri
ln

2.5δE
WP

+ 2δCc3
CP

airi
{

5δR∑M
i=1 ai

+ 2(c2−c1)δC
CP

}
⎫⎪⎬
⎪⎭ (i = 1, 2, . . . , M). (23)

In Eq. (23), we should note

C1 ≥ C2 ≥ · · · ≥ Ck−1 ≥
2.5δE
WP

+ 2δCc3
CP

5δR∑M
i=1 ai

+ 2(c2−c1)δC
CP

≥ Ck ≥ Ck+1 ≥ · · · ≥ CM . (24)

4 Numerical Examples

Weshownumerical examples for our proposed approach by using actual dataYamada
and Ohtera (1990). The data consists of 10 modules and 251 faults still remain
through the module testing. Table1 shows the estimated values of ai and ri , which
have been estimated by following the testing-effort dependent software reliability
growth model. “M” means module, then “M1” means the module 1. We set the cost
parameters as c1 = 1, c2 = 2, and c3 = 5. And we also set the planned total amount
of testing-resource and the budget for the module testing as WP = 1.0 × 106 and
CP = 1.0 × 106, respectively.

Tables2 and 3 show the estimated optimal testing-resource allocation for each
module, total amount of optimal testing-resource, and utility along with the several
weight patterns for the 2 and 3 attributes, respectively. In Table2, the optimal total
amount of testing-resource increases as the δR is increasing and the δE is decreasing.
Andwe can say that the utility is ordered as P1 > P5 > P2 > P4 > P3, i.e., the utility
is getting higher as the difference between δR and δE is increased. In Table3, the
optimal total amount of testing-resource is increased as δR is increasing and the δR
and δE are decreasing. The order on the utility is P6 > P1 > P5 > P2 > P3 > P4.
From Table3, we can see the differences among the weights must influence the



80 S. Inoue et al.

Table 1 Estimated expected number of remaining faults (2 attributes)

M ai ri zi
P1 P2 P3 P4 P5

1 63 5.332 ×
10−5

21.183 5.4920 2.3573 1.0087 0.2615

2 13 2.523 ×
10−4

4.4768 1.1607 0.4974 0.2132 0.0552

3 6 5.262 ×
10−4

2.1465 0.5565 0.2385 0.1022 0.0265

4 51 5.169 ×
10−5

21.851 5.6652 2.4279 1.4050 0.2698

5 15 1.707 ×
10−4

6.6169 1.7155 0.7352 0.3151 0.0817

6 39 5.723 ×
10−5

19.736 5.1168 2.1929 0.9398 0.2437

7 21 9.938 ×
10−5

11.365 2.9466 1.2628 0.5412 0.1403

8 9 1.743 ×
10−4

6.4802 1.6801 0.7200 0.3086 0.0800

9 23 5.057 ×
10−5

22.335 5.7906 2.4817 1.0636 0.2757

10 11 8.782 ×
10−5

11.000 3.3345 1.4291 0.6125 0.1588

N∗ 127.19 33.458 14.339 6.1454 1.5933

Table 2 Estimated optimal testing-resource allocation (2 attributes)

Weight d∗
i

δR δE M1 M2 M3 M4 M5 M6

P1 0.1 0.9 20441 4225.3 1953.5 16397 4794.5 11901

P2 0.3 0.7 45759 9575.8 4518.9 42513 12703 35489

P3 0.5 0.5 61649 12934 6129.1 58905 17666 50294

P4 0.7 0.3 77540 16292 7739.3 75297 22630 65099

P5 0.9 0.1 102858 21643 10305 101412 30538 88687

Weight d∗
i Utility

δR δE M7 M8 M9 M10 W ∗

P1 0.1 0.9 6177.7 1884.5 579.84 0 68355 1.0428

P2 0.3 0.7 19761 9629.4 27274 13591 220814 0.7636

P3 0.5 0.5 28287 14491 44029 23239 317624 0.7015

P4 0.7 0.3 36813 19352 60784 32888 414434 0.7585

P5 0.9 0.1 50396 27097 87478 48259 568673 0.8793
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Table 3 Estimated optimal testing-resource allocation (3 attributes)

Weight d∗
i

δR δE δC M1 M2 M3 M4 M5 M6

P1 0.8 0.1 0.1 70464 14797 7022.3 67998 20420 58507

P2 0.6 0.2 0.2 52070 10910 5158.4 49023 14674 41369

P3 0.5 0.25 0.25 44466 9302.5 4387.9 41179 12299 34284

P4 0.4 0.3 0.3 36862 7695.5 3617.4 33335 9923.7 27200

P5 0.2 0.4 0.4 18469 3808.5 1753.6 14363 4178.5 10064

P6 0.1 0.45 0.45 3264.8 595.32 212.98 0 0 0

Weight d∗
i Utility

δR δE δC M7 M8 M9 M10 W ∗

P1 0.8 0.1 0.1 33017 17187 53323 28591 371326 0.4430

P2 0.6 0.2 0.2 23147 11560 33928 17423 259262 0.1661

P3 0.5 0.25 0.25 19068 9233.9 25911 12806 212936 0.1024

P4 0.4 0.3 0.3 14988 6907.7 17893 8189.5 166612 0.0966

P5 0.2 0.4 0.4 5119.6 1281.2 0 0 59036.4 0.3537

P6 0.1 0.45 0.45 0 0 0 0 4073.06 0.7266

Table 4 Estimated expected number of remaining faults (3 attributes)

zi
M P1 P2 P3 P4 P5 P6

1 1.4711 3.9227 5.8840 8.8258 23.532 52.535

2 0.3109 0.8290 1.2435 1.8652 4.9732 11.817

3 0.1491 0.3975 0.5962 0.8943 2.3846 5.3639

4 1.5174 4.0464 6.0695 9.1041 24.275 51

5 0.4595 1.2253 1.8794 2.7568 7.3506 15

6 1.3706 3.6547 5.4820 8.2228 21.925 39

7 0.7893 2.1046 3.1569 4.7353 12.626 21

8 0.4500 1.2000 1.8000 2.6999 7.1988 9

9 1.5511 4.1361 6.2040 9.3058 23 23

10 0.8931 2.3817 3.5724 5.3586 11 11

N∗ 8.9620 23.898 35.846 53.768 138.26 238.49

utility. That is, we can say the testing strategy for the module testing influences on
the value of the utility. Further, Tables1 and 4 show the estimated expected number of
remaining faults based on the estimated optimal testing allocation for each module
for the cases of 2 and 3 attributes, respectively. Focusing on the column of P5 in
Table1, the number of remaining faults can be reduced to 1.5933 from 251 faults
due to the testing-strategy, in which the software development manager set the higher
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weight for the software reliability attributes. We can obtain the same investigation
in Table4.

5 Concluding Remarks

We discussed approaches for estimating optimal testing-resource allocation based on
themulti-attribute utility theory in themodule testing of software system. Concretely,
applying the software reliability estimated the testing-effort dependent software reli-
ability growth model, testing-resource, and testing-cost attributes for developing the
additive linear form multi-attribute function, we formulated a testing-resource allo-
cation problem, which enables us to estimate the optimal testing-resource allocation
maximizing the utility of the software developmentmanager under the certain testing-
strategy. Further, we showed examples of application of our approaches by using
actual data. Then, we discussed the behavior of the utility, optimal testing-resource
allocation, and the number of remaining faults, which depend on the weight param-
eters, such as δR , δE and δC . From the examples of application of our approaches,
we investigated that the developing the certain strategy for conducting the differen-
tiated injections to the software reliability, testing-resource, and testing-cost leads
to obtaining the higher utility of software developing manager. However, we need
to conduct more investigations for our approaches and to figure out the relationship
between the testing-strategy and utility by using other actual data and module testing
situation.
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Release Planning Analysis Through
Testing Coverage and Fault Reduction
Factor Based Models with Change Point
Perspective
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Abstract This study delivers a valuable adjoin to the literature of software reliability
growth model (SRGM) and associated software release time problem. In context of
SRGM, this study examines the incorporation of testing coverage and Fault Reduc-
tion Factor (FRF) simultaneously. Since the fault detection process and coverage
rate generally get influenced by several attributes including testing tactics, change
in resources etc. therefore the principle of change point analysis was introduced to
deal with such changes during the testing phase. Models proposed in the study are
developed using Non Homogeneous Poisson Process that can be used to evaluate the
reliability of software system quantitatively. We have also discussed goodness-of-fit
of the proposed models by statistical estimation on two real life fault datasets. To
investigate the optimal time to end the testing of the software, a release planning
problem is discussed. The proposed release planning problem takes into considera-
tion the minimization of the development cost subject to the reliability requirement
constraint. The developed cost model is modeled with the help of some established
cost items such as costs of removing faults in testing phase as well as in operational
phase and fixed cost per unit time. The study finally takes into consideration sensi-
tivity analysis in optimal release time problem taking into account the impact of
variations in the cost parameters.
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1 Introduction

Efficient software performance forms a special part in human life. For example in
hospitals, railways, national security, defense, online transactions, daily life utility
IT instruments etc. all these areas require continuous accessibility of IT tools and
programming codes. So, since software is so vital in today era therefore softwaremust
be of good quality and hence should be highly reliable. One of the most critical and
significant task a development team deals with is building a highly reliable software
set-up. Since reliability is a primary consideration of both software developer and
users, this has therefore dragged the attention ofmany academicians and practitioners
towards the study of analyzing software related concerns. In recent decades, several
approaches have been introduced to measure and enhance the software reliability.
Amongst them non homogeneous poison process (NHPP) is recognized to be the
most effective and successful analytical method in software reliability engineering.
NHPP is a tool that aids in describing the failure phenomenon in the testing period
of the software project. The debugging method is considered by these models as
a counting process and characterized by mean value function (MVF) and once the
MVF is determined reliability can be estimated.

Models illustrating the phenomenon of failure and consequent improvements in
reliability due to fault detection/removal are referred to as software reliability growth
models (SRGMs). Previously, numerous NHPP based SRGMs have been developed
(Goel 1985;Yamada et al. 1984). It has been analyzed in the aforementioned literature
references that the faults and testing time are related to each other either exponentially
or are S-shaped distributed. These models were blend of both S-shaped and expo-
nential growth curve. The very first SRGM was introduced by Goel and Okumoto
(1979), also known as exponential model. The other class of SRGMs introduced later
was known as flexible SRGMs (Okumoto and Goel 1979; Yamada et al. 1983).

The model assumed the fault detection rate and initial fault content as constant.
Then, later in SRGMdevelopment more practical approach catering to real life issues
were implemented in SRGMs and hence the reliability was assessed. SRGMs such as
testing effort, testing coverage, fault reduction factor (FRF), fault removal efficiency
etc. belong to these development (Hsu et al. 2011; Huang et al. 2007; Li and Pham
2017; Zhang et al. 2003). Amongst these considerations, testing coverage and FRF
are the two most important challenges that a development team faces and hence are
taken in this proposed study to check the influence on reliability of the software.

Testing coverage is observed to be an essential consideration for developers and
users equally (Pham and Zhang 2003). From the developer’s perspective it helps to
assess the software quality and ultimately evaluate the additional endeavour required
to improve it. On the other hand, testing coverage helps the users in planning when
to buy software system (Pham and Zhang 2003). During testing phase a coverage
growth function c(t) that can be stated as the fraction of the code covered up to time
t, depicts the coverage growth behavior of software.

To understand the coverage growth behavior, testing coverage based SRGMs have
been proposed previously (Li and Pham 2017; Pham 2014) and this incorporation
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of testing coverage helps in improving the prediction power of the SRGMs. Our
proposed study also incorporates this vital factor andwe have considered twoSRGMs
where testing coverage is taken to follow Weibull distribution and Exponentiated
Weibull distribution. Due to the robust behavior of Wibull distribution, it has been
utilized many times in the field of reliability and survival analysis for example-
Geophysics, food science, medical science etc. (Lai et al. 2006). On the other side,
Exponentiated Weibull distribution is an extended and advanced version of Weibull
distribution as it considers two shape parameters.

The other important metric that needs a concern during testing phase is FRF.
During testing phase, detected faults are not always equal to the failure occurred,
instead it is a proportion of the failure experienced this specific phenomenon is termed
as fault reduction factor (FRF) (Musa 1975). In the generalized basic execution time
model, Musa (1975) expressed it as proportionality constant. He assumed that FRF
could affect the fault detection and correction framework. Several researchers have
emphasized FRF in terms of different ratios such as detectability, associability, fault
growth rate and fault exposure ratio (Friedman et al. 1995; Malaiya et al. 1993;
Musa 1991; Naixin and Malaiya 1996). Our study illustrates the behavior of both
crucial issues namely FRF and testing coverage in NHPP based SRGMs, where FRF
is considered as constant factor that influences the detection process in the testing
phase. Incorporating these real life issues, we have developed software reliability
models that help to accurately and effectively control the reliability growth during
testing phase.

SRGMs assume many parameters that represent the various factors or issues.
During the implementation of SRGMs in a real test environment for the estimation
of reliability, it is considered that SRGM’s parameters should remain stable over the
testing phase. Although it is not always true, for example, let us assume that after
few days of testing, development team observed that the testing needs an additional
proficientmember and they canmake the amendments in the current testing strategies.
Due to such kind of changes, the estimated values of some model parameters may
change. In the context of SRGM, this point of change in the model is defined as
the change point model. Initially, Zhao (1993) proposed change point based SRGM
who discussed the change point estimation method in his study. In recent years,
various distinctive techniques for change point based SRGMs have been introduced
by numerous scholars (Aggarwal et al. 2019; Kaur et al. 2017).

The basic quality characteristics that a user expects from a software system are
reliability, planned delivery and development cost. Therefore, the prime focus of
a development team is to employ these characteristics so that a long-term profit
in the market can be attained from the software development. But software users
wish to get a highly reliable software system at lowest prices as soon as possible
which conflicts with the developers interest, since their focus is on minimization of
the total development cost. Due to this tradeoff between the objectives of the users
and development team, management must define the optimal time to terminate the
testing and make software available to the users by considering their requirements
and satisfying their own objectives as well.
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This study discusses such optimization problem that calculates the release time of
the software system. In software release time optimization problem, two prime focus
of the development team are cost minimization and quality maximization (Yamada
and Osaki 1987). Where, cost minimization benefits the development team so that
they can provide software at a price desired by the users, there reliability is considered
as the most powerful quality measure. Users are more inclined towards the quality
attribute of the software, therefore an optimization problem considering both cost
model and reliability is considered to identify the optimal release time.We have used
cost to model objective function and reliability is used as a constraint with specified
lower bound.

Motive of the study

As we have addressed the effect of code coverage and net fault reduction on the
reliability of software systems, it is therefore important to integrate these issues
into the SRGMs. There are numerous other factors that may change these issues
such as expertise of test team, testing methods etc. Therefore, in SRGMs context
such changes are modeled with change point analysis. These developed analytical
expressions are tested on two real life failure datasets and estimated values of the
model parameters are obtained. Further, we have taken into consideration the impact
of these factors on the development cost and on the release time of the software
system. To determine the optimal values of the incurred development cost and release
time we used an optimization problem which is expressed by cost-reliability criteria.
We have also discussed the sensitivity analysis that considers variation in the cost
parameters so that developers can easily identify the key cost parameter that required
more focus during software development.

Organization

The proposed study is systematized as follows,
Section 1—A thorough introduction of the software reliability and its related

techniques was given.
Section 2—This accounts for a comprehensive literature view.
Section 3—This section gives the modeling framework of the proposed study.
Section 4—This section of study illustrates the experimental numerical based on

the proposed methodology.
Section 5—Theoretical and managerial implications of the study are given in this

section.
Section 6—This section concludes the study and provides the future scope of the

study.
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2 Literature Review

This section presents a categorization of the techniques used and issues encountered
in the software development process. It discusses the literature references which lay
the groundwork for study of some factors potentially related to software reliability.

2.1 Software Reliability Growth Models

Examining the landscape of research in the areas of software reliability engineering-
specifically the areas of SRGMs, has evolved since 1979. The term NHPP based
SRGM first appeared in scholarly literature by Goel and Okumoto (1979). Authors
described the failure detection as Non-Homogeneous Poisson Process (NHPP)
considering that hazard rate is a proportion of the leftover faults in the system.
Based on the fundamental principle of GO model numerous researches have been
conducted that assumed failure and fault removal phenomenon by NHPP (Kapur
and Garg 1992; Yamada et al. 1983) and the research is still continuing. Since these
models do not assume real life issues a development team faces during testing period
of software therefore a number of researches have been done incorporating these
issues into the SRGMs namely testing effort, fault efficiency, error generation, fault
reduction factor, testing coverage, patching etc. (Chatterjee andSingh 2014;Hsu et al.
2011; Huang and Lyu 2005; Jain et al. 2014b). All these aspects are necessary to be
included in tracking the growth of software reliability. Our proposed study considers
the fusion of two such critical issues, testing coverage and FRF into SRGMs. Study
also assumed that coverage rate is not smooth over the testing time period, there is
a change point after that coverage rate gets altered.

2.2 Testing Coverage

Previously, a variety of approaches to software reliability evaluation have been
proposed by integrating testing coverage into the SRGMs. Chen et al. (1996)
discussed the over estimation of reliability due to the observation of similar nature of
testing techniques and proposed a technique by addressing both coverage and time
to solve this issue. Author applied this technique to SRGMs and investigated the
improvement made by them, which resulted in significant reduction in the overesti-
mation of reliability. Further, Malaiya et al. (2002) defined the relation among relia-
bility, time and coveragemeasures (block, branches etc.) and proposed a logarithmic-
exponential model to relate the. Model which was tested over four datasets. Pham
and Zhang (2003), suggested an SRGM considering the testing coverage informa-
tion and further they compared the proposed SRGM with some existing SRGMs.
Authors also discuss the release planning problems. Pham (2014) suggested a loglog



88 Neha et al.

fault detection rate and coverage based reliability growth models subject to uncertain
operating environment and compared the models with existing SRGMs.

Chatterjee and Singh (2014) gave an NHPP based software reliability model with
logistic-exponential coverage function under an imperfect debugging environment.
They further used the proposed model to determine the optimal time to release
the system. Li and Pham (2017) has done a considerable research and proposed
a reliability growth model for a uncertain operating environment with imperfect
debugging and testing coverage. Tandon et al. (2020) proposedmulti-release SRGMs
that consider FRF and testing coverage simultaneously to observe reliability growth.
Models were validated over two Open Software System datasets. In our proposed
study, we have considered these two proposed models and incorporated the change
point perspective. Further, we have investigated the termination of testing time for
the software system.

2.3 Fault Reduction Factor

Fault reduction factor defines a close relationship between the terms faults and failure
in testing environment of software development life cycle. It states that faults removed
are only a fraction of failure experienced during testing phase (Musa 1975). Several
analytical approaches havebeenproposed that takeFRF into consideration to enhance
reliability of software. Hsu et al. (2011) proposed FRF based SRGMs that were
developed using two cases of FRF. In case one, a constant FRF was taken and the
other dealt with the increasing and decreasing behavior of FRF. Jain et al. (2014a)
incorporated real life situations and proposed a model that considered imperfect
debugging environment of testing phase with multiple change point perspective.
Further, authorsmade an addition to the study and calculated the total expected cost by
considering a warranty cost model (Jain et al. 2014b). Chatterjee and Shukla (2016b)
proposed a general framework of software reliability model with fault detection and
correction process through Weibull-Type FRF to make the model more realistic and
flexible under an imperfect debugging environment with change point concept. In
2019Aggarwal et al. (2019b) introduced an SRGM formulti-release software system
by integrating imperfect debugging and time dependent FRF.

2.4 Change Point Concept

In practice, the distribution of failure may be influenced by several other parameters
such as testing efficiency, resources etc. This phenomenon is termed as change point
during software testing phase. Kapur et al. (2007) proposed an SRGM based on
severity of the faults using change point. Li et al. (2010) discussed a release policies
by including testing effort based SRGM with multiple change points. In 2012, Raju
et al. (2012) suggested an SRGM by considering imperfect debugging. Authors also
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discussed the change point concept and performed parameter estimation to test the
model.

Singh et al. (2011) also examined the number of faults removed in the soft-
ware system using a two dimensional testing coverage based SRGM. The model was
developed using Cobb-Douglas production function. Nijhawan andAggarwal (2015)
introduced an SRGMwith change point scenario for a multi release software system.
In addition to the change point SRGMs, Chatterjee and Shukla (2016a) proposed a
test coverage and change point based SRGM. Authors used a time dependent fault
detection probability and incorporated into SRGM with s-shaped coverage. Further,
Chatterjee and Shukla (2019) introduced a unified methodology to model a testing
coverage based reliability growth models by considering change point scenario.
Author also discussed the imperfect fault detection process into the proposed SRGM
context.

2.5 Release Planning

An emphasis on customer retention ultimately resulted into more attention on
releasing the software at scheduled time. Decision of releasing software is primarily
focused on the number of removed faults. This scenario results in development of
release time optimization problem incorporating SRGM. In past few decades, several
researches have been introduced that dealt with different release polices for the soft-
ware system. Okumoto andGoel (1979) discussed an optimum release strategy based
on exponential SRGM. Huang and Lyu (2005) showed the effectiveness of both
testing effort and testing efficiency and also discussed the release planning problem.

Li et al. (2010) optimized the release timewith the help of testing effort based reli-
ability models. Kapur et al. (2012) introduced a 2-dimensional SRGM for multiple
versions of software systems. Authors considered Cobb-Douglas function to derive
the model that was further used to formulate an optimization problem for release
planning. Kumar et al. (2018) proposed a release time optimization problem using
an SRGM incorporating patching. Verma et al. (2020) discussed release planning
problem using grey wolf optimizer and results were compared with the other soft
computing techniques. In this study we investigate a release planning problem
based on SRGMs with a change point perspective. The considered optimization
problem consists of cost model as an objective function and software reliability as
the constraint. In the next segment, we thoroughly present the proposedmethodology.

3 Modelling Framework

This section deals with the notations used, assumptions upon which the SRGMs
are proposed and the techniques used for assessing performance of the models. It
also discusses the formulation of an optimization problem to calculate the testing
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termination period and express the optimal release time of software for its operational
phase (Fig. 1.).

Notation

m(t) Expected number of faults removed till time t for model.
a(t) Initial fault content at time t
ϕ(t) Fault detection rate
c(t) Time dependent testing coverage function
r Fault reduction factor
T Release time of the software
T ∗ Optimal release time of the software
τ Change point
C1 Cost of removing faults before change point in testing phase
C2 Cost of removing faults after change point in testing phase
C3 Cost of removing faults in operational phase
C4 Cost per unit time
R(t) Reliability at time t
b1, s1(b2, s2) Scale and shape parameter of Weibull distribution before

(after) change point
k1, l1, v1(k2, l2, v2) Shape and scale parameters of Exponentiated Weibull distri-

bution before (after) change point

Fig. 1 Illustration of flow of appropriate methodology for modeling and release planning
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3.1 Assumptions

In order to develop reliability growth model based on the NHPP, following basic
assumptions are considered,

1. Occurrence of the software failure follows NHPP process.
2. Failure rate relies on the fault detection rate and leftover faults in system. Fault

detection rate can be considered in terms of the percentage of code examined
up to time t .

3. Faults are mutually independent and debugging is perfect.
4. The fault detection rate is a function of constant FRF.
5. Change point perspective is considered.

3.2 Model Development

Ageneralmathematical expression of SRGMcan be derived by following differential
equation,

dm(t)

dt
= ϕ(t)(a(t) − m(t)) (1)

One can apply different function of a(t) and ϕ(t) to develop an SRGM based on
more real life issues of testing phase. A variety of a(t) and ϕ(t) functions reveals
numerous assumptions of testing process. In the best possible case, these functions
are assumed to be constant, this SRGM was given by Goel and Okumoto (1979).
Constant initial fault content a(t) implies perfect debugging process and constant
fault detection rate ϕ(t) implies that failure intensity is directly proportional to the
left over faults.

The proposed study considers perfect fault debugging i.e., a(t) = a. ϕ(t) which
is represented in terms of testing coverage function, i.e., ϕ(t) = c′(t)

1−c(t) (Pham and
Zhang 2003). Therefore, the above mentioned differential equation can be rewritten
as,

dm(t)

dt
= c′(t)

1 − c(t)
(a + m(t)) (2)

Also, according to the fourth assumption, this equation becomes

dm(t)

dt
= r

c′(t)
1 − c(t)

(a + m(t)) (3)

where, r is the FRF. Two cases of testing coverage function c(t) are assumed, in
case-1, c(t) is assumed to follow Weibull distribution functions and in case-2, it is
followingExponentiatedWeibull distribution function. Testing coverage is combined
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with a constant FRF to incorporate more practicality in the proposed SRGMs. Based
on the discussion, mean value function (MVF) for both the SRGMs are as follows,
(Tandon et al. 2020).

Model 1

Model 1 is based on 1st case of testing coverage, i.e., it considers c(t) as Weibull
distribution function, c(t) = 1 − e−bts . and constant FRF. The MVF in this is given
as follows,

m(t) = a
(
1 − e−rbt s

)
(4)

Model 2

It includes testing coverage as Exponentiated Weibull distribution function which is

given by, c(t) =
(
1 − e(−(t/ l))k

)v

. MVF for model 2 is,

m(t) = a

(
1 −

(
1 −

(
1 − e

(
−( t

l )
k
))v)r)

(5)

Change point Analysis

As we have discussed that fault detection, correction process and code coverage
can be affected by several factors for example testing strategies, variation in test
team, resources etc. that implies a discontinuity in the detection, correction process
and eventually fault coverage rate. In SRGM context, this discontinuity in model
parameterswith respect to time is defined as change point analysis. This discontinuity
can occur at any moment of time in testing period of software development process.
Mathematically, testing coverage using change point perspective can be defined as
follows,

c(t) =
{
c1(t), 0 ≤ t ≤ τ

c2(t), τ < t
(6)

where τ represents the change point during testing. We derived the change point
SRGM for both cases of testing coverage which are as follows,

Model 1

This case considers testing coverage as Weibull distribution function. Thus solving
Eq. 4 using change point concept (Eq. 6) with initial conditions m(0) = 0 and
c(0) = 0, we get the MVF as follows,

m(t) =
{
a
(
1 − e−rb1t s1

)
, 0 ≤ t ≤ τ

a
(
1 − e−r(b1τ s1+b2(t s2−τ s2 ))

)
, τ < t

(7)



Release Planning Analysis Through Testing Coverage … 93

Table 1 Mean value function of SRGMs

Model Mean value function (m(t))

Model 1 (without change point) a
(
1 − e−rb1t s1

)

Model 2 (without change point)

a

⎛

⎝1 −
⎛

⎝1 −
⎛

⎝1 − e

(
−

(
t
l1

)k1
)⎞

⎠

v1
⎞

⎠

r⎞

⎠

Model 1 (with change point) a
(
1 − e−r(b1τ s1+b2(t s2−τ s2 ))

)

Model 2 (with change point)

a

⎛

⎜⎜
⎜⎜
⎜
⎝
1 −

⎛

⎜⎜
⎜⎜
⎜
⎝

⎛

⎜
⎝1−

⎛

⎜
⎝1−e

(

−
(

τ
l1

)k1
)⎞

⎟
⎠

v1⎞

⎟
⎠

⎛

⎜
⎝1−

⎛

⎜
⎝1−e

(

−
(

t
l2

)k2
)⎞

⎟
⎠

v2⎞

⎟
⎠

⎛

⎜
⎝1−

⎛

⎜
⎝1−e

(

−
(

τ
l2

)k2
)⎞

⎟
⎠

v2⎞

⎟
⎠

⎞

⎟⎟
⎟⎟
⎟
⎠

r⎞

⎟⎟
⎟⎟
⎟
⎠

Model 2

This case assumes testing coverage as Exponentiated Weibull distribution function.
Thus, solving Eq. 5 using change point concept (Eq. 6) with initial conditionsm(0) =
0 and c(0) = 0, we get the MVF as follows,

m(t) =
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(8)

The analytical expressions of the models used in this study are summarized in
Table 1.

3.3 Validation and Performance Analysis

Once the model is derived it is then selected for an application on a real life dataset.
Its performance can be measured with its capability to meet the experiential data and
to forecast the future pattern of the failure in satisfactory manner. Many performance
criteria are introduced previously to validate the fitness of models on any actual data.
The criteria that are considered in this chapter have explained clearly in Table 2.
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Table 2 Performance criteria

Performance criteria Description Expression

Mean Square Error (MSE) Helps to calculate the distance of the
expected values from the observed
values. Minimum is the distance
better the model is. n is the number of
the observations

1
n

n∑

i=1
(mi (t) − yi )2

Predictive Risk Ratio (PRR) Helps to assess the estimated values
of the experimental values with
respect to the model estimates

n∑

i=1

(mi (t)−yi )
mi (t)

2

Predictive Power (PP) This metric depends on the distance
amid the expected values and the
experimental values with respect to
the observed values

n∑

i=1

(mi (t)−yi )
yi

2

Mean Absolute Predictive Error
(MAPE)

This measure helps to determine the
preciseness of the model’s prediction

100
n

n∑

i=1

∣∣
∣ yi−mi (t)

yi

∣∣
∣

R2 It is intended to evaluate the
significant affiliation that occurs amid
the variables and lies in within 0 and
1. Higher the value better is the fitness

1 −
n∑

i=1

(mi (t)−yi )
(mi (t)−yi )2

2

3.4 Release Planning of Software System

Once themodel is tested, it can also be used to assess the optimum timewhen software
system launches. The problem described in this chapter will help to estimate the time
to finish the testing and make the new product accessible for its operating phase. We
have used a constraint optimization problem to decide the optimum release time, that
reduces the cost of development by considering system’s reliability no less than the
predefined level of aspiration.

A software system’s performance is usually relying on reliability obtained through
testing period and it is found that the performance of the software is higher for longer
testing.Whereas, extended software testing entails a delay in the planned release time,
in addition to increase in the assigned development cost and gradual loss of goodwill.
So we use optimization of the cost function and get the optimum cost for the software
system to address this contradictory scenario. Okumoto and Goel (1979) suggested
a cost model for the software by using three cost parameters namely; debugging cost
incurred in testing, debugging cost in operational phase and fixed cost per unit time
i.e., C1, C3 and C4 respectively, which is formulated as,

C(T ) = C1m1(T ) + C3(m2(T∞) − m2(T )) + C4T (9)

To incorporate the change point concept Kapur et al. (2009) formulated a release
time problem using change point based SRGMs, and the modified cost function
includes different cost of fault removal after and before change point, given as,



Release Planning Analysis Through Testing Coverage … 95

C(T ) = C1m1(τ ) + C2(m2(T ) − m1(τ )) + C3(m2(T∞) − m2(T )) + C4T (10)

Here, C1 is the fault removal cost before change point and C2 is the fault removal
cost after change point and m1(t) and m2(t) represent the mean value function for
testing process before and after change point. The value of the cost parametersmainly
depend on the testing environment, team skills and testing strategies of the team etc.

As reliability is the most crucial factor that highlights the user’s requirements,
hence it is considered to be a key qualitymeasure of the software system. Therefore, it
is important to consider this key quality factorwhen developing the software.Yamada
and Osaki (1987) proposed and constraint optimization problem that minimizes the
development cost with respect to reliability as its constraint function and formulated
as,

minC(T )

Subject to
R(T ) ≥ R0

(11)

where T ≥ 0.
We assumed reliability function as R(T ) = m(T )

a given byHuang et al. (2002).We
use estimated values of the model parameters to perform optimization that ultimately
helped calculate the release time and minimize the development cost. The proposed
methodology is implemented in the next section to illustrate the numerical example.

4 Numerical Illustration

Here, the estimation of proposed models is put forth and parameters used in the
models are estimated. These estimated values are then used to identify the optimum
software system release time. Datasets used in this analysis are collected from a
bug tracking system Bugzilla (https://bugzilla.gnome.org) and from Firefox (https://
bugzilla.mozilla.org). The applications of the models on these collected datasets are
given as follows,

First Application (DS-1)

The proposed models are estimated using the non-linear LSE technique. The esti-
mated parameters can be used to get information about the leftover fault in the system
and thereby can be used to define the accuracy of the model in predicting the failure.
Table 3 depicts the estimation output of model 1 and model 2 for both without
and with change point (τ = 12). Further, we have assessed the performance of the
proposed models using some fitness criterions namely MSE, PPR, PP, MAPE and
R2 (Table 4).

The values of performance criteria show that the models with change point are
more significant in terms of explaining the failure in the system as the R2 is greater

https://bugzilla.gnome.org
https://bugzilla.mozilla.org
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Table 3 Parameters estimations (DS-1)

Model 1 Model 2

Parameter Estimated
Values
Without
change
point

Parameter Estimated
Values
With
change
point

Parameter Estimated
values
Without
change
point

Parameter Estimated
Values
With
change
point

a 91.769 a 87.096 a 84.995 a 85.1

r 0.088 r 0.984 r 0.146 r 0.142

b 0.324 b1 0.041 k 2.062 k1 1.57

s 1.423 b2 10.692 l 4.881 k2 2.509

s1 0.177 v 0.303 l1 3.601

s2 0.995 l2 6.765

v1 0.539

v2 14.985

Table 4 Goodness of fit criteria (DS-1)

Performance
criteria

Model 1 Model 2

Without change
point

With change
point

Without change
point

With change
point

MSE 5.644 4.3230 3.809 6.2783

PPR 9.475 0.7647 2.084 0.1891

PP 5.832 0.3215 2.108 0.1484

MAPE 7.738 6.2083 4.197 5.2093

R2 0.992 0.995 0.991 0.994

and hence better than themodel where change point is not taken into account.Models
fitness is also observed graphically by plotting goodness of fit curve with 95% confi-
dence bound of the estimated faults. From the comparison of visual interpretation of
Fig. 2, we can state that models with change point are lying more close to the real
values of data thereby indicating better fit of the models.

Second Application (DS-2)

The proposed models are tested on another dataset DS-2. Table 5 depicts the esti-
mation output using model 1 and model 2 for both without and with change point
concept (τ = 31). After obtaining the predicted values of the models’ parameters,
we then evaluate the performance of the models in predicting the data. From Table 6,
it is clear that MSE, PRR, PP and MAPE of the model with change point are lowest
than the models of without change point perspective and R2 is greater for models
with change point. It means change point shows a significant part to enhance the
performance of the models.
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Fig. 2 Goodness of fit curve for DS-1. a Without change point. bWith change point
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Table 5 Parameters estimations DS-2

Model 1 Model 2

Parameter Estimated
Values
Before
Change
Point

Parameter Estimated
Values
After
Change
Point

Parameter Estimated
Values
Before
Change
Point

Parameter Estimated
Values
After
Change
Point

a 94.332 a 71.246 a 71.327 a 66.225

r 0.17 r 0.156 r 0.949 r 0.123

b 0.717 b1 1.141 k 4.736 k1 0.402

s 0.547 b2 1.533 l 67.310 k2 3.393

s1 0.557 v 0.082 l1 0.048

s2 0.665 l2 21.904

v1 13.328

v2 20.635

Table 6 Goodness of fit criteria DS-2

Performance
criteria

Model 1 Model 2

Without change
point

With change
point

Without change
point

With change
point

MSE 3.259 2.029 2.945 1.346

PPR 5.252 0.198 6.274 0.110

PP 5.423 0.299 7.733 0.119

MAPE 4.639 3.585 4.797 2.707

R2 0.982 0.99 0.983 0.994

Next, the graphical representation of the estimated value of the faults is plotted
using goodness of fit curve with 95% confidence bound of the estimated faults. From
Fig. 3, it can be interpreted that estimated values using change point are fitting better
than without change point for both the proposed models. After testing the fitness of
models, we can decipher that incorporation of change point perspective into testing
coverage and FRF based SRGMs gives better fit on the real data taken in this study
and hence can be adopted for further analysis.

4.1 Optimal Software Release Time

To calculate the ideal time for termination of testing, we have used optimization
problem given by Eq. 11 with the estimated parameters considered in the proposed
SRGMs, we have performed an optimization. While solving the problem, four cost
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Fig. 3 Goodness of fit curve for DS-2. a Without change point. bWith change point
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Table 7 Optimization problem results using DS-1

Release Time (T ∗) Budget Consumed
C(T ∗)

Reliability R(T ∗)

Model 1 Without change
point

31.5 4416.2 0.979

With change
point

25.7 4451.4 0.964

Model 2 Without change
point

24.99 3961.6 0.987

With change
point

25.04 3966.7 0.988

values are assumed to be as followsC1 = $40,C2 = $50,C3 = $100 andC4 = $20.
The costs are taken arbitrary with the fact that the fault removal cost in testing phase
is less than the cost of fault removal in operational phase. Using this information
we performed the optimization for DS-1. By solving the proposed cost-reliability
optimization problem we have obtained the optimal values for the release time and
total development cost.

Table 7 represents the optimal results with respect to the cost and reliability
requirements. Considering model 1 without change point, release time is coming as
31.5 weeks and the total development cost at the end of the testing is $4416.2. This
cost is inclusive of fault removal in testing phase, operational phase and the fixed
cost per unit time. The reliability achieved at the end of the 31.5 weeks of testing is
0.979, which is greater than the aspired reliability level R0 = 0.9. Considering the
optimization with change point SRGM, we get the software release time as 25 weeks
with optimum cost $4451.4. Then reliability obtained is 0.964 which is also greater
than the aspired reliability level.

Analyzing proposed model 2 from the Table 7 we obtain that release time of the
system is 24.99 weeks and the total development cost is $3961.6. On the other hand,
the reliability obtained is 0.987which is higher than the desired level. Similarly, when
we consider model with change point the optimal release time obtained is 25.04 and
the total incurred cost came out to be $3966.7 with 98.8% reliable software.

Hence from the results it can be stated that the all the specification and constraints
made by the management team or developers are met by the proposed models.

4.2 Variations in Cost Parameters

Sensitivity analysis is the study to examine the consequence of variations in param-
eters of mathematical model or system on the outputs or performance of the system.
It is observed that cost parameters are usually dependent on the capacity of the effi-
ciency of the research team and can bemodified.Using the sensitivity analysis, we are
analyzing the economic effect of cost adjustment on the total cost usage and optimal
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Table 8 Sensitivity analysis of variations with no change point

Changed cost parameters T ∗ C(T ∗) R(T ∗)
Model 1 10% increased C1 = 44 31.119 4775.4 0.977

C3 = 110 32.496 4433.7 0.982

C4 = 22 30.950 4478.7 0.976

10% decreased C1 = 36 31.947 4056.5 0.981

C3 = 90 30.407 4395.2 0.975

C4 = 18 32.198 4352.5 0.981

Model 2 10% increased C1 = 44 24.986 4297.5 0.988

C3 = 110 25.1 3972.0 0.988

C4 = 22 24.924 4011.6 0.988

10% decreased C1 = 36 24.989 3625.8 0.988

C3 = 90 24.492 3951.0 0.987

C4 = 18 24.989 3911.7 0.988

release time. The main advantage of this methodology is that it allows focusing on
recognition of key or prime parameters. Our proposed study carried out the analysis
using the relative change in the cost parameters. Mathematically, relative change is
given as,

relative Change = new value − old value

old value

We consider the case wherein we evaluate the change in total cost and release time
by increasing (and decreasing) the cost parameters by 10%. Tables 8 and 9 depict
the output using the DS-1 and a graphical representation of relative changes are also
plotted in the Figs. 4, 5, 6 and 7.

Table 8 shows the obtained values release time, cost and reliability for the different
values of the parameters when SRGM do not have change point incorporated. It
clearly depicts that for the increments in the cost parameters C1 and C4 of model 1
andmodel 2, optimal time and reliability both decreases while on contrary increase in
C3 increases the testing time and reliability as well. On the other hand, if we decrease
the cost parameters by 10% the release time and optimal reliability decrease with
change inC1 andC4, whereas fault removal cost during operational phase gives early
release of the software system with less reliability.

Now, considering models with change point we examined the variations in cost
parameters and Table 9 depicts the optimal values obtained for release time, cost and
reliability. These results clearly show that for the increment in cost of fault removal
of before and after change point in testing phase, optimal time decreases for both the
models. When the cost C1 increased and decreased by 10%, the reliability remains
unchanged for model 1. And when C2 increased and decreased by 10%, reliability
for model 2 remains unchanged. This implies that cost fluctuations before the change
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Table 9 Sensitivity analysis of variations with change point models

Changed cost parameters T ∗ C(T ∗) R(T ∗)
Model 1 10% increased C1 = 44 25.703 4680.5 0.964

C2 = 55 25.055 4584.2 0.961

C3 = 110 26.859 4480.2 0.969

C4 = 22 25.116 4502.2 0.962

10% decreased C1 = 36 25.71 4222.3 0.964

C2 = 45 26.302 4317.3 0.967

C3 = 90 24.347 4417.3 0.957

C4 = 18 26.366 4417.5 0.967

Model 2 10% increased C1 = 44 24.482 4304.5 0.985

C2 = 55 25.036 3967.0 0.988

C3 = 110 25.511 3974.6 0.990

C4 = 22 25.012 4016.7 0.980

10% decreased C1 = 36 24.152 3637.0 0.984

C2 = 45 23.271 3984.5 0.978

C3 = 90 24.123 3958.3 0.983

C4 = 18 25.373 3915.4 0.990

point do not alter the reliability of the system by model 1 and change in cost after
change point for model 2 do not alter the reliability of the system.

Based on the performed numerical experiment, we can plot the graph for the
relative change in the release time, reliability and total cost for variations in each
cost parameters Figs. 4, 5, 6 and 7. Following conclusions can be drawn from the
above experimental analysis,

1. The increment in fault removal cost in testing phase and fault removal cost
per unit time result in early release of the software system for both the models
(with andwithout change point concept).While decrease in these cost parameter
results in delay in the planned delivery for all the proposed models.

2. For the increment in fault removal cost in operational phase a delay is observed
in release time for all the proposed models.

3. Amongst all the cost parameters change in fault removal cost in operational
phase depicts a large variation in software release time. However, from the
budget perspective cost of eliminating fault in testing processe shows a wide
difference in overall budget consumption.

5 Theoretical and Managerial Implications

A combined analysis of testing coverage and FRF with change point perspective
during the testing process provides an insight ofwhat needs to be addressed in the area
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Fig. 4 Relative change using model 1 (without change point)
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Fig. 5 Relative change using model 2 (without change point)

of software reliability. It offers a reference framework by explaining how software
reliability increases by integrating these real life and vital factors to the SRGM with
change point. Estimated values clearly indicate that models are accurately predicting
the fault content. Similar concepts were kept in past as well (Aggarwal et al. 2019;
Kapur et al. 2009). After estimation models are then used to evaluate the optimal
release time and expected software system. Change is observed in total development
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Fig. 6 Relative change using model 1 (with change point)
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Fig. 7 Relative change using model 2 (with change point)
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cost with respect to different testing time. Similar results hold true in past research
as well (Chatterjee and Shukla 2017; Jain et al. 2014a, b).

Beside theoretical implications, this article documents themanagerial implication
too. In the ever growing competitive environment of software systems, software
development team needs to focus on building trust and enhancing user’s growth rate.
Therefore, using testing coverage and FRF together into the SRGMs with change
point concept increases the reliability growth of the software which eventually helps
development team to gain user’s trust. This study also offers means to identify the
software release time by taking care of user’s requirements.

6 Conclusion, Limitations and Directions for Future
Research

In this chapter, we obtained the SRGMs and examined the optimal release time by
reducing the overall development cost, relative to the software reliability not less
than a given aspiration level. The main focus of our study is to develop SRGMs from
the point of view of change point and provide optimum time to make the product
available for the operational phase. Proposed SRGMs include real life problems such
as testing coverage and FRF, where FRF is believed to be constant and two distribu-
tions are considered for testing coverage, the first being Weibull distribution and the
second being Exponentiated Weibull distribution. It is observed that coverage rate is
itself influenced by various factors such as testing strategies, change in resources etc.
In SRGM, this phenomenon of change in detection and consequently in coverage
rate is considered as change point analysis andmodels are derived using change point
concept. These models are tested using two datasets and comparison is addressed
by integrating different performance measurements. The numerical example demon-
strates that the proposed models give significant outcomes with improved fitness and
predictive capabilities.

Estimated values of proposed MVF parameters are used to compute the release
time of the software system with the help of optimization technique. Optimization is
performed by reducing the development cost subject to constraint on reliability. Since
cost is most often based on the development team’s testing efficiency and expertise,
therefore variations in cost parameters may influence the overall cost and also the
release time. To understand this, we have discussed sensitivity analysis based on the
variation in cost parameters by 10%.As results, we obtained that fault removal cost in
operational phase affects the release timemore as compared to other cost parameters.
On the other hand, fault removal cost in testing phase has more influence on the total
budget consumption than the other cost parameters.

Limitations and Future Directions

Following are the limitations observed from the proposed study,
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1. The analysis concentrates on the single release of the software system.However,
software usually comes with multiple releases. The proposed research can be
extended in future by implementing the multi-release principle of software
system.

2. The suggested model assumes the perspective of a single change point in the
coverage rate function. Whereas multiple change points can be incorporated
into the model in the future.

3. To measure the release time, we used a non-linear optimization problem that
can be further calculated through meta-heuristic techniques and a comparison
can be examined.

4. The costmodel includes three cost parameters, such as fault removal costs during
testing process, fault removal cost in operational phase and cost of removing
faults per unit time. However, several costs influence the total development
cost such as penalty cost, opportunity cost, warranty cost etc., hence for future
perspective cost model can be integrated using these costs components.
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Abstract Satisfaction expected from the software product is determined by role of
individual attributes in the development process and release decisions. This chapter
proposes a study to analyse the relationship among various attributes of the software
development process and its importance form customer’s point of view. The attributes
were carefully chosen based on the industry practices, theory and literature. Further
the attributes were compared to see which attributes is affected/influenced by which
attribute. A hierarchical model that highlights the importance of attributes at various
levels along with their interrelationships was developed through Interpretive Struc-
tural Modelling (ISM). The results show that budget, reliability, release time and
post-release support are highly affected attributes. Then an optimal release problem
with multiple objectives is developed incorporating the most affected attributes and
solved using Multi-Attribute Utility Theory (MAUT). Here developer aims to opti-
mize the development cost i.e. budget and the reliability under fixed availability of
budget considering that the developer provides warranty benefits to the customers.
Through this chapter we are able to identify the relations among software attributes
and role of most influenced attributes in release planning. The detailed methodology
of the proposed study has been demonstrated through an empirical example.
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1 Introduction

A software firm’s performance can be measured by the visibility of its product in the
market and from customer feedback about the functioning of the product. To achieve
a high level of satisfaction among customers it becomes necessary for organizations
to look towards software frommanagement, development and maintenance perspec-
tive (Yamada and Tamura 2016; Pham 2007). Successful management of software
projects can be gained by carefully monitoring all the attributes of the development
process such as budget, test cases, release time, post-release support, reliability etc.
It can be well supported by a structural model that clearly specifies the importance
of attributes and investigates possible interactions among them (Galin 2018).

To establish the hierarchical structure of the attributes based on their importance
in the development process and interactions among them, Interpretive Structural
Modelling (ISM) has been used. ISM is amethodology that systematizes the elements
under study by interpreting the relationship among them and presents it with a hierar-
chical or multilevel structure. This imperative technique helps firms and researchers
by converting a complex web of elements into a readable and understandable struc-
ture or model (Warfield 1974). ISM has been applied in various disciplines such as
vendor selection (Mandal and Deshmukh 1994), education quality (Mahajan et al.
2014), software engineering project (Samantra et al. 2016), supply chain (Agi and
Nishant 2017), aircraft industry (Pitchaimuthu et al. 2019), knowledge management
(Maheshwarkar and Sohani 2019), etc. But it has not been practically or theoretically
applied to the attributes of the software development process that define performance
of software products.

The performance of the software product is as perceived by users based on their
expectations. The expectations tend to change with change in technology. Software
products become obsolete due to change in requirements which is result of fast
technological changes. This problem can be dealt with the timely release of the
software product or timely upgradations. Hence it is very important to determine
the optimal release time (Pham 1996; Zhang and Pham 1998). We refer to optimal
time because very large as well as the small duration for testing has a negative effect
on firms’ performance (Song et al. 2018). Testing software for longer time periods
increases reliability but it incurs a lot of costs and disturbs the budget (Pham and
Zhang 1999a, b). Also, testing for longer duration delays the introduction of the
software product into the market when its demand is high and thus leads to loss of
opportunity (Huang and Lyu 2005).

On the other hand release of a premature product (spending less amount of time
on testing) leads to customer dissatisfaction due to failures experienced by users
during the execution period (Pham and Zhang 1999a). So, optimal release time helps
in maintaining the product’s image into the market by minimizing the possibility of
failure during the operation or implementation phase (Chatterjee and Shukla 2017).
Even after testing the software for optimal period a developer can never be sure
of no failures during execution. To make a software bug free it has to be tested
infinitely which is a costly affair. Hence, some developers differentiate their product
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by providing back up support for their product after its release. This is termed as
warranty.

Warranty is a kind of written contract or obligation between developers and
customers to highlight the responsibilities of developers as well as customers during
the product usage period (Park and Pham 2010, 2012; Bai and Pham 2006). It can
also be defined as the confidence of developers in their product that it will perform
satisfactorily and will not fail up to a given time if used as per the guidelines. This
ensures that any failure in the operational phase will be attended by developers free
of cost under specified terms and conditions (Li and Pham 2017; Sgarbossa and
Pham 2010). But this service cannot be provided for whole lifetime. An unlimited
warranty will cause heavy losses to software firms. Hence it is also very crucial
to decide about the optimal time for which warranty should be provided (Blischke
2019). So to overcome these difficulties, authors have used Multi-Attribute Utility
Theory (MAUT) for determination of optimal release time and optimal warranty
time with objective of minimizing the budget usage and maximizing the reliability
based on failure phenomenon characterized by imperfect debugging (Verma et al.
2019) and delayed S-shaped Fault Reduction Factor (FRF) (Musa 1975).

In the present study, the aim is to integrate the attribute evaluation process using
ISM with MAUT for software release planning. This helps in aggregating experts’
opinion in rating the influence of attributes on each other and thus based on the results
manage release time problem. So, in particular, the research gap identified is the
analysis ofmost influential and important attributes alongwith their interrelationships
integratedwithMAUT to determine optimal release andwarranty timeunder thefixed
budget by achieving reliability goal.

To bridge the gap the chapter fulfills following research objectives:

(1) To identify software development attributes that affect customer satisfaction
through a literature review.

(2) To analyze and interpret the significance and interrelationship among the
attributes.

(3) To develop a hierarchical structure of the identified attributes to highlight
importance level using ISM.

(4) To effectively and systematically analyze and classify the attributes based on
their driving and dependence power (MICMAC Analysis).

(5) Optimal Release and Warranty Planning based on ISM results using MAUT
such that it establishes trade-off with reliability and development cost.

The rest of the chapter is organized as;Next section discusses the detailed literature
review. Section 3 presents the proposedmethodology followed by its implementation
through numerical and result discussion in the next section. Section 5 presents the
theoretical and managerial implications drawn from the study. Finally Sect. 6 wraps
the chapter with conclusions, limitations and future scope.
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2 Research Background

In this section, we discuss the motivation behind the study through an extensive
literature review of the concepts used in this chapter.

2.1 Software Attributes

The software attributes considered in the study have been considered after a thor-
ough study of literature and practices followed in the industries. These attributes
represent the viewpoint of the developer and the factors that may influence customer
satisfaction covering the management, development and maintenance aspect of the
software products. The overall satisfaction received from the software product is
based on individual attributes of the development process (Zhang and Pham 2000).
The attributes have been collected together through extensive literature reviews and
practices followed in industries. These attributes along with its references have listed
in Table 1.

2.2 ISM

For the purpose of analyzing software development attributes that affect customer
satisfaction, we have used ISM. ISM was proposed by Warfield (1974) and it helps
in mapping the possible relations among attributes (Malone 1975; Watson 1978).
This is an interpretive method where a group of experts decides whether and how
certain elements are related.As a result, ISMpresents a hierarchical structure (Model)
highlighting the importance of attributes. Warfield and Cárdenas (1994) defined it as
amethod that clarifies the interrelations and structure of elements of the system under
study. ISM helps to present a complex system in a simple manner by identifying the
structure. The well-defined models developed from unclear models of system helps
to build theory by answering questions such as what and how.

ISM has been applied in various disciplines such as vendor selection (Mandal and
Deshmukh 1994), education quality (Mahajan et al. 2014; Sahney et al. 2010), supply
chain (Agi andNishant 2017), aircraft industry (Pitchaimuthu et al. 2019), knowledge
management (Maheshwarkar and Sohani 2019), barrier analysis for product-service
system (Kuo et al. 2010), total quality management (Talib et al. 2011), sustainable
manufacturing (Dubey et al. 2015), governance (Grover et al. 2007; Lal and Haleem
2009), etc. In the field of software, it has been used to identify and model risk
factors of software engineering projects (Samantra et al. 2016), on the attributes of
software quality and assessment of environmental factors affecting environmental
factors (Capiluppi et al. 2020; Galin 2018).
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Table 1 List of software attributes

Attribute Description References

Budget (A1) Project budget allotted by
management for software
development

Verma et al. (2020), Zmud
(1980), Nan and Harter (2009),
Tam et al. (2020)

Requirement analysis (A2) Documentation of functional
and non-functional
requirements

Chakraborty et al. (2012), Tam
et al. (2020), Zhang and Pham
(2000)

Quality/reliability (A3) The probability that software
will not fail up to given time if
used under specified conditions

AL-Badareen et al. (2011),
Kapur et al. (2011), Li and
Pham (2017), Yamada and
Tamura (2016)

Release time (A4) Time set for introducing the
product into the market based
on targets set by management
in terms of cost, reliability etc

Chatterjee and Shukla (2017),
Song et al. (2018), Huang and
Lyu (2005), Sgarbossa and
Pham (2010)

Application type (A5) Software systems are of
different types based on their
significance

Glass and Vessey (1995),
Pham (2003), Kapur et al.
(2011)

Test cases (A6) It helps developers to identify
more fault-prone areas and
accordingly depute the
resources

Yamada and Tamura (2016),
Kapur et al. (2011)

Dedicated resources (A7) It helps to deploy resources
cost-efficiently

Yamada and Tamura (2016),
Kapur et al. (2011)

Fault tolerance (A8) This is a technique that helps
prevent system failure after the
release of the product which
may occur due to some
dormant faults

Yamada and Tamura (2016),
Kapur et al. (2011), Kovalev
et al. (2020)

Post release support/back up
support (A9)

The support provided by
developers to the customer for
any failure after the release of
the product

Kimura et al. (1999), Kumar
et al. (2014), Bai and Pham
(2006), Park and Pham (2012)

2.3 MAUT for Release Planning

MAUT has been extensively used for release management of software projects. This
technique helps to maximize the overall utility of more than one objective. Each
objective is given through single-attribute utility functions (SAUF) which are further
combined to form multi-attribute utility functions (MAUF). Release planning prob-
lems can be solved using MAUT based on the analysis of attributes. Minamino et al.
(2015) used MAUT for release planning based on failure phenomenon considering
change point.

Some other works done using MAUT are by Garmabaki et al. (2012), Pachauri
et al. (2014) and many more. All these studies are based on some failure model
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characterized by some features that define the failure behavior. In this chapter, we
have considered the failure model with delayed S-shaped (Yamada et al. 1984) FRF
and error generation proposed by Aggarwal et al. (2019).

3 Proposed Methodology

Existing research has outlined the potential role of ISM in defining Interrelationships
among attributes but it has not been used in the field of software to identify hierar-
chical structure and relation among attributes of the software development process.
Based on our review of literature related to release time management by software
developers we identified there is a lack of study about the attributes that affect the
whole development process and thus satisfaction. The presence of a large number
of related variables makes the structure of the system more complex which may
not be expressed in a clear fashion. ISM is an aid to simplify this structure. On the
other hand, MAUT has been used in literature to determine optimal release time
by achieving multiple objectives at a time. The steps followed in the chapter for
fulfilling research objectives have been summarized in Fig. 1. All these steps have
been explained in detail in further subsections.

