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Abstract. Tracking changing Pareto front (PF) in the objective space and Pareto
set (PS) in the decision space is an important task in dynamic multi-objective opti-
mization (DMO). Similarly,maintaining population diversity and reusing previous
evolutionary information are useful to explore promising regions and to find high-
quality solutions quickly in time-varying environments. To this end, a sliding time
window based on parallel computing (STW-PC) is introduced in the present study.
In the STW-PC, obtained time-sequence solution sets aim to preserve the diversity
and facilitate a fast convergence since problems in successive time/environments
are usually related. The parallel computing method is also employed to reduce
the computational time. The STW-PC is incorporated into a multi-objective evo-
lutionary algorithm and is compared with two competitors on 12 dynamic multi-
objective optimization problems. The results show that the STW-PC can both
improve the tracking performance of the selected algorithm in different degrees
of changes, and significantly reduce the calculation time compared with transfer
learning.

Keywords: Evolutionary computations · Dynamic multi-objective optimization ·
Sliding time window · Parallel computing · High-performing computing

1 Introduction

Dynamic multi-objective optimization problems (DMOPs) have been commonly found
in various fields [1–6]. Compared with static optimization problems, their objective
functions, constraints, decision space sizes or other parameters may change with time or
under different environments. Therefore, two important tasks in the dynamic optimiza-
tion are: (1) detect the change of optimization environments, and (2) find high-quality
solutions quickly in dynamic or uncertain environments. For the former, how to effec-
tively identify changes of models/environments is important. It should be noted that
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the change detection is not the focus in the current study. For the latter, the popula-
tion diversity and the convergence speed are two important performance indicators for
dynamic multi-objective evolutionary algorithms (DMOEAs). To improve the popu-
lation diversity, diversity maintenance/improvement and multi-population [7] are two
main approaches in the DMO. Moreover, memory-based and prediction-based meth-
ods are useful to promote convergence. Essentially, they belong to information reuse or
knowledge transfer.

As stated above, the tracking performance of DMOEAs is impacted by population
diversity and convergence speed, and thus these issues should be focused upon.

(1) Although various methods have been proposed to improve/maintain population
diversity, the number of maintainable individuals is usually not enough in previous
studies due to the limit of population/archive size [8]. Additionally, the current
model may have a great correlation with recent “local” models on most actual
dynamic optimization problems, but not with old “local” models. In other words,
solutions of a dynamic optimization problem in recent successive environments are
often relevant. Therefore, how to utilize the recent evolutionary information is an
important step to find high-quality solutions quickly under dynamic environments.

(2) Prediction-basedmethods are promising for solvingDMOPs, butmost of themneed
to satisfy the independent identical distribution (IID) hypothesis [7]. Therefore,
alleviating the limitation on the IID hypothesis is necessary. Additionally, their run
time may be unacceptable in some cases, especially when the time complexity is
high.

To solve the above-mentioned issues, a sliding time window based on parallel com-
puting (STW-PC) is proposed to solve DMOPs in the current study. In the STW-PC, the
sliding time window [9], which is an effective approach in predictive control, is used to
save successive evolutionary information (i.e., trust regions [10]) with a random initial
population to assist selected algorithms in improving their tracking performance in con-
tinuously changing environment. Intuitively, it can both improve the population diversity
and speed up the convergence. Moreover, the parallel computing method is utilized to
reduce its computational time. To demonstrate the effectiveness of the STW-PC, it is
compared with transfer-learning-based MOEA and another MOEA on 12 DMOPs [11].
The results show that the STW-PC not only assists other algorithm in improving tracking
performance, but also significantly reduces the computational time compared with the
transfer learning method.

