
Graph Databases

Krystyna Bajer, Anne Seidlitz, Sascha Steltgens,
and Bastian Wormuth

1 Introduction

One major challenge for companies today is to analyze their data and gain
knowledge and competitive advantage through understanding the relation-
ships, correlations, and connections between different kinds of data. Graph
databases are a powerful tool to find complex and dynamic relationships
in highly connected data. Connected data is data whose interpretation and
value require an understanding of the ways in which its elements are related
(Robinson et al. 2013). But what is a graph database? It is a database that uses
the graph structure and stores data as nodes, edges, and properties. Graph
databases are based on graph theory, which is a mathematical construct on
how to describe objects and the relationships between them (see Sect. 1.1).

In a relational database, entities are stored in tables and the relation-
ship between entities is realized by joining tables with common keys. When
representing many relationships, this representation can get complex and
rigid. Graphs are simpler, they consist of nodes (math.: vertices), which have
properties and labels. Nodes are connected by relationships (math.: edges),
which have a type, usually a direction, and can also have properties. Edges
represent an abstraction that is not directly implemented in a relational

K. Bajer (B) · A. Seidlitz · S. Steltgens · B. Wormuth
ifb SE, Grünwald, Germany
e-mail: Krystyna.Bajer@ifb-group.com

© The Author(s), under exclusive license to Springer Nature
Switzerland AG 2021
V. Liermann and C. Stegmann (eds.), The Digital Journey of Banking and Insurance,
Volume III, https://doi.org/10.1007/978-3-030-78821-6_3

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78821-6_3&domain=pdf
mailto:Krystyna.Bajer@ifb-group.com
https://doi.org/10.1007/978-3-030-78821-6_3


36 K. Bajer et al.

database. Consequently, a graph database has no rigid table structures and
is highly performant when querying complex relationships (Liermann and
Tieben 2021). However, no uniform language like SQL (Structured Query
Language) for relational databases exists to query data from a graph database.
A popular language is Cypher, which is used by the Neo4j graph database.
Typical providers and query languages are summarized in Table 1.

1.1 Mathematical Background

In the eighteenth century, Leonhard Euler introduced the basic idea of graph
theory by solving the famous “Königsberg bridges problem”, which subse-
quently led to the concept of an Eulerian graph (Wilson 2013). The city of
Königsberg is separated by the River Pregel. The two islands were connected
to each other and to the two mainland portions of the city by seven bridges.
Euler proved that there is no path through all parts of the city that would
cross each of those bridges once. This is a classic example of an optimization
problem in graph theory. Another one is the “travelling salesman problem”,
i.e., to complete a circuit of the shortest length in a graph. The first textbook
in this field was written by Dénes König in 1936 (König 1936).1

In graph theory, a simple graph G = (N , E) is an ordered pair N and
E .N is a set of nodes (math.: vertices) and E is a set of edges. An edge (n, n

′
)

joins the nodes n and n
′
. The nodes n and n

′
are end vertices of this edge and

are adjacent to one another.
The most popular graph model variant is the property graph, which is a

directed2 labeled multigraph where the edges are directed, nodes and edges
are labeled and can have properties, and there can be multiple edges between
any two nodes. Properties are key/value pairs that represent metadata for
nodes and edges (Fletcher et al. 2018). Figure 1 in Sect. 2.1 shows a data
model and an explicit database example.

A single-labeled directed multigraph can be described as a tuple G =
(N , E, L , δ, λN , λE), where N is a finite set of nodes, E is a finite set of
edges, and L is a finite set of labels. The edge function δ : E → N 2 asso-
ciates edges with pairs of nodes, λN : N → L is the node labeling function
and λE : E → L is the edge labeling function. An edge (x, y) ∈ E(G)

is represented as a triple (v,w, v
′
), where v = λN (n), w = λE(e), and

v
′ = λN (n

′
) (Fletcher et al. 2018). A path ρ in a graph G is defined as a

sequence of edges (v0, w0, v1), (v1, w1, v2), . . . , (vm−1, wm−1, vm), where

1 For an English translation see König and Tutte, Theory of Finite and Infinite Graphs (2013).
2 In a directed graph, the edges connecting two different nodes have different meanings, depending
on their direction. In an undirected graph, an edge connecting two nodes has a single meaning.



