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Abstract. Multiparty multiobjective optimization problems (MPM
OPs) are a type of multiobjective optimization problems (MOPs), where
multiple decision makers are involved, different decision makers have dif-
ferent objectives to optimize, and at least one decision maker has more
than one objective. Although evolutionary multiobjective optimization
has been studied for many years in the evolutionary computation field,
evolutionary multiparty multiobjective optimization has not been paid
much attention. To address the MPMOPs, the algorithm based on a
multiobjective evolutionary algorithm is proposed in this paper, where
the non-dominated levels from multiple parties are regarded as multiple
objectives to sort the candidates in the population. Experiments on the
benchmark that have common Pareto optimal solutions are conducted
in this paper, and experimental results demonstrate that the proposed
algorithm has a competitive performance.

Keywords: Multiobjective optimization · Evolutionary computation ·
Multiparty multiobjective optimization

1 Introduction

In the real world, there are a lot of optimization problems which have more than
one objective, and these objectives are conflicted with each other. This type of
optimization problems is called multiobjective optimization problems (MOPs)
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[1,4,11] for two or three objectives and many-objective optimization problems
(MaOPs) [6] for more than three objectives.

Multiobjective evolutionary algorithms (MOEAs) have been studied for
many years, such as NSGA-II [2], MOEA/D [16], SPEA2 [20] and Two Arch2
[14]. MOEAs could find a set of optimal solutions in a run, which attracts
many researchers to design efficient evolutionary algorithms for solving MOPs
[12,13,19].

However, there are cases that there are multiple decision makers (DMs) and
each decision maker only pays attention to some of all the objectives of MOPs.
If MOEAs only search for the optimal solutions on some certain objectives for a
DM, it may lead to deterioration of other objectives concerned by other DMs. If
existing MOEAs are directly used to solve the MOP including all the objectives
from all parties, they may result in too many Pareto optimal solutions for the
MOP, but not Pareto optimal solutions for each DM’s objectives.

Multiparty multiobjective optimization problems (MPMOPs) are used to
express the above situation. An MPMOP often has multiple parties, and at
least one party has more than one objective. MPMOPs are viewed as a sub-
field of multiobjective optimization problems in the viewpoints of different DMs,
respectively. Although MPMOPs are regarded as multiple MOPs, they are quite
different in most circumstances so that MPMOPs cannot be directly solved by
the original MOEAs. That is because each DM does not consider all objectives
in MPMOPs, but a few objectives which he/she cares.

A common method to solve MPMOPs is that the final optimal solutions are
obtained by the complex negotiation of a third party among the Pareto optimal
solutions from each party [7,8,15]. Recently, in [9], Liu et al. first proposed a
method without negotiations to address a special class of MPMOPs with the
common Pareto optimal solutions, called OptMPNDS. MPMOPs with the com-
mon Pareto optimal solutions means that there exits at least one solution that
is Pareto optimal for all parties. In other words, the intersection of Pareto opti-
mal solutions of MOPs in viewpoint of multiple DMs is not empty. OptMPNDS
defines the dominance relation of solutions based on the corresponding Pareto
optimal levels of multiple parties, where the levels are obtained according to the
non-dominated sorting in NSGA-II [2]. In each generation, after sorting individ-
uals by objectives preferred by each party, the common solutions with the same
level of all parties are assigned to the same rank. Then, the rank of the rest indi-
viduals are set to the maximum level obtained by all parties. However, it cannot
perfectly handle the situation that the individuals have the same maximum level
with different other levels.

In this paper, we propose an improved evolutionary algorithm to solve the
MPMOPs, called OptMPNDS2. Similar to OptMPNDS, OptMPNDS2 is also
based on NSGA-II. However, OptMPNDS2 overcomes the shortcoming men-
tioned above. Experiments on the benchmark in [9] are conducted in this paper.
From the experimental results, it can be seen that OptMPNDS2 has a more
powerful performance on some MPMOPs.
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The rest of this paper is organized as follows. Section 2 gives the related
work. Section 3 clearly explains the proposed algorithm and Sect. 4 describes the
performance metrics and shows the experiment results. Finally, we make a brief
conclusion in Sect. 5.

