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Preface

The 20th International Conference and School for Young Scientists “Mathemati-
cal Modeling and Supercomputer Technologies” (MMST 2020) was held during
November 23–27, 2020, in Nizhni Novgorod, Russia. The conference and school were
organized by the Mathematical Center “Mathematics of Future Technologies” and the
Research and Educational Center for Supercomputer Technologies of the Lobachevsky
State University of Nizhni Novgorod. The conference was supported by reputable spon-
sors (Intel, Huawei, and RSC). It was organized in partnership with the International
Congress “Russian Supercomputing Days”.

The topics of the conference and school covered a wide range of problems related
to mathematical modeling of complex processes and numerical methods of research, as
well as new methods of supercomputing aimed at solving state-of-the-art problems in
various fields of science, industry, business, and education.

This edition of the MMST conference was dedicated to the 100th birthday of
Professor Yuri Neimark. Professor Neimark’s contribution to science and higher edu-
cation is truly immense. He has left considerable heritage in the qualitative theory of
differential equations, the theory of stability, the theory of adaptive and robust control,
pattern recognition, nonholonomic and gyroscopic systems mechanics, optimization,
and mathematical modeling. Yuri Neimark founded the USSR’s first Faculty of Compu-
tationalMathematics andCybernetics and theResearch Institute ofAppliedMathematics
and Cybernetics. He is the author of about 600 published works, including at least 12
for inventions and 10 monographs.

The scientific program of the conference featured the following plenary lectures
given by outstanding scientists:

• Alexander Boukhanovsky (Russia): Generative design of value-based systems.
• Vladimir Voevodin (Russia): AlgoWiki, the structure of algorithms and the impossible
becomes possible.

• Alexander Gorban (UK): The new centaur: man and artificial intelligence.
• Andrei Gritsun (Russia): Predicting Earth climate change using the INM RAS Earth
system model.

• Aleksey Eliseev (Russia): The IAP RAS Earth system model: state of the art and
review of key findings.

• Aleksey Koronovskii (Russia): Multistability in an intermittent generalized chaotic
synchronization regime.

• Evgeniy Mareev (Russia): Current problems in geophysical electrodynamics.
• Alexander Moskovsky (Russia): Unique and effective RSC solutions for complex
problems.

• Sergey Pavlov (Russia): ARM Ecosystem Development for AI, Cloud and High
Performance Computing.

• Arkady Pikovsky (Germany): Low-dimensional reduction for ensembles of noisy
oscillators.
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• Yaroslav Sergeyev (Italy): Recent advances in Lipschitz global optimization.
• Victor Stepanenko (Russia): Mathematical modelling of the land surface.
• Dmitry Turaev (UK): On triple instability.
• Igor Belykh (USA): Synchronization in multilayer networks: when good links go bad.
• Alexander Hramov (Russia): Functional networks of the brain: methods for connec-
tivity restoration and their analysis.

These proceedings contain 25 full papers and 8 short papers carefully selected to
be included in this volume from the main track and special sessions of MMST 2020.
The papers accepted for publication were reviewed by three referees who were either
members of the MMST 2020 Program Committee or selected independent reviewers.

The proceedings editors would like to thank everyone involved in the conference,
especially the other members of the Organizing Committee and the ProgramCommittee,
as well as the external reviewers for their contributions. We also thank Springer for
producing these high-quality proceedings of MMST 2020.

May 2021 Dmitry Balandin
Konstantin Barkalov

Iosif Meyerov
Victor Gergel
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Mathematical Rigor in Applied
Mathematics Based on the Nonstandard

Analysis

Evgeny Gordon(B)

Eastern Illinois University, Charleston, IL 61920, USA

Abstract. This article contains an extended exposition of my talk
“Yu. I. Neimark and mathematical rigor” at the special session of the
conference MMCT-2020. It discusses the role of mathematical rigor in
applied mathematics. The discussion focuses on the question of relation-
ship between continuous processes and their computer modeling. The
question of mathematically rigorous formalization of physical theories,
which goes back to Hilbert’s 6th problem and the widespread the point
of view that continuous mathematics is an approximation of the discrete
one, and not vice versa are also discussed. A new axiomatic of set the-
ory is introduced that includes vague definitions and concepts at the
same level of rigor as in modern classical mathematics, which operates
only with well-defined objects. This allows to consider some non-rigorous
arguments of applied mathematics as rigorous ones and, thus, to be sure
that they are consistent.

Keywords: Nonstandard analysis · Infinitely large numbers ·
Hyperfinite set

1 Introduction

The special session dedicated to the centennial of the outstanding Russian math-
ematician Yu. I. Neimark was held within the framework of the MMCT-2020
conference on November 24, 2020 at Nizhny Novgorod State University, Russia.
This article contains an extended exposition of my talk “Yu. I. Neimark and
mathematical rigor” at this session. I dedicate it to the blessed memory of my
teacher and friend Yuri Isaakovich Neimark.

Skepticism of the importance of mathematical rigor in applied mathematics
began to spread in the second half of the last century in connection with the
development of the use of computers in applied and theoretical research and it is
quite widespread at the present time. I first heard about it from Yu. I. Neimark,
A. D. Myshkis and A. S. Kronrod, when I was a student. At the same time,
I learned from Kronrod the point of view that continuous mathematics is an
approximation of the discrete one, and not vice versa. Disputes about the role of
mathematical rigor continue to this day. See, for example, D Zeilberger’s Letter
c© Springer Nature Switzerland AG 2021
D. Balandin et al. (Eds.): MMST 2020, CCIS 1413, pp. 3–18, 2021.
https://doi.org/10.1007/978-3-030-78759-2_1
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to the Editor against the importance of mathematical rigor in the December
2013 (11) issue of the Notices of the AMS, p. 1431, a criticism of this letter and
a response to it in the 2014 (2) of the Notices, pp. 128 – 129. He also explic-
itly formulated and justified the idea about interrelation of the continuous and
the discrete world [1]: “Continuous analysis and geometry are just degenerate
approximations to the discrete world... While discrete analysis is conceptually
simpler ... than continuous analysis, technically it is usually much more difficult.
Granted, real geometry and analysis were necessary simplifications to enable
humans to make progress in science and mathematics....”. Continuous analy-
sis contains some good formulas that do not exist in the discrete one. These
formulas make it possible to calculate approximately the values of quantities
whose direct calculation is impossible without powerful computers. Such quan-
tities include, for example, ratios of very small numbers or very large sums of
very small numbers. So, with the development of computer technology, the role
of the continuous analysis decreases, and of the discrete analysis increases.

D. Hilbert formulated at number 6 the problem of constructing a rigorous
mathematical axiomatization of physical theories, in which mathematics plays
an important role, in his famous talk “Mathematical Problems” at the II Inter-
national Mathematical Congress in (Paris, 1900). Among physical theories, he
first of all singled out the theory of probability and statistical mechanics and
posed the problem of mathematically rigorous substantiation of limiting pro-
cesses, which lead from the atomistic view to the laws of the rigid body motion
in the Boltzmann’s book on principles of mechanics.

The problem of axiomatization of probability theory was first solved by Kol-
mogorov in 1933 [2]. His axiomatics based on countably additive measures on
probability spaces is conventional now.This axiomatics is generally accepted.
Most mathematically rigorous books on probability theory are based on it. How-
ever, applied mathematicians and those who taught probability theory to stu-
dents who were not pure mathematicians were not satisfied by Kolmogorov’s
axiomatics. The best explanation of this dissatisfaction was formulated by E.
Nelson to his book [3]:

“The foundations of probability theory were laid just over fifty years ago, by
Kolmogorov. I am sure that many other probabilists teaching a beginning grad-
uate course have also had the feeling that these measure-theoretic foundations
serve more to salve our mathematical consciences than to provide an incisive
tool for the scientist who wishes to apply probability theory.”

Rigorous mathematical foundations in the spirit of Hilbert’s 6th problem
have been proposed for quantum mechanics as well. The formation of quantum
mechanics was almost complete to the end of 20s of the last century. Its main
principles were formulated by P. Dirac at the physical level of rigor [4], and by
von Neumann at the mathematical level of rigor [6]. This book may be con-
sidered as another impact in the 6th Hilbert’s problem. Despite the fact that
almost any course of quantum mechanics is based on these axioms, for a long
time many physicists and mathematicians were dissatisfied with them due to
the lack of physical meaning in their formulations, since this axioms of Dirac
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and von Neumann themselves do not express any experimental laws. Also the
rigorous theory of self-adjoint unbounded operators in Hilbert spaces used in
von Neumann axiomatic is not intuitively clear and technically complicated for
physicists. See Note to Chapter VIII.11 [7] for discussion of various approaches to
rigorous axiomatization of the quantum mechanics. We can say that at present
there are few mathematically rigorous proofs of physical results. The existing
proofs are often technically complex, lacking physical intuition, and useless for
physicists. The famous mathematical physicist F. A. Berezin wrote in the preface
to the first edition of the book [5] (1972):

“I believe that at the present time statistical physics has not yet found its own
adequate mathematical language .... As for the rigorous results available now,
they are valuable from my point of view if they can compete in their simplicity
and naturalness with those heuristic considerations that they are intended to
replace. Such results are available in classical statistical physics ... In quantum
statistical physics there are no such results yet.”

This situation did not change significantly over the next 35 years.
D. A. Leites – the editor of the second edition of the book [5], (2006) wrote in
the preface: “Berezin ... always insisted on proving theorems that could have
direct applications to physics. It was unrealistic then, and experts believe that
it is unrealistic even now.”

A similar situation can be observed in computer simulations of continuous
processes. As a rule, the convergence of the most effective numerical methods
that give results in excellent agreement with the experiments, is either unproven
or non-exists.

The reason for this state of affairs is that by strict proofs in modern mathe-
matics we mean proofs formalized in Cantor’s Set Theory where a set is under-
stood by Cantor “as a combining of objects that satisfy some well-defined prop-
erty in a single whole”. Here a property is well-defined (a wd-property) if it is
possible to say about any object unambiguously whether it has this property or
not. Otherwise, the property is called vague. However, the objects and collection
of objects in natural science as a rule, are determined by vague properties, and
sometimes do not have any definitions at all. Recall that the field R is defined
axiomatically as a complete linearly ordered field that satisfies the Axiom of the
Least Upper Bound (LUB). Real numbers (reals) in Cantor’s Set Theory are
defined as Dedekind cuts – the specific subsets of the field Q of all rationals.
The Axiom LUB is a theorem there. Compare this theorem with the follow-
ing statement taken from the Chap. 26.1 of the Feynman Lectures on Physics,
vol. I:

“There are no actual boundaries between one range of wavelengths and
another, because nature did not present us with sharp edges. The numbers asso-
ciated with a given name for the waves are only approximate and, of course, so
are the names we give to the different ranges.”

Similar difficulties are encountered when studying the correspondence
between computer and continuous solutions of both applied and theoretical
mathematical problems. In this case the difficulties arise since we have to deal
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with numbers that are not very close to the computer’s memory boundaries. This
property is vague. The computer operations with numbers that do not satisfy
this property do not approximate operations in the field of reals, and even do not
satisfy the usual laws of arithmetic. This circumstance makes it very hard, if not
to say impossible to study the correspondence between continuous mathemat-
ics and its computer simulation within the framework of classical mathematics.
Section 2 contains a detailed discussion of modern mathematical rigor including
the brief introduction to Axiomatic Set Theory.

In the 60s of the last century A. Robinson constructed a proper extension of
the standard model of mathematical analysis [11]. In his construction the proper
extension of the field R is the linearly ordered field ∗

R. It is an easy exercise to
prove that ∗

R contains elements that are greater by absolute value, than any
element of R. These elements are called infinitely large numbers, and their
inverse elements are called infinitesimals. Obviously the properties of a real to
be infinitely large and to be infinitesimal are vague properties. Thus, Robinson’s
book contained the first consistent mathematically rigorous introduction of vague
properties into mathematics. The analysis developed on the base of Robinson’s
extensions was called by him Nonstandard Analysis (NSA). See e.g. [12] for
a brief introduction to Robinson’s NSA. In NSA many intuitive mathematical
formulations that go back to Leibniz and later to Cauchy, such as, for example,
the definition of limit:

“ lim
x→a

f(x) = L means that if x is infinitely close to a but x �= a, then f(x) is
infinitely close to L”, received the status of rigorous mathematical statements.
This made it possible to simplify significantly the proofs of many theorems of
standard analysis and even obtain new results in the standard mathematics
using NSA. Most of these applications were associated with the use of hyper-
finite sets i.e., sets, whose cardinalities, are infinitely large natural numbers
in the sense of NSA. Retaining many properties of usual finite sets, hyperfinite
sets make it possible to use intuition of finite mathematics in the continuous
one more directly, and to obtain rigorous results. However, Robinson’s model-
theoretic approach to NSA relies heavily on advanced mathematical logic. This
significantly complicates its use by mathematicians, especially those that are
focused on applications. In order to facilitate the perception of the NSA for a
wide range of mathematicians, E. Nelson developed an axiomatic version of the
NSA based on axiomatic ZFC of the Set Theory that is acceptable for most
mathematicians at least in its non-formal version – the Näıve set theory [8]. He
called the introduced theory “Internal set theory” (IST ) [13]. In 1987 Nelson
published the book [3] where he developed a new approach to the foundations
of probability theory based on hyperfinite probability spaces. The presentation
there is based on IST , but only some fragments of it are used, which are for-
mulated informally, but intuitively clear. The fundamental results of the theory
of probability, on which its applications are based, are formulated and proved
in IST . The formulations have a clear physical meaning and are available not
only to pure mathematicians, but also to all kinds of applied mathematicians.
This favorably distinguished them from formulations within the framework of
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Kolmogorov’s axiomatic based on measure theory. The appendix to the book con-
tains a derivation of the theorems of the standard theory of probability from the
“non-standard” theorems proved in the book. Nelson told me that he included
this appendix in the book purely for social reasons, as he considers to be correct
just the nonstandard versions of these theorems. Despite the availability of the
basic concepts of IST , many proofs of its theorems contain very sophisticated
logical reasoning to prove. This is partly due to the fact that there are no vari-
ables for collections defined by vague properties (classes) in the IST . They are
defined only by specific formulas of IST . A new version of the nonstandard
axiomatic set theory – Nonstandard Theory of Classes (NCT ), which allows
such variables, is presented in [14]. It is similar to IST , but it is based on the
theory NBG . The theory NBG allows variables that are interpreted as wd-
classes, and quantifiers over classes. The theory NCT allows to simplify some
proofs in IST . Also one more version of the NSA – the Theory of Hyperfinite
Sets (THS ) – was developed on the base of NCT [15]. This theory deals only
with hyperfinite sets and their subclasses, including the proper ones. The proper
subclasses of sets are called quasi-sets in THS . Hyperfinite sets that do not
contain proper subclasses are called small. Otherwise they are called large.
Small sets were introduced in P. Vopenka’s Alternative Set Theory (AST ) [16],
where they are called semisets. The theory AST is a version of the NSA that
differs both from Robinson’s (model-theoretic) NSA, and from the axiomatic ver-
sions of the NSA considered in the fundamental book [17]. An important notion
of an indiscernibility relation on a hyperfinite set that is defined below allows
to formalize standard continuous structures in the THS using factorization of
hyperfinite sets by indiscernibility relations. Moreover, a significant part of the-
orems of ZFC can be formalized and proved in THS . In a sense, THS can be
considered as a formalization of Plato’s famous allegory about the cave, pre-
sented in his work “Republic” (360 BC) as a dialogue between Plato’s brother
Glaucon and his mentor Socrates. In the allegory, Socrates describes a group of
people who have lived chained to the wall of a cave all of their lives, facing a
blank wall. The people watch shadows projected on the wall from “real world”
objects passing in front of a fire behind them and give names to these shadows.
The shadows are the prisoners’ reality but are not accurate representations of
the real world. In THS the real world (the world of ideas according to Plato) is
thought of as a discrete (atomistic) world – the world of finite sets, while con-
tinuous objects are shadows that prisoners see. I hope that this theory may be
appropriate for investigation of the questions, formulated in the Hilbert’s sixth
problem. A short discussion in favor of this hope is given at the end of Sect. 3.

The theory THS can be used in studies the relationship between discrete and
continuous mathematics. In my opinion it is the most adequate formalization
of the dialectic of discrete and continuous in mathematics. A new axiomatic
version of the NSA – the Theory of Quasi-sets (TQS ) presented in Sect. 3 is
mainly intended to simplify the proofs of theorems in THS , many of which are
technically difficult. In addition, this axiomatic system is as informal as possible,
which makes it accessible to the wast majority of mathematicians.
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2 What is the Modern Mathematical Rigor

Modern rigor in mathematical analysis developed during the 19th century. Its
development is primarily associated with the names of Cauchy, Bolzano, Weier-
strass and Cantor. When studying some problems about convergence of Fourier
series, Cantor introduced the concept of a set mentioned in Introduction and
developed Set Theory, which was destined to become the basis for the rigorous
formalization of all mathematics. In fact, any mathematical statement can be
formalized and proved in terms of Set Theory. Such formalization may be very
long and unnatural. In practice no one conducts it. However, the overwhelming
majority of mathematicians do not doubt that, in principle, this is possible.

Remark 1. This does not mean that the way of thinking in mathematics is
reducible to one in set theory.

At the beginning of the 20th century, some well-defined properties were dis-
covered such that the statements about the existence of the sets defined by
them led to a contradiction. These were the well known paradoxes of the set
theory. So, it was necessary to impose axiomatically some restrictions on the
properties, that define sets. The following is a brief and incomplete survey of the
two main systems of axioms of Set Theory. A clear detailed presentation can be
found in the Chap. 2 of the book [9].

The first axiomatic ZCwas introduced by Zermelo in 1908. Here C stays for
the Axiom of Choice introduced by E. Zermelo a bit earlier. After about 20
years, this axiomatics was expanded by adding two more axioms: the Axiom
of Replacement added by A.Fraenkel, and the Axiom of Regularity added
by J. von Neumann. These axioms are not needed in this article. The extended
axiomatics is called the Zermelo-Fraenkel axiomatics. It is generally accepted
that all mathematics can be formalized in the Zermelo-Fraenkel’s Set Theory
and, accordingly, a rigorous proof is such a proof that can be formalized in this
theory. Indeed a huge part of mathematics, including Calculus, ODE, PDE, etc.
can be formalized within ZC .

The primary objects of ZFC are sets. The basic relations are equality and
inclusion ∈. As a rule lowercase Latin letters denote sets or set variables. A
collection X of sets x that satisfy a wd-property P is denoted by
{x | P (x)}. We mentioned above that not for every wd-property P the collection
X is a set. However, the following Axiom of Separation (AS) holds: For a well-
defined property P (x) and a set y there exists the set
z = {x ∈ y | P (x)}. The equality of sets is defined by the
Axiom of Extensionality (AE): x = y ⇐⇒ ∀ z z ∈ x ←→ z ∈ y.
The uniqueness of sets, whose existence is stated in the next three axioms follows
from (AE).

Axiom of Union Set. (AU) For any set x there exist the set⋃
x = {y | ∃ z ∈ x (y ∈ z)}. E.g. the union

⋃{x, y} = x ∪ y.
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Axiom of Power Set. (APs) For any set x there exist the set
P(x) = {y | y ⊆ x}.

Axiom of Pair. (AP) For any two sets a and b, there exists the set {a, b}.
By (AE) {a, b} = {b, a}

The ordered pair of sets x and y in ZC is defined as follows: 〈x, y〉 :=
{{x}, {x, y}}. It follows from (AE) that 〈x, y〉 = 〈u, v〉 ⇐⇒ x = u ∧ y = v
It is easy to see that the set 〈x, y〉 ∈ P(P(P(x ∪ y))). So, the Cartesian product
a × b = {〈x, y〉 | x ∈ a, y ∈ b〉} is a set by the axiom (AS).

The statement f : a → b is formalized in ZC as follows:
f ⊆ a × b ∧ ∀x ∈ a∃ ! y ∈ b 〈x, y〉 ∈ f .
Here ∃ !y P (y) := ∃ y (P (y) ∧ ∀ z(P (z) −→ z = y)).