Graph Databases 37

Ta
b
le

1
Li
st

o
f
g
ra
p
h
d
at
ab

as
e
te
ch

n
o
lo
g
y
p
ro

vi
d
er
s
(©

if
b
SE

)

C
o
m
p
an

y
Pr
o
d
u
ct

Li
ce

n
se

Q
u
er
y
la
n
g
u
ag

e
U
R
L

N
eo

4j
N
eo

4j
C
o
m
m
u
n
it
y
Ed

it
io
n

is
G
PL

v3
,

co
m
m
er
ci
al
,
an

d
A
G
PL

v3
o
p
ti
o
n
s

fo
r
en

te
rp

ri
se

an
d

ad
va

n
ce

d
ed

it
io
n
s

C
yp

h
er

w
w
w
.n
eo

4j
.c
o
m

A
ra
n
g
o
D
B

A
ra
n
g
o
D
B

Fr
ee

A
p
ac
h
e
2,

Pr
o
p
ri
et
ar
y

A
Q
L

w
w
w
.a
ra
n
g
o
d
b
.c
o
m

O
ri
en

tD
B

O
ri
en

tD
B

C
o
m
m
u
n
it
y
Ed

it
io
n

is
A
p
ac

h
e
2,

En
te
rp

ri
se

Ed
it
io
n

is
co

m
m
er
ci
al

SQ
L-
lik

e
w
w
w
.o
ri
en

td
b
.c
o
m

M
ic
ro

so
ft

M
ic
ro

so
ft

A
zu

re
C
o
sm

o
s
D
B

C
o
m
m
er
ci
al

SQ
L-
lik

e
h
tt
p
://
az

u
re
.m

ic
ro

so
ft
.c
o
m
/-
se
rv
ic
es
/-
co

sm
o
s-
d
b

A
m
az

o
n

A
m
az

o
n

N
ep

tu
n
e

C
o
m
m
er
ci
al

G
re
m
lin

,
SP

A
R
Q
L

h
tt
p
://
aw

s.
am

az
o
n
.c
o
m
/n
ep

tu
n
e

IB
M

IB
M

G
ra
p
h

C
o
m
m
er
ci
al

SP
A
R
Q
L

h
tt
p
s:
//w

w
w
.ib

m
.c
o
m
/u
k-
en

/m
ar
ke

tp
la
ce

/g
ra
p
h

SA
P

SA
P
H
A
N
A

C
o
m
m
er
ci
al

O
p
en

C
yp

h
er

w
w
w
.s
ap

.c
o
m

O
ra
cl
e

O
ra
cl
e
Sp

at
ia
l

an
d
G
ra
p
h

Pr
o
p
ri
et
ar
y

PG
Q
L

h
tt
p
s:
//w

w
w
.o
ra
cl
e.
co

m
/

http://www.neo4j.com
http://www.arangodb.com
http://www.orientdb.com
http://www.azure.microsoft.com/-services/-cosmos-db
http://aws.amazon.com/neptune
https://www.ibm.com/uk-en/marketplace/graph
http://www.sap.com
https://www.oracle.com/


38 K. Bajer et al.

Skill Skill Skill

Employee
id: 00123

tle: IFRS 17
client: insurer

has has

Employee
id: 00456

Employee
id: 00789

tle: BCBS 239
client: bank

ProjectProject

id: 124
type: DWH

id: 126
type: SQL

id: 125
type: banking

has

worked

tle:
client:

Project

Skill
id:

type:

id:
Employee

BA

label
proper es

Node 

Edge

direc on
type

Fig. 1 Graph database model and example database (© ifb SE)

v0 is the start node and vm is the end note of the path. The label of ρ is the
sequence of labels w1, w2, . . . , wm−1.

1.2 Graph Databases in Financial Services

Enterprises inside and outside of the financial sector want to analyze their
data in an efficient way to gain the most possible knowledge and benefits.
When the interesting information is in the relationship or connection in
between data, for example, finding patterns indicating fraud, graph databases,
and algorithms are an efficient tool for data analysis.

One prominent example is anti-money laundering. It is possible to model
various entities involved, e.g., clients, accounts, transactions, and the relation-
ship between these entities as a graph. By tracking how and where money
is moving you can find patterns and detect money laundering behaviors.
Section 4.1 discusses the “Panama Papers” as a special use case for detecting
financial fraud in more detail.