3.1 ISM Method to Study the Relationship of Software
Attributes

The steps of ISM are as followed (Talib et al. 2011; Attri et al. 2013):

Fig. 1 Proposed
methodology
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(i) Establish objectives to be fulfilled through ISM.
(ii) Define attributes based on a literature survey and industry practices. The 9

attributes derived from the literature have already been discussed in Sect. 2.
(iii) Determine contextual or relative relations among attributes through a survey

from experts. The wordings like “is influencing” or “influenced by” are used
to relate the attributes.

(iv) Form Structural Self-Interaction Matrix (SSIM) based on expert opinion
collected through surveys. Based on the responses received from survey
relations among attributes are established. The expert assigns a symbol for a
direct relationship between two attributes. Let i and j be any two attributes.
The association among attributes is represented using V (symbolizing i influ-
ences j), A (symbolizing j influences i), X (symbolizing i and j influence
each other) and O (symbolizing i and j are not associated). These symbols
form the SSIM matrix.

(v) Formulate Initial and then Final Reachability Matrix (FRM) from SSIM by
including transitive relations. The SSIM matrix is converted to the Initial
reachability matrix with ‘0’ and ‘1’ by converting the four symbols of SSIM
according to the specified rules. The rules are

• For V replace (i, j)th entry by ‘1’ and ( j, i)th by ‘0’.
• For A replace (i, j)th entry by ‘0’ and ( j, i)th by ‘1’.
• For X replace (i, j)th entry by ‘1’ and ( j, i)th also by ‘1’.
• For O replace (i, j)th and ( j, i)th entry by ‘0’.

The FRM is built after checking for any transitive links in the initial one.
A relation is transitive if i influences j and j influences k then i should
influence k.

(vi) Carry out level partitioning of the final reachability matrix.
Partitioning of attributes into different levels is done based on three types
of sets namely reachability, antecedent, and intersection set. These sets
are derived based on the influencing behaviour of attributes. Reachability
set consists of attributes that influence other attributes including itself.
Antecedent sets are attributes are influenced by other attributes including
it also while the intersection of attributes in these two sets is categorized
under intersection set. If the reachability set is the same as the intersection
set than that attribute is levelled as level ‘I’. Then all the attributes in level
‘I’ are extracted and the iterative process is continued till all attributes have
achieved their level. These levels help to develop a hierarchical level of these
attributes.

(vii) Develop the ISM model by removing the transitive links from FRM to give
a pictorial structure.
Based on the FRM and level partitioning a model is developed by removing
the transitive links for simplicity. The top-level of the model consists of
attributes extracted at first level, similarly, the levelling goes on.

(viii) Analyze the Model established.
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3.2 MICMAC Analysis

MICMAC Analysis (Attri et al. 2013) is used to determine the power of attributes in
either influencing other attributes or getting influenced byother attributes. This proce-
dure analyses attribute for indirect classification based on the driving and dependence
power of attributes. Here driving means how influential is the attribute and depen-
dence refer to influenced attribute. The values of driving power and dependence
power are calculated from the FRM. Adding vertical values gives driving power
while horizontal gives dependence power of the corresponding attribute. Plotting the
values divide attributes into four segments (quadrant) namely autonomous, Linkage,
Dependent and Independent. These quadrants can be explained as follows:

• Quadrant I (Autonomous): Low driving and dependence power i.e. they have
weak links and act as detached with other attributes but have a strong connection
with few strong attributes.

• Quadrant II (Dependent): Low driving and high dependence power i.e. these
attributes are easily influenced by other attributes.

• Quadrant III (Linkage): High driving and dependence power i.e. these attributes
are very influential as well as get influenced if there is any change in these
attributes.

• Quadrant IV (Independent): High driving and low dependence power i.e. they
hardly ever get influenced by other attributes.

3.3 MAUT to Determine Optimal Release and Warranty Time

This technique has a strong theoretical and practical foundation based on expected
utility theory. Also, it provides feasibility to consider various attributes. Li et al.
(2011)wasfirst tomanage release timeproblemusingMAUT in software. The critical
decision is the determination of optimal release and warranty time to create a trade-
off between the development costs, reliability level without losing any opportunity
in the market. So budget and reliability are considered as two attributes for MAUT.
Multiple objectives are expressed by SAUF which are categorized by the worst and
best case. For example here for our problem best achievable reliability is 0.99 and
worst would be below 0.60. Similarly, for cost best would be to develop the software
by utilizing 50% of the budget and the worst case would be to utilize the whole
budget.

The changes in reliability performance can be measured through the Software
Reliability Growth Model (SRGM) that quantitatively evaluates the reliability by
analyzing the failure behavior of the software system. Here, we have considered an
SRGM with delayed S-shaped Fault Reduction Factor and imperfect debugging i.e.
the model considers that the number of faults experienced may not be the same as
the number of faults removed and error constant increases at a constant rate. m(t) is
theMean Value Function (MVF) for the cumulative number of faults removed which
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has been derived by solving differential Eq. (1) (Aggarwal et al. 2019).

dm(t)

dt
= r(t)(a(t) − m(t)) (1)

where

(t) = r ∗ b(t), b(t) = b2t

1 + bt
, and a(t) = a + αm(t) (2)

Solving the above differential equation (Eq. 1) using (2) and applying initial
condition m(0) = 0, we get

m(t) = a

1 − α

(
1 − (1 + bt)r(1−α)e−btr(1−α)

)
(3)

where, a(t) represents initial fault content,
r(t) is a fault detection rate,
b(t) is FRF.
and r is the proportionality constant.
Based on our problem the firm has to maximize reliability and minimize

development cost. So,

Max R(t) = em(t+x)−m(t) (4)

Min
C(t)

CB
(5)

where, CB is the Budget for the software project and C(t) the expected software
development cost is given by,

Expected Development Cost = Testing Cost + Warranty Cost + Operational
Phase Cost

C(T,W ) = C1T + C2m(T ) + C3W + C4(m(T + W ) − m(T )) + C5(m(∞)

− m(T + W )) (6)

where,
C1 = Fixed Testing Cost
C2 = Fault removal cost during Testing
C3 = Fixed Warranty Cost
C4 = Fault removal cost during Warranty
C5 = Fault removal cost during the Operational Phase.
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Before developing the MAUF in the additive linear form, SAUF is developed
for each attribute of MAUT as shown in Eq. (7). The two SAUF are for cost and
reliability respectively.

U (R) = R(t) − Rmin

Rmax − Rmin
and U (C) = Cmin − C(t)

Cmin − Cmax
(7)

U (R) represents SAUF for reliability attribute where Rmin ≤ R(t) ≤ Rmax and
U (C) represents cost SAUF where Cmax ≤ C(t) ≤ Cmin.

The two objectives of minimizing development cost and maximizing reliability
have been combined by multiplying cost-utility with ‘−’ sign (Li et al. 2011). By
maximizing MAUF the optimal release time and warranty time are obtained. MAUF
is given by Eq. (8).

Max U (R,C) = wrU (R) − wcU (C) (8)

where, wr + wc = 1, wr is reliability weight and wc is the weight assigned to the
cost attribute.

Overall MAUT can be summarized into the following four steps (Dyer 2005; Von
Winterfeldt and Fischer 1975):

(i) Select Attributes that have to be either maximized or minimized.
(ii) SAUF for each attribute is developed (Eq. 7).
(iii) Weights assigned to attributes are determined. It can either be done through

the lottery system or by experts.
(iv) Apply the additive approach to form MAUF (Eq. 8)
(v) Solve MAUT using a optimization technique.

4 Empirical Illustration and Result Discussion

The objective of the study is to develop a hierarchal model of software development
attributes that highlights the interrelationships. Using the inferences further a multi
optimizationproblem is formulatedusingMAUTfor determinationof optimal release
and optimal warranty time.

4.1 ISM

As discussed in Sect. 3.1, nine attributes of the software development process were
identified and used for ISM. Five experts from IT firms with more than 10 years
of experience were considered for finalizing the SSIM matrix. If 3 or more experts
gave a similar response then it was finalized but if responses were more scattered it
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Table 2 SSIM matrix

Attribute A1 A2 A3 A4 A5 A6 A7 A8 A9

A1 1 A X A A A A A A

A2 1 O O A O O O O

A3 1 X O A A A V

A4 1 A O A O X

A5 1 V V O V

A6 1 O O O

A7 1 O V

A8 1 V

A9 1

was given ‘O’ relation. The SSIM matrix finalized for further computation is given
in Table 2. The meaning of the symbols is as discussed in Sect. 3.1 whereas Ai

represents the ith attribute.
Table 3 shows the initial reachability matrix obtained from SSIM (Table 2). This

shows the relation among elements in binary form. The procedure for replacing the
values has been explained in Sect. 3.1. Then final reachability matrix (Table 4) is
obtained by incorporating transitive relations of attributes. The asterisk in the Table
4 represents the values that were initially not present in the Initial reachability matrix
and were added later based on the methodology discussed in Sect. 3. The table also
shows the driving power and dependence power of each attribute which will be used
for dividing attributes into different segments (MICMAC analysis).

After getting the FRM next step is to partition the attributes into different levels.
The three iterations of the process have been shown in Tables 5, 6 and 7 respectively.
From Table 5 we see that attribute A1, A3, A4 and A9 i.e. Budget, Quality/Reliability,
Release time and Post back up support are categorized into level 1. These attributes

Table 3 Initial reachability matrix

Attribute A1 A2 A3 A4 A5 A6 A7 A8 A9

A1 1 0 1 0 0 0 0 0 0

A2 1 1 0 0 0 0 0 0 0

A3 1 0 1 1 0 0 0 0 1

A4 1 0 1 1 0 0 0 0 1

A5 1 1 0 1 1 1 1 0 1

A6 1 0 1 0 0 1 0 0 0

A7 1 0 1 1 0 0 1 0 1

A8 1 0 1 0 0 0 0 1 1

A9 1 0 0 1 0 0 0 0 1
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Table 4 Final reachability matrix

Attribute A1 A2 A3 A4 A5 A6 A7 A8 A9 Driving power

A1 1 0 1 1∗ 0 0 0 0 1∗ 4

A2 1 1 0 0 0 0 0 0 0 2

A3 1 0 1 1 0 0 0 0 1 4

A4 1 0 1 1 0 0 0 0 1 4

A5 1 1 1∗ 1 1 1 1 0 1 8

A6 1 0 1 0 0 1 0 0 0 3

A7 1 0 1 1 0 0 1 0 1 5

A8 1 0 1 0 0 0 0 1 1 4

A9 1 0 1∗ 1 0 0 0 0 1 4

Dependence 9 2 8 6 1 2 2 1 7

Table 5 Iteration 1

Attribute Reachability set Antecedent set Interaction
set

Level

A1 A1,A3,A4,A9 A1,A2,A3,A4,A5,A6,A7,A8, A9 A1,A3,A4,A9 I

A2 A1,A2 A2,A5 A2

A3 A1,A3,A4,A9 A1,A3,A4,A5,A6,A7,A8, A9 A1,A3,A4,A9 I

A4 A1,A3,A4,A9 A1,A3,A4,A5,A7,A9 A1,A3,A4,A9 I

A5 A1,A2,A3,A4,A5,A6,A7,A9 A5 A5

A6 A1,A3,A6 A5,A6 A6

A7 A1,A3,A4,A7,A9 A5,A7 A7

A8 A1,A3,A8,A9 A8 A8

A9 A1,A3, A4, A9 A1,A3,A4,A5,A7,A8, A9 A1,A3,A4,A9 I

Table 6 Iteration 2

Attribute Reachability set Antecedent set Interaction set Level

A2 A2 A2,A5 A2 II

A5 A2,A5,A6,A7 A5 A5

A6 A6 A5,A6 A6 II

A7 A7 A5,A7 A7 II

A8 A8 A8 A8 II

Table 7 Iteration 3

Attribute Reachability set Antecedent set Interaction set Level

A5 A5 A5 A5 III
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are very much influenced by all other attributes and come under the category of
dependent variables (Fig. 3). Also, they form the top level of the ISM hierarchy.

Table 6 shows that attribute A2, A6, A7 and A8 i.e. requirement analysis, test
cases, dedicated resources and fault tolerance lie at the second level. This forms the
middle level of the ISM hierarchy. These variables are neither very much influenced
by other attributes or influence others. Similarly, Table 7 shows A5 i.e. application
type is at the lowest level and thus is most important in determining other attributes.
Table 8 summarizes levels for all the attributes.

Figure 2 represents the ISMmodel developed from partitioned levels and the final

Table 8 Summary of level partitioning

Attribute Reachability set Antecedent set Interaction
set

Level

A1 A1,A3,A4,A9 A1,A2,A3,A4,A5,A6,A7,A8, A9 A1,A3,A4,A9 I

A2 A1,A2 A2,A5 A2 II

A3 A1,A3,A4,A9 A1,A3,A4,A5,A6,A7,A8, A9 A1,A3,A4,A9 I

A4 A1,A3,A4,A9 A1,A3,A4,A5,A7,A9 A1,A3,A4,A9 I

A5 A1,A2,A3,A4,A5,A6,A7,A9 A5 A5 III

A6 A1,A3,A6 A5,A6 A6 II

A7 A1,A3,A4,A7,A9 A5,A7 A7 II

A8 A1,A3,A8,A9 A8 A8 II

A9 A1,A3, A4, A9 A1,A3,A4,A5,A7,A8, A9 A1,A3,A4,A9 I

Fig. 2 ISM based hierarchical model of software development attributes
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reachability matrix after removing transitive links. This model shows the interrela-
tionships and hierarchy of attributes. The arrow in the model implies ‘influences’.
The 9 attributes were divided into three levels indicating that attribute at the third
level (Application type) is the largest influencer. This is so because all the develop-
ment decisions are taken after considering the type of application to be developed.
For example, the strategy and resource requirements for aircraft are different from
those of the traffic signals. So A5 influences the middle and top levels. The budget
is influenced if developers want to improve the quality or reliability of the software
system. It is also influenced if the developer decides to test the software for a longer
duration. Further, it can be seen that back support also affects the budget. All these
relations can clearly be identified through ISM.

4.2 MICMAC Analysis

Figure 3 presents the classification of attributes based on driving power and depen-
dence power (Table 4). This helps in the indirect classification of attributes. Two
attributes application type and dedicated resources are classified as independent vari-
ables. There is no linkage attribute i.e. all the attributes are stable. Three attributes
namely fault tolerance; test cases and requirement analysis are autonomous vari-
ables. These attributes have both weak driving and dependence power and do not
have much influence on the system. Then variables with high dependence power are
placed into the fourth cluster. These are dependent on each of the attributes of the
system.

Fig. 3 Driving power and dependence graph (MICMAC analysis)
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The hierarchy (Fig. 2) suggests that Budget, Quality/Reliability, Release time and
post-release support (back up support) provided to customers by developers is highly
influenced by other attributes of the development process. Hence it is very crucial for
developers to monitor the resources (in monetary terms) consumed in achieving an
acceptable level of reliability by performing testing for the optimal duration. These
two, in turn, define the optimal duration of back support provided after the sale of
the product. By optimal, we mean that the time is set such that it neither makes
developers suffer nor it makes customers suffer due to a bad product.

4.3 MAUT

Next, we formulate an optimization problem to determine optimal release time and
warranty time with the objective of minimizing development cost and maximizing
reliability using MAUT (Eq. 8). After incorporating management restrictions into
Eq. (7) for cost and reliability attributes we get Eq. 9. Management seeks a minimum
reliability of 60% and maximum to be 99% when they are supposed to spend at least
50% of the allotted budget. So, replacing Rmin = 0.6, Rmax = 0.99, Cmin = 0.5 and
Cmax = 1 in Eq. (7). We get,

U (R) = R(t) − 0.6

0.99 − 0.6
and U (C) = 0.5 − C(t)

0.5 − 1
(9)

Solving Eq. (9) We get,
U (R) = 100R(t)

39 and U (C) = 2C(t) − 1

where R(t) and C(t) is given by Eqs. (4), (5) and (6) respectively.
Further, the weights for both the objective is taken as 0.5 i.e. wr = 0.5 and

wc = 0.5 because we have only two attributes here. So the MAUF is given as;

Max U (R,C) = 0.5 ×U (R) − 0.5 ×U (C) (10)

The m(t) considered for the study is given by Eq. (3). The estimated parameter
values ofm(t) on fault dataset of Tandem Computers (Wood 1996) are a = 108.554,
b = 0.654, α = 0.011 and r = 0.263. These values are replaced in MAUF (Eq. 10)
to solve the optimization problem. The cost values assumed are as follows (Eq. 6):

C1 = 50,C2 = 130,C3 = 70,C4 = 230,C5 = 3000

Solving this problem in MATLAB gives optimal release time to be of 39 and
32 weeks of warranty with the reliability of 82.75. The process was conducted using
1.8498 × 104 units of cost. The results of optimization using MAUT have been
further exemplified using the Cost curve (Fig. 4), the Reliability curve (Fig. 5) and
the Utility function curve (Fig. 6). These figures suggest that an increase in testing
time improves reliability and vice versa but results in more cost.



126 V. Verma et al.

Fig. 4 Behaviour of cost function (Eq. 6)

Fig. 5 Behaviour of reliability function (Eq. 4)

The reliability of the software system tends to improvewith time. If the developers
decide to spend more on testing then the reliability of the product will increase but
it will delay its introduction in the market. Therefore developers set target reliability
to achieve within an optimal testing period that helps them avoid any kind of losses.
These losses could be in monetary terms or brand image.
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Fig. 6 Utility function behaviour (Eq. 10)

In this example problem we have assumed equal importance for the objectives.
But this may not be the case in reality so, we check for the sensitivity of the weights
assigned to the two objectives of minimizing cost and maximizing reliability. The
sensitivity results are shown in Table 9.

Following observations can be made from Table 9:

(i) The utility value helps to represent the preference relationship among cost
and reliability.

(ii) As the testing time increases the numerical value of utility decreases.
(iii) Testing time is also visibly effecting the optimal warranty time. Software

tested for longer durations is released with less warranty time period.

Table 9 Sensitivity analysis results

wr wc T (Weeks) W (Weeks) R(t) Development Cost (×104) U (R,C)

0.1 0.9 37.002 33.92 76.93 1.8545 −7.817

0.2 0.8 37.86 33.10 79.61 1.8525 −6.9343

0.3 0.7 38.052 32.42 80.17 1.8486 −6.0688

0.4 0.6 38.87 32.23 82.41 1.8508 −5.1881

0.5 0.5 39 32 82.75 1.8498 −4.3222

0.6 0.4 39.29 31.99 83.47 1.8503 −3.4543

0.7 0.3 40.012 31.87 85.17 1.8533 −2.5856

0.8 0.2 40.89 31.77 87.01 1.8566 −1.7203

0.9 0.1 41 31.67 87.23 1.8564 −0.85860
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(iv) Above point can be supported because longer testing durations lead to reliable
product. It can be observed that reliability has direct relation with the testing
time.

(v) As weight assigned to cost objective increases, the optimal testing time
duration decreases and vice-versa.

(vi) Increase in weight of reliability objective improves the reliability and vice-
versa.

5 Implications

5.1 Theoretical Implications

Many theoretical aspects can be highlighted from the study. The hierarchical model
developed in the study establishes the importance and relations among software
attributes and factors that affect customer satisfaction. These attributes have been
derived from past studies and industrial practices (Capiluppi et al. 2020). The
attributes (Table 1) such as budget allocated for software development process,
requirement analysis, quality/reliability, type of application being developed, test
cases designed to highlight more fault prone areas, resources deployed for various
activities, fault tolerance of the system and warranty support provided by the devel-
oper has been used to develop hierarchical model based on their relations and
MICMACAnalysis (Glass and Vessey 1995; Verma et al. 2020; Yamada and Tamura
2016). These relations were concluded after obtaining data form some IT experts.
The results are in line with the past researches. ISM tool can be backed up for
its use in various studies because it helps to break complex structure of elements
involved in a process into layers. These layers depict connections among attributes
and their importance. The hierarchical model developed using ISM clearly shows
that all decisions are based on type of application being developed.

Further, MICMAC analysis determined the attribute power in influencing and
getting influenced by other attributes. The critical decisions regarding software
release and warranty duration by creating trade-off between the development cost
and reliability level without losing any market opportunities is the ultimate objective
of software development firms. Hence MAUT helps to maximize the software utility
based on single utility functions of reliability and cost (Pachauri et al. 2014). The
results are in correspondence to various studies related to determination of release
time using MAUT (Garmabaki et al. 2012; Minamino et al. 2015).

Sensitivity analysis on the weights assigned to SAUF of the objective function
showshowprioritising reliability objective or cost objective impacts the results. Firms
can analyse these results for making optimistic decisions of software development.
This is so because if more priority is given to reliability then developers can improve
reliability but it will lead to more cost and if cost is given more priority then devel-
opers may deliver a less quality software product. So, weights should be assigned
consciously based on type of application being developed and clients’ requirements.
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5.2 Managerial Implications

The study conducted in this chapter provides deep insights to software developers and
managers of software development firms. Understanding relation among attributes
of software development process that affects customer satisfaction is very crucial for
management team to plan for future strategies that will help gain monetary benefits.
The hierarchical structure derived using ISMrepresents interrelationships of software
development attributes (Agi and Nishant 2017; Attri et al. 2013; Maheshwarkar and
Sohani 2019; Pitchaimuthu et al. 2019). Understanding of attribute relations helps the
management to decide how much time, effort and cost has to be utilised or should be
utilised for various tasks during the software development process. These relations
has been further clarified and supported by MICMAC analysis which explains their
dependence. It shows which attributes are more influencing and which are getting
influenced by other attributes.

The application of these two tools ISMandMICMACanalysis on the data obtained
from experts suggests that all the attributes are influenced by the type of application
being developed. All the decisions taken for development is based on application
type. Same results can be observed from driving power and dependence power graph
of attributes. This graph was result of the MICMAC analysis. Release and Warranty
planning, Budget and Reliability are fully dependent on other attributes and are
influenced by all aspects of the software development process whereas attributes
such as requirement analysis, test cases and fault tolerance are autonomous variables.
These variables affect other variables in the model are also affected by application
type.

Further in the study utility of software has been determined based on reliability
and development cost attributes. Optimal release time of the softwarewas determined
to be 39 weeks with 32 weeks of optimal warranty period. Reliability of the software
system after testing was of 83.19. The whole process consumed 1.8498 ×104 units
of cost. The various curves plotted namely utility, reliability and cost curves suggest
that increase in testing time improves reliability but at same time leads to increase in
cost. Also this decision delays the introduction of the product into the market which
may make it obsolete and tend to heavy losses for the firm. Sensitivity analysis on
the utility weights of cost and reliability shows how preference relationship among
cost and reliability affects testing time, warranty time and software utility (Table 9).

Developers need to prevent software development process from any kind of crisis.
A crisis can be explained as developers’ incompetence to develop complete and
quality software. This can occur if development projects are running over budget
or over time, and if there is lack of resources and if software is not able to handle
complex instructions. Hence it is crucial for developers to maximize software utility
and determine optimal release time, warranty time and development cost.
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6 Conclusions, Limitations and Future Scope

Understanding the behaviour of software attributes is important to plan future
achievements because software products tend to become obsolete with the change
in technology and change in customer requirements. Hence it is crucial for software
firms to understand the behavior of development attributes. This helps in designing
strategies so that firms have monetary benefits along with the satisfaction of their
customers. Hence, ISM has been introduced as a method to describe the interre-
lationships between the attributes of software product and divide these attributes
under various levels that represents the level of importance. The attributes that were
observed to be most influenced/affected by other attributes were further taken into
consideration to formulate the release problem. This aids the software engineers to
take decisions regarding the attributes that needs to be focussed more than others
for business benefits. The model helps management understand these attributes and
make wise release decisions and hence control the customer satisfaction.

The main contributions of the chapter are:

(i) The study identified 9 attributes such as Budget, requirement analysis,
Release time, application type, etc. which after the development process of
software product hence impact the customer perception about the product.

(ii) The ISM model depicts a hierarchy that highlights all relations among the
attributes.

(iii) These attributes were classified into different levels of importance where
application type resulted to be the most influential attribute.

(iv) The top-level of ISM hierarchy implies that it is influenced by the other two
levels and it can be determined by monitoring the attributes at those levels.

(v) MICMAC analysis helped to categorize attributes into different quadrants
based on their driving and dependence power. This helped to understand the
role of each attribute in the development process.

(vi) The firm has to determine a release and warranty time under a fixed budget
of project development by achieving a considerable amount of reliability.
Warranty for a product is dependent on its reliability. Amore reliable product
is provided with back support for a small duration.

(vii) MAUT was applied to form the multi-objective optimization problem and
then solved in MATLAB.

(viii) The optimal release time resulted to be of 39 weeks and optimal warranty
time came out to be of 32 weeks. For example if we consider that a computer
software is being developed then developers need to decide the release time
andwarranty they need to provide. In this case firm decide to test the software
for 39weeks and then release it in to themarket with 32weeks of post release
support. In this period developers take the responsibility of correcting the
faults free of cost.

(ix) The product was able to achieve the reliability of 82.75 using 1.8498 × 104

units of budget.
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(x) Sensitivity Analysis results reveal that there is significant effect of weight
assigned to a particular objective.

Overall it can be said that this chapter explores the most influential software
attributes and their interrelationship using ISM and MAUT helps in the release as
well as warranty management for a software product.

Although ISM has been extensively applied in many disciplines, there are some
limitations to using this technique. According to Watson (1978), ISM is inflexible in
nature because attributes cannot be added, deleted or redefined during the process. To
accommodate certain changes it can be repeated for individual’s which will involve
more cost and time or the process has to be started again after modifications.

There are some problems which can be tackled by extending the present work.
This approach does not assignweights to the attributes. It can be done using anymulti-
criteria decisions making approach. The ISMmodel obtained can be validated using
Structural Equation Modelling. The MAUT considers only two attributes namely
cost and reliability. More attributes can be added after studying the literature. Also,
the weights assigned to these attributes in MAUT can vary and may not be equal.

References

Aggarwal AG, Gandhi N, Verma V, Tandon A (2019) Multi-release software reliability growth
assessment: an approach incorporating fault reduction factor and imperfect debugging. Int J
Math Oper Res 15(4):446–463. https://doi.org/10.1504/IJMOR.2019.10016194

Agi MA, Nishant R (2017) Understanding influential factors on implementing green supply chain
management practices: an interpretive structural modelling analysis. J Environ Manag 188:351–
363

AL-BadareenAB, SelamatMH, JabarMA,Din J, Turaev S,Malaysia S (2011)Users’ perspective of
software quality. In: The 10thWSEAS international conference on software engineering, parallel
and distributed systems (SEPADS 2011). pp 84–89

Attri R, Dev N, Sharma V (2013) Interpretive structural modelling (ISM) approach: an overview.
Res J Manag Sci 2319:1171

Bai J, Pham H (2006) Cost analysis on renewable full-service warranties for multi-component
systems. Eur J Oper Res 168(2):492–508

Blischke W (2019) Warranty cost analysis. CRC Press
Capiluppi A,AjienkaN, Counsell S (2020) The effect ofmultiple developers on structural attributes:
a study based on java software. J Syst Softw 110593

Chakraborty A, Baowaly MK, Arefin A, Bahar AN (2012) The role of requirement engineering in
software development life cycle. J Emerg Trends Comput Inf Sci 3(5):723–729

Chatterjee S, Shukla A (2017) An ideal software release policy for an improved software reliability
growth model incorporating imperfect debugging with fault removal efficiency and change point.
Asia-Pacific J Oper Res 34(03):1740017

Dubey R, Gunasekaran A, Sushil ST (2015) Building theory of sustainable manufacturing using
total interpretive structural modelling. Int J Syst Sci Oper Logist 2(4):231–247

Dyer JS (2005) MAUT—multiattribute utility theory. In: Multiple criteria decision analysis: state
of the art surveys. Springer, pp 265–292

Galin D (2018) Software quality factors (attributes)

https://doi.org/10.1504/IJMOR.2019.10016194


132 V. Verma et al.

Garmabaki AH, Aggarwal AG, Kapur P, Yadavali V (2012) Modeling two-dimensional software
multi-upgradation and related release problem (a multi-attribute utility approach). Int J Reliab
Qual Saf Eng 19(03):1250012

Glass RL, Vessey I (1995) Contemporary application-domain taxonomies. IEEE Softw 12(4):63–76
Grover D, Shankar R, Khurana A (2007) An interpretive structural model of corporate governance.
Int J Bus Gov Ethics 3(4):446–460

Huang C-Y, Lyu MR (2005) Optimal release time for software systems considering cost, testing-
effort, and test efficiency. IEEE Trans Reliab 54(4):583–591

Kapur P, Pham H, Gupta A, Jha P (2011) Software reliability assessment with OR applications.
Springer

Kimura M, Toyota T, Yamada S (1999) Economic analysis of software release problems with
warranty cost and reliability requirement. Reliab Eng Syst Saf 66(1):49–55

Kovalev I, Kovalev D, Chefonov V, Testoedvov N, Koltyshev A, Krivogornitsyn A (2020) The
development and reliability analysis environment of fault-tolerance multiversion software. In:
IOP conference series: materials science and engineering, 2020, vol 1. IOP Publishing, p 012033

Kumar V, Kapur P, Shrivastava A, Sharma R (2014) Optimal strategies for price-warranty decision
model of software product with dynamic production cost. In: 3rd International conference on
reliability, infocom technologies andoptimization (ICRITO) (Trends and future directions). IEEE,
pp 1–6

Kuo TC,Ma H-Y, Huang SH, Hu AH, Huang CS (2010) Barrier analysis for product service system
using interpretive structural model. Int J Adv Manuf Technol 49(1–4):407–417

Lal R, Haleem A (2009) A structural modelling for e-governance service delivery in rural India. Int
J Electron Gov 2(1):3–21

Li Q, Pham H (2017) NHPP software reliability model considering the uncertainty of operating
environments with imperfect debugging and testing coverage. Appl Math Model 51:68–85

Li X, Li YF, XieM,Ng SH (2011) Reliability analysis and optimal version-updating for open source
software. Inf Softw Technol 53(9):929–936

Mahajan R, Agrawal R, Sharma V, Nangia V (2014) Factors affecting quality of management
education in India. Int J Educ Manag

Maheshwarkar M, Sohani N (2019) Knowledge management evaluation criteria for industries:
identification and interpretive structural modelling. Int J Knowl Manag Stud 10(3):227–250

Malone DW (1975) An introduction to the application of interpretive structural modeling. Proc
IEEE 63(3):397–404

Mandal A, Deshmukh S (1994) Vendor selection using interpretive structural modelling (ISM). Int
J Oper Prod Manag

Minamino Y, Inoue S, Yamada S (2015) Multi-attribute utility theory for estimation of optimal
release time and change-point. Int J Reliab Qual Saf Eng 22(04):1550019

Musa JD (1975) A theory of software reliability and its application. IEEE Trans Softw Eng 3:312–
327

Nan N, Harter DE (2009) Impact of budget and schedule pressure on software development cycle
time and effort. IEEE Trans Softw Eng 35(5):624–637

Pachauri B, Kumar A, Dhar J (2014) Software reliability growth modeling with dynamic faults and
release time optimization using GA and MAUT. Appl Math Comput 242:500–509

Park M, Pham H (2010) Warranty cost analyses using quasi-renewal processes for multicomponent
systems. IEEE Trans Syst Man Cyber Part A Syst Humans 40(6):1329–1340

Park M, Pham H (2012) A new warranty policy with failure times and warranty servicing times.
IEEE Trans Reliab 61(3):822–831

Pham H (1996) A software cost model with imperfect debugging, random life cycle and penalty
cost. Int J Syst Sci 27(5):455–463

Pham H (2003) Software reliability and cost models: perspectives, comparison, and practice. Eur J
Oper Res 149(3):475–489

Pham H (2007) System software reliability. Springer Science & Business Media



Understanding Interactions Among Software Development Attributes … 133

Pham H, Zhang X (1999) Software release policies with gain in reliability justifying the costs. Ann
Softw Eng 8(1–4):147–166

Pham H, Zhang X (1999) A software cost model with warranty and risk costs. IEEE Trans Comput
48(1):71–75

Pitchaimuthu S, Thakkar JJ, Gopal P (2019) Modelling of risk factors for defence aircraft industry
using interpretive structural modelling, interpretive ranking process and system dynamics. Meas
Bus Excel

Sahney S, Banwet D, Karunes S (2010) Quality framework in education through application of
interpretive structural modeling. TQM J

Samantra C, Datta S, Mahapatra SS, Debata BR (2016) Interpretive structural modelling of critical
risk factors in software engineering project. Benchmarking Int J

Sgarbossa F, Pham H (2010) A cost analysis of systems subject to random field environments and
reliability. IEEE Trans Syst Man Cybern Part C (Appl Rev) 40(4):429–437

SongKY,Chang IH, PhamH (2018)Optimal release time and sensitivity analysis using a newNHPP
software reliability model with probability of fault removal subject to operating environments.
Appl Sci 8(5):714

Talib F, Rahman Z, Qureshi M (2011) An interpretive structural modelling (ISM) approach for
modelling the practices of total quality management in service sector. Int J Model Oper Manag
1(3):223–250

Tam C, da Costa Moura EJ, Oliveira T, Varajão J (2020) The factors influencing the success of
on-going agile software development projects. Int J Project Manag 38(3):165–176

Verma V, Anand S, Aggarwal AG (2019) Software warranty cost optimization under imperfect
debugging. Int J Qual Reliab Manag

Verma V, Neha N, Aggarwal AG (2020) Software release planning using grey wolf optimizer. In:
Soft computing methods for system dependability. IGI Global, pp 1–44

Von Winterfeldt D, Fischer GW (1975) Multi-attribute utility theory: models and assessment
procedures. In: Utility, probability, and human decision making. Springer, pp 47–85

Warfield JN (1974) Developing interconnection matrices in structural modeling. IEEE Trans Syst
Man Cybern 1:81–87

Warfield JN, Cárdenas AR (1994) A handbook of interactive management. Iowa State University
Press Ames

Watson RH (1978) Interpretive structural modeling—a useful tool for technology assessment?
Technol Forecast Soc Chang 11(2):165–185

Wood A (1996) Predicting software reliability. Computer 29(11):69–77
Yamada S, Tamura Y (2016) Software reliability. In: OSS reliability measurement and assessment.
Springer, Switzerland

Yamada S, Ohba M, Osaki S (1984) S-shaped software reliability growth models and their
applications. IEEE Trans Reliab 33(4):289–292

Zhang X, Pham H (1998) A software cost model with error removal times and risk costs. Int J Syst
Sci 29(4):435–442

ZhangX, PhamH (2000)An analysis of factors affecting software reliability. J Syst Softw 50(1):43–
56

Zmud RW (1980) Management of large software development efforts. MISQ 45–55



Software Reliability Modeling
and Assessment Integrating Time
Dependent Fault Reduction Factor
in Random Environment

Nidhi Nijhawan and Vikas Dhaka

Abstract Growing demand of software in all application domains have led to the
rising expectations and requirement formore reliable software systems fromuser end.
Paradoxically, while achieving the reliability goals, the complexity of software turn
to be very high and consequently it becomes critical to have influential approaches
which evaluate reliability measures accurately. Based on distinct set of assumptions,
a very large number of software reliability growth models (SRGMs) have already
been developed over past few decades and still ongoing to evaluate various reliability
metrics. In this chapter, we derive a software reliability model with the key consider-
ation that the operating environment of software is unalike from the controlled testing
environment and is accountable to affect software execution and its reliability signif-
icantly. To deal with randomness of operating environment and variations of fault
detection rate subject to time we consider time dependent fault reduction factor in
random environment. In addition, to suggest release time of the software, cost and
reliability criteria are discussed and illustrated with numerical example. To conduct
the comprehensive evaluation of goodness of fit, we worked out several selection
criteria and comparative analysis with the existing models and it is worth noting that
results offered by the proposed model are dependable and highly consistent with the
observations procured from the real life data sets.
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1 Introduction

The chapter describes software reliabilitymodel formulation considering time depen-
dent fault reduction factor in random environment which help in reliability assess-
ment. The chapter presents parameter estimation of the formulated model based on
actual data sets followed by the discussion of the findings. Further, the performance
analysis on the basis of number of model selection criteria and comparison with
existing work is presented in the chapter. The chapter also discusses optimal release
time schedule for the software and is illustrated with numerical example.

With the surge in the requirement of software in every direction, software firms
work rigorously to improve quality and to provide reliable products to their users for
their retention in the competitive market but in practice the likelihood of software
failures cannot be avoided and ignored. Software glitches or bugs may be reported
when a system fails to perform as anticipated which may end up with complains
for unreliable software and in turn with the loss of efforts, money and reputation
of the organization. Therefore, reliability has always been the major concern for its
developers, users and researchers. For many years software reliability modeling has
proved to be an efficient approach for evaluating key metrics such as number of left
over faults which may cause failures, rate with which faults are detected or failures
are occurred, cost, release time and reliability of software.

2 Literature Survey

In literature, abundance of models have been proposed and among those the Non
Homogeneous Poisson Process (NHPP)models arewidely used and have contributed
immensely in quantifying reliability improvement (Goel and Okumoto 1979; Ohba
1984; Xie 1991; Musa 2004; Pham 2006; Kapur et al. 2011). Some authors have
derived NHPP based SRGMs which are efficient to address realistic concept such
as time delay between fault detection and its correction while some have incorpo-
rated fault reduction factor in their studies to state the relationship between number
of number of faults detected and the number of faults corrected (Xie et al. 2007;
Lin 2011; Peng et al. 2014). It is commonly noted that SRGMs are worked out
on testing data and then are deployed to predict failures and reliability in the field
assuming environment in the field and environment during the development of the
software are of similar kind. Nevertheless, few researchers have considered uncer-
tainty of the operating environment in their work to consider issues which may
affect software failure rate and the reliability significantly. In recent past, an SRGM
is proposed which outlined on uncertainty of operating environments with testing
coverage (Pham 2013). Further, few NHPP models have been derived subject to
random environments while considering distinct distributions for fault detection rate
within themodeling process (Pham 2014, 2016). Of late, some authors have extended
the study to present models which account for uncertainty of operating environments
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and discussed optimal release time and predictive analysis assuming various fault
detection rate function (Song et al. 2017a, b, 2019).

In the present study, we propose an NHPP based new modeling approach which
uniquely integrates time dependent FRF with random environments to predict reli-
ability growth and other dynamic measures which are subject to time and explic-
itly affected by uncertainty inherent in operating environment. The framework of
proposedmodel is attempted to incorporate both the realistic subjects simultaneously-
time variant FRF and random field environment which have not been captured
together in any particular model so far. The present work is intended to investi-
gate repercussions emanated from the variant concerns which may be enhanced with
time and environmental factors and their influence on reliability growth.

3 Modeling Framework

In this section we discuss the basic concepts and ground work which are required in
building the models followed by the model development.

3.1 Background Work

Here, we present the brief details regarding the fault reduction factor and random
environment which are key aspects of the present work.

• FRF: Fault Reduction Factor

FRF may be regarded as one of the most dominant parameter in appraising software
reliability growth and is defined as cumulative number of faults corrected in propor-
tion to that of the failures occurred by time t (Musa et al. 1987). Here it is denoted
as B(t) and expressed mathematically as:

B(t) = mc(t)

md (t)
(1)

where mc(t) denotes the cumulative number of faults corrected while md (t) denotes
the cumulative number of faults detected. Alternatively Eq. (1) may be written as:

md (t) = mc(t)

B(t)
(2)

Over recent years few authors have explored different patterns an FRF may take
up and considered them in their modeling scheme to characterize the impact of
some crucial factors namely time lag, defect density, test case coverage, imperfect
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debugging, dynamic resources allocation strategy, fault dependencies etc. on software
debugging process. Following that, some authors used constant FRF in the model
formulation under imperfect debugging (Jain et al. 2014), some have considered
an S-shaped FRF in their modeling approach with perfect and imperfect debugging
(Pachauri et al. 2015) while some of them have discussed different trends for FRF
such as constant, increasing or decreasing as per the influential degrees of affecting
factors and obtained distinct forms of failure intensity function (Hsu et al. 2011).

In practice, curves depicting FRF may not necessarily follow overall constant,
increasing or decreasing trend but the amalgamation of different trends may be seen
oftentimes. In some cases wemay come across with many ups and downs in the same
curve whereas in other cases curve goes down first and then rises up or vice versa. To
demonstrate such conflicting combination of trends for FRF, we plotted few curves
using randomly chosen real data sets available in literature (Aggarwal et al. 2017)
which are shown in Fig. 1a–f.

Thus, in an effort to cater realistic trends of FRF we consider Exponenti-
ated Weibull distribution in the present work, which was primarily introduced by
Mudholkar and Srivastava (1993). It is worth noting that EW distribution has proved
to be the finest choice for FRF as it is fairly adequate and flexible to track all possible
fluctuations which are subject to time or operating conditions. To this end, we give
EW density function, B(t) which is used here to characterize FRF as follows:

B(t) = Nkv

lk
tk−1[1 − exp(−(t/l)k ]v−1 exp(−(t/l)k), t ≥ 0, k > 0, l > 0, v > 0

(3)

The corresponding cumulative FRF, BC(t) is given as below:

BC(t) = N [1 − exp(−(t/l)k ]v (4)

where (k, v) denote the shape parameters, l denotes the scale parameter and N is a
constant.

Figure 2a, b representing the density function and the corresponding distribution
function for distinct values of parameters shows the flexible nature of the underlying
EW probability distribution and are also shown in Aggarwal et al. (2017).

• Random Environment

In recent past years some research efforts have beenmade to establishmodels consid-
ering random environment including (Yang and Xie 2000; Zhang et al. 2002; Chang
et al. 2014; Pham 2016; Zhu and Pham 2018) so as to incorporate impact of factors
or issues affecting software failure rate and other reliability measures. These issues
may evolve during software execution in the field due to vagaries and uncertainty
involved in the operating environment. In the present study we intend to model fault
removal process considering factor representing randomness of operating environ-
ment and address it as a randomvariable, ηwhich is assumed to be gamma distributed
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Fig. 1 a–f Distinct possible variations in FRF curves

Fig. 2 a, bDensity function and corresponding distribution function of EW-FRF for distinct
parameter values
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with two parameters and is denoted by η ∼ �(θ1, θ2). Besides its flexible nature, the
choice of taking gamma distribution in the modeling to signify random environment
is motivated and adopted from reference (Zhu and Pham 2018). Following is the
probability density function for gamma distribution:

g(η) = (θ1)
θ2 . (η)θ2−1.e−θ1.η

�(θ2)
, θ1, θ2 > 0; η ≥ 0 (5)

The corresponding Laplace transform of g(η) is given as below:

G∗(τ ) =
∞∫

0

e−η.τg(η)dη =
[

θ1

θ1 + τ

]θ2

(6)

3.2 Model Assumptions

Proposed modeling scheme is based on underlying assumptions:

1. Failure intensity function is proportional to leftover faults as well as time
dependent FRF at any point in time.

2. Each fault is mutually independent from the failure observation point of view.
3. The fault removal/correction phenomenon is modeled by non-homogeneous

Poisson process (NHPP).
4. The debugging process is a two-step process namely; fault detection process

(FDP) and fault correction process (FCP) to represent the time delay between
the detection of fault causing failure and the correction of the corresponding
fault.

5. During the fault removal process, new faults may introduce in the software with
introduction rate β(t).

6. To consider randomness of operating environment into the modeling, we
multiply time independent REF (η) with proportionality which is a function
of FRF.

3.3 Model Formulation

Based on assumptions stated above, mean value function (MVF) for corrected faults
incorporating REF and fault introduction phenomena can be obtained on solving
following differential equations:

dmc(t)

d(t)
= η.b.B(t)(a(t) − mc(t)) ; (7)
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da(t)

d(t)
= β(t)

dmc(t)

d(t)
(8)

where a(t) denotes total fault content in the software at time t.
Solving above Eqs. (7) and (8) with conditions a (t = 0) = a, mc(t = 0) =

0, β(t) = β ∀ t, we obtain:

mc(η)(t) = a

(1 − β)
[1 − e−η .b. (1−β).BC (t)] (9)

Here a represents initial number of faults present in the software before testing
starts.

Incorporating REF factor η, the equation describing MVF is given as:

mc(t) =
∞∫

0

mc(η)(t) g(η)dη (10)

=
∞∫

0

a

(1 − β)
(1 − e−η .b. (1−β).BC (t)) g(η)dη (11)

Using Eq. (6) to apply Laplace transformation, the above equation becomes:

= a

(1 − β)

[
1 − G∗(b (1 − β)BC(t)

)]
(12)

Thus mean number of faults corrected considering REF is achieved as:

mc(t) = a

(1 − β)

[
1 −

(
θ1

θ1 + b (1 − β)BC(t)

)θ2
]

(13)

To this end, software reliability can be assessed using MVF of proposed SRGM
(given in Eq. (13)) and using the definition of reliability which states that it is the
probability that a software does not experience failure in the interval (t, t+ δt) given
that last failure occurred at time t (Xie 1991) and is expressed mathematically as
follows:

R(δt|t) = exp(−(m(t + δt) − m(t)) ); δt > 0, t ≥ 0 (14)
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4 Estimations and Analysis

In this section, we provide data sets used to validate the proposed model, discussed
various model selection and validation criteria and presented goodness of fit curves
followed by tables for parameter estimates that ended with detailed discussion of the
findings of the present work.

4.1 Real Data Sets

To validate our study, we have used three real data sets in all: DS-I, DS-II and DS-III
which present records of cumulative number of faults detected and faults corrected.
DS-I is dataset for 87 test days and has been collected from literature (Liu et al. 2016)
and is tabulated in Table 1 whereas data sets DS-II and DS-III for 17 test weeks
each have been published by Musa et al. (1987), Wu et al. (2007) and is shown in
Table 2 (Table 3).

4.2 Model Selection and Validation Criteria

This section briefly discusses eight selection criteria which are frequently used to
validate the accuracy and predictability of a model.

• Coefficient of determination (R2)

R2 measures the proportion of the total variations in a data set that is explained by
the model. It must be a value between 0 and 1 and cannot assume negative values.

R2 = 1 −
∑n

i=1 (ŷi − yi)2∑n
i=1 (yi − ȳi)2

; ȳi =
∑n

i=1 yi
n

The closer the value of R2 to 1, the better the model explains the variation in data
(Tjur 2009).

• Mean squared error (MSE)

The difference between the observed and the estimated values is regarded as residual
or error and it may turn out to be positive, negative or zero. Thus it is suggested to
minimize the squares of the residuals. The measure MSE is calculated by taking the
mean of the square of the error terms, εi (i = 1, 2, ..., n). Squaring the error terms
augments the errors and thus MSE desirable in situations demanding low tolerance
for error.
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Table 1 DS-I

Time (weeks) Faults
detected

Faults
corrected

Time (weeks) Faults
detected

Faults
corrected

1 23 6 30 869 660

2 96 15 31 875 689

3 163 17 32 892 712

4 250 20 33 895 744

5 282 23 34 898 773

6 343 35 35 898 794

7 375 44 36 904 811

8 398 44 37 916 811

9 424 44 38 916 837

10 445 55 39 916 849

11 459 84 40 916 855

12 465 105 41 916 860

13 541 128 42 919 863

14 593 163 43 924 869

15 637 203 44 939 884

16 637 302 45 948 927

17 640 483 46 956 942

18 640 523 52 971 942

19 640 529 61 983 942

20 672 529 63 988 942

21 703 529 64 991 942

22 706 529 65 994 945

23 730 532 68 994 959

24 747 535 69 994 962

25 756 541 70 994 965

26 785 581 74 994 968

27 797 608 86 997 968

28 828 622 87 1000 968

29 866 631

MSE = 1

n

n∑
i=1

ε2i

Lower value of MSE implies the better fitting (Kapur et al. 2011). In context for
models using time lag between detection and correction process, we use MSE which
is calculated by taking average of MSE values obtained independently for faults
detected and for faults corrected. Thus,
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Table 2 DS-II Time (weeks) Faults detected Faults corrected

1 12 3

2 23 3

3 43 12

4 64 32

5 84 53

6 97 78

7 109 89

8 111 98

9 112 107

10 114 109

11 116 113

12 123 120

13 126 125

14 128 127

15 132 127

16 141 135

17 144 143

Table 3 DS III Time (weeks) Faults detected Faults corrected

1 1 0

2 2 2

3 4 3

4 5 5

5 13 12

6 22 18

7 28 25

8 35 33

9 39 36

10 42 36

11 42 39

12 46 42

13 47 46

14 47 47

15 49 48

16 51 50

17 54 54
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MSEAvg = 1

2
(MSEd + MSEc)

• Mean absolute percentage error (MAPE)

Another way to show the deviation is in relative terms rather than absolute terms. To
compute the measure, each error term, εi; (i = 1, 2, ..., n) in absolute is expressed
as a percentage of the actual value, yi.

MAPE =
(
1

n

n∑
i=1

|εi|
yi

)
100

The lower value of MAPE indicates better goodness of fit (Kim and Kim 2016).

• Predictive power (PP)

It measures the distance of model estimates from the actual data and is obtained by
summing the squares of the proportion of error terms in the response of actual values,
yi; i = 1, 2, ..., n. It is given as:

PP =
n∑

i=1

(
ŷi − yi
yi

)2

Low values of PP shows successful fit (Pham 2006).

• Bias

It is usually defined as average of prediction error which is calculated as difference
between estimated values and actual values. It is calculated as:

Bias = 1

n

n∑
i=1

(
ŷi − yi

)

Lower values of Bias show good fitting to the data (Pillai and Nair 1997).

• Variation

It is commonly known as standard deviation of prediction error and calculated as:

Variation =
√∑n

i=1

(
yi − ŷi − Bias

)2
n − 1

Lower the variation better is the goodness of fit (Pillai and Nair 1997).

• Root mean square prediction error (RMSPE)
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Another useful measure for evaluating the performance of a model is the RMSPE
which is a measure of closeness with which a model predicts the observations. It is
computed as:

RMSPE =
√

(Bias)2 + (Variation)2

The lower the RMSPE, the better the goodness of fit (Pillai and Nair 1997).

• Akaike’s information criterion (AIC)

It is widely used to investigate goodness of fit of stochastic models. It estimates the
relative amount of information lost by a given model which is related to degrees of
freedom carried by a model. It is defined using likelihood function, L as follows:

AIC = −2 logL + 2k

where L =
n∏

i=1

(ŷi−ŷi−1)
yi−yi−1

(yi−yi−1)! e−(ŷi−ŷi−1) and k is the number of parameters estimated

in the model and n is the number of actual observations. Lower AIC indicates less
amount of information lost and thus better quality and fitting of a model (Akaike
1974).

4.3 Parameter Estimates

We obtain the estimates of the proposed model by non-linear regression using SPSS-
23 software. Estimation of parameters is carried out in two phases. In Phase 1, we
estimate parameters of the fault reduction factors then carried their estimated value
to Phase 2 to determine the parameters involved in proposed model. The estimation
methodology and their results are discussed in detail in following subsections:

• Phase I Estimation

Using definition of FRF given in Eq. (1), actual values of FRF have been computed
for all three datasets: DS-I, II, and III and are plotted in Fig. 3a–c. As aforementioned,
we have used EW distribution to represent FRF, the parameter estimates of which
are summarized in Table 4 for all data sets.

• Phase II Estimation

Using values of estimates for FRF obtained from Phase-I, we have carried out esti-
mation of parameters for proposed model and further for the purpose of model vali-
dation, few well known existing models (which have not considered RFE) namely
Goel-Okumoto (GO) model (Goel and Okumoto 1979), Delayed S shaped (DS)
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FRF for DS-II. c Statistical goodness of fit curves of FRF for DS-III
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Table 4 Estimates of
EW-FRF parameters

Parameters DS-I DS-II DS-III

N 410.569 84.044 24.421

l 0.502 0.320 11.294

k 0.214 0.244 0.815

v 36.040 25.146 5.200

Table 5 Description of
existing models used for
comparison

Model Parameters MVF, m(t)

GO a, b a(1 − e−bt)

Delayed S shaped a, b a(1 − (1 + bt)e−bt)

Inflexion S shaped a, b, c a(1−e−bt )

1+ce−bt

Yamada imperfect
debugging

a, b, c a(1 − e−bt)(1 − c
b ) + act

model (Yamada and Osaki 1985), Inflection S shaped (IS) model (Ohba 1984) and
Yamada imperfect debugging model (YID) model (Yamada et al. 1992) (described
briefly in Table 5) have been used to compare model parameters and values of several
comparison criteria (discussed in Sect. 4.2) and provided the results in Tables 6, 7
and 8 for respective datasets DS-I, II and III.

4.4 Curves of Fitting

Visual representation of the results by means of graphs and curves has always been a
prominent way which illustrates the performance of the proposed work and findings.
This section includes graphs which are created to figure out the goodness of fit of
the present modeling scheme. Figure 4a–c captures the curves showing actual versus
estimated number of faults corrected for DS-I, II and III.

4.5 Discussion of Findings

Here we outline some important observations of the present work.
Figure 3a–c showing goodness of fit curves of FRF for DS-I, II and III exhibit

that EW distribution used for estimating FRF is proved to be successful in capturing
the variations incurred with time and fits considerably close to actual data.

i. On comparing estimated model parameters and values computed using compar-
ison criteria namely R2, MSE, MAPE, PP, Bias, Variation, RMSPE and AIC as
presented in Tables 6, 7 and 8, it is established that proposed model provides
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significantly better results and descriptive power than well-known existing
models for all datasets considered in the present study.

ii. We acknowledge that use of two phase estimation method in the proposed work
is proved to be reasonable since estimates of FRF obtained in Phase I when used
to compute mean number of faults corrected give rise to the values which are
quite close to actual number of corrected faults. However, estimates for number
of faults detected (computed using FRF and Eq. (1)) also shows outstanding
results in virtue of close fitting to corresponding actual values. On the other hand
using conventional approach to estimate parameters involved in the mean value
function for fault detection (correction) process may not necessarily show good
fit to FRF (as shown in Fig. 3a–c) and consequently may not offer acceptable
values for fault correction (detection) process. Specifically, from Table 9, it
can be observed that values of average MSE, MSEAvg (average of MSE for
detected and MSE for corrected faults) for the proposed model for DS-I, II
and III came out to be 1293.18, 69.3, 5.42 which are adequately smaller than
those calculated for three distinct models (based on three pattern for FRF used)
proposed in published work (Hsu et al. 2011). Results summarized in Table 9
and graphs plotted in Fig. 3a–c establish the success and relevance of using two
phase parameter estimation approach in the present study.

5 Release Time of Software

The decision problem of utmost concern for management of software firms is to
determine when to end testing and release the product into the market to make it
available for its users. This decision strongly depends on the criteria used by the
management. In practice, there is always a trade-off between cost and the reliability
a consequently release time may vary from minimizing total cost incurred to maxi-
mizing reliability (Huang 2005; Kapur et al. 2011; Song et al. 2018). In this section,
with the help of numerical illustration, we attempt to suggest release time of software
while considering both the important criteria and the resultant values of proposed
SRGM. We begin by creating a cost function using distinct cost parameters viz. per
unit cost to remove faults during testing phase (before release), C1; per unit cost to
remove faults during operational phase (after release), C2 and testing cost per unit
testing time, C3. Using cost parameters and MVF of Eq. (13), associated total cost
incurred can be presented as:

C(T ) = C1mc(T ) + C2[mc(Tl) − mc(T )] + C3(T ) (15)

where T denotes release time and Tl denotes software life cycle (>T ). We may
differentiate Eq. (15) with respect time to find time point that minimizes the cost
function, C(T ). Let T = Tc denotes the release time that corresponds to minimum
cost. Besides cost, reliability plays significant role in decision making. Generally,
an appropriate level of reliability, R0 is targeted to achieve at the time of release.
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Fig. 5 Curve satisfying cost criterion

Suppose T = TR represents the release time when reliability requirement, R0 is
satisfied. Thus the optimal release time may be identified as T ∗ = max(Tc,TR).