The remaining sections of this paper are organized as follows: the DMO, the perfor-
mance metric, and the sliding time window are introduced in Sect. 2. Section 3 reviews
related studies on DMOEAs. The STW-PC is presented in Sect. 4. Experimental results
and analyses are reported in Sect. 5. Section 6 discusses conclusions and describes future
studies.
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2 Background

2.1 Dynamic Multi-objective Optimization

A dynamic multi-objective optimization problem can be defined as follows:

min
x∈�

F(x, t) = 〈f1(x, t), f2(x, t), . . . , fm(x, t)〉, (1)

xj ∈
(
xlowj , xhighj

)
, j = 1, 2, . . . ,D,

where x denotes a decision vector in the feasible search space� ⊂ RD; and t (t = 1, 2,…,
T ) denotes a time/environment variable; xlowj and xhighj are the lower and upper bounds of
xi, respectively;D denotes the dimensionality of theDMOP andm represents the number
of objectives. Compared with a static multi-objective optimization problem, the DMOP
consists of m time-varying objective functions under different time or environments.

Definition 1 (Dynamic dominance relation): for each time step or environment,Avector
u ∈ Rm is said to dominate another vector v ∈ Rm, which is denoted as u � v, if
∀n ∈ {1, 2, . . . ,m}, un ≤ vn and u 	= v.

Definition 2 (Dynamic Pareto optimal set): for each time step or environment, if there
are no other solutions can be Pareto optimal to x∗ ∈ RD, x∗ is called the Pareto optimal
solution. The set of all Pareto optimal solutions at t is called the Pareto set (PS), denoted
as X∗

t . The PS of the DMOP can be denoted as X∗ = X∗
1

⋃
X∗
2 . . .

⋃
X∗
T .

Definition 3 (Dynamic Pareto front): for each time step or environment, the Pareto front
(PF) can be defined as PFt = {

F(x∗
t )

∣∣x∗
t ∈ X∗

t

}
. Like Definition 2, the PF of the DMOP

can be denoted as PF = PF1
⋃

PF2 . . .
⋃

PFT . Similar to a static MOP, the main target
of the DMO is to find a PF with good diversity and convergence at t.

2.2 Performance Metric

To evaluate the performance of DMOEAs, various performance metrics have been pro-
posed [7, 12]. Overall, they adopt same performance indicators used in the static multi-
objective optimization under each time step or environment. However, DMOPs are time-
varying, thus using a cumulative performance is a common way to assess the overall
performance of DMOEAs during all time steps or environments. Two IGD variants
utilized in [7, 13] are introduced in this section.

An IGD variant (MIGD) is defined as follows:

MIGD
(
A,PF∗,C

) = 1

|T |
∑

t∈T

√∑
v∈PF∗

t
d(v,At)

2

∣∣PF∗
t

∣∣ , (2)

where At and PF∗
t denote the obtained PF approximation and a set of uniformly dis-

tributed points along the true PF at t, respectively; d(v,At) is the minimum Euclidean
distance between v and points in At ;

∣∣PF∗
t

∣∣ represents the number of non-dominated
individuals in PF∗

t ; C denotes a parameter setting in the DMOP, and |T | represents the
number of time steps in T. A smaller value of the MIGD means that a DMOEA can
achieve better PF approximations during all time steps.
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2.3 Sliding Time Window

The STW, which divides the entire time window into � parts (called time slot), is an
effective yet simple approach to solvedynamicoptimizationproblems [14–18].However,
it has been utilized in theDMO rarely. In the STW, the size of the timewindow is themost
important factor. If it is too large, a good result may be obtained but more computational
resources are consumed. On the contrary, a small one reduces the computational budget,
but it may significantly influence the performance of the STW. Therefore, its size should
be set based on computational resources and final solution precision. We assume that
the time window is W (t, �), (1 ≤ � ≤ T ), which includes � time slots.

An example of the STW is illustrated in Fig. 1. Suppose � = 3. When t = t0,W (t0,
�)= �. If t = t1,W (t1,�) is equal to the first time slot. Like the above process, different
time slots will be in W at different t. The number of time slots in W is equal to �. It is
observed from Fig. 1 thatW is employed to store recent information or “local” models.
That is why the STW can be utilized to deal with a large number of dynamic problems,
especially when successive time steps/environments are relevant.