Financial assets are very complex and substantial risks arising from mutual
dependencies might be hidden, as the financial crisis in 2008 showed. To
improve risk management, asset graphs can help to gain a better under-
standing of the relationships between assets and hence a clearer view of risks.
They can also be used for real-time pricing of derivatives by considering the
interdependencies among different assets, and therefore accurately reflect the
risk and reward ratios (neo4j 2017).



Graph Databases 39

A less obvious application for graph databases in the financial services
sector is to handle information management with the help of a metadata
graph. Data lineage and data flows are modeled as a graph for regulatory
compliance and a complete picture of data and systems across the orga-
nization. It is possible to apply graphs for network and IT infrastructure
monitoring to identify dependencies enabling network planning and impact
and root cause analysis.

Other business areas where graph databases are already being used are
master data management, identity and access management, and cybersecurity
(Mathur 2020).

2 Technical Implementation

2.1 Data Model

Graph databases serve a large variety of purposes. In relational databases,
which are the majority of databases not only in the financial sector, data is
stored in normalized tables with columns and rows. Storing data in tables is
viable for most types of data (especially data that is supposed to be aggregated
or used to calculate KPIs) but may not be appropriate for other types of data
occurring in the financial sector. If the data’s main purpose is to be analyzed
by its inherent connections, graph databases are the best choice. Whereas rela-
tional databases become inconvenient and slow if they are queried over a lot
of database objects. Graph databases are built to support queries that span
many database objects.

Nodes and edges have characteristics depending on the data model and
information they are supposed to provide. The data model in Fig. 1A offers
an impression of how data could be organized in a graph. In this case, the
model defines characteristics for each database instance (nodes, edges). Nodes
can have properties (key–value pairs) like IDs, a title, a type, other numeric
values, etc., whereas edges have a type, a label, or any other numeric attribute3

and also a direction.
Figure 1B shows a graph database of three employees (based on the data

model in Fig. 1A), their skills, and the projects they worked in (nodes) as well
as the employees’ relationships (edges) to each type of node. It is imperative to
the graph data which type of edges the data model allows. This example graph
does not give any information about the relationships the nodes with type

3 This refers to a weighted graph, where an edge can be weighted to qualify its weight or strength,
e.g., cost, length, distance.



40 K. Bajer et al.

“Human” have with each other; those nodes are only indirectly connected.
In order to display the relationships between the nodes of type “Human”, it
would be possible to add the edge of type “Colleague” to the data model,
which would connect all three nodes of type “Human”. A new type of node
called “Employer” and a new edge of type “is employed” would, however,
add more value than just the edge of type “Colleague”. This is because the
information “Employer” and “is employed” implies that all three nodes of
type “Human” are colleagues, since they are employed at the same firm. But
this new node and this new edge would additionally provide information
about the employer.

A graph data model also carries information about the number of edges
a single node of a particular type can have. In our example (Fig. 1B), the
nodes of type “Human” can have multiple edges to nodes of type “Skill” and
type “Project”, but these cannot have any edge to any other type of nodes. If
a “Project” node could have an edge to the “Human” type node, the graph
database would increase in informational value, but it may lose its focus.

Obviously, the data model of any database is crucial for its value and
purpose but in our example, the graph data model distinguishes a human-
to-human relationship database from a skill- and experience-driven database.
Hence, the data model of a graph database is imperative to its use case and
small tweaks of the data model may add a disproportionate increase in infor-
mation. This is because, in connected data, the nodes, whatever they may
represent, are of less interest than the edges connecting the nodes. It is the
edges that provide the interesting information. However, the bottom line is
that, graph databases are a flexible storage technique for data that is highly
connected and difficult to store in a relational model.

2.2 Storage

How graph databases are stored depends on the service provider. In general, a
distinction is made between native and non-native storage of graph data. In a
graph database where storage is native, each node and each edge are indi-
vidual entities, somewhat comparable to object-oriented programming. In
non-native storage graph databases, the data is stored in tables, introducing
another layer of complexity to the interactions between database manage-
ment system, database, and storage. Further, NoSQL storage types of graph
databases include key–value storage or document-oriented databases. On a
side note, most graph database providers utilize the ACID (atomicity, consis-
tency, isolation, durability) set of properties for their database transactions.
This ensures data validity despite errors, power failures, and other calamities.