5.1 Numerical Illustration

To illustrate we use estimates of FRF and other parameters of proposed SRGM for
DS-I (listed in Tables 4 and 6) and assume C1 = $20, C2 = $50 and C3 = $6 to
figure out optimal release time of software. Tominimize cost, we useMaple software
and obtained minimum cost C(T ) = $20249.56 at T = Tc = 93.8 ≈ 94 days.
The corresponding cost curve is drawn in Fig. 5. Using definition of reliability
(given in Eq. (15)) with δt = 1 and substituting parameter estimates of MVF
(given in Eq. (13)) we plot reliability curve which is shown in Fig. 6. It is noted
that reliability achieved at T = Tc = 93.8 ≈ 94 days is 0.825. If R0 = 0.85,
it can be satisfied at T = TR = 97 days with associated cost $20,251.24 which
is clearly seen from reliability and cost curves. Thus we conclude with deci-
sion to release the software at T ∗ = max(Tc,TR) = max(94, 97) = 97days. If
management raises the reliability requirement from R0 = 0.85 to R0 = 0.90 then
TR = 105 days which indicates testing needs to be continued to attain the desired
level of reliability which leads to relatively higher cost of $20,267.35. Accordingly,
T ∗ = max(Tc,TR) = max(94, 105) = 105 days.
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Fig. 6 Curve satisfying reliability criterion

6 Conclusion

In the present work, we propose an SRGM to model fault correction process and to
investigate reliability of a software system which is a primary field of interest for
software developers and many research studies. The present approach makes use of
two important dynamic aspects-time dependent FRF and REF to represent real life
phenomenonand elucidate timedelayed fault correctionprocess incorporating effects
of random environmental factors. The proposed model is applied to three fault data
sets of real software projects. Based on various selection and comparison criteria, we
analyzed the performance of the proposed work. The investigation was illustrated by
the number of related goodness of fit curves which indicates that the proposed model
fit considerably close to actual data and better than the other well established existing
models in the literature. We also address cost and reliability criteria which aids in
making decision regarding release time of software and worked out a numerical
example to suggest release time of software based on both the criteria. We conclude
that proposed SRGM shows remarkable performance and is sufficiently capable to
be used as an effective tool for making reliability assessment and taking decisions
on release time.

7 Future Scope

The present studymay be extended to derivemulti-release software reliability growth
models and to study reliability growth process of open source software systemswhich
are offered with timely upgradations. Further, incorporating the concept of change
point may aid in augmenting the present modeling scheme.
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Multi-objective Release Time Problem
for Modular Software using Fuzzy
Analytical Hierarchy Process

Neha, Anu G. Aggarwal, and Ajay Jaiswal

Abstract The revolutionary evolution of the computers and their advancements has
led to an increase of human dependence on them. Their wide utilization in various
aspects of everyday activities necessitates the addition of additional features and
functionalities to the system. Incorporation of these features makes the software
development a complicated and critical task. One approach to ease this process is to
design the software in modules manner. Therefore, small modules are incorporated
in the software and are evaluated separately instead of the whole software at once.
This chapter proposes release time problem formodular software system considering
weights of the modules and by modelling the models with two software reliability
growth models (SRGMs). The effect of testing coverage function and fault reduction
factor is taken into account in these SRGMs. For determine the modular weights
Fuzzy Analytical Hierarchy Process (FAHP) is used. FAHP decomposes complex
structure of software into different levels of hierarchy and helps in determining
the relative weights of the modules. The two SRGMs are considered separately
to formulate the multi-objective optimization problem by considering development
cost and software reliability simultaneously. Release time problem is followed by
sensitivity analysis with the purpose of understanding the importance of development
cost on release time. A numerical illustration is provided to understand the proposed
methodology. For the estimation of the parameters given in SRGMs; a real life fault
dataset has been used.
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1 Introduction

With rapid growth of technology, software systems have become an indispensable
and efficacious part of our everyday lives. These systems demand services to its users
due to reliability and stability requiremnts. Many critical operations for example, air
traffic control system, national security and defence system etc. depend on reliable
software. This increased belief on trustworthy software products has dragged atten-
tion of many academicians and practitioners. Hence a considerable research has
been done to measure and improve the reliability during the testing or operating
phase. Reliability is considered as a significant element to characterize the quality
of a software system (Zhang et al. 2003). In past, numerous researches have been
introduced that are focused on software reliability models. To model software faults
growth process Non-homogeneous Poisson process (NHPP) is assumed as the most
effective and successful mathematical tool. NHPP defines the failure phenomenon
in the testing phase of software development life cycle.

A great number of NHPP based software reliability growth models (SRGM)
considering different assumptions have been introduced to predict the remaining
faults (Aggarwal et al. 2019; Kapur et al. 2014; Verma et al. 2019a). Goel and
Okumoto (1979) reliability model was the very first attempt to incorporate NHPP as
amodel for failure time . Following this SRGMresearchers have suggested numerous
time dependent SRGMs that usually consists different distribution of fault detection
rate and initial fault content up to particular time and helps in the reliability assess-
ment process. Moreover, academicians and researchers proposed that precision of
SRGMs can be improved by incorporating real life problems occurred in testing
phase. For example testing coverage, fault reduction factor, fault removal efficiency,
testing effort (Cai and Lyu 2007; Huang et al. 2007; Shibata et al. 2006). Effect of
these factors helps in building more reliable product. Amongst these factors testing
coverage and fault reduction factor are observed as the most important and effective.

From both software engineers and users perspective testing coverage is observed
to be an important measure. Using this measure software engineers can assess the
quality of software and can easily calculate the additional effort that is required to
increase the reliability. Form users perspective, testing coverage can help them to
decide when to buy a software product? (Pham and Zhang 2003). During testing
phase coverage growth is characterized by coverage growth function c(t) that can be
defined as “proportion of code that is covered up to time t”. Hence incorporation of
testing coverage to the SRGM helps developers to calculate how much extra effort
is required to improve reliability.

In practice, it has been observed that the number of failure may not always be
equal to the number of faults found. Such relationship between faults and failure is
expressed as FRF (Musa 1975). FRFs is described as the ratio of faults and failures.
FRFs are also characterised as different ratios, for example detectability, associability,
fault growth rate and fault exposure ratio (Li and Malaiya 1993; Malaiya et al. 1993;
Musa 1991, 2004). In proposed study we have considered SRGMs incorporating
testing coverage and Fault reduction factor.
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As previously mentioned, developers are bound to develop a highly stable soft-
ware system. To meet these user’s requirements, they put in best efforts to incorpo-
rate maximum features and functions in the software. This incorporation of features
results in making of a complex and critical software structure. Therefore, in order to
cope up this situation a numerous small and independent programs called compo-
nents are implemented into the software system, also in module testing phase each
module is tested. These are often programmed as independent software for accom-
plishing predefined tasks. Usually modules are developed by different programmers
or sometimes at different geographical locations. Here we are using this concept of
modular software system to formulate the optimization problemby assigningweights
to the modules. To calculate these weights Multi Criteria DecisionMaking (MCDM)
technique has considered.

MCDM technique is used to deal with the decision making problem when it
involves multiple attributes and dimensions. One way to deal such decision making
problem is Analytical Hierarchy Process (AHP). AHP was first proposed by Satty
(1980), which is a top-down approach. In this technique a hierarchy is constructed
where complex arrangement is decomposed into different levels. To perform AHP
we need to construct pairwise comparisonmatrices on every level of the hierarchy for
which we require linguistic scale values. Satty (1980) provided a 1 to 9 crisp scaling
values for the construction of pairwise comparison matrix. Moreover, when we talk
about some real life situations crisp numbers are not enough to handle the uncertainty
in the decision maker’s opinion. Therefore, to deal with uncertain environment fuzzy
set theory was introduced (Zadeh 1965) . This study considers the FAHP technique to
deal with the uncertain environment while determining module weights. The optimu
release time problem is then formulated using these weights.

In the development phase of the software, the major concern of development team
is to determine the optimal time to release software into the market. Such problems
are commonly acknowledged as optimal release time problem. As the testing helps
in improving and assessing the quality of the software but it cannot be performed
indefinitely, software must be released at an optimum time to satisfy existing users
and potential users as well. User’s wish is to get the software at reasonable prices and
also with fast delivery whereas the developers crave to minimize the development
cost and maximizes the revenue and the reliability as well. If software release time
is excessively delayed then the developer may undergo whipping by penalties and
revenue loss. While releasing the software too early may cost heavily in terms of
fault removal, which results in decrease in the reputation of developers. Hence this
trade-off between these contradictory objectives is necessary. Therefore, we have
considered an optimum release planning problem to minimizes the total expected
cost and maximize the reliability simultaneously under the budget constraint.

Focus of the Study

Focus of the study is to provide a model for the software developers that can help to
calculate release time of software. Hence, we have developed a multi-objective opti-
mization problem that runs reliability maximization and cost minimization problem
simultaneously under a budgeting constraint. We have assumed a modular software



162 Neha et al.

system and assigned them someweight which is calculated with the help of aMCDM
technique, namely FAHP. For mean value function we have considered an SRGM
including testing coverage along with FRF.

The main objectives of the proposed study can be given as follows:

(a) To analyse the significance of the software modules in the software develop-
ment process by assigning them weights using FAHP method.

(b) To formulate the optimization problem that can take care of development cost
and software reliability simultaneously for a modular software system under
limited budget.

(c) To calculate the time to release the modular software in the market.

Organization

The chapter is organized in the following way; following the detailed introduction
we have provided literature review in second section. Third section discusses the
methodologically framework of the chapter. Fourth section illustrates numerical that
we have done using the proposed strategy and further sensitivity analysis has been
done. The last section concludes the chapter that provides the future scope and
limitation of the study.

2 Related Work

In this chapter we have taken the aid of five important techniques of software relia-
bility, namely Software Reliability Growth Model, Testing Coverage, Fault Reduc-
tion Factor, Modular Software and Release Planning. A detailed literature review of
these techniques is as follows:

2.1 Software Reliability Growth Model

Reliability plays a key part in the development of software system. This vital utility
of reliable software has dragged the attention of the several researchers and as a result
numerous reliabilitymodels havebeenproposed in the last decade.Among them, time
based SRGMs have pioneered the attention of researchers in assessing the reliability
of software system. Some important milestone of time dependent SRGMs that have
been introduced previously in literature of software reliability are as mentioned.

SRGM introduced by Goel and Okumoto (1979) bought a revolution in modelling
of software growth models. The model proposed by them was a finite failure model
with exponential intensity function and other parameters assumed constant. As
modelling progressed, it was observed that many a time mean value function (MVF)
followed S-shaped curve than the exponential functional form. Hence an improve-
ment was made in the testing efficiency with respect to the time and a 2-stage model
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was given byYamada et al. (1984). Thismodel assumed that there exist fault detection
and fault isolation phases in the testing phase software system. Authors considered
delay between fault detection and eliination under the hypothesis that all faults are
eliminated while conducting testing of software. Further, Kapur and Garg (1992)
proposed a model in which they came up with the concept that detection or removal
of faults can result in the creation of more faults in the software.

2.2 Testing Coverage

Based on the previous research it has been observed that SRGMs can be improved
and can be more proficient if we incorporate real life issues occurred during testing
phase into the SRGM (Cai and Lyu 2007; Huang et al. 2007; Shibata et al. 2006).
Out of these issues testing coverage and Fault reduction factor (FRF) are considered
as the most important factor. Testing coverage functions have been introduced with
different distribution, for example, Logarithmic-exponential (Malaiya et al. 2002), S-
shaped (Pham and Zhang 2003), Weibull-Logistic (Gokhale et al. 1996) and logistic-
exponential (Chatterjee and Singh 2014).

Gokhale et al. (1996) proposed an ENHPP model by incorporating test coverage.
Authors further have shown that the utility of NHPP is limited as it considers only
single coverage function whereas ENHPP provides a generalized coverage func-
tion and hence ENHPP models are significant step for the unification of NHPP
basedmodels.Malaiya et al. (2002) introduced aLogarithmic-exponentialmodel that
defines the connection among testing coverage, testing time and reliability, model
discusses the hypothesis that enumerable have many chances of being applied while
measuring the test coverage. By proposing the model authors were able to define the
relation of test coverage with the defect coverage and model considered that even at
the 100% coverage, all defects might not have been found.

Further, Pham and Zhang (2003) proposed a NHPP based SRGM to address the
texting coverage and compared the model with the existing SRGMs. It has been
observed that model fits significantly better than the others. Authors further devel-
oped the software cost model including testing cost, fault removal cost and risk cost.
Study also determined the optimal release time to find when to stop testing so that
cost can beminimized and can also satisfy the reliability requirements. Further, Chat-
terjee and Singh (2014) proposed SRGMbased on imperfect debugging by including
logistic-exponential based testing coverage function and compared the results with
existing SRGMs. Authors created a cost model to calculate the total expected cost.
Li and Pham (2017) proposed an imperfect debugging testing coverage NHPPmodel
alongwith error generation and imperfect fault removal efficiency. Authors discussed
the effect of each parameter on the robustness of the model by performing sensi-
tivity analysis. In our study testing coverage function follows Weibull distribution
and Exponentiated Weibull distribution. Weibull distribution is extensively adopted
distribution because of its flexibility to fit the wide variety of the datasets (Lai et al.
2006).
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2.3 Fault Reduction Factor

The other important environmental factor which affects the software testing process
is FRF, proposed by Musa (1975). Musa discussed FRF to explain the connection
between faults and failure. A generalized definition is that “the net number of faults
removed from the program is only a proportion of the failure experienced”, here the
corrected faults are subtracted from the introduced faults to get the net number of
faults. Expression for FRF is (Musa 1975, 1980)

B = n

m
, 0 < B ≤ 1

Here, m shows the total number of failure occurred, n represents the total faults
that are corrected without introducing new faults and B represents the FRF. If B =
1, it is assumed that failure and faults are equal in numbers. In our study we haven’t
assumed error generation thus the FRF is considered as one in value.

Previously, numerous researches have been done incorporating FRF to the SRGM.
Later, Malaiya et al. (1993) observed the fault exposure ratio which depicts the
average fault detection rate, provided FRF can be represented in terms of fault
exposure ratio.

B = λ0

K f m
, 0 < B ≤ 1

where, λ0 shows the initial failure intensity, K is the fault exposure ratio, and f is
the linear execution frequency of the program. Musa, in basic execution time model
defined the differential equation as,

dm(t)

dt
= Bz(t) = Bϕ(a − m(t))

where, z(t) represents hazard rate function and ϕ shows per fault hazard rate. Solving
above equation under initial conditions m(0) = 0, the MVF is

m(t) = a(1 − e−Bϕt )

Here, m(t) shows the expected number of faults at time t.
There may be variations in FRF under different situations and environmental

factor. In the proposed study, FRF is assumed to be a constant.
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2.4 Modular Software

To develop highly reliable software that can meet the user’s requirements many
functions and features are added to them. Addition of such functions makes soft-
ware system a complex structure. Hence developer integrates small and independent
modules to the system and during the testing phase each module is tested indepen-
dently. In past, numerous researches have been done based on modular software
system. For example, Kapur et al. (2009) have proposed a study for optimal resource
allocation for amodular software. Optimization problem is developed byminimizing
development cost under limited resources subject to the reliability constraint. To
perform the methodology, testing effort SRGM has been used which described the
fault removal process for the modules and simultaneously addressed the impact of
imperfect debugging and error generation process.

Further, Kapur et al. (2010) have suggested two dimensional SRGM to assess the
best time and resource distribution for a modular software systems. To develop the
model authors consiered Cobb Douglas function and to solve formulated problem
two directional genetic algorithm have been used. Kaur et al. (2017) suggested an
SRGM with change point to calculate optimal resource allocation problem for a
modular software. Authors have used KKT (Karush Kuhn Tucker) conditions to
work out the nonlinear optimization problem and determine the optimal resources
required to build software in order to reduce evelopment costs. Here, we have used
modular software system to perform release time optimization problem. Here we
have considered module weights to decide the best testing time and for the weights
calculation we have used MCDM technique.

2.5 Fuzzy Analytical Hierarchy Process

MCDM process is used to work with dynamic judgement senarios where the deci-
sion problem has multiple attributes and dimensions. AHP is an MCDM approach
for dealing with the complicated decision-making by splitting the problem down
into simpler and convenient levels Satty (1980). AHP has been applied in various
problems for example, in the area of supplier selection, evaluation of experts and
database system products etc. (Zahedi 1990). Due to the uncertainty and vagueness
in the obtained information it was difficult to understand or express one’s opinion
numerically, this results in the advent of fuzzy set theory, proposed by Zadeh (1965).
Numerous researches have been conducted using fuzzy set theory due to their conver-
gence towards the genuineness. In software reliability AHP has been used as follows
(Table 1).

As given in Table 1, AHP has been used several times for reliability allocation
process, selection process and for comparing reliability assessment methods. To the
best of our knowledge no research has been conducted to proposed a multi-objective
optimization problem for release planning policies with the help of AHP. Hence this
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Table 1 Software reliability literature incorporating AHP

References Techniques used Explanation

Zahedi and Ashrafi (1991) Reliability allocation The authors have discussed the
reliability allocation and
maximized the user’s utility by
calculating the reliability of
module and programs

Tamura and Yamada (2005) AHP Authors suggested an AHP
based methodology to compare
the different reliability
assessment methods for open
source software

Li et al. (2006) AHP, software reliability,
system engineering

Authors proposed a structure for
the software reliability matrices
with the help of AHP and expert
judgement

Roy et al. (2008) AHP, Fault Tree Analysis
(FTA)

To evaluate software allocation
authors provided a combined
approach using AHP-FTA

Chatterjee et al. (2015) Reliability allocation, AHP,
FAHP

Authors have proposed a
software reliability allocation
problem using AHP and FAHP.
Further comparison has been
carried out based on consistency
ratio

Aggarwal et al. (2017) Reliability allocation, FAHP,
Ordered Weighted Approach

Authors discussed the reliability
allocation for a software system
with the help of FAHP and OWA
concepts

Chatterjee et al. (2017) Reliability allocation, Type-2
FAHP, optimization

Authors proposed the approach
to determine the software
components weights using
type-2 FAHP and based on the
efficiency of performance of
each component an optimization
problem has been formulated

Verma et al. (2019b) Intuitionistic fuzzy AHP In the proposed approach authors
have discussed a reliability
allocation model for a
multi-software system

Neha et al. (2019) Reliability allocation
Pythagorean fuzzy AHP

Authors have discussed a
reliability allocation approach by
considering the Pythagorean
Fuzzy AHP

(continued)
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Table 1 (continued)

References Techniques used Explanation

Proposed approach FAHP & Multi-objective
optimization problem

Our study focused on the
methodology to determine the
optimal release time for a
modular software system. Where
FAHP is used to find the weights
of the modules that are further
used for multi-objective
optimization

study proposed a multi-objective release time optimization problem with the help of
fuzzy AHP.

2.6 Release planning

The major concern of the development team is when to release the software. The
number of faults eliminated from the software is used to assess whether or not soft-
ware should be released. Hence, a release time optimization problem considering
SRGM is developed. Goel and Okumoto (1979) introduced an optimum release poli-
cies considering an exponential SRGM. Further, Yamada and Osaki (1987) proposed
an optimal release time problem including cost along with reliability with the help
of exponential, modified exponential and S-shaped SRGM. Huang and Lyu (2005)
proposed a release time problem including testing efficiency based on reliability
and cost criteria. Li et al. (2010) carried out sa release time sensitivity analysis by
incorporating testing effort and multiple change point to the SRGM.

Kapur et al. (2012) have proposed a 2-dimensional multi release SRGM and
developed an optimal release planning problem to calculate the optimal time to stop
the testing. For modelling the SRGMCobb Douglas function was used. Based on the
proposed SRGM optimization problem has been formulated that minimizes the total
development cost and optimizes the time to release the software. Kumar et al. (2018)
introduced a reliable and cost-effective model comprising of patching to formulate
the release policy. Kapur et al. (1994) proposed a bi-criteria optimization problem
to determine software releasing time. The problem considered maximization of the
reliability as well as minimization of overall expected cost. In the same way, we have
formulated the multi-objective release problem by considering the development cost
for each module and software reliability simultaneously to calculate the release time
for a modular software system. Now considering the above discussed work we have
explained our proposed methodology in the next following section.
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3 Evaluation Framework

In this section we develop a mathematical model for software release planning.
The methodology framework is a step by step process that consists description of
the SRGM, weights calculation of the modules and formulation of the release time
problem. Therefore proposed framework can be divided into four steps that can be
summarised as in Fig. 1.

Notations

m(t) Cumulative number of faults detected till time t.
m1(t),m2(t) Mean value function of model 1 and model 2 respectively
ϕ(t) Fault detection rate
a(t) Fault content at time t
c(t) Testing coverage function of time t
r Fault reduction rate
Mi ith module of the modular software
T Release time of the software
C(T ) Total development cost
CB Budget for the development process
C1 Cost of fixing faults during testing phase
C2 Cost of fixing faults during operational phase
C3 Fixed cost per unit time
wi Weight of the ith module
s, b Shape and scale parameter of Weibull distribution
k, v&l Shape and scale paramters of Exponentiated Weibull distribution.

3.1 Software Reliability Growth Models (SRGMs)

The general expression for NHPP based mean value function (MVF) is as follows

Fig. 1 Methodology framework
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dm(t)

dt
= ϕ(t)(a(t) − m(t)) (1)

where, ϕ(t) is the fault detection rate at time t, a(t) is the faults occurred initially and
m(t) shows the expected number of failure by time t. Here one can obtained different
MVF by substituting different values to ϕ(t) & a(t). We consider ϕ(t) in terms of
testing coverage, such as c′(t)

1+c(t) (Pham and Zhang 2003), where c(t) is the testing
coverage function and initial faults content is constant as the debugging process is
assumed to be perfect. Therefore MVF will be,

m(t) = c′(t)
1 + c(t)

(a − m(t)) (2)

FRF is assumed to be constant and represented by r, thus the MVF incorporating
testing coverage and FRF is given as,

m(t) = r
c′(t)

1 + c(t)
(a − m(t)) (3)

To evaluate the proposed methodology two NHPP based SRGMs comprising
of testing coverage and FRF are considered. For 1st SRGM model testing coverage
followsWeibull distribution and ExponentiatedWeibull distribution function for 2nd
SRGM. The mathematical expression of MVF for both the conditions is given as,

Model 1: Model 1 shows the MVF of the SRGM which incorporates testing
coverage function as a Weibull distribution function.

m1(t) = a
(
1 − exp

(−rbts
))

(4)

where, c(t) = 1 − exp(−bts), s > 0, t ≥ 0&b > 0
Model 2: Model 2 shows the SRGM which incorporates testing coverage as

Exponentiated Weibull distribution and the related MVF is as follows,

m2(t) = a

⎡

⎣1 −
(

1 −
(

1 − exp

(

−
(
t

l

)k
))v)−r

⎤

⎦ (5)

where, c(t) =
(
1 − exp

(
−(

t
l

)k))v

, k > 0, l > 0, v > 0 and t > 0.

Further, for the validation of these models a real life dataset is used and we
obtained the estimated values of the parameters. We have made a comparison of the
considered SRGMs to the previously introduced SRGMs i.e, Goel-Okumoto model
(Goel and Okumoto 1979) and delayed s-shaped model (Yamada et al. 1983). Their
corresponding MVF are given as follows.

Goel-Okumoto Model,
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m3(t) = a(1 − exp(−ϕt)) (6)

Here, a(t) = a and ϕ(t) = ϕ.
And delayed s-shaped model,

m4(t) = a(1 − ϕt) exp(−ϕt)) (7)

Here, a(t) = a and ϕ(t) = ϕ2t
1+ϕt .

Models 1 and 2 are further used to formulate the optimization problem considering
different software modules and to assign weights to each the module we have used
FAHP technique which is discussed in the next sub-section.

3.2 Modular Weights calculation

For the calculation of modular weights, we have used a fuzzy AHP approach. To
understand the core idea of the fuzzy AHP we need to go through the basic theory
of the fuzzy numbers that is explained in the following sub-section.

3.2.1 Fuzzy Numbers

Zadeh (1965) first proposed the fuzzy set theory to deal with the vagueness present in
the datasets. According to him fuzzy set is represented as an ordered pair (D, x), here
D is the set and x : D → [0, 1], i.e, membership function. Various researches have
been accomplishedwith the help of fuzzy set theory such as in scientific environment,
field of control theory and in robotics as well. There are few types of fuzzy numbers
out of which triangular fuzzy number is generally used to deal the situation appeared
due to the vagueness in the data. Graphical representation of a TFN is shown in Fig. 2
and membership function μ(x) for the TFN is,

μ(x) =

⎧
⎪⎨

⎪⎩

x−q
p−q i f q ≤ x ≤ p
y−x
y−p i f p ≤ x ≤ y

0 otherwise

(8)

Considering the ease of expressing one’s opinion, we have used Fuzzy AHP
technique to get the weights of modules and to compute these weights TFN are used
to express the expert’s opinions mathematically.
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Fig. 2 Triangular fuzzy number

3.2.2 Fuzzy Analytical Hierarchy Approach (FAHP)

Previously, AHP has been used to deal with the complex or critical multi criteria
based decision making problems such as component selection, supplier selection,
resource allocation, etc. To perform AHP we have to develop a pairwise comparison
matrix which relies on the expert’s opinion using point scale (1–9). But these values
used only the crisp numbers to provide the pairwise comparison matrix, whereas to
incorporate real life situations we need to provide more flexibility to the expert for
expressing their views. To overcome this issue fuzzy set theory was proposed that
helps to define the non-clarity in the ratings provided by the experts. Incorporating
fuzzy concept into AHP we construct the pairwise comparison matrices that uses
TFN based linguistic scale (Table 2).

The steps involved in carrying out FAHP are as follows,
Step 1:Construction of hierarchy:We have developed a hierarchy based onZahedi

and Ashrafi (1991), that links the user’s view to the software engineers and further

Table 2 Linguistic scale Scale TF scale TF reciprocal scale

Just equal (1,1,1) (1,1,1)

Equally important (1/2,1,3/2) (2/3,1,2)

Weakly important (1,3/2,2) (1/2,2/3,1)

Moderately important (3/2,2,5/2) (2/5,1/2,2/3)

Moderately more important (2,5/2,3) (1/3,2/5,2)

More important (5/2,3,7/2) (2/7,1/3,2/5)

Strongly important (3,7/2,4) (1/4,2/7,1/3)

Strongly more important (7/2,4,9/2) (2/9,1/4,2/7)
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to the programmers. In this step of the AHP, we set the goal we wish to obtain
as a first level. The goal is set as the overall system reliability which is used in
determining the further reliability of the functions. The second level containsmultiple
criteria used for the accomplishment of the goal. Second level comprises of few
functions as software is developed to perform specific functions based on user’s
necessities, here functions are represented by Fi (i = 1, 2, 3, . . . f ). Now the third
level contains the programswritten for the execution of functions. Programs are given
by the software engineers for the accomplishment of the functions, here programs
are symbolized as Pj = ( j = 1, 2, . . . p). The last level of the hierarchy involves
different alternatives that are used for the accomplishment of the previous level
sub criteria. Here, last level represents programmer’s view (modules written by the
programmers) and is symbolized asMk(k = 1, 2, . . .m). In software systemmodules
are considered as independent unit however it may have sub-modules. Figure 3 shows
the above depicted hierarchy for the software system. From the hierarchy we can
state that a single program can be used for the execution of one or more functions.
Similarly, a module can be used for more than one program.

Step 2: Construction of fuzzy pairwise comparison matrices: once we develop
the hierarchy and set the target reliability of the software we than construct the
fuzzy pairwise comparison matrices for each function, program and module using
the linguistic scale with fuzzy numbers (Table 2).

Fig. 3 Software hierarchy
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Oe =

⎡

⎢
⎢⎢⎢
⎣

(1, 1, 1) (q12, p12, y12) . . . (q1e, p1e, y1e)(
1
y12

, 1
p 12

, 1
q 12

)
(1, 1, 1) . . . (q2e, p2e, y2e)

. . . . . . . . . . . .(
1
y1e

, 1
pe1

, 1
q1e

) (
1
y2e

, 1
pe2

, 1
q2e

)
. . . (1, 1, 1)

⎤

⎥
⎥⎥⎥
⎦

(9)

Let us assume that Oe is a fuzzy pairwise comparison matrix for objects
Oi (i = 1, 2, . . . e) of order (e × e). It is important to check the consistency of
all the pairwise comparison matrix that is done using the defuzzification process.
TFN are first defuzzified and then the consistency is checked as in the traditional
AHP. If the consistency is less than 0.1 then we accept the matrix which can further
be used for weights calculation. Consider a TFN as (q, p, y) then the defuzzified
crisp number is q+2p+y

4 . Now, using defuzzified number we check the consistency as
C I = (λmax−e)/(e − 1) andCR = C I

RI . Here e is the order of pairwise comparison
matrix, RI is random index and CI is consistency index.

Step 3: Calculation of weights: After constructing the matrix, we calculate the
relative weights using Chang’s extent analysis (Chang 1996). Let us assume the
relative weights for the above matrix are (wO1, wO2, …, wOe). Than the reliability
assigned to them is given as (Aggarwal and Singh 1995)

ROi = RwOi (10)

Using above equation we calculate the reliability of functions, programs and
modules. Therefore the relative weights for the functions, programs and modules
are wFi = (wF1, wF2, . . . , wFi ), wPj = (wP1, wP2, . . . , wPj ) and wMk =
(wM1, wM2, . . . , wMk), respectively. The reliability assigned to the functions,
programs and modules are,

RFi = RwFi (11)

RPj = RwPj (12)

RMk = RwMk (13)

respectively.
As given in the hierarchy one program (and modules) may connect to more than

one function (and programs), therefore we end up getting more than one reliability
to the same program (and module). In that situation it is best to select the maximum
reliability.
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3.3 Release Time Problem Formulation

This section determines the release time for software system using optimization
technique. The problem comprises of several goals set by the development team
that includes cost, reliability, intensity function etc. The optimization problem uses
SRGM to find the release time and also to determine the link between the time and
testing progress. In the proposed study we have used SRGM and modules weights to
formulate the optimization problem. The weights obtained from the previous section
are further used in the multi-objective optimization problem. We have considered
that developer is interested not only in minimization of the cost but also in the
maximization of reliability; the optimization is done under the budget constraint.
Where, budget constraint ensures that the development cost does not go beyond the
total budget assigned for the software development. The mathematical expression
for the release time problem,

min C(T )

max R(x/T )

Subject to (14)

C(T ) ≤ CB

where, T ≥ 0
Given problem can be rewrite as (Kapur et al. 1994)

min C̄(T )

max R(x/T )

Subject to (15)

C̄(T ) ≤ 1

where, C̄(T ) = C(T )/CB and T ≥ 0.
To overcome the complexity in the calculation, problem (15) is further converted

into a single objective optimization problem by using priorities given by experts

for the objective functions as θ

(
=

[
θ1

θ2

])
∈ R

2 and θ1 ≥ 0, θ2 ≥ 0&
∑2

i=1 θi

(Kapur et al. 1994). We have assumed reliability as R(x/T ) = wi
mi (t)
ai

. Therefore,
the problem will be transformed as,

min Z = θ1C̄(T ) − θ2R(x/T )
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Subject to

C̄(T ) ≤ 1

T ≤ 0 (16)

By adjusting θ1 and θ2 according to the experts’ desire we can obtain the different
solutions. Using the optimization problem (Eq. 16) we calculate the release time for
the software and further analyse the results by running sensitivity analysis. We have
considered cost function as the composition of three cost components i.e, cost of
fixing an error during testing phase (C1), cost of fixing an error during operational
phase (C2) and testing cost per unit time (C3).

4 Numerical Illustration

This section covers the application of proposed methodology. For the same. Param-
eter estimation is carried out on a real life failure dataset and the optimal release time
for the modular software system is solved on an example dataset.

4.1 Parameter Estimation

Considering the SRGMs that are modelled using Eqs. 4 and 5, we have estimated
the parameters using the Maximum Likelihood estimation. Estimation is performed
on genome dataset for both the models (https://bugzilla.gnome.org). Testing process
was done till 24 weeks and 85 faults were detected. Estimated values of both the
models are shown in Table 3.

We have compared the models with existing SRGMs modelled by equation 6
and 7. The comparison criteria used to evaluate the performance of the proposed
models with the exixting models are “Mean Square Error” (MSE), “Predictive Ratio
Risk” (PRR), “Predictive Power” (PP), “Mean Absolute Percentage Error” (MAPE)
and “Coefficient of Determination” (R2). Table 4 represents the results obtained by
comparing the models.

Table 3 Estimated
parameters for Model 1 and
Model 2

Parameters
(Model 1)

Estimated value Parameters
(Model 2)

Estimated value

a 91.769 a 84.995

r 0.088 k 2.062

b 0.324 v 0.303

s 1.423 r 0.146

l 4.881

https://bugzilla.gnome.org
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Table 4 Performance measure

SRGMs Performance criteria

MSE PRR PP MAPE R2

G-O model 12.9104 0.2042 0.2991 7.4485 0.982

Delayed S-shaped model 8.1461 14.3861 1.0738 9.8909 0.989

Model 1 5.6438 9.4749 5.8318 7.7379 0.992

Model 2 3.8098 2.0842 2.1079 4.1972 0.991

Fig 4 shows the goodness of fit curves of both the model compared with the
existing SRGMs and actual data. Here, minimum the distance between the points
shows the better fit of the model.

Based on the estimated parameters form Table 3 we have determined estimated
values of the parameters for each module. In the proposed study we have assumed
six software modules for both the models and their estimated parameters are given
in Table 5.

After calculating parameter values we proceed towards weights calculation of
the modules and to get the weights we have performed FAHP technique in the next
section.

4.2 AHP Weights

In order to carry release time optimization problem, apart from parametes of
the models, we also need the module weights. These weights are obtained using
the FAHP technique. For this, Let there are three functions in the software hier-
archy say F1, F2andF3. Now, to accomplish these functions software engineers
and programmers established four programs (P1, P2, P3andP4) and six modules
(M1, M2, M3, M4, M5andM6). In the development process, software engineers
design the programs written for the functions to fulfil the user’s desire. Here, P1, P2
and P4 help in accomplishing the functionF1. For accomplishment of F2, P1, P2 and
P3 are used and for F3, P2, P3 and P4. The next level of hierarchy is modules that
represent the programmers view and this level comprises of six modules that helps
in implementation of the programs. P1 requires M1, M2 and M5, P2 requires M2, M3

and M4, P3 requires M4, M5andM6 and for P4there are M1, M3 and M6 modules.
The target reliability for the system is set as 0.90 (assumed) by considering the

users requirements. Here to solve the FAHP,we have used fuzzy pairwise comparison
matrices that are developed using Table 2. These matrices are constructed with the
help of user’s, software engineer’s and programmer’s opinion.

For Functions

The matrix for the system after comparing the functions is given as follows,
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Fig. 4 Goodness of ft curve of a Model 1 and bModel 2
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Table 5 Estimated parameters for modules

Model 1 Model 2

Modules a r b s a k v r l

M1 91.769 0.088 0.324 1.423 84.995 2.062 0.303 0.146 4.881

M2 90.541 0.070 0.301 0.987 83.105 2.819 0.312 0.189 3.801

M3 89.981 0.081 0.402 1.056 84.081 1.568 0.381 0.099 4.021

M4 90.503 0.09 0.442 1.002 82.765 1.321 0.278 0.102 2.212

M5 87.973 0.128 0.382 1.555 80.681 1.008 0.281 0.169 3.510

M6 92.511 0.077 0.381 0.808 85.018 2.018 0.199 0.112 2.879

F1 F2 F3

F1 (1, 1, 1) (3/2,2.5/2) (3/2,2,5/2)

F2 (2/5,1/2,2/3) (1, 1, 1) (2/3,1,2)

F3 (2/5,1/2,2/3) (1/2,1,3/2) (1, 1, 1)

Now we determine the relative weights for the functions and their corre-
sponding reliabilities. The normalized weighting vector for each function is wF =
(0.43207, 0.26011, 0.155805) and the reliabilities for each function is as calculated,

RF1 = (
RwF1

) = 0.95030597

RF2 = (
RwF2

) = 0.97409569

RF3 = (
RwF3

) = 0.97850954

These allocated reliability are further used in determining the reliability allocation
for each programs associated to the functions.

For programs

The pairwise comparison matrix for the programs used to execute the functionF1,

P1 P2 P4

P1 (1, 1, 1) (3/2,2.5/2) (1,3/2,2)

P2 (2/5,1/2,2/3) (1, 1, 1) (2/5,1/2,2/3)

P4 (1/2,2/3,1) (3/2,2.5/2) (1, 1, 1)

The normalized weight vector wF1 = (0.430988, 0.150645, 0.430988) and the
reliabilities assigned to the programs P1, P2 and P4,

RP1 =
(
RFwP1

1

)
= 0.969804114
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RP2 =
(
RFwP2

1

)
= 0.988059066

RP4 =
(
RFwP4

1

)
= 0.970645714

Now pairwise comparison matrix for the programs used to execute the function
F2

P1 P2 P3

P1 (1, 1, 1) (2/3,1,3/2) (2/9,1/4,2/7)

P2 (2/3,1,3/2) (1, 1, 1) (2/5,1/2,2/3)

P3 (7/2,4,9/2) (3/2,2.5/2) (1, 1, 1)

The normalized weights are wF2 = (0.445249, 0.305655, 0.305655) and the
reliabilities assigned to the programs P1, P2 and P3

RP1 =
(
RFwP1

2

)
= 0.98980536

RP2 =
(
RFwP2

2

)
= 0.99563982

RP3 =
(
RFwP3

2

)
= 0.99563982

The pairwise comparison matrix for the programs associated with function F3,

P2 P3 P4

P2 (1, 1, 1) (2/3,1,3/2) (2/7,1/3,2/5)

P3 (2/3,1,3/2) (1, 1, 1) (2/5,1/2,2/3)

P4 (5/2,3,7/2) (3/2,2.5/2) (1, 1, 1)

The normalized weights arewF2 = 0.508734, 0.314588, 0.314588 and the
reliabilities assigned to the P2, P3 and P4,

RP2 =
(
RFwP2

3

)
= 0.98945588

RP3 =
(
RFwP3

3

)
= 0.99466523

RP4 =
(
RFwP4

3

)
= 0.99466523

Aswe can see that each program is used for the execution ofmore than on function
thus the final reliability assigned to the programs are as follows,
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RP1 = max(0.969804114, 0.98980536) = 0.969804114

RP2 = max(0.988059066, 0.99563982, 0.98945588) = 0.99563982

RP3 = max(0.99563982, 0.99466523) = 0.99563982

RP4 = max(0.970645714, 0.99466523) = 0.99466523

Further, these reliabilities are used to determine theweights of themodule attached
to the software.

Weights for modules

Now, we calculate the weights for each module associated with particular program
and further these weights will be used in determining the release time of software
system using multi criteria optimization problem. Pairwise comparison matrix of the
modules used for the accomplishment of program P1,

M1 M2 M5

M1 (1, 1, 1) (2/3,1,3/2) (2/7,1/3,2/5)

M2 (2/3,1,3/2) (1, 1, 1) (2/5,1/2,2/3)

M5 (5/2,3,7/2) (3/2,2.5/2) (1, 1, 1)

The normalized weights are wP1 = (0.355679, 0.355679, 0.223543).
For program P2 the pairwise comparison matrix is,

M2 M3 M4

M2 (1, 1, 1) (2,5/2,3) (5/2,3,7/2)

M3 (1/3,2/5,1/2) (1, 1, 1) (1/2,2/3,1)

M4 (2/7,1/3,2/5) (1,3/2,2) (1, 1, 1)

Here the normalized weights arewP2 = (0.2434659, 0.2434659, 0.5687433).
Now the pairwise comparison matrix for program P3 is,

M4 M5 M6

M4 (1, 1, 1) (2/7,1/3,2/5) (1,3/2,2)

M5 (5/2,3,7/2) (1, 1, 1) (7/2,4,9/2)

M6 (1/2,2/3,1) (2/9,1/4,2/7) (1, 1, 1)

And the normalized weights are wP3 = (0.355679, 0.355679, 0.223543). the
pairwise comparison matrix for program P4,
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Table 6 Modular weights using FAHP

Modules P1 P2 P3 P4 Final Weights (wi )

M1 0.355679 … … 0.345638 0.345638

M2 0.355679 0.2434659 … … 0.2434659

M3 … 0.2434659 0.345638 0.2434659

M4 … 0.5687433 0.355679 … 0.355679

M5 0.223543 … 0.355679 … 0.223543

M6 … … 0.223543 0.308725 0.223543

M1 M3 M6

M1 (1, 1, 1) (2/9,1/4,2/7) (1,3/2,2)

M3 (7/2,4,9/2) (1, 1, 1) (7/2,4,9/2)

M6 (1/2,2/3,1) (2/9,1/4,2/7) (1, 1, 1)

The normalized weights are wP4 = (0.345638, 0.345638, 0.308725). Weights
for the modules corresponding to programs are given in Table 6. The final weights
are calculated with the help of maximum reliability assigned to the modules.

These calculated weights of module will be used in formulating optimization
problem to determine the release time for the modular software system.

4.3 Release Time Problem

Here, wewill determined the time for releasing the software into themarket.We have
first assigned the estimated values of the parameters obtained by MLE (Table 4)
to the MVF (Eqs. 4 and 5). Then we obtain the objective functions considering
all the modules. Let’s consider the cost component values as, C11 = 1.5,C12 =
22, C13 = 2,C14 = 4,C15 = 3 and C16 = 6. The costC21 = 9,C22 = 14,
C23 = 10,C24 = 11,C25 = 8 and C26 = 12. The fixed cost for all the modules is
C31 = 1,C32 = 2.5, C33 = 3,C34 = 4.5,C35 = 4 and C36 = 1. (Note: cost values
are taken in Dollars per unit)

Using Eq. (16), the optimization problem can be written as,

minZ(T ) = θ1 ∗
∑6

i=1(C1imi (T ) + C2i (mi (∞) − mi (T )) + C3imi (T ))

CB

− θ2 ∗
6∏

i=1

(
mi (T )

ai

)wi

Subject to (17)
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Table 7 Optimization results

Model 1 Model 2

Optimal release time 36.0345 weeks 28.3087 weeks

Cost for removing faults during testing phase 872.27 967.094

Cost for removing faults during operational phase 234.27 571.08

Testing cost per unit time 277.2 452.939

Total cost 1384.63 1991.114

Reliability 0.8270 0.7163

∑6
i=1(C1imi (T ) + C2i (mi (∞) − mi (T )) + C3imi (T ))

CB
≤ 1 (17)

where, T ≥ 0
For the development process total budget assigned is CB = $2000. As per devel-

opers, both the objective function carries equal priorities. Thus the value assigned to
θ1 and θ2 is 0.5. To calculate the release time, the problem (Eq. 17) is solved using
MATLAB software and modules are modelled using both proposed SRGMs (Eqs. 4
and 5). The optimal time obtained to release the software and its related optimal cost
is shown in Table 7.

From results we can conclude that, for Model 1, testing time has to be continued
up to 36.0345 weeks or software can be released any time after 36.0345 weeks and
the total cost incurred is $1384.63 and the reliability obtained is 82.27%. Whereas
on using Model 2 the optimal testing time for the software is obtained as 28.3087
weeks with total expected cost as $1991.114 and 71.63% reliability. Results obtained
from both the model support the budget assigned to them. The corresponding cost
function, reliability curve and the utility curve of the models have plotted in Figs. 5,
6, 7.

4.4 Sensitivity Analysis

This section discusses the impact of budget and different values of θ1 and θ2 on the
release time of the modualr software. To perform such study sensitivity analysis is a
very helpful approach. Due to it, we are able to understand the impact of independent
variables on the dependent ones in the same environmental conditions. Using this
study a developer can easily identify the key component they need to focus on. We
have determined the effect of modified budget on the optimal release time of the
software system. We have also analyse the change in release time for the different
values of θ1 and θ2. Analysis is done by considering two cases, in first when we
increased budget by 50%and in secondwedecrease the budget by 50%and calculated
the relative change.Relative change is defined as “the percentage change in dependent
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Fig. 5 Estimated cost function a Model 1 and b Model 2

quantity to the change in independent variable”. The calculated value of the release
time by sensitivity analysis is given in Table 8. The mathematical expression to
calculate the relative change is as follows,

RelativeChange = newvalue − oldvalue

oldvalue
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Fig. 6 Estimated reliability curve a Model 1 and bModel 2
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Fig. 7 Estimated utility function (Z(T )): a Model 1 and bModel 2



186 Neha et al.

Table 8 Sensitivity analysis for modified budget

Budget Changed
value

Testing
Time
(weeks)

Relative
change in
Testing
Time

Relative
change in
Cost

Relative
change in
Reliability

Increased by
50%

CB 3000 50.74 0.7923 0.03426 0.2774

Decreased
by 50%

CB 1000 34.59 0.2218 −0.01406 0.120

Case 1: Here we have increased the total budget by 50% and analysed the impact
of this increment on the total estimated time and also on the total development cost.
Same is discussed for 50% decrease in budget. The calculated testing time is given
in Table 8.

From the above sensitivity analysis results we have observed that increasing the
budget on perfect debugging during testing phase leads to 50.74 weeks of testing
which gives 91.51% reliability under the assigned budget. Whereas, decreasing the
budget implies that there is over consumption of the sources i.e., it is not possible to
develop the software in such less budget. Relative change of the changed budget is
plotted in Fig. 8.

Case 2: Now, case 2 discusses the different values of weight assigned to cost and
reliability objective functions respectively and check the impact of these changed
values on the reliability, testing time and on the development cost.

Fig. 8 Relative change in development budget
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Table 9 Sensitivity analysis for different values of θ1and θ2

θ1 θ2 Testing time
(weeks)

Relative change in
testing time

Relative change in
cost

Relative change in
reliability

0.1 0.9 28.7884 0.0169 −0.002 0.01

0.3 0.7 28.3080 −0.00002 −0.00008 −0.00001

0.5 0.5 28.3087 0 0 0

0.7 0.3 28.2175 −0.0032 0.0004 −0.0019

0.9 0.1 28.1055 −0.0071 0.00087 −0.0043

Table 9 shows that there is a slight difference in the testing time for each condition
of the weights assigned and thus minimal difference in the development cost and
reliability as well. Here we see that more weightage to the reliability implies higher
value of the reliability. Similarly, more weight assigned to the development cost
implies higher expenditure and lower reliability. Hence using θ1 and θ2 provides
developers more freedom to set the objectives and thus he may have a trade-off
between the development cost and the reliability. In the similar way the sensitivity
analysis for the model 1 can be discussed.

4.5 Implications

The proposed study leads to major implications for software developers. The most
relevant thing is that users desire software that is highly reliable and can accomplish
the task it is assigned for. Moreover, users expect a software product as early as
possible. On the other hand, developer is required to have reliable features in the
software that are demanded by the users at the time of release of the software. At
the same time the developer should make sure that the development cost must not
exceed the total budget assigned to the modular testing phase of the software. Taking
into consideration this trade-off, the proposed model optimizes the development cost
and reliability simultaneously and it provides developer a convincing and planned
process to develop software that meet the user’s requirements. There must be a good
communicationbetween the users and the software developers.Hence, studyprovides
a bridge to communicate with the users and understands their desired software. Study
also provides a platform to the developers to express the views in a more flexible or
wide way.
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5 Conclusion

Due to the incorporation of multiple functions to meet the user’s ever increasing
requirements software system is getting complex and critical day by day. This creates
challenging circumstances for developers to detect and correct the faults from such
complex software systems. In testing phase, detection of faults from such systems is
often costly and takes a lot of time. Therefore, to ease this phase, modular software
systems are used, where testing is done individually for each module which is small
written programs designed to perform the task, instead of testing whole software
in one go. Here, we have considered a modular software system for deciding the
testing time to release the software under minimization of total development cost
and maximization of software reliability simultaneously.

Initially, we have estimated the parameters of the given SRGMs based on testing
coverage and FRF. Where testing coverage is assumed to followWeibull distribution
for Model 1 and Exponentiated Weibull distribution for Model 2 whereas FRF is
constant for both the models. The models are validated via estimation on real life
dataset. To formulate themulti-objective optimization problemwe have usedmodule
weights which are calculated with the help of FAHP an MCDM technique that is
considered when multiple attributes are there in the decision making problem. Using
FAHP we are able to get the weights by providing decision makers a wide range to
express their views than expressing through crisp values. Hence obtained weights
are more significant to calculate the release time.

Using these fuzzy weights of the modules and the estimated values of the param-
eters we have formulated the Multi-objective optimization problem to obtain the
release time for the modular software system. We have solved the optimization
problem by using utility approach and assigned the weights to each objective func-
tion and converted the multi-objective problem to a single objective problem under
the budgetary constraint. Our study has shown significant results for optimizing
the release time of a modular software that will assist the developers by providing
appropriate methodology.

Limitation and Future Scope

The limitations of the proposed study that can be researched in future are:

• We have used a single version of the software for the optimization but often
software comes in multiple versions. Thus to deal with this issue proposed study
can be integrated by using multi-versions of the modular software system.

• The study solved themulti-objective optimizationproblemusing autility approach
concept. This can further be solved using some meta-heuristic approaches and
comparison can be made between the results of these approaches in future.

• Our modular software release planning problem involves cost components as
testing cost per unit time, cost of fixing an error in testing phase and cost of fixing
an error in operational phase whereas there are several costs that can influence
the total development cost such as penalty cost, opportunity cost etc. Hence for
further study such costs can also be included.
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• The study has considered FAHP techniques to calculate theweights of themodules
which deal with the uncertain information obtained by the decision makers.
Whereas, many a times such obtained information can be vague or ambiguous in
nature. Hence to overcome such problems extended fuzzy set theory is used. For
future we can incorporate these extended from of fuzzy concept for obtaining the
weights.
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Neutrosophic AHP Approach for Budget
Constrained Reliability Allocation
Among Modules of Software System

Vibha Verma, Sameer Anand, and Anu G. Aggarwal

Abstract The planning and implementation of software development process
should go hand in hand with the user expectations. It is crucial for firms to
develop products catering user needs along with software engineers and program-
mers opinion. Many models have been developed in literature to allocate reliabilities
to modules by setting system reliability goal based on hierarchy that inter-connects
the attitudes of both developers and users. In this Chapter, we have proposed a
hybrid reliability allocation model by integrating Analytical Hierarchical Process
and reliability maximization problem for the software system based on the budget
and reliability constraints. The comparison among functions, programs and modules
by users, engineers and programmers respectively at different levels of hierarchy is
performed under Neutrosophic environment to incorporate the vague and inconsis-
tent information available. The relative weight obtained for each module is further
used in optimization problem to finally allocate reliabilities to modules with the aim
of maximizing the overall reliability of the software system considering the finan-
cial constraints associated with the project. The proposed methodology has been
explained in detail and implemented through example problem.

Keywords Neutrosophic sets · Analytical hierarchical process · Reliability
allocation · Hierarchical structure · Optimization · Budget constraint

1 Introduction

Nowadays one of the major challenges faced by Information Technology (IT) firms
is to develop qualitative software systems due to its criticality in various fields like
medical, defence, education, transportation, social media etc. Any kind of careless-
ness may result into heavy losses in monetary terms or may also result into loss of
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life. Considering the importance and wide acceptability of software systems among
masses has increased competition in themarketwhich has led to remarkable improve-
ments in methods and tools used during testing and debugging process. This is the
prominent reason for the firms to continuously indulge themselves in the process
of maintaining and improving the quality of the software system. The basic and
important decisions regarding development of software like resource allocation, reli-
ability allocation, code design etc. is taken bymanagement during initial phases only.
Systematically planned development process helps in successful accomplishment of
the project.

It is necessary for developers to ensure that the developed software product meets
the expectations of users. Developers need to achieve considerable level of reliability
for their software products in order to produce a qualitative product. It is also crucial
for firms to develop products that cater user needs along with taking into account
the judgement of software engineers and programmers. Taking under consideration,
views of all the stakeholders helps to build a better software product with higher
reliability.

Defining reliability necessities for each module of a complex software system
is one of the most significant tasks. Assigning goals for individual modules helps
to achieve the software reliability goal. Module is considered to be smallest unit
of software development process and it is defined as small piece of written code
that when combined with other modules helps to execute a task. To achieve high
reliability level for software system developers need to identify the amount of time
and effort required on each module. Developers seek to allocate reliabilities during
initial phases of Software Development Life Cycle (SDLC) in most efficient and
well-organized manner.

Reliability allocation to components is a well explored area in hardware reliability
(Chang et al. 2009; Elegbede et al. 2003; Mettas 2000), but not much work has been
done in field of software engineering to develop methods of allocation. Few Models
have been developed in literature to allocate reliabilities to modules of software
system by setting software system reliability goal based on hierarchy that inter-
connects the opinions of developers (Software engineers and programmers) and
users.

Some of the well-known software reliability allocation models discussed in the
literature are Zahedi and Ashrafi (1991), Chatterjee et al. (2015), Yue et al. (2015),
Aggarwal et al. (2018). Zahedi and Ashrafi (1991) proposed a model for maximiza-
tion of software utility of modular software by obtaining relative weights of modules
through Analytical Hierarchical Process (AHP) (Satty 1980). Chatterjee et al. (2015)
used fuzzy numbers for developing preferencematrix at each level of hierarchy given
by Zahedi and Ashrafi (1991). Yue et al. (2015) used Dempster Shafer-theory to
maximize software utility of multimedia system for customers and Aggarwal et al.
(2018) used Maximum Variance Minimum Entropy-Ordered Weighted Averaging
(MEMV-OWA) to assign weights to modules based on the architectural hierarchy.

Apart from the hierarchy based models, some optimization models have also
been developed to allocate reliabilities among modules of the software system with
objective of either maximizing the overall reliability or minimizing the software
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development cost. Leung (1997) developed an optimization model for minimizing
cost of development and improving module reliability under uncertain operational
profile. Guan et al. (2009) proposed a dynamic programming algorithm to simul-
taneously minimize the cost of software development and attain reliability goal.
Malaiya (2014) also proposed an optimization problem to allocate reliabilities to
modules while minimizing the cost and attaining the reliability objective. Mettas
(2000) proposed an optimization problem to cater the reliability requirements of
each component and hence attain the overall goal.

After studying the recent and the past developments in this field we wish to
combine the advantages of multi criteria approach for allocation with the objective
of reliability maximization considering the constraints on budget. In this Chapter,
a hybrid reliability allocation model is proposed by integrating AHP and reliability
maximization problem for the software system based on the budget and reliability
constraints. AHP is based on the hierarchy proposed by Zahedi and Ashrafi (1991)
which helps to integrate opinions of developers with the users. Comparison among
functions, programs and modules by users, engineers and programmers respectively
at different levels of hierarchy is performed under Neutrosophic environment to
incorporate the vague, ambiguous, imprecise and inconsistent information available
and hence handle indeterminacy of the available information (Ali and Smarandache
2017; Haibin et al. 2010).

Neutrosophic Sets (NS) generalize the crisp, fuzzy and intuitionistic sets and
hence helps to make better decisions of real world problems. Human thinking cannot
always be expressed into crisp numbers, it could be vague, incomplete, inconsistent,
imprecise etc. hence transition of human preferences between truth, falsity and inde-
terminacy functions makes more well defined decisions. This kind of information
is not embraced in the traditional reliability allocation models using Multi-Criteria
Decision Making (MCDM). The relative weight obtained for each module is further
used in optimization problem to finally allocate reliabilities to modules by maxi-
mizing the overall reliability of the software system. Hence, the study conducted
through this chapter fulfils following objectives:

(1) To handle expert decisions through neutrosophic numberswhich helps in incor-
porating vague, ambiguous, imprecise and inconsistent information available
and hence handles indeterminacy of the available information.

(2) Obtain relative weights of modules for a software system that consists of
functions, programs and modules under neutrosophic environment based on
hierarchy that connects views of users, engineers and programmers.

(3) Maximization of overall reliability of software systemby allocating reliabilities
to modules considering the budget and reliability constraints using the relative
weight obtained through Neutrosophic AHP (NAHP).

(4) Combining the benefits of MCDM technique and Non-Linear Optimization.

The rest of the chapter is organised as follows: Sect. 2 discusses the literature
of all the related concepts. Section 3 presents the notations used throughout chapter
followed by detailed discussion of proposed methodology in Sect. 4. The proposed
methodology is implemented through an example in Sect. 5. Section 6 presents
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theoretical and managerial implications and then finally we conclude the study in
Sect. 7.

2 Literature Review

Here, we review the literature of the related concepts and discuss the recent and
past developments in the field of software reliability allocation. This helps in under-
standing the outlook behind the proposedmethodology. ReliabilityAllocation during
the initial design and development phase helps to effectively control the development
process. Therefore, the allocation problem needs careful attention of the developers.
Major work done for allocation of reliability to the modules of the software system
is listed in Table 1.

