
Toward Swarm Robots Tracking:
A Constrained Gaussian Condensation

Filter Method

Shihong Duan1,2, Hang Wu1,2, Cheng Xu1,2,3(B), and Jiawang Wan1,2

1 School of Computer and Communication Engineering, University of Science
and Technology Beijing, Beijing, China

xucheng@ustb.edu.cn
2 Shunde Graduate School, University of Science and Technology Beijing,

Foshan, China
3 Beijing Key Laboratory of Knowledge Engineering for Materials Science,

Beijing, China

Abstract. Real-time high-precision navigation has a wide range of
applications in scenarios. In practice, the measurement models are often
non-linear, and sequential Bayesian filters, such as Kalman and parti-
cle filter, suffer from the problem of accumulative errors, which can-
not provide long-time high-precision services for localization. To solve
the problem of arbitrary noise distribution, this paper proposes a Gaus-
sian condensation filter to achieve high-precision localization in a non-
Gaussian noise environment. To this end, we proposed an error-ellipse re-
sampling-based Gaussian condensation (EER-GCF) filter, which estab-
lishes error-ellipses with different confidence probabilities and imple-
ments a re-sampling algorithm based on the sampling points’ geomet-
rical positions. Furthermore, a cooperative Gaussian condensation filter
based on error-ellipse re-sampling (CEER-GCF) is proposed to enhance
information fusion in the swarm robots network. This study accomplishes
swarm robots tracking based on spatial-temporal constraints to enhance
tracking accuracy. Experiment results show that the accuracy of EER-
GCF reaches 0.80 m, while CEER-GCF achieves a localization accuracy
of 0.27 m.

Keywords: Error-ellipse re-sampling · Swarm robots tracking ·
Spatial-temporal constraints

1 Introduction

Nowadays real-time and high-accuracy localization has been considered for many
civil and military applications. In many scenarios, fusion and cooperative meth-
ods are sufficient to provide qualified accuracy positioning support for general
requirements [15,20]. Zihajehzadeh et al. [20] combined the characteristics of
instantaneous high-precision measurement of IMU and accumulated-error-free
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of TOA. However, external beacons are still required, which is not suitable for
large area tracking. Xu et al. [15] also provided a reliable implementation with
IMU/TOA fusion for human motion tracking. They mounted several sensing
nodes onto human joints, to realize long-term and large-distance requirements.
Nevertheless, it is difficult to generalize to generic swarm robots tracking appli-
cations due to its strict model requirements. Filtering methods are also widely
considered to solve cooperative fusion problems. Kalman-like filters have been
widely applied for many important problems. Kalman Filter [16] is the most
widely adopted Bayesian estimator to minimize the variance of the estimation
error. However, it strictly requires the system model to be linear and assumes
the noise to be Gaussian white noise. Extended Kalman filter (EKF) [3] is con-
sidered with linearizing the nonlinear state model. However, due to the selection
of linearization points and the abandonment of higher-order terms, there will
be an inevitable linearization error. To solve this, You et al. [18] proposed an
unscented Kalman filter (UKF) to realize UWB and IMU fusion in indoor local-
ization of quad-rotors. It can approximate the posterior distribution based on
sampling points, but the non-Gaussian noise problem remains unsolved.

Most of the existing IMU/TOA fusion literature mainly considered the ambi-
ent noise as Gaussian, such as [11,13,17]. However, in certain conditions such
as suburban and urban environments, due to man-made environmental factors,
different sensor measurements often show various distribution characteristics,
most of which are usually non-Gaussian. TOA distance ranging is easily influ-
enced by the multi-path and non-line of sight (NLOS) factors. Typically, ranging
errors can be modeled as a Gaussian distribution in line of sight (LOS) scenarios
[14]. In NLOS scenarios, ranging errors can be modeled as Gaussian distribution
[17], log-normal [1], or other non-Gaussian distributions [10,12]. Besides, IMU
measurement noise is often non-Gaussian and random with significant impulse
characteristics [4]. α-stable distribution [8,10] and Student-t distribution [7,19]
are often considered in noise modeling of inertial sensors, and it is generally
believed that IMU’s noise is non-Gaussian and exhibits different characteristics
in various environments.

