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1 Introduction

The idea of agent-based modeling has a long history. Actor models and
graph-theory-oriented algorithms that propagate complex systems of many
interacting entities through time have existed for more than half a century
(Hewitt 1969). Along with the concept of cellular automata, they emerged
as tools for the rather esoteric field of complexity science (Conway 2000).
However, this bottom-up approach stayed dormant for a while until it gained
popularity in economics. This can be attributed to recent developments in
distributed computation, the performance of modern computational infras-
tructures, the availability of large open-source programming libraries and the
growing number of established model references. It is safe to say that ABMs
are still the new kid on the block in the model zoo of the financial sector
risk manager. Their design as actor models is suitable for a scalable bottom-
up approach oriented toward the micro-states and micro-interactions of the
participants in a financial system. By design, such models are very flexible
regarding successive refinement of the agent behavior.
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The goal of the Balance Sheet Dynamics Simulator (BSDS), the core ideas
of which have been described in (Liermann and Dittmar 2021), is to simu-
late the balance sheet dynamics of banks in a competitive macroeconomic
environment. This chapter focuses on technical details of the implementa-
tion of the BSDS as an actor-oriented model that uses the Simudyne software
development kit1 and a Hadoop environment for distributed computation.

1.1 Financial Navigator and Other Applications

The BSDS addresses the new transaction development aspects of a stress test.
For this purpose, it generates scenarios of the balance sheet development
that complement the analysis of risks associated with changes in the balance
sheet structure. The BSDS is integrated into the Financial Navigator (see
Thiele 2021), a scenario-based credit risk management framework aiming to
discover the mid-term impact (3–5 years) of rating changes driven by macroe-
conomic scenarios on a projected portfolio2 that has possible applications in
planning and controlling.

Recent conceptual improvements in the planning process aim to make the
process more dynamic to accelerate the response to changing environments.
We refer to this trend as value-driver-oriented planning.3 Value-driver-
oriented planning involves the identification of drivers behind the planning
volumes and making them (or more holistically the generated values for the
institute) dependent on observable indicators. The first step on the road to
a value-driver-oriented planning process is to establish a connection (maybe
by using regression models) between the driver and the targeted transaction
volume in the balance sheet. This approach is always backward looking and
cannot incorporate new trends or behavioral changes. The BSDS predicts
possible structural changes. From the results, impulses could be derived to
adjust the mechanics connecting the value driver and the projected volumes
in the balance sheet.
The BSDS is meant as a prototype for a challenger model for the esti-

mates made by the planning process (conventional or value-driver-oriented).
Another application could be asset liability management in banks, especially

1 For details see Simudyne (n.d.).
2 Actual portfolio plus the simulated new transaction generated by the BSDS.
3 See Valjanow et al., Digital Planning—Driver-Based Planning Levaraged by Predictive Analytics
(2019) and Valjanow et al. (2021).
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Fig. 1 ABM—essential elements (© ifb SE)

the aspect of the interest rate in the banking book4 The BSDS presented here
is a model state with a reduced functional scope for didactic purposes.

1.2 Structure of the Chapter

This chapter is structured as follows: Sect. 2 describes the basic assumptions
and model components, Sect. 3 introduces the technical details of Simudyne’s
ABM framework and the Hadoop5 cluster on which the simulation runs are
performed, Sect. 4 discusses some preliminary results regarding the calibra-
tion of parameters and Sect. 5 gives an outlook for sensible extensions of the
model.

2 Model

2.1 Recap: Elements of an Agent-Based Model

Figure 1 shows the essential ingredients that are needed to define an ABM
for a specific use case. Those are the agent classes, the environmental defini-
tions and the action sequence that defines the rules for the propagation of the
system through time.