2 Related Work

2.1 Multiparty Multiobjective Optimization Problems (MPMOPs)

An MPMOP is a particular class of multiobjective optimization problems
(MOPs). MOPs are a type of optimization problems which have at least two
objectives. Because MPMOPs are based on MOPs, the related concepts of MOPs
are described first. Here, for convenience, an MOP is defined as a minimization
problem [5]:

Minimize F (x) = (f1(x), f2(x), . . . , fm(x)),

Subject to

⎧
⎪⎨

⎪⎩

hi(x) = 0, i = 1, . . . , np

gj(x) ≤ 0, j = 1, . . . , nq

x ∈ [xmin, xmax]d

, (1)

where fi denotes the i-th objective function and F , combined with m objec-
tives, denotes the vector function of objectives which should be minimized. And
hi(x) = 0 represents the i-th equality constraint, of which total number is np;
gj(x) ≤ 0 represents the j-th inequality constraint, of which total number is nq.
x, a d-dimensional vector, stands for the decision variables that have the lower
bounds xmin and upper bounds xmax in each dimension.

Dominance is a relation about decision vectors [19]. Given two decision vec-
tors x and y, under the condition that all objectives satisfy f(x) ≤ f(y), if there
exists one objective fi satisfying fi(x) < fi(y), it is said that x Pareto dominates
y, denoting as x ≺ y [10]. Pareto optimal set (PS) is a set of Pareto optimal solu-
tions. A decision vector x belongs to PS if and only if no solution dominates x.
Pareto optimal front (PF) is a set of objectives of decision vectors in Pareto opti-
mal set, which is formally defined as PF = {f = (f1(x), f2(x), · · · , fn(x))|x ∈
PS}.

There are multiple DMs in an MPMOP, where each DM focuses on differ-
ent objectives and at least one DM has at least two objectives. Different from
Formula (1), where fi(x) denotes one objective of the solution x, MPMOPs con-
sider that fi(x) is a vector function, which represents all objectives of one party.
Specifically,

fi(x) = (fi1(x), fi2(x), . . . , fiji(x)),

and ji denotes the number of objectives of the i-th party. Then m becomes the
number of the parties.
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As shown in [9], during evolution, to compare two individuals in MPMOPs,
the comparison of all objectives together is not well performed. This is because
one DM only focusses on the objectives concerned by himself. Therefore, the
individuals are assigned the max levels among the Pareto optimal levels obtained
by all parties to compare with each other in [9].

2.2 NSGA-II

Non-dominated sorting genetic algorithm II (NSGA-II) [2] is a popular evolu-
tionary algorithm to solve MOPs. There are two core strategies in NSGA-II, i.e.,
the fast non-dominated sorting and the calculation of crowding distance. The
fast non-dominated sorting adopts the Pareto dominance relation to rapidly
achieve the Pareto levels of all the individuals in the evolutionary population.
The crowding distance describes the distribution of the individuals. If the crowd-
ing distance is large, it means that the individual locates at a region with a few
individuals; while it is small, the individual is in a dense region.

In each generation of NSGA-II, the process is shown as follows. First, the
crossover and mutation operators are adopted to generate offspring. Next, the
parent and offspring are put together to sort the Pareto levels. Then, the crowd-
ing distances of the individuals in the same level are obtained. Finally, based on
the Pareto levels and crowding distances, the population of next generation is
selected from the parent population and the offspring population.

3 The Proposed Algorithm

In this section, the algorithm based on NSGA-II is proposed to solve MPMOPs.
Different from traditional MOPs, in MPMOPs, we should maximize the profits
of each party. That is, we should try to approach to the Pareto front of each
party. In order to achieve this goal, we should optimize the objectives from each
party simultaneously, but group them according to each party.

The core issue is how to evaluate a given individual. For a DM, the Pareto
optimal level number Li of the party i could be regarded as an objective value
for each individual. Therefore, for total m parties, we have the following multi-
objective problem:

Minimize L = (L1, L2, . . . , Lm), (2)

where m represents the number of the parties, Li of the party i could be obtained
by non-dominated sorting function in NSGA-II. It should be noted that, when
calculating Li of the party i, only the objectives of the party i are considered.
Based on Formula (2), we can sort the individuals in evolutionary population
according to the standard Pareto dominance, and then the corresponding algo-
rithm could be designed.
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The pseudocodes OptMPNDS2 are described in Algorithm 1, which are
described as follows.

