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Abstract. Compared with the single-robot SLAM, the SLAM task com-
pleted by a multi-robot system in cooperation has the advantages of more
accuracy, more efficiency and more robustness. This study focuses on the
map fusion problem in the multi-robot SLAM task, which is to fuse the
local maps created by multiple independent robots into an integrated
map. A multi-robot SLAM map fusion method based on image stitching
is therefore proposed. A single robot uses lidar SLAM to build a local
environment map and upload it to a central node. The central node then
maps each local map from a two-dimensional occupancy grid map to a
grayscale image. The SuperPoint network is used to extract the depth
features from the grayscale images, and the transformation relationships
between the local maps are calculated via the feature matching. The
matching topology graph is used to realize the final map fusion. It car-
ries out experimental verification in the indoor environment on three
mobile robots, which were developed by our own, and the experiment
proved that the method has good real-time performance and robustness.
After obtaining the global map, some new robots were placed in the envi-
ronment, and realized the task of multi-robot target search by using the
relocalization function.

Keywords: Multi-robot system · Simultaneous localization and
mapping · Map fusion · Image stitching

1 Introduction

Simultaneous localization and mapping (SLAM) technology is the main solution
to the key problem in the field of intelligent robot research that how the robot can
obtain the map of an unknown environment while realizing its own localization
in the map simultaneously, and provide technical support for subsequent tasks.

Due to the difficulties for a single robot to complete some complicated tasks,
such as limited movement capability, insufficient computing power, poor anti-
interference capability and so on, a multi-robot system is demanded. In the face
of a large-scale complex environment, multiple robots can be dispersed into vari-
ous sections of regions of the environment. A single robot uses SLAM technology
to establish a local environment map/model. Then the system fuses these local
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models into a larger-range environment model. Compared with the single-robot
SLAM, the SLAM completed by a multi-robot system in collaboration has the
advantages of more accuracy, more efficiency and more robustness. The main
challenges in implementing a multi-robot SLAM system include bandwidth lim-
itations, map fusion, asynchronous communications, coherent information inte-
gration, and data association between robots [1].

Most of the multi-robot SLAM methods are based on the corresponding
single-robot SLAM algorithms. Earlier implementations are based on filtering
methods, such as Extended Kalman Filter (EKF) [2,3]. These methods inherit
some of the shortcomings of filter-based SLAMs. The current mainstream multi-
robot SLAM algorithms are based on graph optimization or pose graph methods
[4,5].

At present, most of the researches on the multi-robot SLAM problem are
still in the simulation stage, where the information sensed and the communica-
tion conditions are often set to be completely ideal. This study focuses on the
problem of multi-robot SLAM map fusion, proposes a new method based on
image stitching [6], and conducts experimental verification in the real scene on
the mobile robot platform developed by our own. With the help of ROS data
transmission mechanism, our map fusion method does not depend on the specific
single-robot SLAM algorithm, as long as the maps generated by the algorithm
can be converted to grayscale images. It can process maps from any number
of robots within the allowable range of computing power, and allows dynamic
addition or removal of robots in the system.

The method closest to this work is proposed by Hörner [7]. We both draw on
the principle of image stitching in computer vision. The difference is that this
work uses depth features, and includes relocalization function using the global
map. In addition, this work has been verified by experiments in the real scene.

The rest of this paper is organized as follows. Section 2 presents the method
overview. The map fusion method based on image stitching for multi-robot
SLAM is detailed in Sect. 3. The experiments are presented in Sect. 4, and con-
clusions are drawn in Sect. 5.

2 Method Overview

The proposed method is used to fuse 2D occupancy grid maps independently
established by multiple robots, and method pipeline is already shown in Fig. 1.