4 The regulatory requirements are given by (Basel Committee on Banking Supervision, Interest rate
risk in the banking book 2016) and this standard is integrated in 2021 Basel Framework (Basel
Committee on Banking Supervision, The Basel Framework 2021).
5 Hadoop is a specialized computing cluster designed to store and analyze large amounts of
unstructured data (for more details see Akhgarnush et al. 2019).
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Fig. 2 BSDS—hierarchy of agents in a class diagram (© ifb SE)

Agents are defined as autonomous computational entities that interact with
their environment (including other agents). From the technical viewpoint,
they are instances of classes with (1) field variables, the values of which repre-
sent an agent’s state and (2) algorithms that encode their possible actions
(behavior). Agents interact by exchanging messages and the behavioral code
reacts to those messages by updating the state of the agent. Effectively, agents
thereby change states of themselves and induce state changes of other agents.6

Obviously, the structure that defines the possible agent interaction as
exchange of messages is another essential ingredient of an ABM. It is referred
to as topology of the computing graph that specifies the links over which the
agents send the information to interact.

While the agent topology defines which agents can interact, the action and
messaging sequence defines the order of computational tasks and communi-
cation itself. It coordinates the agents’ behavior and propagates the system
from one time step to the next, with synchronization of the agents’ activity
status at the end of each time step (see Pregel approach to graph processing
[Malewicz et al. 2010]). The following subsections explain these three
essential ingredients of an ABM for the specific case of the BSDS.

2.2 Agent Types

The BSDS has three major agent types: banks, clients and markets. Figure 2
shows the corresponding hierarchy of agent classes.

Banks and clients inherit common properties (but no action code) from
the financial agent class, such as variables that store their type, ID and a list

6 See mode details in Sect. 3 in (Liermann and Dittmar 2021).
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of loan agreements. The bank and client classes differ considerably in their
actions: while banks try to grow and establish a certain portfolio structure,
clients merely seek a certain total amount of credit depending on individual
desired debt ratios and the global macroeconomic situation.
The different subtypes of banks and clients exhibit the same behavior

among their subclass, but their algorithms use different parameters: for
example, retail banks have a higher contingent for retail clients in their port-
folio, and corporate clients apply for loans with longer durations than retail
clients.

For each of the four client types, there is one market, reflecting the simpli-
fying assumption that clients apply for only one client-type-specific product
and do not seek diversified portfolios. The markets form non-discretionary
matches between the individual supplies and demands of banks and clients
by combinatorial optimization. The only difference between the markets are
their links to other agents, as explained in the following section.

2.3 Environmental Definitions

The environmental definitions of the BSDS do not include any spatial
aspects. The topological environment of an agent is defined by the links to
the agents it communicates with, as shown in Fig. 3.
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Fig. 3 BSDS—topology of directional communication links between groups of agents
(© ifb SE)
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The groups of different agent classes are fully connected, reflecting the
simplifying assumption that no bank or client has an advantage or disad-
vantage during the fair and rational matching of supplies and demands that
is controlled entirely by the markets. This simple topology corresponds to
a world with unrestricted sharing/homogeneous availability of information.
Clients and banks both interact with markets to communicate their indi-
vidual credit supplies and demands, and to receive a response whether a
suitable business partner has been found during the matching process (blue
and golden arrows in Fig. 3). Since no rating agencies are modeled, clients
communicate their current rating information directly to the banks (grey
arrows).

Another environmental element is the time series of an exogenous simu-
lation of the macroeconomy, meaning they follow their own, decoupled
dynamics that are independent of the agent topology. Macroeconomic param-
eters can be accessed globally but remain unaffected by the agents. Individual
supplies and demands only depend on the current agreements and the
exogenous macroeconomy.
The number of agents and their connectivity are kept constant throughout

the simulation. At this stage, we do not consider any long-term growth or
network dynamic aspects of the system but assume these to be negligible on
the time scale of our simulations.

Note that the market agents play a special practical role in this topology:
depending on the number of bank client agents and the logic behind the
market interactions, the number of messages that must be sent between actors
to cover all interactions possible in principle in a fully connected network can
be very large. Therefore, it is necessary to reduce this number by introducing
“coordinating” agents. Having more than one market increases the efficiency
of the overall action sequence by reducing the number of messages that need
to be sent between the financial agents: instead of having to process indi-
vidual communication between all possible (Nbanks · Nclients) pairs of banks
and clients, markets cache (Nbanks + Nclients) messages and process them in
one action. In this role, the markets are referred to as “coordinating agents”,
as they funnel and reduce the flux of information through the system. This
improves the performance, if the tasks that need to be done for each pair are
not so complex or heterogeneous that they would actually benefit from being
processed by financial agents in parallel threads instead of being processed
sequentially by a centralized market.
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2.4 Sequence of Agent Actions and Messages

