
Estimating a Set of the States in the Case
of an Error in the Measured Output for

Controlled System

Alexander A. Fedyukov(B)

Lobachevsky State University of Nizhni Novgorod, 603950 Nizhny Novgorod, Russia

Abstract. In the problem of state stabilization under constraints on
state and control variables, it is assumed that the state of the system is
measurable. However, in real situations, the state of the system is mea-
sured, as a rule, with an error. Therefore, the question of the possibility
of using the obtained controller in this situation remains open. In this
article, we study the problem of estimating the set of admissible initial
states for a dynamic system, in which the controller obtained in the state
feedback control synthesis problem under constraints imposed on state
and control variables, will provide stabilization even in the case when
the system state is measured with an error. The sufficient conditions
are derived in terms of linear matrix inequalities to estimate the set of
admissible initial states of a dynamical system. The solution is based
on the application of the method of Lyapunov functions and technique
of linear matrix inequalities. The key point in the proof of the theo-
rem is the application of the S-procedure being non-defective under two
constraints. As an example, the problem of stabilization of an inverted
pendulum is considered. Numerical experiments have confirmed the the-
oretical results.
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1 Introduction

There are different ways of constructing controllers [1–6], including a method
based on the use of the technique of linear matrix inequalities [1]. In the problem
of state stabilization, it is assumed that the state of the system is measurable and
control is constructed in the form of linear state feedback. With the help of mod-
ern software (for example, software for engineering calculations MATLAB [7]),
we can get the parameters of such a controller. At the same time, a situation
is possible when the obtained solution cannot be physically implemented. This
is due to the fact that the synthesis of linear control laws based on the linear
model of the controlled object can be effectively applied only where the linear
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model more or less adequately describes the real object, i.e. in a limited region
of phase space. Note also that in real operating conditions the system must be
in the area of its permissible states. In this regard, it becomes necessary to take
into account the limitation on the phase variables of the object and control in
the model. The problem of control synthesis under given constraints is complex
and relevant at the present time [2,3,8].

In [2,3], the problem of synthesis of state control is considered and solved,
which provides stabilization of a dynamic object under constraints on state and
control variables. In the phase space, the set of admissible initial states of the
system is obtained, at which the controller stabilizes the system. However, in
real situations the state of the system is measured, as a rule, with an error.
Therefore, the question of the possibility of using the controller obtained in [2,3]
remains open in this situation.

In this article, we study the problem of estimating the set of admissible initial
states for a dynamic system, in which the controller obtained in the state feed-
back control synthesis problem under constraints imposed on state and control
variables, will also provide stabilization in the case when the state of the system
is measured with an error. The sufficient conditions are derived in terms of linear
matrix inequalities to estimate the set of admissible initial states of a dynamical
system. The solution is based on the application of the method of Lyapunov
functions and technique of linear matrix inequalities. The key point in the proof
of the theorem is the application of the S-procedure being non-defective under
two constraints [9]. As an example, the problem of stabilization of an inverted
pendulum is considered. Numerical experiments have confirmed the theoretical
results.

2 Preliminary Information

Consider a controlled object

ẋ = Ax + Bu, x(0) = x0, (1)

zi = Cix + Diu, i = 1, 2, ..., N, (2)

where x ∈ Rn—state of the system, u ∈ Rl control, zi ∈ Rmi—controlled system
outputs; A, B, Ci and Di—given matrices of appropriate sizes.

The problem of stabilizing the object (1) using control in the form of linear
state feedback

u = Kx, (3)

which ensures the asymptotic stability of the closed-loop system (1), (2), (3) and
its fulfillment for given values γi of the constraints

max
t≥0

|zi(t)| ≤ γi , i = 1, 2, ..., N, (4)

was discussed in [2,3]. Using the technique of linear matrix inequalities and the
non-degradation of the S-procedure for quadratic inequalities [10], conditions
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were formulated on the set of initial states, starting from which the phase tra-
jectories of system (1), closed by control (3), asymptotically approached the zero
state and did not go beyond boundaries of the set defined by constraints (4). To
solve the control synthesis problem in [3], a linear system with a constraint is
analyzed. Consider the asymptotically stable linear system