Therefore, the Gaussian assumption to some extent does not conform to
the real-world noise situation. There are still challenges in realizing a fusion
positioning solution for arbitrary noise distribution. Wang et al. [11] proposed
the particle filter (PF) based on Monte Carlo sampling, which uses the average
value of a set of weighted particles to estimate the mean and covariance of
the state, and approximates the posterior distribution in the region containing
the significance probability. However, in the process of re-sampling, it faces the
problem of particle degradation and depletion [5]. Besides, for high-dimensional
problems, high complexity is usually inevitable [9].

In this perspective, A Gaussian condensation filter method is proposed to
effectively handle the arbitrary noise distribution, aiming at the non-Gaussian
noise problem of swarm robots tracking. To conquer the cumulative error prob-
lem of swarm robots tracking, an error-ellipse re-sampling-based Gaussian con-
densation filter is proposed. Furthermore, a spatial-constrained Gaussian con-
densation filter is proposed to effectively improve the information fusion in swarm
robots network.
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2 Cooperative Gaussian Condensation Filter

In this section, we first detail the Gaussian condensation filter to handle non-
Gaussian noise under non-ideal conditions. On this basis, we optimize the sam-
pling points with the use of its geometric position and fuse spatial distance
measurements between mobile robots. Then, we introduce an error-ellipse re-
sampling-based Gaussian condensation filter algorithm to accomplish the tem-
poral estimation. After that, a cooperative Gaussian condensation filter is estab-
lished by considering spatial-temporal constraints.

2.1 Gaussian Condensation Filter Based on Error-Ellipse
Re-Sampling

GCF [6] recursively generates the posteriori probability density function. The
key ideas of GCF are illustrated:

1) Prediction. It is assumed that the state transition process obeys the first-
order Markov model, namely p(Xk|X1:k−1) = p(Xk|Xk−1). At time k, a priori
probability distribution p(Xk|Z1:k−1) can be calculated by integration of the
product of p(Xk|Xk−1) with p(Xk−1|Z1:k−1). However, the integral is extremely
complicated in non-Gaussian systems. It can only be efficiently solved when
the involved functions are Gaussian or sums of deltas, which are the intrin-
sic properties of Kalman-like and particle filters. Moreover, according to the
central limit theorem, any statistical distribution could be approximated by a
mixture of Gaussian, whose number of components is much smaller than that
of using a mixture of deltas [11]. In this study, we consider the state equation
is linear but the posteriori distribution is the Gaussian mixture model, namely
p̂(Xk−1|Z1:k−1) =

∑m
i=1 αiN (Xk−1;μ

(i)
k−1|k−1, Q

(i)
k−1|k−1). Then the prediction

step is expressed as:

p̃(Xk|Z1:k−1) =
m∑

i=1

αiN (Xk;μ(i)
k|k−1, Q

(i)
k|k−1) (1)

where μ
(i)
k|k−1 = Fkμ

(i)
k−1|k−1, Q

(i)
k|k−1 = FkQ

(i)
k−1|k−1F

T
k + A. m is the number of

Gaussian kernels and A is the covariance matrix of noise σk.

2) Update. The a posteriori probability density function is updated by measure-
ments Zk at time k. Based on Eq. (1), the update step is expressed as:

p̃(Xk|Z1:k) ∝
∑m

i=1
αiN (Xk;μ(i)

k|k−1, Q
(i)
k|k−1)p(Zk|Xk) (2)

3) Gaussian Condensation. For general nonlinear/non-Gaussian filters, the num-
ber of sufficient statistics characterizing the true posteriori distribution increases
without bound [2]. To avoid this situation, we intend to obtain a closed-form solu-
tion with the resort to approximate the posteriori distribution into a Gaussian
mixture model. The following theorem could be used.
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Let p(X) be the probability density function of a random vector XεRn and
λ = (α1, · · · , αm, μ1, · · · , μm,Σ1, · · · ,Σm)be the parameters characterizing a
mixture of m Gaussian distributions, namely q(X;λ) =

∑m
i=1 αiN (X;μi,Σi).