It can be observed that relativeweights formodules based on a structured hierarchy
have been computed under fuzzy, intuitionistic and pythagorean environment but
calculation of weights under neutrosophic environment helps in handling of incon-
sistent decisions and indeterminacy. Fuzzy concept was coined by Zadeh (1965) to
incorporate imprecise decisions through a membership function. Atanassov (1999)
generalised fuzzy sets through intuitionistic sets. These sets incorporate uncertain,
imprecise and incomplete judgements through membership and non-membership
function. Yager (2013) introduced Pythagorean fuzzy sets. It represents the general
form of intuitionistic fuzzy sets and satisfies the condition where the sum of squares
of the degree of belongingness and non-belongingness is less than and equal to one.

NAHP has several advantages over classical AHP, FAHP, IAHP and PFAHP
and overcomes their shortcomings. This is so because to handle imprecise, vague,
ambiguous, uncertain decisions NAHP considers three kinds of degree namely
“membership degree”, “non-membership degree” and indeterminacy degree” which
helps to account for the inconsistency and falsity in decisions. NS explicitly qualify
indeterminacy while the truth and false membership functions are independent. It
is considered to be originated from neutrosophy and its logic was introduced by
Smarandache (1995). NS came into existence to overcome the drawbacks of existing
sets by considering truth, falsity and indeterminacy functions and hence are better
able to represent reality. Haibin et al. (2010) described single valued NS in detail
with all its properties and algebraic operations. Later Alblowi et al. (2014) discussed
new concepts of these sets.

NS have been used together with AHP in various fields to record preferences of
decision maker at different levels of hierarchy. Decision makers assign priorities or
importance to the alternatives. Abdel-Basset et al. (2017) used neutrosophic theory to
provide linguistic preferences by decision makers at various levels of AHP for selec-
tion of best candidates. Abdel-Basset et al. (2018) combined SWOT analysis with
NAHP and validated their model for Starbucks company. Radwan et al. (2016) used
NAHP to select the best learning management System by handling indeterminacy
of information. Indeterminacy of information refers to the quality of information
as uncertain or vague. Seeing the relevance of NS theory in handling the real world
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Table 1 Reliability allocation models in software reliability

Researcher Methodology

Zahedi and Ashrafi (1991) Maximized customer utility using weights of modules obtained
from hierarchy of functions, programs and modules that connects
user and developers. AHP approach was used for weight
calculation

Aggarwal and Singh (1995) Reliability allocation through AHP

Leung (1997) Developed a optimization model for minimizing cost of
development and improving module reliability under uncertain
operational profile

Lyu et al. (1997) Applied reliability growth models to guide modules with multiple
applications and proposed reliability allocation procedure for the
single application component

Mettas (2000) Proposed an optimization problem to cater the reliability
requirements of each component and hence attain the overall goal

Kapur et al. (2003) Reliability maximization problem incorporating redundancy at
module level with budgetary constraints

Misra (2005) Optimization problem to obtain failure intensities of modules by
minimizing the development cost subject to reliability constraints.
The weight of importance is given by usage time of module

Guan et al. (2009) Proposed a dynamic programming algorithm to simultaneously
minimize the cost of software development and attain reliability
goal

Tian et al. (2009) Software utility maximized by developing nonlinear optimization
within the framework of genetic algorithm for multi-user software
system considering development cost using software fault tree
analysis to analyse relationship between modules and their
respective reliability requirements

Pietrantuono et al. (2010) Developed tool for identification of most important modules and
then to assign resources and allocate reliability efficiently

Li et al. (2012) Petri network approach is used to develop a model that can
account the changes in software system with time. Also reliability
is assessed using the dependency graph of modules. At last Petri
network and Analytical Network Process (ANP) are combined for
allocation purpose

Malaiya (2014) Proposed an optimization problem to allocate reliabilities to
modules while minimizing the cost and attaining the reliability
objective

Chatterjee et al. (2015) Used fuzzy numbers for developing preference matrix at each
level of hierarchy given by Zahedi and Ashrafi (1991). This
approach is known as Fuzzy AHP (FAHP)

Yue et al. (2015) Used DS-theory to maximize software utility for customers of
multimedia system. The weights for modules was obtained
through AHP

Aggarwal et al. (2018) Integrated FAHP and MEMV-OWA approach to assign weights to
modules based on the architectural hierarchy

(continued)
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Table 1 (continued)

Researcher Methodology

Verma et al. (2019) Intuitionistic AHP (IAHP) to allocate reliability to modules based
on structured hierarchy

Neha et al. (2019) Integrated Pythagorean Fuzzy Theory and AHP (PFAHP) to
allocate reliability to modules based on hierarchy given by Zahedi
and Ashrafi (1991)

Proposed approach Relative weight calculation of modules using NAHP and allocate
reliability to modules using obtained weights by reliability
maximization subject to budget constraints

problems through linguistic preferences it has been extended to be applied in the field
of software reliability for reliability allocation among modules of software system.

3 Notations

The Notations used throughout this chapter are listed as follows:

∼
ai j Single valued triangular neutrosophic number

Fj j th function of software system

Pk kth program

Mi i th independent module

I Number of modules in the software system

J Number of functions in the software system

K Number of programs in the software system

wi Final relative weight of i th module

w j Final weight of j th function

wk Final weight of kth program

wik Weight of i th module connected to kth program

wk j Weight of kth program connected to j th Function

Z Objective function

Ri Reliability of i th module obtained by NAHP

ai Fixed cost incurred during development of i th module

bi Variable cost required to achieve the considerable reliability for i th module

ci Penalty cost for i th module

ui (li ) Upper (lower) limit for reliability of i th module

R∗ Reliability target for software system

B Budget available for software development
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4 Reliability Allocation Methodology

The objective of this chapter is to allocate reliability among modules of software
system with the aim of maximizing the overall reliability of the software system
based on budgetary and reliability constraints. The objective is attained in two stages:

1. In first stage relative weight of each module is obtained using NAHP based
on a structural hierarchy of software system consisting of functions, programs
and modules that relates users, software engineers and programmers opinion
for software development. The hierarchy was initially developed by Zahedi and
Ashrafi (1991). The elements at each level of hierarchy are compared through
neutrosophic numbers which helps to incorporate inconsistent decisions and
incomplete information.

2. Then the relative weights of modules obtained in previous stage are used into
the optimization problem to allocate reliabilities to modules. The proposed
problem maximizes software system reliability while allocating reliabilities to
the modules of software system subject to budget available and target reliability
of the system. The problem consists of non-linear objective function with non-
linear constraints where the parameters can be easily set based on past literature
and industry practices (Elegbede et al. 2003; Kuo and Wan 2007; Leung 1997).

This section describes the proposed model that integrates NAHP with reliability
maximization problem for allocation of reliability among modules. The proposed
methodology is discussed in following 6 steps:

Step 1: Hierarchy Development

The proposed allocation problem is based on the structured hierarchy proposed by
Zahedi and Ashrafi (1991) for reliability apportionment among the modules of a
modular software during initial phases of software development. This hierarchy has
four levels that connect views and opinions of users with developers. The first level
represents the goal of the problem defined by the firm. The second level consists of
functions that are defined based on requirement and expectation of users from the
software. Next level has the programs designed by software engineers for accom-
plishment of desired functions. Last level comprises of independent modules i.e. the
piece of written code which combines to form programs. These codes are written by
programmers.

Here, it is possible that a particular module is connected tomore than one program
and a program is connected to more than one function. This hierarchy has been used
in many research models for the reliability allocation purpose (Chatterjee et al. 2015;
Aggarwal and Singh 1995; Neha et al. 2019; Verma et al. 2019). The hierarchy has
been also used for allocation purpose inmulti software systems considering reliability
goal of software at the first level. The general hierarchy for a single software system
is presented in Fig. 1.
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Fig. 1 Hierarchy for reliability allocation

Step 2: Neutrosophic Fuzzy Comparative Judgements

After decomposing the problem into different hierarchical levels, the neutrosophic
pair-wise comparison matrices are developed for evaluating functions, programs and
modules for their importance in the software system by the respective decision-
makers. These comparison matrices are developed under neutrosophic environment
using neutrosophic set (N ) which is given by truth (TN (x)), falsity (FN (x)), and
indeterminacy (IN (x)) membership functions for any point x in the space of points.
The function values are subset of [0−, 1+] but there is no restriction on the sum of
these functions. Mathematically, 0− ≤ sup TN (x)+ sup FN (x)+ sup IN (x) ≤ 3+.

The basic arithmetic operations like addition, subtraction, division,multiplication,
complimentary etc. performed on NS has been explained by (Alblowi et al. 2014;
Ali and Smarandache 2017; Haibin et al. 2010). Neutrosophic sets generalise clas-
sical sets, fuzzy sets, intuitionistic sets because it not only considers truth and falsity
membership functions but also considered indeterminacy function which makes is
more viable for real world problems. The scale used for comparison using neutro-
sophic fuzzy numbers has been given by Abdel-Basset et al. (2018) is presented in
Table 2. Neutrosophic numbers has been combined with AHP for assigning priorities
or weights to alternatives and selection purposes (Abdel-Basset et al. 2018, 2017;
Radwan et al. 2016). This helps in strategic judgements for development of products.

Step 3: Consistency Check of judgement Matrix

Before calculating relativeweight of eachmodule, it ismust to ensure the consistency
of judgement matrices at each level of hierarchy given by the respective decision-
makers. The consistency for neutrosophic judgement matrix is checked through
evaluation of Consistency Index (CI) and Consistency Ratio (CR) given by AHP
methodology (Satty 1980; Franek and Kresta 2014). If CR is less than 0.1 then the
matrix is said to be consistent. Consistency of the comparative judgements matrix
is calculated after converting the neutrosophic numbers to crisp values. This is done
using the score values given in Eq. 2. After obtaining comparison matrix with crisp
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Table 2 NAHP triangular
linguistic scale (Abdel-Basset
et al. 2018)

Scale Explanation

1̃ = 〈(1, 1, 1); 0.50, 0.50, 0.50〉 Equally preferable

2̃ = 〈(1, 2, 3); 0.40, 0.65, 0.60〉 Moderately lowly preferable

3̃ = 〈(2, 3, 4); 0.30, 0.75, 0.70〉 Slightly preferable

4̃ = 〈(3, 4, 5); 0.60, 0.35, 0.40〉 Moderately highly preferable

5̃ = 〈(4, 5, 6); 0.80, 0.15, 0.20〉 Strongly preferable

6̃ = 〈(5, 6, 7); 0.70, 0.25, 0.30〉 Very strongly preferable

7̃ = 〈(6, 7, 8); 0.90, 0.10, 0.10〉 Extremely preferable

8̃ = 〈(7, 8, 9); 0.85, 0.10, 0.15〉 Extremely highly preferable

9̃ = 〈(9, 9, 9); 1.00, 0.00, 0.00〉 Absolutely preferable

values, consistency is checked by following the steps followed in AHP for checking
consistency of judgement matrix. Franek and Kresta (2014) gave detailed view of
judgement scale and consistency check in AHP.

Step 4: Calculation of Module’s relative weights using NAHP Method

The weights for functions, programs and modules can be calculated from the consis-
tent neutrosophic pair-wise comparison matrix. First the matrix is converted to the
deterministic form using score and accuracy degree values. The score and accu-
racy degree is obtained from Eqs. 1, 2 respectively. For a neutrosophic number
∼
ai j=〈(a1, b1, c1), αã, θ∼

a
, β∼

a
〉 Score and accuracy degree are given as (Abdel-Basset

et al. 2018):

Score
(
ãi j

) = 1

8
[a1 + b1 + c1] × (2 + αã − θã − βã), Score

(
ãi j

) = 1/Score
(
ãi j

)

(1)

Accu
(
ãi j

) = 1

8
[a1 + b1 + c1] × (2 + αã − θã + βã), Accu

(
ãi j

) = 1/Accu
(
ãi j

)
.

(2)

Using the score values the deterministic matrix is obtained corresponding to each
neutrosophic value in the pairwise comparison matrices. Next the column entries
of the deterministic matrix are normalised by dividing each and every entry in the
column with the corresponding column sum. At last the total of row averages is
obtained. In this way, relative weights for alternatives at each level are obtained.

At first functions of the software system are compared to each other by users based
on their knowledge and requirement. The remainder of this step is relative weight of
functions. Then corresponding to each function the programs attached are compared
by software engineers. Here weight for each program is obtained for the functions
it is connected with. As a program may be attached to one or more functions. Then
at the last level of hierarchy modules are compared by programmers. A module
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may be connected to more than one program and hence weight for each module
corresponding to every program is obtained. Then at the end the final relative weights
of modules is calculated using the weights obtained for functions and programs. The
final relative weights are given by Eq. 3.

wi =
I∑

i=1

wk ∗ wik for k = 1, 2, . . . K (3)

where

wk =
K∑

k=1

w j ∗ Pkj for j = 1, 2 . . . J.

Step 5: Formulation of Optimization (Reliability Maximization) Problem

After obtaining final relative weights for the modules of the software system, we
move towards our aim of allocating reliability to each of the module such that the
overall reliability of the software system is maximized. Hence, we propose an opti-
mization problem (Eqs. 4–7) to maximize reliability subject to budget and reliability
constraints. This optimization problem uses the final weights of modules to quantify
reliability of the corresponding module.

Max Z =
I∏

i=1

Rwi
i (4)

s.t.

I∑

i=1

ai + bi Ri + ci (1 − Ri ) ≤ B (5)

I∏

i=1

Ri ≥ R∗ (6)

ui ≥ Ri ≥ li for i = 1, 2, . . . I (7)

Equation 4 represents the objective of maximizing the overall reliability; the Eq. 5
denotes the budget constraint that considers fixed cost of testing and debugging,
variable cost involved for improving the reliability and unreliability (penalty) cost
due to failures that may occur in operational phase. The combined cost of developing
all the modules for particular software system should not exceed the budget. The
Eq. 6 presents the reliability constraint for the software system. The target is set by
developers based on requirement analysis. At last the bound constraints are given
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through Eq. 7. This ensures that reliability of each module is within the acceptable
limit.

Step 6: Solution of Optimization Problem

The proposed optimization problem is solved using the module weights obtained
from NAHP, setting development budget and reliability goal and assuming the cost
parameter values of the budget constraints based on the literature and industry prac-
tices. The formulated non-linear constrained optimization problem to maximize
reliability of modular software is solved in MATLAB.

5 Numerical Illustration

The proposed methodology for allocating reliability to the modules of software
system based on budget and reliability constraints has been implemented using an
example case. As already discussed in previous section the methodology is divided
into two major steps. First, the relative weights for modules is calculated using
NAHP methodology then these relative weights of importance are used in optimiza-
tion problem for maximizing software system reliability and allocating reliability to
modules.

5.1 Relative Weights of Modules

The module weights are obtained by following the step by step process discussed in
Sect. 4. The structural hierarchy of the software system considered in this study
consists of 4 functions (F1, F2, F3, F4), 5 programs (P1, P2, P3, P4, P5) and 7
modules (M1, M2, M3, M4, M5, M6, M7) at each subsequent level respectively. The
decision maker comparing the corresponding functions, programs and modules in
their ability to influence the software system reliability is different for each level.

Users are responsible for assigning importance to functions, while software
engineers provide importance for programs and finally at the last level of hierarchy
programmers compare themodules based on their importance in the software system.
The linguistic preferences of decision makers are expressed in terms of neutrosophic
numbers. The scale used for comparison is due to Abdel-Basset et al. (2018). The
scale has been defined in Table 2. The authors explained neutrosophic triangular scale
corresponding to AHP scale given by Satty (1980). The authors also discussed the
basic algebraic operations for neutrosophic sets. Using the neutrosophic triangular
scale (Table 2) the pairwise comparison matrix for functions given by user is as
follows:
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Functions F1 F2 F3 F4

F1
∼
1

∼
4

∼
3

∼
5

F2
∼
4

−1 ∼
1

∼
2

∼
4

F3
∼
3

−1 ∼
2

−1 ∼
1

∼
5

F4
∼
5

−1 ∼
4

−1 ∼
5

−1 ∼
1

Users compared the four functions of the software system for its importance based
on their demand and expectations. The linguistic decisions are expressed in the form
of neutrosophic numbers. To obtain the weights of functions the NAHPmethodology
discussed in Sect. 4 is implemented. At first consistency of the matrix is checked and
then theweights are computed for the functions. The consistency results are presented
in Table 4. The weights obtained for functions based on pairwise comparison matrix
are F1 = 0.4454, F2 = 0.1916, F3 = 0.1715 and F4 = 0.0585. This represents the
weight matrix of functions in the software system. It is observed that first function
has the highest weight of importance while the fourth function has least weight of
importance among the four functions of the example case.

After obtaining weights for each function there is need to calculate weights of
each program connected to functions at the upper level. First function comprises of
three programs, second one consists of two programs while third function works on
execution of three programs and fourth one requires 4 programs for working. The
comparison matrix given by software engineer corresponding to each function as
follows:

Some programs are connected to more than one function for example we can
observe that program P1 is connected to first (F1) and fourth (F4) functions. These
matrices represent importance of programs for the execution of particular function.
After checking the consistency of these matrices relative weights are calculated. The
result of consistency for each function is given in Table 4. The weights obtained
for each program connected to one or more than one function is given in Table 3.
The Table 3 represents the program weight matrix for each function. For further
calculations it is assumed that if a program is not connected to that function than
its weight is zero. This implies that the program is not important for executing that
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Table 3 Weights allocated to programs

Program F1 F2 F3 F4

P1 0.06754 – – 0.3734

P2 0.45712 0.30304 – –

P3 0.13553 – 0.4699 0.3734

P4 – 0.10711 0.10187 0.0593

P5 – – 0.08461 0.0896

Table 4 Consistency result for pairwise matrix

Matrix λmax n CI (Random index) RI CR*

S 4.0768 4 0.0256 0.89 0.02

F1 3.0632 3 0.0316 0.58 0.05448

F2 2 × 2 Matrix is always consistent

F3 3.0843 3 0.0421 0.58 0.072

F4 4.0498 4 0.0166 0.89 0.0187

P1 3.0205 3 0.01027 0.58 0.0177

P2 2 × 2 Matrix is always consistent

P3 3.06041 3 0.0302 0.58 0.052

P4 4.1908 4 0.06362 0.89 0.07149

P5 3.0443 3 0.02216 0.58 0.0382

*CR < 0.10 = > Matrix consistent

function. From Table 3 it can be observed that P2 has highest weight corresponding
to first (F1) and second (F2) function while program P3 has highest weight for
function F3. But in case of function F4 program P1 and P3 have equal weight of
importance.

Now, there is need to determine the overall relative weight of the program since
some programs are connected to more than one function. The overall relative weight
for program is obtained by multiplying the weight matrix of programs (Table 3)
with the weight matrix of functions as shown in Q1. The final weight of programs
are P1 = 0.051926, P2 = 0.261664, P3 = 0.162797, P4 = 0.041462 and P5 =
0.019752. The final weights of programs show that program P2 has highest weight.
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0 0 0. 16480 0. 6980
0 0. 11701 0. 78101 0. 3950

0 0. 9964 0. 43730. 35531
000. 21754 0. 40303

0 0 0. 43730. 45760

0. 5950
0. 5171
0. 6191
0. 4544

0. 257910
0. 264140
0. 797261
0. 466162
0. 629150

Program Weight Matrix

Func on      
Weight Matrix

Final Program   
Weights 

Software development hierarchy considered for the study consists of modules
at the last level. These modules are independent in nature i.e. they are not further
connected. Module can be described as a written piece of code that helps in execu-
tion of the program. Here, we assume that first program consists of 3 modules,
second program is formed from 2 modules, third program requires 3 modules while
fourth program needs 4 modules and fifth program can be accomplished through 3
modules. The neutrosophic pairwise comparison matrix given by the programmers
for importance of module in influencing the reliability of the system are as follows:

One module may be connected to one or more program for example M2 is
connected to second (P2) and fourth (P4) programs. Before computing the rela-
tive weights, it is important to ensure that the pairwise comparison matrixes are
consistent. The consistency values for all the matrices are listed in Table 4.
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Table 5 Relative weights obtained for modules

Modules connected to programs P1 P2 P3 P4 P5

M1 0.47986 – – – 0.39508

M2 – 0.34721 – 0.39027 –

M3 0.1202 – – – –

M4 – 0.0710 0.48391 0.23895 0.18357

M5 0.065 – – – –

M6 – – 0.12347 0.1407 –

M7 – – 0.0759 0.08693 0.06456

The relative weights for modules connected to programs at upper level are deter-
minedbymethodologydiscussed inSect. 4 and are given inTable 5.Table 5 represents
the module weight matrix corresponding to each program. For final weight calcula-
tion, it is considered that the modules that are not connected to the program will be
assigned weight as zero. This signifies that the module is not part of that program.

Now, the final weights of modules are computed by multiplying the weight
matrix modules (Table 5) and final weights obtained for programs in Q1 is shown
inQ2. The final weights of modules are M1 = 0.032721, M2 = 0.107034, M3 =
0.0066242,M4 = 0.11089, M5 = 0.003375, M6 = 0.024934 and M7 = 0.017236.
We observe that M4 has maximum weight among all the seven modules of the
software system. Mathematically, it is given as:

0 0 0. 9570 0. 39680 0. 65460

00 0 0. 74321 0. 7041

0. 560 0 0 0 0

0 0. 0170 0. 19384 0. 59832 0. 75381

00 0 00. 2021

00 0. 720930 0. 12743

0 0 0 0. 805930. 68974

0. 257910

0. 264140

0. 797261

0. 466162

0. 629150

0. 632710

0. 439420

0. 573300

0. 98011

0. 2426600

0. 430701

0. 127230
Module Weight Matrix

Final Program 
Weights

Final Module 
Weights
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5.2 Optimization Problem Solution

The final relative weights of modules obtained from Q2 are used in the optimization
problem to allocate reliabilities to each module. These weights have been obtained
after integrating the users, software engineers and programmer’s expectations and
anticipations for software product. Going through the discussed procedure helps in
reliability allocation incorporating views of all the stakeholders. For our example
problem the optimization problem to maximize software system reliability by allo-
cating reliability to modules is as given in Eqs. (4)–(7). The optimization problem
for the example problem is given by Q3.

Max Z = R1
w1 ∗ R2

w2 ∗ R3
w3 ∗ R4

w4 ∗ R5
w5 ∗ R6

w6 ∗ R7
w7

s.t
7∑

i=1
ai + bi Ri + ci (1 − Ri ) ≤ 1000

7
�
i=1

Ri ≥ 0.90

0 ≤ Ri ≤ 1 i = 1, 2 . . . 7

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

Q3

where wi’s are relative weights of modules obtained through NAHP and all the other
parameters have been assumed. The budget of the software development has been
assumed to be 1000 units and reliability goal has been set to be 0.90. The assumed
values for budget constraint are as follows:

ai = 80 for i = 1, 2 . . . 7

b1 = 40, b2 = 50, b3 = 60, b4 = 20, b5 = 70, b6 = 50, b7 = 35

c1 = 20, c2 = 30, c3 = 35, c4 = 10, c5 = 40, c6 = 15, c7 = 20

ai is fixed cost of testing and debugging. So, it is assumed to be same for every
module.Ri’s are the decision variable representing reliability allocated to ithModule.

Solving the non-linear optimization problem Q3 in MATLAB, we obtain the
reliability allocated to each module as R1 = 0.9822, R2 = 0.9976, R3 = 0.9899,
R4 = 0.985, R5 = 0.9833,R6 = 0.9924 and R7 = 0.9746. Maximum reliability is
allocated to the second (M2)modulewhileminimumreliability is allocated to seventh
(M7) module. These reliability values not only depend on final relative weights
of modules but also depend on the assumed cost parameters. So, by changing the
parameters values various scenarios can be experimented. The overall reliability of
the software system is computed by multiplying reliability of all the seven modules.
The software system reliability is computed to be 0.9086. The budget utilized for
development of software is 883.0455 units.
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6 Implications

6.1 Theoretical Implication

The study states several theoretical and managerial implications. The proposed
methodology for reliability allocation among modules of the software system is
a straightforward and effective approach that uses neutrosophic numbers to compare
functions, programs and modules based on their importance to users, software engi-
neers and programmers respectively. Decision making under neutrosophic environ-
ment provides more flexibility to the ones involved in the process. A neutrosophic
set includes in itself all other existing sets like classical, fuzzy and intuitionistic sets
because it not only consist of truth and false membership functions but also considers
indeterminacy function. These three membership functions help numbers to repre-
sent real life situations by expressing support and objection evidences together. In
this way neutrosophic sets provide a broader aspect for making judgements. Due to
the importance of these sets it has been widely used in various fields (Abdel-Basset
et al. 2017; Radwan et al. 2016). Here, in this chapter the weights are obtained for
modules based on a structured hierarchy for reliability allocation helps to develop a
product that can cater the demands of user along with meeting the expectations of
developers.

Hence, the study highlights the importance of structured hierarchy that connects
opinions and thoughts of all the stakeholders of SDP. This hierarchy has been
discussed and illustrated in literature by many researchers (Aggarwal et al. 2018;
Chatterjee et al. 2015; Yue et al. 2015; Zahedi and Ashrafi 1991). The optimization
problem considers the cost of achieving the considerable reliability for each module
and also the penalty cost for any failure due to unreliability of the modules. This
makes optimization problem more realistic and appropriate for SDP. Based on the
total cost incurred management can take important decisions regarding testing of
the modules. Several other researches has considered the effect of reliability on the
overall cost of development (Chatterjee and Shukla 2017; Huang and Lyu 2005;
Kapur and Garg 1990).

Functions have been assigned importance by users based on their require-
ments, programs are given importance by software engineers based on its relevance
for function and modules are compared by programmers created on the need of
module for execution of a program. The final weights of modules are obtained
by following top-down hierarchy of software development given by experts for
reliability apportionment (Zahedi and Ashrafi 1991).

6.2 Managerial Implications

The final reliability allocated to the modules based on the weights obtained using
NAHP are R1 = 0.9822, R2 = 0.9976, R3 = 0.9899, R4 = 0.985, R5 = 0.9833,R6 =
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0.9924 and R7 = 0.9746. This result goes well with the literature of reliability allo-
cation among modules of software system (Chatterjee et al. 2015; Yue et al. 2015;
Zahedi and Ashrafi 1991). The methodology combines the useful effect of judge-
ments using neutrosophic numbers and AHPwith the optimization problem to maxi-
mize reliability of the software system subject to budget and reliability constraint.
The optimization problem consisted of non-linear objective and constraints with
simple parameters that can be easily quantified. The developer sets the reliability
goal that can be achieved by allocating reliabilities to the modules. The parameter
of the budget constraint can be altered, allowing the developer to investigate various
possible scenarios. Therefore, the IT firms can decide how to achieve the reliability
goals for software system. The proposed optimization problem uses the relative
weights of modules computed from NAHP and hence is able to capture the views of
both experts and users for software development.

Successful implementation of the proposedmethodology has been shown through
an example problem. The example exhibits reliability allocation to modules by going
through all the intermediary levels showing its ability to capture the software systems
complexity. In this study it was found that relative weight of modules, functions
and programs, cost parameters of optimization problem affect the reliability of the
software system. The lower values of reliability signify that thosemodules needmore
attention to improve the overall reliability. This attention can be in terms of time and
resource employed to develop that particular module.

Another attention-grabbing observation is that the calculation of weights using
NAHP based on the hierarchy considered for the study builds a linkage between
expectations, views and thoughts of users, programmers and software engineers.
The decisions using NS helps to incorporate vague, ambiguous, uncertain, biased
judgements. This also helps to tackle the decisions takenunder scarcity of information
or incomplete information available to decisions makers. Including customers/users
in the process help the management to increase their customer base in the market.

7 Conclusions, Limitations and Future Scope

Allocating reliabilities to modules during initial design and development phase is
very critical task of Software Development Process. This is so because the reliability
of individual modules determines the reliability of the software system and helps in
reliability goal attainment. This helps developer to learn about the module require-
ments and their importance in the software system in maximizing overall reliability.
After knowing about the reliability necessity for each module the developer plans
about resources and time needed for developing the module and hence the soft-
ware system. In this chapter, we proposed a hybrid approach by combining NAHP
methodology and proposed optimization problem for maximizing overall software
reliability to allocate reliabilities among the modules of the software system. Hence,
this chapter amalgamates the subjective and objective views about the software from
different stakeholders of the Software development project i.e. users, engineers and
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programmers present at different levels of hierarchy. The hierarchy evaluates the
importance of functions to users, importance of programs to software engineers and
importance of modules to programmers and finally the judgements at all the levels
are combined to obtain relative weights of modules. Hence, the final weights are
resulting from combination of decisions at all the levels.

Comparison of various alternatives using NAHP and incorporating relative
weights of module into the optimization problem seems to be very promising in
the determining the reliabilities of individual modules. This is so because the past
work in this field either uses AHP to prioritise modules and allocate reliability or
researchers have proposed optimization problems with the objective to either maxi-
mize the overall reliability of software system or minimize the software development
cost. These were the two prominent ways of reliability goal attainment for software
system. The simplicity and effectiveness of the methodology to comprehend the
relationship between modules, programs and functions makes it more efficient to be
widely accepted by the IT community. The methodology is of great help for software
developers during decision making process.

There are some limitations to the study; which opens path for future research. The
present study is based on preferences of single decision maker at each level. In future
the proposed model can be extended for more than one decision maker at a particular
level. The demographic diversities of the group members can positively affect the
decision making. Properly managed groups tend to produce quality decisions. The
weights can be calculated using various methods available in literature like Ordered
Weighted Average, Principal Component Analysis, distance methods and MCDM
techniques etc. NS can be used with different MCDM techniques. In particular it
can be employed with ANP to handle interdependencies of functions, programs and
modules. Also interval valued neutrosophic numbers can be used for comparisons
at different levels of hierarchy. Interval neutrosophic sets generalize all the other
sets such as fuzzy, interval valued fuzzy, interval valued intuitionistic and hence will
be able to create better decisions. The proposed study can also be conducted for
multi-software or multimedia software systems.
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Testing Resource Allocation for Software
System: An Approach Integrating
MEMV-OWA and DEMATEL

Rubina Mittal and Rajat Arora

Abstract In the process of resource allocation for software development, specific
amount of resources need to be assigned to differentmodules of a software application
from the available resources. To achieve this, it is essential to consider the various
quality characteristics of a software. The key criteria for gauging the quality attributes
of a software has been taken from the previous studies, practice and theory. The
present study, one of the multi-criteria decision making technique, Decision Making
Trial and Evaluation Laboratory (DEMATEL) is applied to determine the cause
and effect relationship between quality characteristics. This helps in selecting the
important characteristics and discarding the ones that are not so significant. The
outcomes of this study can be used to divide criteria into two groups namely cause and
effect groups and hence construct an Impact Relationship Map. Later, the maximal
entropy minimum variance ordered weighted averaging (MEMV-OWA) method has
been used to determine the module weights for resource allocation and ranking of
various modules based on conflicting nature of characteristics in order to allocate
the resources in a competent way. The detailed methodology has been illustrated
through a numerical example.

Keywords Resource allocation · SRGM · MCDM · DEMATEL · MEMV-OWA

1 Introduction

In today’s competent world, it is a challenge for the developers to use the resources
in an efficient manner so that the quality of the product can be improved. Hence,
resource allocation is a very crucial step of software development. In Resource allo-
cation, the given fixed amount of resources are assigned to different modules of
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a software application according to its need and importance. The process involves
apportioning the available amount of resources among different modules by taking
into consideration the quality characteristics of software system. It is an essential
topic of concern for both the developer and the ultimate user. It is one of the crucial
aspect to be considered during the development of a software application.

The major challenge faced while apportioning resources is that in what manner
the uncertain preferences of a decisionmaker should be handled for several attributes
of interest. Various development resources are expended during testing phase of a
software. The testing phase primarily consists of module testing, integration testing
and system testing. Therefore, it is extremely important for the development team to
decide how to effectively employ the available resources during software testing for
developing a reliable and quality software.

So far, resource allocation process has been done by eithermaximizing the number
of faults removed or minimizing the development cost subject to reliability and
resource constraints (Huang and Lo 2006; Khan et al. 2008; Kapur et al. 2009).
But, none of these studies focused on the importance of quality characteristics while
apportioning resources. They did not take into consideration the biased or subjec-
tive behavior of decision maker and the amount of information available. To bridge
this gap, the present study fulfills the following objectives (1) to shortlist the most
dominant/critical criteria influencing software quality (2) to exploit cause and effect
relationship between different quality characteristics using DEMATEL technique
(3) to obtain the relative weights of modules using MEMV-OWA approach and the
results obtained from DEMATEL.

The major challenge for developers is to identify the relative importance of
modules while considering various characteristics of interest. First, it is crucial to
understand the relationship between various characteristics such as functionality, reli-
ability, usability, efficiency, maintainability and portability and then based on that
relationship, the relative importance of modules is obtained. It is necessary for devel-
opers to incorporate the biased and uncertain preferences of the experts whilemaking
decision. To identify the relationship, a well-known multi-criteria decision making
technique called DEMATEL is used. To handle the biased nature of experts, MEMV-
OWA operator is used. This helps in maximizing the use of available information
and minimizing the variance.

In this way, maximizing the entropy can effectively utilize the uncertain infor-
mation of decision maker’s experience and minimizing the variance of the weight
vector is a potential way to avoid overestimation of the decision maker’s prefer-
ences. Various optimization problems have been studied in context of allocation viz.
traditional reliability redundancy allocation, resource allocation, life percentile opti-
mization using different techniques. Later, using expert’s opinion, the importance of
each of the shortlisted criteria in each of the four modules of software application is
obtained and a numerical is illustrated to demonstrate how a pre-specified amount
of resources are allocated to different modules.

Rest of the paper is organized as follows. Section 2 presents the review of liter-
ature of DEMATEL, MEMV-OWA and resource allocation. Section 3 discusses
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the detailed resource allocation methodology, a numerical example is illustrated
in Sect. 4 followed by conclusions and future scope in Sect. 5.

2 Literature Review

This section discusses the rationale behind the proposed study by discussing the
current and past studies in the area. Vast research has been done in context of
resource allocation problems using different techniques. Ohtera and Yamada (1990)
introduced software reliability growth model (SRGM) based on Non-Homogeneous
Poisson Process (NHPP) and discussed the time-dependent behavior of resource
expenditure spent during testing. They discussed two types of managerial problems
in software testing viz. testing resource allocation that deals with the best use of avail-
able testing resources during module testing and testing resource-control problem.
Yamada et al. (1995) considered two kinds of software testing-resource allocation
problems to make the best use of the specified testing-resources during module
testing and also introduced a NHPP based SRGM for describing the time-dependent
behavior of detected software faults and testing-resource expenditures spent during
the testing.

Hou et al. (1996) investigated the efficient allocation of resources for modular
software based on Hyper-geometric distribution based SRGM. Lo et al. (2002)
studied optimal testing resource allocation and reliability analysis of component
based software application. He proposed an analytical approach for estimating the
reliability of a component-based software under the assumption that the components
of a software are heterogeneous and the transfers of control between components
follow a discrete time Markov process. Apart from this, they also formulated and
solved two resource allocation problems. Lyu et al. (2002) studied how to allocate
the test resources in an optimal manner for software development. Different types of
reliability growth curves were used to model the relation between the component’s
failure rates and the cost required to reduce this rate.

Dai et al. (2003) presented a genetic algorithm for testing-resource allocation that
can be used in case of complex systems and also when there are multiple objectives
viz. minimizing cost and maximizing reliability while allocating finite resources.
Huang and Lo (2006) studied optimal resource allocation problem in modular
software system under reliability constraint. Further, an optimization problem is
discussed which minimizes the cost of software development when a fixed amount
of testing effort and a desired reliability objective are given using Lagrangemultiplier
method. Khan et al. (2008) used a Dynamic Programming approach for optimal allo-
cation of testing resources for modular software based on inflection S-shaped SRGM
with Exponentiated Weibull testing effort function. Kapur et al. (2009) considered
cost, testing effort and reliability for optimal resource allocation during module
testing using Genetic algorithm. Pietrantuono et al. (2010) used architecture-based
approach for testing time allocation.
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Kapur et al. (2010) proposed Two-dimensional allocation problem for modular
software. In order to take into consideration simultaneous effects, Cobb Douglas
production function is used. Akhtar et al. (2011) proposed an imperfect debugging
SRGM during testing and allocation of resources is done based on optimizing the
effort and reliability. Fiondella andGokhale (2012) used architecture-basedoptimiza-
tion in resource allocation process. Nasar et al. (2014) investigated various software
release policies and resource allocation based on dual constraints of cost and reli-
ability. Kumar and Yadav (2017) developed a model for optimally allocating effort
between detection and correction process during testing phase of software devel-
opment life cycle (SDLC). For this, flexible SRGM with testing effort is consid-
ered under dynamic environment. Okamura and Dohi (2018) allocated the testing
resources optimally using architecture-based SRGM. In this chapter, we considered
the relative modular weights obtained using integration of DEMATEL and MEMV-
OWA and software development cost in the testing-resource allocation problems
while maximizing number of faults removed.

The DEMATEL method was proposed by the Battelle Memorial Institute Fontela
andGabus (1976). Thismulti-criteria decisionmaking (MCDM) technique is applied
to analyze the relationship, impact of criteria on each other and to select the crit-
ical criteria among the set of criteria. The assessment of criteria is based on expert
decision. This methodology has been applied in multiple disciplines. Tzeng et al.
(2007) proposed hybrid MCDM model combining factor analysis and DEMATEL
to evaluate intertwined effects in e-learning programs by addressing the independent
relations among criteria with the help of factor analysis. Tsai and Chou (2009) used
DEMATEL in combination with ANP in selecting management systems for sustain-
able development in SME’s. They used this approach to construct inter-relations
among diverse criteria and obtain their weights through ANP. Further ANP is inte-
grated with Zero–one goal programming to achieve the organization goals while
simultaneously consideringgoals on resources.Changet al. (2009) integratedOWGA
operator and DEMATEL for prioritization of failures in a product Failure modes and
effects analysis to rank risk for failure problems.

Chang et al. (2011) used Fuzzy DEMATEL method for developing supplier
selection criteria. Zhou et al. (2011) used Fuzzy DEMATEL method for identi-
fying critical success factors in emergency management. Büyüközkan and Çifçi
(2012) integrated Fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate
green suppliers. BaykasoğLu et al. (2013) integrated fuzzy DEMATEL and TOPSIS
for truck selection problem of a land transportation company. Rochimah (2013) inte-
grated DEMATEL and ANP methods to calculate the weights of software quality
characteristics. Sadehnezhad et al. (2014) used combination of DEMATEL and
ANP with fuzzy approach to evaluate business intelligence performance. Govindan
et al. (2015) proposed Intuitionistic fuzzy based DEMATEL method in the domain
of supply chain. Su et al. (2016) used a hierarchical grey DEMATEL approach
to identify and analyze criteria and alternatives in incomplete information in the
domain of supply chain. Si et al. (2018) briefed about the various methodologies
and applications of DEMATEL technique But it has not been applied for allocating
testing resources during software development process. Integrating it with OWA
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operator helps to incorporate subjective behavior of decision maker. It also helps in
maximizing the available information and minimizing the variance.

OWA technique has been widely applied for determining weights. O’Hagan
(1990) used the concept of maximum entropy in fuzzy neuron. Yager (1993) first
introduced the term OWA for finding the weights. He later combined it with the
concept of maximum entropy or minimization of dispersion. Cheng et al. (2009)
applied OWA operator to combine multiple criteria into aggregated value of a single
criteria and further used these values for classification tasks. Later, Ahn (2012)
proposed a new weighing method known as minimizing distances from the extreme
points (MDP) wherein the OWA operator weights are so chosen that minimize the
expected quadratic distance with respect to the set of extreme points. Aggarwal et al.
(2017) proposed architectural based software reliability allocation using OWA.

All the research work on resource allocation in literature has developed an opti-
mization problem with the objective of minimizing cost or delivery time based
on a single criterion and maximizing number of faults removed or reliability (Lo
et al. 2002; Kapur et al. 2010). They didn’t consider the multiple characteristics in
a single problem. There are different aspects of software quality. The six important
quality attributes of the software considered in literature are Functionality, Relia-
bility, Usability, Efficiency, Maintainability and Portability (Rochimah 2013). Each
of these attributes can influence each other (Table 1).

In this paper, we allocate the available resources to different modules in a software
application based on multiple attributes of software quality. Here, we will propose a
novel hybrid model integratingMEMV-OWA andDEMATEL. This model addresses
the dependent and independent relationships among criteria through DEMATEL and
thus select the most dominant ones. This is graphically represented through Impact
Relationship map or digraph. In order to address the decision maker’s uncertain pref-
erences in resource allocation, the proposed OWAoperator takes into consideration a
bi-objective mathematical programming model incorporating both maximal entropy
and minimal variance. These are further used for computing the orness weights
of evaluation criteria (quality characteristics). The advantage of maximal entropy
minimal variance OWA operator is that it incorporates all the available information
and avoids over-estimation of preferences of a decision maker. The resulting scores
obtained for the characteristics represent their relative importance while evaluating

Table 1 Brief description of quality attributes

Code no. Quality attributes Definition

V1 Functionality Essential purpose of any product or service

V3 Usability Ability to use the program

V4 Efficiency Concerned with system resources used to satisfy desired
functionality

V5 Maintainability Effort needed to locate and fix a bug in an operational software
application

V6 Portability Capacity of a system to be used in diverse platforms
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different modules in software application. The proposed model is able to produce
effective evaluations for models particularly when there are intertwined and diverse
evaluation criteria.

3 Resource Allocation Methodology

Resource allocation among modules of the software system has been accomplished
integrating two techniques namely DEMATEL and MEMV-OWA. In this section,
we discuss the techniques and step-wise methodology.

3.1 DEMATEL Method

The DEMATEL method, originally proposed at The Battelle Memorial Institute
through its Geneva Research Centre (Fontela and Gabus 1976) is a logical way
for capturing cause and effect relationships between criteria and visualizing them
throughmatrices, impact relationmapor digraphs. The numerical value in the digraph
is indicative of the strength of the influence. This method helps in constructing a
comprehensible prototypical model which not only captures the direct influences
but also the indirect influences between multiple attributes (Wu and Lee 2007). This
method splits the relevant criteria into cause group and effect group to enable efficient
and accurate decision making. The procedure of DEMATEL can be summarized into
steps as follows (Seyed-Hosseini et al. 2006):

Step 1. First we need to build the hierarchy for resource allocation among modules
of the software based on quality characteristics.

Step 2. A pairwise-comparison matrix is constructed for different quality character-
istics of software based on expert judgement as follows:

• The pairwise comparison measure may bifurcates into four echelons where the
score of 0 represent “no influence”, 1 indicates “low influence”, 2 indicates “high
influence” and 4 is indicating “very high influence”.

• The initial direct relation matrix M is a matrix of order n obtained by pairwise
comparison of different criteria with respect to their influence by the decision
maker and the elements of matrix mij represent the degree to which criterion Vi

affects criterion Vj. Here, all entries in principal diagonal are zero.

Step 3. Let g denote the greatest element among row sums. Mathematically, it can
be written as:
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g = max

⎛
⎝

n∑
j=1

mi j

⎞
⎠ (1)

Step 4. The normalized direct relation matrix D can be obtained as

D = M/g (2)

This is also called by the name Direct and Indirect Relative Severity Matrix
(DIRSM).

1. The Total relation matrix TR can be obtained as

T R = D(I − D)−1 (3)

where, I denotes the identity matrix of order n.
Let tij represents the elements of Total relation matrix TR and let Ri and Cj

represent row sum and column sum of this matrix for all i, j = 1, 2,…,n.
2. A causal diagram can be constructed by plotting the ordered pairs (R + C, R −

C) where the horizontal axis (R + C) is called “prominence” and the vertical
axis (R – C) is termed as “relation”. Using the values of R+C and R – C, where
C is the sum of the columns and R is the sum of the rows of the DIRSM, a level
of influence and a level of relationship are defined.

The prominence is indicative of the importance of each criteria. On the other
hand, relation separates the criteria into cause and effect groups. The value of (R −
C) represents the severity of influence of each alternative criteriawhereas themeasure
(R + C) indicates the degree of relation between each alternative with one another.
The positive value of (R − C) represents that the criteria falls in the cause group and
its negative value indicates the belongingness to the effect group. The criteria which
is having greater effect on another criteria are under cause group and those which
are more influenced from the other criteria are listed under effect group.

The accurate decisions can be made with the help of causal diagram and by
identifying the difference between cause and effect criteria.

3.2 Ordered Weighted Averaging (OWA) Operator

The Ordered weighted averaging operator is of great use in solving Multi-criteria
decision making problems. Recently, it has been widely used in studying software
quality. Researchers have worked on various OWA operators for finding the associ-
ated weights. Yager (1993) was the first to introduce the concept of OWA operator
in 1988. Later, O’Hagan proposed the ME-OWA operator to determine the weighing
vector under the non -linear constraint of maximum entropy with the pre-specified
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orness level. The similar problem with minimum variance constraint was proposed
by Fullér and Majlender (2003).

The objective of using this operator is to take complete benefits of the existing
information and to remove the biasness of decision maker’s priorities.

Definition AnOWAoperator of dimension n is amapping F:Rn →Rwith associated
weighting vectorW= (w1,w2,w3,...,wn)T W= (w1,w2,w3,...,wn)T with the properties.

n∑
i=1

wi = 1; 0 ≤ wi ≤ 1, i = 1, 2, . . . , n (4)

and

F(a1, a2, a3, . . . an) =
n∑

i=1

wi ai (5)

where a1 is the largest element in the collection (Han and Deng 2018).

• Orness associated with OWA Operator: Let F be an OWA operator and W be
the weight vector given by W = (w1,w2,w3,...,wn)T then, the degree of “Orness”
associated with F is defined as

Orness(W ) = 1

n − 1

n∑
i=1

(n − i)wi = μ where, μ ∈ [0, 1]. (6)

The measure of Orness indicates whether the relationship between multiple
attributes shows an and-like or an or-like level. An Orness value μ close to zero,
then themultiple attributes are related by a higher and-like value indicating that the
decision maker is maximally non-committal. On the other hand, if orness is closer
to one, then the multiple attributes are related by a higher or-like value/behavior
indicating that the decision maker is maximally optimistic. If all the weights are
equal, in that case orness value is 0.5 indicating that the decision maker faces a
restrained assessment.

• Entropy (or dispersion) measure: This measure accounts for, to what extent the
information in an uncertain environment is utilized. For a given weight vector

W = (w1, w2, w3, . . . , wn)
T , dispersion(W ) = −

n∑
i=1

wi lnwi (7)

If only one component of weight vector is 1 and rest all are 0. It shows minimum
dispersion and disp(W) is zero. It represents that only one attribute is accountable in
the aggregation process.

When all the weights are equally likely, then disp(W) is maximum and equals
ln(n). It represents that all the attributes are accountable in the aggregation process.
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• Measure of Variance: This measure determines the variation in components of
weight vector for a given orness level and is defined as V 2(W ) = E

(
W 2

) −
(E(W ))2. The variance of weighting vector should be controlled in the process
of decision-making in order to avoid the overestimation of a single attribute.

• Maximum entropy-ordered weighted averaging (ME-OWA) Operator: ME-
OWA Operator was introduced by O’Hagan (1990) that maximizes the entropy
under pre-defined orness level. This operator has also been used by other
researchers for various purposes.Cheng et al. (2008), Fullér andMajlender (2001),
Chang et al. (2009) used this operator for reliability allocation. Mathematically,
it can be formulated as a mathematical programming problem as follows:

Maximize −
n∑

i=1

wi lnwi (8)

subject to
1

n − 1

n∑
i=1

(n − i)wi = μ; μ ∈ [0, 1] (9)

n∑
i=1

wi = 1; 0 ≤ wi ≤ 1, i = 1, 2, . . . , n (10)

This problem was solved by Fuller and Majlender using Lagrange multipliers to
find optimal weighting vector under maximum entropy. After solving, the obtained
weight vectors corresponding to the multiple attributes are given below:

lnw j = j − 1

n − 1
lnwn + n − j

n − 1
lnw1 (11)

or w j = n−1

√
w

n− j
1 w

j−1
n , for 1 ≤ j ≤ n (12)

where n is the total no. of attributes, and

wn = ((n − 1)α − n)w1 + 1

(n − 1)α + 1 − nw1
(13)

Minimum variance-ordered weighted averaging (MV-OWA) Operator.
This variant of OWA was proposed by Fuller and Majlender that minimizes the

dispersion of weighting vector under the constraint of orness level. Mathematically,
the MV-OWA problem can be formulated as:

Minimize V 2(W ) = 1

n

n∑
i=1

w2
i − 1

n2
(14)
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subject to
n∑

i=1

n − i

n − 1
wi = μ, 0 ≤ μ ≤ 1 (15)

n∑
i=1

wi = 1; 0 ≤ wi ≤ 1, i = 1, 2, . . . , n (16)

which can be solved analytically.

3.3 Maximum Entropy Minimum Variance-Ordered
Weighted Averaging (MEMV-OWA) Operator

Based on the above two concepts, a bi-objective programming problem is formulated
in order to find the weighting vector of MEMV-OWA Operator. It allows for getting
the advantages of bothME-OWA andMV-OWAOperators i.e. uncertain information
can be utilized to its maximum and at the same time over-estimation can be avoided.
The corresponding bi-objective programming model is given as follows:

Maximize −
n∑

i=1

wi lnwi (17)

Minimize V 2(W ) = 1

n

n∑
i=1

w2
i − 1

n2
(18)

subject to
1

n − 1

n∑
i=1

(n − i)wi = μ; μ ∈ [0, 1] (19)

n∑
i=1

wi = 1; 0 ≤ wi ≤ 1, i = 1, 2, . . . , n. (20)

The solution of the above programming model can be obtained by the Ideal-
Point Method (IPM) by converting the bi-objective model into single objective one.
Thismethodworks by evaluating the non-inferior alternatives based on their absolute
distances from the ideal point that is the hypothetical alternative closest to the optimal
solution. Under IPM method there’s no need to treat dependence among multiple
objectives as separable and hence this method is helpful in overcoming some of the
difficulties associated with interdependence between multiple objectives. In order to
arrive at solution, Lagrange multiplier method is used. The working of the method
is illustrated as follows:

Consider the following two objectives
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Z1 = Maximize −
n∑

i=1

wi lnwi (21)

and

Z2 = Minimize V 2(W ) = 1

n

n∑
i=1

w2
i − 1

n2
(22)

and their optimal values are z01 and z02.
The ideal point method is defined as

Minimize
∥∥Z − Z0

∥∥ = ∣∣Z0
1 − Z1

∣∣ + ∣∣Z0
2 − Z2

∣∣ =
(
Z0
1 −

(
−

n∑
i=1

wi lnwi

))

+
(
Z0
2 − 1

n

n∑
i=1

w2
i − 1

n2

)
(23)

The above constrained optimization problem will be solved by Lagrange
multiplier method and the corresponding Lagrange function is:

L(w, λ1,, λ2 =
(
Z0
1 −

(
−

n∑
i=1

wi lnwi

))
+

(
Z0
2 − 1

n

n∑
i=1

w2
i − 1

n2

)

+ λ1

(
1

n − 1

n∑
i=1

(n − i)wi − μ

)
+

(
n∑

i=1

wi − 1

)
(24)

where, λ1 and λ2 are real numbers.
Taking the partial derivatives of the above Eq. (21) with respect to wi , λ1 and λ2

and equating them to zero gives:

∂L

∂wi
= −2wi

n
− (1 + ln wi ) + n − i

n − 1
λ1 + λ2 = 0 (25)

∂L

∂λ1
= 1

n − 1

n∑
i=1

(n − i)wi − μ = 0 (26)

∂L

∂λ2
=

n∑
i=1

wi − 1 = 0 (27)

For i = 1 and i = n, Eq. (22) becomes

−2w1

n
− (1 + ln w1)λ1 + λ2 = 0 (28)
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−2wn

n
− (1 + ln wn) + λ2 = 0 (29)

This yields

λ1 = 2w1

n
+ lnw1 − 2wn

n
− lnwn (30)

And

λ2 = 2wn

n
+ 1 + lnwn (31)

Incorporating the above values of λ in Lagrange function yield a single objective
model with the objective function as

2

n
wi + lnwi = n − i

n − 1

(
2

n
w1 + lnw1

)
+ i − 1

n − 1

(
2

n
wn + lnwn

)
(32)

The weighting vector of MEMV-OWA operator can be obtained by solving the
above equations.

The step-wise methodology for testing resource allocation among modules of the
software systems has been demonstrated through flow chart (Fig. 1). The resources
are allocated in proportion to the weights obtained for the modules.

Fig. 1 Procedure of integrated MEMV-OWA and DEMATEL
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4 Numerical Example

In this section, wewill demonstrate the implementation of the proposedmethodology
with the help of an example.

At first, DEMATEL technique is used for determining cause and effect relation-
ship between different software characteristics. The hierarchy used for applying
DEMATEL has been demonstrated through Fig. 2. In the initial stage, we need
to obtain pairwise comparison matrices for quality characteristics from experts
(Table 2). The six criteria viz. Functionality, Reliability, Usability, Efficiency
Maintainability andPortability are denoted byV1,V2,V3,V4,V5 andV6 respectively.

The pairwise comparison measure may bifurcates into four echelons where the
score of 0 represent “no influence”, 1 indicates “low influence”, 2 indicates “moderate
influence”, 3 indicates “high influence” and 4 is indicating “very high influence”.
The scores in the matrix indicate the level of direct influence that one characteristic
exert on another. The higher score indicates greater influence.

Initial direct influence matrix D is obtained by normalizing the pair-wise compar-
ison matrix or average matrix by dividing the pair-wise comparison matrix by the
greatest row sum. Here all the principle diagonal elements are zero. The elements

Fig. 2 Hierarchy of a software application before applying DEMATEL

Table 2 Pairwise comparison of quality characteristics (relationship matrix)

V1 V2 V3 V4 V5 V6 Row sum

V1 0 1 3 4 4 3 15

V2 4 0 1 1 4 1 11

V3 1 2 0 3 2 4 12

V4 3 3 2 0 2 3 13

V5 1 1 3 2 0 4 11

V6 2 1 2 1 3 0 9

col_sum 11 8 11 11 15 15
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of matrix D represent the initial influence that an element exert and receive from
another.

The greatest row sum is denoted by g. In this example, the value of g is computed
as g = max{15, 7, 12, 9, 15, 11} = 15. The normalized direct relation matrix D can
be obtained using Eq. 2. The resulting matrix is given through Table 3.

The Total relationmatrix is obtained by infinite series of direct and indirect effects
of each element. It is computed by the formula TR = D(I − D)(−1) where D is the
normalized direct relation matrix obtained in Table 3. The entries in total relation
matrix represents how element i influence element j. Corresponding to our numerical,
the total relationship matrix is given in Table 4.

Table 5 presents the criticality of software quality characteristics and classifies
them into cause and effect group. The row sum R indicates the sum of direct and
indirect influences dispatching from element i to other elements and the column sum
C represents the sumof influence that the element receives fromother elements. Here,
R +C and R −C values are computed for each characteristic. Higher (positive) the
R−C value of the characteristic, higher will be its influence on other characteristics
and will be considered in cause group and hence classified as critical. According to
this, the priority order obtained for our examples is V 1 > V 2 > V 3 > V 4 > V 5 >

V 6.