The action sequence that propagates the system through time is shown in
Fig. 4. It defines the course of actions that are carried out at each time
step with a temporal resolution of 1 month. The sequence is repeated iter-
atively to generate the evolution of bank portfolios over a time span of 36
to 60 months. The colors indicate which agent groups execute the actions
described. For example, dark blue action blocks are performed by all members
of the four client groups in parallel. Some of the action blocks contain several
numbered actions, which are performed one after the other (without needing
to be triggered individually). For example, the market begins to match indi-
vidual supplies and demands after having collected all loan applications and
exposure reports. Action blocks are arranged as split blocks or sequence
blocks. The actions of a split block start simultaneously, while the actions
of a sequence block start successively from left to right.

Each time step starts with client and market actions: clients update their
desired debt ratios according to the GDP growth factor and apply for loans
that are calculated from this debt ratio, the running loans and their respec-
tive client size. Simultaneously, clients send their current ratings to the banks,
which then update their desired total exposure and use the latest client ratings
to compare their target rating structures with the actual ones according to
their current portfolios and their bank-type-specific business models. The
resulting exposure gaps translate to the credit supplies that are reported to the
four markets. The markets match credit demands and supplies with a param-
eterized combinatorial optimization algorithm and send response messages

1. update client state
2. apply for loan

report rating

sequence

sp
lit

sequence

trigger all bankssp
lit

1. update ratings
2. update structures
3. report exposure

1. get credit demand
2. get credit supply
3. match supply & demand
4. update accumulators
5. trigger all banks

1. update accounts
2. create account output
3. update accumulators

sp
lit

update accounts

sp
lit

sp
lit

= initial action (performed each step)

= follow-up action (must be triggered)

Legend:
Client Groups
Bank Groups

Markets

= message (triggers action)

Fig. 4 BSDS—sequence of actions and messages of the actor model. The diagram
shows blocks of actions that are executed by all individual members of the
corresponding color-coded agent group (© ifb SE)



142 V. Liermann and H. Dittmar

1) Collect & cache messages of individual credit supplies and demands
2) Per rating category: determine relative symmetric price effects (1-s) and (1+d) that are used to rescale 

the effective supplies and demands at market equilibrium (= compensate supply-demand imbalance)
3) Loop over ratings and perform the following steps to match price-adjusted discrete supplies & demands:

Randomize order/sort application messages by amount or similarity measure, and filter by rating
Randomize order/sort bank messages by amount or similarity measure, and filter by amount>0
Either a) start recursive combinatorial optimization of demands (n-tuples) per supply, or b) 
combine outer loop over filtered bank messages ordered by descending amount with inner loop 
over filtered application messages ordered by ascending amount

Finalize agreement conditionally (<max. n.o. loans, >min. amount, >loan increment)
If demand > supply, optionally split demand and carry to next time step (or bank)

Optionally carry remaining supplies to next lower rating (= soft target rating structure) 
per bank

Fig. 5 BSDS—outline of the steps performed by the matching algorithm of the
markets (© ifb SE)

to the respective counterparties of successful, non-discretionary matches. The
logic behind this matching routine (action “3. match supply & demand” in
Fig. 4) is outlined in Fig. 5, and parameterized behavior is marked bold.

Note that credit default events are not considered in this model, and
cashflows are not modeled as explicit independent action events, but only
represented implicitly in pre-defined maturity structures of the exposures.
Instead of generating loans in a parametric form that would specify payment
schedules, they are generated as complete exposure time series with a client-
type-specific static structure. Accordingly, it is instructive to think of the
matching mechanism for discrete incongruent amounts as an “exposure
Tetris”.