ẋ = Ax, (5)

z = Cx,

where the matrix A is Hurwitz, i.e. all eigenvalues of this matrix have strictly
negative real parts. The problem is posed of finding a set of initial states x(0) =
x0, starting from which the phase trajectory does not go beyond the set defined
by the constraint

max
t≥0

|z(t)| ≤ γ, (6)

for a given value γ > 0.
Note that if a function V (x) = xT Y −1x with a matrix Y = Y T > 0 is

a quadratic Lyapunov function of system (5), then all trajectories of this sys-
tem outgoing from a set E(Y ) = {x : xT Y −1x ≤ 1}, bounded by an ellipsoid
xT Y −1x = 1, inscribed in the region of the phase space specified by the inequal-
ity |z(t)| ≤ γ, satisfy constraint (6). In the matrix inequality Y > 0, the sign
“>” means the positive definiteness of the matrix Y , i.e. uT Y u > 0, ∀u ∈ Rn,
u �= 0. It is shown in this paper that the region of the phase space, defined by the
union of all such sets E(Y ) for all possible Lyapunov functions of the indicated
form, can be distinguished in terms of linear matrix inequalities.

Theorem 1. If the matrix Y = Y T > 0 satisfies the system of linear matrix
inequalities

Y AT + AY < 0,(
Y Y CT

CY γ2I

)
≥ 0,

(7)

then all trajectories of system (5) with initial conditions x(0) ∈ E(Y ) satisfy
constraint (6).

This theorem was formulated and proved in [2,3].
Note that there are a lot of matrices Y , satisfying the system of matrix

inequalities (7). This, in turn, means that there are many sets of initial states
determined by the corresponding ellipsoids. Therefore, there is a desire to find a
set that is maximum in accordance with some criterion. In particular, maximiza-
tion of the trace of the matrix Y under the constraints specified by linear matrix
inequalities (7), or maximization of the volume of the corresponding ellipsoid
can serve as criteria for searching for a set possessing, in a sense, “maximum”
size.

In the case of analyzing an asymptotically stable linear system with several
constraints, we define the set of initial states of the “largest” size as the set
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obtained by the intersection of ellipsoids with “maximal” sizes corresponding to
each of these constraints.

The key point in solving the problem of stabilizing the plant (1) in the class of
linear state feedbacks (3) under constraints (4) is the choice of a single Lyapunov
function of the closed-loop system subject to constraints and the application of
the S-procedure being non-defective under one constraint [10]. This allows us
to represent sufficient conditions for finding the matrix of parameters of the
controller (3) in terms of linear matrix inequalities. An S-procedure under one
constraint is a trick that allows us to replace two inequalities for quadratic forms
with their equivalent single inequality. It is as follows. Let there be an inequality

F (x) < 0, x �= 0, (8)

for all x ∈ Rn, satisfying the inequality

G(x) ≤ 0, (9)

where F (x) and G(x) are quadratic forms. Then we can compose a quadratic
form S(x) = F (x) − λG(x) and consider the inequality

S(x) < 0, x �= 0, (10)

for some λ ≥ 0. Replacing inequalities (8) and (9) by inequality (10) is called an
S-procedure.

It is obvious that the fulfillment of (10) implies the fulfillment of (8) under
condition (9). But the converse is also true. Provided that exists x0 for which
G(x0) < 0, the fulfillment of inequality (8) under condition (9) implies the
existence λ > 0, for which holds the inequality

F (x) − λG(x) < 0, x �= 0.

In this case, it is said that the S-procedure being non-defective for one restriction.
The authors use this technique in [2,3] for everyone i, which allows us to reduce
the process of finding a single Lyapunov function of a closed-loop system to
solving a system of linear matrix inequalities.

If a function V (x) = xT Y −1x with a matrix Y = Y T > 0 is a single quadratic
Lyapunov function of system (1), closed by control (3), then all trajectories of
this system outgoing from a set E(Y ) = {x : xT Y −1x ≤ 1}, bounded by an
ellipsoid xT Y −1x = 1, inscribed in the phase space region defined by inequalities
|zi(t)| ≤ γi, i = 1, 2, ..., N , satisfy constraints (4). In [2,3] was formulated and
proved the following theorem.