Table 3 Normalized relationship matrix

V1 V2 V3 V4 V5 V6

V1 0 0.0666 0.2 0.2667 0.2667 0.2

V2 0.2667 0 0.0667 0.0667 0.2667 0.0667

V3 0.0667 0.1333 0 0.2 0.1333 0.2667

V4 0.2 0.2 0.1333 0 0.1333 0.2

V5 0.0667 0.0667 0.2 0.1333 0 0.2667

V6 0.1333 0.0667 0.1333 0.0667 0.2 0

Table 4 Total relationship matrix

V1 V2 V3 V4 V5 V6 R_Row
sum

C_Col
sum

V1 0.518007 0.478976 0.74749 0.771511 0.922073 0.935052 4.373109 3.164662

V2 0.628258 0.311245 0.527651 0.510063 0.788789 0.666131 3.432137 2.449921

V3 0.490367 0.446401 0.453994 0.597472 0.686985 0.818255 3.493474 3.431876

V4 0.642174 0.529945 0.625126 0.488407 0.760562 0.830963 3.877178 3.301288

V5 0.444481 0.364354 0.58936 0.51506 0.51861 0.778324 3.210189 4.298572

V6 0.441375 0.319 0.488255 0.418774 0.621553 0.489245 2.778203 4.517971
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Table 5 Cause-effect group and criticality of quality attributes

Characteristics R C R + C R–C CAUSE/EFFECT
GROUP

CRITICALITY

V1 4.373109 3.164662 7.537772 1.208447 CAUSE GROUP CRITICAL

V2 3.432137 2.449921 5.882058 0.982215 CAUSE GROUP CRITICAL

V3 3.493474 3.431876 6.92535 0.061598 CAUSE GROUP CRITICAL

V4 3.877178 3.301288 7.178466 0.575891 CAUSE GROUP CRITICAL

V5 3.210189 4.298572 7.508761 −1.08838 EFFECT
GROUP

NOT-CRITICAL

V6 2.778203 4.517971 7.296174 −1.73977 EFFECT
GROUP

NOT-CRITICAL

1.21
0.98

0.06

0.58

-1.09

-1.74

-2

-1.5

-1

-0.5

0

0.5
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C

R+C

IMPACT RELATIONSHIP MAP

R-C

Fig. 3 Cause-Effect diagram for each criteria

From the Impact Relationship map obtained in Fig. 3, those criteria whose R − C
value is negative are falling under effect group and are discarded for further analysis
since they are not critical (Han and Deng 2018). The above graph illustrates that the
first characteristic, functionality has the greatest R−C value viz. 1.21 and hence has
maximum influence on other factors. Therefore it is given the highest priority during
the resource allocation among modules. On the other hand, portability has the least
R − C value viz. -1.74 and given least preference during module allocation.

The hierarchy of software application after the critical criteria are shortlisted
through the application of DEMATEL technique has been shown in Fig. 4. The
criteria which are part of cause group are classified as critical and the others in effect
group are non-critical.
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Fig. 4 Hierarchy considering shortlisted criteria after application of DEMATEL

Table 6 Weighing vector of MEMV-OWA

Orness level (μ) w1 w2 w3 w4

0.5 0.25 0.25 0.25 0.25

0.6 0.34621 0.27196 0.21556 0.16703

0.7 0.44156 0.29748 0.17763 0.08379

0.8 0.59358 0.25727 0.10467 0.04509

0.9 0.76089 0.18528 0.04432 0.01040

1 1 0 0 0

Next, we use MEMV-OWA for determining optimal weights of modules. The
MEMV-OWA technique has been used to find the weights of the shortlisted criteria
(through DEMATEL) at different level of Orness viz. 0.5, 0.6, 0.7, 0.8, 0.9 and 1.
The results of weights at different orness level are shown in Table 6 that have been
obtained using Genetic Algorithm in MATLAB by solving Eqs. 17–20.

In our study, a software application is considered with four independent modules
viz. M1, M2, M3 and M4 respectively (Fig. 4). The relative importance of each
characteristic is different for different modules. In order to cater this, the ratings are
allocated corresponding to each characteristic for given modules using an Expert’s
opinion based on a Likert scale of 1 to 5 where 1 indicates least significant and 5 is
indicative of themost significant attributewith respect to amodule. Consequently, the
weights of themodules are computed by taking theweighted average of characteristic
rating and characteristic weights obtained corresponding to orness level of 0.8.

Let us consider an XYZ software company which has fixed amount of resources
worth Rs. 10 lakhs to be spent on the software application consisting of fourmodules.
The amount to be allocated to each module can be computed in proportion to the
normalized weights of modules as shown in Table 8 using the normalized weights
calculated in Table 7.
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Table 7 Normalised weights of modules

M1 M2 M3 M4 Criteria weights (μ = 0.8)

V1 5 4 5 5 0.594

V2 5 4 3 3 0.257

V3 4 5 3 2 0.105

V4 3 5 4 2 0.045

Normalised weights of modules 4.81 4.15 4.23 4.04

Table 8 Resource allocation
to modules

Modules Normalized weights Amount allocated from 10
lakhs

M1 4.805263 4,805,263

M2 4.149671 4,149,671

M3 4.231506 4,231,506

M4 4.036768 4,036,768

The above Table 8 tells us that out of total resources worth Rs. 10 lakhs, the
maximum amount was allocated to moduleM1 viz. 4,805,263 and the minimumwas
allocated to module M4.

5 Conclusion and Future Scope

The optimal apportionment of the resources is very essential due to their limited avail-
ability. In this paper, a hybrid method integrating MEMV-OWA and DEMATEL has
been proposed to first identify critical quality attributes for the software application
and then usingmulti-objective orderedweighted-averaging technique to rank the crit-
ical attributes for optimal allocation of resources. DEMATEL is also implemented to
make out the cause and effect categories and the quality criteria in the cause group are
identified as critical success factors. In this paper, four quality attributes are identified
as critical ones for the software application viz. Functionality, Reliability, Usability
and Efficiency. Through application of MEMV-OWA to rank the critical attributes
we obtained weighing vector that minimized the dispersion from equal waits along
with maximizing the entropy. In our results, maximum weightage is given for func-
tionality and the least weightage is given to usability for resource allocation. This
method provides a well- organized approach for resource allocation. This study can
be further extended to deal with uncertainty in expert’s judgement by application
of DEMATEL in fuzzy environs. Also for ranking it may be integrated with other
MCDM techniques viz. TOPSIS, VIKOR and PROMETHEE.



232 R. Mittal and R. Arora

References

Aggarwal AG, Verma V, Anand S (2017) Architecture-based optimal software reliability allocation
under uncertain preferences. Ann Comput Sci Inf Syst 14:3–12

AhnBS (2012) Programming-basedOWAoperator weights with quadratic objective function. IEEE
Trans Fuzzy Syst 20(5):986–992

Akhtar MS, Rafi U, Usmani MK, Dey D (2011) A review of aphid parasitoids (Hymenoptera:
Braconidae) of Uttar Pradesh and Uttarakhand, India. Biol Med 3(2):320–323
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Modeling Allocation Problem
for Software with Varied Levels of Fault
Severity

Gurjeet Kaur

Abstract The resource allocation problem considered in this chapter focuses on the
objective of maximization of removal of fault content from a modular software. The
allocation problem accounts the view wherein there is an ordering of the severity
of the faults on continuity of levels varying from the lowest level to the highest
level; lowest representing the easiest traceable and detectable fault in terms of time
and resources; while the highest severity level indicating a long time gap and more
resources for getting traced and rectified. For modeling the allocation problem, aid
of Software Reliability Growth Models is taken. The proposed Software Reliability
Growth model takes into consideration two important factors. First, the effect of time
distribution of testing-resource function is considered as reliability growth curve
depends strongly on this factor. Second, the growth model incorporates a novel idea
of faults being categorized under varied levels (1-Level being simplest severity level
and k-Level being hardest severity level) of fault severity. After the parameter esti-
mation and analyses of the goodness of fit criterions; the proposed testing resource,
varied severity fault modeling framework is used in resource allocation problem.
The allocation problem is subjected to availability of resources and budget with an
aspired level of reliability for each module. Also, for devising the optimal allocation
problem, it is taken that the cost of removing the fault from each module is depen-
dent on its severity. The formulated problem is a complex nonlinear programming
problem and is solved by a meta-heuristic technique of genetic algorithm. Numerical
illustrations are also taken in the chapter. Managerial implications, conclusion and
limitations of the proposed allocation modeling are highlighted at the end of the
chapter.
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1 Introduction

Software Reliability rests on the concept of error, fault, and failure. Error is the
cause of the fault. Fault implies that error is lying in the code, but unless and until
it is executed, it doesn’t turn into failure. And, failure refers to the case when the
expected outcome doesn’t come as per the input test case (Pham 2006). During the
execution of testing of software, the emphasis is on digging out maximum faults and
rectifying them so that the commitment of reliable software is well accomplished
by the software developer. So considering this objective of software developers, the
chapter focuses on the modeling of the optimization problem which maximizes the
total faults removed from a modular software system.

The modeling of optimization problem grounds on the fact that each fault lying in
the code of the software is not equally severe; that is to say that there may be faults
that are easily traceable to time or resources, while others may not be that simple to
get detected and resolved. This concept of severity of faults in software reliability
growth models (SRGMs) is modeled in literature by putting faults under discrete
groups of simple, hard and complex faults (Aggarwal et al. 2011; Kapur et al. 2010a,
b). However one can view the severity based on continuity of levels from simplest
to hardest. This chapter takes into account this view wherein there is an ordering of
the severity of the faults varying from the lowest level to the highest level; lowest
representing the easiest traceable and detectable fault in terms of time and fault of
highest severity level indicates a long time gap of getting traced and rectified. This
varied level of severity of faults is modeled for exponential SRGM.

With the modeling of the Non-Homogenous Poisson Process (NHPP) based Soft-
ware Reliability Growth Model by Goel and Okumoto (1979), several SRGMs are
modeled till date. One line ofmodeling SRGMs relates fault detection concerning the
testing time consumed (Musa 1975; Yamada and Osaki 1987; Kapur and Garg 1990;
Huang 2005; Aggarwal et al. 2019). But the finding of faults may be narrowly related
to the amount of effort or resources spent on testing and not just the amount of testing
time elapsed. Kapur et al. (2007) cited that the resources consumed can be personnel
based like manpower or it can be process based like CPU time. And because of the
complex dependence of testing-effort, SRGMs which implicitly try to relate fault
detection to testing-effort through the elapsed testing time may not adequately char-
acterize the fault detection process.Musa andOkumoto (1984), Trachtenberg (1990),
Musa et al. (1987) and Obha (1984a) showed that the effort or testing resource index
is a better exposure indicator for software reliability modeling than calendar time
because of the shape of the observed reliability growth curve depends strongly on
the time distribution of the testing-resource too. As a result, another line of modeling
SRGMs relates to testing resource-dependent SRGMs (Huang 2005; Kapur et al.
2011). This chapter too takes into consideration testing resource-dependent SRGM
with faults at varying severity levels.

This testing resource SRGM is then employed for modular software systems
wherein the huge complex software consisting of thousands of lines of code is broken
into small packets of programs calledmodules.When suchmodular software is tested
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then they are tested in three stages. The first stage is unit testing ormodule testing, the
second is integration testing and the third stage is system testing. In the first stage of
this testing process, one of the primary concerns is to allocate resources to modules
in an effective manner so that the concerned aim is met. These resource allocation
problems are extensivelymodeled in software reliability.Adetailed literatureworkon
the resource allocation problem is presented in the next section of the chapter. We are
modeling one such resource allocation problem wherein the aim is to maximize the
total faults removed in a modular software system. This optimal resource allocation
problem is subject to the availability of total testing resource expenditure and budget
constraints. Also, it is expected that a certain reliability level is achieved for each
module while determining the effective allocation of resources to the modules. The
formulated problem is a complex nonlinear programming problem that is therefore
solved by a meta-heuristic technique of genetic algorithm (Sastry 2007).

So, with the motive of modeling an optimal testing resource allocation problem
considering the varied severity level of faults in the software, the chapter workings
are highlighted as follows-

a. Modeling Time-Dependent SRGMwith faults of varied severity level (based on
Model framework given by Shatnawi and Kapur (2008).

b. Modeling Resource-Dependent SRGM with faults of varied severity level.
c. Modeling Maximization of total fault removal from modular software

constrained to budget, total resource expenditure available, and aspired reli-
ability level.

The chapter is organized as follows-Sect. 2 highlights the related research litera-
ture work. Section 3 considers the modeling framework of SRGM and the resource
allocation optimization problem. Section 4 briefs on the procedure adopted formodel
validation and solving optimal allocation problem formulated. In Sect. 5 numerical
illustration of validation of model on real data example and numerical illustration on
framed data for the optimization problem is taken. The chapter brings to a close with
Theoretical and Managerial Implications of the study, conclusion, and, limitations
and future scope of the study with Sects. 6, 7, and 8 respectively.

2 Related Research Work

2.1 NHPP Based SRGMs

Software reliability growth models are used to evaluate modular software quanti-
tatively and also to forecast the reliability of each of the modules during modular
testing. Various SRGMs, which considers the number of failures (faults recognized)
and the execution time (CPU time/Calendar time) have been talked about in the liter-
ature (Musa and Okumoto 1984; Kapur et al. 1999, 2011; Pham 2006). At the outset,
in 1979, an SRGMwas proposed by Goel and Okumoto where reliability growth was
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observed under a perfect debugging environment. With this advancement, plethora
of SRGMs now exists withmodifications in the assumption of the Goel andOkumoto
model (Obha and Yamada 1984; Kapur and Garg 1990; Kapur et al. 2012).

SRGMs with delay in the fault removal process

The above stated SRGMs speak about the immediate removal of a fault when it is
found, but in fact, circumstances are very far from this. The removal of any fault
is entirely dependent on several circumstances such as fault sophistication, method-
ologies for testing, efforts for testing, environment, etc. So, because of these vari-
ables, there could be a delay in removing the fault. Yamada et al. (1985) proposed a
modified exponential model assuming that the software contains two types of faults
namely, simple and hard. An S-shaped Reliability Growth Model with Two Types of
Errors was proposed by Kareer et al. (1990). A three-stage Erlang model proposed
by Kapur and Garg (1990) was used to model the third type of fault. Shatnawi and
Kapur (2008) later proposed a generalized model based on the classification of the
faults in the software system according to their removal complexity. Aggarwal et al.
(2012) proposed a generalized framework for software reliability growth modeling
concerning testing effort expenditure considering the faults types as simple, hard,
and complex. Zhu and Pham (2018) recently conducted experiments on two forms
of faults (dependent and independent) and showed that for both styles, certain faults
are not removable in the removal process. For the fault removal process, Aggarwal
et al. (2018) proposed a discrete software reliability growth model (SRGM) where
faults present in the software are not of the same form and can be categorized as
easy and hard faults depending on the effort and time taken to remove them. This
chapter proposes testing resource-dependent SRGM with faults at varying severity
levels (1-Level to k-Level).

2.2 Resource Allocation Problems

Many authors have investigated the problem of resource allocation in software reli-
ability (Ohetera and Yamda 1990, Kapur et al. 2011; Huang et al. 2004; Aggarwal
et al. 2012; Kaur et al. 2017). The main purpose of these resource allocation prob-
lems varied from theminimization of software development cost when the number of
remaining faults and the desired reliability objective is given, minimizing the mean
number of remaining faults in the software modules when the amount of available
testing resources is specified and vice versa, to maximizing the remaining number of
fault in modular software under budget and availability of resources constraint. Xie
and Yang (2001) studied the problem of optimal testing-time allocation for modular
software systems intending to maximize the operational reliability of a simple soft-
ware system. Optimal Testing Resource Allocation for Modular Software Consid-
ering Cost, Testing Effort and Reliability using Genetic Algorithm was proposed
by Kapur et al. (2009), Aggarwal et al. (2010) proposed optimization problem of
simultaneously allocating of time and resources Further, Aggarwal et al. (2011)
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developed the Testing Time and Resource Dependent Two Dimensional Software
Reliability Model for Faults of Simple, Hard, and Complex Severity and gave the
Related Optimal Allocation Problem. This chapter proposes a resource allocation
problem where faults are modeled with SRGMs taking into consideration varied
levels of severity of faults.

The modeling framework of the SRGM and optimal resource allocation problem
is presented in the next section.

3 Modeling Framework

This section takes into consideration the modeling framework of resource allocation
problems considering faults of varying severity levels. For this, first, time-dependent
SRGM with faults of varied severity level is provided. This modeling is based on
testing time SRGM with faults of varying severity levels by Shatnawi and Kapur
(2008). Then on the basis of this model, testing resource dependent SRGM with
faults of varied severity level is proposed.

3.1 Time-Dependent SRGM with Faults of Varied Severity
Level

The notations used in the modeling framework for time dependent SRGMwith faults
of varied severity level are:

k Total Number of Levels of Fault Severity
j Index counter for levels of severity of faults (j = 1, 2, … k)
aj Constant, representing the number of faults lying dormant at the beginning

of testing at jth level of fault severity
a Constant, representing the total number of faults lying dormant at the

beginning of testing
i Step counter at jth level of fault severity
m ji (t) Mean number of fault removed for level j at step i
m j (t) The cumulative number of faults removed by time t at jth severity level
bj The cumulative number of faults removed by time t at jth severity level
j Constant, fault detection rate per remaining fault at the jth level of fault

severity
pj Proportion of total number of faults lying dormant at the beginning of

testing at jth level of fault severity
m(t) Cumulative number of faults removed by time t

Apart from general assumptions of Non-Homogeneous Poisson Process SRGM
models (Pham 2006), the proposed model is based upon the following basic
assumptions:
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1. A software system is subject to failure during execution caused by faults
remaining in the system.

2. The number of faults detected at any time instant is proportional to the remaining
number of faults in the software.

3. The faults existing in the software are of varying severity levels. The level varies
from 1 to k; 1 being simplest to k being hardest.

4. The fault removal process is perfect and failure observation/fault isolation/ fault
removal rate is constant.

5. Each time a failure occurs, an immediate effort takes place to decide the cause
of the failure to remove it. The time delay between the failure observation and
its subsequent fault removal is assumed to represent the severity of the faults.
The more severe the fault more is the time delay.

Taking into consideration these assumptions, in this SRGM, the testing phase
consists of k different level of processing the faults–

1-Level: In this level, the fault is simplest to debug and there is a negligible time
gap in detection and correction of the fault. Therefore, one step differential equation
resulting from assumption 2 at 1-Level is–

d

dt
m11(t) = b1[a1 − m11(t)] (1)

Solving this linear differential equation with the initial condition m11(0) = 0 we
obtain

m1(t) = m11(t) = a1(1 − e−b1t ) (2)

(Fault severity 1-Level)
This model is known as Goel-Okumoto Model (1979).

2-Level: In this, the level of fault severity raises high from 1-level in debug and
removal. So there is a gap time gap between detection and execution. Considering
this, the two step processed differential equation for 2-level will be

d

dt
m21(t) = b2[a2 − m21(t)] (3)

and

d

dt
m22(t) = b2[m21(t) − m22(t)] (4)

Solving this linear differential equation with the initial condition m21(0) =
0,m22(0) = 0 we obtain

m2(t) = m22(t) = a2(1 − (1 + b2t)e
−b2t ) (5)
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(Fault severity 2-Level)
This model form is due to Yamada et al. (1983).

3-Level: The level of fault severity further raises high from the second level to the
third level. So there is more time gap between detection and execution. Considering
this, the three step processed differential equation for 3-level 3 will be

d

dt
m31(t) = b3[a3 − m31(t)], (6)

d

dt
m32(t) = b3[m31(t) − m32(t)] (7)

and

d

dt
m33(t) = b3[m32(t) − m33(t)] (8)

Solving this linear differential equation with the initial condition m31(0) =
0,m32(0) = 0,m33(0) = 0 we obtain

m3(t) = m33(t)= a3(1 − (1 + b3t + b32t
2

2! )e−b3t ) (9)

(Fault severity 3-Level)
The existing literature of SRGM term these three phases together as SRGM with

faults classification as simple, hard, and complex faults (Kapur et al. 1995).

4-Level: Further extending the level of severity from 3-level to 4-level, there is much
gap being observed between detection and removal of fault; thereby the four step
processed differential equation for 4-level will be-

d

dt
m41(t) = b4[a4 − m41(t)], (10)

d

dt
m42(t) = b4[m41(t) − m42(t)], (11)

d

dt
m43(t) = b4[m42(t) − m43(t)] (12)

and

d

dt
m44(t) = b4[m43(t) − m44(t)] (13)

Solving this linear differential equation with the initial condition
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m41(0) = 0,m42(0) = 0,m43(0) = 0,m44(0) = 0 we obtain

m4(t) = m44(t)= a4(1 − (1 + b4t + b42t
2

2! + b43t
3

3! )e−b4t ) (14)

(Fault severity 4-Level)
Going with a similar concept we can have k level of severity being modeled as-

k-Level:

mk (t) = mkk (t)= ak (1 − (1 + bk t + bk
2t

2

2! + bk
3t

3

3! + bk
4t

4

4! + · · · + bk
k−1t

k−1

(k − 1)! )e−bk t ) (15)

(Fault severity k-Level)
Incorporating the k-level of severity, the time dependent exponential SRGMwith

varied severity levels of fault is given by-

m(t) =m1(t) + m2(t) + m3(t) + m4(t) + . . .mk (t) = ap1
(
1 − e−b1t

)

+ ap2
(
1 − (1 + b2t)e

−b2t
)

+ ap3

(
1 −

(
1 + b3t + b3

2t
2

2!

)
e−b3t

)

+ ap4(1 − (1 + b4t + b4
2t

2

2! + b4
3t

3

3! )e−b4t )+ · · · + apk (1 − (1 + bk t + bk
2t

2

2!

+ bk
3t

3

3! + bk
4t

4

4! + · · · + bk
k−1t

k−1

(k − 1)! )e−bk t ) (16)

(Time-Dependent SRGM with faults of varying severity)
Where a is the total fault content in the software anda1 = ap1; a2 = ap2; a3 =

ap3; a4 = ap4; . . . ak = apk;∑k
j=1 p j = 1.

3.2 Testing Resource Dependent SRGM with Faults of Varied
Severity Level

The notations used in themodeling framework for testing resource dependent SRGM
with faults of varied severity level are:

k Total Number of Levels of Fault Severity
j Index counter for levels of severity of faults (j = 1, 2, … k)
aj Constant, representing the number of faults lying dormant at the

beginning of testing at jth level of fault severity
a Constant, representing the total number of faults lying dormant at the

beginning of testing
i Step counter at jth level of fault severity
W (t) Cumulative testing effort in the time interval (0, t]
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w (t) Testing resource intensity;w(t) = d
dt W (t)

m j (W (t)) The cumulative number of faults removed with consumption of
time−dependent testing resource by time t at jth severity level

bj Constant, fault detection rate per remaining fault at the jth level of fault
severity

pj Proportion of total number of faults lying dormant at the beginning of
testing at jth level of fault severity

m(W (t)) Cumulative number of faults removed with consumption of
time−dependent testing resource by time t

Apart from assumptions stated in Sect. 3.1, testing resource-dependent SRGM
with varied faults of varied severity level rests on:

1. The fault isolation/removal rate with respect to testing effort intensity is
proportional to the number of observed failures.

2. To describe the behavior of testing resource Exponential, Rayleigh, andWeibull
function has been used given by the following equations respectively-

W(t) = α · [
1 − exp(−β · t)] (17)

(Exponential function)

W(t) = α ·
(
1 − exp

[
−β

2
· t2

])
(18)

(Rayleigh function)

W(t) = α · (1 − exp
[−β · tγ ])

(19)

(Weibull function)
Yamada et al. (1986) presented a testing resource-dependent SRGM based on the

GO model assuming that the number of faults detected in (t, t +�t) per unit testing
effort expenditure is proportional to the remaining faults given as:

dm(t)
dt

w(t)
= b [a − m(t)] (20)

Solving the above equation with the initial condition w(0) = 0 and m(0) = 0 we
get

m (W (t)) = a (1 − e−bW (t)) (21)

Based on this concept and considering the time dependent SRGM with faults of
varied severity level given in Sect. 3.1, we have testing resource dependent SRGM
with faults of varied (i.e. k) severity level given is given by-
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m(W (t)) = m1(W (t)) + m2(W (t)) + m3(W (t)) + m4(W (t)) + . . .mk (W (t))

= ap1
(
1 − e−b1W (t)

)
+ ap2

(
1 − (1 + b2W (t))e−b2W (t)

)

+ ap3

(
1 −

(
1 + b3W (t) + b3

2W (t)
2

2!

)
e−b3W (t)

)

+ ap4(1 − (1 + b4W (t) + b4
2W (t)

2

2! + b4
3W (t)

3

3! )e−b4W (t))+ . . .

+apk (1 − (1 + bkW (t) + bk
2W (t)

2

2! + bk
3W (t)

3

3! + bk
4W (t)

4

4! + · · · + bk
k−1W (t)

k−1

(k − 1)! )e−bkW (t))

(22)

(Testing Resource dependent SRGM with faults of varied severity level)
Where a is the total fault content in the software anda1 = ap1; a2 = ap2; a3 =

ap3; a4 = ap4; . . . ak = apk;∑k
j=1 p j = 1.

3.3 Modeling Resource Allocation Problem for Maximizing
the Total Fault Removal from Software

The notations that are used for the resource allocation problem are:

N Number of modules
K Level of severity
J 1, 2, 3 … k; Simplest faults i.e. 1-Level to Hardest fault i.e. k–Level
I Module, 1, 2, … N
mi(Wt) Mean value function for ith module
bji Constant fault detection rate for jth fault type in the ith module
aji Constant, representing the number of jth fault type lying dormant in the

ith module at the beginning of testing,
cji Cost of removing jth fault from ith module
Wi Testing effort for ith module
Ri Reliability of ith module
B Total cost of removing different types of faults
W Total testing resource expenditure

The resource allocation problem considered in this chapter focuses on the objec-
tive of maximization of removal of fault content from a modular software. For
devising the optimal allocation problem it is taken that the cost of removing the
fault from each module is dependent on its severity. That is to say, if the fault is of
1-Level then the cost of removing it will be less than the cost of removing the fault at
2-Level and so on; therefore the cost will be highest for the kth level of fault severity.

Therefore, the problem of maximizing the faults of each of the N independent
modules whose failure process is modeled by the SRGM proposed in the Sect. 3.2
such that reliability of each module is at least R0 is formulated as:
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Maximize

m(W ) =
N∑
i=1

mi (Wi ) =
N∑

1=1

a1i
(
1 − e−b1i Wi

)
+

N∑
i=1

a2i
(
1 − (1 + b2i Wi )e

−b2i Wi
)

+
N∑
i=1

a3i

(
1 −

(
1 + b3i Wi + b3i 2Wi

2

2!

)
e−b3i Wi

)

+
N∑
i=1

a4i

(
1 −

(
1 + b4i Wi + b4i 2Wi

2

2! + b4i 3Wi
3

3!

)
e−b4i Wi

)
+ . . .

+
N∑
i=1

aki (1 − (1 + bkiWi + bki 2Wi
2

2! + bki 3Wi
3

3! + bki 4Wi
4

4! + · · · + bki k−1Wi
k−1

(k − 1)! )e−bki Wi )

(23)

Subject to:

N∑
i=1

(C1im1i (Wi ) + C2im2i (Wi ) + C3im3i (Wi ) + C4im4i (Wi ) + . . .

+ Ckimki (Wi )) ≤ Bi = 1, 2 . . .N (24)

N∑
i=1

Wi ≤ W i = 1, 2, . . . N (25)

Ri ≥ R0 i = 1, 2, . . . N (26)

Wi ≥ 0 i = 1, 2, . . . N (27)

(-Resource Allocation Problem with Faults of Varied Severity Levels)
For evaluating the reliability, we are using the measure of defining software relia-

bility at time t as given by Huang et al. (2004); that states “the ratio of the cumulative
number of detected faults at time t to the expected number of initial fault content
of the software.”, i,e. the reliability expression for the solving Optimal Allocation
problem is taken by the expression of the form

Reliability = R(W (t)) = m(W (t))

a
(28)

The above-formulated problem is a complex nonlinear problem otherwise not
solvable by analytical mathematical tools and is solved by the Genetic Algorithm
described in the next section. Considering the case of five modules we have solved
the above problem by taking 4-levels and 5-levels of fault severity via numerical
illustration shown in Sect. 5.2.
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4 Solution Methodologies

4.1 Parameter Estimation

It should be noted that software reliability growth models become useful only when
if it is possible to estimate their parameters. For validating the model described in
the above section, parameter estimation is done on actual software failure data. The
proposed models presented in the chapter are non-linear and presents extra problems
in estimating the parameters. SPSS Regression Models enables the user to apply
more sophisticated models to the data using its wide range of nonlinear regression
models. For the estimation of the parameters of the proposed models, the Method
of Least Square (Non-Linear Regression method) has been used. To determine how
good the model is, the goodness of fit measures of Mean Square Error (MSE) and
Coefficient of Multiple Determination (R2) is used. R2 measures the percentage of
the total variation about the mean accounted for by the fitted curve. It ranges in value
from 0 to 1. Small values indicate that the model does not fit the data well. The larger,
the better the model explains the variation in the data (Kapur et al. 1999). The lower
MSE indicates less fitting error, thus better goodness of fit.

4.2 Genetic Algorithm

We are using Genetic Algorithm (GA) to solve the resource allocation problem
presented in this research paper. GA stands up as a powerful tool for solving search
& optimization problems (Goldberg 1989). The reason behind choosing the genetic
algorithmas the solving tool is that the optimal effort allocationproblem is of complex
nonlinear nature.

GA always takes into consideration a population of solutions. Since GA can be
applied to solve any kind of problem, therefore, before using GA’s, there is no partic-
ular requirement on the problem.GeneticAlgorithmbeginswith the initial population
of solutions, which are represented as chromosomes. For the total testing time given
as W, GA generates the initial population randomly. It initializes to random values
within the limits of each variable. When we talk about the Fitness of a Chromo-
some, then, it implies measuring the quality of the solution, which it represents in
terms of several optimization parameters of the solution. A fit chromosome means a
better solution. The objective of allocation problem along with the penalties of the
constraints, which are not met, forms the fitness function of GAmethodology used in
this chapter. Selection refers to the process of choosing two parents out of the popu-
lation for crossover. A higher fitness function suggests that the chance an individual
has to be selected is more. Crossover refers to the process of considering two-parent
solutions and producing two similar chromosomes. This is done by swapping sets of
genes, with the hope that at least one child will have genes that improve its fitness.
Mutation helps in preventing the algorithm from getting trapped in a local minimum.
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Further, mutation serves the role of recovering the lost genetic materials, along with
randomly disturbing genetic information.

GA is a meta-heuristic iterative algorithm. The procedure taken for solving the
optimal resource allocation problem is as follows (Sastry 2007; Aggarwal et al.
2012).

a. Start the genetic algorithm procedure by coding the objective function along
with the constraints stated in Sect. 3.3 (Eqs. (23) to (27)) as a Matlab file.

(Step No. 1)
b. Generate a randompopulation of chromosomes. This is obtained by the heuristic

method of GA by assigning random values within the limits specified in the
constraints of allocation problem.

(Step No. 2)
c. For each chromosome in the population, evaluate the fitness function coded in

Step No.1
(Step No. 3)

d. By repeating the following steps, create a new population until the new
population is complete:

(i) From a population, select two parent chromosomes randomly as per their
fitness function. This is called as selection procedure in GA.

(ii) With a crossover probability, cross-over the parents, to form new
offspring (children). In case, no crossover is performed, then, offspring
is the exact copy of parents. This crossover process is vital for producing
the next iteration of GA.

(iii) With a mutation probability, at each locus (position in chromosome)
mutate the offspring. Mutation probability is kept low in GA.

(iv) Place new offspring in the new population. A new iteration is on its way
by the process of selection, crossover and mutation.

(v) For the next iterations, use this newly generated population.
(vi) Test the case that if the termination condition of the iterative process

is reached or not. In case the end condition is satisfied (that can be the
number of generations satisfiedor negligible improvement infitness func-
tion of the subsequent generated populations etc.), stop, and return the
best solution in the current population.

(Step No. 4)

e. Continue performing step 3 and Step 4 till an optimal solution is obtained.

(Step No. 5)
With this description, the numerical illustration of the proposed model of SRGM

(as given by Eq. (22)) and optimal allocation (given by Eqs. (23) to (28)) is put
forward in the next section.
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5 Numerical Illustration

In this section, the mathematically derived SRGMwith varied levels of fault severity
is validated on real data example. Further, the resource allocation optimization
problem is solved on a numerically framed case data example.

5.1 Model Validation

Software reliability growth models become useful only when if it is possible to
estimate their parameters. For validating the model described in Sect. 3, parameter
estimation is done on actual software failure data.

The parameter estimation is carried out as on a data set considering three cases
which are as follows-

Case 1: It takes into consideration estimation of time dependent SRGM as given
by Eq. (16). We have carried out estimation of Eq. (16) by putting k = 1, 2, 3 and
4. In this we have presented a comparative analysis on the basis of level of severity
of faults. That is to say we have compared four time dependent SRGMs obtained by
Eq. (16) at 1-Level, 2-Level, 3-Level and 4-Level respectively on the Data Set.

Case 2: It takes into consideration estimation of time and resource dependent
SRGM with faults of varied severity as given by Eqs. (16) and (22). A comparative
analysis on the basis of time and resource dependent SRGM with faults of varied
level severity is obtained in this case by putting k = 3 in Eqs. (16) and (22) the data
set.

Case 3: It takes into consideration estimation of resource dependent SRGM with
faults of varied level severity as given by Eq. (22). We have carried out estimation
of Eq. (22) by putting k = 1, 2, 3, 4 and 5 respectively. In this we have presented a
comparative analysis on the basis of level of severity of faults. That is to say we have
compared five resource dependent SRGMs obtained by Eq. (22) at 1-Level, 2-Level,
3-Level, 4-Level and 5-level respectively on a data set.

We have carried out the parameter estimation on the data set cited in Ohba (1984b)
(DS-1). The software was tested for 19 weeks during which 47.65 computer hours
were used and 328 faults were removed.

Case 1: Estimation of Time-Dependent SRGM with faults of varied level of
severity

We have estimated the dataset by considering time-dependent SRGM, as stated in
Sect. 3.1 with levels of fault severity as four levels (i.e. taking k = 4). That is, we are
considering that faults are classified from severity 1-level to 4-level; 1-Level being
the simplest level of fault to be identified and 4-Level indicating the hardest level
of fault detection and removal. The comparative analysis is done concerning levels
of severity of faults; i.e. the four software reliability growth models are compared
considering the estimation of the dataset as SRGMwith only 1 level of fault severity,
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SRGM with 2 levels of fault severity, SRGM with 3 levels of fault severity, and
SRGM with 4 levels of fault severity.

The parameters are estimated by the non-linear Least Square technique with the
aid of the software package of SPSS. The results are shown in Table 1.

The goodness of fit measures used is Mean Square Error (MSE) and Coefficient
of multiple determination (R2). A high value of R2 and a low value of MSE is
an indication of a good fit. The comparison results of the time-dependent SRGMs
considering varied levels of fault severity are shown in Table 2 and Figs. 1, 2, 3, 4.

Based on the value of R2 and MSE it is evident that modeling SRGM on this
dataset with 4 levels of fault severity gives better estimation results as compared
with 1, 2, or 3 levels of fault severity.

Table 1 Parameter Estimates for DS-1; Time dependent SRGMwith varied levels of fault severity
(k = 1 to 4)

Time dependent SRGM A b1 b2 b3 b4

1-Level of
fault severity (k = 1)

760.5342 0.0310

2-Level of
fault severity (k = 2)

431.2673 0.1375 0.1386

3-Level of
fault severity
(k = 3)

378.6730 0.5090 0.0630 0.2580

4-Level of
fault severity
(k = 4)

380.4156 0.3278 0.1882 0.0010 0.3450

Time dependent SRGM p1 p2 p3 p4

1-Level of fault severity
(k = 1)

2-Level of fault severity
(k = 2)

0.2709 0.7291

3-Level of fault severity
(k = 3)

0.1670 0.0010 0.8320

4-Level of fault severity
(k = 4)

0.2480 0.0010 0.0410 0.7100

Table 2 Goodness of fit
measures for DS-1; Time
dependent SRGM with varied
levels of fault severity (k = 1
to 4)

SRGM with varied levels of fault severity R2 MSE

1 Level of fault severity (k = 1) 0.986 158.264

2 Level of fault severity (k = 2) 0.991 123.562

3 Level of fault severity (k = 3) 0.993 114.702

4 Level of fault severity (k = 4) 0.994 109.287
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Fig. 1 Goodness of fit curve
(Time dependent SRGM)-
DS1 with 1 level of fault
severity
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Fig. 2 Goodness of fit curve
(Time dependent SRGM)-
DS1 with 2 level of fault
severity
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Fig. 3 Goodness of fit curve
(Time dependent SRGM)-
DS1 with 3 level of fault
severity
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Fig. 4 Goodness of fit curve
(Time dependent SRGM)-
DS1 with 4 level of fault
severity
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Case 2: Estimation of Time-Dependent SRGM and Testing Effort Dependent
SRGM with faults of varied level of severity

We have estimated the dataset by considering levels of fault severity as three levels
(i.e. taking k = 3). That is we are considering that faults are classified from severity
1-level to 3-level; 1 Level being the simplest level of fault to be identified and 4 Level
indicating the hardest level of fault detection and removal. The comparative analysis
is done based on testing time SRGM and testing resource SRGM, i.e. the models are
compared considering the estimation of the dataset as SRGM with 1, 2, and 3 levels
of fault severity related to time and testing resource respectively. We have used the
exponential distribution function for parameter estimation of the testing resource.
The values of the parameters obtained by the non-linear Least Square technique are
α = 503.993; β = 0.005. Using these estimates, the parameters of effort based
SRGM are obtained. The parameters estimated results are shown in Table 3. The
comparison results of the time and resource-dependent SRGM for data set DS-1
considering varied levels of fault are shown in Table 4 and Figs. 5 and 6.

Based on the results of the goodness of fit test for DS-1, it is obtained that the
accuracy of estimation of time-dependent SRGM improves with the level of fault
severity. This goodness of fit gives better results when testing resource-based SRGM
is considered.

Case 3: Estimation of Testing Resource Dependent SRGMwith faults of varied
level of severity

In this case, to measure the performance of the testing resource model with faults of
varying levels of severity given in Sect. 3.2, Eq. (22).

We have estimated the dataset by considering resource-dependent SRGM with
levels of fault severity as five levels (i.e. taking k = 5). That is we are considering
that faults are classified from severity level 1 to 5; 1-Level being the simplest level
of fault to be identified and 5-Level indicating the hardest level of fault detection and
removal. The comparative analysis is done with respect to levels of severity of faults;
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Table 3 Parameter dstimates for DS-1; testing time SRGM and testing resource SRGMwith faults
of varied severity level

a b1 b2 b3 p1 p2 p3

1-Level of fault severity

Time-dependent SRGM 760.5342 0.0310

testing resource dependent
SRGM

871.9494 0.0110

2-Level of fault severity

Time-dependent SRGM 431.2673 0.1375 0.1386 0.2709 0.7291

testing resource dependent
SRGM

423.2818 0.3380 0.0629 0.0747 0.9253

3-Level of fault severity

Time-dependent SRGM 378.6730 0.5090 0.0630 0.2580 0.1670 0.0010 0.8320

testing resource dependent
SRGM

384.8269 0.0165 0.4671 0.1031 0.0010 0.1520 0.8470

Table 4 Goodness of fit measures for DS-1; Time versus resource dependent SRGM with faults
of 1, 2, and 3 levels of severity

Time-dependent SRGM versus resource dependent SRGM with varied levels
of fault severity

MSE R2

1 Level of fault severity Time-dependent SRGM 0.986 158.264

testing resource dependent SRGM 0.986 157.631

2 Level of fault severity Time-dependent SRGM 0.991 123.562

testing resource dependent SRGM 0.991 113.517

3 Level of fault severity Time-dependent SRGM 0.993 114.702

testing resource dependent SRGM 0.994 98.335

Fig. 5 Goodness of fit curve
for DS-1; Time dependent
SRGM with faults of 1, 2,
and 3 levels of severity

0
50

100
150
200
250
300
350
400

1 3 5 7 9 11 13 15 17 19

m
(t

)

Time

Goodness of Fit Curve : Time dependent SRGM 
with faults of 1,2 and 3 level of severity

Actual Data
1 Level of Fault Severity(k=1)



Modeling Allocation Problem for Software with Varied … 253

Fig. 6 Goodness of fit curve
for DS-1; Testing resource
dependent SRGM with faults
of 1, 2, and 3 levels of
severity
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i.e. the models are compared considering the estimation of the dataset as resource-
dependent SRGMwith only 1 level of fault severity, resource-dependent SRGMwith
2 levels of fault severity, resource-dependent SRGM with 3 levels of fault severity,
resource-dependent SRGM with 4 levels of fault severity and resource-dependent
SRGMwith 5 levels of fault severity. The parameters estimation results are shown in
Table 5.We have used the Exponential distribution function for parameter estimation
of the testing resource. The values of the parameters obtained by the non-linear Least
Square technique are α = 503.993; β = 0.005.

The comparison results of the testing resource-dependent SRGMs considering
varied levels of fault severity are shown in Table 6 and Figs. 7, 8, 9, 10, 11.

Based on the value of R2 and MSE with graphical view support, it is evident that
testing resource-based SRGMs on this dataset with 5 levels of fault severity gives
better estimation results as compared with 1,2 3, or 4 levels of fault severity.

5.2 Resource Allocation Numerical Illustration

Case 1: Resource Allocation Problem with 4 levels of Fault Severity

We are taking a framed data case wherein we are taking into consideration that
the software consists of five modules. These assumed parameter estimates for each
module is shown in Table 7. The total testing resources available is assumed to be
5000 units. The total cost of removing the different types of faults is 40000 units.
Also, it is desired that the reliability of each module is at least 0.90.

Using the parameters given in the Table 7, the problem stated in Sect. 3.3, i.e.
ResourceAllocation problem forMaximizing theTotal Fault Removal fromSoftware
is considered. The modular software optimization problem is for five modules with
4 levels of Fault Severity in each module was coded in Matlab and solved using
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Table 5 Parameter estimates for DS-1; Testing resource dependent SRGM with varied levels of
fault severity (k = 1 to 5)

Testing resource dependent SRGM a b1 b2 b3 b4 b5

1-Level of
fault severity (k = 1)

871.9494 0.0110

2-Level of
fault severity (k = 2)

423.2818 0.3380 0.0629

3-Level of
fault severity
(k = 3)

384.8269 0.0165 0.4671 0.1031

4-Level of
fault severity
(k = 4)

392.9696 0.0010 0.3932 0.0649 0.1421

5-Level of
fault severity
(k = 5)

354.5444 0.6071 0.4375 0.5586 0.1774 0.1818

Testing resource dependent SRGM p1 p2 p3 p4 p5

1-Level of fault severity
(k = 1)

2-Level of fault severity
(k = 2)

0.0747 0.9253

3-Level of fault severity
(k = 3)

0.0010 0.1520 0.8470

4-Level of fault severity
(k = 4)

0.0676 0.1911 0.0010 0.7403

5-Level of fault severity
(k = 5)

0.0010 0.0010 0.2346 0.0020 0.7614

Table 6 Goodness of fit measures for DS-1; Testing resource dependent SRGM with varied levels
of fault severity (k = 1 to 5)

Testing resource dependent SRGM with varied levels of fault severity R2 MSE

1 Level of fault severity (k = 1) 0.986 157.631

2 Level of fault severity (k = 2) 0.991 113.517

3 Level of fault severity (k = 3) 0.994 98.335

4 Level of fault severity (k = 4) 0.995 96.099

5 Level of fault severity (k = 4) 0.996 91.671

GA. Several runs of GA were made with Population Size 50, several generations
50, Selection Method as Tournament without Replacement, Crossover Probability
as 0.8, and mutation probability as 0.1; and the solution was stabilized with these GA
parameters. It is taken that cost of removing Level 1 severe fault is 5 units, Level 2
severe fault is 10 units, Level 3 severe fault is 15 units and Level 4 severe fault is 20
units. The optimal testing time allocation to each type of fault in themodule and hence
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Fig. 7 Goodness of fit curve
(Testing resource
dependent)—DS-1 with 1
level of fault severity
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Fig. 8 Goodness of fit curve
(Testing resource
dependent)—DS-1 with 2
level of fault severity
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Fig. 9 Goodness of fit curve
(Testing resource
dependent)—DS-1 with 3
level of fault severity
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total fault removed (in integral values) from each module and their corresponding
cost of removing is shown in Table 8.

From Table 8, we have that, from the total cost available for removing faults of
40,000 units 32,110 is used in attaining this optimal allocation of resources among
modules.
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Fig. 10 Goodness of fit
curve (Testing resource
dependent)—DS-1 with 4
level of fault severity
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Fig. 11 Goodness of fit
curve (Testing resource
dependent)—DS-1 with 5
level of fault severity
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Table 7 Parameter estimates for resource allocation problem with 4 levels of fault severity in each
module

Module a1 a2 a3 a4 Total faults

1 313 243 112 58 726

2 332 87 100 210 729

3 135 170 82 178 565

4 145 215 85 62 507

5 301 200 172 34 707

Total 1226 915 551 542 3234

Module b1 b2 b3 b4

1 0.23 0.019 0.11 0.012

2 0.25 0.072 0.07 0.003

3 0.39 0.043 0.005 0.012

4 0.34 0.034 0.17 0.017

5 0.27 0.018 0.019 0.024
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Table 8 The optimal testing resource allocation with the corresponding cost considering 4 levels
of fault severity in each module

Module m1 m2 m3 m4

1 313 243 112 57

2 332 87 100 138

3 135 170 48 166

4 145 215 85 61

5 301 199 171 33

Total 1226 914 516 455

Module W M Reliability Cost of removing faults

1 1118.349 725 0.9986 6815

2 1501.736 657 0.9012 6790

3 616.024 519 0.9185 6415

4 951.62 506 0.9980 5370

5 496.271 704 0.9957 6720

Total 4684 3111 32,110

And from the total of 3234 faults originally present in the software 3111 faults
have been removed with the resource limitation of 5000 units. Amongst these total
fault removal 1226 out of 1226 (actually present, refer Table 7) 1-Level severity
faults, 914 out of 915, 2-Level severity faults, 516 out of 551, 3-Level severity faults,
and 455 out of 542, 4-Level faults were removed.

Similarly, another framed data case is given in Table 9 wherein we are taking
into consideration that the software consists of five modules with five levels of fault

Table 9 Parameter estimates for resource allocation problem with 5 levels of fault severity in each
module

Module a1 a2 a3 a4 a5 Total faults

1 313 243 112 58 75 801

2 332 87 100 210 47 786

3 135 170 82 178 98 663

4 145 215 85 62 101 608

5 301 200 172 34 54 761

Total 1226 915 551 542 375 3609

Module b1 b2 b3 b4 b5

1 0.23 0.019 0.11 0.012 0.002

2 0.25 0.072 0.07 0.003 0.013

3 0.39 0.043 0.005 0.012 0.08

4 0.34 0.034 0.17 0.017 0.007

5 0.27 0.018 0.019 0.024 0.019
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severity. The total testing resources available is assumed to be 6000 units. The total
cost of removing the different types of faults is 41000 units. Also, it is desired that
the reliability of each module is at least 0.90.

Using the parameters given in the Table 9, several runs of GA were made
with Population Size 50, several generations 110, Selection Method as Tournament
without Replacement, Crossover Probability as 0.9, and mutation probability as 0.1;
and the solution was stabilized with these GA parameters. It is taken that cost of
removing 1-Level severe fault is 5 units, 2-Level severe fault is 10 units, 3-Level
severe fault is 15 units, 4-Level severe fault is 20 units and 5-Level severe fault is 25
units.

The optimal testing time allocation to each type of fault in the module and hence
total fault removed (in integral values) from each module and their corresponding
cost of removing is shown in Table 10.

From Table 10, we have that, from the total cost available for removing faults of
41,000 units 39,785 is used in attaining this optimal allocation of resources among
modules. And from the total of 3609 faults originally present in the software 3418
faults have been removed with the resource limitation of 6000 units. Amongst these
total fault removal, 1226 out of 1226 (actually present, refer Table 7) 1-Level severity
faults, 910 out of 915, 2-Level severity faults, 515 out of 551, 3-Level severity faults,
469 out of 542, 4-Level severity faults, and 298 out of 375, 5-Level severity faults
were removed.

Table 10 The optimal testing resource allocation with the corresponding cost considering 5 levels
of fault severity in each module

Module m1 m2 m3 m4 m5

1 313 243 112 58 40

2 332 87 100 146 46

3 135 170 56 172 98

4 145 215 85 61 75

5 301 195 162 32 39

Total 1226 910 515 469 298

Module W m Reliability Cost of removing faults

1 2441.815 766 0.9563 7835

2 1583.2 711 0.9162 8100

3 706.061 631 0.9517 9105

4 897.874 581 0.9556 7245

5 322.136 729 0.9580 7500

Total 5951.086 3418 39,785
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6 Theoretical and Managerial Implications

The economic implications of software reliability are linked to the limited amount of
time and money available to the testing team. These annoying realities of restricted
resource supply and deadlines for delivering the software on time appear to compress
the process of testing. Therefore to bring out the program on schedule and within
budget, and also to meet the requirements of the client, a company must properly
organize its testing process. Indeed, software testing is a trade-off between budget,
time money, and reliability. And the need to model the allocation of testing resources
is needed for this trade-off. By formulating and solving resource allocation problems
for modular software systems, this chapter has tried to make important contributions
to software reliability, emphasizing the significance of themagnitude of faults varying
from the easiest to the hardest levels.

7 Conclusion

In this chapter, we have discussed the problem of modular software at the unit testing
stage. A resource allocation problem aiming at the maximization of the total fault
removal from modular software subject to availability of resources and budget with
an aspired level of reliability for each module is formulated and solved using a
Genetic Algorithm. For modeling the fault removal process of each module testing
resource-dependent SRGM is used. The SRGM studied incorporates a novel idea of
faults being categorized under varied levels (1-Level being simplest severity level and
k-Level being hardest severity level) of fault severity. From the parameter estimation
and goodness of fit results on software failure real data it is shown that the model
accuracy improves as we move from 1-Level to 2-Level to 3-Level and so on. In
this, an important remark is that it may happen that after incorporating a certain level
of severity of faults, in the modeling framework, the accuracy of SRGM may get
stabilized, depending on the criticality of the code of the software. The parameter
estimation carried on data set showed that the accuracy of themodel improved both by
increasing the level of severity and by incorporating testing resources in themodeling
of SRGM. By taking two numerical framed data cases, optimal resource allocation
problems are solved by Genetic Algorithm considering four and five levels of fault
severity.
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8 Limitations and Future Scope

The chapter is done under the assumption of independence of the failures of different
modules. In the future dependence of the failures from different modules can also
be studied. The proposed problems have some limitations as they do not incor-
porate warranty and maintenance costs. Such costs can be taken in the future for
studying the allocation and release planning decisions. In the future, we can explore
the possibility of including multi-dimensional software reliability growth modeling
to take care of the effect of not only testing resources but also other testing factors
like testing coverage, testing time/number of test cases on the fault removal process
simultaneously.
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Integration of FAHP and COPRAS-G
for Software Component Selection

Prarna Mehta, Abhishek Tandon, and Himanshu Sharma

Abstract Software Quality is directly proportional to firms’ effectiveness. Thus,
improving the quality of the software with respect to the clients’ requirement has
always been a chasing research field for many researchers. In today’s world, software
is being developed using independent components due to its ability to be reused in
different software systems’ architecture proficiently. This approach not only impro-
vises the reliability of the software system but also accelerated development phase,
reduced system failure risk and in monetary terms has been resourceful approach for
a software firm. On the other hand, accommodating a wrong component in a soft-
ware system can jeopardise it leading to complications to the firm. A structural
decision-making mechanism is required for selection Commercial-Off the Shelf
(COTS) components based on multiple criteria. In this chapter, Multiple Criteria
Decision Making (MCDM) techniques have been implemented to determine the
critical weights of the criteria using Fuzzy Analytical hierarchy process (FAHP) and
then the COTS component alternatives are evaluated using Complex Proportional
Assessment of alternatives with grey Relations (COPRAS-G). The novelty in the
proposed algorithm is the application of COPRAS-G which is used to analyse the
alternatives of COTS components maximising and minimising respective criteria.

Keywords FAHP · COTS · COPRAS-G · MCDM · Software reliability

1 Introduction

In the today’s growing world, technology has been improving every minute of the
day. Thus, there is an increase in the rate of software development, implying complex
software systems. In order to keep up with the pace and evade complexities, it is
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practical as well as economical to reuse software components at the development
stage of a system. A component based software system is a process of designing
software by accommodating reusable components, which breaks down the software
complexity and keeps up with the demand of new software systems. As stated by
Comella-Dorda et al. (2002), Commercial off the Shelf (COTS) components was
publicly available for retail purpose which did not require any internal modifications.
Garg et al. (2017) have defined COTS component as products that is ready to use,
easy implementation and assimilate with other components in the software system.
On the other hand, Gupta et al. (2012) outlined COTS component available in the
market could be procured, rented or authorised to the global public. Imoize et al.
(2019) have highlighted upon the significance of reusing software components to
build new software.

Implementing existing components has been proved beneficial in the past with
respect to reliability, budget, time and effort (Cortellessa et al. 2008). The objec-
tive of software developers to reuse COTS component is to reduce or shorten the
time involved in development of software. In other words, software component once
created can be reused in multiple problems independently by simply reassembling
them to obtain the resulting system. Components integrate with other components in
a given system through interfaces. There exist multiple independent COTS compo-
nents in the market provided by numerable vendors. Siddiqui and Tyagi (2016) have
emphasised how system’s reliability is affected by each component. This puts weigh-
tage to the problem of selecting right components in accordance to the demand of
a software system. Thus evaluation of COTS components becomes a significant
prerequisite in order to achieve the full benefits.

Choosing a misfit COTS components may disrupt an organisation in both positive
and negative way. Thus it is a tedious process of assessing and making a choice
on the ground of some attributes. One has to carefully build a set of criteria that
briefly supports preference for an alternative over another. In the real world, decision
makers have to examine a number of qualitative as well as quantitative criteria for
each COTS component. With the help of these criteria, one can rank and establish
optimal alternative from an alternative set of components for a given system. Thus,
COTScomponents selection problemcan be considered asMultipleCriteriaDecision
Making (MCDM) problem. In this approach, different algorithms are adapted to
select and rank components in accordance to some criteria scores. MCDM facilitates
in selecting an optimal instance based on manifold and confounding set of criteria
that exemplifies a COTS component. Garg (2017) has thoroughly discussed different
COTS component selection and evaluation algorithms rendering pros and cons of
each algorithm. Bali and Madan (2015) have chronologically given an outline of the
development in COTS selection paradigms and also given a future perception. In this
chapter, a MCDM framework has been proposed in order to select the best COTS
components by considering contradicting objectives.

Many a times, decision-making is a complex procedure due to unknown informa-
tion and conflicts in preferences is a by-product. A decision maker usually subjec-
tively quantifies a set of criteria. In such a situation, one can desegregate intervals
and linguistic terms to define complex preferences and it is called Fuzzy numbers. It
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improvises MCDM technique where human opinion and perception are ambiguous
and uncertain. Thus, Fuzzy logic becomes a rational approach to combat such situ-
ations. One of the most extensively used MCDM techniques is Analytical hierarchy
process (AHP) (Aghdaie et al. 2013) that does involve advance mathematical tools.
It disintegrates a complex problem into a hierarchy starting from the objective to
attain, simplifying it into criteria affecting it, to considering the number of alterna-
tives. The main goal is to converts the thinking process of a decision maker into a
structural form. AHP is simpler tool since it does not depend on numerical data but
concentrates on the weightage of the criteria. However, the AHP’s detriment is that
it is inept in handling uncertain and vague human perceptions.

Many optimization models are constructed by combining AHP with other tech-
niques like Fuzzy logic, mathematical programming, TOPSIS, DEA, etc. to deal
with the fuzziness (Aruldoss et al. 2013). In this chapter, Fuzzy Analytical hierarchy
process (FAHP) is deployed to derive weights of the criteria by analysing qualitative
perceptions of decision makers. One cannot rely on criteria solely for correct result
i.e. they might be misleading in certain cases since, the opinion of decision maker
changes with time. Thus, prioritisation of criteria with the help of FAHP is relatively
an important step to be taken under consideration (Thapar and Sarangal 2020).

After the weighting the criteria, it is important to prioritise the different compo-
nents available in the market in accordance to the calculated weights. Complex
Proportional Assessment of alternatives with grey Relations (COPRAS-G) assists in
defining an experts’ outlook in terms of an interval rather than a scalar value and hence
ranks the alternatives in accordance to their utility level from highest to lowest. The
criterion value is based on grey theory interval enriching real time decision-making
process. The objective of this chapter is to integrate FAHP and COPRAS-G to assess
COTS components by prioritising and assigning weights of importance to criteria
that defines, rather characterises a COTS component.