Graph Databases 41

2.3 Providers

The industry leader for graph databases is Neo4j (DB-Engines 2020), but
Neo4j is most certainly not the only graph database technology provider. The
company’s competitors include Microsoft, Amazon, IBM, SAP, and Oracle,
but also smaller firms like ArangoDB, OrientDB, Virtuoso, etc. Table 1 gives
an overview of some of the technology providers.

2.4 Visualization of Graph Data

Unsurprisingly, visualization of graph data depends on the use case. A
popular example is any navigation software, where information about the
route to take is visualized on a map rather than presented as a table. To
display graph data on a map leaflet.js (www.leafletjs.com) provides an open-
source JavaScript library. Data representation on a map to visualize a route
is obviously intuitive, as is the graphical display of nodes and edges corre-
sponding to human interactions with anything. With these graphical views
of graph data, it is easy to find highly connected nodes, recognize patterns,
abnormalities, or other areas of interest. Providers like cytoscape.js (js.cyt
oscape.org), d3.js (d3js.org), neovis.js (for Neo4j graph databases only), and
others offer software for graphical illustration of graph databases. Since a
graph database can store any type of data, there are tools for visualizing graph
data as charts, e.g., amCharts (amcharts.com), Chart.js (chartjs.org), and
Tableau (tableau.com). Graph databases are also accessible with popular tools
like R or Python. For R, Neo4j provides a package called neo4r including
an API to access the Neo4j GraphDB with R. Several other packages help
with visualization (e.g., visNetwork) of the data, making R a powerful and
fully customizable tool to work with graph data in not only financial data
science. For more information, please refer to (Liermann and Tieben 2021).
Implementations for Python include NetworkX, a Python language software
package for the creation, manipulation, and study of the structure, dynamics,
and functions of complex networks (Klein 2020).

All of the above mentioned tools offer a large variety of options to display
graph data. However, everything depends on the use case. As an example,
with tools like Tableau, it is possible to display financial fraud data by
country/state (Barrasa 2016). Visualizing the data as such would allow exec-
utives to easily adjust products to locally higher financial risk. Displaying any
travel-related number is not a challenge either, but visualization of queries
with complex results becomes incomprehensible as a graphical view. Meaning
that as soon as there are many nodes and edges to be displayed, a graphical

http://www.leafletjs.com
http://js.cytoscape.org
http://d3js.org
http://amcharts.com
http://chartjs.org
http://tableau.com


42 K. Bajer et al.

view might be useful for developers or analysts but might not be the represen-
tation of choice for executives. Graph data analysisis therefore a double-edged
sword: graph databases are fast and enable the user to find connections
between nodes that are complex to find but visualizing these query results
remains a challenge.

2.5 User-Friendly Approach to Graph Databases

For customers that do want to set up a graph database but do not want to
start from scratch or with an empty, ETL tool-like feeling, vendors such as
Structr (Structr GmbH 2020) provide a graph database framework to effort-
lessly get started with graph databases. Such tools deliver a codeless approach
understandable for everyone to graph data modeling as well as data analysis
with graphs.

3 Analysis of Graph Databases

The analysis of simple graph databases can be carried out with the help
of queries or with algorithms for complex graph databases. Graph query
languages serve this purpose. In this section, different queries are presented,
which can be grouped into adjacency, pattern matching, reachability, and
analytical queries. In the analytical queries, algorithms are discussed in more
detail, whereby three selected algorithms are presented. In the last section, a
selection of graph query languages are introduced with a description and a
note of which graph model they are applied to.

Adjacency Queries
The adjacent query refers to both edges and nodes. For example, in case of
an edge between two nodes, these two nodes are adjacent. Equally, if two
edges have a common node, these edges are adjacent. Frequently asked and
investigated subjects would be whether node v is the neighbor of node v

′
or

who is the adjacent node to node v. Although these queries seem simple at
first glance, they can be a challenge for sparse graphs.
To be able to define more complex neighborhood queries, the adjacency

term can be extended (for more information Fletcher et al. [2018]).
For the adjacent query, it is possible to use an adjacency matrix. This

matrix reflects relationships between the individual nodes. Each node has
one row and one column, with n nodes a n × n matrix is created. In a



Graph Databases 43

simple graph, without edge weights and multiple edges, this matrix is a (0,1)-
matrix with zeros on its diagonal. Due to the fact that this problem can be
represented as a matrix, it is possible to apply methods of linear algebra.