Axiom of Infinity ∃x(∅ ∈ x ∧ ∀ y ∈ x (y ∪{y} ∈ x)). The minimal set that
satisfies the Axiom of infinity is the set {∅, {∅}, {{∅, {∅}} . . . }. This set is the
set N = {0, 1, 2, . . . } of natural numbers in ZC . The Principle of Mathematical
Induction follows from the minimality.

Properties of mappings (injectivity, surjectivity, etc.), as well as the set ba of
all mappings from a to b, are formalized in an obvious way. The formulation of
Axiom of Choice (AC) is usual. The listed axioms constitute the axiomatics
ZC .

Strictly speaking the axiomatic ZFC (as well as ZC ) is not perfectly rigor-
ous, since the notion of a property is not well defined. For this axiomatic the
term “Näıve set theory” is used. This is also the title of the book [8] containing
a detailed exposition of the basic set theory for non-logicians.

All properties and statements of the Näıve set theory including the axioms of
ZFC can be written as formulas of the formal language of the first order predicate
logic with equality and a single extra-logical symbol of a binary membership
predicate ∈ This language is denoted by L below. If a variable ξ occurs in a
formula ϕ under the universal or existential quantifier, it is called bounded,
otherwise it is called free. Notation ϕ(ξ1, ..., ξk), means that each free variable
included in ϕ is a variable from the list (ξ1, ..., ξk). This formula is interpreted
as a statement about variables (ξ1, ..., ξk), i.e. after assigning specific values to
these variables, the corresponding statement becomes either true or false. A
truth value of a statement does not depend on bounded variables. Formula that
does not contain free variables is called a proposition. Axioms and theorems
of ZFC formulated in L are propositions.

The set of axioms of ZFC is infinite since the Axiom of Separation is not
a one axiom, but a countable set of axioms – its own axiom for each formal
sentence.

According to Gödel’s second incompleteness theorem, the consistency of
ZFC
cannot be proved in ZFC . Therefore, all statements about the consistency (inde-
pendence) of sentences are conditional, i.e. begin with the words “If ZFC is
consistent, then ...”

The following axiomatic NBG (von Neumann-Bernays-Gödel) was intro-
duced by K. Gödel in [10]. The formal language of NBG is also L. The primary
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objects of NBG are interpreted as wd-properties, that are called in NBG classes.
Sets are defined as classes that can be included in other classes as elements. It
is easy to see that this is a formalization of Cantor’s intuitive understanding
of the concept of a set on the page 3. The classes that are not sets, are called
proper classes. The following agreement is adopted to simplify the writing of L-
formulas. The variables assuming values of sets are denoted by lowercase Latin
letters, while variables denoted by uppercase Latin letters can assume values of
both sets and proper classes depending on a context. For example, the statement
“X is a set” can be formalized in L as ∃ Y X ∈ Y , or using the agreement above
∃ y X = y. The NBGAxiom of Separation is formulated here as a single
axiom: ∀x,X ∃ y x ∩ X = y. Variables denoted by lowercase Latin letters are
called set-type variables.

Definition 1. We say that ϕ(x1, ..., xk, Y1, ...Ym) is a set-type formula if all its
bounded variables are set-type variables.

We say that a set-type formula ϕ(x̄, Ȳ ) defines the set-type class Aϕ(Ȳ ) =
{x̄ | ϕ(x̄, Ȳ )}, where

x̄ = 〈x1, ..., xk〉, Ȳ = 〈Y1, ...Ym〉.
In this article the following Axiom is included in NBG .
Axiom of Existence of Set-type Classes (AEC). For every set-type

formula ϕ(x̄, Ȳ ) the class Aϕ defined by this formula exists.
Proofs of the following theorem and its corollary can be found in [9].

Theorem 1. Every set-type proposition is a theorem of NBG , if and only if it
is a theorem of ZFC .

Corollary 1. The axiomatic NBG is consistent if and only if the axiomatic
ZFC is consistent.

3 Theory of Quasi-sets – A Version of NSA

The theory THS can be used in studies of the relationship between discrete and
continuous mathematics. In my opinion it is the most adequate formalization
of the dialectic of discrete and continuous in mathematics. A new axiomatic
version of the NSA – the Theory of Quasi-sets (TQS ) presented in this section
is mainly intended to simplify the proofs of theorems in THS , many of which are
technically difficult. In addition, the axioms of TQS are as informal as possible,
which makes it accessible to a wide range of mathematicians.

Similar to NBG the primary objects of TQS are classes and sets are defined
to those classes that are included as elements in other classes. The Axiom
of Extensionality is the same as in NBG . The principle difference between
NBG and TQS is that the TQS allows classes for which the Axiom of Sep-
aration of NBG fails. The classes, for which it holds are called wd-classes, i.e.
a class X is a wd-class, if ∀x∃ y x ∩ X = y. If X is not a wd-class, then there
exists a set x such that Y = x ∩ X is not a set. A class Y that is a subset of a
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set is called a quasi-set. Obviously each set is a quasi-set. A quasi-set that is
not a set is called a proper quasi-set.

1 ◦ Axiom of Weak Transfer [Weak Transfer Principle] (WTP). Every
theorem of NBG is a theorem about wd-classes in TQS .

Remark 2. In the Robinson’s version of nonstandard analysis and in axiomatic
versions, where the predicate of standardness is involved, the strong transfer prin-
ciple (STP) is included as an axiom. The axiom STP is formulated approximately
as follows:any sentence that does not contain a standard predicate is a theorem of
the standard theory if and only if its version relativized to the predicate of stan-
dardness is a theorem of non-standard theory. The STP is a key axiom for prov-
ing standard theorems using NSA. The TQS is intended for proving theorems
in non-standard mathematics, i.e. theorems containing vague concepts (some-
times using standard mathematics). Therefore, TQS does not need the predicate
of standardness and the STP.

Question 1. The absence of a strong Transfer Principle in TQS gives grounds
to assume the existence of NBG statements, unprovable in NBG , but provable
in TQS . It would be interesting to find meaningful examples of such statements.
Can it be e.g. the statement P=NP?

2 ◦ Axiom of Class Formation (ACF). If P (x) is any statement that
involves a free variable x and such that all quantifiers are applied only to set and
quasi-set variables, then there exists a class {x | P (x)}.

The statement S(x) := ∀X ⊆ x∃ y X ∈ y satisfies the conditions of ACF. A
set a such that S(a) is true is called a small set. The existence of the S follows
from ACF.

The class of small sets is denoted by S. Its existence follows from the ACF.
It is easy to see that the class S is not a quasi-set. For any class X the notation
S(X) is used for S ∩ X.

A natural number n ∈ N is small if the set n̄ = {0, 1, ..., n − 1} ∈ S(N) is
small. We denote n ∪ {n} by n + 1.

Proposition 1 (Strong Induction Principle). If X ⊆ S(N), 0 ∈ X and
∀n ∈ X n + 1 ∈ X, then X = S(N).

� Let m ∈ S(N) \ X, then Y = m + 1 \ X ⊆ m + 1. Thus Y is a set, since
m + 1 ∈ S(N). Thus, ∃ k = min Y by the WTP. Then k �= 0 and k − 1 ∈ X. So
k ∈ X by the conditions of the proposition. Contradiction. �

Remark 3. By the WTP N is the set in TQS that satisfies standard Induction
Principle:

∀ x ⊆ N (0 ∈ x ∧ ∀n ∈ x n + 1 ∈ x) −→ x = N.

Thus, in the Strong Induction Principle all subclasses of S(N) are involved, while
in the standard one only all subsets of N. This does not imply yet that N �= S(N).
This inequality follows from the Axiom of Compactness, that will be introduced
later.



12 E. Gordon

We also define the quasi-set of small integers as follows: S(Z) := S(N) ∪
(−S(N)). Large natural numbers (integers) are called infinitely large. Nota-
tions: N∞ := N \ S(N) (Z∞ = Z \ S(Z))

Proposition 2. N∞ �= ∅.
� This Proposition will be proved later. �

Proposition 3. A set a is hyperfinite, if and only if the cardinality |a| ∈ S(N) �.

Definition 2. 1. A real number α ∈ R is called bounded (α ∈ Rb), iff |α| < n
for some n ∈ S(N).

2. A real α ∈ R is called an infinitesimal (α ∈ M0), iff |α| < n−1 for all
n ∈ S(N). The quasi-set M0 is called the monad of 0. Reals α, b ∈ R a said
to be infinitesimally close (α ≈ γ), if α−γ ∈ M0. Sometimes we write α ≈ 0
for α ∈ M0 and |α| � 0 for α /∈ M0.

3. A real Ω ∈ R \ Rb is called infinitely large (Ω ∈ R∞). Obviously
R∞ = (M0 \ {0})−1.

Proposition 4. The monad M0 is the maximal ideal in the ring Rb.

� The statement “M0 is an ideal in Rb” is similar to the theorem “The sum
of two infinitesimal functions is an infinitesimal function and the product of an
infinitesimal function by a bounded one is an infinitesimal function” of Calculus
I. The proofs are also similar.

If I is an ideal in Rb such that M0 � I and a ∈ I \ M0, then obviously
1/a ∈ Rb, so 1 ∈ Rb. Thus, I = Rb. �

In what follows the quotient class α + M0 for α ∈ Rb is denoted Mα.

Remark 4. Since any monad Mα is a proper quasi-set one can not use the
quotient class Rb/M0 that consists of monads. However, it will be shown later
that the existence of complete system of representative of monads Mα, α ∈ Rb

exists.

Proposition 5. The classes N∞, Z∞, R∞, Rb, M0 are proper quasi-sets.

� Suppose that N∞ is a set. Then, since N∞ ⊆ N there exist a number
N = min N∞ by WTS, so N −1 ∈ S(N). Thus N ∈ S(N) by Proposition 1, while
N ∈ N∞. The contradiction. So, N∞ is a proper quasi-set as well as Z∞.

If R∞ is a set, then Z∞ = {�α�| α ∈ R∞} is a set by WST. Here �α� denote
the integer part of α. So R∞ is a proper quasi-set. The proof of this Proposition
for Rb and M0 follows immediately from Definition 2 (3). �

Proposition 6. If X, Y are quasi-sets, then dom(X), range(X), X∩Y , X∪Y ,
X \ Y , X × Y Y X are also quasi-sets.

� Let X ⊆ x, Y ⊆ y. Then first five operations applied to X and Y are
subclasses of the same operations applied to x and y. The latter are sets by WTP.
So, the first ones are quasi-sets. For the Cartesian product the Proposition follows
the Kuratowski’s definition of an ordered pair. By the definition the operation
XY denotes the quasi-set of all functions f , whose graph is a subset from X ×Y .
Since f is a set, then dom(f) and range(f) are sets, thus XY ⊆ xy. �
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Definition 3. We say that a quasi-set X is sharp, if any its subset is small.

Proposition 7. The quasi-set S(N) is sharp.

� Let x ⊆ S(N). By Proposition 2 there exists N ∈ N∞. If x is an infinite
set, then ∀n ∈ N ∃m ∈ x m > n. This is an NBG theorem and by WTP there
exists m ∈ x such that m > n. This contradicts the assumption above. So, x is
a finite set. Since x ⊆ [min x,max x] ⊆ S(N), x is small. �

3 ◦Axiom of Compactness (AC). Let X be a sharp quasi-set that has finite
intersection property (FIP), i.e. every subset of X has a nonempty intersection,
then

⋂
X �= ∅.

AC implies Proposition 2. Indeed: consider the sharp quasi-set X = {N \
{0, 1, ..., n − 1} | n ∈ S(N) that exists by ACF. By AC

⋂
X = N \ SN �= ∅.

Proposition 8. Let F be a function such that dom(F ) is a sharp quasi-set.
Then there exists a function f such that F ⊆ f . ��

Though we cannot include classes in sets we can consider classes that are
indexed families of some classes.

Definition 4. We say that a class X is a family of classes {Xi | i ∈ I}, indexed
by elements of the set I (I-family), if dom(X) = I and ∀ i ∈ I Xi = {x | 〈i, x〉 ∈
X}

4 ◦ Axiom of Choice for Quasi-sets (ACh). If F is a family of quasi-sets,
indexed by a sharp quasi-set I (i.e. dom(F ) = I) and ∀ i ∈ I Fi �= ∅, then there
exists a function G ⊆ F , such that dom(G) = I and ∀ i ∈ I G(i) ∈ Fi. This
function is called a choice function as usual.

5 ◦ Axiom of Exponentiation (AExp). If X is a sharp quasi-set, then
there exists the sharp family P(X) of all subquasi-sets of X. This means that

∀ i ∈ I P(X)i ⊆ X and ∀Y ⊆ X ∃ i ∈ I P(X)i = Y, (1)

where I = dom(P(X)). This axiom was suggested by P. Andreev for THS . It
is included in TQSwithout any changes. The theory TQS can be interpreted in
NCT , whose consistency with respect to ZFC is proved in [7]. So, the theory
TQS is consistent with ZFC as well. AExp implies the following

Proposition 9. 1. Any subquasi-set of a sharp quasi-set is sharp.
2. The family of sharp quasi-sets is closed under operations listed in Proposition

6
3. If F : X → Y is a surjective map and X is a sharp quasi-set, then Y is a

sharp quasi-set as well.
4. If F is a function and dom(F ) is sharp, then F is a sharp quasi-set.

Sharp quasi-sets simulate standard mathematics within TQS as follows. For
any sharp quasi-sets X and Y set:

XεY := ∃ i ∈ dom(Y ) X = Yi, X ≡ Y := ∀Z ZεX ←→ ZεY (2)



14 E. Gordon

Theorem 2. Every ZC -theorem written in (ε,≡)-language is a theorem about
sharp quasi-sets in TQS .

This theorem was proved for THS in [15]. The proof can be modified for the
case of TQS .

Now we able to formulate rigorously and prove the existence of complete
system of representatives of monads ∈ Rb (c.s.r.m.), mentioned in Remark 4.

Theorem 3. There exists a sharp class R ⊆ Rb, whose intersection with every
monad Mα, α ∈ Rb has only one element.

� For every α ∈ Rb put

Cα = {〈q, q′〉 ∈ S(Q)2 | α ∈ (q, q′) ⊆ Rb}

Obviously, if α ≈ γ, then Cα = Cγ and Mα =
⋂{(q, q′) | 〈q, q′〉 ∈ Cα}. The

family C = {Cα | α ∈ Rb}, is a subfamily of the class P(S(Q)). By the Andreev’s
Axiom of Exponentiation the latter is a sharp class, thus C is a sharp class as
well. So, the family of monads in Rb indexed by the sharp class C has a choice
function by the Axiom of Choice for quasi-sets. The range of this choice function
is a c.s.r.m. in Rb. �

There are infinitely many c.s.r.m.’s. since if f : C → Rb is a choice function
and g : C → Rb is a function such that ∀C ∈ C f(C) ≈ g(C), then g is
also a choice function and the range of g is a c.s.r.m. as well. Moreover, there
does not exists any definable in TQS c.r.s.m. This statement was proved in [15]
(Proposition 6.3.) in the framework of THS . The proof presented there can be
easily modified for TQS .

Operations in any c.s.r.m R are uniquely determined based on the require-
ment that R must be a field isomorphic to Rb/M0. Thus, for a, b ∈ R

a +sh b = c ∈ R, c ≈ a + b; a ·sh b = d ∈ R, d ≈ a · b (3)

Here + and · are operation in R. The linear order in R is inherited from Rb. The
proof of the following Proposition is easy.

Proposition 10. For every c.s.r.m. R the algebraic system 〈R; +sh, ·sh, <〉 is a
complete linearly ordered field.

The next proposition follows immediately from the construction of c.s.r.m.

Proposition 11. For every a ∈ Rb there exists a number sh(α) ∈ R such that
sh(a) ≈ α.

We see that, generally speaking, operations in R, are not equal to those in
R but only infinitesimally close to them. They depend on a choice of a set R. In
other versions of NSA, in which there is an external (i.e. not definable in standard
terms) predicate of standardness, the external set (quasi-set in our version) of
standard elements is a c.s.r.m. that is a subfield of Rb. In the TQSwe can always
choose a c.s.r.m. R so that the field St(Q) is a subfield of R. It follows from the
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non-definability of c.s.r.m. in TQS , that no any definable c.s.r.m. R can be a
subfield of Rb. In what follows some c.s.r.m. R that has this property is fixed. It
is denoted by R

sh.
As it was mentioned in the Remark 4 the field R

sh is obtained by identifica-
tion of infinitesimally close elements. Recalling the discussion of Plato’s allegory
on page 5, we can say that the field R of the theory of quasi-sets is an element
of the “real world”, and field R

sh is its shadow, which the prisoners see. In fact,
prisoners only see the shadows of the numbers they can access (the elements of
Rb. Infinitely large numbers (the elements of R∞) are beyond their reach.

The field R
sh is an analog of the field of standard elements in the Robinson’s

NSA, where the element αsh ∈ R
sh is called the standard part or a shadow (sic!)

of α. In what follows the elements of R
sh we call sharp reals.

The analogy between standard reals and sharp reals can be extended to an
(incomplete) analogy between standard elements of the NSA and sharp classes.

Definition 5. The quasi-sets superstructure Sqs(R) over R is the minimal fam-
ily of sets that contains R as an element, is closed under operations defined in
Proposition 6 and contains sub quasi-sets of these sets.

This definition differs from the definition of the standard superstructure
S(R), which includes only sets, but not quasi-sets.

Proposition 9 allows to define the sharp superstructure Ssh(Rsh). The defi-
nition repeats Definition 5 with replacement of quasi-sets by sharp classes.

Remark 5. A. Robinson developed his NSA in some proper (nonstandard exten-
sion ∗S(R) of the standard superstructure S(R) (see e.g. [12]). In our approach
Ssh(Rsh) is an analog of the standard superstructure S(R), while Sqs(R) is an
analog of its nonstandard extension ∗S(R).

A natural question arises how to describe the shadow xsh of an arbitrary set
x ∈ S(R). The size limitations of the article do not allow me to explore this issue
in detail here. Only the simplest examples are discussed below.

By Proposition 10 it is natural to define R
sh as the shadow of the field R.

Similarly, for any ξ, η ∈ Rb it is naturally to define [ξ, η]sh as [ξsh, ηsh]sh. For an
arbitrary set a ⊆ R let ash := {ξsh | ξ ∈ a}. Then the following Proposition is
true.

Proposition 12. If a ⊆ R, then ash ⊆ R
sh is a closed set.

� Suppose that r ∈ R
sh is a limit point of ash. Then for every n ∈ S(N)

the set wn = {ξ ∈ a} | 0 < |r − ξ| < n−1. The intersection
⋂

n∈S(N)

wn �= ∅ by

the Axiom of Compactness. So, there exists η ∈ a such that η ∈ M(r). Since
ηsh ∈ R

sh, ηsh = r ∈ a. �
Let a function f ⊆ Rb × Rb then it is natural to define fsh by the following

conditions:

dom(fsh) = (dom(f))sh; ∀ ξ ∈ dom(f) fsh(ξsh) = (f(ξ))sh (4)



16 E. Gordon

Proposition 13. fsh is continuous on its domain if and only if

∀ ξ, η ∈ dom(f) ξ ≈ η =⇒ f(ξ) ≈ f(η) (5)

If the condition (5) hold a function f is said to be S-continuous.

Proposition 14. Let x = {xn | n ∈ N} be a sequence of reals that is a set. If
x � S(N) ⊆ Rb. Define the shadow xsh := {xsh

n | n ∈ S(N). Then

lim
n∈S(N)

xsh
n = l ∈ R

sh ⇐⇒ ∃ ω ∈ N∞ ∀n ∈ N∞ (n < ω =⇒ xn ≈ l).

Propositions 13 and 14 are formulated and proved in the article [19] (see also
the book [18]) in the framework of Robinson’s NSA . It can be easily adjusted
to TQS .