To summarize, the objective of the chapter are as follows,

1. Selection of COTS components with the help of MCDM techniques.
2. Assigning weights to the selection criteria with the help of FAHP.
3. Assimilation of FAHP and COPRAS-G to prioritise COTS components.

There is no evidence in the literature that this hybrid methodology i.e., amalgama-
tion of FAHP and COPRAS-G, has been implemented to analyse COTS component.
In the past researches, this integrated algorithm has been deployed in other fields, for
instance (Aghdaie et al. 2013) have adopted this approach for market segmentation
and stating the model being efficient. This robust procedure was also promoted by
Mobin et al. (2015) and applied on selection of suppliers.

The chapter is further segregated as Sect. 2 gives a comprehensive literature
review, Sect. 3 talks about the methodology implemented, a numerical solved and
results discussed in Sect. 4 and lastly in Sect. 5 the chapter is wrapped up by
conclusion.
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2 Literature Review

In the last two decades, researchers have been probing the benefits of COTS compo-
nents, promoting its usage and amplifying the system’s efficiency with the help of
it. There is a bank of rich literature review available about the state-of-art of COTS
components encapsulating the different selection techniques. Schneider and Han
(2004) has drawn attention to the work that has been done in the past and has reflected
upon problems that can be dealt as a research problem in the future. Wanyama and
Far (2005) discusses various functionalities of the ideal COTS component selection
and ways of their implementation. Mittal and Bhatia (2013) have reviewed the liter-
ature, distinguishing different criteria and assessing the quality of COTS model in
accordance to ISO 9126 model. Vale et al. (2016) have given a through mapping of
the work done so far in this field that gives a better understanding.

Amalgamations of a couple of methodologies have been proposed by numerable
researchers to assess COTS components. These integrations have been unique in its
own way in terms of the objective of the problem, or methodologies or with the
end result. But all of these exclusive techniques diverge to the sole aim of proficient
software system based on COTS components. For example, a robust technique called
PRISMwas developed by Lichota et al. (1997) where the software components were
evaluated through multiple phases defining a generic software architecture. Another
methodology, namely CISD, was suggested by Tran and Liu (1997) which was based
onwaterfall like approach. Grau et al. (2004) developed aCOTS component selection
system, namely, DesCOTS that considers all quality aspects for the selection process.

Zachariah and Rattihalli (2007) have implemented mathematical programming
techniques like branch and bound algorithm and Goal programming technique for
COTS selection. Neubauer and Stummer (2007) put forward a decision support
system where, all possible solutions for COTS selection are suggested to the deci-
sion makers that interactively examine for the best solution. Sheng andWang (2008)
has implemented gap analysis for selection of COTS component by filling the gap
between attributes and software system demands (Garg et al. 2017) has classified
COTS selection as MCDM problem and evaluated using fuzzy based matrix. The
set of criteria chosen to select COTS components were vendor capabilities, Busi-
ness issues and Cost, which were further divided into multiple sub-criteria. Ernst
et al. (2019) have given importance to speedy decision-making and confidence for
selection of COTS component. Their aim is to make the process of selection and
evaluation a continuous process, where components are examined in accordance to
different software system demand.

COTS selection problem has been classified as an optimization process with the
objective to optimize the quality with respect to multiple constraints in accordance
to the suggested problem. Jung and Choi (1999) have not only optimised cost and
quality under budget constraint but has also considered the compatibility between
selected COTS component. In their study, the compatibility between the components
was stated in terms of either- or condition. This gap was observed by Tang et al.
(2011) and fulfilled by introducing a new optimising model. Shen et al. (2006) have
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proposed an optimization model where the objective to maximise the quality of the
system subject to fuzzy budget constraint. Cortellessa et al. (2008) have discussed
a novel non-linear optimisation model considering the framework of building or
buying COTS components for a given delivery time and reliability constraints. Jha
et al. (2011) has extended the optimizationmodel (reliability is maximisedwhile cost
is minimised) by considering the compatibility between different COTS components
under the built or buy decision framework.

Kontio (1995) has proposed a paradigm to evaluate off-the-shelf components
called OTSO based on cost and software attributes. It is a combination of two algo-
rithms, AHP and weighted sum methodology. Gupta et al. (2012) has developed
a fuzzy model for optimised selection of COTS component using AHP and fuzzy
mathematical programming. Garg et al. (2016) suggested the use of fuzzy distance-
based technique to select and rank COTS components. The results were validated
with that of AHP.

COPRAS has been majorly used to optimise problems in construction tech-
nology (Malinauskas and Kalibatas 2005; Ustinovichius et al. 2007; Zavadskas and
Antucheviciene 2007). This methodology was also applied to select road design
(Zavadskas et al. 2007b), sustainable development (Viteikiene 2006; Viteikiene and
Zavadskas 2007; Zavadskas et al. 2007a), environmental problems (Kaklauskas and
Zavadskas 2007; Kalibatas et al. 2007). Complex problems like selection of social
media forums was handled using COPRAS-G (Tavana et al. 2013). Implementation
of this technique has not been observed in the field of software reliability.

3 Methodology

In this chapter, we propose a problem of COTS component selection to build a soft-
ware system. A COTS component is deployed in the system, that functions indepen-
dently to other COTS components. It is observed from past literature that deploying
multiple COTS components in a software system reduces complexities as well as
enhances the reliability of the system. Jadhav and Sonar (2009) have discussed some
steps to follow for selection of software packages. These steps can be implemented
in this chapter and is given by the Fig. 1.

Fig. 1 A flowchart depicting the implemented methodology
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Understanding the requirements of a software project and in accordance of the
project scrutinizing the existing COTS components in the market has become a
prerequisite. It is vital to comprehend the details and need of software project before
starting the procedure ofCOTS components selection.Hence a pool of COTS compo-
nents relevant to the problem is drawn in order to be evaluated. After obtaining the
relevant COTS components, they are examined, scored and ranked based on some
criteria and techniques.

In this chapter, we work on the COTS component evaluation and ranking tech-
nique. Since selection of components is done on the basis of multiple criteria, the
problem is hence characterised asMCDM. It is a concept to assess and rank different
alternatives. In the field of decision-making, MCDM is the most adopted approach
and abundant algorithms are available in the literature. This chapter discusses about
Fuzzy based MCDM technique that models considering human uncertainty and
perception towards a given situation. Hence, COTS components are evaluated on
the basis of certain set of criteria. These criteria are assigned some weights obtained
with the help of FAHP. In the next step, these weights obtained from FAHP for
respective criteria are used to obtain priority value for the COTS components under
scrutiny. These components are then ranked in accordance to the priority function.
The highest ranked COTS component is procured since it is a well suited unit for the
given software project.

3.1 FAHP

Before the process of evaluation, selection and ranking of different alternatives, a set
of criteria is decided upon. Thus, the decision-making team uses qualitative termi-
nology to describe theweightage of each criterion. These linguistic terms aremapped
over numerical data using fuzzy numbers for easy computation. Fuzzy numbers
are implemented when there is uncertainty, vagueness, and incompleteness in the
data. The term ‘fuzziness’ was first defined by Zadeh (1996) using fuzzy set theory
(FST).While (Dubois and Prade 1979) extendedmathematical operations over fuzzy
numbers. A fuzzy number expands a real number and has properties analogous to
number theory. Fuzzy sets are determined using optimal universe of discourse and
membership functions. A membership function characterises fuzzy set by denoting
each elements’ degree of belongingness. The value of the membership degree lies
between 0 and 1 for each element in the fuzzy set. There are many available member-
ship functions for a given fuzzy set viz. triangular, trapezoidal, parabolic etc. In this
chapter, Triangular fuzzy number (TFN) is implemented to describe the membership
function, which is given by,

fZ(x) =

⎧
⎪⎨

⎪⎩

x−l
m−l , l ≤ x ≤ m
u−x
u−m ,m ≤ x ≤ u
0, otherwise
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Fig. 2 A graph depicting a
triangular fuzzy number

where, Z is a triangular fuzzy number, l, m, u are real numbers. TFN has the simplest
form of membership function that trades linguistics terms with triplet numbers, thus
helping in analysing human judgement. TFN membership function is depicted by
Fig. 2.

From the past literature, it has been observed that AHP is the most widely used
MCDM technique in decision-making. It was developed by Saaty (1977) that hierar-
chically structures a complex problem using weights, thus simplifying for decision
maker to make decisive assessment of the problem. These weights assigned to each
unit or criteria in the hierarchy imply its relative importance in achieving the objec-
tive. AHP is a methodical MCDM process that numerically signifies each criteria
belonging to a set of criteria in accordance to a given problem. Thus, a set of criteria
has to be selected which is then examined for its significance using AHP. After a
problem is synthesised into a structural form, weights of each criterion at each level
of the hierarchical are computed by making successive pairwise comparisons. A
numerical scale was defined that quantifies the intensity of importance of a partic-
ular criterion (Saaty 1977). This scale ranges from 1/9 to 9 denoting different levels
of importance. The result of the pairwise comparison at each level is encapsulated
in a matrix, thus computing maximum eigenvector (λmax) of each matrix. With the
help of λmax and Random Index (R.I.), consistency ratio is computed and which is
given as,

C.I. = (λmax − n)/(n − 1) (1)

C.R. = C.I.

R.I.
(2)

Thus, looking at the consistency ratio one can state that AHP developed for a
given problem will yield meaningful result or not. But this ratio computed on the
basis of decision matrix, is not completely reliable and it is a time consuming process
to calculate whenever the decision matrix is altered. In order to achieve C.R. less
than 0.1, the decision matrix is modified, which gives a flawed result.
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Fig. 3 An algorithm defining FAHP using Chang’s extent analysis

A conventional AHP works successfully when the data is known, certain and
crisp. But in real world problems, it is not necessary that the data is always crisp and
definite. The decision makers usually have vague judgements, which is difficult to
quantify and analyse. In such cases, fuzzy AHP is applied due to its ability to handle
the fuzziness in the data. In this chapter, triangular fuzzy number is utilized that
denotes the level of relationship between a pair of criteria. Chang’s extent analysis
is implemented to obtain weights of each criteria (Chang 1996) illustrated by Fig. 3.

3.2 COPRAS-G

COPRAS was developed by Zavadskas et al. (1994) where multiple contradicting
objective functions are optimized given a set of constraints or criteria. These set of
criteria scrutinizes the existing alternatives and rank them from best option to the
worst for a given software system. Many MCDM problems are based on real world
problems, thus systems with crisp value is considered to be theoretical concept.
In COPRAS-G, alternatives are evaluated and ranked in accordance to the value of
their respective utility function. The alternatives are characterized by various criteria,
which are quantitatively described using grey theory. Figure 4 depicts the criteria used
in the study. Here, the values are expressed in respect to some interval using grey
relational grade (Julong 1989). In Grey theory, black systems and white systems
are considered as ideal situations, in other words former signifies no information
system while latter signifies complete information system. Practically, in daily life
ideal situations does not arise. In such cases, grey is considered as intermediate
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Fig. 4 A hierarchy depicting the criteria used to rank and prioritise the COTS components

zone that denotes partly known and unknown information. Liou et al. (2016) have
applied a hybrid version of COPRAS-G to resolve complications in green supply
chain problems. Madhuri et al. (2010) implemented this MCDM technique to select
an appropriate website for a given service.

4 Numerical Illustration

From the literature review, it is evident that evaluation of COTS components is an
imperative step at the development phase. Henceforth, in this section, a numerical has
been performed to illustrate the proposedmethodology.After thoroughly scrutinizing
many research papers available in the literature andwith the help of professional guid-
ance selection of COTS components were based on criteria, namely, price, delivery
time, functionality, reliability, reusability, efficiency, maintenance and vendor capa-
bilities. Table 1 defines the set of criteria used in the proposed methodology. The
objective is to minimise cost of producing and maintaining and to shorten the release
time.

After establishing a set of criteria that characterises the COTS component, a
decision matrix is constructed, given by the Table 2, with the help of TFN concept
and by comparing the above selected criteria pairwise. TFN is used to quantify
the ambiguousness present in the data. The decision matrix is then checked for its
Consistency Ratio (C.R.) to be less than 0.10 with the help of AHP (Wind and Saaty
1980). For the given decision matrix, the C.R. is 0.0427.
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Table 1 Description of set of criteria

Criteria Description

Price Includes purchasing cost, maintenance cost, and training cost

Delivery time Takes into account the time taken by the v3ndor to release the product
into the market or directly to the customer

Functionality Describes the accuracy, suitability, interoperability and security of the
coponent

Reliability Determines the fault tolerance, recoverability and maturity of component

Reusability Deals with level of ease in understanding, operating and learning

Efficiency Measures the performance of the component in terms of response tme
and resources utilized

Maintenance Illustrates on the amount of effort required to test for faults, diagnose,
and modify the component. It also takes into account the risk attached to
the modification

Vendor’s Capabilities Implies installation, training, guidance, maintaining, credentials and
financial stability

The goal of FAHP is to prioritise the criteria by calculating weights associated
to each. The TFN values of criteria is defuzzied to crisp values using Changs’
Extent Analysis and weightage of each criteria in characterising COTS component
is computed, given by Table 3.

From the above table, it was observed that Price has the highestweightagewhereas
Functionality has the least. In the next step, 15 components are examined by experts
with respect to the selected criteria while implementing COPRAS-G. This technique
results in selecting the best alternative among a number of alternatives for given
constraints. The set of criteria are classified on the basis of goal of maximisation or
minimisation. In this problem, Price and Delivery time are to be minimised while
the remaining criteria are to be maximised.

The initial decision matrix is generated with the help of expert opinion and is
given by Table 4. In the table, the values of each criteria with respect to components
are fuzzy in nature, where L denotes the lower limit and U denotes the upper limit
for the respective criteria for each component. For a maximising criterion, the larger
value is considered to be the best value and vice-versa (Ecer 2014).

The initial matrix is normalised and the resultant is depicted by Table 5. The
formula for normalizing is as follows,

V = u
∧

ij
∑

lij + u
∧

ij
(3)

where, V defines the initial decision matrix, u
∧

ij is the upper value of the ith criteria
and jth component and lij is the lower value of the ith criteria and jth component. The
critical weights obtained from FAHP given by Table 3 is used to compute weighted
decisionmatrixwith the help of the Eq. 4. Table 6 depicts the resultant of theweighted
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Table 3 Weights obtained
using FAHP

Criteria Critical weights

Price 0.1604

Delivery time 0.1259

Functionality 0.088

Reliability 0.1412

Reusability 0.1028

Efficiency 0.1136

Maintenance 0.1503

Vendor’s Capabilities 0.1177

normalised decision matrix.

Vweighted = V × wi (4)

where, wi is the weights of the criteria obtained from FAHP and Vweighted is the
weighted normalised decision matrix.

Next, sum of the criterion that has to be maximised (P) and the sum of criteria
that has to be minimised (R) are calculated for each alternative in order to obtain the
efficiency and rank the component from the best to the worst,

Where, Pi =
∑2

i=1 lij+uij
∧

)

2 and Ri =
∑8

i=3 lij+uij
∧

)

2 ; j = 1, …, 15
The criterion that has to be minimised are price and delivery time, while criteria

that has to be maximised are functionality, reliability, reusability, efficiency, main-
tenance and vendor capabilities. The significance of each component is given by Q,
Table 7 depicts the rank of the components using utility function (UFi).

Qi = Pi +
∑15

i=1 Ri

Ri
∑15

i=1
1
Ri

(5)

UFi = Qi

Qmax
× 100% (6)

Higher the value of utility function, better is the rank of the alternative. From
the Table 7, one can verify that component 7 is the best alternative with respect to
selected criteria with the value of utility function being 100% whereas component
12 being the worst with utility function value of 81.0343%.



276 P. Mehta et al.

Ta
bl
e
4

T
he

in
iti
al
de
ci
si
on

m
at
ri
x

O
bj
ec
tiv

e
M
in

M
in

M
ax

M
ax

M
ax

M
ax

M
ax

M
ax

C
ri
te
ri
a

Pr
ic
e

D
el
iv
er
y
tim

e
Fu

nc
tio

na
lit
y

R
el
ia
bi
lit
y

R
eu
sa
bi
lit
y

E
ffi
ci
en
cy

M
ai
nt
en
an
ce

V
en
do

r
ca
pa
bi
lit
ie
s

C
om

po
ne
nt
s

L
U

L
U

L
U

L
U

L
U

L
U

L
U

L
U

1
40

60
40

60
80

90
70

80
20

30
60

70
80

90
60

70

2
50

60
70

80
50

60
60

70
80

90
40

50
70

80
90

95

3
50

60
70

80
50

60
70

80
60

70
60

70
30

40
60

70

4
80

90
70

80
60

70
60

95
70

80
80

90
50

70
50

80

5
60

70
60

90
90

95
70

90
50

70
80

90
80

90
40

60

6
70

95
80

95
50

65
85

95
75

95
70

90
70

90
80

10
0

7
65

95
75

90
70

90
75

95
70

85
80

90
75

95
75

10
0

8
60

80
60

75
70

90
65

80
65

75
65

70
70

85
65

95

9
85

10
0

80
10

0
50

60
80

10
0

75
10

0
70

10
0

70
90

75
95

10
65

95
85

85
75

90
80

90
60

75
80

95
75

95
65

90

11
70

90
70

10
0

75
95

85
90

65
85

90
70

65
85

75
90

12
60

90
55

75
60

75
50

65
45

65
55

60
50

55
70

90

13
50

75
55

70
70

85
55

70
40

60
50

60
45

50
70

85

14
55

80
60

80
65

80
65

85
60

75
65

80
60

70
75

90

15
60

75
55

65
80

10
0

55
80

50
70

70
85

50
65

55
65

C
ol
um

n
su
m

92
0

12
15

98
5

12
25

99
5

12
05

10
25

12
65

88
5

11
25

10
15

11
70

94
0

11
50

10
05

12
75

To
ta
ls
um

10
67

.5
11

05
11

00
11

45
10

05
10

92
.5

10
45

11
40



Integration of FAHP and COPRAS-G for Software … 277

Ta
bl
e
5

N
or
m
al
is
ed

de
ci
si
on

m
at
ri
x

O
bj
ec
tiv

e
M
in

M
in

M
ax

M
ax

M
ax

M
ax

M
ax

M
ax

C
ri
te
ri
a

Pr
ic
e

D
el
iv
er
y
tim

e
Fu

nc
tio

na
lit
y

R
el
ia
bi
lit
y

R
eu
sa
bi
lit
y

E
ffi
ci
en
cy

M
ai
nt
en
an
ce

V
en
do
r
ca
pa
bi
lit
ie
s

C
om

po
ne
nt
s

L
U

L
U

L
U

L
U

L
U

L
U

L
U

L
U

1
0.
03
75

0.
05
62

0.
03
62

0.
05
43

0.
07
27

0.
08
18

0.
06
11

0.
06
99

0.
01
99

0.
02
99

0.
05
49

0.
06
41

0.
07
66

0.
08
61

0.
05
26

0.
06
14

2
0.
04
68

0.
05
62

0.
06
33

0.
07
24

0.
04
55

0.
05
45

0.
05
24

0.
06
11

0.
07
96

0.
08
96

0.
03
66

0.
04
58

0.
06
70

0.
07
66

0.
07
89

0.
08
33

3
0.
04
68

0.
05
62

0.
06
33

0.
07
24

0.
04
55

0.
05
45

0.
06
11

0.
06
99

0.
05
97

0.
06
97

0.
05
49

0.
06
41

0.
02
87

0.
03
83

0.
05
26

0.
06
14

4
0.
07
49

0.
08
43

0.
06
33

0.
07
24

0.
05
45

0.
06
36

0.
05
24

0.
08
30

0.
06
97

0.
07
96

0.
07
32

0.
08
24

0.
04
78

0.
06
70

0.
04
39

0.
07
02

5
0.
05
62

0.
06
56

0.
05
43

0.
08
14

0.
08
18

0.
08
64

0.
06
11

0.
07
86

0.
04
98

0.
06
97

0.
07
32

0.
08
24

0.
07
66

0.
08
61

0.
03
51

0.
05
26

6
0.
06
56

0.
08
90

0.
07
24

0.
08
60

0.
04
55

0.
05
91

0.
07
42

0.
08
30

0.
07
46

0.
09
45

0.
06
41

0.
08
24

0.
06
70

0.
08
61

0.
07
02

0.
08
77

7
0.
06
09

0.
08
90

0.
06
79

0.
08
14

0.
06
36

0.
08
18

0.
06
55

0.
08
30

0.
06
97

0.
08
46

0.
07
32

0.
08
24

0.
07
18

0.
09
09

0.
06
58

0.
08
77

8
0.
05
62

0.
07
49

0.
05
43

0.
06
79

0.
06
36

0.
08
18

0.
05
68

0.
06
99

0.
06
47

0.
07
46

0.
05
95

0.
06
41

0.
06
70

0.
08
13

0.
05
70

0.
08
33

9
0.
07
96

0.
09
37

0.
07
24

0.
09
05

0.
04
55

0.
05
45

0.
06
99

0.
08
73

0.
07
46

0.
09
95

0.
06
41

0.
09
15

0.
06
70

0.
08
61

0.
06
58

0.
08
33

10
0.
06
09

0.
08
90

0.
07
69

0.
07
69

0.
06
82

0.
08
18

0.
06
99

0.
07
86

0.
05
97

0.
07
46

0.
07
32

0.
08
70

0.
07
18

0.
09
09

0.
05
70

0.
07
89

11
0.
06
56

0.
08
43

0.
06
33

0.
09
05

0.
06
82

0.
08
64

0.
07
42

0.
07
86

0.
06
47

0.
08
46

0.
08
24

0.
06
41

0.
06
22

0.
08
13

0.
06
58

0.
07
89

12
0.
05
62

0.
08
43

0.
04
98

0.
06
79

0.
05
45

0.
06
82

0.
04
37

0.
05
68

0.
04
48

0.
06
47

0.
05
03

0.
05
49

0.
04
78

0.
05
26

0.
06
14

0.
07
89

13
0.
04
68

0.
07
03

0.
04
98

0.
06
33

0.
06
36

0.
07
73

0.
04
80

0.
06
11

0.
03
98

0.
05
97

0.
04
58

0.
05
49

0.
04
31

0.
04
78

0.
06
14

0.
07
46

14
0.
05
15

0.
07
49

0.
05
43

0.
07
24

0.
05
91

0.
07
27

0.
05
68

0.
07
42

0.
05
97

0.
07
46

0.
05
95

0.
07
32

0.
05
74

0.
06
70

0.
06
58

0.
07
89

15
0.
05
62

0.
07
03

0.
04
98

0.
05
88

0.
07
27

0.
09
09

0.
04
80

0.
06
99

0.
04
98

0.
06
97

0.
06
41

0.
07
78

0.
04
78

0.
06
22

0.
04
82

0.
05
70



278 P. Mehta et al.

Ta
bl
e
6

W
ei
gh

te
d
no

rm
al
is
ed

m
at
ri
x

O
bj
ec
tiv

e
M
in

M
in

M
ax

M
ax

M
ax

M
ax

M
ax

M
ax

C
ri
te
ri
a

Pr
ic
e

D
el
iv
er
y
tim

e
Fu

nc
tio

na
lit
y

R
el
ia
bi
lit
y

R
eu
sa
bi
lit
y

E
ffi
ci
en
cy

M
ai
nt
en
an
ce

V
en
do
r
ca
pa
bi
lit
ie
s

C
om

po
ne
nt
s

L
U

L
U

L
U

L
U

L
U

L
U

L
U

L
U

1
0.
00
60

0.
00
90

0.
00
46

0.
00
68

0.
00
64

0.
00
72

0.
00
86

0.
00
99

0.
00
20

0.
00
31

0.
00
62

0.
00
73

0.
01
15

0.
01
29

0.
00
62

0.
00
72

2
0.
00
75

0.
00
90

0.
00
80

0.
00
91

0.
00
40

0.
00
48

0.
00
74

0.
00
86

0.
00
82

0.
00
92

0.
00
42

0.
00
52

0.
01
01

0.
01
15

0.
00
93

0.
00
98

3
0.
00
75

0.
00
90

0.
00
80

0.
00
91

0.
00
40

0.
00
48

0.
00
86

0.
00
99

0.
00
61

0.
00
72

0.
00
62

0.
00
73

0.
00
43

0.
00
58

0.
00
62

0.
00
72

4
0.
01
20

0.
01
35

0.
00
80

0.
00
91

0.
00
48

0.
00
56

0.
00
74

0.
01
17

0.
00
72

0.
00
82

0.
00
83

0.
00
94

0.
00
72

0.
01
01

0.
00
52

0.
00
83

5
0.
00
90

0.
01
05

0.
00
68

0.
01
03

0.
00
72

0.
00
76

0.
00
86

0.
01
11

0.
00
51

0.
00
72

0.
00
83

0.
00
94

0.
01
15

0.
01
29

0.
00
41

0.
00
62

6
0.
01
05

0.
01
43

0.
00
91

0.
01
08

0.
00
40

0.
00
52

0.
01
05

0.
01
17

0.
00
77

0.
00
97

0.
00
73

0.
00
94

0.
01
01

0.
01
29

0.
00
83

0.
01
03

7
0.
00
98

0.
01
43

0.
00
85

0.
01
03

0.
00
56

0.
00
72

0.
00
92

0.
01
17

0.
00
72

0.
00
87

0.
00
83

0.
00
94

0.
01
08

0.
01
37

0.
00
77

0.
01
03

8
0.
00
90

0.
01
20

0.
00
68

0.
00
85

0.
00
56

0.
00
72

0.
00
80

0.
00
99

0.
00
66

0.
00
77

0.
00
68

0.
00
73

0.
01
01

0.
01
22

0.
00
67

0.
00
98

9
0.
01
28

0.
01
50

0.
00
91

0.
01
14

0.
00
40

0.
00
48

0.
00
99

0.
01
23

0.
00
77

0.
01
02

0.
00
73

0.
01
04

0.
01
01

0.
01
29

0.
00
77

0.
00
98

10
0.
00
98

0.
01
43

0.
00
97

0.
00
97

0.
00
60

0.
00
72

0.
00
99

0.
01
11

0.
00
61

0.
00
77

0.
00
83

0.
00
99

0.
01
08

0.
01
37

0.
00
67

0.
00
93

11
0.
01
05

0.
01
35

0.
00
80

0.
01
14

0.
00
60

0.
00
76

0.
01
05

0.
01
11

0.
00
66

0.
00
87

0.
00
94

0.
00
73

0.
00
93

0.
01
22

0.
00
77

0.
00
93

12
0.
00
90

0.
01
35

0.
00
63

0.
00
85

0.
00
48

0.
00
60

0.
00
62

0.
00
80

0.
00
46

0.
00
66

0.
00
57

0.
00
62

0.
00
72

0.
00
79

0.
00
72

0.
00
93

13
0.
00
75

0.
01
13

0.
00
63

0.
00
80

0.
00
56

0.
00
68

0.
00
68

0.
00
86

0.
00
41

0.
00
61

0.
00
52

0.
00
62

0.
00
65

0.
00
72

0.
00
72

0.
00
88

14
0.
00
83

0.
01
20

0.
00
68

0.
00
91

0.
00
52

0.
00
64

0.
00
80

0.
01
05

0.
00
61

0.
00
77

0.
00
68

0.
00
83

0.
00
86

0.
01
01

0.
00
77

0.
00
93

15
0.
00
90

0.
01
13

0.
00
63

0.
00
74

0.
00
64

0.
00
80

0.
00
68

0.
00
99

0.
00
51

0.
00
72

0.
00
73

0.
00
88

0.
00
72

0.
00
93

0.
00
57

0.
00
67



Integration of FAHP and COPRAS-G for Software … 279

Table 7 Components ranked according to the utility function

Components P R 1/R Q Utility Rank

1 0.0443 0.0132 75.7019 0.0664 96.8830 4

2 0.0461 0.0168 59.4905 0.0635 92.6421 9

3 0.0388 0.0168 59.4905 0.0562 81.9535 14

4 0.0466 0.0213 46.9106 0.0603 87.9865 12

5 0.0496 0.0183 54.6090 0.0656 95.6732 7

6 0.0535 0.0224 44.7113 0.0666 97.1209 3

7 0.0549 0.0214 46.6845 0.0685 100.0000 1

8 0.0489 0.0182 54.9186 0.0650 94.7793 8

9 0.0536 0.0242 41.4025 0.0657 95.7984 6

10 0.0533 0.0217 46.0719 0.0668 97.4112 2

11 0.0529 0.0217 46.0719 0.0663 96.7889 5

12 0.0399 0.0187 53.5469 0.0555 81.0343 15

13 0.0396 0.0165 60.5615 0.0573 83.5373 13

14 0.0474 0.0181 55.1939 0.0635 92.6097 10

15 0.0442 0.0170 58.8977 0.0614 89.5561 11

Sum 0.0865 296.2024 0.0685

5 Conclusion

In this chapter, an integrated and novel methodology has been applied to a mani-
fold criteria problem of selection of apt COTS component for the development of
software system. A set of relatively important features defining components such
as price, delivery time, functionality, reusability, reliability, efficiency, maintenance
and vendor capability are selected to evaluate components. The importance of these
criteria is computed using FAHP where it was observed that price has a great impact
on selection of components in comparison to other criteria. Multiple alternatives of
COTS components were considered for ranking of the best alternative with respect
to the set of features. COPRAS-G was implemented to compute the efficiency and
rank the components with the help of scores of utility function. After reviewing
research paper, it is evident that COPRAS-G has not been implemented to examine
COTS component. With the help of FAHP, one can quantify linguistic data where as
COPRAS-G takes into consideration contradicting objectives and results in a better
solution.
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6 Future Scope

This study canbe extendedby, comparingvariousMCDMtechniqueswithCOPRAS-
G. COPRAS-G can be evaluated on larger datasets for generalised results.
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Estimation and Testing Procedures
for the Reliability Functions
of Exponentiated Generalized Family
of Distributions and a Characterization
Based on Records

Taruna Kumari and Anupam Pathak

Abstract In this chapter, characterization based on record values for a family of
distributions namely; exponentiated generalized family of distributions is provided.
Two measures of reliability are considered, namely; R(t) = P(X > t) and P = P(X >
Y). Point as well as interval estimation procedures are developed for unknown param-
eter(s), R(t) and P, based on records. Two types of point estimators are considered,
namely; (i) uniformlyminimumvariance unbiased estimators and (ii) maximum like-
lihood estimators. Testing procedures are also developed for the hypotheses related
to various parametric functions. A comparative study of different methods of esti-
mation is done through simulation studies. Real data example is used to illustrate the
results.

Keywords Exponentiated generalized family of distributions · Characterization ·
Point estimation · Confidence interval · Records · Monte-Carlo simulation

1 Introduction

In this chapter we develop the concept of reliability, introduce the exponentiated
generalized (EG) family of distributions and it’s characterization. We develop point
estimation procedures based on records. As far as point estimation is concerned, we
derive uniformly minimum variance unbiased estimators (UMVUES) and maximum
likelihood estimators (MLES). A new technique of obtaining these estimators is
developed, in which first of all the estimators of powers of parameter are obtained.
These estimators are used to obtain the estimators of sampled probability density
function (pdf ) at a specified point, which are subsequently used to obtain the estima-
tors of R(t) and P. The estimators of P are derived for the cases, when X and Y belong
to the same as well as different families of distributions. Therefore, in the proposed
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method, the estimators of parameter(s), R(t) and P are interrelated, where as in liter-
ature, authors have handled these three estimation problems separately. Moreover,
in our method, one does not requires expressions for R(t) and P to estimate them.
Further, confidence intervals for parameters, R(t) and P are constructed and testing
procedures are also developed for various hypotheses. Finally, we present numerical
findings along with real data analysis and conclusions are made on our results.

1.1 Reliability and Reliability Function

Reliability means ‘the probability of a device (or item or organism) performing
it’s defined purpose adequately for a specified period of time, under the operating
conditions encountered’. Longer life is identified with greater reliability. Relia-
bility is a popular concept that has been celebrated for years as a commendable
attribute of a person or a product. Reliability technology has a potentially wide
range of application areas, such as safety/risk analysis, environmental protection,
quality/reliability management and verification, optimization of maintenance and
operation, engineering design etc.

The reliability function R(t) is defined as the probability of failure-free operation
until time t. Thus, if the random variable (rv) X denotes the lifetime of an item,
then R(t) = P(X > t). Another measure of reliability under stress-strength set-up is
the probability P = P(X > Y ), which represents the reliability of an item of random
strengthX subject to random stress Y. A lot of work has been done in the literature for
the point estimation and testing of R(t) and P. For example one may refer to Kelley
et al. (1976), Sathe and Shah (1981) and Chao (1982). Constantine et al. (1986)
derived UMVUE and MLE of P for gamma distribution. Awad and Gharraf (1986)
estimated P for Burr distribution. For estimation of R(t) corresponding to Maxwell
distribution, one may refer to Tyagi and Bhattacharya (1989). Chaturvedi and Tomer
(2002) derived UMVUE of R(t) and P for negative binomial distribution. For expo-
nentiated Weibull, half logistic, generalized Lomax and Rayleigh distributions, the
inferential procedures are available in Chaturvedi and Pathak (2012), Chaturvedi
et al. (2016), Pathak and Chaturvedi (2013, 2014), respectively. Inferences have
been drawn for R(t) and P for some families of lifetime distributions by Chaturvedi
and Pathak (2014), Chaturvedi and Kumari (2015, 2017, 2019), Chaturvedi and Rani
(1997), Chaturvedi and Singh (2008), Chaturvedi and Tomer (2003).

1.2 Record and Record Values

Record values are found in many situations of daily life as well as in many statistical
applications. Often, we are interested in observing new records and in recording
them, for example Olympic records or world records in sport. This theory is largely
based on the theory of order statistics and is especially closely related to extreme
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order statistics. Record values and the associated statistics are of particular interest
in the areas of climatology, sports, traffic, medicine, economics etc. A large number
of record data saved for a long time motivated the development of several mathemat-
ical models reflecting the corresponding record processes and forecasting the future
record results. Chandler (1952) defined the model of record statistics as a model for
successive extremes in a sequence of independent and identically distributed (iid)
random variables (rvs). Ahsanullah (1995) and Arnold et al. (1998) are two useful
references which have clarified the notion of records and their properties. Several
inferential procedures for the parameters of different distributions, based on record
data, have been developed by Arashi and Emadi (2008), Balakrishnan et al. (1995),
Belaghi et al. (2015), Habibi et al. (2006), Kumari et al. (2019), Nagaraja (1988a),
Razmkhah et al. (2012) and others.

1.3 Characterizations of Distributions

A characterization is a certain distributional or statistical property of a statistic or
statistics that uniquely determines the associated stochastic model. In recent years
considerable attention has been paid to the problem of characterizing the pdf of a rv
based on conditional expectations in general, and in particular, on it’s mean residual
life function. Characterizations of distributions through conditional expectation have
been considered by Franco and Ruiz (1996), Khan and Alzaid (2004), Kumari and
Pathak (2014a, b, c), Nagaraja (1988b), Raqab (2002) and Ahsanullah et al. (2013).
In this chapter we have presented the characterization of EG family of distributions
through conditional expectation for record values.

1.4 The EG Family of Distributions

The exponentiated distributions are quite different from their baseline functions and
need special investigations. Adding a parameter to baseline cumulative distribution
function (cdf ) G(x), by exponentiation, produces a cdf F(x), say, this is richer and
more flexible to modelling data. For example, F(x) = [G(x)]α is flexible enough to
accommodate both monotone as well as non-monotone hazard rates. In particular,
if G(x) is exponential such that G(x) = (

1 − e−θx
)
, then the pdf g(x) = θe−θx

is monotone decreasing on the positive half of the real line. However, F(x) =[
1 − e−θx

]α
has pdf f (x) = αθe−θx

[
1 − e−θx

]α−1
which is unimodal on

[
0, ∞ )

with mode at X = (ln α)/θ . Furthermore, while the exponential distribution G(x)
has constant hazard rate θ, it can be shown that the exponentiated exponential F(x)
has increasing hazard rate if α > 1, constant hazard rate if α = 1 and decreasing
hazard rate if α < 1.



286 T. Kumari and A. Pathak

In order to investigate and construct more flexible families of distributions,
Cordeiro et al. (2013) proposed the EG family of distributions with pdf f (x;α, β)

and the cdf F(x;α, β) given by

f (x;α, β) = αβg(x){1 − G(x)}β−1[1 − {1 − G(x)}β]α−1
(1)

and

F(x;α, β) = [1 − {1 − G(x)}β]α, (2)

respectively, for x belonging to the support of G and α, β > 0, where g(·) denotes
the pdf corresponding to G(·). α and β are the shape parameters of the EG family
of distributions. Cordeiro et al. (2013) derived simple representation for EG family
of distributions. They studied general properties of the particular members of EG
family of distributions and obtained MLES of it’s parameters.

From above, the reliability function R(t) at a specified time t(>0) and the hazard
function h(x;α, β) are given by

R(t) = 1 − [1 − {1 − G(t)}β]α (3)

and

h(x;α, β) = αβg(x){1 − G(x)}β−1[1 − {1 − G(x)}β]α−1

1 − [1 − {1 − G(x)}β]α , (4)

respectively.

1.5 Notations and Definition

Let X1, X2, . . . , Xn . . . be an infinite sequence of iid rvs from an absolutely contin-
uous distribution function (df ) F(·) and pdf f(·). An observation X j is called a lower
record value if it’s value is less than that of all previous observations, i.e., X j is a
lower record if X j < Xi for all i < j. The record time sequence {Tn, n ≥ 1} is defined
in the following manner:

T1 = 1,with probability 1,

and for n ≥ 2,

Tn = min
{

j : j > Tn−1, X j < XTn−1

}
.
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The lower record value sequence R1, R2, . . . , Rn is defined as:

Rn = XTn , n = 1, 2, . . .

The pdf of Rn and the joint pdf of Rn, Rm (Rn < Rm), such that n > m {see
(Arnold et al. 1998)} are respectively, given by

fRn (rn) = 1

�(n)
[− ln F(rn)]

n−1 f (rn); rn > 0 (5)

and

fRn , Rm (rn, rm) = [− ln F(rm)]m−1

|m
∣∣∣(n − m)

[
− ln

(
F(rn)

F(rm)

)]n−m−1 f (rn) f (rm)

F(rm)
; rn, rm > 0.

(6)

Suppose, we observe the first n lower record values R1 = r1, R2 =
r2, . . . , Rn = rn from the df F(·) and the pdf f(·). Then the joint pdf of the first n
lower record values {see (Arnold et al. 1998)} is given by

fR1, R2, ..., ..., Rn (r1, r2, . . . , rn)

= f (rn)

n−1∏

i=1

h(ri ),where, r1 > r2 > . . . > rn and h(ri ) = f (ri )

F(ri )
(7)

2 A Characterization of EG Family of Distribution

This section presents a new characterization of EG family of distributions based on
lower record values.

Theorem 1 Let X be an absolutely continuous (with respect to Lebesgue measure)
rv with cdf F(x;α, β). Assume that F(0;α, β) = 0 and F(∞;α, β) = 1. Then X
has a EG family of distributions given at (1) if and only if

(α + k)E
[[
1 − {1 − G(rn+1)}β

]k∣∣∣rm = x
]

= αE
[[
1 − {1 − G(rn)}β

]k∣∣∣rm = x
]
.

Proof Using (5) and (7), the conditional pdf of f Rn+1|Rm (rn+1|rm), Rn+1 < Rm (n+
1 > m) is given by.

f Rn+1|Rm (rn+1|rm) = 1

(n − m)!
[
− ln

F(rn+1)

F(rm)

]n−m f (rn+1)

F(rm)
. (8)
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Then,

μ n+1|m = E
[[
1 − {1 − G(rn+1)}β

]k∣∣
∣rm = x

]

= 1

(n − m)!F(x;α, β)

x∫

0

[
1 − {1 − G(y)}β]k

[
−ln

F(y;α, β)

F(x;α, β)

]n−m

f (y;α, β)dy

= αβ

(n − m)![1 − {1 − G(x)}β]α
x∫

0

[
1 − {1 − G(y)}β]α+k−1

[
−α ln

(
1 − {1 − G(y)}β
1 − {1 − G(x)}β

)]n−m

· g(y){1 − G(y)}β−1dy.

Using the transformation −α ln
(
1−{1−G(y)}β
1−{1−G(x)}β

)
= z, we get

μ n+1|m =
[
1 − {1 − G(x)}β]k

(n − m)!
∞∫

0

zn−m exp

{
−
(

α + k

α

)
z

}
dz

=
(

α

α + k

)n−m+1[
1 − {1 − G(x)}β]k .

Thus,

(α + k)E
[[
1 − {1 − G(rn+1)}β

]k∣∣∣rm = x
]

= α
[
1 − {1 − G(x)}β]k

(
α

α + k

)n−m

.

(9)

Replacing n + 1 by n in (9), we get

(α + k)E
[[
1 − {1 − G(rn)}β

]k∣∣∣rm = x
]

= α
[
1 − {1 − G(x)}β]k

(
α

α + k

)n−m−1

.

(10)

From (9) and (10), we get.

(α + k)E
[[
1 − {1 − G(rn+1)}β

]k∣∣∣rm = x
]

= αE
[[
1 − {1 − G(rn)}β

]k∣∣∣rm = x
]
.

Now to prove the sufficiency

(α + k)E
[[
1 − {1 − G(rn+1)}β

]k∣∣∣rm = x
]

= αE
[[
1 − {1 − G(rn)}β

]k∣∣∣rm = x
]
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then,

(α + k)

(n − m)!
x∫

0

[
1 − {1 − G(y)}β]k

[
− ln

F(y;α, β)

F(x;α, β)

]n−m f (y;α, β)

F(x;α, β)
dy

= α

(n − m − 1)!
x∫

0

[
1 − {1 − G(y)}β]k

[
− ln

F(y;α, β)

F(x;α, β)

]n−m−1 f (y;α, β)

F(x;α, β)
dy.

Canceling F(x;α, β) from both sides, we get

(α + k)

(n − m)!
x∫

0

[
1 − {1 − G(y)}β]k

[
− ln

F(y;α, β)

F(x;α, β)

]n−m

f (y;α, β)dy

= α

(n − m − 1)!
x∫

0

[
1 − {1 − G(y)}β]k

[
− ln

F(y;α, β)

F(x;α, β)

]n−m−1

f (y;α, β)dy.

Differentiating both sides of the above equation with respect to x and simplifying
for (n-m) times, we get

(α + k)
f (x;α, β)

F(x;α, β)

x∫

0

[
1 − {1 − G(y)}β]k f (y;α, β)dy

= α
[
1 − {1 − G(x)}β]k f (x;α, β),

or,

(α + k)

x∫

0

[
1 − {1 − G(y)}β]k f (y;α, β)dy = αF(x;α, β)

[
1 − {1 − G(x)}β]k .

Differentiating the above equation with respect to x, we get

(α + k)
[
1 − {1 − G(x)}β]k f (x;α, β)

= α f (x;α, β)
[
1 − {1 − G(x)}β]k

+ αβF(x;α, β)k
[
1 − {1 − G(x)}β]k−1

g(x){1 − G(x)}β−1,

which on simplification yields
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f (x;α, β)

F(x;α, β)
= αβg(x){1 − G(x)}β−1

[
1 − {1 − G(x)}β] .

3 Point Estimation Procedures

Let R1, R2, . . . , Rn are n lower records from (1).

Lemma 1 Let S = − ln
[
1 − {1 − G(rn)}β

]
. Then, S is complete and sufficient for

the distribution given at (1). Moreover, the pdf of S is given by

f (s; α) = αnsn−1

�(n)
exp(−αs); α, s > 0.

Proof From (4), the joint pdf of R1, R2, . . . , Rn is.

f ∗(r1, r2, . . . , rn; α, β) = (αβ)n
n∏

i=1

g(ri ){1 − G(ri )}β−1

[
1 − {1 − G(ri )}β

] exp(−αS). (11)

It follows from (11) and factorization theorem {see (Rohatgi and Saleh 2012),
p. 361)} that S is a sufficient statistics for α.

From (1), the pdf of Rn is given by

fRn (rn; α, β) = αβ

�(n)
g(rn){1 − G(rn)}β−1[1 − {1 − G(rn)}β

]α−1

(−α ln
[
1 − {1 − G(rn)}β

])n−1
. (12)

The distribution of S follows from (12) and standard transformation technique of
rvs.

Since the distribution of S belongs to one-parameter exponential family of
distributions for knownβ, it is also complete {see (Rohatgi and Saleh 2012), p. 367)}.

3.1 UMVUES of α, R(t) and P, When β is Known

The following theorem provides UMVUE of powers of α.

Theorem 2 For q ∈ (−∞, ∞), q �= 0, the UMVUE of αq is given by

α̂q =
{

�(n)

�(n−q)
S−q; n > q,

0; otherwise.
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Proof From Lemma 1,

E

[
�(n)

�(n − q)
S−q

]
= αq; n > q.

Hence, the theorem follows from Lehmann-Scheffè theorem {see (Rohatgi and
Saleh 2012), p. 367)}.

The following lemma provides UMVUE of the sampled pdf (1) at a specified
point ‘x’.

Lemma 2 The UMVUE of the sampled pdf (1) at a specified point ‘x’ is given by

f̂ (x; α, β) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(n − 1)β{1 − G(x)}β−1g(x)

S
[
1 − {1 − G(x)}β

]
(
1 + S−1 ln

[
1 − {1 − −G(x)}β

])n−2;

−S < ln
[
1 − {1 − G(x)}β

]
,

0; otherwise.

Proof We can write (1) as

f (x;α, β) = β{1 − G(x)}β−1g(x)
[
1 − {1 − G(x)}β]

∞∑

i=0

1

i !
(
ln
[
1 − {1 − G(x)}β])

i

αi+1. (13)

Using Lemma 1 of Chaturvedi and Tomer (2002), Theorem 2 and (13), the
UMVUE of f (x;α, β) at a specified point ‘x’ is given by

f̂ (x;α, β) = β{1 − G(x)}β−1g(x)
[
1 − {1 − G(x)}β]

∞∑

i=0

1

i !
(
ln
[
1 − {1 − G(x)}β])

i

α̂i+1

= (n − 1)β{1 − G(x)}β−1g(x)

S
[
1 − {1 − G(x)}β]

n−2∑

i=0

(
n − 2

i

)(
S−1 ln

[
1 − {1 − G(x)}β])

i

and the lemma follows.
In the following theorem, we obtain the UMVUE of the reliability function R(t).

Theorem 3 The UMVUE of the reliability function R(t) is given by

R̂(t) =
⎧
⎨

⎩

1 − (1 + S−1 ln
[
1 − {1 − G(t)}β])n−1;

−S < ln
[
1 − {1 − G(t)}β],

1; otherwise.

Proof Since g(x; s) = f (x;α) f (s;α) is a continuous function of (X, S) on the
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rectangle [t,∞) × [0,∞), the conditions of Fubini’s theorem {see (Bilodeau et al.
2010), p. 207)} are satisfied for the change of order of integration. Let us consider
the expected value of the integral

∫∞
t f̂ (x;α, β)dx with respect to s, i.e.,

∞∫

0

⎧
⎨

⎩

∞∫

t

f̂ (x;α, β)dx

⎫
⎬

⎭
f (s;α)ds =

∞∫

t

[
ES

(
f̂ (x;α, β)

)]
dx

=
∞∫

t

f (x;α, β)dx = R(t). (14)

We conclude from (14) that the UMVUE of R(t) can be obtained simply by
integrating f̂ (x;α, β) from t to ∞. Thus, from Lemma 2,

R̂(t) = (n − 1)β

S

∞∫

t

{1 − G(x)}β−1g(x)
[
1 − {1 − G(x)}β]

(
1 + S−1 ln

[
1 − {1 − G(x)}β])n−2

dx

= (n − 1)

0∫

S−1 ln[1−{1−G(t)}β]

(1 + v)n−2dv; − S < ln
[
1 − {1 − G(t)}β]

Hence, the theorem follows.
In order to obtain the UMVUE of P, let X and Y be two independent rvs following

the classes of distributions f (x;α1, β1) and f (y;α2, β2), respectively, where

f (x; α1, β1) = α1β1g(x){1 − G(x)}β1−1
[
1 − {1 − G(x)}β1

]α1−1; x > 0, α1, β1 > 0

and

f (y; α2, β2) = α2β2h(y){1 − H(y)}β2−1
[
1 − {1 − H(y)}β2

]α2−1; y > 0, α2, β2 > 0.

Let {Rn} and
{

R∗
m

}
be the record value sequences for X’s and Y’s, respectively

and define S = − ln
[
1 − {1 − G(rn)}β1

]
and T = − ln

[
1 − {1 − H(r∗

m)
}β2
]
.

The following theoremprovides theUMVEofP, whenX andY belong to different
family of distributions.

Theorem 4 The UMVUE of P is given by
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P̂ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − (m − 1)

c∫

0

⎛

⎝1 + S−1 ln

⎡

⎣1 −
{

1 − G

[

H−1

{

1 −
(
1 − eT v

)β−1
2

}]}β1
⎤

⎦

⎞

⎠

n−1

(1 − v)m−2dv; G−1

{

1 −
(
1 − e−S

)β−1
1

}

> H−1

{

1 −
(
1 − e−T

)β−1
2

}

,

1 − (m − 1)

1∫

0

⎛

⎝1 + S−1 ln

⎡

⎣1 −
{

1 − G

[

H−1

{

1 −
(
1 − eT v

)β−1
2

}]}β1
⎤

⎦

⎞

⎠

n−1

(1 − v)m−2dv; G−1

{

1 −
(
1 − e−S

)β−1
1

}

< H−1

{

1 −
(
1 − e−T

)β−1
2

}

,

where c = −T −1 ln

[
1 −

{
1 − H

[
G−1

{
1 − (1 − e−S

)β−1
1

}]}β2
]
.

Proof It follows from Lemma 2 that the UMVUES of f (x;α1, β1) and f (y;α2, β2)

at a specified point ‘x’ and ‘y’ are.

f̂ (x; α1, β1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(n − 1)β1{1 − G(x)}β1−1g(x)

S
[
1 − {1 − G(x)}β1

]
(
1 + S−1 ln

[
1 − {1 − G(x)}β1

])n−2;

−S < ln
[
1 − {1 − G(x)}β1

]
,

0; otherwise

and

f̂ (y; α2, β2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(m − 1)β2{1 − H(y)}β2−1h(y)

T
[
1 − {1 − H(y)}β2

]
(
1 + T −1 ln

[
1 − {1 − H(y)}β2

])m−2;

−T < ln
[
1 − {1 − H(y)}β2

]
,

0; otherwise,

respectively.
From the arguments similar to those adopted in the proof of Theorem 3,

P̂ =
∞∫

y=0

∞∫

x=y

f̂ (x;α1, β1) f̂ (y;α2, β2)dxdy

P̂ =
∞∫

y=0

R̂(y;α1, β1) f̂ (y;α2, β2)dy; − S < ln
[
1 − {1 − G(y)}β1

]
,

− T < ln
[
1 − {1 − H(y)}β2

]
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P̂ = 1 − (m − 1)β2

∞∫

c′

(
1 + S−1 ln

[
1 − {1 − G(y)}β1

])n−1

.
{1 − H(y)}β2−1h(y)

T
[
1 − {1 − H(y)}β2

]
(
1 + T −1 ln

[
1 − {1 − H(y)}β2

])m−2
dy,

where c′ = max
[
G−1

{
1 − (1 − e−S

)β−1
1

}
, H−1

{
1 − (1 − e−T

)β−1
2

}]
.

The theorem now follows on considering the two cases and putting v =
−T −1 ln

[
1 − {1 − H(y)}β2

]
.

In the following theorem, we obtain the UMVUE of P, when X and Y belong to
same family of distributions.

Theorem 5 When G(·) d= H(·) and β1 = β2 = β, say, the UMVUE of P is

P̂ =

⎧
⎪⎪⎨

⎪⎪⎩

1 − (m − 1)
m−2∑

i=0
(−1)i

(
m − 2

i

)
B(i + 1, n)

(
S
T

)i+1; S < T,

1 − (m − 1)
n−1∑

j=0
(−1) j

(
n − 1

j

)
B( j + 1, m − 1)

(
T
S

) j ; S > T .

Proof Taking G(·) d= H(·) and β1 = β2 = β, in Theorem 4, for S < T, we get

P̂ = 1 − (m − 1)

S/T∫

0

(
1 − T

S
v

)n−1

(1 − v)m−2dv

= 1 − (m − 1)

1∫

0

(1 − w)n−1

(
1 − S

T
w

)m−2( S

T

)
dw

= 1 − (m − 1)
m−2∑

i=0

(−1)i

(
m − 2

i

)(
S

T

)i+1
1∫

0

wi (1 − w)n−1dw

and the first assertion follows. Similarly, we can prove the second assertion.

3.2 MLES of R(t) and P, When All Parameters Are Unknown

Let R1, R2, . . . , Rn be the first n lower records from (1). Let us denote by � =
(α, β), where α and β are unknown. The log-likelihood function for observing �,
based on the first n lower records is given by
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ln L(�|r1, r2, . . . , rn) = n ln α + n ln β + α ln
[
1 − {1 − G(rn)}β

]

+
n∑

i=1

lng(ri ) + (β − 1)
n∑

i=1

ln{1 − G(ri )}−
n∑

i=1

ln
[
1 − {1 − G(ri )}β

]
.

(15)

Differentiating (15) with respect to all unknown parameters and equating these
differential coefficients to zero, we get

n

α
+ ln

[
1 − {1 − G(rn)}β

] = 0 (16)

and

n

β
− α{1 − G(rn)}β ln{1 − G(rn)}[

1 − {1 − G(rn)}β
] +

n∑

i=1

ln{1 − G(ri )}

+
n∑

i=1

{1 − (ri )}β ln{1 − G(ri )}[
1 − {1 − G(ri )}β

] = 0. (17)

Solving (16) and (17) simultaneously, let α̃ and β̃ are the MLES of α and β,
respectively. Moreover, from (16), we get

α̃ = −n

ln
[
1 − {1 − G(rn)}β̃

] . (18)

Corollary 1 When β is known, the MLE of α is given by

α̃ = −n

ln
[
1 − {1 − G(rn)}β

] = n

S
.

Proposition 1 The MLE of α given in Corollary 1 has an inverse Gamma (IG)
distribution with parameter n and nα, i.e., α̃ ∼ I G(n, nα).

Proof Proposition directly follows from Lemma 1 and Corollary 1.

In the following lemma, we provide the MLE of the sampled pdf at a specified
point ‘x’.

Lemma 3 The MLE of f (x; α, β) at a specified point ‘x’ is

f̃ (x;α, β) = α̃β̃g(x){1 − G(x)}β̃−1
[
1 − {1 − G(x)}β̃

]α̃−1
.

Proof The proof follows from (1) and one-to-one property of the MLES.

The following theorem and corollary follows from the invariance property of
MLES.



296 T. Kumari and A. Pathak

Theorem 6 The MLE of R(t) is given by

R̃(t) = 1 −
[
1 − {1 − G(t)}β̃

]α̃
.

Corollary 2 When β is known the MLE of R(t) is given by

R̃(t) = 1 − [1 − {1 − G(t)}β]α̃ .

The following theorem provides the MLE of P, when X and Y belong to different
family of distributions.

Theorem 7 The MLE of P,when X and Y belongs to different family of distributions
is

P̃ = α̃2

1∫

0

(

1 −
[
1 −

{
1 − G

[
H−1

(
1 − uβ̃−1

2

)]}β̃1
]α̃1
)

(1 − u)α̃2−1du,

where
(
α̃1, β̃1

)
and

(
α̃2, β̃2

)
are the MLES of (α1, β1) and (α2, β2) based on first

n and m lower records (r1, r2, . . . , rn) and
(
r∗
1 , r∗

2 , . . . , r∗
m

)
, respectively.

Proof The proof of the above theorem is similar to the proof of Theorem 4.

The following theorem provides the MLE of P, when X and Y belong to same
family of distributions.

Corollary 3 The MLE of P, when X and Y belong to same family of distributions
and β1 �= β2 are known

P̃ = α̃2

1∫

0

(

1 −
[
1 −

{
1 − G

[
H−1

(
1 − uβ−1

2

)]}β1
]α̃1
)

(1 − u)α̃2−1du,

where (α̃1, α̃2) are the MLES of (α1, α2) based on first n and m lower records
(r1, r2, . . . , rn) and

(
r∗
1 , r∗

2 , . . . , r∗
m

)
, respectively.