Theorem 2. If matrices Y = Y T > 0, Z and values γi > 0, i = 1, 2, ..., N ,
satisfy the system of linear matrix inequalities

Y AT + AY + ZT BT + BZ < 0,(
Y Y CT

i + ZT DT
i

CiY + DiZ γ2
i I

)
≥ 0, i = 1, 2, ..., N,

(11)
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then all trajectories of system (1) closed by control (3) with initial conditions
x(0) ∈ E(Y ) satisfy constraints (4). The matrix of parameters of the control law
(3) for a dynamical system with constraints is calculated as

K = ZY −1. (12)

Note that if the matrix of parameters of the control law (12) is found,

then for all initial states x(0) ∈
N⋂

i=1

E(Yi) the phase trajectories of system

(1) closed by control (3) will asymptotically approach the zero state and not
go beyond the boundaries of the set defined by constraints (4). Here the sets
E(Yi) = {x : xT Y −1

i x ≤ 1} are obtained as sets of initial states x(0) = x0 for
an asymptotically stable linear system for which the phase trajectory does not
go beyond the limits of the set defined by the constraint max

t≥0
|zi(t)| ≤ γi. In this

case, it is desirable to choose sets E(Yi) that have, in a certain sense, “maxi-
mum” size (for example, in the sense of maximizing the trace of the matrix Yi,
or maximizing the volume of the corresponding ellipsoid).

As noted above, the key point in solving the problem of stabilization of
the plant (1) in the class of linear state feedbacks (3) under constraints (4) is
the choice of a single Lyapunov function of the closed-loop system taking into
account the constraints. This is due to the fact that otherwise, choosing our own
Lyapunov function for each constraint max

t≥0
|zi(t)| ≤ γi, we arrive at the system

of bilinear matrix inequalities

AT Xi + KT BT Xi + XiA + XiBK < 0,(
γ2

i Xi CT
i + KT DT

i

Ci + DiK I

)
≥ 0, i = 1, 2, ..., N,

relatively unknown matrices Xi = XT
i > 0, i = 1, 2, ..., N and K. At present,

there are no computationally efficient numerical methods for solving this class
of problems.

Note that the result obtained in [2,3] does not allow us to indicate the “com-
plete” set of initial states, the phase trajectories of the system from which do not
violate the constraints. As an example, consider a controlled inverted pendulum

ϕ̈ − ϕ = u, (13)

with restrictions on ϕ—the angle of deviation of the pendulum link from the
vertical and u—control:

max
t≥0

|ϕ(t)| ≤ 0.1, max
t≥0

|u(t)| ≤ 1. (14)

We represent the equation and restrictions in the form (1), (2), where

A =
(

0 1
1 0

)
, B =

(
0
1

)
, C1 =

(
1 0

)
, D1 = 0, C2 =

(
0 0

)
, D2 = 1.
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Control found for object (13)

u = −11.1888ϕ − 3.5402ϕ̇, (15)

which ensures the asymptotic stability of the closed-loop system (13), (15) and
the fulfillment of constraints (14). Control (15) was obtained as a result of search-
ing for a matrix Y with a maximum trace and satisfying the system of linear
matrix inequalities (11).

Fig. 1. Estimation of the set of admissible initial states obtained by the intersection of
ellipsoids in the stabilization problem for an inverted pendulum under constraints on
the angle and control

In Fig. 1 and Fig. 2 in the phase plane the dashed lines mark the restrictions

|ϕ(t)| ≤ 0.1, |u(t)| ≤ 1. (16)

In Fig. 1, ellipse 1 limits the estimate of the set of initial states, at the choice
of which control (15) provides stabilization of the inverted pendulum under the
first constraint, i.e. by the angle ϕ of deflection of the pendulum. Ellipse 2
limits the estimate of the set of initial states, when chosen, the control provides
stabilization under the second constraint, i.e. with control restrictions. At the
intersection of ellipses, we obtain an estimate for the region of admissible initial
states for which the control stabilizes the object under two constraints. In Fig. 1
and Fig. 2 this area is marked in light gray. A phase portrait of a closed system
can be constructed and analyzed. In Fig. 2, the set of admissible initial states is
marked in gray, starting from which the phase trajectories of system (13), closed
by control (15), asymptotically approach the zero state and do not go beyond
the boundaries of the set specified by constraints (14). As an example, trajectory
1 is given for the initial state ϕ = −0.09, ϕ̇ = 0.36. In dark color in Fig. 2, the
set of initial states is marked, at the choice of which the phase trajectories of
the system will go beyond the boundaries of the region (16). As an example,
trajectory 2 is given for the initial state ϕ = −0.095, ϕ̇ = 0.56.
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Fig. 2. The set of admissible initial states and its estimate obtained by the intersection
of ellipsoids in the stabilization problem for an inverted pendulum under constraints
on the angle and control