If Φ(λ) is the KL-divergence between p(X) and q(X;λ), namely

Φ(λ) = DKL(p(X), q(X;λ)) = Ep{log
p

q
} (3)

then λ∗ = (α∗
1, · · · , α∗

m, μ∗
1, · · · , μ∗

m,Σ∗
1, · · · ,Σ∗

m) is a stationary point of Φ, where

qi(X;λ) = αiN (X;μi,Σi), αi = Ep{qi(X;λ)
q(X;λ)

} (4)

μi =
Ep{ qi(X;λ)

q(X;λ) X}
Ep{ qi(X;λ)

q(X;λ)

, Σi =
Ep{ qi(X;λ)

q(X;λ) (X − μi)(X − μi)T }
Ep{ qi(X;λ)

q(X;λ)

(5)

and Ep(·) indicates the expectation over random vector p.
Based on the Bayesian recursive inference criterion, we can conclude that

if the priori estimation is biased, the subsequent state estimation would also
be affected. To suppress the impact of previous estimation errors, error-ellipse
re-sampling performs replicating, retaining, and discarding on sampling points
at different levels [11]. With this constrained re-sampling strategy, the posteriori
probability density p̃ could obtained by recursively prediction and update. Con-
sidering that the sufficient statistic p̃ may infinitely increase in temporal series,
Gaussian condensation theory is used to approximate p̃ as Gaussian mixture dis-
tribution p̂. Finally, the state corresponding to the maximum of p̂ is the expected
estimation at the current moment.

2.2 Cooperative Gaussian Condensation Filter Based
on Error-Ellipse Re-sampling

{Pk,1, Pk,2, · · · , Pk,M} works as the prior knowledge of further cooperative
Bayesian optimization. Then, we define the joint state of ith robot and jth robot
at time k as rk = [Pk,i, Pk,j ]T . We introduce a new state vector z = Tr ∈ εR4,
where r represents the joint state vector of the robot, and z is a Gaussian distri-
bution with mean uz and covariance Cz, i.e., z ∼ N (uz, Cz). Therein, uz = Tur

and Cz = TCrT
T could be obtained. After adding the distance constraint, we

obtain new constraint information c:||ρT−1z|| = ||z1|| ≤ S. Therefore, we only
need to calculate the integral about p(z1|c). Then, the posteriori mean uz1|c and
covariance Cz1|c could be got by affine transformation without calculating p(z|c)
directly.

In order to avoid calculating complex numerical integration, we use a convex
combination to approximate the conditional mean and covariance:

ûz1|c �
2n∑

i=0

w(i)z
(i)
1 , D̂z1|c �

2n∑

i=0

w(i)z
(i)
1

(
z
(i)
1

)T

(6)
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where z
(i)
1 and w(i) denote the sampling points and weights respectively, and n is

the dimensions of the state. When the probability mass β of the sampling point
z
(i)
1 is within the constraint range, the approximate value remains unchanged.

Otherwise, re-sample the points to ensure that the approximated average value
falls within the convex boundary, thereby reducing the dispersion. Therefore,
parameter β determines whether the sampling point is valid. Use the following
equation to select sampling points:

h(i) =

⎧
⎪⎨

⎪⎩

uz1 i = 0
uz1 + s

1/2
β [C1/2

z1 ]i i = 1, . . . , n

uz1 − s
1/2
β [C1/2

z1 ]i i = n + 1, . . . , 2n

(7)

where n indicates the dimension of position variable, and Sβ is the confidence
scale that satisfies Pr (s ≤ sβ) = β and s = (z1 − uz1)

T
C−1

z1
(z1 − uz1).

