
High-Performance Applications

Xenia Bogomolec

1 Introduction

The increasing performance of technologies always comes with a side effect:
hacking tools become more efficient as well. There are several open-source
tools publicly available, which benefit from parallel computing as well as effi-
cient operations. We want to introduce you to one of them, the password
recovery tool hashcat (https://hashcat.net/hashcat/).

2 Hash Functions

Password recovery is just a nice term for hacking hashed passwords. Since
passwords need to be known to their owner only, it is a basic security
requirement to only store hashes of passwords on the server side. Ideally, the
application provider should not be able to recover a password. This is ensured
by so-called hashing algorithms, which produce a pseudo random output
(pseudo random generators). That means that the hash value is a random
number (in hexadecimal representation) or random string of fixed length,
regardless of the length of the input string. Unlike an encryption algorithm,

X. Bogomolec (B)
Quant-X Security & Coding GmbH, Hanover, Germany
e-mail: xb@quant-x-sec.com

© The Author(s), under exclusive license to Springer Nature
Switzerland AG 2021
V. Liermann and C. Stegmann (eds.), The Digital Journey of Banking and Insurance,
Volume II, https://doi.org/10.1007/978-3-030-78829-2_10

181

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78829-2_10&domain=pdf
https://orcid.org/0000-0001-9615-3076
https://hashcat.net/hashcat/
mailto:xb@quant-x-sec.com
https://doi.org/10.1007/978-3-030-78829-2_10


182 X. Bogomolec

Fig. 1 Math functions (© Quant-X Security & Coding GmbH)

hashing algorithms cannot be inverted. In mathematical terms, hash func-
tions are not even injective: there are an infinite number of inputs but only
2(hash length in bits) possible outputs. This basic condition makes a backward
map from hash value to input string impossible. The incredible security of
hash functions stems from the property of collision resistance: finding two
inputs with the same hash must be impractical, i.e. taking far too much time
to compute (Fig. 1).
The original password of a given password hash can only be recovered by

testing all possible passwords (the password keyspace during an attack) until
a match is found. The simplest approach to this is called brute force attack.
For the hashing and encryption algorithms currently used, this can take up to
billions of years, depending on available technologies and knowledge. Mask
attacks take advantage of how people can remember passwords easily. In the
worst case, such a password recovery only takes a few seconds.

3 Password Cracking

First, the attacker needs to gain access to the hash of a password. This
can happen, for example, through a malicious insider with administrator
rights or any kind of a data breach. Countless huge providers have been
affected by such breaches; Equifax is just one big name among them. The
so-called hashing “salt”, a random string which is added to the password to
be hashed, does not increase the security of the hashed password itself. It is
naturally stored with the password hash. Otherwise, the stored hash cannot
be compared to the hash of the password during a login process. Usually the
salt gets lost in a data breach together with the related password. The true
benefit of the salt is: even if a password is used via multiple platforms or by



High-Performance Applications 183

several users, its hash will look different in each provider’s database or in a
password hash list published by hackers.

Once the hash is known, the amount of possible password candidates
can often be reduced considerably with additional information, such as the
known maximum length and allowed characters of a password. Such informa-
tion can easily be found on user registration pages. Password hash lists from
data breaches usually contain the hashing algorithm, user name, the password
hash and the salt.

3.1 Attack Mechanisms

There are two main hash cracking patterns: brute force attacks and mask
attacks.

3.1.1 Brute Force Attack

A brute force attack consists of computing the hashes of all possible pass-
word candidates with the known salt and comparing them with the password
hash—until a match is found. Traditionally, this attack starts with all possible
1-character strings, then all possible 2-character strings and so on. For our
example, we chose SHA-2, a hashing algorithm which is still widely used for
password hashing.

If the password length n is not known and any possible 8-bit byte is
allowed as a character, the maximum number of iterations (hash function
calls followed by comparisons of the password candidate hash against the
original password hash) will be 28 + 216 + 224 + … + 28n for a pass-
word with n characters. This is the maximum because only as many of the
28n password candidates in the last term will have to be tested until the right
password candidate is found. Given the above situation, a brute force attack
on a password with 12 characters consists of

maximum 28 + 216 + 224 + · · · + 296 = 79, 538, 861, 190, 790, 864, 407, 636, 279, 552

minimum 28 + 216 + 224 + · · · + 288 = 310, 698, 676, 526, 526, 814, 092, 329, 312

iterations on password candidates. With a rate of 23,012 million hashes
per second for SHA-2 on an 8x Nvidia GTX 1080 processor, the attack
takes more than 109,601,979,097 years to complete in the worst case, and
about 428,132,730 years in the ideal case. The ideal case would be to find
the original password with the first of the 296 12-character iterations (Fig. 2).