3 Formulation of the Problem

Suppose that for the object (1), (2) the stabilization problem under constraints
on state and control variables is solved and the state control law (3) is found. In
a real situation, the state of a dynamic system is measured with some error. In
this regard, we introduce the measured output of the system

y = (I + Δ(t))x, (17)

where I—identity matrix of size n × n, and the matrix Δ(t) determines the
relative measurement errors of the phase variables, and satisfies the condition
ΔT Δ ≤ δ2I, δ > 0—given parameter. Consider the problem of stabilizing system
(1), (2) by the controller

u = Ky, (18)

with restrictions on state and control variables (4). The question arises about
the influence of errors in measuring phase variables on the fulfillment of con-
straints (4). In other words, the question arises of how the set of initial states
of the system will change, for which controller (18) provides stabilization under
constraints (4) and in the case of an error in the measured output (17).

4 Estimation of the Set of Admissible Initial States

Let us represent the measured output of system (17) as

y = x + w, (19)

where w = Δ(t)x. Since the uncertainty matrix Δ(t) satisfies the condition
ΔT Δ ≤ δ2I, then

wT w ≤ δ2xT x. (20)
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We write the closed-loop system (1), (2), (18), (19) in the form

ẋ = Ax + Bw, (21)

zi = Cix + Diw, i = 1, 2, ..., N,

where A = A + BK, B = BK, Ci = Ci + DiK, Di = DiK.
Consider an auxiliary problem. Suppose it is required to find the sets of

admissible initial states for which the control (18) provides system stabilization
(21) for each i with one constraint max

t≥0
|zi(t)| ≤ γi. The following theorem is

true.

Theorem 3. Let the matrix Xi = XT
i > 0 and values μ1 > 0, μ2 > 0, δ > 0,

γi > 0 satisfy the system of matrix inequalities
(

A
T
Xi + XiA + μ1δ

2I XiB

B
T
Xi −μ1I

)
< 0,

(
Ci

T
Ci + μ2δ

2I − γ2
i Xi Ci

T
Di

Di
T
Ci Di

T
Di − μ2I

)
≤ 0.

(22)

Then all trajectories of the closed-loop system (21) with the initial conditions
x(0) ∈ E(Xi), E(Xi) = {x : xT Xix ≤ 1}, satisfy the constraint

max
t≥0

|zi(t)| ≤ γi.

Proof. In the region of phase space given by the inequality |zi(t)| ≤ γi, we
inscribe the ellipsoid xT Xix = 1. Let us show that the fulfillment of the first
inequality of system (22) ensures the fulfillment of the condition that a quadratic
function V (x) = xT Xix with a matrix Xi = XT

i > 0 is a Lyapunov function for
a closed system. On any trajectory of the closed-loop system (21), the condition

V̇ (x) = (Ax + Bw)T Xix + xT Xi(Ax + Bw) < 0. (23)

According to the fact that the S-procedure is not defective under one con-
straint, inequality (23) holds for all x, w such that |x|2 + |w|2 �= 0, satisfying
inequality (20) if and only if for some number μ1 > 0 and for all x, w performed
the inequality

(Ax + Bw)T Xix + xT Xi(Ax + Bw) − μ1(wT w − δ2xT x) < 0.

We write it in the form
(

x
w

)T
(

A
T
Xi + XiA + μ1δ

2I XiB

B
T
Xi −μ1I

)(
x
w

)
< 0.

This inequality is equivalent to the first inequality of system (22).
Let us show that the fulfillment of the second inequality of system (22)

ensures the fulfillment of the condition |zi(t)| ≤ γi. For quadratic forms, the
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S - procedure is valid under two constraints [9]. The theorem states the fol-
lowing. Let there be given quadratic forms F (x) = xT A0x, G1(x) = xT A1x,
G2(x) = xT A2x, where x ∈ Rn, Ai = AT

i ∈ Rn×n, i = 0, 1, 2 and numbers
a0, a1, a2. Let’s make a quadratic form S(x) = F (x) − τ1G1(x) − τ2G2(x) and
consider the system of inequalities

S(x) ≤ 0, a0 ≥ τ1a1 + τ2a2, (24)

with some τ1 ≥ 0, τ2 ≥ 0. Consider the inequality

F (x) ≤ a0, (25)

which, for all x ∈ Rn, satisfies the system of inequalities

G1(x) ≤ a1, G2(x) ≤ a2. (26)

Then the fulfillment of inequalities (24) implies the fulfillment of inequality (25)
under the condition (26).