(1) The population P0 is initialized with population size N .
(2) The number of generation t and offspring Qt are set as 0 and ∅, respectively.
(3) From steps 3 to 15, in the loop, the population Pt and its offspring Qt are

gathered into Rt and function MPNDS2 is applied to sort these individuals
into different ranks F . Then, sort individuals in the same rank according
to crowding distance. Next the parameters t and Pt are updated for next
generation. Subsequently, N individuals are picked from the best to the
worst and stored in the population of the next generation Pt. Finally, the
offspring Qt is generated from Pt by both crossover and mutation operators,
and the loop is repeated until the termination condition is satisfied.

(4) Return the final solutions MPS.

Algorithm 1. OptMPNDS2
Require: N (the population size),

F = (F1(x), F2(x), . . . , Fm(x)) (the objective function)
Ensure: MPS (the multiparty Pareto optimal solutions)
1: Initialize population P0 with size N ;
2: t = 0, Qt = ∅ ;
3: while The termination is not satisfied do
4: Rt = Pt ∪ Qt ;
5: F = MPNDS2(N,Rt, F ) ;
6: Sort F by crowding distance for each rank ;
7: t = t + 1, Pt = ∅, i = 1 ;
8: while |Pt ∪ Fi| ≤ N do
9: Pt = Pt ∪ Fi ;

10: i = i + 1 ;
11: end while
12: Pt = Pt ∪ Fi(1 : N − |Pt|) ;
13: Create the offspring Qt of Pt ;
14: end while
15: MPS = multiparty Pareto optimal solutions in Pt ;

OptMPNDS2 is similar to NSGA-II except the function MPNDS2(.), and the
pseudocodes of MPNDS2(.) are given in Algorithm2.

As depicted in Algorithm 2, the key point of OptMPNDS2 is to rede-
fine a dominance relation among individuals in the objective space L =
(L1, L2, . . . , Lm). From the perspective of a party, the individuals are sorted
by Fi (i.e., the objective function of the party i). For individuals in Rt, the
Pareto level of the party i is calculated as the new “objective” of the party
and stored in L(:, i). After all m parties are sorted, perform the non-dominated
sorting with the objectives L again. Here, the non-dominated sorting function
NonDominatedSorting adopted in our algorithm is the same as that in NSGA-
II [18].
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Algorithm 2. MPNDS2
Require: N,Rt, F = (F1(x), F2(x), . . . , Fm(x))
Ensure: F
1: L = ∅ ;
2: for i ∈ {1, · · · ,M} do
3: L(:, i) = NonDominatedSorting(Rt, Fi) ;
4: end for
5: F = NonDominatedSorting(Rt,L) ;

Although both OptMPNDS2 and OptMPNDS sort individuals in terms of
each party first and then sort individuals according to the levels by parties,
the detail behaviors of these two algorithms are different. In OptMPNDS, the
maximum levels in all parties are used to sort the individuals, while OptMPNDS2
performs the non-dominated sorting again according to the non-dominated level
numbers of the individuals.

Here, we use an example to explain the difference between OptMPNDS2 and
OptMPNDS. Suppose there are two individuals x and y in a bi-party multiob-
jective optimization, and their non-dominated level numbers are (1, 3) and (2,
3), respectively.

(1) In OptMPNDS, x and y have the same rank because both the maximum
non-dominated levels are 3.

(2) In OptMPNDS2, x dominates y. For the first party, their non-dominated
levels are 1 and 2, respectively. For the second party, their non-dominated
levels are the same. Therefore, according to Formula (2), x dominates y.

4 Experiments

4.1 Parameter Settings

In [9], 11 MPMOP test problems with the common Pareto optimal solutions
are given, and two algorithms, i.e., OptMPNDS and OptAll, are used to solve
MPMOPs. OptAll just views the problems as MOPs and performs the NSGA-II
to obtain solutions.

To compare with these two algorithms, OptMPNDS2 uses the same param-
eters as [9]. All three algorithms use the simulated binary crossover (SBX) and
polynomial mutation [3], of which distribution indexes are set as 20. The rates of
crossover and mutation are set to 1.0 and 1/d, respectively, where d represents
the dimension of the individuals. For each test problem, all algorithms are run
30 times to obtain the average results. In each run, the population size is set to
100 and the maximum fitness evaluations is set to 1000 ∗ d ∗ m, where d and m
represent the dimension of MPMOPs and the number of parties, respectively.