Assume that there are n robots participating in the mapping task. The map
built by a single robot through lidar SLAM is called a local occupancy grid map
(short for local map) Lmapi (i = 1, 2, ..., n), and the fused occupancy grid map
is called a global map M. The local environment maps are represented in the
form of a common occupancy grid. One establishes a mapping relationship F :
OccupancyGridMap → GrayscaleImage from occupancy grid map to grayscale
image. Obviously, the proposed method also supports other formats of map, as
long as the map format can be mapped to a grayscale image.
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Fig. 1. Method pipeline

After Lmapi has been converted into grayscale image Imapi (i = 1, 2, ..., n),
one then uses the neural network SuperPoint [8] to extract feature points and cal-
culate descriptors, which can obtain higher image matching accuracy compared
with traditional ORB [9] or SIFT [10]. After feature matching, it estimates the
coordinate transformation relationships between local maps, that is, solves the
homography matrices. The local maps and their matching relationships form
a weighted graph, which is called the matching topology graph G. The largest
spanning tree Tr is established in the largest connected component H of G, and
map fusion is achieved by exploring Tr. Finally, the inverse mapping F−1 needs
to be used to convert the global map in the form of grayscale image back into
an occupancy grid map M.

The obtained global map can then provide support for the robot to perform
other advanced tasks in the area, such as target search and path planning.

3 Multi-robot SLAM Map Fusion

3.1 Estimate the Coordinate Transformations Between Local Maps

In order to fuse the local maps, calculating the transformations between the local
occupancy grid maps established by each robot is the necessity. The method
follows these steps:

(1) Convert the local grid map Lmapi (i = 1, 2, ..., n) built by each robot into
a grayscale image Imapi (i = 1, 2, ..., n). The value of each cell is within
the range of [0,100]. This value represents the probability of obstacles in
the cell. If the probability is unknown, it is represented by −1. The local
map in this form is converted to a grayscale image, and if the value is −1,
it maps to 255 in the pixel value of the grayscale image, and one can get a
standard 8-bit depth grayscale image.

(2) Use the SuperPoint network to extract the feature points and calculate
feature descriptors of each local grid map Imapi.
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(3) Feature matching is carried out for each pair of local maps afterwards. The
brute force matching algorithm is used. If there are a large number of robots,
the parallel hierarchical clustering algorithm will be used to speed up the
matching.

(4) Solve the coordinate transformation matrix Ti,j between each pair of local
grid maps (Imapi, Imapj). Use the RANSAC [11] method to filter the
matched features, use the SVD method to solve the Ti,j , and calculate
the matching confidence ci,j of the corresponding match

ci,j =
number inliersi,j

8 + 0.3 ∗ number matchesi,j
, (1)

where number inliersi,j is the number of inliers found in the RANSAC
method, and number matchesi,j is the number of matched feature points
between each pair of local maps (Imapi, Imapj).

(5) Eliminate matches with a confidence less than 1, and form a match-
ing topology graph G. The vertices of the G are the local maps Imapi
built by single robots, and the edges are Ti,j , ci,j , number inliersi,j and
number matchesi,j .

Each time a robot updates the local map, it will upload the updated incre-
mental map to the central node instead of uploading the entire local map, which
can effectively reduce the amount of data transmission. Then, the central node
will regenerate a corresponding grayscale image.

3.2 Map Fusion Based on Matching Topology Graph

After the matching topology graph is established, if any of the local maps has
strong matching relationships with the others, the coordinate system of this local
map will be fixed as the world coordinate system. The coordinate transforma-
tions will be performed on the remaining maps according to the results of feature
matching. The global map is thus established.

If there are a large number of robots or there are maps that need to be
eliminated, such as local maps with large errors, isolated local maps and so
on, the graph method will be used for map fusion [7]. It is very common that
some local grid maps cannot be successfully matched. In order to cover as large
environmental area as possible, the weighted maximum connected component H
in the established matching topology graph G is considered, and only the local
maps included by H will be fused. This study selects the coordinate system of one
of the local maps as the global coordinate system in H. The maximum spanning
tree Tr is established in H, and by exploring Tr, the transformations between the
local maps and the global coordinate system are finally determined. As for each
local map, it can obtain the final transformation result by synthesizing paired
transformations along the path. After all the transformations are completed, the
map fusion is realized.
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3.3 Robot Relocalization