Conversely, in case, if n ≥ 3, there are numbers τ3, τ4 and a vector x0 ∈ Rn

such that
τ3A1 + τ4A2 > 0, G1(x0) < a1, G2(x0) < a2,

then inequality (25) under condition (26) implies the existence of numbers τ1 ≥ 0,
τ2 ≥ 0 for which condition (24) is satisfied.

Let’s apply the statement to solve the problem. Since the S-procedure being
non-defective under two constraints, the inequality max

t≥0
|zi(t)| ≤ γi subject to

condition (20) and condition xT Xix ≤ 1 for all x, w such that |x|2 + |w|2 �= 0, is
equivalent to the existence of numbers μ2 ≥ 0, μ3 ≥ 0 for which performed the
inequality

|zi(t)|2 − γ2
i − μ2(wT w − δ2xT x) − μ3(xT Xix − 1) ≤ 0. (27)

In this case, there must be numbers μ4, μ5 and a vector
(

x0

w0

)
, such that

μ4

(
Xi 0
0 0

)
+ μ5

(−δ2I 0
0 1

)
> 0 (28)

and
(

x0

w0

)T (
Xi 0
0 0

) (
x0

w0

)
< 1,

(
x0

w0

)T (−δ2I 0
0 1

) (
x0

w0

)
< 0. (29)

We write inequality (27) in the form

(Cix+Diw)T (Cix+Diw)− γ2
i −μ2(wT w − δ2xT x)−μ3(xT Xix− 1) ≤ 0. (30)

Inequality (30) is true for all x, w. Means

μ2
3 ≤ γ2

i , (Cix + Diw)T (Cix + Diw) − μ2(wT w − δ2xT x) ≤ μ3(xT Xix).
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Hence

(Cix + Diw)T (Cix + Diw) − μ2(wT w − δ2xT x) ≤ γ2
i (xT Xix). (31)

We write inequality (31) in the form

(
x
w

)T
(

Ci
T
Ci + μ2δ

2I − γ2
i Xi Ci

T
Di

Di
T
Ci Di

T
Di − μ2I

)(
x
w

)
≤ 0. (32)

Matrix inequality (32) is equivalent to the second matrix inequality in system
(22).

Find numbers μ4, μ5, satisfying inequality (28). Let us rewrite condition (28)
as μ5 > 0, μ4Xi − μ5δ

2I > 0. Hence, given that Xi = XT
i > 0, to satisfy these

inequalities, it suffices to choose μ4 = 2δ2

min|eig(Xi)| , μ5 = 1.

Let us find a vector
(

x0

w0

)
, satisfying inequalities (29). Since V (x) = xT Xix

is the Lyapunov function, for all x ∈ E(Xi) inequality holds xT Xix ≤ 1. There-
fore, the first inequality (29) is satisfied if the point x0 lies inside the ellipsoid
E(Xi). By virtue of inequality (20), for the second inequality (29) to hold, we
choose w0 = δ

2x0. The statement is proven.

Let us denote by Ξi the set of all matrices Xi, satisfying inequalities (22).
Let us choose the trace criterion as a criterion for minimality Xi. The maximum
over all Xi ∈ Ξi region E(X∗

i ), is found by minimizing the trace of the matrix
Xi. This operation is standard in the MATLAB software package for engineering
calculations [7] using the CVX application.

Let us formulate sufficient conditions for finding the region of admissible
initial states of a dynamic system under which control (18), with the matrix
of controller parameters K obtained in the problem of control synthesis under
constraints imposed on state and control variables, will provide stabilization
also in the case when the state of the system is measured with an error. Let the
matrices X∗

i , i = 1, 2, ..., N , have a minimal trace and are solutions of system (22)
for values γi, respectively. Then all trajectories of the closed-loop system (21)
with the initial conditions x(0) ∈ E(X∗

i ), E(X∗
i ) = {x : xT X∗

i x ≤ 1} will satisfy

the constraint max
t≥0

|zi(t)| ≤ γi. Therefore, for all initial states x(0) ∈
N⋂

i=1

E(X∗
i ),

the control with a given matrix of controller parameters K, stabilizes the closed-
loop system under constraints (4).