Inverted generational distance (IGD) [17] is an indicator to evaluate the solu-
tion quality, which measures both the convergence and uniformity of solutions.
To adapt metric for MPMOPs, the work [9] slightly modifies the related concept
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about the distance between an individual v and a PF (denoted by P ) shown as
follows:

d(v, P ) = min
s∈S

m∑

i=1

√

(vi1 − si1)2 + · · · + (viji − siji)2, (3)

where vij , as well as sij , means the j-th objective values of the i-th party,
respectively. There are m parties and the i-th party has ji objectives.

Based on Formula (3), IGD is calculated as follows:

IGD(P ∗, P ) =
∑

v∈P∗ d(v, P )
|P ∗| , (4)

Where P ∗ represents the true PF and P represents the PF that algorithms
obtained.

For IGD, the smaller value means the better performance of the algorithm,
since it measures the distance between the true PF and PF obtained by the
algorithm.

Considering the final population returned by an algorithm could contain some
dominated solutions, the solution number (SN) [9], which represents the number
of non-dominated solutions in the final population, is also used to evaluate the
performance of the algorithms. The algorithm with a larger SN has a better
performance.

4.2 Results

Tables 1, 2 and 3 show the IGD of the three algorithms, i.e., OptMPNDS2,
OptMPNDS, OptAll. The problems from MPMOP1 to MPMOP11 are used in
experiments, and the dimensions are set to 10, 30 and 50. There are the mean
and standard deviation values for each problem in each row. And the best results
of the same problem are labeled in the bold font. The sign “—” means that the
algorithm does not obtain any solution in at least one run. And nbr denotes the
number of problems for which the algorithm obtains the best results.

As tables depicted, OptMPNDS2 performs better than OptAll and is com-
parable with OptMPNDS. In Table 1, the number of the best IGD results of
OptMPNDS2 reaches 4. In Table 2, OptMPNDS2 performs the best on 8 prob-
lems of 11. The performance of OptMPNDS2 is better than OptMPNDS in
Table 3, where OptMPNDS2 wins 7 problems of 11.
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Table 1. Mean and standard deviation of IGD for MPMOPs with 10 dimensions.

Problems IGD

OptMPNDS2 OptMPNDS OptAll

MPMOP1 1.6345e-05 ± 6.4522e-06 2.7894e-05 ± 1.8206e-05 —

MPMOP2 6.7130e-05 ± 3.2436e-05 2.7364e-04 ± 1.0637e-03 6.5179e-02 ± 7.5853e-02

MPMOP3 3.1678e-02 ± 1.5827e-02 2.5420e-02 ± 9.2706e-03 3.6974e-02 ± 1.1352e-02

MPMOP4 5.6223e-02 ± 5.2352e-03 5.7572e-02 ± 7.0402e-03 4.7859e-01 ± 8.3774e-02

MPMOP5 6.6392e-02 ± 1.1805e-02 6.2492e-02 ± 1.1398e-02 1.5786e-01 ± 3.3413e-02

MPMOP6 2.0289e-02 ± 3.1342e-03 1.9709e-02 ± 2.4359e-03 7.6749e-01 ± 2.0057e-01

MPMOP7 4.9085e-06 ± 4.0617e-06 4.5667e-06 ± 4.1010e-06 —

MPMOP8 2.3038e-05 ± 3.1462e-05 1.2262e-02 ± 4.9124e-02 7.2167e-01 ± 2.6127e-01

MPMOP9 8.3663e-02 ± 1.1029e-02 8.2055e-02 ± 1.1601e-02 6.1508e-01 ± 9.2426e-02

MPMOP10 5.7807e-02 ± 5.9171e-03 5.7619e-02 ± 6.3695e-03 3.2451e-01 ± 8.2224e-02

MPMOP11 1.8539e-02 ± 1.1730e-03 1.8343e-02 ± 9.0481e-04 1.5923e+00 ± 5.8241e-01

nbr 4 7 0

Table 2. Mean and standard deviation of IGD for MPMOPs with 30 dimensions.