Adjacency queries are particularly important in issues of influence. They
are used to find individuals with similar interests (recommendation systems)
or to obtain information. The adjacency matrix may further be used to
calculate the path length in graphs. For example, assume a directed graph
G = (V, E) without edge weights or multiple edges with an adjacency
matrix A. Then, the path length between node i and node j , which contains
k edges, can be calculated by the power of the adjacency matrix Ak . Using
Ak , it can be determined in row i and column j how many paths meet the
requirement (Wikipedia 2020).

Pattern Matching Queries
This query searches a graph database for the set of all subgraphs that match
a specific graph pattern. A simple example of such a searched graph pattern
would be a small graph in which the edges and nodes are labeled by variables.
The variables indicate unknown data and define the output of the query. In
other words, values are assigned to these variables at the end of the query. An
example would be the search for the colleagues ?x , ?y of M1, who are also
colleagues (Fletcher et al. 2018).

(M1, colleague, ?x), (M1, colleague, ?y), (?x, colleague, ?y)

where ?x and ?y are variables.
Pattern matching is used in areas such as within the pattern recognition

field, to identify communities and social positions in social networks and in
protein interaction networks.

Reachability Queries
The task of this query is to evaluate whether given nodes are connected by
paths. They are also modeled as path or traversal problems in connection with
graph databases, which allow restrictions by nodes and edges.
The areas in which the reachability queries are used range from social

networks, discovering people with common interests, to biochemistry, to find
specific biochemical paths between distant nodes. They are also used as a basis
for the shortest path analysis.

Analytical Queries
Analytical queries measure quantitatively and usually in aggregated form
topological features of the graph’s database. They are supported either by
ad hoc functions that hide complex algorithms or by special operators.
Simple analytical queries include, for example, aggregate operators of query



44 K. Bajer et al.

languages, such as i and max .These can be used to determine the number of
nodes, the number of neighbors of a node (degree of a node), the length of a
path, or the shortest path between two nodes. Algorithms are used for more
complex analytical queries. In the following, a selection of such algorithms is
presented (for more examples see (Hunger and Augsten 2020).

• Shortest Path calculates the shortest path of a node and all other nodes
in a graph. Another name for the Shortest Path algorithm is the Dijkstra
algorithm. It received this name from its developer, the Dutch computer
scientist Edsger Dijkstra. This algorithm is used among others in Google
Maps. In general, cities represent nodes and edges represent the road
network. The edges of such a graph can also distinguish between motorway
roads, country roads, and roads with toll costs. Thus, not only the shortest
route but also the fastest or most cost-effective route can be determined.

• PageRank measures the importance of nodes in a graph. The importance
of a node is measured by how many indirect and direct relationships point
to a node. The more relations a node has, the higher its weight and the
greater its effect. Google is famous for this algorithm. There, the search
results are sorted according to their accumulated importance. Another
example of the use of the PageRank algorithm can be found on Twitter
and in biology to predict chain reactions within an ecological system.

• Betweenness Centrality is similar to the Shortest Path algorithm. It
measures the number of shortest paths in a graph that run from a node. If
a node is most often on the shortest paths, it forms a bridge between clus-
ters and has a higher centrality value. Such nodes have a high influence on
the information flow in a graph. This algorithm is mainly used for network
analysis and fraud detection.

Many providers such as Neo4j, Orient, and Palantir offer tools for various
applications, which take over the task of graph analysis. Neo4j has, for
example, developed a tool (Privacy shield) which complies with the require-
ments of the European Union General Data Protection Regulation or a tool
(Fraud Detection) for banks, insurance companies, and e-commerce to detect
fraud (Sadowski and Rathle 2015).

3.1 Graph Query Languages

In comparison to relational databases, graph databases do not have a uniform
language. This is because graph databases have no predefined standard.
Over time, different query languages for different databases have developed
(Fletcher et al. 2018).