5 Numerical Simulation Results

Consider a controlled inverted pendulum

ϕ̈ − ϕ = u, (33)



Estimating a Set of the States 283

with restrictions on ϕ—the angle of deviation of the pendulum link from the
vertical and u—control:

max
t≥0

|ϕ(t)| ≤ 0.1, max
t≥0

|u(t)| ≤ 1. (34)

Numerical solution obtained in MATLAB package. For object (33), a number
of problems have been solved. For the stabilization problem, in the absence of
an error in the measurement of the state, the control is obtained

u = −11.1888ϕ − 3.5402ϕ̇, (35)

which ensures the asymptotic stability of the closed-loop system (33), (35) and
the fulfillment of constraints (34).

Fig. 3. Intersection of areas Σ0, Σ0.05, Σ0.1 and Σ0.2

In Fig. 3 in the phase plane, the dotted line marks the restrictions

|ϕ(t)| ≤ 0.1, |u(t)| ≤ 1.

Let us estimate the change in the estimate of the region of admissible initial
states of the dynamic system, at which control (35) will provide stabilization
even in the case when the state of the system is measured with an error. We
denote Σδ an estimate for the set of admissible initial states for which the control
stabilizes the system for the value δ.

The algorithm for constructing area Σδ is as follows. Consider two ellipses.
The first ellipse E(X∗

1 ) = {x : xT X∗
1x ≤ 1} limits the estimate of the set of

initial states, at the choice of which control (35) provides stabilization of the
inverted pendulum under the first constraint, i.e. by the angle ϕ of deflection
of the pendulum. Here, the matrix X∗

1 is a matrix with a minimum trace that
satisfies the system of linear matrix inequalities (22) for given values δ and γ1.



284 A. A. Fedyukov

The second ellipse E(X∗
2 ) = {x : xT X∗

2x ≤ 1} limits the estimate of the set of
initial states, when chosen, control (35) provides stabilization under the second
constraint, i.e. with control restrictions. Here, the matrix X∗

2 is a matrix with
a minimum trace that satisfies the system of linear matrix inequalities (22) for
given values δ and γ2. At the intersection of ellipses, we obtain the desired
estimate for the set of admissible initial states for which the control stabilizes
the object under two constraints for a given value δ.

In Fig. 3 shows the areas Σ0, Σ0.05, Σ0.1, Σ0.2 corresponding to the values
δ = 0, δ = 0.05, δ = 0.1, δ = 0.2, and shows the intersection of these areas. It
follows from the figure that the area Σ0.2 lies inside the area Σ0.1, which in turn
lies inside the area Σ0.05, and the area Σ0.05 lies inside Σ0.

Fig. 4. The graph the dependence of the area of the region Σδ

Let us calculate the dependence of the area S of the region Σδ on the value
δ, which determines the magnitude of the error in the measured output of the
system. In Fig. 4 shows a graph of this dependence. In particular, the values
S(0) = 0.0819, S(0.05) = 0.0696, S(0.1) = 0.0541, S(0.2) = 0.0285.

The performed calculations showed that the ellipses responsible for the con-
straints on the deflection angle of the pendulum link at the values δ = 0, δ = 0.05,
δ = 0.1 and δ = 0.2 are close to each other. Consequently, the size of the region
Σδ of admissible initial states is mainly influenced by both the value of the
parameter value δ, and the presence of a control constraint in the problem.

6 Conclusions

The problem is posed and solved to estimate the region of admissible initial
states of a dynamic system, at which the controller obtained in the problem
of synthesis of state control under constraints imposed on state and control
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variables will also provide stabilization in the case when the system state is
measured with an error. In terms of linear matrix inequalities, conditions are
obtained that make it possible to estimate the set of admissible initial states
of a dynamical system. The problem of stabilization of an inverted pendulum is
considered as an example. Numerical experiments confirm the theoretical results.

Note that when solving practical problems of controlling real physical objects,
complete information about the state of the system is usually inaccessible to
measurement. In this regard, a nontrivial problem arises of stabilizing dynamic
objects by the measured system output. In the future, it is planned to consider
the situation when part of the phase variables or their linear combination is mea-
sured. It is supposed to solve the stabilization problem using a static controller
under constraints on the phase and control variables, and also to estimate the
region of admissible initial states for the obtained controller in the presence of
an error in the measurements of the output variables.
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