This article is devoted to the study of dynamical systems on hyperfinite mea-
sure spaces and their applications to approximations of dynamical systems on
Lebesgue spaces by finite dynamical systems. A simple example from [19] is dis-
cussed here, which demonstrates some effects arising in the study of the behavior
of ergodic means of dynamical systems on very large probability spaces. These
effects which easily formulated and proved in the framework of TQS , but even
their formulation in the standard mathematics seems practically unreadable. It
also demonstrates how standard mathematics is used to prove such effects.

Example. Let us demonstrate the application of the theory TQS by the example
of studying the relationship between the simplest continuous dynamical system
and its hyperfinite approximation. As a continuous dynamic system consider the
shift by τ ∈ (0, 1) modulo 1 of the standard segment [0, 1] (see Remark 5) with
the identified ends. The cases a) τ ∈ Q and b) τ /∈ Q should be considered
separately. Obviously for a continuous function f on [0, 1] the ergodic mean

A([0, 1], τ, f, x) = lim
n→∞

1
n

n−1∑

k=0

f(τk(x))

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
b

b−1∑

m=0
f(x + m

b ), τ = a/b, gcd(a, b) = 1
1∫

0

f(x)dx, τ − standard irrational number

(6)

Define approximating hyperfinite dynamical system as follows. Consider a hyper-
finite set [0, 1]H = {k/H | k = 0, 1, ...,H − 1}, where H ∈ N∞ with a uniform
normalized measure pH as a probability space. The hyperfinite probability space
[0, 1]H , μ approximate the standard probability space ([0, 1], dx) in the following
sense. [0, 1] = [0, 1]sh and for any standard continuous function f ∈ Ssh(Rsh)
one has

1∫

0

f(x)dx =

(
1
H

H−1∑

k=0

ϕ(k/H)

)sh

, (7)

where f = ϕsh, ϕ ∈ Sqs(R) see Remark 5 and Proposition 13.
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The measure preserving transformation of the hyperfinite probability space
([0, 1]H , p) is a permutation τH : [0, 1]H → [0, 1]H . Without loss of generality,
assume that τH is a cycle of length H. We say that τH approximates τ , if
∀ k

H ∈ [0, 1]H(τH(k/H))sh = τ((k/H)sh). For the case a) of a rational shift
τ in [0, 1] (6) set H = bM + 1, where M ∈ N∞ is such that gcd(a,H) = 1.
Then gcd(aM,H) = 1 and the shift τH = aM

H in [0, 1]H is a cycle of the length
H. For the case b) of an irrational shift τ let pK

qK
for K ∈ N∞ be the K-th

convergent of the continued fraction for τ . Set H = qk. Since gcd(pk, qk) = 1
the shift τH in [0, 1]H is also a cycle of the length H. It is easy to see that
in both cases τH approximates τ . So, in both cases the hyperfinite dynamical
system HS = ([0, 1]H , pH , τH) approximates the continuous dynamical system
CS = ([0, 1], dx, τ). Let us discuss the relationship between ergodic averages of
CS and DS. Let an arbitrary S-continuous function f : [0, 1] → R, be such that
f(0) = f(1) (recall that the ends of the segment [0, 1] are glued) and n,m ∈ N.

Put av(f, n,m) = 1
n

n−1∑

k=0

f(τk
H(m/H)).

Theorem 4. For every m ∈ {0, . . . , H − 1}
1. If n1/H ≈ n2/N ≈ a ∈ R

sh, a > 0, then av(f, n1,m) ≈ av(f, n2,m). If

a = 1, then av(f, n1,m) ≈
1∫

0

fsh(x)dx,

2. ∃ L ∈ N∞ ∀n ∈ N∞, n < L (n/H ≈ 0 =⇒ av(f, n,m) ≈ A([0, 1], τ, fsh, ξ),
where ξ = (m/H)sh,

3. If n/H ≈ a, then the functional ϕa on C[0, 1] such that ϕa(fsh) =
(av(f, n,m)sh is an invariant mean on [0, 1]

4. If τ is irrational, then av(f, n,m) ≈
1∫

0

fsh(x)dx for every n ∈ N∞ such that

n/H ∈ Rb.

All statements of this theorem are formulated and proved in [19] for arbitrary
Lebesgue probability spaces within the framework of Robinson’s NSA. State-
ments 1 and 3 can be reformulated and proved in standard terms, but these
proofs are unnatural for applied mathematicians. The statement 2 assert that
ergodic means av(f, n,m) of the systems HS approximate the ergodic mean (6)
of the CS system only on the initial segment of infinitely large moments n of the
discrete time that are significantly less than H, i.e. n/H ≈ 0. The formulation
of the statement 2) in standard terms is practically unreadable, to say nothing
of its proof. The theorem 4 is illustrated by computer experiments in [19]. The
results of the theorem are observed even when in numerical experiments as rela-
tively moderate numbers. e.g. of the order 106 are taken for the “infinitely large”
H.
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Abstract. The problem of making online decision support system for
selecting the two-parametric distribution law of a continuous positive
random variable with a finite second moment is considered. Algorithms
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distribution law of random variables is based on a natural factorization
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ferential entropy; graphs of densities, distribution functions, and failure
rates; scatter plots and a table of metrics are applied to visually com-
pare the distribution laws. To rank the distribution laws, the following
simple and intuitive criteria, focused on solving practical problems, are
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of the differential entropy, fitting empirical quantiles, fitting empirical
moments of higher orders, availability of analytically defined restora-
tion function, behaviour of the intensity function, and the possibility of
decomposition into exponential phases. Online decision support system
is being developed in Python using the Dash framework. The following
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1 Introduction

Modeling of different systems requires description of the random factors that
affect their behavior [1,2]. A number of publications relating to various branches
of science and technology, for instance [3–8], confirm the necessity of selecting
theoretical distribution laws for random variables (RV) on the basis of experi-
mental data. The analytical model of a random factor is important for describing
various types of systems and processes, since it allows us to determine, predict
and optimize important characteristics. Besides, getting analytical models we
process experimental data (including smoothing and adjusting). It helps to pre-
serve significant fundamental features of the phenomenon observed. In addition,
the distribution laws are the input data for the simulation models. Currently,
there are many methods of selecting RV distribution laws. Some reviews on the
approaches can be found in [9,10]. The main disadvantages of the methods are:

1. Ambiguity and subjectivity of the result for several reasons:
– Several distributions may be consistent with the null hypothesis, so that

some additional research is necessary to select one distribution law only.
– The result of distribution law selection depends on the type of goodness-

of-fit test.
– Sensitivity of the result to the selected length of partial intervals.

2. The need for sufficiently big data samples or some a priori information on the
distribution shape.

3. Difficulties for engineers, economists, biologists, etc. in adequate selection and
assessment of the effectiveness of statistical data processing methods.

In this paper, we consider the problem of making online DSS (decision sup-
port system) for selecting a two-parameter distribution law for a continuous,
positive random variable with a finite second moment. Such random variables
are very important to describe distances, time intervals, deviations, reliability
characteristics, economic indicators, mechanical properties etc. The main point
of the study is the approach focused on practical application and user’s criteria.
Hopefully, it will help to select an appropriate distribution law by using less
information. There are no formal restrictions and requirements for the dataset
size. The point is the bigger dataset is, the more precise calculations of the
moments the user takes into account are. The DSS is to be based on simple and
intuitive for the user quantitative and qualitative criteria. The degree of criteria
significance can be adjusted by the user. And one can take into account a com-
promise between the accuracy of the model and its computability. The DSS can
be applied to a set of distributions previously selected by other methods, or can
precede them.

2 DSS Scenarios and Algorithms for Selecting RV
Distribution Laws

The DSS is being developed in Python using the Dash framework, which is a
bundle of Flash, React.Js, HTML and CSS. The following Python libraries were



Online DSS for Selection of the Distribution Laws 21

used for calculations: math, numpy, random2, scipy, sympy. And plotly module
was used for graphical visualization. The basic algorithm for comparing and
selecting the distribution laws of positive continuous random variables is shown
in Fig. 1. The scenario of the DSS operation is as follows.

Actor: user.
Objective: to compare and rank the distribution laws on the basis of user’s

statistical data.
Prerequisites: The user has opened the DSS web page.
The main sequence:

1. The user uploads a file with statistical data.
2. The DSS calculates the average and mean standard deviation (MSD) with

their confidence intervals; a list of distributions, their parameters, and the
values of differential entropies; graphs of distribution functions, distribution
densities, distribution intensities, and restoration functions; scattering dia-
grams with the option of selecting the distribution law in a drop-down list
on each axis; a table of distribution metrics; a form for selecting groups of
criteria importance and filling in additional parameters.

3. The user selects a pair of distribution laws on the axes of a scatter plot.
4. The system automatically outputs a scatter plot for the selected distributions.
5. The user selects a significance group in the drop-down list for each of the 6

criteria and inputs necessary additional data.
6. The DSS provides ranking of RV distribution laws and a reference on its genesis.

Alternative sequence:
If the input data correspond to exponential distribution, the DSS outputs

the average and variation with their confidence intervals; a list of distributions,
their parameters, and the values of differential entropies; graphs of distribution
functions, distribution densities, distribution intensities, and restoration func-
tions; a scattering diagram; a recommendation to use exponential distribution;
no multi-criteria selection form is needed in this case.

In Fig. 1 Output 1 is:

– exponential distribution;
– a parameter of the distribution;
– the value of differential entropy;
– graphs of the distribution function, distribution density, distribution intensity,

and restoration function;
– recommendation to use the exponential distribution.

Output 2:

– list of distributions;
– parameters of distributions;
– the values of differential entropy;
– graphs of distribution functions, distribution density, distribution intensity,

and restoration function;
– table of metrics.
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Fig. 1. The algorithm for comparing and ranking the distribution laws
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The algorithm for localization, calculation, and selection of distribution param-
eters is given in Fig. 2. The algorithm for multi-criteria selection of the distri-
bution law is described below.

Fig. 2. The algorithm for localization, calculation, and selection of distribution param-
eters

3 The DSS Basic Elements

The input data block is simple and intuitive for the user. It enables a user to
upload a file containing statistical data in .txt or .xlsx formats. The output block
consists of several elements.

1. The output form including names of appropriate distribution laws, as well as
the view of distribution densities, parameter values, and differential entropies.
The set of RV distributions is given in accordance with the natural factoriza-
tion of the space of empirical characteristics – the average M > 0 and MSD
D > 0. According to this factorization, three main sets of distribution laws
are proposed.
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Fig. 3. Output forms with RV distributions and characteristics: densities, parameters,
entropies a) hypoexponential mode at M = 7, 3;D2 = 2, 6; b) hyperexponential mode
at M = 1, 2;D = 2, 1; c) exponential mode at M = 2, 15;D2 = 2, 1.

(a) Exponential mode. The case when the average and MSD are close |M −
D| < ε is modelled by an exponential distribution. By default, ε = 0, 1.

(b) Hyperexponential mode. In the case when the MSD is greater than the
average, i.e. D > M+ε, the following distributions are proposed as models
of a random variable:

– hyperexponential distribution of a special type;
– Weibull distribution;
– gamma distribution with density;
– lognormal distribution with density;
– inverse Gaussian distribution.

These distributions are described in more detail in [11]. The two-phase
hyperexponential distribution of a special type was first proposed by one
of the co-authors of this article in [12] as a method for approximating
two-parameter distributions of positive random variables. Its properties
were studied in [13,14]. The advantages of this distribution are:

– requirement of two parameters only (in contrast to the general hyper-
exponential distribution well studied in [15,16], which requires at least
three parameters to be applied);

– existence and uniqueness of the solution of the system of moment
equations for hyperexponential mode [12];
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– the meaning of the RV distributed according to this law is the sojourn
time of the system in two parallel connected states, each being dis-
tributed according to the exponential law;

– explicit analytical form of the restoration function [11].
(c) Hypoexponential mode, M is not divisible by D. The case when the aver-

age is greater than the MSD, i.e. M > D + ε, the following distributions
are offered as models of a random variable:

– hypoexponential distribution of nth order;
– Erlang distribution;
– Weibull distribution;
– gamma distribution;
– lognormal distribution;
– left truncated normal distribution;
– inverse Gaussian distribution.

The distributions are described in more detail in [17–19]. Hypoexponen-
tial distribution of nth order with two types of phases is convenient for
approximating two-parameter distributions of positive random variables.
The meaning of the RV is the sojourn time in a series-coupled state, each
of them is distributed according to the exponential law. The distribution
has three parameters determined by two empirical characteristics.

(d) Hypoexponential mode, M is divisible by D. The hypo-exponential dis-
tribution is applicable if M is not divisible by D. Otherwise, Erlang dis-
tribution of nth order with one type of phases is used. In this case, the
rest of distributions are kept, except for the gamma distribution, which
degenerates into a special case of a discrete parameter and coincides with
the Erlang distribution.

The parameter values for each distribution are determined by the numerical
solution of a system of two moment equations using the functions from sympy
and scipy libraries. To effectively search for solutions of systems of equations,
the initial parameter values are selected adaptively using the equation root
localization procedure.

The differential entropy [20] of RV distributions can take any real val-
ues. For exponential and lognormal distributions, the entropy is calculated
using analytical formulas. For other distributions, numerical calculations are
applied.
Examples of output forms with RV distributions, parameter and characteris-
tics for hypo-, hyper- and exponential modes are shown in Fig. 3.

2. Graphs of densities, distribution functions, and failure rates. The user can
display some of the curves by choice, change the scale, select an area, and save
the image in a graphical format. Examples of graphs for the hyperexponential
mode are given in Fig. 4.

3. Scattering diagram is another tool for comparing RV distributions presented
in the system (Fig. 5). It allows us to statistically visualize distributions
based on random number generators from the random2 library and random
sequences from scipy.stats. The following functions were used to generate
distributions:
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– exponential distribution → random2.expovariate();
– hyperexponential distribution → random2.expovariate()+ random2.

expovariate();
– Weibull distribution → random2.weibullvariate();
– gamma distribution → random2.gammavariate();
– lognormal distribution → random2.lognormvariate();
– left truncated normal distribution → random2.normalvariate();
– inverse Gaussian → scipy.stats.invgauss.rvs();
– Erlang distribution → random2.gammavariate().

The left truncated normal distribution can be generated using the algorithm
described in [21]. It consists of only positive random numbers obtained by the
generator of normal distribution in the sequence. The user can select a pair
of distributions to compare, or the same distribution on both axes, as well as
the number of points on the chart. The main visual comparison criterion is
the symmetry of the scattering diagram over the range of RV values and the
form of their concentration. For more information about scattering diagrams
and their application to compare distributions of positive RV, see [22,23].

4. An example of table of metrics for pairs of distributions is given in Fig. 6. The
metrics presented in [24] are used. A uniform metrics defines the maximum
deviation of two distribution functions, while the average metric is an inte-
grally averaged indicator of deviations of distribution functions over the entire
positive half-axis. For more information about these metrics application, see
[25].

5. Block of multi-criteria ranking of distribution laws.

All of the above elements of the online DSS are tools for comparing the distribu-
tion laws, allowing to evaluate the relative differences of distributions only. To
rank the distribution laws, we need criteria of “better” or “worse” distributions.
The following practical criteria are offered for the user to choose:

1. Maximization of differential entropy
The principle of maximum differential entropy [26] or entropy coefficient (the
ratio of differential entropy to the variation coefficient) is often applied to
select the distribution laws. In this case, the model allowing the highest degree
of uncertainty for the value of a random variable is selected. We propose to
rank the distribution laws by the value of the differential entropy which can
take any real values.

2. Fitting higher-order moments
The first two moments are the basis for determining an appropriate set dis-
tribution laws and their parameters. But the user can optionally specify the
moments of higher orders. It is relevant if the dataset is big enough to account
for higher moments and/or in case such distribution properties as asymmetry
(the third moment is responsible for it) and peakedness (the fourth moment)
are significant. Then the better the distribution theoretical moments fit (in
terms of the sum of squared deviations) corresponding empirical moments,
the higher it is ranked.
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Fig. 4. Output forms with graphs of densities, distribution functions and failure rates:
hyperexponential mode at M = 1, 2;D = 2, 1.
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Fig. 5. Scattering diagram for comparing hyperexponential and Weibull distribution
at M = 1, 3;D = 10, 4;n = 1000

Fig. 6. The table of metrics for comparison of distributions in hyperexponential mode
at M = 1, 3;D = 10, 4;n = 1000

3. Fitting the given quantiles
The user can use this criterion to fit some quantiles. This criterion is relevant
in case of special importance of a certain range of RV values (for example,
small or large ones). The ranking is carried out in the same way: the better
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the distribution fits (in terms of the sum of squared deviations) empirical
quantiles, the higher it is ranked.

4. Availability of the restoration function in analytical form
The restoration function is one of the primary concepts in the restoration
theory [19]. It is used to calculate important system reliability characteris-
tics. For many well-known distribution laws, the restoration function cannot
be obtained in analytical from. Then we need to approximate the restoration
function by table values or estimating it by definition. It makes difficulties for
further analytical operations. Elementary restoration functions in analytical
form are defined for the exponential, hyperexponential, and Erlang distribu-
tion. For the latter, the form of the restoration function becomes much more
complicated with the growth of the distribution order.

5. The behavior of the failure rate function: monotonic or not.
If we are aware of the failure rate behavior, it is possible to include this
criterion and select monotonic or non-monotonic behavior of the failure rate
function. It is constant for exponential distribution only. The failure rates of
the lognormal and inverse Gaussian distribution are not monotonic functions
with break-in [11]. A fairly short period of increasing failure rate and then
break-in is also accompanied by a steep decline in the number of failures (the
system quickly enters a period of normal operation).

6. The possibility of decomposition into exponential phases.

If the user selects this criterion, the rank of the hyperexponential and hypoex-
ponential distributions will increase.

In the DSS, multi-criteria problem of selecting the distribution is solved by
means of the approach developed by S. A. Piyavsky [26]. The significance of
these six criteria is determined by the user by assigning them to one of the four
groups of significance: very important, important, slightly important, ignore.
Quantification of these fuzzy assessments into criteria weight coefficients can be
done by the method in [27]. Then the multi-criteria problem is to be solved by
reducing it to a linear convolution with the criteria weight coefficients obtained.
Herewith, each distribution is assigned the number of points (from 1 to N, where
N is the size of distribution set according to the natural factorization of the space
of empirical characteristics) due to the rules from Table 1 (column “Distribution
ranking method”). Additional data to be specified by user are described in the
last column of Table 1 gives a summary of all heading levels.
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Table 1. Method of multi-criteria selection of RV distribution law.

Criterion Distribution ranking method Additional data to be
specified by user

1 Maximization
of differential
entropy

From 1 to N points in ascending
order of the differential entropy
value

2 Fitting
empirical
higher-order
moments

From 1 to N points in
descending order of difference
between the empirical and
theoretical values of
higher-order moments

The number of
higher-order moments

3 Fitting
empirical
quantiles

From 1 to N points in
descending order of difference
between the empirical and
theoretical values of quantiles

The number of
quantiles

4. Availability of
the restoration
function in
analytical
form

1 point – no restoration function
in analytical form; N/2 points –
complex form of restoration
function; N points – restoration
function in analytical form.

5. The behavior
of the failure
rate function

In case of selecting the
monotonic intensity function: 1
point - distributions with
non-monotonic intensity rate; N
points - distributions with a
monotonic intensity function. In
case of selecting a
non-monotonic intensity
function with break-in: vice
versa. In case of selecting a
different behavior of the
intensity function: N/2 points –
for all distributions.

6. Possibility of
decomposition
into
exponential
phases

N points - if it is possible to
decompose into exponential
phases; 1 point – if it is
impossible to decompose into
exponential phases.