The deterministic sampling method will select 2n+1 sampling points, and the
sampling points that do not satisfy the constraint conditions will be orthogonally
projected to the constraint boundary. The following equation is used to sample:

z
(i)
1 =

{
h(i) if

∥
∥h(i)

∥
∥ ≤ Sk

Sk

‖h(i)‖h(i) others i = 0, . . . , 2n (8)

The weight of the sampling point is updated as

wi =

{
1 − n

sβ
, i = 0

1
2sβ

, i = 1, ..., 2n
(9)

The posteriori mean and covariance can be obtained by the weighted average of
the re-sampled sampling points {z

(i)
1 }2n

i=0.
Gaussian Condensation Filter based on Error-Ellipse Re-Sampling (EER-

GCF) firstly makes a rough estimation of the robot state according to the center
point of a sampling set. Then, two error-ellipses with different scales of 3σ and σ
are established, and we achieve a re-sampling algorithm by hierarchical screen-
ing. After obtaining the mutual information between swarm robots, the spatial
distance constraint c is established. ûr|c, which is closer to the real position, is
obtained based on constrained Bayesian optimization. Therefore, the position
estimation ûr|c optimized by the spatial constraint is considered to update the
center point (xp, yp). Furthermore, the filter estimation at the next moment will
obtain the spatial information gain of the previous moment. It can achieve coop-
erative localization based on the fusion of both temporal and spatial information.

3 Experimental Results

We carried out the location tracking experiment by MATLAB. The simulation
runs on a PC with Windows 10 operating system, Intel 4-core i5 CPU, and 16 GB
memory. In the experiment, the measurement noise obeys α-stable distribution.



134 S. Duan et al.

Our proposed swarm robots tracking algorithm, i.e., Cooperative Gaussian Con-
densation Filter based on Error-Ellipse Re-Sampling (CEER-GCF), integrates
spatial distance information to obtain high precision. In order to verify its effec-
tiveness, the random walking experiments were repeated 100 times consider-
ing CPF [11], CGCF, and CEER-GCF. Furthermore, the statistical positioning
errors of all-mentioned algorithms are compared with PCRLB under the same
noise condition. The results are shown in Fig. 1, where the following conclusions
could be drawn:
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Fig. 1. RMSE of different algorithms in swarm robots tracking.

1. The CRMSE curves of all-mentioned cooperative algorithms are stable in
general, which shows that the cooperative method could effectively fuse the
information of multiple robots, namely cooperative algorithms have higher
stability.

2. The positioning accuracy of CPF reaches 0.39 m, while that of CGCF is
0.32 m, and that of CEER-GCF reaches 0.27 m. CEER-GCF has higher accu-
racy, and the CRMSE curve of CEER-GCF is much closer to the cooperative
PCRLB. It verifies the effectiveness of CEER-GCF in cooperative tracking.

Figure 2 shows how the number of swarm robots impacts the performance of
different cooperative tracking algorithms, from which we can conclude that:

1. With the increase of the number of robots, the positioning error curve is
smooth and CEER-GCF is of more accuracy. Therefore, when the larger
number of robots is, the algorithm described in this paper is more effective,
which is quite suitable for applications with large-scale deployment.

2. With the increase of the number of robots, the execution time of all algo-
rithms gradually grows and that of CEER-GCF is slightly higher than other
algorithms. However, it can satisfy the real-time requirements of general sys-
tems.
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Fig. 2. The influence of the number of swarm robots on the performance of the
algorithm

4 Conclusion

In this paper, EER-GCF is proposed to solve the problem of non-Gaussian noise
in robot tracking. To suppress the cumulative errors of inertial robot tracking,
CEER-GCF is proposed. We take the information gain in temporal series as
the prior knowledge of spatial cooperative optimization and establish the dis-
tance constraint between swarm robots. Then, we obtain the state optimization
based on spatial distance constraints. Finally, we realize swarm robots tracking
of spatial-temporal fusion. Results verify that the CEER-GCF algorithm can
achieve high-precision positioning in harsh environments.
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