184 X. Bogomolec

Fig. 2 Minimum iterations and required number of years (original screenshot) (©
Quant-X Security & Coding GmbH)

Hashcat offers automated and configurable brute force attacks. For
example, a restricted character set, minimum and maximum password candi-
date length can reduce the password candidate keyspace for an attack
considerably.

3.1.2 Mask Attacks

Mask attacks are more sophisticated. Here, the password candidate keyspace
is reduced considerably by applying a popular character pattern to all inputs.
An example of such a pattern is a name and year. Thus, we fix the last 4
characters as digits {0,.., 9} and all previous characters as upper or lowercase
letters {A, …, Z, a, …, z}. If the password length is 12, the necessary mask
attack iterations reduce to a maximum of 528 + 104 = 53,459,728,541,456
password candidates. With the same cracking rate of 23,012 million hashes
per second, it takes less than 40 minutes to find the original password of the
user (Fig. 3).

Fig. 3 Maximum iterations and required number of years for mask attack (original
screenshot) (© Quant-X Security & Coding GmbH)



High-Performance Applications 185

3.2 Benefit of Slow Hash Functions

The length of SHA-2 hashes is 256 bits, so each comparison of SHA-2
hashes equals the comparison of 256 bits. If you look at hashcat password
cracking speed lists on the internet (e.g. https://gist.github.com/epixoip/a83
d38f412b4737e99bbef804a270c40), you will find that the cracking of SHA-
2 hashes is only about three times slower than the cracking of SHA-1 hashes.
This fact holds in spite of the 2128 times higher cryptographical complexity
of SHA-2 over SHA-1 as functions. As a conclusion: SHA-2 hashed pass-
words are only about three times safer against brute force attacks with the
tool hashcat than SHA-1 hashed passwords—a difference of no concern to a
hacker.
The tool hashcat achieved such high performance by taking advantage of

two facts:

1. Bit arrays, an array data structure that compactly stores bits. This structure
is the basis for the bitmap tables, which are created specifically for each
attack.

2. Parallel computing of hashes on available GPU (graphical devices) or CPU
processing units.

Leveraging parallel computing depends on the algorithm. Some candidates do
not offer this possibility, e.g. the winner of the Password Hashing Competi-
tion in July 2015, Argon2. Argon2 offers three configurable versions suitable
for specific circumstances. One configuration parameter is the degree of paral-
lelism. Argon 2 is designed by Alex Biryukov, Daniel Dinu and Dmitry
Khovratovic from the University of Luxembourg.
The best protection against password cracking is to use slow hashing algo-

rithms. The hash cracking speed for bcrypt on an 8x Nvidia GTX 1080
processor, for example, is 105,700 hashes per second. The above mask attack
would take 16 years instead of 40 minutes if bcrypt was the chosen password
hashing algorithm.

4 Summary

Anyone who knows how to use the password cracking tool hashcat can
decrypt a poorly chosen password encrypted by a fast hashing algorithm, such
as the ones from the SHA family, on their own personal computer in quite
a short time. The price of an 8x Nvidia GTX 1080 processor on Amazon

https://gist.github.com/epixoip/a83d38f412b4737e99bbef804a270c40
https://gist.github.com/epixoip/a83d38f412b4737e99bbef804a270c40


186 X. Bogomolec

is currently around e300. Believing that you will never be affected by a
data breach is not a safe attitude anymore. Neither can the complexity of
the password requirements outpace the speed of evolving technologies. Slow
hashing algorithms for password storage are the right answer to ever-growing
cybercrime intelligence.


	High-Performance Applications
	1 Introduction
	2 Hash Functions
	3 Password Cracking
	3.1 Attack Mechanisms
	3.1.1 Brute Force Attack
	3.1.2 Mask Attacks

	3.2 Benefit of Slow Hash Functions

	4 Summary