4 Conclusions

The above algorithms and scenarios have been implemented in the online DSS
for choosing the distribution law of positive random variables. It can become
an effective and convenient tool for users (engineers, economists, biologists, etc.)
to model random variables, their distributions and characteristics. Advantages
of the DSS are intuitive and interactive interface; online accessibility without
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installing desktop software; ability to save graphic elements as files; light require-
ments for input dataset; possibility of visual adaptive comparison of the distri-
bution laws of random variables according to different user’s criteria. To com-
pare the distribution laws the user can apply: graphs of densities, distribution
functions, intensities, and restoration functions; metric tables; and scatter plots.
The distributions ranking is based on quantitative and qualitative criteria. The
degree of criteria importance can be adjusted by the user with regard to inves-
tigation purposes and a compromise between the accuracy of the model and its
computability. The prospects of research are to test the system on experimental
datasets, to compare it with other methods of distribution laws selection, to add
the option of getting advice on how many higher moments one should take into
account with regard to the given input dataset.
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Application of the Entropic Tilt Limiter
to Solve the Gas Dynamics Equations

Using the Implicit Scheme of the
Discontinuous Galerkin Method

Victor F. Masyagin(B)

National Research Mordovia State University, Saransk, Russia

Abstract. The paper proposes an implicit scheme of the discontinuous
Galerkin method for solving two-dimensional equations of gas dynamics
on unstructured grids. The implicit scheme is based on the representation
of a system of grid equations in the “delta form”. To solve the SLAE
obtained during the approximation of the initial equations, solvers from
the NVIDIA AmgX library are used. To ensure the monotonicity of the
solution, a tilt limiter was proposed, which ensures the fulfillment of a
discrete analogue of the entropy inequality. The numerical algorithm was
successfully verified using three model problems.

Keywords: Gas dynamics equations · Implicit scheme · Discontinuous
Galerkin method · Entropic inequality · Tilt limiter · AMGX library

Introduction

Today the discontinuous Galerkin method is actively used to solve gas dynam-
ics problems. This method has a high order of accuracy of the obtained solu-
tion, adapts well to unstructured grids, and at the same time has a compact
computational template. With all the advantages listed above, the discontin-
uous Galerkin method requires significant computational costs, which, when
using explicit schemes, leads to significant computational time costs. One of
the promising areas of research today is the development of effective implicit
schemes for the discontinuous Galerkin method on unstructured grids. However,
this approach, despite the removal of significant restrictions on the time step,
requires significant resources to work with SLAEs of huge dimensions, therefore,
the question arises of the most efficient use of all the capabilities of computing
technology [1,2].

Recently, entropy stable methods and algorithms for solving gas dynamics
problems have been actively developed. This trend is associated with the desire
to improve the quality of numerical solutions, including in numerical algorithms,
in addition to the traditionally taken into account conservation laws, the second
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law of thermodynamics, which is quantitatively expressed by entropy inequal-
ity. The numerical solution algorithm with this approach is reduced to solving
one system of linear equations at each time step. In this work, the NVIDIA
AmgX library, written in the CUDA C language, is used to solve the SLAE.
The advantages of the library include support for parallelism both at the level
of several graphics processors and at the level of several computational clus-
ters, which is provided through the support of MPI technology. Also, the AmgX
library provides a flexible configuration system, and thanks to this, it becomes
possible to create a hierarchy of decision algorithms with an arbitrary depth, in
which the external decision the algorithm will use internal ones as preprocessors
and preconditioners, which themselves can be processed by other methods. This
approach allows the user to quickly experiment with different schemes [3].

At the moment, the library finds more and more widespread use in modern
industrial and scientific numerical analysis. In particular, AmgX is part of the
commercial computing software ANSYS Fluent [4]. An indicator of the relevance
and efficiency of the library used is the fact that at the moment it is used as a
standard for comparing the efficiency and speed of new numerical algorithms for
solving SLAEs, along with such powerful tools as the HYPRE library [4].

Earlier, the authors in the works [5,6] developed a numerical technique for
the implicit scheme of the discontinuous Galerkin method as applied to the solu-
tion of inviscid stationary problems of gas dynamics. To solve the SLAE, the
HIPRE library was used. This work is devoted to the development of an implicit
scheme of the discontinuous Galerkin method for solving two-dimensional gas
dynamics equations on unstructured grids. A special entropic tilt limiter is pro-
posed, which ensures the fulfillment of a discrete analog of the entropic inequal-
ity. Numerical calculations of some model problems are carried out, allowing to
evaluate the effectiveness of the method. A comparison is made of the numerical
results obtained using the entropic tilt limiter and using the Barth-Jespersen
and Cockburn tilt limiters. The results are presented in the work.

1 Mathematical Model and Computational Algorithm

Consider a two-dimensional system of Navier-Stokes equations written in a con-
servative form:

∂ρ

∂t
+

∂(ρu)
∂x

+
∂(ρv)
∂y

= 0, (1)

(∂ρu)
∂t

+
∂(ρu2 + p)

∂x
+

∂(ρuv)
∂y

= 0, (2)

∂(ρv)
∂t

+
∂(ρuv)

∂x
+

∂(ρv2 + p)
∂y

= 0, (3)

∂(ρE)
∂t

+
∂((ρE + p)u)

∂x
+

∂((ρE + p)v)
∂y

= 0, (4)

where ρ is the density, v = (u, v) is the velocity vector, p is the pressure, E =
e + u2+v2

2 is the specific total energy, e is the internal energy.
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The system of equations is closed by the equation of state p = ρe (γ − 1),
where γ is the adiabatic exponent. These equations must be supplemented with
initial and boundary conditions, the form of which depends on the specific prob-
lem, and will be specified further.

Introduce the notation

U =

⎛
⎜⎜⎝

U1

U2

U3

U4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ρ
ρu
ρv
ρE

⎞
⎟⎟⎠ ,F(1)(U) =

⎛
⎜⎜⎜⎝

F
(1)
1

F
(1)
2

F
(1)
3

F
(1)
4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

ρu
ρu2 + p

ρuv
(ρE + p)u

⎞
⎟⎟⎠ ,

F(2)(U) =

⎛
⎜⎜⎜⎝

F
(2)
1

F
(2)
2

F
(2)
3

F
(2)
4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

ρv
ρuv

ρv2 + p
(ρE + p)v

⎞
⎟⎟⎠ .

Taking into account the introduced notations, the system (1)–(4) will be
rewritten as

∂U
∂t

+ ∇ · F(U) = 0. (5)

To approximate the equations, we cover the region Ω, on which the solution is
sought, with an unstructured triangular mesh Kh : Ω = ∪Ki, i = 0, ..., . . . , Nh.
All triangles Ki have nonzero area and intersect at most along the edges or
vertices that form them. Each inner edge of one cell is the entire edge of another
cell.

As basis functions on each element of Ki, we choose all possible polynomials
of the form

ϕil =
(

x − xci

Δxi

)αKil

·
(

y − yci

Δyi

)βKil

, l = 0, . . . , N,

such that the sum of the powers αKil +βKil does not exceed some given number
p. Here xci, yci are the coordinates of the center of mass of the cell, and Δxi,Δyi

are the characteristic dimensions of the Ki cell.
We obtain a discrete analogue of the (5) system, assuming that inside each

mesh element Ki the approximate solution Uih is represented as Uih(t, x, y) =∑N
k=0 Uik(t)ϕik(x, y).
Let us multiply the equations of the discrete analog of system (5) by the

test functions taken from the space of basis functions, and integrate over each
element of the grid [7,8]. As a result, we get the system

∫

Ki

N∑
k=0

dUik

dt
ϕikϕildS+

∮

∂Ki

(
n · F̂σ

)
ϕildσ−

∫

Ki

F(Uih)·∇ϕildS = 0, l = 0, . . . , N,

where n – normal to the boundary ∂Ki, F̂σ
n = F̂σ ·n – flux function to be defined

later.
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We replace the derivative dUik

dt with a discrete analogue and, taking into
account the time step t, we rewrite the system in the form

∫

Ki

N∑
k=0

Um+1
ik − Um

ik

Δt
ϕikϕildS +

∮

∂Ki

(F̂σ
n)m+1ϕildσ

−
∫

Ki

(
F(1)(Um+1

ih )
∂ϕil

∂x
+ F(2)(Um+1

ih )
∂ϕil

∂y

)
dS = 0, (6)

where the superscripts indicate the time step at which the value of the corre-
sponding field is taken.

Next, consider finding the elements of the resulting matrix in the system (6).

F(α)(Um+1
ih ) = F(α)(Um

ih) +
(

∂F(α)

∂U

)m

(Um+1
ih − Um

ih), α = 1, 2.

Let’s introduce the notation:

A =
(

∂Fn

∂U

)m
∣∣∣
U=Uσ

avg

, A = LΛR,

Λ = Λ− + Λ+, Λ− = 1
2 (Λ − |Λ|) , Λ+ = 1

2 (Λ + |Λ|) , A = A− + A+,

A− = LΛ−R, A+ = LΛ+R, A(1) = A|n=(1,0), A(2) = A|n=(0,1),

where R,L are matrices composed of the right and left eigenvectors of the matrix
A, Λ – is a diagonal matrix composed of the eigenvalues of the matrix A, Uσ

avg

computed using Godunov’s flux function [9].
The flux values, taking into account the previously introduced designations,

are in the form

(F̂σ
n)m+1 = (F̂σ

n)m + A+(Um+1
ih − Um

ih) + A−(Um+1
jh − Um

jh).

To find the value of (F̂σ
n)m, the Godunov flux function is used. The normal

n to the edge σ is directed from the cell with index i to the cell with index j.
Let’s denote by Γij the border between cells i and j and by ΔUm+1

ih the
increment per step in time from the solution Um+1

ih , i.e. ΔUm+1
ih = Um+1

ih −Um
ih.

We will look for the increments of the required functions in the same space
of basis functions as the functions themselves: ΔUm+1

ih =
∑N

k=0 ΔUm+1
ik ϕik.
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Finally, let’s rewrite the system in delta form [10]:

N∑
k=0

ΔUm+1
ik

Δt

∫

Ki

ϕilϕikdS +
∑

j

∮

Γij

A+
N∑

k=0

ΔUm+1
ik ϕikϕildσ

+
∑

j

∮
Γij

A− ∑N
k=0 ΔUm+1

jk ϕjkϕildσ +
∫

Ki

(
A(1)

N∑
k=0

ΔUm+1
ik ϕik

∂ϕil

∂x

)
dS

+
∫

Ki

(
A(2)

∑N
k=0 ΔUm+1

ik ϕik
∂ϕil

∂y

)
dS

=
∫

Ki

(
F(1)(ΔUm

ih)
∂ϕil

∂x
+ F(2)(ΔUm

ih)
∂ϕil

∂y

)
dS −

∮

∂Ki

(F̂σ
n)mϕildσ.

We solve the obtained SLAE using solvers from the NVIDIA AmgX library.

2 Entropic Tilt Limiter

According to modern concepts, a realistic model of a gas dynamic flow should,
in a generalized sense, satisfy the entropy inequality [11]:

∂ (ρs)
∂t

+
∂ (ρsu)

∂x
+

∂ (ρsv)
∂y

≥ 0, (7)

in which the dimensionless specific entropy is defined as s = ln p
p∗

−γ ln ρ
ρ∗

, where
as standard values p∗ and ρ∗ you can choose any constant positive quantities
with dimensions of pressure and density.

Using the notation S (U) = ρs, Hx (U) = ρsu, Hy (U) = ρsv, entropy
inequality (7) can be rewritten in differential form

∂S (U)
∂t

+
∂Hx (U)

∂x
+

∂Hy (U)
∂y

= ∇US (U) · ∂U
∂t

+
∂H (U)

∂x
+

∂H (U)
∂y

≥ 0, (8)

where ∇US (U) · ∂U
∂t =

4∑
i=1

∂S(U)
∂Ui

∂Ui

∂t .

For each cell Ki, the discrete analogue of the entropy inequality (8) can be
written as:

d
dt

∫
Ki

S (U (x, y, t)) dV +
∮

∂Ki

(
Hx (UG (x, y, t)) nx

+Hy (UG (x, y, t)) ny

)
dS ≥ 0, (9)

where UG (x, y, t) computed using Godunov’s flux function.
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Let’s integrate (9) over the time interval [t, t + τ ] and divide the result by τ :

1
τ

∫
Ki

[S (U (x, y, t + τ)) − S (U (x, y, t))] dV

+ 1
τ

t+τ∫
t

[ ∮
∂Ki

(
Hx

(
UG

(
x, y, t

′
))

nx + Hy

(
UG

(
x, y, t

′
))

ny

)
dS

]
dt

′ ≥ 0.(10)

The resulting integral form (10) of the discrete analogue of the entropy
inequality can be rewritten as

∫
Ki

S (U (x, y, z, t + τ)) dV ≥ Cs, where

Cs =
∫

Ki

S (U (x, y, t)) dV +
t+τ∫
t

[ ∮
∂Ki

(
Hx

(
UG

(
x, y, t

′
))

nx

+Hy

(
UG

(
x, y, t

′
))

ny

)
dS

]
dt

′
. (11)

The second integral on the right-hand side (11) can be approximated by
different ways. In the case of using the Euler scheme, we obtain the following
expression for Cs:

Cs =
∫

Ki

S (U (x, y, t)) dV +τ

∮

∂Ki

(
Hx (UG (x, y, t)) nx +Hy (UG (x, y, t)) ny

)
dS.

Consider one cell Ki and keep the notation Ui0, Ui1, Ui2 for the values of
the coefficients of the discontinuous Galerkin method corresponding to the found
point of the conditional minimum. Let’s calculate the value of four functions

Φjk (λ) = p
(
Ui0 + (−1)j

λUi1ϕi1 + (−1)k
λUi2ϕi2

)
, j, k = {0, 1} ,

where p(U) = (γ − 1)
(
E − u2+v2

2ρ

)
– pressure in conservative variables, with a

value of λ = 1. If min [Φ1 (1) , Φ2 (1) , . . . , Φ4 (1)] ≥ pmin (pmin > 0 is a prese-
lected small positive number), then we set λp = 1. Otherwise, we take as λp the
root of the equation closest to 1 from the left

min [Φ1 (λ) , Φ2 (λ) , . . . , Φ4 (λ)] = pmin. (12)

Next, we calculate the function

Ψ (μ) =
∫

Ki

S (Ui0 + λpμUi1ϕi1(x, y) + λpμUi2ϕi2(x, y)) dV

for the value μ = 1. If Ψ (1) ≥ Cs, then we set μs = 1. Otherwise, we take as μs

the root of the equation closest to 1 from the left

Ψ (μ) = Cs. (13)
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After determining the values of the numeric parameters λp and μs as described
above by way of setting the values of the coefficients of the discontinuous Galerkin
method in the cell Ki equal: U∗

i0 = Ui0, U∗
i1 = λpμsUi1, U∗

i2 = λpμsUi2.
This procedure excludes the possibility of obtaining negative pressures in any

cell on a new time layer and ensures the fulfillment of the discrete analogue of the
entropy inequality in the conservative form [12,13]. Due to the upward convexity
of the functions Φj (λ) , j = 1, . . . , 4 and Ψ (μ), the solution of Eqs. (12) and (13)
was found using Newton’s method, with an initial argument value of 1.

3 Test Results

3.1 Computing Tools and Libraries Used

To carry out computational experiments, we used a computer with an Intel
Core i5-8265U processor and an NVIDIA GeForce MX250 video card. Below are
the results obtained using the PBICGSTAB solver from AmgX library version
2.1.0.131-opensource. Calculations were made using the entropic limiter, the
Cockburn limiter [14] and the Barth-Jespersen limiter [15].

3.2 The Flow of an Inviscid Compressible Gas in a Flat Channel
with a Wedge

The calculation of the flow of an inviscid compressible gas in a flat channel with
a wedge at M = 2 and Courant number equal to 5. The angle of the wedge
in the channel is 10◦. The configurations of the system of shock waves arising
from the flow around the initial wedge and multiple reflection of the initial
shock from the channel walls were simulated under the conditions: p∞ = 105 Pa,
T∞ = 300 K, cv = 724.4 J/(kg·K) [16]. The computational grid consisted of
17096 cells. Figure 1 shows the geometry of the problem. In Fig. 2 shows the
pictures of the Mach number distribution in the computational domain when
using various limiters. Figure 3 demonstrates the pictures of the total pressure
distribution in the computational domain when using various limiters. In Fig. 4
shows the dependence of the total pressure, referred to the total pressure of the
unperturbed flow, on the x coordinate along the section y = 850.

Fig. 1. Problem geometry

The results are in good agreement with the results obtained using the finite
volume method on block-structured [16] and unstructured grids [17]. The results
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obtained show the development of the shock-wave structure of the flow in a
channel with a wedge, namely, the initiation of a shock wave, its development,
reflection from the channel walls, and interaction with a fan of rarefaction waves.
It should be noted that the solution obtained using the entropic limiter shows
a clearer flow structure, which is in better agreement with the known numeric
solutions of this problem [16,17]. The numerical solution with the entropy limiter
converged in 4000 time steps, with the Cockburn limiter - for 4500, with the
Barth-Jespersen limiter - for 5000. Table 1 shows the average time to complete
one time step for the task under consideration when using different limiters.

Fig. 2. Mach number distribution: a) entropic limiter; b) Cockburn limiter; c) Barth-
Jespersen limiter

3.3 Prandtl-Meyer Expansion Fan

Figure 5 shows a schematic of an expansion fan flow, depicting the relative loca-
tion of the expansion fan and its centering at the corner, the boundary conditions,
the two regions of uniform flow, and the wall angle.

The problem was solved in a setting taken from the work [18]. We take
M1 = 2.0, δ = −10◦, M2 = 2.383. The relationship between the properties
of the expansion fan is set as follows: p2/p1 = 0.5471, ρ2/ρ1 = 0.6500 and
v2/v1 = 1.0931.
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Fig. 3. Total pressure distribution: a) entropic limiter; b) Cockburn limiter; c) Barth-
Jespersen limiter

An unstructured triangular mesh consisting of 8998 cells was used in the
calculation.

Figure 6 shows the distribution of the Mach number in the computational
domain in the case of using different limiters. Figure 7 shows the pressure dis-
tribution along the streamline. The presented figures show that when using the
entropic limiter, the thickness of the flow layer, which is influenced by the numer-
ically generated entropy, is smaller compared to other limiters. Thus, the entropic
limiter gives a numerical solution that is closest to the exact solution.

3.4 Steady-State Oblique Shock Wave

Figure 8 shows a schematic of an oblique shock flow, depicting the shock-wave,
the boundary conditions, the two regions of uniform flow, the wall angle, and
the shock angle.

The problem was solved in a setting taken from the work [18]. We take M1 =
3.0, δ = −15◦, γ = 1.4, M2 = 2.383, ε = 32.24. The relationship between the
properties of the expansion fan is set as follows: p2/p1 = 2.822, ρ2/ρ1 = 2.0342
and v2/v1 = 0.888.
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Table 1. Average time to complete one time step.

Limiter Average time, s

Entropic 2.99

Cockburn 2.93

Barth-Jespersen 3.74

Fig. 4. Dependence of the total pressure related to the total pressure of the undisturbed
flow on the x coordinate on the side wall in the section y = 850

Fig. 5. Schematic of an expansion fan flow
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Fig. 6. Mach number distribution: a) entropic limiter; b) Cockburn limiter; c) Barth-
Jespersen limiter
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Fig. 7. Pressure distributions along the streamline: exact solution (exact), entropic
limiter (entropic), Cockburn limiter (Cockburn), Barth-Jespersen limiter (Barth-
Jespersen)

Fig. 8. Schematic of an oblique shock flow
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Fig. 9. Mach number distribution: a) entropic limiter; b) Cockburn limiter; c) Barth-
Jespersen limiter



46 V. F. Masyagin

Fig. 10. Pressure distributions along the streamline: exact solution (exact), entropic
limiter (entropic), Cockburn limiter (Cockburn), Barth-Jespersen limiter (Barth-
Jespersen)

An unstructured triangular mesh consisting of 9785 cells was used in the
calculation.

Figure 9 shows the distribution of the Mach number in the computational
domain in the case of using different limiters. Figure 10 shows the pressure dis-
tribution along the streamline. The presented figures demonstrate approximately
the same numerical results obtained using the considered limiters. All limiters
show good agreement with the exact solution.