T0 1 2 3 4

W(t0,3)

W(t1,3)

W(t2,3)

W(t3,3)

W(t4,3)

Fig. 1. Changes of the time window in the sliding time window when t is from t0 to t4 (� = 3).

3 Related Work

Because objective functions or parameters in DMOPs will change over time or in
different environments, their PFs or PSs, or both may be varying.

To improve the population diversity, researchers have proposed many advanced
DMOEAs to solve DMOPs. Diversity-maintain/improvement-based and multi-
population-based approaches are two main methods. For example, Deb et al. [19] pro-
posed two dynamic NSGA-II variants to solve dynamic problems, in which randomly
generated individuals andmutated individuals are used to replace some individuals in the
current population. Yang [20] used memory-based and elitism-based immigrant meth-
ods to improve the search capability of the GA in a nonstationary environment. In this
algorithm, the random immigrant approach is mainly used to increase the population
diversity and the global exploration ability. However, Jiang et al. [21] pointed out that
a population diversity improvement/maintain strategy may not be useful for solving
complex dynamic optimization problems since it cannot provide available evolution-
ary information from past experiences. Besides improving the exploration capability of
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search engines, a multi-population strategy is an effective approach to improve/maintain
the population diversity in changing environments. For example, Branke et al. [22] used
two populations to balance the exploration and exploitation capabilities. Different from
the above studies, Liu et al. [23] used a co-evolutionary method to share information
among different populations, and a similarity detection approach to detect the environ-
mental changing. The results show that their proposed algorithm is a promising method
to solve DMOPs.

To speed up convergence, memory-based and prediction-based methods have been
proposed. In [24], an archive is used to save best individuals. If the environmental change
is detected, some individuals in the current population would be replaced by historical
individuals stored in the archive. Similar to the above work, a dynamic competitive-
cooperation co-evolutionary algorithm (dCOEA) [25] is proposed to solve DMOPs. In
the dCOEA, a temporal memory is utilized to store historical evolutionary information.
Stroud [26] proposed aKalman-extendedGA (KGA)method to solve dynamic optimiza-
tion problems, in which information provided by the Kalman formulation is employed
to determine which operator should be adopted. In [27], the Kalman filter is used to
learn previous evolutionary information and then produce useful candidate solutions.
The experimental results show that the algorithm can help to improve the exploitation
capability of evolutionary algorithms in a dynamic environment. Unlike previous stud-
ies, Zhou et al. [28] introduced a population prediction method to divide a Pareto set into
two parts, and obtain a predicted center point and an estimated manifold. Therefore, this
method can provide a good predicted population under different environments. Because
the quality of an initial population is important for DMOEAs to find a high-quality solu-
tion set, a transfer learning approach [7] is utilized to generate an initial population at
each time step. Their results confirm that their proposed algorithm can effectively reuse
previous population information and assist MOEAs in tracking time-varying PFs or PSs
or both. Ruan et al. [29] stated that an original transfer learning may not be an effective
method to solve DMOPs in some cases. Therefore, novel strategies and kernel functions
are studied. Recently, Wang et al. [30] proposed an ensemble learning based prediction
strategy to enhance the prediction precision and improve the tracking performance of
algorithms.

4 Sliding Time Window Based on Parallel Computing

To solveDMOPs effectively,maintaining the diversity and reusing historical information
are important in DMOEAs. The STW is an effective approach to solve problems in an
uncertain or dynamic environment, such as the predictive control and the modeling of
time-varying systems. Therefore, the STW-PC is proposed in the present study. Its basic
framework is shown in Algorithm 1.

At each time step t, the first step is to randomly generate an initial population in Ω,
i.e. Pt (line 2), which is mainly used to improve the exploration capability of selected
algorithms and provide additional evolutionary information. Subsequently,�-1 obtained
solution sets in time steps [t-� + 1, t-1] (denoted as Pt−�+1,Pt−�+2, . . . ,Pt−1) and
Pt stored in W are used as � initial populations at t. Meanwhile, a DMOEA/MOEA is
employed to simultaneously find � PF approximations and PSs via the parallel comput-
ing technique (line 3). After finding all approximate PFs and PSs, they are merged to
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obtain final approximate PF and PS using various multi-objective selection methods at
t (line 4). The flowchart of the STW-PC is shown in Fig. 2.