Theorem 8 When G(·) d= H(·) and β1 = β2 = β, say, the MLE of P is given by
P̃ = α̃1

α̃1+α̃2
.

Proposition 2 The pdf of MLE of P, when G(·) d= H(·) and β1 = β2 = β, say, is
given by

f (P̃) = 1

B
(

n
2 ,

m
2

)
C

m
2 (P̃)

m
2 −1(1 − P̃)

n
2 −1

(1 + P̃(C − 1))
n+m
2

; 0 < P̃ < 1, whereC = mα2

nα1
.
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Proof From Proposition 1, α̃1 ∼ I G(n, nα1) and α̃2 ∼ I G(m, mα2). It is clear
that W1 = nα1

α̃1
∼ Gamma(2n) and W2 = mα2

α̃2
∼ Gamma(2m). Using Theorem 8,

P̃ can be rewritten as P̃ = 1
1+CW , where W = W1

W2
= nα1

mα2

α̃2
α̃1

∼ Beta2
(

n
2 ,

m
2

)
and

C = mα2
nα1

.

The result follows on using standard transformation technique of rvs.

Remark FromProposition 1, E(α̃) = n
n−1α; n > 1 andV (α̃) = n2

(n−1)2(n−2)α
2; n >

2. It is clear that n−1
n α̃ is an unbiased estimator ofα.Moreover, as n → ∞, E(α̃) → α

and V (α̃) → 0. Hence α̃ is a consistent estimator of α.

4 Confidence Interval for α, β, R(t) and P

The Fisher information matrix of � = (α, β) is

I (�) = −E

(
∂2 ln L
∂α2

∂2 ln L
∂α∂β

∂2 ln L
∂α∂β

∂2 ln L
∂β2

)

, where

∂2 ln L

∂α2
= −n

α2
,

∂2 ln L

∂α∂β
= −{1 − G(rn)}β ln{1 − G(rn)}[

1 − {1 − G(rn)}β
]

and

∂2 ln L

∂β2
= −n

β2
− α

[
ln{1 − G(rn)}

{1 − G(rn)}−β − 1

]2
{1 − G(rn)}−β

+
n∑

i=1

[
ln{1 − G(ri )}

{1 − G(ri )}−β − 1

]2
{1 − G(ri )}−β.

It is very difficult to obtain the expectation of the above expression, so we use
observe Fisher information matrix which can be obtained by removing the expecta-
tion sign. The asymptotic variance–covariance matrix of the MLES is the inverse of
I (�), which will enable us to find out the variances of α̃ and β̃, and thereafter we
can construct confidence intervals for α and β, respectively.

Assuming asymptotic normality of the MLES, confidence intervals for α and β

are given by

(
α̃ − zν/2SD(α̃), α̃ + zν/2SD(α̃)

)
and

(
β̃ − zν/2SD(β̃), β̃ + zν/2SD(β̃)

)
,

(19)
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respectively, where SD(·) = √
V ar(·) and zν/2 is the 100(1 − ν/2) percentile point

of standard normal distribution.
Using above confidence intervals, one can easily obtain the 100(1−ν)% asymp-

totic confidence interval for R(t) as

⎛

⎜
⎝
1 −

[
1 − {1 − −G(t)}β̃−zν/2SD(β̃)

]α̃−zν/2SD(α̃)

,

1 −
[
1 − {1 − G(t)}β̃+zν/2SD(β̃)

]α̃+zν/2SD(α̃)

⎞

⎟
⎠. (20)

Now,wedevelop confidence interval for the ratio of shape parameters, i.e., τ = α1
α2
,

when β1 and β2 are known. Using the fact that 2α1S ∼ χ2
2n and 2α2T ∼ χ2

2m , we have
F = 2α1S/2n

2α2T/2m ∼ F2n, 2m . Therefore, F is a pivotal quantity for τ , and a 100(1−ν)%
confidence interval for τ is given as

(
k F2n, 2m(1 − ν/2), k F2n, 2m(ν/2)

)
, (21)

where k = n ln
[
1−{1−H(r∗

m )}β2
]

m ln[1−{1−G(rn)}β1 ] and F2n, 2m(δ) is the δth percentile of F-distribution

with (2n, 2 m) degrees of freedom.
Next, we develop confidence interval for common shape parameter α. Here, we

suppose that the shape parameters of two family of distributions are equal, i.e.,
α1 = α2 = α, when β1 and β2 are known. Moreover, X ∼ f (x;α, β1) and Y ∼
f (y;α, β2). Therefore, the joint distribution of record values from these distributions
can be written as

L(�|r1, r2, ..., rn, r∗
1 , r∗

2 , ..., r∗
m)

= αn+mβn
1β

m
2

[
1 − {1 − G(rn)}β1

]α
n∏

i=1

g(ri ){1 − G(ri )}β1−1

[
1 − {1 − G(ri )}β1

]

[
1 − {1 − H(r∗

m)
}β2
]α m∏

j=1

h(r∗
j )
{
1 − H(r∗

j )
}β2−1

[
1 −

{
1 − H(r∗

j )
}β2
] ,

where � = (α, β1, β2).
It can be easily shown that the MLE of the common shape parameter α is given

by

α̃ = −(n + m)

ln
[
1 − {1 − G(rn)}β1

]+ ln
[
1 − {1 − H(r∗

m)
}β2
] = (n + m)

S + T
.
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Using the fact that 2α(S + T ) ∼ χ2
2n+2m , The 100(1−ν)% confidence interval for

α is given by

(
χ2
2n+2m(1 − ν/2)

2h′ ,
χ2
2n+2m(ν/2)

2h′

)
, where h′ = S + T (22)

In order to obtain the confidence interval forP, we consider the case when X and Y
belong to same family of distribution and β1 = β2 = β is known. From Proposition
2, it is clear that

Z = (W1/2n)

(W2/2m)
∼ F2n, 2m and P = 1

1 + 1
Z

α̃2
α̃1

⇒ Z = P

1 − P

α̃2

α̃1
∼ F2n, 2m .

Using above, 100(1 − ν)% confidence interval for P is given by

({
α̃2

α̃1F2n, 2m(1 − ν/2)
+ 1

}−1

,

{
α̃2

α̃1F2n, 2m(ν/2)
+ 1

}−1
)

, (23)

where F2n, 2m(ν/2) is the upper 100 (1−ν/2) percentile point of F-distribution with
(2n, 2 m) degrees of freedom.

5 Testing Procedures for Various Hypotheses

Here, we consider the case when β is known. An important hypothesis in life-testing
experiments is Ho : α = αo against H1 : α �= αo. It follows from (11) that, under Ho

Sup
�o

L(�|r1, r2, ..., rn) = αn
oβn

n∏

i=1

g(ri ){1 − G(ri )}β−1

[
1 − {1 − G(ri )}β

] exp(−αo S);

�o = {α : α = αo}

and

Sup
�

L(�|r1, r2, ..., rn) =
(n

S

)n
βn

n∏

i=1

g(ri ){1 − G(ri )}β−1

[
1 − {1 − G(ri )}β

] exp(−n);

� = {α : α > 0}.

Therefore, the likelihood ratio (LR) is given by
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Sup
�o

L(�|r1, r2, ..., rn)

Sup
�

L(�|r1, r2, ..., rn)
=
(

αo S

n

)n

exp(−αo S + n). (24)

Wenote that the first termon the right hand side of (24) ismonotonically increasing
and the second term is monotonically decreasing function of S. Denoting by χ2

2n(·),
the chi-square statisticwith 2n degrees of freedomand using the fact that 2αo S ∼ χ2

2n ,
the critical region is given by

{0 < S < ko}U
{

k
′
o < S < ∞

}
,

where ko and k
′
o are obtained such that ko = (2αo)

−1χ2
2n(1 − ν/2) and k

′
o =

(2αo)
−1χ2

2n(ν/2).
Another important hypothesis in life-testing experiments is Ho : α ≤ αo against

H1 : α > αo. It follows from (11) that, for α1 < α2,

L(�1|r1, r2, ..., rn)

L(�2|r1, r2, ..., rn)
= αn

1

αn
2

exp((α2 − α1)S);
�1 = {α : α = α1}, �2 = {α : α = α2}. (25)

It follows from (25) that f (x;α, β) has monotone likelihood ratio in S. Thus, the
uniformly most powerful critical region (UMPCR) for testing Ho against H1 is given
by

φ =
{
1, i f S < k

′′
o,

0, otherwise,
where k

′′
o = (2αo)

−1χ2
2n(1 − ν).

6 Simulation Study and Real Data Analysis

6.1 A Particular Case and Algorithm

In this section, we consider exponentiated exponential distribution as a particular
case of EG family of distributions, which is given at (1).

The rv X is said to follow the exponentiated exponential distribution, if it’s pdf
and cdf are given by

f (x;α, β) = αβe−βx
(
1 − e−βx

)α−1; x, α, β > 0 (26)

and
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F(x;α, β) = (1 − e−βx
)α; x, α, β > 0. (27)

In order to investigate the behavior of the proposed estimators, a simulation study
using Monte-Carlo method is carried out. Since all considered inference procedures
depends only on the smallest record, therefore algorithm of drawing smallest record
is of great importance.

The simulation procedure involves the following steps:

1. Choose the value of n, α and β.
2. Using (26), one can easily show that −α ln

(
1 − e−βx

)
follows Exp(1). Such a

rv X admits the representation.

X
d= −1

β
ln
(
1 − exp

(− X∗
α

))
, where X∗ is an Exp(1) variate.

Consequently, for n = 1, 2, 3, 4, …, we have

Rn
d= −1

β
ln

(

1 − exp

(
−1

α

n∑

i=1

X∗
i

))

,

where Rnis the nth lower record {seeArnold et al. (1998)} (28)

3. Use (28) to generate k = 1000 independent random samples of lower records
each of size n.

4. Compute k values of S corresponding to above k lower records.
5. Compute k estimates of α, R(t) and P corresponding to k values of S and then

obtain their averages along with mean square error (MSE), respectively.

6.2 Simulation Studies

In order to check the performance of the estimators of α (when β is known), we have
simulated 1000 random samples of lower records using (26) and (28), each of size n
= 4(4)16 with different pair of values of (α, β) = (1.5, 1.5), (1.5, 2.0), (2.0, 1.5) and
(2.0, 2.0). With the help of Theorem 2 and Corollary 1, average maximum likelihood
(ML) and uniformly minimum variance (UMVU) estimates of α along with their
mean square errors (MSES) are obtained. These results are reported in Table 1. Under
the same set-up, using Theorem 3 and Corollary 2, we have computed average ML
and UMVU estimates of R(t) along with their MSES. For t = 0.3(0.3)1.5, results are
presented in Table 2.

In order to investigate the performance of estimators of P obtained in Theorem 5
and 8 (when β1 = β2 = β are known), we have simulated 1000 random samples of
lower records using (26) and (28), from each of the populations X and Y with sizes
(n, m) = (4, 4), (8, 8), (12, 12) and (16, 16) with α1 = 1.5(0.5)2.0, α2 = 1.0(1.0)5.0
and β1 = β2 = β = 1.5(0.5)2.0. For different combinations of parametric values,
we have computed actual values of P, average ML and UMVU estimates of P along
with their MSES. Obtained results are presented in Table 3. In order to investigate
the performance of estimators of P obtained in Theorem 4 and Corollary 3 (when
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→
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β1 �= β2 are known), we have generated 1000 random samples of lower records
using (26) and (28), from each of the populations X and Y with sizes (n, m) = (4,
4), (8, 8), (12, 12) and (12, 16) with different combinations of α1 = 1.5(0.5)2.0, α2

= 1.0(1.0)5.0, β1 = 1.5(0.5)2.0 and β2 = 2.0(1.0)3.0. For different combinations of
parametric values, we have computed actual values of P, average ML and UMVU
estimates of P along with their MSES. Obtained results are presented in Table 4.

To check the performance of the estimators of R(t) (when β is known) graphically,
we have simulated 1000 random samples of lower records using (26) and (28), each
of size n = 4(4)16 with α = 1.5 and β = 2.0(1.0)4.0. Using Theorem 3 and Corollary
2, average ML and UMVU estimates of R(t) along with their MSES are obtained.
For different values of t, MSES of ML and UMVU estimators of R(t) are plotted
against t, in Fig. 1. Under the same set-up, MSES of ML and UMVU estimators of
R(t) are plotted against their estimates in Fig. 2.

To check the performance of the estimators, for different set of values of α and
β, we have again simulated 1000 random samples of lower records using (26) and
(28), each of size n = 4(4)16 with α = 1.5(1.0)3.5 and β = 1.5. Using Theorem 3
and Corollary 2, average ML and UMVU estimates of R(t) along with their MSES
are obtained. For different values of t, MSES of ML and UMVU estimators of R(t)
are plotted against t in Fig. 3. Under the same set-up, MSES of ML and UMVU
estimators of R(t) are plotted against their estimates in Fig. 4.

Furthermore, to investigate the performance of estimators of P obtained in Theo-
rems 5 and 8 (when β1 = β2 = β are known) graphically, we have generated 1000
random samples of lower records using (26) and (28), from each of the populations
X and Y with sizes (n, m) = (4, 4), (8, 8), (12, 12) and (16, 16) with different combi-
nations of α1 = 1.5(1.0)3.5 and β1 = β2 = β = 1.5. For different combinations
of above parametric values and for α2 = 1.0(1.0)6.0, the computed MSES of ML
and UMVU estimators of P against their estimates are plotted in Fig. 5. Under the
same set-up, MSE of ML and UMVU estimators of P, which are obtained by using
Theorem 4 and Corollary 3 (when β1 �= β2 are known), for α2 = 1.0(1.0)6.0 with
different combinations of α1 = 2.0(0.5)3.0, β1 = 2.5 and β2 = 1.0(0.5)2.0 are plotted
against their estimates in Fig. 6.

In order to obtain the ML estimates of α and β (when both the parameters are
unknown), we have simulated 1000 random samples of lower records using (26) and
(28), each of size n = 4(4)16 with (α, β) = (1.5, 1.5), (1.5, 2.0), (2.0, 1.5) and (2.0,
2.0). For each sample of lower records, the ML estimates of α and β are obtained
by using (15), (18) and using the optimize() function with maximum = T, which is
available in R 3.2.4. Average estimates along with their corresponding MSES are
reported in Table 5. Under the same set-up, actual values and average estimates of
R(t) along with their corresponding MSES for t = 0.30 and 0.60, are presented in
Table 6. Moreover, by using Theorem 7 and the same technique discussed earlier,
we have constructed Table 7 for various values of α1, α2, β1 and β2. For different
values of (n, m,) Table 7 gives the actual values, average estimates of P along with
their corresponding MSES.

In Table 8 (Table 9), 95% confidence interval for P along with length of the
interval based on ML estimates of α1 and α2, when β1 = β2 = β are known (when
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Fig. 1 Plot of MSES of estimators of R(t) against different values of t

Fig. 2 Plot of estimates of R(t) against their corresponding MSES

Fig. 3 Plot of MSES of estimators of R(t) against different values of t
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Fig. 4 Plot of estimates of R(t) against their corresponding MSES

Fig. 5 Plot of estimates of P against their MSE of corresponding estimators

Fig. 6 Plot of estimates of P against their corresponding MSES
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Table 6 ML estimates of R(t), when both the parameter are unknown

n → 4 8 12 16

α ↓ β ↓ t ↓ R(t) ↓ R̃(t) R̃(t) R̃(t) R̃(t)

1.5 1.5 0.3 0.7819 0.7362 (0.0347) 0.7211 (0.0304) 0.7196 (0.028) 0.7184 (0.027)

0.6 0.5429 0.491 (0.0568) 0.4586 (0.0523) 0.4601 (0.0521) 0.4553 (0.0505)

2.0 0.3 0.6969 0.6818 (0.0354) 0.673 (0.0246) 0.6773 (0.0214) 0.6703 (0.0215)

0.6 0.4158 0.4153 (0.0409) 0.3835 (0.0317) 0.4001 (0.0335) 0.4054 (0.0353)

2.0 1.5 0.3 0.8687 0.8237 (0.0252) 0.818 (0.02) 0.8112 (0.0197) 0.8116 (0.018)

0.6 0.6478 0.5742 (0.057) 0.5619 (0.0515) 0.5661 (0.0514) 0.5652 (0.0505)

2.0 0.3 0.7964 0.7765 (0.0255) 0.7634 (0.0204) 0.7578 (0.0181) 0.7601 (0.0173)

0.6 0.5117 0.5044 (0.0425) 0.477 (0.0371) 0.4795 (0.0353) 0.4768 (0.0359)

Table 7 ML estimates of P, when both the parameter are unknown

(n, m)→ (4, 4) (8, 8) (12, 12) (16, 16)

α1 ↓ β2 ↓ β1 ↓ α2 ↓ P ↓ P̃ P̃ P̃ P̃

1.5 2.0 1.5 1.0 0.6761 0.6545
(0.0631)

0.6504
(0.057)

0.6589
(0.0552)

0.6498
(0.0533)

2.0 0.5245 0.5028
(0.076)

0.4848
(0.0758)

0.4899
(0.0689)

0.4971
(0.0685)

2.0 1.0 0.6 0.6073
(0.0602)

0.6036
(0.0572)

0.6056
(0.0566)

0.6102
(0.056)

2.0 0.4286 0.4259
(0.0703)

0.4434
(0.0632)

0.4268
(0.0627)

0.423
(0.0626)

2.0 3.0 1.5 1.0 0.8333 0.7799
(0.0436)

0.778
(0.0416)

0.7764
(0.0415)

0.7812
(0.0372)

2.0 0.7333 0.6699
(0.0659)

0.6668
(0.0622)

0.6653
(0.0605)

0.6764
(0.0574)

2.0 1.0 0.7714 0.7366
(0.0472)

0.7312
(0.0457)

0.7225
(0.0425)

0.7328
(0.0426)

2.0 0.6429 0.5972
(0.0624)

0.5991
(0.0613)

0.6042
(0.0612)

0.5976
(0.0584)

β1 = β2 = β are unknown), using (23) for various value of α1, α2, β and (n, m) are
provided.

In Table 10, we have constructed 95% confidence interval for τ = α1
α2

along
with length of the interval, using (21) for various value of α1, α2, β1, β2 and (n, m).
Whereas, in Table 11, we have constructed 95% confidence interval for α1 = α2 = α

along with length of the interval, using (22) for various value of α, β1, β2 and (n, m).
For the theory developed in Sect. 5, for testing the hypothesis Ho : α = 2 (= αo)

against H1 : α �= 2 (= αo), we have generated the following random sample of
lower record values of size n = 10 from (26) with α = 2 and β = 1.5.
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Table 8 95% confidence interval for P based on ML estimates of α1 and α2 when β1 = β2 = β

is known

(n, m)→ (4, 4) (8, 8) (12, 12) (12, 16)

β ↓ α1 ↓ α2 ↓ P ↓ [95% confidence interval] Length of the interval

1.0 1.5 1.5 0.5 [0.1844,
0.8163] 0.6319

[0.2647,
0.7329]
0.4683

[0.308,
0.6962]
0.3882

[0.313,4
0.678]
0.3646

1.5 2.0 0.4286 [0.1408, 0.763]
0.6223

[0.2112,
0.6712]
0.46

[0.2509,
0.633]
0.3821

[0.259,
0.6172]
0.3582

2.0 1.5 0.5714 [0.2308, 0.855]
0.6242

[0.3159,
0.7788]
0.4629

[0.3688,
0.7506]
0.3817

[0.3835,
0.7416]
0.3581

2.0 2.0 0.5 [0.1843,
0.8162] 0.6319

[0.2644,
0.7327]
0.4683

[0.3135,
0.7017]
0.3881

[0.3232,
0.6878]
0.3646

2.0 1.5 1.5 0.5 [0.1866,
0.8184] 0.6319

[0.2644,
0.7327]
0.4683

[0.3049,
0.6932]
0.3882

[0.3174,
0.6821]
0.3647

1.5 2.0 0.4286 [0.1538,
0.7813] 0.6275

[0.2146,
0.6757]
0.4611

[0.2557,
0.6389]
0.3832

[0.2629,
0.622]
0.3591

2.0 1.5 0.5714 [0.2262,
0.8517] 0.6256

[0.3297,
0.7895]
0.4598

[0.3653,
0.7477]
0.3824

[0.3817,
0.7401]
0.3584

2.0 2.0 0.5 [0.1841, 0.816]
0.6319

[0.269,
0.7372]
0.4683

[0.3078,
0.696]
0.3882

[0.3157,
0.6803]
0.3646

1.0845, 0.6753, 0.2772, 0.2312, 0.2058, 0.1409, 0.0758, 0.0272, 0.0184, 0.0164.

Now with the help of chi-square table at 5% level of significance (LOS), we
obtained ko = 2.3977 and k

′
o = 8.5424. Hence, in this case we do not reject Ho at

5% LOS as S = 3.7173.
Again, for testing Ho : α ≤ 1 (= αo) against H1 : α > 1(= αo), we have

considered the same sample given above. Now at 5%LOS,we obtained k
′′
o = 15.7052

and hence in this case we reject Ho as S = 3.7173.

6.3 Real Data Example

First data set:

To illustrate the developed approaches in previous sections, we consider the real data
set which is also used in Lawless (2003), page 3. This data is from Nelson (1982),
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Table 9 95% confidence interval for P based on ML estimates of α1 and α2 when β1 = β2 = β

is unknown

(n, m)→ (4, 4) (8, 8) (12, 12) (12, 16)

β ↓ α1 ↓ α2 ↓ P ↓ [95% confidence interval] Length of the interval

1.0 1.5 1.5 0.5 [0.3599, 0.917]
0.5571

[0.2667,
0.735]
0.4683

[0.428,
0.7939]
0.366

[0.4048,
0.7361]
0.3312

1.5 2.0 0.4286 [0.1593,
0.7883] 0.629

[0.2659,
0.7342]
0.4683

[0.2774,
0.6641]
0.3867

[0.2295,
0.5498]
0.3203

2.0 1.5 0.5714 [0.1956, 0.827]
0.6314

[0.2383,
0.7046]
0.4663

[0.2601,
0.6441]
0.3841

[0.4218,
0.7494]
0.3276

2.0 2.0 0.5 [0.103, 0.693]
0.59

[0.2009,
0.6571]
0.4563

[0.1688,
0.5111]
0.3424

[0.4319,
0.7571]
0.3252

2.0 1.5 1.5 0.5 [0.3141, 0.9]
0.5859

[0.2441,
0.7112]
0.4671

[0.3539,
0.7383]
0.3844

[0.285,
0.6203]
0.3354

1.5 2.0 0.4286 [0.0462,
0.4875] 0.4414

[0.1777,
0.6223]
0.4446

[0.2129,
0.5821]
0.3692

[0.2997,
0.6369]
0.3373

2.0 1.5 0.5714 [0.4095,
0.9316] 0.5221

[0.378,
0.8225]
0.4445

[0.3553,
0.7394]
0.3841

[0.3628,
0.7001]
0.3373

2.0 2.0 0.5 [0.3264, 0.905]
0.5786

[0.4909,
0.8803]
0.3893

[0.1658,
0.5057]
0.34

[0.3207,
0.6593]
0.3386

concerning the data on time to breakdown an insulating fluid between electrodes at
a voltage of 36 kV (minutes). The times to breakdown at voltage 36 kV are.

X =
(
1.97, 0.59, 2.58, 1.69, 2.71, 25.50, 0.35, 0.99, 3.99, 3.67,

2.07, 0.96, 5.35, 2.90, 13.77

)

.

Second data set:

We consider the data set regarding the time inminutes for the first goal scoring during
thefinal stagesmatches of theEuropeanChampionsLeague for two consecutive years
2011–2012 and 2012–2013, for the return matches (the data are available online at
http://www.it.soccerway.com). We have considered only the matches with at least
one goal scored and we have divided all times by 90, i.e., the total of minutes of
a soccer match, in order to obtain data belonging to the unit interval. The obtained
observed data are the following:

http://www.it.soccerway.com
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Table 10 95% confidence interval for α1/α2

(n, m)→ (4, 4) (8, 8) (12, 12) (12, 16)

β1 ↓ β2 ↓ α1 ↓ α2 ↓ α1/α2 ↓ [95% confidence interval] Length of the
interval

1.0 2.0 1.5 1.5 1 [0.2965,
5.828]
5.5315

[0.4161,
3.1728]
2.7567

[0.4807,
2.4756]
1.9949

[0.4965,
2.2905]
1.794

1.5 2.0 0.75 [0.2269,
4.459]
4.2321

[0.3101,
2.3642]
2.0542

[0.3601,
1.8543]
1.4942

[0.3724,
1.7182]
1.3458

2.0 1.5 1.3333 [0.4077,
8.0129]
7.6052

[0.555,
4.2316]
3.6767

[0.6404,
3.2977]
2.6573

[0.6695,
3.0885]
2.419

2.0 2.0 1 [0.3013,
5.9224]
5.6211

[0.4183,
3.1892]
2.771

[0.4829,
2.4867]
2.0038

[0.4968,
2.2921]
1.7953

2.0 1.0 1.5 1.5 1 [0.2936,
5.7709]
5.4772

[0.4095,
3.1227]
2.7131

[0.4868,
2.5067]
2.0199

[0.498,
2.2973]
1.7994

1.5 2.0 0.75 [0.2259,
4.4391]
4.2132

[0.3126,
2.3839]
2.0712

[0.3638,
1.8732]
1.5095

[0.375,
1.73]
1.355

2.0 1.5 1.3333 [0.3969,
7.8014]
7.4044

[0.5515,
4.2055]
3.654

[0.6445,
3.3187]
2.6743

[0.662,
3.0542]
2.3922

2.0 2.0 1 [0.3005,
5.9059]
5.6054

[0.3005,
5.9059]
5.6054

[0.4782,
2.4624]
1.9843

[0.4955,
2.2858]
1.7903

Table 11 95% confidence interval for α1 = α2 = α

(n,m)→ (4, 4) (8, 8) (12, 12) (12, 16)

β1 ↓ β2 ↓ α1 ↓ α2 ↓ [95% confidence interval] Length of the interval

1 2 1.5 1.5 [0.6495,
2.7121]
2.0626

[0.8516,
2.3038] 1.4522

[0.9618,
2.1585] 1.1967

[0.9967,
2.1044] 1.1077

2.0 2.0 [0.8594,
3.5889]
2.7294

[1.146, 3.1002]
1.9542

[1.2843,
2.8823] 1.598

[1.3261,
2.7998] 1.4737

2 1 1.5 1.5 [0.6479,
2.7055]
2.0576

[0.8575,
2.3197] 1.4622

[0.9637,
2.1629] 1.1992

[0.996, 2.103]
1.107

2.0 2.0 [0.8641,
3.6083]
2.7442

[1.1461,
3.1005] 1.9544

[1.278, 2.8683]
1.5903

[1.3308,
2.8098] 1.479
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Fig. 7 Empirical and fitted cdf for X and Y data sets

Y =
⎛

⎜
⎝

0.267, 0.611, 0.344, 0.533, 0.033, 0.478, 0.200,

0.056, 0.556, 0.711, 0.078, 0.533, 0.922, 0.067, 0.389,

0.289, 0.233, 0.144, 0.100, 0.278, 0.500, 0.078, 0.289, 0.311, 0.122.

⎞

⎟
⎠

We first apply the Kolmogorov–Smirnov (KS) test to check whether the distribu-
tion given at (26), fits the given X and Y-populations. Fitting the (26) distribution to
the data x and y, we obtain the following ML estimates of (α1, β1) and (α2, β2) as.

(α̃1, β̃1)complete data = (0.9647, 0.2118) and = (1.7842, 4.3276).

According to the KS test, we do not reject the null hypothesis that both the data
observed for X (KS = 0.2181; p-value = 0.4142) and the data observed for Y (KS
= 0.10926; p-value = 0.9265) are drawn from (26). Figure 7, confirms the good fit
of (26), for these two data sets.

From the whole sequence of data given in X and Y, we consider the observed
lower record sets, given respectively by:

r = (1.97, 0.59, 0.35)and r∗ = (0.267, 0.033).

Using these lower record values we obtained (̃α1, β̃1) = (2.8412, 1.2215) and
(̃α2, β̃2) = (1.1245, 5.6053). Now on using Theorem 7 and these results we get P̃
= 0.9728 and the ML estimates of P obtained using the whole data set is equal to
0.9286, these results seem highly satisfactory.

Furthermore, to see the log likelihood profile of β1 and β2, we have converted the
log likelihood obtained in (15) in single parameter β (with the help of expression
given at (18)). Then for observed values of r and r* record data sets, we have plotted
the Log likelihood for (26) as a special case in Fig. 8. The vertical line in Fig. 8,
corresponds to theMLestimates ofβ1 andβ2, based on records. Thus Fig. 8, confirms
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Fig. 8 Log likelihood profile of β1 and β2, for r and r* record data set

the accuracy of ML estimates of β1 and β2. Hence the accuracy of the ML estimates
of α1 and α2.

In Fig. 9, by using the expression obtained in Theorem 6 and the ML estimates of
(α, β) based on records, we have plotted the ML estimates of R(t) against different
values of t, for the first and second data set.

Finally, we present the hypothesis testing for our real data sets. From the first
data set, it’s clear that, rn = 0.35. If we assume, β1 = 1.2215, is the known value
of β1. Then for testing the hypothesis Ho : α1 = 2.8412(= α1o) against H1 : α1 �=
2.8412(= α1o), we have the data set r of lower record values of size n = 3. Nowwith
the help of chi-square table at 5% LOS, we obtained ko = 0.2178 and k

′
o = 2.5428.

Hence, in this case we do not reject Ho at 5% LOS as S = 1.0559.

Fig. 9 Plot of ML estimates of R(t) against different values of t for X and Y data sets
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For testing Ho : α1 ≤ 3(= α1o) against H1 : α1 > 3(= α1o),we again considered
the first data set of lower record values given above. Now at 5% LOS, we obtained
k

′′
o = 0.2726 and hence in this case also we do not reject Ho as S = 1.0559.
Similarly form the first second set, it’s clear that, r∗

m = 0.033. If we assume, β2

= 5.6053, is the known value of β2. Then for testing the hypothesis Ho : α2 =
1.1245(= α2o) against H1 : α1 �= 1.1245(= α1o), we have the set r∗ of lower record
values of size m = 2. Now with the help of chi-square table at 5% LOS, we obtained
ko = 0.2154 and k

′
o = 4.9548. Hence, in this case we do not reject Ho at 5% LOS as

T = 1.7786.
Again, for testing Ho : α2 ≤ 1.5(= α2o) against H1 : α2 > 1.5(= α2o), we again

considered the second data set of lower record values given above. Now at 5% LOS,
we obtained k

′′
o = 0.2369 and hence in this case we do not reject Ho as T = 1.7786.

7 Conclusion

In this Chapter, we have developed the estimation procedures for the EG family of
distributions based on lower record values. Considerations were given to both, point
as well as interval estimations. Hypotheses were developed for various parametric
functions. All comparisons are made on the basis of MSES. We used the software R
(www.r-project.org) for the computations of functions in the various expressions.

1. From Table 1, we conclude that UMVUE of α gives better estimates than MLE
of α, which is true for all values of N.

2. From Table 2 and Figs. (1, 2, 3 and 4) for smaller values of t (i.e., for higher
values of R(t)) it can be seen that the performance of MLE of R(t) performs
better than the performance of UMVUE of R(t). Whereas, for higher values of
t (i.e., for lower values of R(t)) they shows that the performance of UMVUE of
R(t) performs better than the performance of MLE of R(t).

3. From Tables 3 and 4, Figs. 5 and 6, it is observed that the MLE of P is more
efficient than the UMVUE of P.

4. From Figs. (1, 2, 3, 4, 5 and 6), it can be seen that as n or (n, m) increases;
estimates from both, MLE and UMVUE comes close to each other.

5. FromTables (8, 9, 10 and 11), it is observed that length of the confidence interval
decreases as (n, m) increases.

6. Two real data-set are fitted to exponentiated exponential distribution and ML
estimates of P are calculated on the basis of lower records.

8 Future Scope

In future this work can be extended for Bayesian analysis and different types of
censoring schemes.

http://www.r-project.org
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Modelling of Non-linear Multi-objective
Programming and TOPSIS in Software
Quality Assessment Under Picture Fuzzy
Framework

Sameer Anand, Ritu Bibyan, and Aakash

Abstract The open-source software (OSS) market comprises of thousands of prod-
ucts and applications with different quality. The primary concern of the individuals
and organizations is to evaluate the quality OSS products and packages. In this
chapter, we have demonstrated a MCDM based model to assess the quality of OSS
by taking performance and cost-based criteria related with OSS to analyze its quality
on the basis of feedback gathered from the users and the experts. To avoid the uncer-
tainty attached with the opinion of the expert, the Maximum-Entropy-Minimum-
Variance-Ordered-Weighted-Aggregation (MEMV-OWA) operator has been incor-
porated. The criteria weights are calculated by solving a non-linear multi-objective
programming problem proposed in the MEMV-OWA operator. The picture fuzzy set
information has been used which is an addendum of intuitionistic fuzzy set, repre-
senting the human opinion more precisely. In this chapter, we have proposed a model
named MEMV-OWA-PF-TOPSIS (Maximum Entropy Minimum Variance-Ordered
Weighted Aggregation-Picture-Fuzzy-TOPSIS). A step by step procedure has been
exhibited to show its implementation in real-life problems. A numerical illustration
related to the software quality assessment of OSS on the basis of their performance
and cost-based criteria has also been provided in this study.
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1 Introduction

An Open source software (OSS) is distributed with specific kind of license which
permits end-users to access the source code legally. The programmers can modify
the software in any way they want with the grant of the license. Many licenses exist
in the software market, but, the software is open source if it can be purposed again,
which implies that source code can be taken by anyone and can deliver their code or
program. And also, It is accessible in the form of source code with no supplementary
cost, means users can access the code and makes changes to it easily.

There are thousands of projects and millions of registered developers in the soft-
ware market sector. Due to which the quality of the software is questioned and at
times becomes amatter of fussKarakoidas et al. (2007). The ample variety among the
available OSS products offering similar functionalities makes it a challenging task
to rank software for experts and customers it becomes challenging to choose which
software to use. This decision-making problem has grabbed considerable attention
in the software market and academia.

There are various MCDM methods and techniques which have been studied so
far by researchers, but the essential elements remain the same in MCDM problems.
In MCDM for each technique, a fixed or absolute number of trails are considered, at
least one decision-maker and two criteria. These elements help in decision building
by sorting, selecting, rating or ranking of trails. Therefore it is consequently said that
MCDM is just not a collection of theories, technologies, methods but it is even a
specific way to handle the decision-making problems. It has been implemented on
an increasing number of domains from the last few decades. It has a feature that it
can efficiently deal with conflicting criteria.

In this research work, we have proposed a model to rank the OSS based on its
quality and cost by using expert opinion. Various criteria are taken into consideration
which are relevant to OSS quality. The MEMV-OWA operator has used the uncer-
tainty attached with the response of expert. This has been done by maximizing the
information and minimizing the variation in their point of view or response. A non-
linear multi-objective programming problem is constructed to extract the weights
using MEMV-OWA technique.

We have also used the notion of Picture Fuzzy sets (PFS) introduced by Zadeh
(1965), which is the extension of Intuitionistic fuzzy sets (IFS). It presents human
opinions more precisely as compared to IFS as it considers options like acceptance,
neutral, rejection and refusal/desist. So far, in the literature, no work has been done to
handle the unknown criteria weights using PFS in the respective field of software. To
fill this research gap, we have attempted to introduce an MCDMmodel with Picture
Fuzzy settings. Therefore, our objective in this research study is to:

1. To identify the most important criteria for assessing the quality of software
2. To construct an effective software selection model by applying integrated

MEMV-OWA-PF-TOPSIS.

The rest of the chapter is structured as follow: In the Sect. 2, we have briefly
provided related work in the field of MCDM, Software Quality and Picture Fuzzy.
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Later, a picture fuzzy sets based weighted distance-based similarity measure is used
to rank software explained in Sect. 3 by step by step process. The study in this chapter
intends to establish a complexMCDMproblem using TOPSIS technique: a similarity
index based technique. So far, in the literature, no work has been done to handle the
unknown criteria weights by using information based on PFS in the field of software.
We have presented an example with specific criteria to rank OSS in Sect. 4. At the
end of the chapter in Sect. 5, the entire conclusion of the study with the results is
discussed and future scope has also been provided.

2 Research Background

The concern for various researchers belonging to different areas has a common
interest in the field of selection of software which results in many approaches. These
approaches are generally a combination of different MCDM techniques, making
it simple to deal with the complexity of the research problem. Reliability of soft-
ware depends on various factors; thus, MCDM problem can easily be used to eval-
uate the software. The approaches which come under MCDM are: “Analytic Hier-
archy Process (AHP)”, “Fuzzy Analytic Hierarchy Process (FAHP)”, “Compromise
programming (CP)”, “Preference Ranking Organization Method for Enrichment
Evaluation (PROMETHEE)”, “Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS)”, “Artificial Network Process (ANP)” (Coyle 2004; Karay-
alcin 1982; Charnes and Cooper 1961; Brans et al. 1986; Deng 1999; Chen 2000;
Saaty 1996).

In general, the quality of a software depends on various factors, one of the factors
is reliability which is considered to learn and understand the reason behind a software
failure (Yadav and Khan 2012). There are traditional models which analysis qualities
of software which can be used to evaluate a software (Boehm 1978; Grady 1992;
McCall 1977; Jacobson et al. 1999; Dromey 1996; Linda and Shaw 1998). In this
chapter, we have incorporated MEMV-OWA operator with picture fuzzy TOPSIS
to handle the uncertainty in the point of view of an expert. The OWA operator
was initially by Yager (1988). Later, an OWA operator for maximizing variance
(MV-OWA) was introduced by Fullér and Majlender (2001).

The fuzzy set theory was first given by Zadeh (1965) and he defined it as a class
of objects with a sequence of grades membership. This idea opened a new area of
research for the researchers. Some of the researchers worked on its extension and
the application of a fuzzy set. One of the significant and essential extensions of the
fuzzy set is intuitionistic fuzzy sets, and it was given by Atanassov (1999). The
theory was focused on the extension of definitions fuzzy set objects, new objects
and their characteristics. Cuong and Kreinovich (2013) introduced Picture fuzzy set
(PFS) which take into consideration human’s opinion. It has more than two options
like yes, no, neutral, and refusal. Later, Cu,ò,ng (2014) also proposed some operations
based on PFS.
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The PFSs has three essential components, namely the degree of belongingness,
non-belongingness, and neutral. The property of PFS is that aggregation of these
components must not exceed 1. In literature, the aggregation operators for PFSs
and its application on MCDM is presented by Garg (2017). Some of the significant
developments are: Singh (2015) brought the concept of finding the correlation coeffi-
cient of PFSs. A generalized picture distance measure was developed by Son (2016)
and used it to picture fuzzy clustering. Van Viet and Van Hai (2017) introduced the
system based on picture fuzzy set and named it as picture inference system (PIS) in.
Hwang and Yoon (1981) bought a technique named TOPSIS, and used crisp values
to handle MCDM problems. Later, it was extended by different makers to utilize
it using an extension of fuzzy sets. Kuo (2017) modified the TOPSIS method with
different ranking indexes. Tian et al. (2018) used TOPSIS by calculating weights
using the best–worst method and to evaluate MCGDM problem with intuitionistic
fuzzy information.

Wei (2016) used the concept of cross-entropy measure of PFSs in MCDM prob-
lems. Later in 2017, he utilized arithmetic and geometric operation of PFSs on
MADMmethod. Wu andWei (2017) used pictures of fuzzy aggregation operators in
MADM problems like enterprise resource planning (ERP) selection. Furthermore,
Ashraf et al. (2018) introduced the concept of cubic PFS which is also an extended
form of PFSs. Dombi aggregation operators were introduced by Jana et al. (2019) for
PFSs situations and applied them onMADMproblems.Wang et al. (2018) ranked the
characteristics of energy performance contracting projects (EPC) usingMCDM tech-
nique and information from picture fuzzy. Peng (2017) introduced an operator called
“Picture Fuzzy Ordered Weighted Geometric” Operator to deal with the MADM
problems. He also introduced “Picture Fuzzy Induces Ordered Weighted Geomet-
ric” operator. Wang and Li (2018) used a hesitant picture fuzzy set and used it in
MCDM.

Wang et al. (2019) worked on the MCDM problem by incorporating maximum
deviation technique to calculate the weights. He developed a method to compare
PLTSs (probabilistic linguistic term sets) based distancemeasure. Zhang et al. (2019)
focused on “picture 2-tuple linguistic numbers” (P2TLNs) and created a score,
action rules and accuracy functions, And later used them to solve MCDM problem
established on the distance from the average solution.

Zaidan et al. (2015) presented a comparative study on Open Source of Elec-
tronicMedical Records by usingMCDM techniques. To rank these software systems
Weighted SumMethod (WSM),Weighted ProductMethod (WPM), Simple Additive
Weighting (SAW), and TOPSIS were used. The aggregation of AHP and TOPIS is
frequently used for ranking of different alternatives. One such research was done for
selection of ETL (Extract, Transform and Load) software by Hanine et al. (2016)
whereas Kara and Cheikhrouhou (2014) used the fuzzy AHP with TOPSIS for the
ranking of alternatives. A hybrid approach was given by (Efe (2016)) using fuzzy
AHP and Fuzzy TOPSIS. Yazgan et al. (2009) addressed the issue of prioritizing
ERP software by creating Artificial Network Process (ANP) model. The results of
the ANP model were used to train an artificial neural network (ANN), model. Lee
et al. (2014) proposed an AHP application to solve the issue of evaluation of Open
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SourceCustomerRelationshipManagement software.Amodel for software selection
was formed with the combination of “Stepwise Weight Assessment Ratio Analysis”
(SWARA) and the PROMETHEE by (Shukla et al. 2016). Wei et al. (2019) proposed
the VIKORmethod to evaluate multi-criteria group decision making problem having
2-TLNNS (2-tuple linguistic neutrosophic numbers).

3 Methodology

In this chapter, we have demonstrated a picture fuzzy-based TOPSISmodel by incor-
porating non- linear multi-objective MEMV-OWA operator to rank the Open Source
Software. The MEMV-OWA operator is adopted to evaluate the unknown criteria
weights for the selection of software. We have also emerged the Picture Fuzzy
information while constructing a TOPSIS model.

Preliminaries

Definition 1 The operator OWA with dimension “n” is a function F : Rn → R
associated with weight vector say W = (w1, w2, w3, . . . wn) such that.

0 ≤ wi ≤ 1; i = 1,2,…,n
w1 + w2 + w3 + · · · + wn = 1

Further, it has a property that 1

F(a1 + a2 + a3 + · · ·+an) =
n∑

i

wibi (1)

In the assemblage of (a1, a2, a3, . . . , an) arranged in descending order, we can
say that bi is one of the largest ith element.

Definition 2 Measure of Orness exemplify the location of an OWA operator, which
is nearer to either orlike or andlike level. The weights of the OWA operator are near
to one another concealed by a specific degree of orness. Therefore orness is defined
as.

orness(W ) =
n∑

i=1

n − i

n − 1
wi = α ∈ [0, 1] (2)

(i) If α is closer to zero, then we can say that the interconnection between the
various attributes has high andlike value. This implements that decision-maker
is utmost noncommittal.
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(ii) If α is closer to one, then we can say that the interconnection between the
various attributes has high orlike value. This implements that decision-maker
is utmost optimistic.

(iii) If wi = 1
n , then α = 0.5, which implements that the decision-maker faces

reasonable assessment.

Definition 3 For a specific level of orness, the variability in the weighting vector is
determined by a measure of variance. The measure of variance is defined as:

D2(W ) = 1

n

n∑

i=1

[wi − E(w)]2 = 1

n

n∑

i=1

w2
i − 1

n2
(3)

While considering multiple attribute decision making, the variability in the
weightingvector shouldbe controlled to ignore the overestimationof a single attribute

Definition 4 The measure of entropy discovers that to what extent the information
is exploited or utilized under an uncertain environment and conditions. The other
term used for this is measure of dispersion and is given as:

Disp(W ) = −
n∑

i=1

wiln(wi) (4)

(i) If wi = 1 and wj = 0 (j �= i), then Disp(W ) is minimum i.e. 0. It implies that
only a single attribute is studied during the course of aggregation.

(ii) If wi = 1
n , then Disp(W ) is maximum i.e. Disp(W ) = ln(n). It implies that all

attributes are studied during the course of aggregation.

Definition 5 TheMEMV-OWAis a basically a bi-objective non -linear programming
model which is constructed to evaluate the weighting vector. In this, the uncertain
information based on the experience of decision makers is exploited by maximizing
the entropy and on the other hand to ignore the over estimation of the preferences by
decision-maker, we minimize variance of the weighting vector. The mathematical
non-linear programming model is represented as:

Model:

Maximize:
n∑

i=1

wiln(wi)

Minimize:1
n

n∑

i=1

[wi − E(w)]2
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subjectto:
n∑

i=1

n − i

n − 1
wi = α; 0 ≤ α ≤ 1

n∑

i=1

wi = 1, 0 ≤ wi ≤ 1, i = 1, 2, . . . , n

Definition 6 A set whose all elements have degree of membership of belongingness
in them is said to be Fuzzy Set. Suppose, X = {x1, x2, . . . , xn} is a universal set, then
fuzzy set Z defined on X is written as.

Z = {(x, μA(x))|x ∈ X }

where membership function is μZ(x) : X → [0, 1] such that x ∈ X to the set Z.

Definition 7 An intuitionistic fuzzy set I on universal set X is defined as:

I = {(x, μI (x), ϑI (x))|x ∈ X }.

whereμI (x) ∈ [0, 1], is the membership degree and , ϑI (x) ∈ [0, 1] is the non-
membership degree of x in I with the following condition:

0 ≤ μI (x) + ϑI (x) ≤ 1

For all x ∈ X , the lack of uncertainty is reflected by the amount πI (x) = 1 −
(μI (x)+ϑI (x)). This amount πI (x) is the degree of the hesitancy of x ∈ X to the set
I.

Definition 8 A picture fuzzy set (PFS) P on X is defined as:

P = {(x, μP(x), ηP(x), ϑP(x))|x ∈ X }

where, μP(x) = positive membership degree, ηP(x) = neutral membership
degree,ϑP(x) = negative membership degree with the following condition:

0 ≤ μP(x) + ηP(x) + ϑP(x) ≤ 1

For all x ∈ X , the amount πP(x) = 1 − (μP(x) + ηP(x) + ϑP(x)) is called the
refusal degree of x ∈ X to the set P.

Let M and S be two PFSs defined on X, then some operators are represented
below:

(i) M ⊆ S iff μM (x) ≤ μS(x), ηM (x) ≤ ηS(x)andϑM (x) ≥ ϑS(x) for all x ∈ X .
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(ii) M = Siff M ⊆ S and S ⊆ M .
(iii) M∩S = {x,min(μM (x), μS(x)),max(ηM (x), ηS(x)),max(ϑM (x)ϑS(x))|x ∈ X }
(iv) M∪S = {x,max(μM (x), μS(x)),min(ηM (x), ηS(x)),min(ϑM (x)ϑS(x))|x ∈ X }
(v) MC = {(x, ϑS(x), ηS(x), μS(x))|x ∈ X }

Distance Measures

The picture fuzzy-based distance measures with picture fuzzy information are given
as:

(a) Distance Measure between Two Picture Fuzzy Numbers

Let M and S be two PFSs defined on X = {
x1,x2,x3,...,xn

}
, then the distance between

M and N is given by:

DP(M , S) = 1

3n

n∑

i=1

([|μM (xi) − μS(x)| + |ηM (xi) − ηS (xi)| + |ϑM (xi) − ϑS(xi)|

+max[|μM (xi) − μS(xi)|, |ηM (xi) − ηS (xi)|, |ϑM (xi) − ϑS(xi)|]])
(5)

The DP(M , S) is distance measure if it holds the following conditions:

(i) 0 ≤ DP(M , S) ≤ 1
(ii) DP(M , S) = 0 iffM = S
(iii) DP(M , S) = DP(S,M )

(iv) For any M , S,O ∈ PFSs(X ), we have DP(M ,O) ≥ DP(M , S) and
DP(M ,O) ≥ DP(S,O).

(b) Weighted Distance Measure

Let M and S be two PFSs defined on X = {
x1,x2,x3,...,xn

}
and the weights of the

“m” criteria be wj holding condition that
∑m

j=1 wj = 1. Then, the weighted distance
measure is given by:

Dw
P (M , S) = 1

3n

n∑

i=1

wj([|μM (xi) − μS(x)| + |ηM (xi) − ηS (xi)| + |ϑM (xi) − ϑS(xi)|

+max[|μM (xi) − μS(xi)|, |ηM (xi) − ηS (xi)|, |ϑM (xi) − ϑS(xi)|]]) (6)

The Dw
P (M , S) is weighted distance measure if it holds the following conditions:

(i) 0 ≤ Dw
P (M , S) ≤ 1

(ii) Dw
P (M , S) = 0iffM = S

(iii) Dw
P (M , S) = Dw

P (S,M )

(iv) For any M , S,O ∈ PFSs(X ) we have Dw
P (M ,O) ≥ Dw

P (M , S) and
Dw

P (M ,O) ≥ Dw
P (S,O).
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(c) Similarity Index Measure

Now, using above distance measures between two PFSs defined on X ={
x1,x2,x3,...,xn

}
, we can define a similarity index measure as:

Ip(M , S) =1 − 1

3

n∑

i=1

wj(|μM (xi) − μS(xi)| + |ηM (xi) − ηS (xi)| + |ϑM (xi) − ϑS(xi)|

+ max[|μM (xi) − μS(xi)|, |ηM (xi) − ηS (xi)|, |ϑM (xi) − ϑS(xi)|]) (7)

Here, the weights of the “m” criteria are wj holding condition that
∑m

j=1 wj = 1.
The IP(M , S) is a similarity measure if it holds the following conditions:

(v) 0 ≤ IP(M , S) ≤ 1
(vi) IP(M , S) = 0iffM = S
(vii) IP(M , S) = IP(S,M )

(viii) For any M , S,O ∈ PFSs(X ), we have IP(M ,O) ≥ IP(M , S) and
IP(M ,O) ≥ IP(S,O).

Step by Step Process of Maximum Entropy Minimum Variance OWA-Picture
Fuzzy TOPSIS (MEMV-OWA-PF-TOPSIS).

Now, we have demonstrated a Multi-criteria decision-making approach, i.e. TOPSIS
with picture fuzzy information. And the maximum entropy minimum variance OWA
approach is used to find out the criteriaweights. Consider, a discrete set of alternatives
say A = {A1,A2,A3, . . . ,An} and “m” criteria C = {C1,C2,C3, . . . ,Cm} having
weights say W = {w1, w2, w3, . . . , wm} such that

∑m
j=1 wj = 1.

We also define Picture Fuzzy decision matrix say M = [�ij]m×n =
[(μij, ηij, ϑij

)]m×n, whereμij, ηij, ϑij is the degree of acceptance, neutral and rejection
respectively that alternatives Ai fulfils. The MCDM procedure is briefly explained
below in order to make the best decision:

Step 1: Firstly build the hierarchical model for the selection of software.
Step 2: Obtain the MEMV-OWAweights W={w1, w2, w3, . . . , wm} for the given

set of criteria by solving non-linear programming problem given in Definition 5.
Step 3: Develop the matrix M = [�ij]m×n which is the picture fuzzy decision

matrix using decision maker’s information.
Step 4: Identify the benefit criteria (B1) and cost criteria (B2). Later, we need

to determine the Picture Fuzzy Positive Ideal Solution
(
�+

p

)
and Picture Fuzzy

Negative Ideal Solution
(
�−

p

)
given as:

�+
p =

⎧
⎨

⎩

[(max
j

(
μij

)
,min

j

(
ηij

)
,min

j

(
ϑij

)], Cj ∈ B1

[(max
j

(
μij

)
,max

j

(
ηij

)
,min

j

(
ϑij

)], Cj ∈ B2,
(8)
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�−
p =

⎧
⎨

⎩

[(min
j

(
μij

)
,min

j

(
ηij

)
,max

j

(
ϑij

)], Cj ∈ B1

[(min
j

(
μij

)
,max

j

(
ηij

)
,max

j

(
ϑij

)], Cj ∈ B2,
(9)

Step 5: Find out the degree of weighted similarity index
(
I+
pi

)
and

(
I−
pi

)
between

�+
p and �−

p respectively where 1 ≤ i ≤ n.

I+I
(
Ai, �+

p

)
= 1 − 1

3

m∑

j=1

wj

(∣∣∣μA(xi) − μ+
ij

∣∣∣ +
∣∣∣ηM (xi) − η+

ij

∣∣∣ +
∣∣∣ϑM (xi) − ϑ+

ij

∣∣∣

+max
[∣∣∣μM (xi) − μ+

ij

∣∣∣,
∣∣∣ηM (xi) − η+

ij

∣∣∣,
∣∣∣ϑM (xi) − ϑ+

ij

∣∣∣
])

(10)

I−
I

(
Ai, �−

p

)
= 1 − 1

3

m∑

j=1

wj

(∣∣∣μA(xi) − μ−
ij

∣∣∣ +
∣∣∣ηM (xi) − η−

ij

∣∣∣ +
∣∣∣ϑM (xi) − ϑ−

ij

∣∣∣

+max
[∣∣∣μM (xi) − μ−

ij

∣∣∣,
∣∣∣ηM (xi) − η−

ij

∣∣∣,
∣∣∣ϑM (xi) − ϑ−

ij

∣∣∣
])

(1.11)

Step 6: Using the above equations, the degree of weighted similarity index
(
I+
pi

)

and
(
I−
pi

)
is calculated and later evaluate the Relative Closeness measure for a given

set of alternatives with respect to �+
p .

RelativeCloseness(RCi) = I+
pi

I+
pi + I−

pi

(12)

The higher the value of RCi of the given alternatives with respect to �+
p which

picture fuzzy positive ideal solution corresponds to best alternatives from Ai.

4 Numerical Illustrations

In this chapter, a numerical illustration related to software quality assessment of open
source software (OSS) is provided in order to validate the application of MEMV-
OWA-PF-TOPSIS. Several OSS is freely available online. The quality of OSS is
questioned and has become the primary concern because OSS makes a significant
influence on commercial marketing sector (Karakoidas et al. 2007).

In this research, four open-source-software (OSS) are assessed, which are freely
available online. The assessment information is collected through a decision-maker
who is the users of the software. The set of alternatives for OSS is denoted by
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S = {S1, S2, S3, S4}. All these OSS software are assessed on the basis six criteria
which comprise a set denoted by

C = {C1,C2,C3,C4,C5,C6}
= {TechnicalAspects,Cost, SystemReliability , compatibility, ImplemetationTime,Functionality},

where Cost and Implementation Time are the cost criteria and others are the benefit
criteria. The steps for software quality assessment of four OSS on the basis of six
criteria through MEMV-OWA-PF-TOPSIS are given as follows:

Step 1: The hierarchal model for software quality assessment is provided in Fig. 1.
Step 2: The orness (α) level is selected by the uncertain preferences of experts.

If they are in moderating state, then α = 0.5 and if they are maximally optimistic
then α = 1. In our study, OSS software experts have given moderate optimistic
preferences; therefore, the level of orness (α) will be equal to 0.8. The weight vector
(Wi) of MEMV-OWA averaging operator with respect to n = 6 and the particular
level of orness (α) is provided in Table 1.

These Wi can be used to solve the information of performance and cost-related
criteria of open source software (OSS). So, the weight vector concerning α = 0.8
from Table 1 are as follows:

W1 = 0.4352;W2 = 0.2492;W3 = 0.1441;W4 = 0.0974;
W5 = 0.0471;W6 = 0.0270.