4 Conclusion

As a result, a numerical technique was created based on the implicit scheme of
the discontinuous Galerkin method for solving gas dynamics equations using the
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NVIDIA AmgX library. The obtained numerical results show good agreement
with the known numerical solutions of the problems under consideration and
their exact solutions. It shows the possibility of using the numerical scheme and
the entropic limiter for solving the gas dynamics equations. Investigation of the
efficiency of using the NVIDIA AmgX library solvers is beyond the scope of this
work.
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Abstract. Determining the efficiency of high-power gyrotrons and
studying operating regimes require solving self-consistent problems of
the electron-wave interaction in the gyrotron cavity. Two mathemat-
ical models are considered: the stationary model that reduces to the
Sturm—Liouville problem for the inhomogeneous string equation, and
the time-depended model that combines the Schrödinger equation and
equations of electron motion. The algorithms described in this paper
are implemented in the code-package ANGEL (Analyzer of a Gyrating
Electrons), which is used at IAP RAS and GYCOM Ltd. to analyze an
electron-wave interaction in gyrotrons. The impact of ohmic losses in
a terahertz gyrotron cavity on the efficiency and a stable single-mode
operation is investigated. It is shown that a high fraction of ohmic losses
can lead to disruption of the stable single-mode generation of terahertz
gyrotrons operating at a high cyclotron harmonic.

Keywords: Inhomogeneous string equation · Schrödinger equation ·
Crank—Nicolson method · Electron-wave interaction · Gyrotron

1 Introduction

Nowadays, one of the most promising high-powered vacuum tube is the gyrotron.
To improve the gyrotron efficiency, complex models of an electron-wave interac-
tion are required. In particular, it is important to take into account the influ-
ence of an electron beam on the structure of the electromagnetic field in the
cavity, which leads to the need to solve self-consistent problems with a non-
fixed field structure. In this paper, two models are considered: stationary and
time-depended. The stationary model [1,2] allows to quickly find the generation
efficiency and the output radiation power under the assumption of a single-mode
operation. Gyrotrons typically operate in a one TEmp mode of a cylindrical cav-
ity. Various transition processes are possible in a gyrotron, especially in cases
of operating in modes with high azimuthal and radial indices. In this case, the

This work was supported by a subsidy for Russian Federation State Assignment (Topic
No. 0030-2019-0019).

c© Springer Nature Switzerland AG 2021
D. Balandin et al. (Eds.): MMST 2020, CCIS 1413, pp. 49–62, 2021.
https://doi.org/10.1007/978-3-030-78759-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78759-2_4&domain=pdf
http://orcid.org/0000-0003-1572-985X
http://orcid.org/0000-0003-2550-8911
http://orcid.org/0000-0001-9793-5854
https://doi.org/10.1007/978-3-030-78759-2_4


50 E. Semenov et al.

problem of mode competition from neighboring modes or modes operating at
lower cyclotron harmonics plays a significant role. Of interest is the analysis
of the gyrotron startup scenarios (taking into account the dependence of volt-
age, current, and other parameters of the device on time). Different regimes of
mode interaction, self-modulation and stochastic regimes are also possible in
gyrotrons. In all these cases, it is necessary to use complicated time-depended
model [1,3]. At present, there is a sufficient number of code-packages for mod-
eling an electron-wave interaction in gyrotrons. Examples of such programs are
the code package GYRO1-3 developed by Borie and Dumbrajs [4], the Mary-
land Gyrotron (MAGY) code [5], the code-package EURIDICE developed at
the National Technical University of Athens [6] and the gyrotron design tool-
box GYROCOMPU developed at Wuhan National High Magnetic Field Center
(China) [7]. Papers [4–7] are mainly devoted to the description of mathemati-
cal models, but aren’t fully revealing numerical methods which were used. This
paper is devoted to the description of the methods implemented in the code-
package ANGEL developed at IAP RAS for calculating an electron-wave inter-
action and analyzing the competition of modes in gyrotrons.

2 Stationary Model

In the stationary and the time-depended models, we assume that the cavity is
formed by segments of circular (azimuthally symmetric) weakly irregular waveg-
uides, the radius of which is close to the cutoff radius of the operating mode.
A typical weakly irregular cavity profile of gyrotron is shown in Fig. 2a. An
electron-wave interaction is considered in following both models on the interval
[zin, zout].

The equations describing an interaction of the electron beam with the eigen-
modes of a cylindrical cavity can take into account the inhomogeneity of the
static magnetic field, the spread of oscillatory velocities, and the spread of the
leading centers of the electron trajectories. Electrons in the beam can be classified
into several groups: Nθ initial electron phases of entering the cavity, Ng groups
with different oscillatory velocities (but with constant initial beam energy), NR

fractions with the radii of the leading centers of Larmor orbits (for simulation the
misalignment of the beam and the magnetic field axis, wide beams, multi-beam
systems etc.)

In the stationary model Na = Nθ × Ng × NR pairs of equations of motion
(for the transverse and longitudinal components of the electron momentum)

dpc

dz
= fpc

(z, pc, p‖, F, F ′),
dp‖
dz

= fp‖(z, pc, p‖) (1)

and the equation for the electromagnetic field

d2F

dz
+ κ2

‖(z) · F = J (z, {pc, p‖}) (2)
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are jointly solved with initial conditions

F (zin) = Fin, p‖(zin) = p‖,in{g}, pc(zin) = ei θ0 · p⊥,in{g}, (3)

g =
p⊥
p‖

, θ0 = 2π
jθ

Nθ
, jθ = 1, Nθ,

and boundary conditions

dF

dz
− i κ‖F = 0, z = zin;

dF

dz
+ i κ‖F = 0, z = zout. (4)

Here F is the normalized high-frequency field, pc and pz are the parameters
describing the electron beam, z is the axial coordinate of the cavity. The values F
and pc are complex, pz is real. The function κ‖(z) is determined by the geometry
of the cavity R(z). Equations (1)–(2) are self-consistently integrated, Eq. (1)
describes the influence of a high-frequency field on the parameters of the electron
beam, Eq. (2) describes the longitudinal structure of the mode, which depends
on the electron beam. The integration of the equations of motion together with
the inhomogeneous string equation is carried out by the Runge-Kutta method
of the 4th order. As a result of solving the Sturm—Liouville problem (1)–(4),
the longitudinal structure of the field F (z) is obtained for the found values of
the frequency ω and the initial amplitude Fin. The search for the eigenvalues
(ω, Fin) is carried out similarly to the method described in using the argument
principle and further refinement of the solution by the two-dimensional Newton
method. The parameters of the electron beam pc, p‖, the right-hand sides of
Eqs. (1)–(2) fpc

, fp‖ , J are defined in Sect. 4.

3 Multimode Time-Depended Model

3.1 Mathematical Formulation of the Problem

In the time-depended model Na = Nψ × Nθ × Ng × NR pairs of equations of
motion

∂pc

∂z
= fpc

(z, pc, p‖, {Fs}),
∂p‖
∂z

= fp‖(z, pc, p‖), (5)

and Ns equations for the field

∂2 Fs

∂z2
+ C0

∂Fs

∂τ
+ κ2

‖,s(z)·Fs = Js(z, {pc, p‖}) (6)

are jointly solved with initial particle momenta (3), nonzero initial field
Fs(z, 0) = Fin,s(z) and the nonreflective radiation boundary conditions at the
bounds for each s-th mode

F (zin, τ) − C1 ·
τ∫

0

∂F (zin, ∂τ̃)
∂z

· eCL·(τ−τ̃)

√
τ − τ̃

· dτ̃ = 0, (7)



52 E. Semenov et al.

F (zout, τ) + C1 ·
τ∫

0

∂F (zout, ∂τ̃)
∂z

· eCR·(τ−τ̃)

√
τ − τ̃

· dτ̃ = 0. (8)

The system of Eq. (5)–(6) with boundary conditions (7)–(8) is solved in the
rectangular region [zin, zout]×[0, Tfin]. In (6)–(8) τ is the normalized time. The
use of equations in general form (5)–(8) is convenient for describing numerical
methods. The specific expressions for the right parts fpc

, fp‖ , Js, the constants
C0, C1, CL, CR and other parameters are defined in Sect. 4.

3.2 Implicit Crank—Nicolson Scheme

To solve the system of Eqs. (5)–(6) by the finite difference method, the implicit
Crank—Nicolson scheme [8, pp. 192–193] is used, which provides the second
order of accuracy, but requires repeated solution of equations of motion at each
time step, as well as solving SLAE by the tridiagonal matrix algorithm to find
the field amplitude at each time layer. This numerical scheme uses the 3 + 3
stencil, that is, 3 nodes from the previous time layer and 3 nodes from the current
layer (see Fig. 1).

Fig. 1. The Crank—Nicolson stencil (3+3).

It is convenient to use a uniform grid in space and time

{zl, τ j} ≡ {zin + δz · l, δτ · j}, l = 0, Nz, j = 0, Nτ ;

δz =
(zout − zin)

Nz
, δτ =

Tfin

Nτ
.

The complex field amplitudes at grid nodes are denoted as F j
l ≡ Fs(zl, τ

j).
The right-hand sides of the equation are denoted as f j

l ≡ Js(zl, τ
j)−κ2

‖,s(zl)·F j
l .

Approximation of derivatives:

∂F

∂τ
(zl, τ

j) ≈ 1
δτ

·
(
F j

l − F j−1
l

)
, (9)
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∂2 F

∂z2
(zl, τ

j) ≈ 1
δ2z

·
(
F j

l−1 − 2F j
l + F j

l+1

)
, (10)

∂F

∂z
(zl, τ

j) ≈ 1
δz

·
(
F j

l − F j
l−1

)
≈ 1

δz
·
(
F j

l+1 − F j
l

)
. (11)

For internal nodes (zin < z < zout) the approximation of Eq. (6) takes the
form

C0

δτ
·
(
F j

l − F j−1
l

)
=

1
2

·
(
f j

l + f j−1
l

)
− 1

2 δ2z
·
(
F j

l−1

−2F j
l + F j

l+1 + F j−1
l−1 − 2F j−1

l + F j−1
l+1

)
, l = 1, Nz − 1.

(12)

The link of boundary nodes with internal nodes is determined by boundary
conditions for zin and zout. The result is a tridiagonal SLAE matrix

A · F = d, (13)

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 b0 0 · · · 0 0
c1 a1 b1 0 · · · 0
0 c2 a2 b2 0 · · · 0
...

. . .
...

0 · · · 0 cNz−2 aNz−2 bNz−2 0
0 · · · 0 cNz−1 aNz−1 bNz−1

0 0 · · · 0 cNz
aNz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

F = {Fl}, d = {dl}, l = 0, Nz.

To bring to this form, it’s suitable to rewrite the Eq. (12):

F j
l−1 +

(
2C0

δ2
z

δτ
− 2
)

· F j
l + F j

l+1 = δ2z ·
(
f j

F + f j−1
F

)
+

+
(
2C0

δ2
z

δτ
+ 2
)

· F j−1
l −

(
F j−1

l−1 + F j−1
l+1

)
, l = 1, Nz − 1.

It is followed that for all columns of the matrix except the zero and the last, the
elements are constant

al = 2C0
δ2z
δτ

− 2 = −2
(

1 − C0
δ2z
δτ

)
, bl = cl = 1, l = 1, Nz − 1,

and the corresponding elements of the right-hand side of the Eq. (13) have the
form

dl = δ2z ·
(
f j

F + f j−1
F

)
+ 2
(

1 + C0
δ2z
δτ

)
· F j−1

l −
(
F j−1

l−1 + F j−1
l+1

)
.

The elements of the zero and last columns are determined by the boundary
conditions.
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If we approximate the derivative in the boundary conditions (7)–(8) using
formula (11), the solution accuracy drops to O(δz), but using information about
the structure of Eq. (6), we can increase the order of approximation of the
derivative. Let’s introduce the notation:

σj
l =

1
6

· ∂2 F

∂z2
(zl, τ

j),

and write down the finite difference for Eq. (6) according to the Crank—Nicolson
scheme only in time (9) similarly to Eq. (12), but keeping the second derivative
unchanged:

C0

δτ

(
F j

l − F j−1
l

)
=

1
2

(
f j

l + f j−1
l

)
− 3
(
σj

l + σj−1
l

)
. (14)

Next, it is used the spline representation of the first derivative from [9]. For the
left and right bounds it has the form:

∂F

∂z
(zin, τ j) =

1
δz

·
(
F j
1 − F j

0

)
− δz ·

(
2σj

0 + σj
1

)
, (15)

∂F

∂z
(zout, τ

j) =
1
δz

·
(
F j

Nz
− F j

Nz−1

)
+ δz ·

(
2σj

Nz
+ σj

Nz−1

)
.

Using the relation (14) for l = 0 and l = 1 the sum
(
2σj

0 + σj
1

)
is expressed and

substituted in (15a). The first derivative at the left bound for the left column of
the SLAE matrix takes the form:

∂F

∂z
(zin, τ j) = W0 · F j

0 + W1 · F j
1 + WL,

W0 =
2
3

C0
δz

δτ
− 1

δz
, W1 =

C0

3
δz

δτ
+

1
δz

,

WL = −δz ·
{

C0

3 δτ

(
2F j−1

0 + F j−1
1

)
−
(
2σj−1

0 + σj−1
1

)

+
1
6

(
2 f j−1

F,0 + f j−1
F,1 + 2 f j

F,0 + f j
F,1

)}
.

Similarly, one finds the expression for
(
2σj

Nz
+ σj

Nz−1

)
in (15b) using the rela-

tion (14) with l = Nz and l = Nz − 1 and gets the first derivative at the right
bound for the right column in the form:

∂F

∂z
(zout, τ

j) = WNz−1 · F j
Nz−1 + WNz

· F j
Nz

+ WR, (16)

WNz−1 = −
(

1
δz

+
C0

3
δz

δτ

)
, WNz

=
(

1
δz

− 2
3

C0
δz

δτ

)
,

WR = δz ·
{

C0

3 δτ

(
2F j−1

Nz
+ F j−1

Nz−1

)
−
(
2σj−1

Nz
+ σj−1

Nz−1

)

+
1
6

(
2 f j−1

Nz
+ f j−1

Nz−1 + 2 f j
Nz

+ f j
Nz−1

)}
.
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3.3 Approximation of the Boundary Conditions

An additional difficulty is added by the singularity contained in the boundary
conditions (7)–(8). The integral is splited into the sum of integrals corresponding
to the time steps:

τ∫

0

∂F (zin, τ̃)
∂z

· eCL·(τ−τ̃)

√
τ − τ̃

· dτ̃ = IL + Ij(zin),

τ∫

0

∂F (zout, τ̃)
∂z

· eCR·(τ−τ̃)

√
τ − τ̃

· dτ̃ = IR + Ij(zout),

IL =
j−1∑
j̃=1

Ij̃(zin), IR =
j−1∑
j̃=1

Ij̃(zout),

Ij̃(zq) =

j̃·δτ∫

(j̃−1)·δτ

∂F (zq, τ̃)
∂z

· eCq·(j·δτ −τ̃)

√
j · δτ − τ̃

· dτ̃ ,

Cq = CL, zq = zin, Cq = CR, zq = zout.

The following analytical calculations are given for the boundary condition (8).
Similar calculations can be repeated for the boundary condition (7). The inte-
grand of each Ij̃ is linearized in τ̃ only the derivative and the exponent; the
integrals of (τ − τ̃)−1/2 and τ̃ /

√
τ − τ̃ are taken analytically:

Ij̃ ≈ Ĩj̃ = aj̃ Ia
j̃ + bj̃ Ib

j̃ ,

aj̃ =
1
δτ

(
τ̃j̃ uj̃−1 − τ̃j̃−1 uj̃

)
=
(
j̃ · uj̃−1 − (j̃ − 1) · uj̃

)
,

bj̃ =
uj̃ − uj̃−1

δτ
, uj̃ =

∂F (zout, τ̃)
∂z

· eCR·(τ−τ̃),

Ia
j̃ =

τ j̃∫

τ j̃−δτ

dτ̃√
τ − τ̃

=

j̃·δτ∫

(j̃−1)·δτ

dτ̃√
j · δτ − τ̃

= −2
√

τ − τ̃
∣∣∣j̃·δτ

(j̃−1)·δτ

= −2
√

δτ

{√
j − j̃ −

√
j − j̃ + 1

}
,

Ib
j̃ =

τ j̃∫

τ j̃−δτ

τ̃ dτ̃√
τ − τ̃

=

j̃·δτ∫

(j̃−1)·δτ

τ̃ dτ̃√
j · δτ − τ̃

=
{

2
3
(τ − τ̃)3/2 − 2 τ

√
τ − τ̃

}∣∣∣∣∣
j̃·δτ

(j̃−1)·δτ
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=
2
3
δ3/2
τ

{
(j − j̃)3/2 − (j − j̃ + 1)3/2

}
− 2 j δ3/2

τ

{√
j − j̃ −

√
j − j̃ + 1

}
.

As a result, we obtain

Ĩj̃ =
4
3

√
δτ

{
uj̃−1 ·

[
(j − j̃)

√
j − j̃ −

(
j − j̃ − 1

2

)√
j − j̃ + 1

]

+ uj̃ ·
[
(j − j̃ + 1)

√
j − j̃ + 1 −

(
j − j̃ +

3
2

)√
j − j̃

]}
.

Special cases:
IR ≡ 0, j = 0, 1.

For j = 2, the case is already quite regular, but the sum contains only one term:

IR = Ĩ1 =
4
3

√
δτ

{
u0 ·
(

1 −
√

2
2

)
+ u1 ·

(
2

√
2 − 5

2

)}
.

To speed up the summation, it is better to reorder the terms to minimize the
access to the tables ∂F (zout,τ̃)

∂z and eCR·(τ−τ̃). Square roots of integers in the range
from 2 to the final time step number Nτ are calculated once per calculation and
are also kept in the tables ∂F (zout,τ̃)

∂z and eCR·(τ−τ̃). For j > 2, we obtain

IR =
4
3

√
δτ

{
u0 ·
[
(j − 1)3/2 −

(
j − 3

2

)√
j

]
+ uj−1 ·

[
2

√
2 − 5

2

]

+
j−2∑
j̃=1

uj̃ ·
[
(j − j̃ − 1)3/2 − 2 (j − j̃)3/2 + (j − j̃ + 1)3/2

]⎫⎬
⎭ .

It is possible to further increase the accuracy of approximation of the integral
Ij̃ (or increase the integration step δτ , while maintaining accuracy) using the
Fresnel integrals.

Using the refined representation of the derivative (16) and the method of
eliminating the singularity in the integral Ij described above, one obtains the
boundary conditions (7)–(8) in the form

F j
0 − C1 ·

(
IL +

4
3

√
δτ

∂F

∂z
(zin, τ ) +

2
3

δτ

∂F

∂z
(zin, τ − δτ ) · eCL·δτ√

δτ

)
= 0,

F j
Nz

+ C1 ·
(

IR +
4
3

√
δτ

∂F

∂z
(zout, τ ) +

2
3

δτ

∂F

∂z
(zout, τ − δτ ) · eCR·δτ√

δτ

)
= 0,

The elements of the SLAE matrix corresponding to the boundary conditions
take the following form

a0 = aNz
= 1 − 4

3
C1W0

√
δτ , b0 = cNz

= −4
3
C1W1

√
δτ , (17)
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d0 = C1 ·
(

IL +
4
3
WL

√
δτ +

2
3

δτ

∂F

∂z
(zin, δτ · (j − 1)) · exp (CL · δτ )√

δτ

)
,

dNz
= −C1 ·

(
IR +

4
3
WR

√
δτ +

2
3

δτ

∂F

∂z
(zout, δτ · (j − 1)) · exp (CR · δτ )√

δτ

)
.

The result is a tridiagonal SLAE matrix, the right side of which contains
combinations of field values from the previous time layer F j−1. Solving this
SLAE by the tridiagonal matrix algorithm, it is possible in O(Nz) operations to
find the values of the nodes F j

l , l = 0, Nz.
The implicit dependences between the field and particle momenta can be

resolved at each time step in several iterations. First, the equations of motion
are solved in the field on the previous layer and J [F j−1] is found, after this, using
(12)–(17), the SLAE is composed and solved, and thus the non-self-consistent
field is found on the current layer F̃ j

l . Then, the equations of motion are again
solved and J [F̃ j ] is obtained, and already with such a right-hand side, a self-
consistent field is found in the same way on the current layer F j

l .