Graph Databases 45

Data query languages can be separated into the following groups:
languages for edge-labeled graphs, languages for hypergraphs, languages for
nested graphs, languages for property graphs, and RDF query language.
The most commonly used is Cypher, which is the query language of Neo4j

and belongs to the category of property graphs. The easiest query in Cypher
involves an expression with a clause START, MATCH, and RETURN, which
can be used as follows:

START x=node:Employee(name=”Name”)
MATCH (x)-[:colleague]->(y)
RETURN y.name

In the example above, the name of a colleague of x is sought. The START
command defines the node of the graph that is the start point. Match is
used to find the pattern and RETURN specifies what the query should deliver.
Further, Cypher can calculate paths from node (a) to node(b). In the
following example, only outgoing edges are recognized and the solution is
stored in the path variable p.

p=(a)-[:knows*]->(b)

In addition, Cypher can compute specific operations on nodes, edges,
attributes, and paths using built-in functions. In the example above, the
shortest way from node (a) to (b) could be determined by the function
shortest Path(p). For more information about Cypher, please refer to
(Liermann and Tieben 2021).
Table 2 contains additional graph query languageswith a description and

grouping.

4 Business Use Cases

While Sect. 1.2 gave a rough overview of use cases for graph databases in
the financial sector, this section focuses on the description of three explicit
business use cases.



46 K. Bajer et al.

Table 2 Additional graph query languages with a description and grouping (© ifb
SE)

Language Description Group

Gremlin Open source-based query
language for various graph
databases (Neo4j, OrientDB, or
DEX)

Languages for property graphs

SPARQL W3C specified query language for
RDF data models

RDF query languages

Blueprints One of the first libraries created
for the property graphs usable
for different graph databases

Languages for property graphs

GraphQL SQL-like query language Languages for property graphs
Rexster Multi-supported HTTP/REST

interface for querying graph
databases over the Internet

4.1 Fraud Detection—Panama Papers

In 2016, the International Consortium of Investigative Journalists (ICIJ)
exposed a highly connected network of illicit offshore bank accounts by
analyzing a data leak of 2.6 terabytes consisting of 11.5 million leaked files
from the Panamanian law firm Mossack Fonseca.
They used a graph database consisting of 840,000 nodes and 1.3 million

relationships. The graph contains key entities such as “Company”, “Client”,
“Intermediary”, “Address”, and “Officer” to reveal connections between these
nodes. All these entities have a lot of properties, such as document numbers,
share amounts, source ID, addresses, and citizenship. These entities have
specific relationships, for example, an officer is the “director of” or “share-
holder of” a company or has “similar name and address as” the intermediary.
In this way, you can find suspicious relationships, such as companies that
control other companies in the same country through a company in an
offshore zone. An example is “Regula Limited”, an offshore legal entity regis-
tered in the Bahamas and the British Virgin Islands which was a subsidiary
of Deutsche Bank. By querying the node(s) “Regula Limited” and all the
companies it is connected to, you can see that this entity serves as an officer
of several other offshore legal entities, and also served as the “intermediary”
for several offshore entities.

By analyzing the connections between the nodes, ICIJ revealed that
roughly 500 banks had registered nearly 16,000 shell companies for Mossack
Fonseca clients. The British banking giant HSBC and its subsidiaries alone
account for more than 2300 of the companies (Woodman 2016).



Graph Databases 47

4.2 Lufthansa—In-Flight Entertainment System
Management

An unexpected use of graph databases is applied by Lufthansa’s in-flight
entertainment management system (see Wilmes 2013 for more information).
In order to provide customers with in-flight entertainment, a plane carries
storage and broadcast units. To update the entertainment content, a switch
of storage devices (HDDs or SDDs) is necessary. How can storage devices,
the planes carrying them as well as the planes’ current location be quickly
identified in order to prevent a movie from being shown to customers? Or
how can movies be controlled if all necessary licenses for a freshly installed
movie are present? For this task, Lufthansa chose a graph database to manage
its in-flight digital assets and its licenses and build a dashboard for the ground
personnel to quickly identify and replace a storage device while any plane is
at an airport.