2.5 Measures of the Matching Efficiency

Three time-averaged indicators are proposed as measures of the effectiveness
of the matching algorithm, or the “performance of the exposure Tetris”:

1. E : the total exposure of banks to clients in active agreements,
2. L : the average number of actual loan agreements per client, which must

stay below the pre-defined upper bound,
3. M : the market-averaged ratio of successfully matched loan amounts rela-

tive to the sum over all requested amounts, ranging from 0 to 100% for
complete matching and

4. I : the bank-type-averaged incongruity of target and actual rating struc-
tures, ranging from 0 for perfect overlap to 1 for complete incongruity.

Using the indices r for rating class, c for client, m for market (equivalent to
client type), b for bank and t for bank type, the following formulas can be
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used to describe the respective contributions per time step:

L = 1

Nclients
·
∑
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Equation 1: Average number of actual loan agreements

M =
∑

cm

(
fcm · acm

)
∑

cm acm
Equation 2: Ratio matched loan amounts
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Equation 3: Averaged incongruity of target and actual rating structures

lc is the number of loans of client c. acm are the individual requested
loan amounts of the clients of type m. The multiplicators fcm that range
from 0 to 1 represent the success of individual loan applications considering
the possibility that only a fraction of the requested amount was matched as
a consequence of splitting it into agreements with multiple banks. fbt ,m,r
are the actual fractions of the banks’ total exposure in one client type
and rating category, and gbt ,m,r are the target fractions according to the
bank-type-specific business model.

2.6 Limiting Conditions and Model Parameters

In general, adding complexity to a model complicates the interpretation of
simulation results. The more parameters are involved, the less universal the
model and the larger the calibration or balancing effort. Table 1 lists essen-
tial parameters of the model, grouped by six contexts and categorized either
as fixed constants, conditions for the initial state or experimental param-
eters. The fixed constants correspond to fundamental model assumptions.
The initial conditions are parameters that specify limiting conditions for
the generation of the artificial initial state (see Sect. 4.1). The experimental
parameters can be adjusted in successive experimental simulation that runs
to tune the system behavior such that it exhibits non-trivial behavior and
mimics trends of real systems.
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Table 1 BSDS model parameters (© ifb SE)
Context Parameter Value Type

Unit Conventions
temporal resolution 1 month fixed 

constantsmonetary resolution (loan increment) €1000

Topology & System Size
number of banks 30

conditions for 
initial state

number of clients 761
number of markets (equiv. to types of clients/loans) 1

Credit Demands
client size distribution GER_2014
client rating distribution uniform
client target debt ratio 0.3

Credit Supplies
target client structure per bank type

case 
specific

experimental 
parameters

target rating structure per bank type
desired growth factor per bank type

Product Parameters
loan duration per client type

case 
specific

payment term per client type
min. loan amount per bank type & client type

Matching Algorithm

max. number of loans per client see 4.2
allow splitting of demands into multiple agreements yes
carry remaining supplies to next lower rating category no
randomize order of individual demands during matching yes
randomize order of individual supplies during matching yes

The abbreviation “GER_2014” refers to the income tax distribution
according to the German wage and income tax statistics from 2014, which
was taken from the Statistisches Bundesamt (Lohn- und Einkommensteuer
2014, Statistisches Bundesamt [Destatis], Artikelnummer: 2140710147005
2018).

3 Technical Implementation

3.1 Technical Scenario

Figure 6 summarizes the core elements of the technical scenario for running
the simulations. All mandatory platform and software requirements are
shown along with the numbers of compatible versions.

Simudyne offers a software development kit that facilitates the setup of
agent-based models and provides a convenient browser-based graphical user
interface for the control of simulation runs. Alternatively, simulation runs
of a model that has been launched on Simudyne’s “Nexus Server” can be
controlled via calls to a REST-API. To enable the model to access input
data for the initialization of the system from SAP Hana tables, we imported
the JDBC source driver recommended by SAP, and to write parquet output
to Hive tables, we imported the Apache Hadoop library. The model was
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Ubuntu Linux 16.04
(or Windows 10 with Microsoft Visual C++ 2010 and hadoop-winutils) 

Oracle Java JVM 1.8.0_271
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Fig. 6 BSDS—details of the technical implementation and code dependencies (© ifb
SE)

programmed in Oracle Java 8 with IntelliJ IDEA that used Maven 3.6.3 for
compilation.