Problems IGD

OptMPNDS2 OptMPNDS OptAll

MPMOP1 1.5425e-05 ± 5.3205e-06 1.6166e-05 ± 5.9224e-06 8.2886e-03 ± 2.8462e-03

MPMOP2 3.0351e-02 ± 6.3732e-02 2.4442e-03 ± 1.3105e-02 5.6115e-02 ± 5.8392e-02

MPMOP3 1.9912e-01 ± 1.2983e-01 2.4422e-01 ± 1.5082e-01 2.1359e-01 ± 6.1893e-02

MPMOP4 5.2178e-02 ± 9.0699e-03 5.3974e-02 ± 9.7020e-03 1.4187e+00 ± 7.8597e-01

MPMOP5 4.1281e-02 ± 5.8203e-03 4.1739e-02 ± 4.2176e-03 3.8524e-01 ± 8.7829e-02

MPMOP6 1.5643e-02 ± 7.1395e-04 1.5277e-02 ± 9.1020e-04 2.1889e+00 ± 1.5142e+00

MPMOP7 5.4601e-06 ± 1.7764e-06 5.1282e-06 ± 2.9116e-06 —

MPMOP8 1.1977e-02 ± 4.9290e-02 1.7650e-01 ± 1.4797e-01 1.4400e-01 ± 1.1676e-01

MPMOP9 7.6085e-02 ± 1.3514e-02 7.8395e-02 ± 9.6008e-03 2.1323e+00 ± 9.0104e-01

MPMOP10 3.3262e-02 ± 2.8672e-03 4.3365e+00 ± 2.7402e+00 6.4002e-01 ± 2.2718e-01

MPMOP11 1.7454e-02 ± 7.3541e-04 1.7898e-02 ± 7.7425e-04 3.0805e+00 ± 2.6421e+00

nbr 8 3 0

In terms of SN, from Tables 4, 5 and 6, it can be observed that OptMPNDS2
performs slightly better than OptMPNDS, and these two both are better than
OptAll. All the numbers of the best SN results obtained by OptMPNDS2 for all
dimensions reach 9. The numbers of the best SN results obtained by OptMPNDS
are 7, 7 and 6, respectively. For OptAll, its nbr values for the SN metric is always
0.

In summary, OptMPNDS2 obtains more solutions, and the solutions are
closer to the true PF for MPMOPs with higher dimensions.



66 Z. She et al.

Table 3. Mean and standard deviation of IGD for MPMOPs with 50 dimensions.

Problems IGD

OptMPNDS2 OptMPNDS OptAll

MPMOP1 1.6188e-05 ± 5.3270e-06 1.8747e-05 ± 6.0160e-06 6.3026e-03 ± 1.1210e-03

MPMOP2 2.1572e-02 ± 3.3461e-02 2.7957e-02 ± 4.8711e-02 7.6744e-02 ± 7.2050e-02

MPMOP3 5.3982e-01 ± 1.9816e-01 5.1823e-01 ± 2.0427e-01 4.2675e-01 ± 1.0779e-01

MPMOP4 5.2182e-02 ± 7.6690e-03 5.4883e-02 ± 9.0317e-03 2.0794e+00 ± 1.8092e+00

MPMOP5 3.1668e-02 ± 2.4659e-03 3.2240e-02 ± 2.9652e-03 4.9932e-01 ± 1.5816e-01

MPMOP6 1.4525e-02 ± 9.1710e-04 1.4232e-02 ± 6.2776e-04 2.6863e+00 ± 2.5453e+00

MPMOP7 8.4879e-06 ± 3.3024e-06 7.3476e-06 ± 2.4889e-06 —

MPMOP8 9.2591e-02 ± 1.1908e-01 2.4295e-01 ± 1.3750e-01 2.8748e-01 ± 1.6227e-01

MPMOP9 8.0242e-02 ± 1.3628e-02 7.3962e-02 ± 1.0786e-02 3.9340e+00 ± 2.5023e+00

MPMOP10 2.5628e-02 ± 1.3457e-03 1.1150e+01 ± 1.2323e+00 8.2081e-01 ± 3.0717e-01

MPMOP11 1.7872e-02 ± 8.9646e-04 1.7885e-02 ± 9.2098e-04 5.0912e+00 ± 6.7435e+00

nbr 7 3 1

Table 4. Mean and standard deviation of SN for MPMOPs with 10 dimensions.