Relocalization with maps built by lidar SLAM is often more difficult than the
visual relocalization problem, because the information stored in the map estab-
lished by lidar SLAM is not rich enough. At present, the relocalization problem
using lidar usually uses the loop detection part of Cartographer [12] or Karto-
SLAM [13]. In this study, after obtaining the global map M, the newly entering
robot k uses its own lidar to build a local grid map Rmapk, and uses the method
described in Sect. 3.1 to perform feature matching between the local grid map
Rmapk and the global map M. The coordinate transformation between the local
grid map and the global map is estimated, and then the position of the newly
entering robot in the global coordinate system is obtained, so as to realize the
relocalization and provide support for the robot to realize the tasks such as
navigation and target search.

4 Experiments

4.1 Multi-robot Map Fusion Experiment

A real world experiment using three ground omnidirectional mobile robots as
shown in Fig. 2(a) is conducted. The experimental area is an indoor environ-
ment, as shown in Fig. 2(b). The three mobile robots, each carrying a laser
range scanner, are distributed in different areas to measure the environment and
perceive environmental information. In the experiment, it uses remote control to
make those robots move in a certain part of the field and build local maps. The
map established by each robot covers only one part of the entire environment.
The fused map on the central node includes the contents of all three local maps.

Fig. 2. (a) Mobile robot running single-robot SLAM. In order to avoid the lidar inter-
ference between each other, the lidars of the three robots are set up in different heights.
(b) Experimental area.

Each robot uploads the environmental information obtained to the central
node. In this experiment, the central node is only responsible for controlling the
movement of the mobile robots and for performing map fusion, and single-robot
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SLAM is implemented independently by mobile robots and does not depend
on the central node. The central node is a laptop computer with Intel Core
i7-8750H and 8G RAM in this case. The communication method between the
central node and the mobile robots is WiFi, and our method is run based on
ROS. The data format of the local map established by a single robot in ROS
is nav msgs/OccupancyGrid message, and the data format of the corresponding
incremental map updates is map msgs/OccupancyGridUpdate message. Common
SLAM algorithms that support this format rule in ROS include Karto-SLAM
[13], Gmapping [14], and so on.

The map fusion process observed in the display interface of the center node
is shown in Fig. 3.

Fig. 3. Map fusion in the exploration process of three ground mobile robots.

As shown in Fig. 3, after 380 s of exploration, the three ground mobile robots
finally completed the task of building a global map. On the display interface of
the central node, the process of localization and mapping by the mobile robots
could be observed. Initially, the fusion error between the three local maps was
relatively large due to the fact that there were few feature points. After 95 s, the
fusion of the mobile robot maps achieved a good effect. After 380 s, each of the
three robots covered most of the entire site, the global map contained enough
area information, and the task was completed.
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4.2 Multi-robot Target Search Experiment

In the same field, 7 new mobile robots are placed, and the configuration of these
7 mobile robots and the lidars they carried are different from the three robots
used for mapping. In this experiment, the robots themselves do not have the
localization function. It only detects environmental information and uploads it
to the central node. The central node uses the global map that has been obtained
before to provide localization service for the robots and guide them to perform
collaborative search task. Seven mobile robots use the improved PSO algorithm
for target search, and the specific implementation method refers to our previous
work [15]. The experiment process is shown in Fig. 4.

Fig. 4. Multi-robot target search experiment. (a) Seven robots were in their initial
positions. (b) Seven robots were searching. (c) Target search task completed.

5 Conclusions

In this study, a multi-robot SLAM map fusion method based on image stitching
is proposed. In the method, the occupancy grid map is mapped to grayscale
image, and the transformation relationships between maps are estimated through
depth feature matching. On this basis, the map fusion is performed using the
matching topology map. This method can realize the fusion of multiple local
maps consuming fewer computing resources. We have carried out experiments
on three mobile robots developed by our own in an indoor environment, and the
experiments have proved that the method has good real-time performance and
robustness. After obtaining the global map, some new robots are used in the
environment and the multi-robot target search task is realized successfully by
using the relocalization function.

Future works might include using more robots to conduct experiments in real
scenes and to realize autonomous robotic exploration.
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