3.2 Simudyne

The BSDS was programmed as an actor model using the Simudyne soft-
ware development kit (SDK) version 2.4, which adopts the Pregel approach
to graph processing (Malewicz et al. 2010) and uses Spark as a cluster
management tool and Akka to coordinate the actor-based parallel computing
(communication between agents). Akka relieves the user from creating the
infrastructure for the actor system with the low-level code necessary to control
basic behavior that is independent of the use case, such as the synchronization
of messages (for further information see Lightbend [n.d.]). A detailed docu-
mentation of the Simudyne SDK is available on the website of the vendor
(Simudyme n.d.). The supported Spark version depends on Scala 2.12.



146 V. Liermann and H. Dittmar

3.3 Hadoop Cloudera (Distributed Calculation)

The compiled model was tested in the local Windows 10 environment, which
required the installation of Microsoft Visual C++ and hadoop-winutils, and
on a Hadoop cluster that runs Ubuntu Linux 16.04, is maintained with the
Cloudera manager, and had access to four virtual machines that were rented
on the Microsoft Azure cloud. For this article, we only tested the parallel
execution of multiple instances of the model itself, which makes the sampling
of multiple possible system trajectories scalable. In our continued collabora-
tion with Simudyne we plan to distribute the model graph of the BSDS itself
over several machines in the Azure cloud. This will also make the system size
scalable so that it will be possible to increase the number of agents to tens of
thousands and more.

4 Ergodicity and Preliminary Results

This section discusses first results for one central aspect of the calibration of
parameters. When developing a bottom-up model from scratch with param-
eters and degrees of freedom that are based on pure intuition, it is necessary
to balance their influence on the model and check whether they all add value
to the model in terms of required complexity and realism. Here, we focus
on the calibration of two parameters of the matching algorithm with the
goal to increase the effectiveness of the matching algorithm and maintain
the ergodic behavior of the system. These two parameters are the influence
of the minimum offered loan amount and the maximum allowed number of
loans per client. One can also think of an economic interpretation of these
parameters: the lower bounds for the loan amounts represent the fact that a
loan only becomes attractive once its return is significantly larger than the
associated costs. Similarly, the limitation of the number of loans per client
can be interpreted as the tolerance of clients toward the burden associated
with the administration of multiple accounts.

4.1 Initial States

Figure 7 gives an overview of the input data that is required for the model
initialization and the output data that is generated during the simulation run.

For consistency with the assumptions that we have made to simplify the
portfolio, it is necessary to generate synthetic loan data that enables the
initialization of the model in a corresponding simplified state. For systems
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Fig. 7 BSDS—Input for system initialization and output of simulation runs (© ifb SE)

that exhibit a sensitive dependence on initial conditions, picking only one
arbitrary artificial initial state might not lead to valid statistical results,7 which
is why it is important to repeat simulation runs starting from an ensemble
of independent initial conditions. This gives indications for ergodic system
behavior that allows a comparison of time averages instead of ensemble
averages (Poitras und Heaney 2015). To compare steady states, one must
meet the conditions for mixing that result in ergodic system behavior. This
condition for meaningful time-averaged steady-state values also applies to the
performance indicators that we use to analyze the matching efficiency.
The initial distribution of remaining terms reflects certain assumptions

about the dissipation of the exposure sum over time, which should be gener-
ally reproducible by the simulation. This means that an artificial initial state
that did not emerge from the model itself must be given the chance to relax to

7 Since the BSDS is still in a developmental stage, we skipped the rigorous analysis of the aspect of
ergodicity and merely ensured that the development of the loans “looked chaotic enough”.
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a steady state in a pre-run with fixed macroeconomy, client ratings and target
exposures (see Sect. 4.2). Using such states as a reference, one can attempt
systematic studies of stylistic macroeconomic influences on the system.
To test the matching algorithm, the model complexity was reduced by