4 Examples of Mode Competition in Gyrotrons
Operating in Different Frequency Ranges

The algorithms described in this article are implemented in the code-package
ANGEL (Analyzer of a Gyrating Electrons), which is written in FORTRAN-90
and used at IAP RAS and GYCOM Ltd. Previously, this code-package was used
to simulate electron-optical systems of gyrotrons [10]. Implementation described
above complex algorithms in the code-package ANGEL allows to simulate the
electron-wave interaction in gyrotrons. The stationary model affords to deter-
mine the efficiency and output power in the single-mode operation. The multi-
mode time-depended self-consistent model allows to analyze transition processes,
to investigate various dynamic and self-modulation regimes of generation. The
described calculation methods can be used to investigate various effects in the
gyrotron.

For modeling an electron-wave interaction in gyrotrons by the stationary
model, the specific expressions for the right parts fpc

, fp‖ , Js of the Eq. (1)–(2)
take the form:

fpc
= −i

pc

p‖
·
(
γ

κ

n
− ωH0

c

)

+κ⊥ · Jm−n(κ⊥Rb) · iγF

p‖
· (p∗

c)
n−1 ·

(
Jn−1(ξ)
2 pn−1

⊥

)
+

pc

2B0
· dB0

dz
,

fp‖ = − p2⊥
p‖ · 2B0

· dB0

dz
,

J = I · κ · κ⊥ ·
〈〈

Jm−n(κ⊥Rb) · pn
c

p‖
·
(

J ′
n(ξ)

pn−1
⊥

)〉〉
.
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Here γ(z) =
√

1 + p2⊥ + p2‖ is the Lorentz factor, γ0 = γ(zin), p⊥ = γ
v⊥
c

,

p‖ = γ
v‖
c

are the normalized transverse and longitudinal momenta of electrons
in a helical beam, n is the number of the cyclotron harmonic, κ is the wave
number, κ⊥ and κ‖ are the transverse and longitudinal wave numbers, ωH0

is the nonrelativistic gyrofrequency, B0 is the external magnetic field, Rb is the
average radius of the leading centers of electron orbits, Jm is the Bessel function,

ξ(z) =
κ⊥c

ωH0

p⊥, I =
CI · Ib

(ν2
m,p − m2) · J2

m(νm,p)
is the normalized beam current,

CI =
8 e0
c m0

· 10−7 ≈ 0.4693 ·10−3, Ib is the beam current in amperes.

In the case of the multimode time-depended model, the expressions for the
right parts of the equations different and take the form:

fpc
= −i

pc

p‖
·
(
γ

ωp

c
− ωH0

c

)
+

pc

2 B0
· dB0

dz

+ i

Ns∑
s=1

{
Jms−ns(κ⊥,sRb) · γ κ⊥,s

p‖
·
(
p∗

c

)ns−1

·
(

Jns−1(ξ)

2 pns−1
⊥

)
· Fs ei (Δsz̃+ψs)

}
,

Js = Is · κs · κ⊥,s ·
〈〈

Jms−ns
(κ⊥,sRb) · pns

c

p‖
·
(

J ′
ns

(ξ)
pns−1

⊥

)
· e−i (Δsz̃+ψs)

〉〉
,

Δs =
(ωs − ns ωp)

c β‖
, ψs =

(m1

n1

· ns − ms

)
· ψ0, ψ0 = [0, 2π),

τ =
t · c2

2 · ωp
, κ⊥,s =

νms,ps

Rr(z)
, κ2

‖,s = κ2
s − κ2

⊥,s ·
(

1 +
i

Qohm,s

)
,

z̃ = z − zin, κs =
ωs

c
. C0 = −i ns.

Here ωp is the averaging frequency, usually defined as ω1/n1 (s = 1 is index
of the operating mode), ωs is the reference frequency of s-th mode. The sign 〈〈...〉〉
means averaging in initial phases θ0, in angles ψ0, in groups with different pitch
factor g and in fractions with the radii of the leading centers of Larmor orbits
Rb.

The constants C1, CL, CR in the nonreflective radiation boundary conditions
(7)–(8) are following

C1 =
e−i π/4

√
π · ns

, CL = − i

ns
· κ2

‖,s(zin), CR = − i

ns
· κ2

‖,s(zout).

As an example of using these algorithms, we illustrate the impact of ohmic
losses on the efficiency and stability of the gyrotron operation at high cyclotron
harmonics under the condition of strong competition from spurious modes. The
transition to operation at high cyclotron harmonics allows to reduce the exter-
nal magnetic field by n times. It expands a number of gyrotron applications
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[11]. Two versions of gyrotron operating at 30 GHz (the low-frequency version)
and 500 GHz (the high-frequency version) are considered. They have the same
operating parameters (accelerating voltage 15 kV and current 0.5 A) and scal-
able dimensions of the electrodynamic system. For example, the TE28,3 mode at
the second cyclotron harmonic was selected as an operating mode. In this case
the nearest spurious mode is the TE−10,3 mode, operating at the fundamental
cyclotron resonance. It should be noted that the version of a gyrotron with the
operating mode at 30 GHz is practically infeasible due to the large size of the
electrodynamic system. Nevertheless, the chosen mode is typical in the case of
terahertz gyrotrons and has the problem of mode competition, which is specific
issue of gyrotrons of this range.

The ohmic quality factor (ohmic Q-factor) is introduced into the system of
equations through the longitudinal wave number κ‖. For each gyrotron versions,
the length of interaction space and the magnetic field were optimized to achieve
the maximum efficiency of the operating mode. Figure 2a shows the calculated
distributions of the high-frequency field along the interaction space of the oper-
ating mode and the spurious mode. The TE28,3 mode has a similar to gaussian
structure with a high diffraction Q-factor, corresponding to the optimal electron-
wave interaction; then the TE−10,3 mode is traveling wave and has a longitu-
dinal structure with several variations of the RF field and respectively a lower
diffraction Q-factor. Figure 2b shows the typical dependence of the efficiency on
the generation frequency of these modes. With an increase in the generation
frequency of the operating mode from 30 GHz to 1000 GHz, the calculated effi-
ciency decreases from 11.35% to 1.77%; while ohmic losses practically do not
affect the efficiency of the spurious mode.

(a) (b)

Fig. 2. (a) Example of a cavity profile and longitudinal structures of modes. (b) The
gyrotron efficiency as a function of the generation frequency of the TE28,3 mode.

The multimode time-depended self-consistent model allows to analyze the
stability of TE28,3 and TE−10,3 modes in this frequency range. Figure 3 shows
the time dependence of the mode amplitudes with the optimal initial operating
mode amplitude and small amplitude of spurious mode. Figure 4 shows the planes
of dimensionless amplitudes of the fields of the operating and spurious modes for
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the low-frequency (Fig. 4a) and the high-frequency (Fig. 4b) gyrotron versions. In
the case of the low-frequency version the operating mode has stable generation.
With an increase in the generation frequency and, accordingly, the fraction of
ohmic losses in the cavity, the “saddle point” come up to the equilibrium point
“stable node” corresponding to the single-mode operation. In the case of a high-
frequency gyrotron, the operating mode turns unstable due to the bifurcation of
equilibrium points. The generation of radiation on the spurious mode remains
stable in the entire frequency range.

(a) (b)

Fig. 3. Time dependence of the amplitudes F1 and F2 of the TE28,3 and the TE−10,3

modes respectively, obtained with the multimode time-depended self-consistent model.
(a) The low-frequency version. (b) The high-frequency version.

(a) (b)

Fig. 4. Planes of amplitudes of the operating and the spurious modes. (a) The low-
frequency version. (b) The high-frequency version.

The ratio of the total Q-factor of the spurious mode to the total Q-factor
of the operating mode is essential for the stability of the gyrotron operation.
In the case of the low-frequency gyrotron version the contribution of the ohmic
Q-factor to the total Q-factor is negligible, then the parameter is determined
mainly by the ratio of the diffraction Q-factors. In the case of the high-frequency
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gyrotron version, due to an increase in the fraction of ohmic losses, the parameter
increases by 2.3 times relative to the low-frequency gyrotron version, which leads
to a significant decrease in the stability of the operating mode.

In the calculations, the number of points along the axis z was equal to 200,
the number of initial phases Nθ was equal to 57, the number groups with different
oscillatory velocities Ng was equal to 37, the number of azimuthal angle Nψ was
equal to 37. Only one fraction with the optimal radii of the leading centers
was considered. This corresponds to calculating the gyrotron efficiency with
stationary model for a split second and calculating the mode competition using
the time-depended model for several hours (the number of time steps was equal
to about 20000).

5 Conclusion

The paper presents the stationary and the multimode time-depended models
designed to calculate the electron-wave interaction in gyrotron cavity and imple-
mented in the code-package ANGEL. Used numerical methods are described in
details. The approach of refined representation of the first derivative by using
information about the structure of the Schrödinger equation is applied to increase
the solution accuracy. The method of eliminating the singularity in the integral
of the nonreflective radiation boundary condition is shown.

The calculations showed that the main problem of terahertz gyrotrons is the
problem of realizing the stable single-mode operation at high cyclotron harmon-
ics, which, as a rule, is solved by choosing the operating mode, the parameters
of the electron beam and the electrodynamic system, as well as using various
methods of additional selection of the operating mode.
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Abstract. The paper investigates the dynamics of the systems with a
crank vibration exciter designed for processing of various media, tak-
ing into account the properties of processing medium. The proposed
scheme of vibration mechanisms can be described as follows: the rotary
motion of a shaft with a constant frequency is converted into a recipro-
cating body motion relative anvil block with the help of a crank mecha-
nism. In this case, the sliders-strikers alternately strike the corresponding
anvils and the excited vibro-impact effect is transmitted to the processing
medium through an anvil block. Due to the choice of the phase shift val-
ues between cranks, the values of eccentricities length and anvil heights,
the required (may be optimal) impact interaction of the sliders-strikers
with an anvil is ensured at such phase crankshaft positions at which the
sliders-strikers exhibit the maximum velocity and, in addition, stable
operating mode is being achieved. It should be noted that the presence
of several sliders-strikers contributes to a longer exposure of the process-
ing medium to loads and, consequently, to a more efficient process of
plastic deformation. The research on dynamics of mechanisms is reduced
to studying the properties of the point mapping of a two-dimensional
non-analytical Poincaré surface into itself. Analytical relations have been
obtained that allow to determine in the parameter space the boundaries
of existence and stability regions of periodic operating motion modes.
Numerical calculations were performed using a software package devel-
oped in C++.

Keywords: Soil · Sliders-strikers · Bifurcation · Sustainability

1 Introduction

Currently, there are a number of different types of vibration and vibration impact
machines with various purposes, in particular, along with shock - vibration mech-
anisms with an unbalanced vibration exciter, eccentric shock - vibration mecha-
nisms with a crank vibration exciter have found wide application in construction
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[1,2]. The study of the nonlinear dynamics of devices with a crank-connecting
rod exciter of vibrations still attracts the attention of many researchers, in par-
ticular [3]. The new constructive solution was based on the principle of “inverted
vibrator”, in which the working body, being an unbalance, is hinged on the eccen-
tric shaft and balanced during rotation by the unbalance [4]. The force impulse
transmitted to the surface (soil, piles, etc.) arises both due to the thrust with the
eccentric shaft shoulder, and due to the kinetic energy of the fall of the working
body. The efficiency of compacting and immersion machines essentially depends
not so much on the amount of energy transferred to the processed medium, but
on the nature of the transfer of this energy - the “shape” of the pulse, which
should be changed due to the redistribution of individual dynamic factors of a
single loading cycle. Obviously, a dense and at the same time strong soil struc-
ture is achieved only if, during the compaction process, the specific pressure on
the contact surface of the working body with the soil increases gradually, the
lower boundary of which is determined by the physical properties of the soil in
the initial state with respect to the compaction process, and the upper one is
the ultimate strength of the soil or technological conditions. In this regard, the
parameters of such machines and mechanisms should be determined from con-
ditions close to quasi-plastic interaction. In this case, the pulse repetition rate
in each single cycle should be such as to exclude the possibility of developing an
elastic aftereffect of the treated medium in the intervals between pulses. Such
a multi-pulse loading method can be implemented using multi-hammer mecha-
nisms with a crank-connecting rod vibration exciter, the design of which makes it
possible to quite simply regulate the operating modes by changing the geometry
of the kinematic links and solve the problems of soil compaction in the cramped
conditions of industrial and civil construction.

In this work, a mathematical model of a shock-vibration mechanism with
a crank-connecting rod vibration exciter with a different number of pistons-
strikers (PS) has been constructed, both with and without (with a fixed limiter)
the medium being processed.

2 Problem Setting

The operation of the vibration mechanisms under consideration can be described
as follows Fig. 1: the rotating movement of the shaft with a constant ω is con-
verted by a crank mechanism into a reciprocating movement of the body of mass
M (1) relative to the anvil block (2) In this case, the striking sliders strike (3)
the anvils of height hi (4) and the shock-vibration effect created in this way is
transmitted through the anvil block to the processed environment. Due to the
choice of phase shift values ϕ between cranks of eccentricities ri, heights of the
anvils can be provided the required (can be optimal in a sense) impact interac-
tion of the pistons-strikers on the slabs, in which the pistons-strikers have the
maximum speed, ensuring the stability of the periodic operation. It should be
noted that the presence of several PSs contributes to a longer exposure to the
medium being processed, and, consequently, to an effective plastic deformation
process.
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Equations describing the shock - vibrational motion of a mechanism with a
fixed limiter in dimensionless coordinates under the condition ri << l

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d2x

dt2
= −p, (x > f(τ))

dx

dt
|+= −R

dx

dt
|− +(1 + R)

df

dt
.(x = f(τ), ẋ − df

dt
< 0)

(1)

where in (1): x =
y − s2 − l

l
, τ = ωt, μ = r1/l, γi = ri/r1, εi = (si − s2)/l, p =

g/ω2l, f(τ) = max
τ

(f1(τ), f2(τ), ..., fN (τ)), fi(τ) = εi − μγi cos(τ − ϕi),
dx

dt
|+= ẋ+,

dx

dt
|−= ẋ− are velocities of the ith PS immediately before and

after the impact interaction, respectively.

2
34

5 1

M

Fig. 1. Scheme shock-vibration mechanism.

3 Solution Method

Phase space for system Φ(x ≥ f(τ), ẋ < ∞) in coordinates x, ẋ, τ is reduced
with respect to x. The surface S(x = f(τ)) is a cylindrical surface formed by an
intersection of N surfaces Si(x = fi(τ)), i = 1, 2, ..., N. All phase trajectories are
located either on the surface S or above it. If x > f(τ) it corresponds to free
(impactless) motion of the mechanism; if x = f(τ), it corresponds to an impact
interaction of one of the pistons with the stop (anvil block). Phase trajectories
are shown on Fig. 2 in a qualitative form.

Obviously, the kind of the surface S, shown in Fig. 2, is preserved only when
provided that two subsequent surfaces fi(τ), fi+1(τ) intersect in pairs.
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Fig. 2. The qualitative view of the phase space.

Thus, from the description of the structure of the phase space and the behav-
ior of phase trajectories in it, it follows that the surface S can be taken as the
section plane and the dynamics can be investigated by the method of point map-
pings [5]. In this case, this means mapping the section plane S on to itself, which
can be written in the form

⎧
⎪⎪⎨

⎪⎪⎩

fk+2(τk+1) = Δτk+1(ẋk − pΔτk+1/2) + fk+1(τk),

ẋk+1 = R(pΔτk+1 − ẋk) + (1 + R)
df(τk+1)

dτ
(Δτk+1 = τk+1 − τk, k = 0, 1, ...N − 1)

(2)

The coordinates of fixed points M∗(τ∗,X∗), corresponding to periodic modes
of motion with alternate collision of each piston-striker (main mode), are deter-
mined from the system of 2(N +1) equations (2) supplemented by the conditions
of periodicity ẊN = Ẋ0 = Ẋ∗, τN = τ0 + nT = τ∗, having the form

⎧
⎪⎨

⎪⎩

Ẋ∗ =
bN − RN

∑N
k=1(−1)k+1bN−k

1 + (−1)N−1RN

Ẋk+1 = Rk[(−1)k+1Ẋ∗ +
∑N

i=0(−1)ibk−i]
(3)

where the components of the N -dimensional vector are functions b(b1, ..., bN ) do
not depend on Ẋ∗, Ẋk+1, but are functions of τ∗, τk+1 and system parameters

bj = Rp(τj+1 − τj) + (1 + R)
dfj+1(τj+1)

dτ

The times of motion along individual sections of the phase trajectory are
determined by solving a system of nonlinear equations of the form

⎧
⎪⎨

⎪⎩

fj+1(τ∗
j+1) + Δτ∗

j+1(pΔτj/2 − Ẋ∗
j ) = fj(τ∗

0 )
f1(τ∗) − fN (τN ) − (τ∗ − τ∗

N )[p(τ∗ − τ∗
N )/2 − Ẋ∗

N ] = 0
(j = 1, 2, ..., N − 1)

(4)

The stability in a small of a fixed point of the mapping (Lyapunov stabil-
ity) corresponding to the main periodic regime of motion, as is known [6], is
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determined by the magnitude of the roots of the characteristic equation

χ(z) = 0, (5)

namely,
∣
∣
∣
∣
A(z) B
C(z) D(z)

∣
∣
∣
∣ (6)

where A(z), B,C(z),D(z) are square matrices, nonzero elements of which have
the form

ai,j+1 = (−1)j(pΔτi+1 − Ẋ∗
i ) +

dfi+j(τ∗
i+j)

dτ
;

aN,1 = z[p(τ1
n − τ∗) + Ẋ∗

N − df1(τ∗)
dτ

];

ci,i+j = −R(−1)jp + (1 + R)j
d2fi+1(τ∗

i+1)
dτ2

;

bi,j = Δτ∗
i+1; di,i+j = (j − 1)R − j; dN,1 = −z; j = 0, 1; i = 1, 2, ..., N.

A periodic solution is stable if all roots (2) are located inside the unit circle,
i.e. the inequality |z| < 1 holds. The violation of the stability conditions for
a fixed point occurs either when the absolute value of one of the roots of the
characteristic equation becomes equal to z = ±1, or when z = exp ( ± jϕ), 0 ≤
ϕ ≤ π. The boundaries of the stability region of the considered periodic motion,
denoted by N+, N−, Nϕ, satisfy the equations

⎧
⎪⎨

⎪⎩

χ(1) = 0,
χ(−1) = 0,
χ(e±jϕ) = 0, 0 ≤ ϕ ≤ π.

(7)

In addition, it is known [5] that with a continuous change in the parameters,
the periodic mode of motion of interest to us disappears either due to violations
of the stability conditions, or due to the exit of the phase trajectory from the
domain of definition of the corresponding point transformation. The exit of the
phase trajectory from the domain of definition of the point mapping, determined
by the bifurcation surface NC , is associated with the tangency of the trajectory
at some points in time τ∗

i to the surface S Fig. 2. Thus, the region of existence
of stable periodic motions of the system under consideration is limited by the
surfaces N+, N−, Nϕ and the surface NC .

4 Numerical Study of the Dynamics of a Two-Piston
Vibroimpact Mechanism

Since the mode of operation of the system with alternate impacts of the launcher
is of particular interest, then, using the equations of the Poincaré surface S,
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relations were obtained between the parameters of the system, at which this
mode is possible (excluding stands), namely

ε/μ =
√

1 − 2γ cos ϕ + γ2, (8)

(ε1 = ε, γ2 = γ)
Figure 3 in the plane (γ, ε/μ) shows the boundaries (8) at different values of

the phase shift ϕ with no stands. Only for the values of the parameters lying
above the curves Γi the main mode with alternate impact of the PSs is possible.

Fig. 3. Boundary regions of motion modes with alternate impacts of each PS.

Below are given the domains of existence and stable motions in the plane
(p,R), denoted by D(m1,m2) [7] for different values of the parameters ϕ, γ, ε,
Δk, k.

Fig. 4. Regions D(1, 1) of existence of stable periodic motions of alternate PS impacts
ε = 0.02 (a), ε = 0.15 (b).