4.3 Navigation Systems

Navigation systems, such as Google Maps and many more, use different algo-
rithms to guide from a starting point to an end point in the best possible way.
Among others, the shortest path algorithm is used, like the Dijkstra algorithm
(see Sect. 3) and variants of it. This segment shows how a navigation system
works using the Dijkstra algorithm. Assuming that a city is referred to in this
example, nodes are intersections and edges are roads. At the nodes are the
points where you can choose a path (edge). It is important to note that not
all edges are the same. When deciding which road to use, you choose the
one that will lead you to your destination first. Several factors are considered
in this decision, such as traffic lights, the size of the road, traffic volume,
speed limits, and so on. To illustrate this in the graph, weights are assigned to
the edges, which reflects the estimated travel time of this section. If the edge
between node X and node Y is described with the number 4, the estimated
distance between X and Y on this path takes four minutes. With the help
of the Dijkstra algorithm the “minimum distance” is determined. Meaning
that if a start and end point is given with weighted edges in the graph, the
sum of the weights, in other words the travel time, is minimized, which is the
time between start and end point (Moussa 2020; Sanders et al. 2007; Crovari
2019).
The algorithm works as follows. Each node has assigned “costs”. This cost

is the value of the minimum path to reach this node. Before the algorithm
starts, each node has an infinite cost, as no path has been found to reach this



48 K. Bajer et al.

node yet. The start node has the cost of zero; as you are already at the start
there are no costs to get there. Furthermore, the algorithm has a list of all
possible nodes through which the end point can be reached. The algorithm
now repeats a certain process, first the one with the lowest cost is extracted
from the list of nodes to be visited. The nodes that have not yet been visited
but are also accessible are assigned costs. If the cost of this node is lower, the
cost of the “cheaper” node is selected, otherwise the cost of the first node is
kept. The visited node is marked as visited and the process starts from scratch
until the destination is reached. Mathematically, it has been shown that the
Dijkstra algorithm always finds the shortest route, including navigating over
roads that would otherwise never have been considered. Information such as
the traffic situation and traffic jams can be included in the calculation by
adjusting the weights.4

5 Summary

We observe not only the establishment of specific software and consulting
companies for graph technologies as relevant contributors to the IT land-
scape, but also major software players like IBM, SAP, and Oracle adding
graph technologies to their standard portfolio. The constantly growing
amount of information, often highly connected data from social networks
or similar, increases the demand for tools to support the efficient storage and
analysis of such data sets. Therefore, graph technologies are here to stay and
will remain an important piece of equipment for the modern data scientist.

Literature

Barrasa, Jesús. 2016. Graph DB +Data Virtualization =Live Dashboard for Fraud
Analysis, November 30. Accessed November 5, 2020. https://jbarrasa.com/2016/
11/30/graph-db-data-virtualization-live-dashboard-for-fraud-analysis/.

Crovari, Pietro. 2019. GOOGLE MAPS AND GRAPH THEORY. Impactscool
Magazine, May 20. Accessed November 9, 2020. https://magazine.impactscool.
com/en/speciali/google-maps-e-la-teoria-dei-grafi/.

DB-Engines. 2020. Ranking. solid IT gmbh. Accessed November 6, 2020. https://
db-engines.com/en/ranking.

4 Example of Dijkstra algorithm: https://www.youtube.com/watch?v=UG7VmPWkJmA&feature=
youtu.be&t=33.

https://jbarrasa.com/2016/11/30/graph-db-data-virtualization-live-dashboard-for-fraud-analysis/
https://magazine.impactscool.com/en/speciali/google-maps-e-la-teoria-dei-grafi/
https://db-engines.com/en/ranking
https://www.youtube.com/watch%3Fv%3DUG7VmPWkJmA%26feature%3Dyoutu.be%26t%3D33


Graph Databases 49

Fletcher, George, Jan Hidders, and Josep Lluis Larriba-Pey. 2018. Graph Data
Management. Springer.

Hunger, Michael, and Stephan Augsten. 2020. Graph-Analytik. Dev Insider,
September 21. Accessed November 6, 2020. https://www.dev-insider.de/5-wic
htige-graph-algorithmen-im-ueberblick-a-963343/.

Klein, Bernd. 2020. Python Course. Accessed December 4, 2020. https://www.pyt
hon-course.eu/networkx.php.

König, Dénes. 1936. Theorie Der Endlichen und Unendlichen Graphen: Kombina-
torische Topologie Der Streckenkomplexe. Chelsea.