Fig. 2. Flowchart of the STW-PC.

5 Experimental Results and Analyses

To demonstrate the effectiveness of the proposed STW-PC, a regularity model-based
multi-objective estimation of distribution algorithm (RM-MEDA) [31], and a transfer-
learning-based algorithm are selected in the current study. Moreover, the STW-PC is
incorporated into the RM-MEDA (named as STW-PC*), and 12 bi- and tri-objective
DMOPs proposed in IEEE CEC2015 are used. All compared algorithms are coded in
Matlab and run on a Windows 10 operating system (64 bit).

The parameter configurations of 12 DMOPs are shown in Table 1. nt , τT and τ t
denote the severity of change, the maximum number of generations, and the frequency
of change, respectively. It is observed from Table 1 that each DMOP changes 20 times
(i.e., τT

τt
) during the whole time T. For all compared algorithms, the population size

is set to 200, and the maximum numbers of generations are set to 20 × τt + 50 for
transfer-learning-based algorithm and 20 × τt + 200 for the STW, respectively. The
main reason is that, unlike the transfer learning, no useful information can be provided
by the STW in the first time step. Therefore, giving more computational budgets can
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improve the performance of the STW. However, from the perspective of computational
time, the run time of the STW will not increase significantly, that is demonstrated in
Table 1. Additionally, each compared algorithm is run for 20 independent times on all
functions.

Table 1. Parameter configurations on 12 DMOPs

nt τ t τT

C1 10 50 1000

C2 1 50 1000

C3 20 50 1000

5.1 Test the STW-PC Using MIGD

The mean MIGD values of all compared algorithms and the ratios of their improvement
(ROI) are presented in Table 2. Note that the results of compared algorithms shown in
Table 2 are directly taken from Ref. [7], except for the STW-PC*. The best mean value
is highlighted in bold; [] denotes the value of ROI.

For the RM-MEDA, as shown in Table 2, the STW-PC* outperforms the RM-MEDA
and the Tr-RM-MEDA on 35 and 31 cases, respectively. Also, it has a high success ratio
to help the RM-MEDA solve DMOPs. Compared with the transfer learning method, the
STW-PC is a more competitive approach to assist the RM-MEDA in adapting contin-
uously changing environments. At the same time, the STW-PC* produces much better
results (i.e., the ROI value is greater than 50%) on 13 and 6 cases when compared with
the RM-MEDA and the Tr-RM-MEDA. Additionally, the Tr-RM-MEDA surpasses the
STW-PC* on only one function HE7, in which PSs are the same during the whole time
steps. The results presented in Table 2 indicate that the proposed algorithm slightly
perform worse than the Tr-RM-MEDA on HE7 with three parameter configurations.

Based on the above comparisons, it can be concluded that the STW-PC is able to
help other MOEAs/DMOEAs enhance their performances to track either changing PFs
or changing PSs or both in continuously changing environments on different types of
DMOPs.