Comparing Fig. 4a and Fig. 4b, it can be seen that an increase in parameter
ε leads to a significant decrease in the size of the existence and stability region
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of the periodic motion modes of the mechanism and to the displacement of the
region itself in the direction of decreasing the frequency parameter p. Hence it
is better to connect the rods to PS at equal distances from PS bases.

Figure 5 shows power supply and stability for the following parameter values
μ = 0.1, ε = 0.02, γ = 4, k1 = 0,Δk = 0 and two values ϕ = 0.3 Fig. 5a and
ϕ = 2 Fig. 5b.

Fig. 5. Regions D(1, 1) of existence of stable periodic motions of alternate PS impacts
ϕ = 0.3 (a), ϕ = 2 (b).

Figure 6 and 7 shows bifurcation diagrams for the frequency parameter p (the
abscissa shows the values of the parameter p, and the ordinates show the values
of the post-impact velocities) with the same set of parameters as in Figs. 5a, b
respectively, but with R = 0.4.

Fig. 6. Bifurcation diagrams with frequency parameter p for ϕ = 0.3.

An analysis of the presented stability regions and bifurcation diagrams
showed that an increase in ϕ (phase shift between eccentricities) leads to an
increase in the regions of existence and stability of periodic regimes, i.e. the
range of values of the frequency parameter p, at which there are periodic motions,
becomes wider.

The numerical calculations of stability regions with a wide range of parame-
ters, carried out using a program complex developed in C++, showed that taking
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Fig. 7. Bifurcation diagrams with frequency parameter p for ϕ = 2.

Fig. 8. Bifurcation diagrams with frequency parameter p for k1 = 0, Δk = 0.

Fig. 9. Bifurcation diagrams with frequency parameter p for k1 = 0.1, Δk = 0.1.

into account the bias in the mechanism scheme leads to an increase in the size
of the stability region and its shift towards lower frequencies.

The analysis of the presented diagrams and stability regions showed that
taking into account the heights of the anvils supports k1, k1 + Δk leads to
an increase in the regions of existence of periodic modes of motion [7]. So in
Fig. 8 that the periodic regime for the selected values of the parameters exists
at 0.195 ≤ p ≤ 0.215 (excluding the heights of the anvils), and in Fig. 9 the
periodic regime exists at 0.15 ≤ p ≤ 0.21.

The numerical experiments carried out allowed us to conclude that the
parameters ε, ϕ, k1,Δk affect the dynamics of the mechanism most significantly.

5 Numerical Study of the Dynamics of a Three-Piston
Vibroimpact Mechanism

The equation of the bifurcation surface in the parameter space of the vibroimpact
mechanism (9), which distinguishes the range of parameter values at which the
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main mode is possible, has the form
⎧
⎪⎨

⎪⎩

ε21/μ2 = (γ2 − cos ϕ2)2 + sin2 ϕ2,

ε23/μ2 = (
√

(ε21/μ2 − sin2 ϕ2) + cos ϕ2 − γ3 cos(ϕ3 − ϕ2))2+
+(γ3 sin(ϕ3 − ϕ2))2.

(9)

So, in Fig. 10 for γ3 = 3, ϕ3 = 1.1 and different angle values ϕ2: ϕ2 = 0.3
(upper surface), 0.7 and 1 (lower surface) shows the type of surfaces that high-
light the range of Ω parameters, according to equations (9), in which modes of
movement of the mechanism with alternate impact by each piston are possible -
hammer on the anvil. These values, undoubtedly, can serve as a fairly convenient
adjustment of the mechanism to the required mode of movement. It is shown
that an increase in the size of the Ω region occurs with the growth of γ3, ϕ3 when
the inequality is satisfied

γ3 >
cos ϕ2 +

√

(ε1/μ)2 − sin2ϕ2

cos (ϕ3 − ϕ2)
(10)

Fig. 10. Range of parameter values at which motion modes with alternate collision of
each launcher with an anvil are possible.

In Fig. 11 shows bifurcation diagrams for the frequency parameter p of the
three-piston mechanism, where the abscissa shows the values of the parameter,
and the ordinates show the values of the post-impact velocities, built for the
following sets of parameters μ = 0.12, ε1 = 0.018, ε3 = 0.02, γ2 = 3, γ3 = 3, ϕ =
0.2, ϕ3 = 1.1, λ1 = 0.1, λ2 = 0.2, λ3 = 0.3 and different R equal to 0.2 (Fig. 11a)
and R=0.4 (Fig. 11b).
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Fig. 11. Bifurcation diagrams with frequency parameter p for R = 0.2 (a) and
R = 0.4 (b).

Figure 11a shows that at frequencies 0.13 ≤ p ≤ 0.15 and 0.16 ≤ p ≤ 0.28,
there is a periodic motion with mi = 1, i = 1, 2, 3; whereas at frequencies 0.11 ≤
p ≤ 0.12 and 0.15 ≤ p ≤ 0.16, a chaotic regime of motion is observed. It is also
seen that the value p = 0.13 is the bifurcation value of the parameter at which the
process of doubling the number of strokes by the first, second, and third pistons
is observed. It follows from Fig. 11b that at frequencies 0.2 ≤ p ≤ 0.3, the main
mode of movement is observed (mi = 1, i = 1, 2, 3); and with a decrease in the
frequency parameter, there are periodic movements with a different number of
strokes by each of the PSs. At 0.11 ≤ p ≤ 0.14, a chaotic regime of motion is
observed.

Thus, comparing Fig. 11a and Fig. 11b, we can conclude that the periodic
mode of motion D(1, 1, 1) with an increase in R shifts towards large values
frequency parameter p.

In conclusion, it should be noted that the obtained results of computer sim-
ulation at various values of the parameters make it possible to clearly trace the
processes of reconstruction from periodic motions of arbitrary multiplicity to
stochastic ones [8,9].

6 Dynamics of the Vibroimpact Mechanism Taking into
Account the Influence of the Processed Medium

The first model of a two-piston vibro-shock mechanism, taking into account the
processed medium, is shown in Fig. 12. The treated medium (soil, pile, etc.) is
presented in the form of an elastic mass M1 with a coefficient of elasticity k.
Energy losses in the medium are taken into account as viscous friction with a
damping factor b.

Figure 13 shows bifurcation diagrams for parameters μ0 = 5, μ = 0.1, γ =
4, φ = 0.6, and h = 0.06 (Fig. 13a) and h = 0.04 (Fig. 13b), and in Fig. 14 -
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Fig. 12. Diagram of a two-piston vibro-shock mechanism taking into account the influ-
ence of the processed medium.

oscillograms of motion at the same values of parameters as in Fig. 13a, but in
Fig. 14a p = 0.02, and in Fig. 14b p = 0.025 (red color in Fig. 14a, b indicates
the oscillogram movement of the first piston, green - the second).

Fig. 13. Bifurcation diagrams with frequency parameter p for different values of coef-
ficient h (dimensionless damping coefficient) h = 0.06 (a) and h = 0.04 (b).

From these figures it can be seen that at 0.0185 ≤ p ≤ 0.0235(h = 0.06)
there is a periodic motion with m1 = 1,m2 = 1; at 0.0235 ≤ p ≤ 0.026, a chaotic
regime of motion is observed. At p ≥ 0.0235, the process of doubling the number
of impacts of the launcher is observed. The studies have shown that the main
mode of motion exists and is stable at lower frequencies with a decrease in the
damping coefficient.

The second model of the mechanism with one PS, taking into account the
medium being processed (an analogue of the fundamental work of Yu.I. Neimark
[10]) in the form of a plug, on which a constant force Q and dry friction acts
F0, is shown in Fig. 15. Similar models of interaction of the working body with
the base were later used in many works and applications (see [11,12] and the
literature cited therein).
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Fig. 14. Oscillograms of motion for p = 0.02 (a) and p = 0.025 (b). (Color figure
online)

Fig. 15. Diagram of a single-piston vibro-impact mechanism taking into account the
properties of the medium being processed.

Oscillograms of the piston and plug movement are plotted. So, in Fig. 16
shows one of the oscillograms with the following set of parameters p = 0.1;λ0 =

120;λ = 140, μ = 0.1;μ0 = 0.1; η = 0.1; f∗ = 10; q = 1, where λ2
0 =

k

Mω2
, λ2 =

k

Mnpω2
, η = h/l, f∗ =

F0

Mnplω2
, q =

Q

Mnplω2
.

It follows from Fig. 16 that when there is no interaction between the piston
and the plug, its coordinate remains constant, and when interacting with the
piston, the plug begins to move together with it and sinks to a certain depth.

The third model of soil compaction with two PSs is shown in Fig. 17.
In this model it is assumed that when the medium is compacted, the resis-

tance force depends on the value of the previous soil settlement. Analysis of the
results of numerical experiments showed that the compaction process is most
effective for soils with a lower stiffness index. So in Fig. 18a,b, oscillograms of
movement are shown, which represent the process of soil compaction for various
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Fig. 16. Oscillogram of piston and plug movement.

Fig. 17. Model of the soil compaction process.

values model parameters characterizing properties of the soil. Figure 18a is pre-
sented for the following set of parameters p = 0.1, ε = 0.018, μ = 0.1, γ = 4, λ1 =
40, λ2 = 40, λ3 = 30, h2 = 150, α = 5, β = 2, η = 0.05. Figure 18b presents the
oscillogram of movement with the same set of parameters, as in Fig. 18a, but for
h2 = 7. Dimensionless parameters characterize the properties of the processed
medium.

The main results of the present work are as follows:

– a new mathematical model of a two-piston vibro-impact mechanism with a
crank vibration exciter is presented;

– analytical relations for the mechanism parameters are given, with the help of
which one can indicate regions where mechanism motions are possible after
impacts either by one PS or alternately by two PSs;

– bifurcation diagrams for all parameters of the mechanism allowed us to iden-
tify existence regions of various motion modes, including chaotic ones;
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Fig. 18. Model of the soil compaction process.

– two periodic motion modes are proved to exist in the stability regions, formed
by surfaces N+, N−, Nϕ and NC with one set of parameters, one periodic
motion being always stable, the other unstable;

– it has been numerically computed, that the parameters ε (distance from the
connecting point of the rod to the lower base of PS), ϕ (phase shift between
eccentricities) and the height of the anvils k1, k1+Δk are the most significant
parameters that affect the dynamics of the mechanism.
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Abstract. The hierarchy of quasi-stationary models for the system of
Maxwell’s equations in homogeneous and inhomogeneous media is stud-
ied. The non-relativistic magnetic approximation, the non-relativistic
electric approximations and the generalizing quasi-stationary approxima-
tion, in which the displacement current contains only a component cor-
responding to the potential part of the electric field, are considered. The
relationship between solutions of initial-boundary value problems for the
system of Maxwell’s equations in various approximations is established
and estimates of the proximity of these solutions are given. The obtained
results show that the generalizing quasi-stationary approximation con-
sidered in this work has the same accuracy as the non-relativistic mag-
netic approximation in determining the magnetic field and the transverse
component of the electric field and allows more accurate determination
of the potential component of the electric field and the volume density of
charges. The resulting generalized quasi-stationary approximation thus
covers both classical non-relativistic approximations and can be used
in modeling electromagnetic processes in substantially inhomogeneous
media, in particular, in solving problems of atmospheric electricity.

Keywords: The system of Maxwell’s equations · Quasi-stationary
approximations · Inhomogeneous media

1 Introduction

The system of Maxwell’s equations is written as [1]

curlH(x, t) =
4π

c
J(x, t) +

1
c

∂D(x, t)
∂t

, (1)

curlE(x, t) = −1
c

∂B(x, t)
∂t

, (2)
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divB(x, t) = 0, (3)

divD(x, t) = 4πρ(x, t), (4)

where (x, t) ∈ Q = Ω × (0, T ), Ω ⊂ IR3, T > 0.
It is assumed, the constitutive relations

D(x, t) = εE, B(x, t) = μH, J = σE + Jext (5)

are valid, where Jext is the source current density.
We consider the system (1)–(5) under boundary and initial conditions

E(x, t) × ν(x) = 0, (x, t) ∈ ∂Ω × (0, T ),

where ν(x) denotes the outward unit normal vector to the boundary at a point
x ∈ ∂Ω,

H(x, 0) = h(x), E(x, 0) = e(x), x ∈ Ω.

In applied problems various quasi-stationary approximations [1,2] are often
used instead of the system (1)–(5) for modeling sufficiently slow electromag-
netic processes. In different physical situations the non-relativistic magnetic and
electric approximations can be considered.

The non-relativistic magnetic approximation or eddy current approximation
is characteristic of slow processes in media with a sufficiently high conductiv-
ity [2–5]. Formally, this approximation consists in ignoring the displacement cur-
rent, that is, in Eq. (1) we can set ∂D/c∂t ≈ 0. In this case, instead of Eq. (1)
equation

curlH(x, t) =
4π

c
J(x, t) (6)

is considered and the system (6), (2)–(5) can be studied under boundary and
initial conditions

E(x, t) × ν(x) = 0, (x, t) ∈ ∂Ω × (0, T ), H(x, 0) = h(x), x ∈ Ω.

A quite extensive literature is devoted to the study of various formulations of
problems for this approximation and the issues of the numerical implementation
of algorithms for their solution, in particular, [4–10]. The justification of the
quasi-stationary magnetic approximation is discussed in [3–5].

Another quasi-stationary approximation, called the non-relativistic electrical
approximation [2], is used to describe fairly slow processes in media with low
conductivity. In particular, it is traditionally used for modeling electromagnetic
processes in the lower atmosphere [11–14]. Formally, the approximation consists
in neglecting the term ∂B/c∂t in equality (2), which leads to the potentiality of
the electric field in spatial simply connected regions:

curlE(x, t) = 0. (7)

The system (1), (3)–(5), (7) can be considered in this case under boundary
and initial conditions

E(x, t) × ν(x) = 0, (x, t) ∈ ∂Ω × (0, T ), E(x, 0) = e(x), x ∈ Ω.
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In [21] for the case of inhomogeneous media a theoretical justification was
carried out of the quasi-stationary approximation, in which the displacement
current 1

c
∂
∂tD = 1

c
∂
∂tεE in (1) can be replaced by − 1

c
∂
∂tεgradϕ, where

E = E − gradϕ, divεE = 0. (8)

For spatial inhomogeneous regions filled with an inhomogeneous conduct-
ing medium with a permittivity ε(x), the first equation of the system in this
approximation takes the form

curlH(x, t) =
4π

c
J(x, t) − 1

c
ε(x)

∂

∂t
gradϕ(x, t). (9)

The system (9), (2)–(5) is considered under boundary and initial conditions

E(x, t)×ν(x) = 0, (x, t) ∈ ∂Ω×(0, T ), H(x, 0) = h(x), ϕ(x, 0) = ϕ0(x), x ∈ Ω.
(10)

In [15,17–19] problems for this approximation are studied under the assump-
tion that in the system (1)–(4) the volume current density J and the volume
charge density ρ are given functions, which formally corresponds to the assump-
tion of a non-conducting medium (in (5) σ ≡ 0). In this case the considered
approximation is called the Darwin approximation. Strict results on the correct-
ness of problems for the linear system of Maxwell’s equations in the framework of
the Darwin approximation are obtained and an asymptotic relationship between
the solutions of problems for the Darwin approximation and the solutions of
corresponding problems for the non-stationary Maxwell system are established
in terms of the small parameter β = Δx/(cΔt), where Δx is the characteristic
spatial scale, Δt is the characteristic time, c is the speed of light. The issues
hierarchy of various quasi-stationary approximations are discussed in [2,15,16].
In particular, in [16] it is noted that the Darwin approximation covers the tra-
ditional non-relativistic magnetic and electric approximations.

In this paper, we study the quasi-stationary approximation (9) for a system
of Maxwell’s equations in homogeneous and inhomogeneous conducting media.
The condition of inhomogeneity of media leads, in contrast to the works [17–
19], to a related system of differential equations for unknown functions H, E,
−gradϕ, which is not reduced to classical problems of mathematical physics.

The chapter is organized as follow. In Sect. 2 we introduce the functional
spaces necessary for a strict formulation of the initial boundary value problems
under consideration. To illustrate the relationship between different approxima-
tions for the Maxwell equation system, Sect. 3 provides a preliminary analysis
of initial boundary value problems in the case of homogeneous media. In Sect. 4
we present results concerning the correctness of initial boundary value problems
for the system of Maxwell equations in different approximations. Section 5 is
devoted to estimates of proximity of the solution of these problems.

All inequalities are obtained under the additional condition of coordination
the initial data

curlh =
4π

c
σe +

4π

c
Jext(0), curle = 0, (11)

which makes it possible to avoid the effect of the boundary layer.
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2 Functional Spaces

Let Ω ⊂ IR3 be an open bounded Lipschitz domain with boundary Γ , homeo-
morphic to a sphere in IR3. The following Hilbert spaces of vector functions with
corresponding scalar products are defined [20]:

H(div;Ω) = {u ∈ {L2(Ω)}3 : divu ∈ L2(Ω)},

K(div;Ω) = {u ∈ {L2(Ω)}3 : divu = 0},

(u,v)div = (u,v)2,Ω + (divu,divv)2,Ω ,

H(curl;Ω) = {u ∈ {L2(Ω)}3 : curlu ∈ {L2(Ω)}3},

K(curl;Ω) = {u ∈ {L2(Ω)}3 : curlu = 0},

(u,v)curl = (u,v)2,Ω + (curlu, curlv)2,Ω ,

where (·, ·)2,Ω denotes the scalar product in L2(Ω) or in {L2(Ω)}3. The closures
of the set of test vector functions {D(Ω)}3 in H(div;Ω) and H(curl;Ω) are
denoted by H0(div;Ω) and H0(curl;Ω) respectively, K0(curl;Ω) = K(curl;Ω)∩
H0(curl;Ω), K0(div;Ω) = K(div;Ω) ∩ H0(div;Ω).

The following propositions hold [20].

Lemma 1. For any function u ∈ K(curl;Ω) there is a function p ∈ H1(Ω) that
u = gradp. If u ∈ K0(curl;Ω), then it possible to choose p ∈ H1

0 (Ω).

Lemma 2 (Friedrichs inequality). There is a constant A(Ω) > 0 that for all
ϕ ∈ H1

0 (Ω)
‖ϕ‖2,Ω ≤ A(Ω)‖gradϕ‖2,Ω .

Let η ∈ L∞(Ω) and there are positive constants η1, η2 that for almost all
x ∈ Ω

η1 ≤ η(x) ≤ η2.

We denote by {L2(η;Ω)}3 the space {L2(Ω)}3 provided with the scalar product
(ηu,v)2,Ω . We set also

K(divη;Ω) = {u ∈ {L2(Ω)}3 : divηu = 0},

K0(divη;Ω) = {u ∈ {L2(Ω)}3 : ηu ∈ K0(div;Ω)},

U1(η;Ω) = K(divη;Ω) ∩ H0(curl;Ω), U2(η;Ω) = K0(divη;Ω) ∩ H(curl;Ω).

Lemma 3. The orthogonal complement to K(divη;Ω) in {L2(η;Ω)}3 coincides
with K0(curl;Ω).

Lemma 4. The orthogonal complement to K0(divη;Ω) in {L2(η;Ω)}3 coincides
with K(curl;Ω).

Lemmas 3, 4 follow from the corresponding statements for η ≡ 1 proved
in [20], since

ηK(divη;Ω) = K(Ω), ηK0(divη;Ω) = K0(div;Ω).
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Lemma 5. There exists a constant C(Ω) > 0 that for all u ∈ Ui(η;Ω), i = 1, 2,

‖u‖2,Ω ≤ C(Ω)‖curlu‖2,Ω . (12)

This lemma is proved, for example, in [8].

3 Problems for Maxwell’s Equations in Homogeneous
Media

We suppose that Jext : Q → IR3, h : Ω → IR3, e : Ω → IR3 are square integrable
functions. We set Jext = σEext. In this section we consider the case of homo-
geneous conducting media, that is σ, ε, μ are positive constants. Let Δx is a
characteristic spatial scale, Δt is a characteristic time, σ∗ is a characteristic value
of electrical conductivity (in homogeneous media σ∗ = σ), ρ∗ is a characteristic
value of charge density. We replace x with Δx · x′ and t with Δt · t′ and denote

γ = 4πΔtσ∗, β =
Δx

cΔt
, κ = 4πΔxρ∗.