Fig. 1 Hierarchical model for quality assessment of differeent OSS
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Table 1 Weight vector of MEMV-OWA averaging operator

Wi Orness (α)

1 0.9 0.8 0.7 0.6 0.5

W1 1 0.6227 0.4352 0.3096 0.2158 0.1667

W2 0 0.2345 0.2492 0.2236 0.1852 0.1667

W3 0 0.0894 0.1441 0.1614 0.1589 0.1667

W4 0 0.0337 0.0974 0.1165 0.1364 0.1667

W5 0 0.0129 0.0471 0.0842 0.1171 0.1667

W6 0 0.0068 0.0270 0.1047 0.1866 0.1667

Step 3: ThematrixM = [�ij]m×n which is the picture fuzzy decisionmatrix using
decision maker’s information is in Table 2.

Step 4: Now, we calculate the Picture Fuzzy Positive Ideal Solution
(
�+

p

)
and

Picture Fuzzy Negative Ideal Solution
(
�−

p

)
on the basis of Eqs. (8) and (9).

�+
p = [(0.9, 0.0, 0.05), (0.75, 01, 0.1), (0.6, 0.0, 0.30),

(0.75, 0.0, 0.1), (0.5, 0.1, 0.4), (0.6, 0.0, 0.3)]

�−
p = [(0.5, 0.0, 0.4), (0.5, 01, 0.4), (0.3, 0.0, 0.6),

(0.3, 0.0, 0.6), (0.25, 0.1, 0.6), (0.25, 0.0, 0.6)]

Step 5: In this step, we calculate the weighted similarity index
(
I+
pi

)
and

(
I−
pi

)
by

putting the criteria weights calculated in Step 2 in the Eqs. (1.10) and (1.11) where
1 ≤ i ≤ n.

I+
p1 = 0.9490; I+

p2 = 0.6399; I+
p3 = 0.7542; I = 0.6352.

I−
p1 = 0.6819; I−

p2 = 0.9028; I−
p3 = 0.8347; I−

p4 = 0.9167.

Step 6: On the basis of Eq. (1.12), we calculate the value ofRCi of the ith software,
where 1 ≤ i ≤ 4, such that: RC1 = 0.5819;RC2 = 0.4148;RC3 = 0.4746;RC4 =
0.4093 that provides the assessment order as: S1 > S3 > S2 > S4, represents that
first software (S1) is the best alternative.

To analyze the effectiveness of MCDM based MEMV-OWA-PF-TOPSIS method
proposed in this study, we have used this model to basically assess the quality of four
Open Source Softwares based on six performance and cost-related criteria. Now, we
can observe from Fig. 2 that the first software S1 is relatively more effective than
other OSS software because the value of its relative closeness is much larger than
the rest of the software.
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Fig. 2 OSS quality assessment by applying MEMV-OWA-PF-TOPSIS method

5 Conclusion and Future Scope

The current software environment has become active and influential and software
customers’ needs to think about the quality of the software before buying the license.
The selection of software has become a serious activity as there various criteria
for the quality. The software selection can influence various software companies,
customers, developers in various aspects. Therefore, it is significant to select soft-
ware for every user or customer before using any software. This selection process
is quiet challenging task as it involves multiple criteria. As we know, MCDM
approach is well known for ranking, selecting, evaluating these multiple criteria.
So, in this chapter, the quality of open-source software (OSS) are assessed using
the MCDM based approach: Maximum Entropy Minimum Variance OWA-Picture
Fuzzy TOPSIS (MEMV-OWA-PF-TOPSIS). The criteria considered in this study to
rank or select software are based on quality and cost. The following are the criteria
taken: Technical Aspects, Cost, System Reliability, Compatibility, Implementation
Time, and Functionality. The basic approach of TOPSIS technique is to first divide
the criteria into cost and benefit criteria. So in our model, Cost and Implementation
Time are the cost criteria as we need to minimize these whereas Technical Aspects,
System Reliability, Compatibility, and Functionality are the benefit criteria which
need to be maximized. The unknown weights of the criteria are evaluated using
MEMV-OWA method which is a bi-objective non-linear programming approach.
Another reason to use MEMV-OWA is that it handles the uncertainty while finding
the weights of the criteria.

In the past studies, most researchers have applied Intuitionistic Fuzzy Sets (IFS)
basedMCDM technique for assessing the software reliability, but, IFSs cannot incor-
porate all the cases efficiently. For example, in the case of election voting, people
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thoughts consider more degrees as, refusal, no, neutral, yes. To overcome this, in this
research, we have applied PFSs based MCDM technique which is the extension of
IFSs. The Picture fuzzy decision matrix has been created to remove uncertainty to
another level that is present in the real-life decision-making problem like software
quality assessment. Hence, the uncertainty factor is handled twice in this model.

This chapter also adds to the literature on software quality assessment by providing
an advanced Picture Fuzzy based MEMV-OWA operator technique which includes
the decision maker’s uncertain preferences. The proposed method has been demon-
strated with a numerical illustration for validating their reliability and effective-
ness. The MEMV-OWA-PF-TOPSIS method has been implemented in a numerical
example and we have reported the results obtained graphically as well.

The future research direction should focus on the techniques that can be extended
in the field of software using MCDM approach under the environment of multi-
granular fuzzy linguistic, polygonal fuzzy sets and other unclear situations.
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Requirement Barriers to Implement
the Software Projects in Agile
Development

Deepak Kumar and Saru Dhir

Abstract The success of an organization is to deliver the good-quality products as
per the client’s needs. But few organizations are unable to deliver the successful
product due to number of software barriers. The research is based on the study and
analysis of different requirement barriers,which causes problem in agile implementa-
tion. Several authors identified the barriers for successful implementation of software,
but none have found the barriers at the initial stage of requirements. The motivation
behind this work is to classify the main requirement barriers to the effective imple-
mentation of software projects in agile development. For the study, interviews were
conducted with developers and testers. The results recognized the key barriers and it
will deliver the roadmap to managers to take suitable steps to overwhelm the major
barriers to effective software implementation.

Keywords Software requirement · Agile project implementation · Interpretive
structural modelling (ISM) · Requirement barriers · Agile methodology ·
Requirement engineering

1 Introduction

Software development is a teamwork where each member has different roles such as
software development, testing, project analysis etc. A project quality, delivery time
and cost of delivered product specify its success and failure rate. Agile software
development is a leading approach in software organizations during last few years;
to fulfil the client’s need of producing quick, better and cost-effective solutions. In
agile development, client’s have direct interaction with team members of project to
improve the communication among them. As the concept of quality is relative, the
aim of this work is to comprehend the factors that affect the failure of software project
and its quality with regards to Agile Software Development (ASD).
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The popularity of agile development is increased during the last years; despite of
that, agile methods are also criticized for successful delivery on functional require-
ments and on neglecting the quality requirements. Ignorance of quality requirements
becomes the result of non-satisfaction of user’s requirements.

In common practice, all the individuals or groups faces challenges during the
implementation, which reduces the performance of the system (Boehm and Turner
2005). For a successful serviceworkflow, requirementmanagement should be consid-
ered as an initial point. Different success and failure factors were identified in the
project implantation (Dhir et al. 2017, 2019). For a successful implementation of
the software project, requirement elicitation and management are a significant task
(Dhir and Kumar 2015; Dhir et al. 2019).

Software complexity and their issues are fully involved in requirement and design
factors. Project requirements are chosen rendering to the client’s end product’s need
(Rai and Dhir 2014; Rajagopal et al. 2005). An approach was planned to collect the
requirements and appropriate steps were taken to eradicate the barriers (Rajagopal
et al. 2005). It is necessary to remove the barriers and ensured about the software
requirements should be according to the customer’s requirements to maintain the
complete software quality.

The topical survey of Standish Group (2014) represents the success reason of the
project is: requirements statement, user contribution and management support. This
survey report considered the standards of a project that are eventually based on the
requirement management.

During agile implementation, requirements are adaptive in nature and it is also
not easy to maintain the requirement specification documents. Requirements are
continuously change in agile development, due to different reasons such as: missing
requirements, customers lack knowledge, market change and bug fixing.

Barriers in software requirements would affect the budget and quality of product.
Number of barriers means number of risk factors increases for the failure of software
project. So, it is essential to recognize the different barriers during implementation
to improve the functionality, including efficiency, performance, quality and security
of the system.

Requirement documentation is the key deliverable of requirements for the
implementation of software. Lack of documentation is also another barrier as the
documentation is not possible in agile.

A survey was directed with the help of industry experts and identifies the barriers
during software implementation. Industry experts were the software developers,
testers and leaders who implemented the software using agile methodology (Dhir
and Kumar 2015).

The research recognizes the most significant barriers that affects the effectiveness
and quality of software implementation. This work signifies the ISM practice to clas-
sify the connection between the diverse barriers and find the most significant barrier
that affect the software implementation using agile methodology. The research work
presents a roadmap for managers of an organization to resolve the issues influencing
during the agile development, so that the management or senior members can take
appropriate actions to resolve these issues.
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2 Literature Survey

There are different studies have been focused on the impact and acceptance of
agile development in different organizations (Rai and Dhir 2014; Aggarwal and
Dhir 2013). Authors discussed about the agile principles and the impact on current
software development.

There are different uncertainties occurred during project planning such as uncer-
tain estimates, requirements management and prioritization, ignorance of non-
functional requirement. Other studies have been evaluated directing on how the
acceptance of agile issues can be resolved (Misra et al. 2009). Qu et al. (2012) iden-
tified different risk factors for project management. Result analysis were analysed to
evaluate the perplexing possible relationship between risk factors using interpretative
structural modelling.

Alsaqaf et al. (2018) identified the nine challenges faced by the agile devel-
opers in large distributed projects that harmed the implementation of quality require-
ments. There are different challenges in software development such as: organization
environment, communication and time differences in distributed environment.

Srinivasan and Lundqvist (2009) faced the challenges, that the agile team was not
involved in the initial estimation of project due to which ambiguous requirements
become poor in quality and schedule overruns. The literature lacks the obtainability
of framework that can identify the barriers of requirement elicitation in agile soft-
ware development, where the software requirements are changed very frequently
(Srinivasan and Lundqvist 2009).

Conboy et al. (2011) conducted a study focusing on the challenges by the people
in the agile development such as transparency by the teammembers, lack of business
knowledge among teammembers etc. (Conboy et al. 2011). The selection of accurate
requirement is a big challenge. Overall quality of the product depends upon the
selection of requirements. A survey analysis was done by different practitioners to
identify the prevalence’s and challenges using agile software development. Statistical
analysis was executed to identify the significant value of agile implementation over
the traditional development (Dhir et al. 2017).

There are different decision-making techniques are applied for improvement of
selection, such as Analytic Hierarchy Process (AHP), Paired Comparison Anal-
ysis, Game Theory, Multiple Criteria Decision Analysis and Interpretive structural
modelling (ISM). ISM is an interpretive because it decides the findings of the group,
how the variables are associated (Dhir et al. 2017).

Researcher studied and analysis among the barriers on a case study in ‘just in
time’ production using ISM. Paper described the hidden barriers to ‘just in time’
production using ISM (Jadhav et al. 2015).
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3 Methodology

ISM methodology has been introduced by prof. John Warfield with an objective to
examine socio economics system issues and understand the complex relationship in
different areas.

It has been demonstrated that ISM is afixed decision-making tool that permits enti-
ties, groups and organizations to develop a connection for determining the complex
situation and signifies the relationship through binary matrix (Huang et al. 2005;
Warfield 1974). This method is used to understand composite structure with a simple
geometric model articulating the complex relationship between numerous elements.

The usage of this method ranges for modelling systems interconnected to plan-
ning, decision making, competitive analysis, process re-engineering and many more.
Statistical techniques provide the quantitative results using the large number of vari-
ables, whereas ISM provides the relationship among qualitative variables. The rela-
tionships between different variables are established with the repetition of ques-
tions, such as: ‘Does target A supports to accomplish target B?’, ‘Does target A
supports to accomplish targetB?’ for all pair of elements.According to the established
relationship, a structure is created which is modelled through a digraph.

Steps for model development using ISM methodology are (Jadhav et al. 2015):

• Identify the barriers.
• Establish the relationship between barriers by conducting the interviews.Generate

a self-structural interaction matrix (SSIM) of variables showing pairwise connec-
tion among barriers.

• Generate an initial reachability matrix (RM) and eliminate transitive relations in
final reachability.

• Partition reachability matrix into various levels in different iterations.
• Plot a directed graph (digraph) in view of relations.
• Modify the digraph into an ISM model.
• Analyse an ISM model and examine hypothetical inconsistency.

Step 1: Recognize the Barriers

A wide analysis study is finished to recognize the barriers for the agile implemen-
tation in software development. The survey is directed during agile implementation
to recognize the barriers for avoiding the effective and productive implementation.
Survey data is collected by conducting the interviews with many industry experts.
Interviews and discussions are done to control the barriers during the agile adop-
tion and implementation. The main concern includes ever changing requirements,
communication gap, undefinedgoals, incomplete requirements, lack of plan, shortage
of expert members, requirement management, budgetary constraint, lack of docu-
mentation and ignorance of non-functional requirement. The barriers are listed as
shown below in Table 1.
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Table 1 Barriers to
successful agile
implementation

Barriers Description

B1 Lack of communication

B2 Unclear goals

B3 Incomplete requirement

B4 Lack of planning

B5 Ever changing requirement

B6 Lack of expertise

B7 Requirement management

B8 Budgetary constraint

B9 Lack of documentation

B10 Ignorance of non-functional requirement

Step 2: Structural Self Interaction Matrix (SSIM)

A team of five members containing of industry experts especially developers, testers
were interviewed to recognize the relationship between barriers. Following keywords
signify the connection among barriers:

“V” signifies ‘a’ and helps to attain ‘b’.
“A” signifies ‘b’ and helps to attain ‘a’.
“X” signifies ‘a’ and ‘b’ helps to attain each other.
“O” signifies both ‘a’ and ‘b’ are not linked.
SSIM was implemented according to the known relationships in Table 2 and

shows, ‘a’ and ‘b’ signifies rows and columns and it also represents the interrela-
tionships between those 10 barriers. Table 3 is then used to generate reachability
matrix.

Table 2 Structural self interaction matrix

Attribute (Bi) B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

B1 1 V A A O A V V V V

B2 1 A V O V V V V A

B3 1 V A V V V V V

B4 1 A V V V V V

B5 1 V V V V V

B6 1 V V V V

B7 1 V A V

B8 1 A V

B9 1 X

B10 1
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Table 3 Initial reachability matrix

Attribute (Bi) B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

B1 1 1 0 0 0 0 1 1 1 1

B2 0 1 0 1 0 1 1 1 1 0

B3 1 1 1 1 0 1 1 1 1 1

B4 1 0 0 1 0 1 1 1 1 1

B5 0 0 1 1 1 1 1 1 1 1

B6 1 0 0 0 0 1 1 1 1 1

B7 0 0 0 0 0 0 1 1 0 1

B8 0 0 0 0 0 0 0 1 0 1

B9 0 0 0 0 0 0 1 1 1 1

B10 0 1 0 0 0 0 0 0 0 1

Step 3: Generate initial reachability matrix (IRM)

Generate IRM Table 3 from Table 2 SSIM.
If (a, b) in SSIM i.e. in Table 2 is “V”; then reachability matrix converts into 1

and (b, a) converts 0.
If (a, b) in SSIM i.e. in Table 2 is “A”; then reachability matrix converts into 0

and (b, a) converts 1.
If (a, b) in SSIM i.e. in Table 2 is “X”; then reachability matrix converts 1 and (b,

a) converts 1.
If (a, b) in SSIM i.e. in Table 2 is “O”; then reachability matrix converts 0 and (b,

a) converts 0.
Table 3 represents an IRM of 1’s and 0’s and currently it contains transitive

relations.
The transitive relationship of Table 3 matrix is planned by squaring the matrix and

will be transitive, if the resulting value of squaredmatrix has 1whichwas earlier value
0. The transitive relation for reachability matrix is verified. Final reachability matrix
(FRM) after verifying the transitive values is given in Table 4 and demonstrated
in rows and columns, wherever rows specify driving power and columns indicate
dependence power (Table 5).

Row wise barriers are the driving power to each barrier. Dependence power is
sum of barriers (Tables 6, 7, 8, 9, 10 and 11).

Step 4: Dividing into levels

Both reachability and antecedent set to each barrier is estimated. Later, the connection
of reachability and antecedent sets is estimated to all barriers. If the connection and
reachability set are similar, then allot the level in the ISM Model. This process is
iteratively estimated for whole barriers till the level for each barrier is recognized.
Table 5 validates the early iteration with barriers B8 and B10 creating the first level.
The whole levels to each of the barriers are signified in Table 12. Level I barriers
have the lowermost whereas level VII has the uppermost driving power.
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Table 4 Final reachability matrix

Attribute (Bi) B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 Drive power

B1 1 1 0 1 0 1 1 1 1 1 8

B2 1 1 0 1 0 1 1 1 1 1 8

B3 1 1 1 1 0 1 1 1 1 1 9

B4 1 1 0 1 0 1 1 1 1 1 8

B5 1 1 1 1 1 1 1 1 1 1 10

B6 1 1 0 0 0 1 1 1 1 1 7

B7 0 0 0 0 0 0 1 1 0 1 3

B8 0 0 0 0 0 0 0 1 0 1 2

B9 0 1 0 0 0 0 1 1 1 1 5

B10 0 1 0 1 0 1 1 1 1 1 7

Dependence power 6 8 2 6 1 7 9 10 8 10 67

aEntries are included to incorporate transitivity

Table 5 RM partitioning iteration 1

Attribute (Bi) Reachability set Antecedent set Intersection set Level

B1 B1, B2, B4, B6, B7, B8,
B9, B10

B1, B2, B3, B4, B5, B6,
B7

B1, B2, B4, B6, B7

B2 B1, B2, B4, B6, B7, B8,
B9, B10

B1, B2, B3, B4, B5, B6,
B7, B8, B9, B10

B1, B2, B4, B6, B7, B9,
B10

B3 B1, B2, B3, B4, B6, B7,
B8, B9, B10

B3, B5 B3

B4 B1, B2, B4, B6, B7, B8,
B9, B10

B1, B2, B3, B4, B5,
B10

B1, B2, B4, B10

B5 B1, B2, B3, B4, B5, B6,
B7, B8, B9, B10

B5 B5

B6 B1, B2, B6, B7, B8, B9,
B10

B1, B2, B3, B4, B5, B6,
B10

B1, B2, B6, B10

B7 B7, B8, B10 B1, B2, B3, B4, B5, B6,
B7, B9, B10

B7, B10

B8 B8, B10 B1, B2, B3, B4, B5, B6,
B7, B8, B9, B10

B8, B10 I

B9 B2, B7, B8, B9, B10 B1, B2, B3, B4, B5, B6,
B8, B9, B10

B2, B9, B10

B10 B2, B4, B6, B7, B8, B9,
B10

B1, B2, B3, B4, B5, B6,
B7, B8, B9, B10

B2, B4, B6, B7, B8, B9,
B10

I
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Table 6 RM partitioning iteration 2

Attribute (Bi) Reachability set Antecedent set Intersection set Level

B1 B1, B2, B4, B6, B7 B1, B2, B3, B4, B5, B6,
B7

B1, B2, B4, B6, B7

B2 B1, B2, B4, B6, B7, B9 B1, B2, B3, B4, B5, B6,
B7, B9

B1, B2, B4, B6, B7, B9 II

B3 B1, B2, B3, B4, B6, B7,
B9

B3, B5 B3

B4 B1, B2, B4, B6, B7, B9 B1, B2, B3, B4, B5 B1, B2, B4

B5 B1, B2, B3, B4, B5, B6,
B7, B9

B5 B5

B6 B1, B2, B6, B7, B9 B1, B2, B3, B4, B5, B6 B1, B2, B6

B7 B7 B1, B2, B3, B4, B5, B6,
B7, B9

B7 II

B9 B2, B7, B9 B1, B2, B3, B4, B5, B6,
B9

B2, B9

Table 7 RM partitioning iteration 3

Attribute (Bi) Reachability set Antecedent set Intersection set Level

B1 B1, B4, B6 B1, B3, B4, B5, B6 B1, B4, B6

B3 B1, B3, B4, B6, B9 B3, B5 B3

B4 B1, B4, B6, B9 B1, B3, B4, B5 B1, B4

B5 B1, B3, B4, B5, B6, B9 B5 B5

B6 B1, B6, B9 B1, B3, B4, B5, B6 B1, B6

B9 B9 B1, B3, B4, B5, B6, B9 B9 III

Table 8 RM partitioning iteration 4

Attribute (Bi) Reachability set Antecedent set Intersection set Level

B1 B1, B4, B6 B1, B3, B4, B5, B6 B1, B4, B6 IV

B3 B1, B3, B4, B6 B3, B5 B3

B4 B1, B4, B6 B1, B3, B4, B5 B1, B4

B5 B1, B3, B4, B5, B6 B5 B5

B6 B1, B6 B1, B3, B4, B5, B6 B1, B6 IV

Table 9 RM partitioning iteration 5

Attribute (Bi) Reachability set Antecedent set Intersection set Level

B3 B3, B4 B3, B5 B3

B4 B4 B3, B4, B5 B4 V

B5 B3, B4, B5 B5 B5
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Table 10 RM partitioning iteration 6

Attribute (Bi) Reachability set Antecedent set Intersection set Level

B3 B3 B3, B5 B3 VI

B5 B3, B5 B5 B5

Table 11 RM partitioning iteration 6

Attribute (Bi) Reachability set Antecedent set Intersection set Level

B5 B5 B5 B5 VII

Table 12 Level of requirement barriers

Attribute (Bi) Reachability set Antecedent set Intersection set Level

B1 B1, B2, B4, B6, B7, B8,
B9, B10

B1, B2, B3, B4, B5, B6,
B7

B1, B2, B4, B6, B7 IV

B2 B1, B2, B4, B6, B7, B8,
B9, B10

B1, B2, B3, B4, B5, B6,
B7, B8, B9, B10

B1, B2, B4, B6, B7, B9,
B10

II

B3 B1, B2, B3, B4, B6, B7,
B8, B9, B10

B3, B5 B3 VI

B4 B1, B2, B4, B6, B7, B8,
B9, B10

B1, B2, B3, B4, B5,
B10

B1, B2, B4, B10 V

B5 B1, B2, B3, B4, B5, B6,
B7, B8, B9, B10

B5 B5 VII

B6 B1, B2, B6, B7, B8, B9,
B10

B1, B2, B3, B4, B5, B6,
B10

B1, B2, B6, B10 IV

B7 B7, B8, B10 B1, B2, B3, B4, B5, B6,
B7, B9, B10

B7, B10 II

B8 B8, B10 B1, B2, B3, B4, B5, B6,
B7, B8, B9, B10

B8, B10 I

B9 B2, B7, B8, B9, B10 B1, B2, B3, B4, B5, B6,
B8, B9, B10

B2, B9, B10 III

B10 B2, B4, B6, B7, B8, B9,
B10

B1, B2, B3, B4, B5, B6,
B7, B8, B9, B10

B2, B4, B6, B7, B8, B9,
B10

I

Barriers are classified into four classes:
1. Autonomous barriers.
2. Dependent Barriers.
3. Linkage Barriers.
4. Independent Barriers.
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Step 5: Digraph

Digraph is created representing the directed link among various barriers. Here, level
VII generates the root node, means B5 is root driving power besides controls further
barriers.

Figure 1 illustrate the digraph having the partition into diverse levels through I to
VII.

Fig. 1 Digraph representing
inter-relationship among
barriers
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Step 6: Convert the digraph to ISM model

Figure 2 indicates the ISMmodel to successfully implement agile software. Figure 2
represents the ever-changing requirement is themajor barrier followed by incomplete
requirement, lack of planning etc.

Step 7: Analyse the ISM model

ISM model was finally reviewed by industry experts and approved the results.

Fig. 2 ISM Model
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4 Conclusion

The paper analyzed barriers in agile implementation and ISM model is represented
by using Interpretive Structural Modelling (ISM) technique. It is concluded from the
ISMmodel, that the ever-changing requirements (frequent change in project require-
ments from the customer side) forms themain barrier preventing the successful imple-
mentation of agile. Ever-changing requirement as barrier B5 the uppermost driving
power besides the lowermost dependence power value creating the main barrier
persuading altogether further barriers.Hence, it’s vital for all projectmanagers, devel-
opers and team to coordinate on the time, so that its complete effect can be reduced,
and a quality product can be delivered on time. Thus, it is necessary to provide
the resources to complete the client’s ever-changing requirements and incomplete
requirements on time.
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Ranking of Multi-release Software
Reliability Growth Model Using
Weighted Distance-Based Approach

Ritu Bibyan and Sameer Anand

Abstract Today’s software systems and applications are expanded in almost all
the firms and are indulged in various business units that need customer base. The
methodology of the multi-release software reliability growth model (SRGM) deals
with customer demand and market requirements. There are various multi-release
SRGMs given by researchers, but it is challenging to select the optimal model.
Traditionally, a multi-criteria decision-making approach has been used to resolve
the problem of the ranking of models. In this chapter, the Weighted Distance-based
Approach has been proposed to rank the multi-release SRGMs using the Maximum
Deviation Method (MDM) and Distance-Based approach (DBA). The models are
ranked based on selection criteria having different priority weights and composite
distance values. The methodMDM is a technique of Multi Criteria DecisionMaking
(MCDM) in which non-linear programming is performed.

Keywords Software reliability · Multi release software reliability growth model ·
Maximum deviation method · Distance-based approach · Multi-criteria decision
making · Ranking

1 Introduction

The use of software has become an essential part of our life, and it is growing expo-
nentially. Almost in all the enterprises and even in our daily life, various applications
run through software. In the information technology sector, humans are dependent on
computers that use different software. Due to such advancement, software companies
are majorly concerned about the software quality and requirements of the customers.
Since the growth is exponential, the process of developing software has become
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costly and takes a lot of time, which makes the process more complicated. There-
fore the main objective of a software developer is to create reliable software with
less development cost. The performance of the software can be seen through its
most crucial feature, i.e., Software Reliability. Software Reliability is defined as
the failure-free operation under specifies environment and time. To estimate and
make a future prediction about the software reliability, various software reliability
growth models (SRGM) have been developed. Some of the models are proposed by
Goel and Okumoto (1979), Yamada et al. (1983, 1984). Later Musa and Okumoto
(1985) suggested a logarithmic Poisson Execution time, and Kapur and Garg (1992)
proposed a flexible model that considered exponential and S-shaped growth. Three
different types of faults were considered by Kapur et al. (1999) and modeled them
as exponential, S-shaped, and three-stage Erlang model. These models are widely
used to improve the quality of software by software industries, which later recom-
mend them to top leading companies and research institutions. During the testing
and operational phase of software, the fault detection aspect is explained by these
SRGMs (Garmabaki et al. 2012). They provide the relationship inmathematical form
between the time of testing and the cumulative number of faults. Some SRGMs were
proposed with leaning processes and error generation for both perfect and imperfect
debugging (Kapur et al. 2008, 2011). When software acquires desiderated reliability
during the operational phase, then a firm comes upwith a new version, which leads to
an upgradation. The upgrade means the old product is supplanted by a new version of
the same product, which has new features. The upgraded version gives better perfor-
mance than the older version, but there is also a risk that it might contain some new
faults and some faults from the previous version. These faults cannot be neglected
by the testing team before releasing a new version. The fault removal of the older
version is also acknowledged by testers during the testing of new code. Software
firms intend to augment the reliability of a software by upgrading it. But there is also
a possibility that upgradation makes the software/product worse. Due to which users
might prefer to use older version. This is called software failure which can occur due
to various reasons such as errors, incorrect code, misinterpretation, improper testing,
or other issues. It is always a difficult job to update any software application which
brings up risk related to multi release of software. There might be increase in failure
rate when the upgradation takes place and it decreases by time as the testers fixes
the faults. Testers are generally curious about demonstrating the glitch regarding
the software which helps to understand the benefit of upgraded software. There are
many advantages of multi releases for the software developing firms such as quick
deliveries, increase in revenue and increment in market life of the software.

Currently, in the market, there are software products that are available with high
potential in the first release. Such products include sufficient features when they start
their life cycle to satisfy customers. However, later, with successive releases, they add
on some new features or amplify the old features. Each release exists for a confined
period as software products are not stagnant. There are various factors which call for
change in the software when it is released in the market such as
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a. Subsisting software release issues
b. Market competition
c. Policies of company
d. The necessity of additional functions
e. The requirement of new hardware supporting updated software
f. Customers demand.

These factors accrue together after reaching a point over time, which demands
up-gradation in software.

Moreover, the cycle starts again as the new version comes in the market. Various
models in the literature explain multiple releases for different scenarios. But in the
past, no research has been done to rank multi-release SRGMs. In this chapter, our
objective is to fill this research gap: to rank multi-release SRGMS. The study in
this chapter uses weighted distance-based approach to rank these models based on
performance criteria such as R2, MSE, MAE, RMPSE, Bias, and PRR. The weights
of the selection criteria are evaluated through the Maximum Deviation Method.

The chapter is summarized as follow: in the Sect. 2 we have provided a brief
research background in the field of software reliability models. The Sect. 3 has
notations and in Sect. 4 generalmulti-release SRGMhas been explained. The selected
multi-release SRGMs which are ranked are provided in Sect. 5. The Sect. 6 and 7
explains the performance criteria on the basis of which ranking has been done and
the elaborated weighted ranking approach has been discussed. This approach is
numerically applied on the 9 models in Sect. 8. The results, conclusion and future
scope are discussed in the Sects. 9 and 10.

2 Literature Survey

Kapur et al. (2010) proposed an approach of multi-releasee of software in which
they used the sigmoid curve. Garmabaki et al. (2011) categorized the faults into a
simple and hard fault and proposed a new model for multi-release software, which
considered faults having different severity levels. Garmabaki et al. (2012) proposed
two- dimensional multi-release software reliability growth, model. Cobb Douglas
production function was used to model the failure process, which studied the effect
of the limitation of resources and schedule pressure. Kapur et al. (2013) modeled
the extension of the Bass diffusion model for successive generations of software.
Garmabaki et al. (2014) considered the effect of faults encountered during testing
and operational phase together and modeled a SRGM for several versions using
Kapur-Garg and Weibull fault removal model. Aggarwal et al. (2015) captured the
effect of faults with upgrades and modeled a discrete SRGM for multiple releases.
Furthermore, it suggested an optimal release policy, which minimizes the cost. Zhu
and Pham (2018) proposed multi-release software reliability model with addition
dependent fault detection process and validated on open source software project
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datasets. Anand et al. (2018) proposed 2-dimensional multi-release model in imper-
fect debugging scenario by considering constant fault reduction factor and rate of
fault removal is given by Delayed S-shaped model.

All the SRGM works well to estimate software reliability with a particular data
set but not on all types of data sets. To find out which SRGM model works well
for a given data set becomes an important task. To find out the optimal SRGM, we
make a comparison of different SRGMs. An initial attempt was made by Sukert
(1979) and Schick and Wolverton (1978) to find the optimal model to estimate the
reliability of the software for the failure data set. Knafl and Sacks (1991) made the
comparison based on various parameters based on maximum likelihood. Asad et al.
(2004) proposed an algorithm to select SRGM based on different criteria such as
trend, expected output, life cycle, required input, nature of data, the structure of
a project, testing, and development process. Liu and Gao (2009) solved the same
using an automated tool called SRMSS to select a reliability model for software. The
criteria which were used are Bias, Noise, and Goodness of fit. Sharma et al. (2010)
developed a quantitative model to rank the SRGM model and select the optimal
model using a distance-based approach (DBA). Since then, many researchers have
investigated for selection of optimal SRGM. It has been accounted that multi-criteria
decision-making methods (MCDM) have also been used such as DBA, Weighted
criteria and greedy approach (Anjum et al. 2013; Cristescu et al. 2015; Khalid and
Sharma 2015;Miglani andRana 2011).An entropy distance-based approach (EDBA)
was suggested by Gupta et al. (2018) to rank SRGMs using seven selection criteria.
Kumar et al. (2018) used fuzzy data envelopment analysis to select the optimal
SRGM.

3 Notations

m(t) Expected number of faults removed by time t.
λ(t) Failure Intensity
A =a1 + a2 + a3 + a4 = constant gives number of faults in the software at the

beginning of testing
a1 number of faults in the software at first release
a2 number of faults added due to additional feature in release 2
a3 number of faults added due to additional feature in release 3
a4 number of faults added due to additional feature in release 4
f(t) Probability density function
Fi(t) Probability distribution function for ith release.
B constant, fault detection rate

.
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4 General Multi-release SRGM

In this section of the chapter, a fundamental review on multi-release SRGMs based
on NHPP is provided along with the multi-release model.

The demeanor of the failure process of software is studied using SRGMs. The
NHPP-based SRGM is broadly used mathematical models with the assumption that
the occurrence of failure is a random process. Let {N(t), t≥ 0} be a counting process
that represents the cumulative number of software failures that are either detected or
removed by time t.

Let the number of faults up to time t is represented by N(t).
The NHPP based counting process under the assumption that:

P{N (t) = n} = m(t)ne−m(t)

n! (1)

The function m(t) is called the mean value function and describes the expected
cumulative number of failures in (0, t]. Hence, m(t) is a handy descriptive measure
of failure behavior.

Now the differential equation given below can be used to determine the expected
number of faults removed:

λ(t) = dm(t)

dt
= b(t)[a(t) − m(t)] (2)

where λ(t) is proportional to the residual fault content. a(t), b(t) defines different
assumptions of the detection process. Where a(t), b(t) represents time-dependent
initial fault content and fault detection rate, respectively.

dm(t)

dt
= f (t)

1 − F(t)
(a − m(t)) (3)

Let ‘a’ denote the expected number of faults that would be detected given infinite
testing time in the case of finite failure NHPPmodels. Then, the mean value function
of the finite failure NHPP models can be written as

m(t) =
t∫

0

λ(x)dx = a · F(t) (4)

.

Release 1

After developing a software most crucial task is the testing of the software before
bringing it into the market, which is the operational phase. The testing team tests
the software prudently and carefully to ensure that maximum faults are removed.
Nevertheless, there are still possible chances that the faults still exist in the software



360 R. Bibyan and S. Anand

because it is practically impossible to remove or detect all the faults. Therefore during
the testing of the initial version of the software, there is a chance that testers might
find a finite number of faults. Then these finite number of faults are removed, and it
can be represented mathematically as:

m1(t) = aF1(t) 0 < t < t1 (5)

Release 2

As time passes, technological changes take place, customer demand increases, and
even market competition increases. Due to which developer is compelled to add
some new features to the software. The addition of a new feature can make the
software more complex and fault content increases. During the testing of newly
added feature code, testers might encounter faults from the previous version, which
were not removed along with the additional faults due to new code. By testing the
new version of the software, the overall software is improved. So during release two,
we have two versions of the software. The leftover faults from the previous release
i.e. a1(1 − F1(t1)) Interact with the new detection rate due to which fractions of
leftover faults from the previous release gets removed. Additionally, the fraction of
faults due to addition of new feature gets removed with the detection rate F2(t − t1).
The expected number of faults removed is mathematically represented as:

m2(t) = a2F2(t − t1) + a1(1 − F1(t1))F2(t − t1) t1 < t < t2 (6)

Release 3

When the new features are added twice, then some new codes are developed for the
software. This new code with the existing code is then tested. During the testing of
this version, testers might encounter leftover faults from release two and release one.
The addition of the new feature helps in removing the maximum number of faults.
Now there three versions of the software. The leftover faults from the previous release
i.e. a2(1 − F2(t2)) Interact with the new detection rate due to which fractions of left-
over faults from the previous release gets removed. Also, the leftover fraction of
faults from the release one i.e. a1(1 − F1(t1))(1 − F2(t2)) interact with new detec-
tion rates. Additionally, the fraction of faults due to addition of new feature gets
removed with the detection rate F3(t − t2). The expected number of faults removed
is mathematically represented as:

m3(t) = a3F3(t − t2) + a2(1 − F2(t2))F3(t − t2)

+ a1(1 − F1(t1))(1 − F2(t2))F3(t − t2), t2 < t < t3 (7)
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Release 4

This process of adding new features is ongoing until the time software product exists
in the market. It not only removes the maximum number of faults but also increases
the reliability of the software. The mathematical equation for the expected number
of faults removed during release 4 when the features were added for the third time
is given by:

m4(t) = a4F4(t − t3) + a3(1 − F3(t3))F4(t − t3)

+ a2(1 − F2(t2))(1 − F3(t3))F4(t − t3)

+ a1(1 − F1(t1))(1 − F2(t2))(1 − F3(t3))F4(t − t3) t3 < t < t4 (8)

5 Multi Release SRGMModels

In this chapter, we have considered various multi-release SRGMs as follow:

Model 1

Kapur et al. (2010) proposed that multi-release SRGM using S-shaped logistic
distribution is given by him (1999). The mean value function m(t) is given as:

m(t) = a(1 − exp(−bt))

1 + βexp(−bt)
= aF(t) (9)

where F(t) = (1−exp(−bt))
1+β exp(−bt)

If we assume β = 0 in the above model, then it reduces to Goel Okumoto
exponential model.

The software fault removed in each release is calculated using the mathematical
structure given in Eqs. (5)–(8).

Model 2

Garmabaki et al. (2014) represented the fault removal phenomenon in a distributed
environment where the “n” number of reused and “p” newly developed components
were considered together. The explicit mean value function for both types of faults
is given by:

mi(t) = aipi
(
1 − e−bit

) + ai(1 − pi)
(
1 − (

1 + b∗
i t

)
e−b∗

i t
)

= aipiFi(t) + ai(1 − pi)F
∗
i (t); i = 1, 2, 3, 4 (10)

where Fi(t) and F∗
i (t) are fault distribution function for reused and new components

respectively for each release.
pi the proportion of faults in both types of components.
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Model 3

Pachauri et al. (2015) extended the model given by Hsu et al. (2011) having constant
Fault reduction factors (FRF) with imperfect debugging. The mean value function
for the next release model is based on the model given by Kapur et al. (2012). When
a failure occurs, the fault which causes failure is instantly removed, and the new
faults are brought in with some probability say γ. In this multi-release model, the
fault of the current release and leftover faults of the previous release are considered.
The mean value function for ith release is given as:

mi(t) = (ai + ai−1(1 − Fi−1(ti−1)))Fi(t − ti−1); ti−1 ≤ t < ti (11)

F(t) = (1 − exp(−rb(1 − γ )t))

(1 − γ )
(12)

where r is a constant detection rate, and b is a constant fault reduction factor.

Model 4

Garmabaki et al. (2015) proposed a multi-release SRGMmodel by using theWeibull
model for estimating the mean number of faults. The mean value function for the ith
release is given as:

mi(t) = aiFi(t − ti) + (ai−1 − mi−1(ti−1 − ti−2))Fi(t − ti) (13)

Where,F(t) = a
(
1 − e(−

t
θ )

β
)
; θ > 0, β > 0 (14)

And θ and β are the scale and shape parameters of the Weibul Distribution.

Model 5

Tandon et al. (2016) proposed a multi-release model with a change-point by consid-
ering the assumption that Fault Removal Rate (FRR) may change instead of staying
constant during testing. This change in FRR occurs due to various changes in the
change-point. For the fault removal process, S-shaped logistic distribution is used.
The mean value function for the ith release is given as:

mi(n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a4 ∗ (1 − (1 + βi)(1 − bi1)
n−ti−1

(1 + βi(1 − bi1)
n−ti−1

; 0 ≤ n < ni

ai(1 − (1 + βi)(1 + βi(1 − bi2)
ni (1 − bi1)

ni (1 − bi2)
n−(

ti−1+ni
)

(1 + βi(1 − bi1)
ni (1 + βi(1 − bi2)

n−ti−1
; n > ni; t1−1 < n ≤ t1

(15)

where ni is the change point in ith release,
ti is the ith release time,
bi1 is the fault removal rate before change point for ith release and
bi2 is the fault removal rate after change point for ith release.
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Model 6, 7, 8

Mishra et al. (2017) bused 3 SRGMs to capture the behavior of testing phase namely
Model 6: Exponential SRGM by Goel and Okumoto

Fts(t) = (
1 − e−bt

)
(16)

Model 7: Two-phase S-shaped model by Yamada et al.

Fts(t) = (
1 − (1 + bt)e−bt

)
(17)

Model 8: Flexible SRGM by (Kapur and Garg)

Fts(t) = 1 − e−bt

1 + βe−bt
(18)

where b is error detection rate, and β is the learning parameter. The behavior of the
operational phase is captured using Weibull Distribution with

Fop(t) =
(
1 − e−btk

)
(19)

The mean value function for the ith the release is given as:

mi(t) = [
ai + (1 − αi−1) · ai−1(1 − Fi−1(ti−1 − ti−2))

] · Fts
i (t − ti−1)

+ [
αi−1.ai−1(1 − Fi−1(ti−1 − ti−2))

]
Fop
i−1(t − ti−1); ti−1 ≤ t < ti (20)

where (1 − αi−1) represents the proportion of remaining bugs removed during the
testing phase. (αi−1), represents the proportion of remaining faults in the operational
phase.

Model 9

Aggarwal et al. (2019) proposedmulti-release SRGMwith imperfect debugging time
variable FRF.

The mean value function for the ith the release is given as:

mi(t) = (
a∗
i + a∗

i−1(1 − Fi−1(ti−1))
)
Fi(t − ti−1); ti−10 ≤ t < ti (21)

where ri is proportionality constant,

a∗
i = ai

(1 − αi)

Fi(t) = (
1 − (1 + bi−1t)

ri(1−αi−1)e−bi−1ri−1(1−αi−1)t
)
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Table 1 Performance criteria

S.
No.

Criteria Description

1 R2 It explains how successful the fit is in measuring the proportion of variation
in the data

R2 = 1 −
∑k

i=1(mi−m̂(ti))
2

∑k
i=1

(
mi−∑k

j=1 mj/n
)2

2 MSE It calculates the deviation between expected and actual values

MSE =
∑k

i=1(mi−m̂(ti))
2

k−p

3 MAE It is mean absolute error which calculated deviation by using absolute values

MAE =
∑k

i=1|(mi−m̂(ti))|
k−p

4 Bias It gives the sum of the differences between actual and estimated values

Bias =
∑k

i=1|(m̂(ti)−mi)|
k−p

5 Variance It is the Standard Deviation of the prediction bias

Variance =
√∑k

i=1(mi−m̂(ti)−Bias)
2

k−1

6 RMPSE It stands for Root Mean Prediction Error, which calculates the closeness with
which the model predicts the values

RMPSE = √
Variance2 + Bias2

7 PRR It calculates the distance of model estimates from the actual values against
the model estimate

PRR =
∑k

i=1 m̂i(ti)−mi
m̂i(ti)

6 Comparison Criteria

The parameters for multi-release SRGM are estimated through a statistical soft-
ware SPSS. Later performance criteria such as R2, MSE MAE, RMPSE, Bias, PRR,
Variance are evaluated. The Table 1 describes performance criteria:

7 Weighted Distance-Based Approach

Sharma et al. (2010) proposed the distance-based approach to select the optimal
SRGM, which is modified in this chapter. This approach is combined with the
MaximumDeviationMethod to evaluate the weights of all the criteria. Later weights
are added with a Distance-based Approach to select optimal Multi-Release SRGM.
The steps which are followed is explained below:
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Step 1: Create Rating Matrix

The rating matrix contains the values of the performance measures for each
model/alternative against the different criteria. The matrix Rij with “m” criteria and
“n” alternatives is given below:

[
Rij

] =

⎡
⎢⎢⎢⎢⎢⎢⎣

r11 r12 . . . r1m
r21 r22 . . . r2m
...

...
...

...
...

...
...

...

rn1 rn1 . . . rnm

⎤
⎥⎥⎥⎥⎥⎥⎦

(22)

where i = 1, 2, …, n and j = 1, 2, … m.

Step 2: Normalizing Rating matrix

The elements of the matrix R′
ij is are normalized to form Normalized Rating matrix

[R′
ij] below:

[R′
ij] =

⎡
⎢⎢⎢⎢⎢⎢⎣

r′
11 r

′
12 . . . r′

1m

r′
21 r

′
22 . . . r′

2m
...

...
...

...
...

...
...

...

r′
n1 r

′
n1 . . . r′

nm

⎤
⎥⎥⎥⎥⎥⎥⎦

(23)

where r′
ij = rij√∑m

j=1 rij

Step 3: Maximum Deviation method for criteria weight calculation

The method is based on the fact that if for all the criterion values for a particular have
small difference for all alternatives, then it has a small importance and is assigned
small weight. Similarly, we can state this fact for large and no difference. Theweights
of these criteria are unknown to us (Yingming 1997). In this method, we solve a
non-linear programming model to calculate the weights of “m” criteria. Let w =
(w1,w2, . . .wm) be the weight.

MaxD
(
wj

) =
m∑
j=1

n∑
i=1

n∑
k=1

d
(
r′
ij, r

′
kj

)
wj

subject to
m∑
j=1

w2
j = 1,wj ∈ [0, 1] (24)



366 R. Bibyan and S. Anand

Here the total weighted deviation for all the alternatives w.r.t. all criteria is
expressed in the objective function. The deviation between the criteria value r′

ij and
r′
kj for a criteria Cj is obtained by evaluating the distance between them. In this study,
Euclidian distance is used, but any distance can be used like Hamming, Manhattan,
and many more.

Solving the model we can obtain

w∗
j =

∑n
i=1

∑n
k=1 d

(
r′
ij, r

′
kj

)
∑m

j=1

∑n
i=1

∑n
k=1 d

(
r′
ij, r

′
kj

) (25)

Step 4: Formation of Optimal matrix

The optimal value for each criterion is calculatedwhere rbj = best value for jth criteria
Case 1—When the smaller value of the criteria fits well for the model.
rbj = minimum value of jth criteria
Case 2—When the larger value of the criteria fits well for the model.
rbj = maximum value of jth criteria
The optimal matrix is given as:

[
R′′
ij

]
=

⎡
⎢⎢⎢⎢⎢⎣

r11 r12 . . . r1m
r21 r22 . . . r2m
...

...
...

...

rn1 rn2 . . . rnm
rb1 rb1 . . . rbm

⎤
⎥⎥⎥⎥⎥⎦

(26)

Step 5: Standardization of Optimal Matrix
The optimal matrix is standardized using the following-

Zij = rij − rj
Sj

(27)

rj = 1

n

n∑
i=1

rij (28)

Sj =
√√√√

[
1

n

n∑
i=1

(
r2ij − rj

)2
]

(29)
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[
Zj

] =

⎡
⎢⎢⎢⎢⎢⎣

z11 z12 . . . z1m
z21 z21 . . . z2m

. . . . . .
... . . .

zn1 zn2 . . . znm
zopt1 zopt2 . . . zoptm

⎤
⎥⎥⎥⎥⎥⎦

(30)

Step 6: Formation of the Distance Matrix
TheDistanceMatrix is obtained by subtracting elements of a standardized optimal

matrix from the elements of the optimal matrix.

[Zd ] =

⎡
⎢⎢⎢⎣

zopt1 − z11 zopt2 − z12 . . . zoptm − z1m
zopt1 − z21 zopt2 − z22 . . . zoptm − z1m

...
... . . .

...

zopt1 − zn1 zopt2 − zn2 . . . zoptm − znm

⎤
⎥⎥⎥⎦ (31)

Later thismatrix ismultipliedwith the criteriaweights calculated usingMaximum
Deviation Method to get weighted distance matrix as

[
Zwj

] =

⎡
⎢⎢⎢⎣

w1
(
zopt1 − z11

)
w2

(
zopt2 − z12

)
. . . wm

(
zoptm − z1m

)
w1

(
zopt1 − z21

)
w2

(
zopt2 − z22

)
. . . wm

(
zoptm − z1m

)
...

... . . .
...

w1(zopt1 − zn1) w2
(
zopt2 − zn2

)
. . . wm

(
zoptm − znm

)

⎤
⎥⎥⎥⎦ (32)

Finally, the Euclidian distance for each alternative is calculated as:

Di =
⎡
⎣ m∑

j=1

(
wj

(
zoptj−zij

))
2

⎤
⎦1/2 (33)

.

8 Numerical Illustration for Multi-release SRGM Ranking

The aim of the research is to select multi-release SRGMs by evaluation of criteria and
ranking the models on the basis of the selection criteria. The unknown parameters
are evaluated using the Least Square Estimate technique for the failure dataset of
Tandem Computers having four releases (Wood 1996). The selection of the model is
made against seven criteria, namely R2, MSE, MAE, RMPSE, Bias, and Variation,
shown in Table 2. Once these models are estimated, the weighted distance-based
approach is implemented to rank the models for selection.
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Table 2 Criteria for different multi-release SRGM

R sq MSE MAE RMPSE Bias PRR Variance

Model 1 0.995 0.9411 0.7194 1.003 0.055 0.3423 0.694

Model 2 0.981 3.45316 0.702 1.90444 0.570971 0.204 1.816833

Model 3 0.97 4.474 1.878 2.34136 0.427 0.958 2.362

Model 4 0.995 0.8904 0.68736 0.970076 −0.0168 0.146288 0.96933

Model 5 0.995 0.9411 0.7194 1.00307 0.5526 0.342316 1.00154822

Model 6 0.969 5.759 0.852 2.889 0.738 0.251 2.794

Model 7 0.995 0.98 0.723 1.017 −0.001 0.66 1.017

Model 8 0.995 0.939 0.691 1.002 0.055 0.573 1.001

Model 9 0.99 1.421 1.0242 1.225277 0.01052 0.64512 1.225

The steps discussed in the sectionWeightedDistance-BasedApproach are applied
and demonstrated below:

1. Creation of RatingMatrix: The matrix
[
Rij

]
is created on the basis of the criteria

values given in Table 2.

[
Rij

] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.995 0.9411 0.7194 1.003 0.055 0.3423 0.694
0.981 3.453 0.702 1.9044 0.5709 0.204 1.81683
0.97 4.474 1.878 2.34136 0.427 0.958 2.362
0.995 0.8904 0.68736 0.9700 −0.0168 0.1462 0.9633
0.995 0.9411 0.7194 1.00307 0.5526 0.3423 1.0015
0.969 5.759 0.852 2.889 0.738 0.251 2.794
0.995 0.98 0.723 1.017 −0.001 0.66 1.017
0.995 0.939 0.691 1.002 0.055 0.573 1.001
0.990 1.421 1.0242 1.225277 0.01052 0.64512 1.225

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2. Creation of Normalized Rating Matrix: The elements of Rating Matrix is

normalized to obtain Normalized Rating Matrix
[
R′
ij

]
.

[
R′
ij

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.333806174 0.21150312 0.25440419 0.27445766 0.03556694 0.1685977 0.1933702

0.329109403 0.7760643 0.24825096 0.52112478 0.368923.073 0.10047891 0.50622675

0.325419084 1.00548821 0.66412437 0.64068215 0.27612877 0.47185684 0.6581274

0.333806174 0.20010879 0.24307376 0.26544845 −0.0108641 0.07205323 0.27008579

0.33806174 0.21150312 0.25440419 0.27447682 0.35735072 0.16860558 0.2790628

0.3250836 1.29427953 0.30129604 0.79053658 0.47724364 0.1362849 0.77849617

0.333806174 0.22024552 0.25567727 0.27828858 −0.0006467 0.32507882 0.28336815

0.333806174 0.211031117 0.24436099 0.2782888 −0.0006467 0.32507882 0.28336815

0.332128756 0.319356 0.36219179 0.33528082 0.00680299 0.31774977 0.34312348

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3. CriteriaWeights:The criteriaweights are calculated by theMaximumDeviation
method using Euclidian Distance in Table 3.
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Table 3 Criteria weights Criteria Weight

R2 0.009673

MSE 0.315834

MAE 0.089097

RMPSE 0.151789

Bias 0.157886

PRR 0.112717

Variance 0.163005

4. Formation of Optimal Matrix: This matrix contains the value of each criterion
against different models, and the last row is filled with the optimal value for
each criterion as shown in the matrix [Zs]:

[Zs] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.2388 −2.1417 −1.3905 −2.1297 −2.2203 −1.3788 −3.2324
−1.7910 2.1324 −1.5336 1.8623 3.2169 −3.0270 1.6909
−4.9574 3.8694 8.13756 3.7973 1.6997 5.9585 4.0814
2.2388 −2.2280 −1.654 −2.2755 −2.9769 −3.7147 −2.0251
2.2388 −2.1417 −1.390 −2.1294 3.0233 −1.3786 −1.8839

−5.2453 6.0559 −0.3004 6.2225 4.9770 −2.4669 5.9757
2.2388 −2.0756 −1.3609 −2.0677 −2.8104 2.4072 −1.8161
2.2388 −2.1453 −1.6240 2.1342 −2.2203 1.3704 −1.8863
0.7996 −1.3252 1.1160 −1.1454 −2.6890 2.2299 −0.9041
2.2388 −2.2281 −1.654 −2.2755 −2.9769 −3.7147 −3.2324

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The max value from the R2 values of all the models is considered to be optimal,
whereas, for other criteria, the minimum value is considered to be optimal.

5. Formation of Distance Matrix: This matrix is created after the calculating
weights for each criterion and formation of an optimal matrix. It is

[Zd ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.0007 0.0005 0.0005 0.0142 0.0693 0
0.0015 1.896 0.0001 0.3945 0.9563 0.0060 0.6440
0.0049 3.708 0.7610 0.8497 0.5452 1.1888 1.4213

0 0 0 0 0 0 0.0387
0 0.0007 0.0005 0.0005 0.8974 0.0069 0.0483

0.005 6.8452 0.0145 1.6640 1.5770 0.0197 2.2529
0 0.0023 0.00068 0.0009 0.0069 0.4761 0.0532
0 0.0006 7.11E − 06 0.0004 0.0142 0.3285 0.0481

0.0001 0.0813 0.060914 0.0294 0.0002 0.4489 0.1440

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Table 4 Euclidian distance
and ranking of multi-release
SRGMs

Model Distance Rank

Model 1 0.292197 2

Mode 2 1.974653 7

Model 3 2.912006 8

Model 4 0.196792 1

Model 5 1.008423 6

Model 6 3.518351 9

Model 7 0.730863 4

Model 8 0.626192 3

Model 9 0.875753 5

6. Finally, the EuclidianDistance for eachmulti-release SRGM is evaluated. These
models are ranked on the basis of EuclidianDistance values, as shown inTable 4.

9 Results

The main motive of this chapter is to handle the problem of Multi release SRGM
selection using MCDM. An interspersed approach with the amalgamation of the
Maximum deviation method and DBA is applied to obtain the ranking of the Multi-
Release SRGM model. The findings from this research are discussed below:

1. The primary task is to identify the selection criteria for eachmodel and calculate
the weights using the Maximum Deviation Method, as discussed in the section
WeightedDistanceApproach. The selection criteriaMSE has the highest weight
value, i.e., 0.315834, and R2 has the least weight, i.e., 0.009673, as shown in
Fig. 1.

2. The results shown in the Table 4 shows that Model 4 is ranked one as it has the
lowest weighted Euclidian distance, i.e., 0.196792. This model was proposed
by Garmabaki et al. (2015) using the Weibull model for estimating the mean
number of faults.
On the other hand, Model 6 is ranked last amongst the other model as it has
the most considerable weighted Euclidian distance i.e. 3.518351. This model
was proposed by Mishra et al. (2017) for using Exponential SRGM (Goel and
Okumoto) for the testing phase and Weibull distribution for the operational
phase.

3. The weighted distance-based approach has smooth and straightforward calcu-
lations, which makes it simple to use. There is no convoluted programming
in this approach because it can easily be performed in EXCEL. It also deals
with selection criteria weights, which helps to select the optimal multi-releasee
SRGM. Even if the number of criteria and alternatives are increased, there is no
impact on the approach.
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Fig. 1 Selection Criteria Weights

10 Conclusion and Future Scope

The research in this chapter was done to select optimal multi-release SRGM and
rank the models. An interspersed MCDM approach has been created, which assem-
bles the weights and distance-based approach. The weights are evaluated through
the Maximum Deviation Method and combined with DBA to rank the model. The
distance which has been used in this approach is Euclidian distance. The proposed
approach contains simple mathematical matrix calculations making it less compli-
cated and saves implementation time. This research can be extended in the following
aspects:

(i) Other distances such as Hamming,Mahalanobis, Absolute, and Lee andmany
more can be used instead of Euclidian distance.

(ii) It can be further extended by considering more selection criteria and
alternatives.

(iii) This approach can be compared with other approaches, such as the Simple
Matrix method, AHP, and TOPSIS.

(iv) Sensitivity Analysis can be performed to handle the complexity of the criteria.
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