5.2 Experimental Analysis

Impact of �. Intuitively, a larger � value saves more evolutionary information in W,
thus it providesmore trust regions to guide the population evolution in a newoptimization
environment. To analyze the impact of �, it was selected from the set {3, 4, 5, 6}, and
the RM-MEDA and 12 DMOPs were used in experiments. Moreover, all parameter
settings are the same as in the above experiments except for the � value. Note that
the denominator of the ROI value is the MIGD calculated by � = 3 in the following
experiments.
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ROI values of all cases with three parameter configurations are illustrated in Fig. 3.
From Fig. 3 (a)–(e), it is seen that a large � value is able to improve the tracking
performance of the RM-MEDA. As shown in Fig. 3 (f), although a large � value can
help the RM-MEDA adapt to changing environments when the parameter configuration
is C1, � = 6 does not produce better results than � = 5. This is because the RM-MEDA
can find high-quality solutions on DMOP2 with C1. Moreover, Fig. 3 (f) indicates
the effectiveness of � is limited on environments C2–C3. The main reason may be
that these two environments are hard for the RM-MEDA to search good results under
limited computational resources, i.e., the maximum number of generations set to 50 is
not enough for the RM-MEDA in each time step. It can be observed from Fig. 3 (g)
that a large � value can enhance the tracking performance of the RM-MEDA when
parameter configurations are C1 and C3. However, it cannot assist the RM-MEDA in
improving the tracking performance when the parameter configuration is C2. This is
because the STW-PC assumes that “local” models are related in successive time steps.
If the severity of change is high, the performance of the STW–PC may reduce. In
other words, historical individuals may not be able to provide valuable evolutionary
information when environment is changing dramatically. Figures 3 (g) and (i) illustrate
that a large � value does not improve the tracking performance of the RM-MEDA
significantly. Like Fig. 3(g), the tracking performance of the proposed algorithmmay be
limited when the severity of environmental change is high such as C2. For HE1, HE7,
and HE9, they belong to Type III, i.e., PSs are the same in different time steps. From
Fig. 3 (j), we can see that a large � value may slightly reduce the performance of the
STW-PC because a large � value will increase the number of individuals, which may
influence the selection of individuals in PF. Additionally, it can be seen from Figs. 3
(k) and (l) that the performance of the STW–PC cannot be significantly influenced by
values of � because the STW–PC can provide good initial population in each time step.

Based on the above observations and comparisons, the following conclusions are
obtained:

(1) The STW–PC is an effective approach to solve DMOPs, especially when problems
are related in successive time steps or environments.

(2) If the environment is changing dramatically, like other existing methods, the per-
formance of the STW-PC will be reduced. Therefore, its performance is influenced
by selected MOEAs/DMOEAs.

Computational Time of STW-PC* and Tr-RM-MEDA. In the STW-PC, obtained
solution sets in W will be used as initial populations. However, enough time cannot
be given before the next time step or environment change. Therefore, the computa-
tional time of the STW-PC is investigated on FDA4 with C1–C3 in this experiment.
Additionally, the computational time of the Tr-RM-MEDA is also given. All experi-
ments were ran on a laptop computer with Windows 10 operating system (64 bit) using
MATLAB (R2016a). Moreover, two compared algorithms ran 20 times on each instance
independently.

The mean values of run time reported in Table 3 indicate that the STW-PC requires
much less run time than the transfer learning method in which the complexity of the
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(a) FDA4 (b) FDA5

(c) FDA5iso (d) FDA5dec

(e) DIMP2 (f) DMOP2

(g) DMOP2iso (h) DMOP2dec

(i) DMOP3 (j) HE2

(k) HE7 (l) HE9

Fig. 3. Influence of different � values on the STW-PC.
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eigenvalue decomposition is high. Therefore, it is a promising method to solve DMOPs
within a limit time.

Table 3. Mean run time (s) of STW-PC* and the Tr-RM-MEDA on FDA4.

FDA4 Tr-RM-MEDA STW-PC*

C1 1.84E + 04 8.74E + 01

C2 1.93E + 04 8.65E + 01

C3 1.94E + 04 8.64E + 01

6 Conclusions and Future Work

A sliding time window based on parallel computing (STW-PC) is introduced in the
current study. In the STW-PC, the STW is used to maintain the population diversity
and to reuse past evolutionary information to improve the search efficiency when the
time/environment changes. The results show that the STW-PC is an effective and promis-
ing approach to solve DMOPs. It is worth mentioning that the STW-PC can both signif-
icantly reduce the computational time and have better tracking performance when com-
pared with the transfer learning method. Additionally, the STW-PC is a generic frame-
work to solve different types of DMOPs, especially when “local” models in successive
environments are relevant.
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