disabling all but the corporate clients. Simulation runs start from a hypo-
thetical initial state with a total of e5.7 trillion in exposures of 30 banks
that are distributed among the accounts of 761 clients in such a way that
the target rating structures are perfectly matched at the start of the simula-
tion. Accordingly, the initial values of the indicators are L = 1 and I = 0.
The distribution of amounts for the artificial loan data approximates the
income distribution according to the German wage and income tax statistics
from 2014, which was taken from the Statistisches Bundesamt (Lohn- und
Einkommensteuer 2014, Statistisches Bundesamt [Destatis], Artikelnummer:
2140710147005 2018).8 The creditworthiness (expressed in a credit rating)
of the client was taken from a uniform distribution due to the lack of real
client data. Further, it was assumed that all target debt ratios lie above the
initial debt ratios by 30% to start from a state of excess demand and a busy
matching routine.

4.2 Simulation Runs

During the simulation, the exposure sum drops as loans mature and are not
fully replaced with new ones. Several factors cause these maturing expo-
sures to give rise to incongruent demands and supplies. Their interplay
enables the matching process to introduce the chaotic mixing of the credit
amounts that are required for aperiodic system behavior and the associated
quasi-continuous shifts of exposure distributions:

1. Asymmetric agent behavior: There are different conditions for the
messaging of loan applications and exposure reports to the markets. Thus,
the sum over supplies that have been restored does not equal the sum over
demands of clients who reapply with some lag.

2. Possibility of mismatches or sub-optimal matches of the discrete
amounts per time step: The association of loan amounts with bank–client
pairs changes during the simulation. Also, there is the possibility to split
demands and match them with supplies from multiple banks.

8 The loan amount distribution, annual return distribution and private income distribution are
different things, but the reasonable assumption that their shapes have similar features suffices for
a proof of concept.
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3. Discretization of loan amounts: There is a minimum loan increment and
a minimum amount below which applications are not accepted.

4. Iterative approximation of target exposure structures: Restored supplies
are redistributed over client type and rating categories to approximate/stay
near the exposure structure of the business model.

The price adjustment that is applied to compensate for the difference between
total demand and total supply in each time step introduces further deviation
from the initial equality of total supplies and demands. Considering all these
cutting and scaling elements of one iteration, chaotic mixing seems like a
reasonable assumption, underpinned by the evolution of the total exposure
in the system as shown in Fig. 8.

Due to the remainder of mismatched supplies and demands, the value of
E drops below its initial value and fluctuates around steady-state levels that
reflect the matching efficiency. Table 2 shows how all four proposed indicators
of the matching efficiency change when

=5 =20

Fig. 8 BSDS—evolution of the total exposure in the system in a pre-run over 500
iterations. On the left side, the number of loans per client is limited to a maximum
of 5, on the right side to a maximum of 20 (© ifb SE)

Table 2 BSDS results for the efficiency of the matching algorithm (gold columns) at
different combinations of parameters (blue columns). The indicators were averaged
in the steady states that were reached after 250 iterations (© ifb SE)

Nmax Amin (€M) E(€T) L M I
5 1 4.8 5.3 100% 0.11
10 1 5.0 9.7 100% 0.10
15 1 5.4 14.0 100% 0.06
20 1 5.4 17.0 100% 0.06
50 1 5.7 17.7 80% 0.04
20 50000 5.6 14.1 80% 0.06
20 500000 5.0 4.9 50% 0.12
20 5000000 2.6 0.3 10% 0.94
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A. the number of loans at which clients stop applying, Nmax , is increased
from 5 to 20 and

B. the minimum accepted loan amount, Amin , is increased from 1 thousand
to 5 billion euros.9

For small Nmax , there were not enough successful matches per time step,
which prevented efficient mixing and left periodic patterns in the exposure
structures that would not dissipate on a reasonable time scale (limited system
size artifacts). Consequently, no steady state was established that would allow
the exploration of comparably subtle effects of macroeconomic scenarios.
However, allowing clients to satisfy their demands with a larger number of
individual agreements eliminated this effect and the system reached a steady
state within less than 250 iterations, in which the total exposure did not drop
much below its initial e5.7T.10

The increase of Amin shows that a good approximation of the rating struc-
ture of the business model was still possible with clients (groups) that apply
for loan amounts of at least e50000M. That means, on the stylized scales and
under the assumptions of our model, it would not have an adverse effect on
the portfolio planning of the banks if they were to ignore loan requests below
e50000M. Increasing the minimum loan amount above this value had the
undesirable effect that it excluded a significant portion of applications from
the matching. Consequently, M decreased, I increased and L dropped.