Problems SN

OptMPNDS2 OptMPNDS OptAll

MPMOP1 99.10 ± 2.09 92.53 ± 11.14 0.03 ± 0.18

MPMOP2 91.33 ± 6.94 89.27 ± 7.14 6.30 ± 1.37

MPMOP3 99.87 ± 0.43 100.00 ± 0.00 30.20 ± 1.52

MPMOP4 100.00 ± 0.00 100.00 ± 0.00 19.70 ± 4.25

MPMOP5 99.97 ± 0.18 100.00 ± 0.00 29.90 ± 3.74

MPMOP6 100.00 ± 0.00 100.00 ± 0.00 6.60 ± 1.87

MPMOP7 99.67 ± 0.80 99.53 ± 1.25 0.00 ± 0.00

MPMOP8 97.37 ± 1.81 85.67 ± 8.04 2.60 ± 1.16

MPMOP9 100.00 ± 0.00 100.00 ± 0.00 21.80 ± 4.12

MPMOP10 100.00 ± 0.00 100.00 ± 0.00 10.00 ± 2.03

MPMOP11 100.00 ± 0.00 100.00 ± 0.00 4.97 ± 2.33

nbr 9 7 0
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Table 5. Mean and standard deviation of SN for MPMOPs with 30 dimensions.

Problems SN

OptMPNDS2 OptMPNDS OptAll

MPMOP1 99.33 ± 1.47 99.47 ± 1.50 2.00 ± 0.00

MPMOP2 96.13 ± 4.34 94.00 ± 5.68 5.47 ± 1.14

MPMOP3 94.57 ± 7.99 94.87 ± 8.76 25.67 ± 5.45

MPMOP4 100.00 ± 0.00 100.00 ± 0.00 14.87 ± 9.87

MPMOP5 100.00 ± 0.00 100.00 ± 0.00 5.73 ± 1.72

MPMOP6 100.00 ± 0.00 100.00 ± 0.00 3.30 ± 1.09

MPMOP7 99.87 ± 0.43 99.80 ± 0.76 1.10 ± 0.66

MPMOP8 99.57 ± 0.77 98.47 ± 3.25 5.20 ± 1.10

MPMOP9 100.00 ± 0.00 100.00 ± 0.00 12.83 ± 3.87

MPMOP10 100.00 ± 0.00 37.30 ± 33.27 2.83 ± 0.79

MPMOP11 100.00 ± 0.00 100.00 ± 0.00 2.63 ± 1.22

nbr 9 7 0

Table 6. Mean and standard deviation of SN for MPMOPs with 50 dimensions.

Problems SN

OptMPNDS2 OptMPNDS OptAll

MPMOP1 99.90 ± 0.55 99.80 ± 0.66 2.00 ± 0.00

MPMOP2 97.20 ± 3.70 96.87 ± 4.34 5.17 ± 1.02

MPMOP3 84.27 ± 18.57 87.70 ± 14.24 23.53 ± 5.20

MPMOP4 100.00 ± 0.00 100.00 ± 0.00 19.33 ± 16.69

MPMOP5 100.00 ± 0.00 100.00 ± 0.00 3.47 ± 1.01

MPMOP6 100.00 ± 0.00 100.00 ± 0.00 3.43 ± 1.79

MPMOP7 99.97 ± 0.18 99.33 ± 1.63 1.33 ± 0.61

MPMOP8 99.43 ± 1.04 98.47 ± 3.52 4.27 ± 0.87

MPMOP9 99.97 ± 0.18 100.00 ± 0.00 15.23 ± 6.18

MPMOP10 100.00 ± 0.00 21.27 ± 7.54 2.13 ± 0.63

MPMOP11 100.00 ± 0.00 100.00 ± 0.00 3.17 ± 1.32

nbr 9 6 0

5 Conclusion

In this paper, we propose an evolutionary algorithm called OptMPNDS2 to solve
MPMOPs. A new dominance relation of individuals in MPMOPs is defined to
handle the non-dominated sorting, where the Pareto optimal level number of each
party is regarded as an objective value of the individual. In the experiments,
OptMPNDS2 is compared with OptMPNDS as well as OptAll. Experimental
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results show that the overall performance of the proposed OptMPNDS2 is better.
In the future, we will establish a benchmark of the MPMOPs which have no
common Pareto optimal solutions, and the benchmark will be used to evaluate
the proposed algorithm.
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