König, Dénes, and W. T. Tutte. 2013.Theory of Finite and Infinite Graphs.Translated
by Richard McCoart. Springer Science & Business Media.

Liermann, Volker, and Marian Tieben. 2021. “Use Case—NFR—Using GraphDB
for Impact Graphs.” In The Digital Journey of Banking and Insurance, Volume
II—Digitalization and Machine Learning , edited by Volker Liermann and Claus
Stegmann. New York: Palgrave Macmillan.

Mathur, Nav. 2020. “Graph Technology for Financial Services.” neo4j. Accessed
November 12, 2020. https://neo4j.com/whitepapers/financial-services-neo4j/.

Moussa, Ramy. 2020. How Google Maps Work: Fast Route Planning , February 15.
Accessed November 11, 2020. https://algorithmyou.com/2020/02/15/artificial-
intelligence/how-google-maps-work-fast-route-planning/.

neo4j. 2017. neo4j, May 24. Accessed November 11, 2020. https://neo4j.com/blog/
financial-services-neo4j-financial-asset-graphs/.

Robinson, Ian, Jim Webber, and Emil Eifrem. 2013. Graph Databases. O’Reilly
Media, Inc.

Sadowski, Gorka, and Philip Rathle. 2015. Fraud Detection Discovering Connections
with Graph Database Technology. Neo4J, January. Accessed December 16, 2020.
https://neo4j.com/whitepapers/white-paper-fraud-detection/.

Sanders, Peter, Schultes, and Dominik. 2007. “Engineering Fast Route Plan-
ning Algorithms.” algo2.iti.kit.edu. Springer-Verlag Berlin Heidelberg. Accessed
December 17, 2020. http://algo2.iti.kit.edu/documents/routeplanning/weaOve
rview.pdf.

Structr GmbH. 2020. Structr. Accessed December 15, 2020. www.structr.com.
Wikipedia. 2020. “Adjazenzmatrix.” Wikipedia, June 10. Accessed November 4,

2020. https://de.wikipedia.org/wiki/Adjazenzmatrix.
Wilmes, Michael. 2013. “Slideshare.” slideshare.net. Accessed November 7,

2020. https://de.slideshare.net/neo4j/inflight-asset-management-with-neo4j-mic
hael-wilmes-graphconnect-london-2013.

Wilson, Robin J. 2013. “History of Graph Theory.” In Handbook of Graph Theory,
edited by Jonathan L. Gross, Jay Yellen and Ping Zhang. CRC Press.

Woodman, Spencer. 2016. Global Banks Team with Law Firms to Help the Wealthy
Hide Assets. Accessed November 9, 2020. https://www.icij.org/investigations/pan
ama-papers/20160404-banks-lawyers-hide-assets/.

https://www.dev-insider.de/5-wichtige-graph-algorithmen-im-ueberblick-a-963343/
https://www.python-course.eu/networkx.php
https://neo4j.com/whitepapers/financial-services-neo4j/
https://algorithmyou.com/2020/02/15/artificial-intelligence/how-google-maps-work-fast-route-planning/
https://neo4j.com/blog/financial-services-neo4j-financial-asset-graphs/
https://neo4j.com/whitepapers/white-paper-fraud-detection/
http://algo2.iti.kit.edu/documents/routeplanning/weaOverview.pdf
http://www.structr.com
https://de.wikipedia.org/wiki/Adjazenzmatrix
https://de.slideshare.net/neo4j/inflight-asset-management-with-neo4j-michael-wilmes-graphconnect-london-2013
https://www.icij.org/investigations/panama-papers/20160404-banks-lawyers-hide-assets/

	Graph Databases
	1 Introduction
	1.1 Mathematical Background
	1.2 Graph Databases in Financial Services

	2 Technical Implementation
	2.1 Data Model
	2.2 Storage
	2.3 Providers
	2.4 Visualization of Graph Data
	2.5 User-Friendly Approach to Graph Databases

	3 Analysis of Graph Databases
	3.1 Graph Query Languages

	4 Business Use Cases
	4.1 Fraud Detection—Panama Papers
	4.2 Lufthansa—In-Flight Entertainment System Management
	4.3 Navigation Systems

	5 Summary
	Literature