When the matching did not use random combinations of demands and
supplies, but performed a combinatorial optimization of successive demand
triples that leave the smallest gap when filling up the supplies, a higher total
exposure of e5.69T could already be reached at Nmax = 20. However, this
also introduced an ordering effect that caused a periodic evolution of M and a
significant increase of the averaged rating incongruity I to 0.21. That means
if the market uses this mechanism to yield the best coverage of the desired
exposure, more banks need to be flexible to deviate from their target rating
structure.

9 Note that the clients’ demands were scaled up to account for the unnaturally large ratio of the
number of bank agents to the number of client agents that was used to boost the performance of
these preliminary tests. To compensate for this imbalance, clients apply for very high loan amounts
ranging from about e5M to e5B.
10 The fraction of matched demands per time step, M , decreases to some extent, because the fluctu-
ation of the individual amounts of supply and demand becomes larger relative to the amounts that
have not been matched in previous steps.
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5 Summary and Outlook

5.1 Summary

In this chapter, we presented a prototype for an agent-based model that
simulates how the balance sheets of banks adapt to changes in the envi-
ronment, as represented by macroeconomic parameters that are linked to
client ratings. These environmental changes act as boundary conditions of
a matching algorithm that re-allocates credit supplies among a constant set
of clients by performing a simple “exposure Tetris”. A combinatorial opti-
mization algorithm matches individual credit supplies and demands under
the influence of macroeconomic effects, causing the rating structures of the
predicted portfolios to adapt.

Our results show how important it is to tune parameters in the context
of simplifying assumptions. For example, for the high ratio of bank to client
numbers that results from limiting the total number of agents, one also needs
to allow more loans per client, Nmax , to enter a regime in which the system
behaves more naturally. A sensible economic interpretation is that we effec-
tively consider client groups and not individual clients. The parameters of the
matching algorithm define its efficiency, which could be successfully moni-
tored by measures like the achieved total exposure in the system and the
average incongruence of actual and target rating structures of the bank port-
folios. Due to the small size of the system of under 800 agents, changing the
parameters Nmax and Amin also had a significant influence on mixing prop-
erties and thus on the fundamental system behavior. It is therefore a necessary
step to make the system large enough and find regimes in which a limiting
behavior with smoother amount distributions is established. This will make
it possible to study more subtle aspects such as disruptive changes of client
ratings.

5.2 Reasonable Model Extensions

With our future efforts we wish to reproduce real trends and aid the iden-
tification and optimization of systemic (model-level) parameters that can be
used to find the best compromise between reaching the target exposure and
maintaining the target rating structure in different macroeconomic scenarios.
As the calibration and balancing of model parameters progresses, we hope to
reproduce trends that can be expected in real bank portfolios. This will allow
us to explore how different macroeconomic scenarios affect the deviation of
the actual rating structures of bank portfolios from their business model, and
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which business models are the most resilient or competitive ones in different
scenarios. Thanks to the flexibility of the ABM design, the adaptation of
ideas for the elaboration of the model is straightforward to implement into
the code without compromising the existing elements. Some of our planned
investigations are:

• Reduce limited size effects by increasing the number of clients to ensure
strong chaotic mixing that facilitates the evaluation of steady-state proper-
ties,

• Generate artificial client and account data with more realistic features
regarding the distribution of ratings and loan amounts among the clients
per client type,

• Define rules for partially connected network topologies with additional
markets that limit the bank–client pairs that are available for matching:
this will enable a better compromise between fully informed coordinating
agents and high parallelization of matching processes and

• Incorporate rating models that are coupled to the system evolution and
enable a dynamic client set (spawning of new competitors and deleting of
defaulted client agents).

Of course, one must always consider whether such extensions of the
complexity also require additional real data and complicate the calibration of
parameters, and whether additional simplifying assumptions are compatible
with those that have already been made.
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