The system of Maxwell’s equations (1)–(4) with regard the constitutive rela-
tions (5) become

curl′H = βγE + βγEext + β
∂

∂t′
εE, (13)

curl′E = −β
∂

∂t′
μH. (14)

System (13), (14) is considered under the boundary conditions

E(x′, t′) × ν(x′) = 0, (x′, t′) ∈ Γ ′ × (0, T ′), (15)

and the initial conditions

H(x′, 0) = h(x′), E(x′, 0) = e(x′), x′ ∈ Ω′. (16)

The unknown functions J , D, B can be found from (5). Equation (4), which
becomes

κρ = −divεgradϕ,

use to define the function ρ. Further for simplicity we will drop the primes for
dimensionless variables (x′, t′) and their areas of change Q′ = Ω′ × (0, T ′).

From Lemma 3 in the partial case η ≡ 1 follows the orthogonal decom-
position {L2(Ω)}3 = K(div;Ω) ⊕ K0(curl;Ω). Using this decomposition and
Lemma 1, we can set Eext = Eext + gradψext, e = e0 − gradϕ0, where
Eext ∈ L2(0, T,K(div;Ω)), gradψext ∈ L2(0, T,K0(curl;Ω)), e0 ∈ K(div;Ω),
gradϕ0 ∈ K0(curl;Ω).

Let E = E − gradϕ, where E(t) ∈ K(div;Ω) and gradϕ(t) ∈ K0(curl;Ω) for
t ∈ (0, T ). Projecting (13) to orthogonal subspaces, we obtain that the initial-
boundary value problem (13)–(16) for non-stationary Maxwell’s equations is
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divided into the problem of defining a function gradϕ ∈ L2(0, T,K0(curl;Ω))
such that

ε
∂

∂t
gradϕ + γgradϕ = γgradψext, (17)

gradϕ(0) = gradϕ0, (18)

and the problem of defining functions H ∈ L2(0, T,H(curl;Ω)), E ∈
L2(0, T, U1(1;Ω)) such that

curlH = βγE + βγEext + β
∂

∂t
εE, (19)

curlE = −β
∂

∂t
μH, (20)

H(0) = h, E(0) = e0. (21)

The system (17), (18) corresponds to the quasi-stationary electrical approx-
imation [2], which is used, in particular, for modeling electrical processes in the
atmosphere [11–14]. The mathematical theory for various formulations of prob-
lems for this approximation in generally was presented in [13]. Problem (17),
(18) allows the following statement: find ϕ ∈ L2(0, T,H1

0 (Ω)), that (18) is valid
and for all ψ ∈ H1

0 (Ω)

d

dt
(εgradϕ, gradψ)2,Ω + γ(gradϕ, gradψ)2,Ω = γ(gradψext, gradψ)2,Ω . (22)

Theorem 1. There exists a unique solution ϕ ∈ L2(0, T,H1
0 (Ω)) of (17), (18)

and gradϕ ∈ C(0, T,K0(curl;Ω)), ∂/∂tgradϕ ∈ L2(0, T,K0(curl;Ω)).
If gradψext ∈ H1(0, T, {L2(Ω)}3) and

gradϕ0 = gradψext(0), (23)

then
‖ ∂

∂t
gradϕ‖2,Q ≤ (1 − exp(−γ

ε
T ))‖ ∂

∂t
gradψext‖2,Q. (24)

Let V1(Ω) = H(curl;Ω) × U1(1;Ω), L(Ω) = {L2(Ω)}3 × {L2(Ω)}3,
(Φ1, Φ2)L = (μu1,u2)2,Ω + (εv1,v2)2,Ω , Φi = {ui,vi} ∈ L(Ω), i = 1, 2.

By introducing the liner operator A : V1(Ω) → L(Ω),

AΦ = {μ−1curlv,−ε−1curlu}, Φ = {u,v} ∈ V1(Ω), (25)

we get the following formulation of the problem (19)–(21):
find Ψ = {H,E} ∈ L2(0, T, {L2(Ω)}3 × K(div;Ω)), that Ψ(0) = {h,e0} and for
all Φ = {u,v} ∈ V1(Ω)

β
d

dt
(Ψ,Φ)L − (Ψ,AΦ)L + βγ(E ,v)2,Ω = −βγ(Eext,v)2,Ω . (26)
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Theorem 2. There exists a unique solution Ψ = {H,E} of problem (26).
If Ψ0 ∈ V1(Ω), Eext ∈ H1(0, T, {L2(Ω)}3), then Ψ ∈ L2(0, T, V1(Ω)), ∂/∂tΨ
belongs to L∞(0, T, L(Ω)) and (19), (20) hold. If, in addition,

e0 = 0, curlh = βγEext(0), (27)

then
‖∂/∂tE‖2,Q ≤ (1 − exp(−γT/ε))‖∂/∂tEext‖2,Q. (28)

The statements of Theorems 1, 2 follow from the more general Theorem 4
formulated in the next section.

Consider the initial-boundary value problem for the Maxwell’s equations in
the quasi-stationary magnetic approximation, which has the dimensionless form

curlH = βγE + βγEext, (29)

curlE = −β
∂

∂t
μH, (30)

E(x, t) × ν(x) = 0, (x, t) ∈ Γ × (0, T ), (31)

H(x, 0) = h(x), x ∈ Ω. (32)

Using the method of orthogonal projection according to the Lemma3 the
problem reduced to the problem of defining functions H ∈ L2(0, T,H(curl;Ω))
and E belongs to L2(0, T, U1(1;Ω)) such that

curlH = βγE + βγσEext, (33)

curlE = −β
∂

∂t
μH, (34)

H(0) = h, (35)

and equation
gradϕ = gradψext. (36)

The problem (33)–(35) admits the following formulation:
find a function H ∈ L2(0, T, U2(1;Ω)), that (35) is valid and for all v ∈ U2(1;Ω)

β2γ
d

dt

∫
Ω

(μH · v)dx +
∫

Ω

(curlH · curlv)dx = βγ

∫
Ω

(Eext · curlv)dx. (37)

Theorem 3. For any h ∈ K(div;Ω), Eext ∈ L2(0, T,K(div;Ω)) there exists a
unique solution H ∈ L2(0, T, U2(1;Ω)) of problem (37).
If Eext ∈ H1(0, T, {L2(Ω)}3), h ∈ U2(1;Ω) and curlh = βγEext(0), then
∂/∂tH ∈ L∞(0, T,K0(div;Ω)), the function

E = (βγ)−1curlH − Eext

belongs to L2(0, T, U1(1;Ω)) and (34) is valid.
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The statements of the theorem follows from Theorem 6 and Lemma 7 of
Sect. 4.

The initial-boundary value problem for Maxwell’s equation in generalizing
quasi-stationary approximation has the form

curlH = βγE + βγEext − β
∂

∂t
εgradϕ, (38)

curlE = −β
∂

∂t
μH, (39)

E(x, t) × ν(x) = 0, (x, t) ∈ Γ × (0, T ), (40)

H(x, 0) = h(x), ϕ(x, 0) = ϕ0(x), x ∈ Ω. (41)

This problem is divided into problem (17), (18) of defining a function gradϕ
from L2(0, T,K0(curl;Ω)) and problem (33)–(35) for H ∈ L2(0, T,H(curl;Ω)),
E ∈ L2(0, T, U1(1;Ω)).

Thus, using the indices n, d and m for solutions of initial-boundary value
problems for the non-stationary system of Maxwell’s equations and the Maxwell’s
equations in the quasi-stationary and in the magnetic approximations respec-
tively, we obtain when the initial functions coincide

gradϕn = gradϕd, Hm = Hd, Em = Ed.

The next estimates were obtained in [21].

Lemma 6. Let Eext ∈ H1(0, T, {L2(Ω)}3), h ∈ U2(1;Ω) and (27) holds. Then

‖En − Ed‖2,Q ≤ ε
γ (1 − exp(−γ

ε T ))‖ ∂
∂tEext‖2,Q,

‖Hn − Hd‖2L∞(0,T,{L2(Ω)}3 ≤ ε√
γμ (1 − exp(−γT/ε))‖ ∂

∂tEext‖2,Q,

‖Hn − Hd‖L2(0,T,H(curl;Ω)) ≤ 2(1 + C(Ω))1/2εβ(1 − exp(−γT/ε))‖ ∂
∂tEext‖2,Q,

where C(Ω) is the constant from (12). If (23) is met,

‖gradϕd − gradϕm‖2,Q ≤ εγ−1(1 − exp(−γT/ε))‖ ∂

∂t
gradψext‖2,Q.

The above results show that in the case of homogeneous media, the quasi-
stationary approximation does not change the potential component of the electric
field. In addition, it follows from (4) that ρd = ρn and the charge conservation
equation

∂ρ

∂t
+ divJ = 0

remains valid. The magnetic field and the solenoid component of the electric field
are the same for the quasi-stationary approximation and for the non-relativistic
magnetic approximation.
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4 Initial-Boundary Value Problems for Maxwell’s
Equations in Inhomogeneous Media

4.1 The Non-stationary Maxwell’s Equations System

Now we suppose that μ, σ, ε are functions from L∞(Ω) and

ε1 ≤ ε(x) ≤ ε2, μ1 ≤ μ(x) ≤ μ2, σ1 ≤ σ(x) ≤ σ2, x ∈ Ω,

where μi, σi, εi (i = 1, 2) are given positive constants.
Passing, as in the previous section, to dimensionless variables, we assume

σ = σ∗σ0, σ01 ≤ σ0 ≤ σ02, Jext = σ∗σ0E
ext.

The initial-value problem for system of Maxwell’s equations (1)–(4) with
regard the constitutive relations (5) become

curlH = γβσ0E + γβσ0E
ext + β

∂

∂t
εE, (42)

curlE = −β
∂

∂t
μH, (43)

E(x, t) × ν(x) = 0, (x, t) ∈ Γ × (0, T ), (44)

H(x, 0) = h(x), E(x, 0) = e(x), x ∈ Ω. (45)

Constrains (11) for initial data takes the form

curlh = βγσ0(e + Eext(0)), curle = 0. (46)

Note, that in the case of homogeneous media (46) implies (27) and (23).
Let V (Ω) = H(curl;Ω) × H0(curl;Ω) and A : V (Ω) → L(Ω) is a linear

operator defined by (25). Problem (42)–(45) allows the following formulation:
find a function Ψ = {H,E} ∈ L2(0, T, L(Ω)), that for all Φ = {u,v} ∈ V (Ω)

β
d

dt
(Ψ,Φ)L − (Ψ,AΦ)L + βγ(σ0E,v)2,Ω = −βγ(σ0E

ext,v)2,Ω , (47)

Ψ(0) = Ψ0 = {h,e}. (48)

Theorem 4. For any Ψ0 ∈ L(Ω), Eext ∈ {L2(Q)}3 there exists a unique
solution Ψ ∈ L2(0, T, L(Ω)) of problem (47), (48). If Ψ0 ∈ V (Ω), Eext in
H1(0, T, {L2(Ω)}3), then Ψ ∈ L2(0, T, V (Ω)), ∂/∂tΨ ∈ L∞(0, T, L(Ω)) and
Eqs. (42), (43) hold. If, in addition, the constrain (46) is met, then

‖ ∂

∂t
E‖2,Q ≤ σ02

σ01

(
1 − exp(−γ

σ01

ε1
T )

)
‖ ∂

∂t
Eext‖2,Q. (49)

The existence of a solution to the problem (42)–(43) is proved in the same
way as the corresponding statements in [22] (Theorems 4.1, 5.1 of Chapter VII).
The estimate (49) is obtained in [21].
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4.2 Quasi-stationary Approximation to Maxwell’s Equations

Due to Lemmas 1, 3 we can set

E(t) = E(t) − gradϕ(t), E(t) ∈ K(divε;Ω), gradϕ(t) ∈ K0(curl;Ω), t ∈ (0, T ).

The initial-boundary value problem for the system of Maxwell’s equations in the
quasi-stationary approximation is written in dimensionless form as

curlH = βγσ0E + βγσ0E
ext − β

∂

∂t
εgradϕ, (50)

curlE = −β
∂

∂t
μH, (51)

E(x, t) × ν(x) = 0, (x, t) ∈ Γ × (0, T ), (52)

H(x, 0) = h(x), gradϕ(x, 0) = gradϕ0(x), x ∈ Ω. (53)

We denote V0(Ω) = H(curl;Ω)×K0(curl;Ω). The problem (50)–(53) admits
the following statement:
find Ψ = {H, gradϕ} ∈ L2(0, T, V0(Ω)) and E ∈ L2(0, T, U1(ε;Ω)) such that for
all Φ = {u, gradψ} ∈ V0(Ω), v ∈ U1(ε;Ω)

β d
dt (Ψ,Φ)L + (E , curlu)2,Ω − βγ(σ0E, gradψ)2,Ω + βγ(σ0gradϕ, gradψ)2,Ω

= βγ(σ0E
ext, gradψ)2,Ω , (54)

βγ(σ0E,v)2,Ω − βγ(σ0gradϕ,v)2,Ω − (H, curlv)2,Ω = −βγ(σ0E
ext,v)2,Ω (55)

Ψ(0) = Ψ0 = {h, gradϕ0}. (56)

The condition on the initial data, corresponding to (46), has the form

curlh = βγσ0(−gradϕ0 + Eext(0)). (57)

Theorem 5. Let h ∈ H(curl;Ω), Eext ∈ H1(0, T, {L2(Ω)}3). Then problem
(54)–(56) has a unique solution Ψ , E. Moreover, Ψ ∈ L∞(0, T, L(Ω)), ∂/∂tΨ ∈
L2(0, T, L(Ω)) and (50), (51) hold. If (57) is satisfied, then

‖ ∂

∂t
E‖2,Q ≤

(
ε2σ02

ε1σ01

)1/2 ∥∥∥∥ ∂

∂t
Eext

∥∥∥∥
2,Q

, (58)

∥∥∥∥ ∂

∂t
gradϕ

∥∥∥∥
2,Q

≤ σ02

σ01

(
1 +

√
ε2σ02√
ε1σ01

)
(1 − exp(−γσ01

ε1
T ))

∥∥∥∥ ∂

∂t
Eext

∥∥∥∥
2

2,Q

. (59)

Proof. The existence of a solution to the problem and (58) are proved in [21].
Let us prove (59). According to Lemmas 1, 3 we have

ε−1σ0(E + Eext) = v − gradψ,
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where v ∈ H1(0, T,K(divε;Ω)), gradψ ∈ H1(0, T,K0(curl;Ω)). From (50) we
get

curlH = βγεv, γgradψ + ∂/∂tgradϕ = 0.

Thus ∂2/∂t2gradϕ∈ L2(0, T, {L2(Ω)}3), hence ∂/∂tgradϕ∈ C([0, T ], {L2(Ω)}3).
In view to (57) E(0) = 0 [21] and therefore ∂/∂tgradϕ(0) = 0.

For all ψ ∈ H1
0 (Ω) we get from (54)

(ε ∂
∂tgradϕ, gradψ)2,Ω − γ(σ0E, gradψ)2,Ω + γ(σ0gradϕ, gradψ)2,Ω

= γ(σ0E
ext, gradψ)2,Ω .

Taking the derivative of this equality in t and setting gradψ = ∂/∂tgradϕ, we
obtain

ε1‖ ∂
∂tgradϕ‖22,Ω + 2γσ01

∫ t

0
‖ ∂

∂tgradϕ‖22,Ωdt

≤ 2γσ02

∫ t

0
‖ ∂

∂t (E
ext + E)‖2,Ω‖ ∂

∂tgradϕ‖2,Ωdt.

Using (58), we have (59).

4.3 Non-relativistic Magnetic Approximation

The system of Maxwell’s equations in the non-relativistic magnetic approxima-
tion is written, taking into account constitutive relations, as

curlH = βγσ0E + βγσ0E
ext, (60)

curlE = −β
∂

∂t
μH. (61)

System (60), (61) is considered under the boundary and initial conditions

E(x, t) × ν(x) = 0, (x, t) ∈ Γ × (0, T ), (62)

H(x, 0) = h(x), x ∈ Ω. (63)

Problem (60)–(63) admits the following statement:
find H ∈ L2(0, T, U2(μ;Ω)), that satisfies (63) and for all v ∈ U2(μ;Ω)

β2γ
d

dt
(μH,v)2,Ω + (σ−1

0 curlH, curlv)2,Ω = βγ(Eext, curlv)2,Ω . (64)

Theorem 6. For all h ∈ K0(divμ;Ω), Eext ∈ L2(0, T, {L2(Ω)}3) there exists
a unique solution H ∈ L2(0, T, U2(μ;Ω)) to problem (64), (63). If h ∈ U2(μ;Ω)
and Eext ∈ L2(0, T,H0(curl;Ω)), then ∂/∂tH ∈ L2(0, T, {L2(Ω)}3).

The theorem follows from the Lions theorem ([23], Ch. VIII).

Lemma 7. Let Eext ∈ H1(0, T, {L2(Ω)}3), h ∈ U2(μ;Ω) and

βγEext(0) − (σ0)−1curlh ∈ K0(curl;Ω). (65)

If H is a solution of problem (64), (63), then ∂/∂tH ∈ L∞(0, T, {L2(Ω)}3).
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Lemma is proved in the same way as Theorem 5.1 of Chapter VII in [22].
Let H ∈ L2(0, T, U2(μ;Ω)) be a solution of (64), (63). We may define func-

tion E ∈ L2(0, T, {L2(Ω)}3) from (60). Equation (61) is valid in the sense of
distributions on Ω × (0, T ). If constrains for the initial data, formulated in The-
orem 6 or Lemma 7, are met, then E ∈ L2(0, T,H0(curl;Ω)), that is we have
(62). Note also that (23) follows from (46).

5 Comparison of Solutions to Problems

Let Ψ0 ∈ V (Ω), Eext ∈ H1(0, T, {L2(Ω)}3) and the constrains (46) on initial
data are satisfied, {Hn,En} ∈ L2(0, T, V (Ω)) be a solution (42)–(45), En =
En − gradϕn, where E ∈ L2(0, T, U1(ε;Ω)), gradϕn ∈ L2(0, T,K0(curl;Ω)). We
denote by {Hd, gradϕd} ∈ L2(0, T, V0(Ω)), Ed ∈ L2(0, T, U1(ε;Ω)) a solution of
the problem (50)–(53), where −gradϕ0 = e and by Hm ∈ L2(0, T, U2(μ;Ω)),
Em ∈ L2(0, T,H0(curl;Ω)) a solution of the problem (60)–(63). Let κρn =
−divεgradϕn ∈ L2(0, T,H−1(Ω)), κρd = −divεgradϕd ∈ L2(0, T,H−1(Ω)).

We denote a = Tσ01/ε1 and define the following functions from γ:

fϕ(γ) =
(1 − exp(−aγ))2

γ
, fE(γ) =

1 − exp(−aγ)
γ

, fH(γ) =
(1 − exp(−aγ))√

γ
.

The next estimates were established in [21].

Theorem 7

‖gradϕn − gradϕd‖2,Q ≤ C1fϕ(γ)‖∂/∂tEext‖2,Q, (66)

‖En − Ed‖2,Q ≤ C2fE(γ)‖∂/∂tEext‖2,Q, (67)

‖Hn − Hd‖L∞(0,T,{L2(Ω)}3) ≤ C3fH(γ)‖∂/∂tEext‖2,Q, (68)

‖Hn − Hd‖L2(0,T,H(curl;Ω)) ≤ C4β(1 − exp(−aγ))‖∂/∂tEext‖2,Q, (69)

κ‖ρn − ρd‖L2(0,T,H−1(Ω)) ≤ C5fϕ(γ)‖∂/∂tEext‖2,Q, (70)

where positive constants Ci, i = 1 − 5, do not depend on β, γ.

We obtain proximity estimates for the potential components of the electric
fields for the case of a weakly inhomogeneous medium.

Theorem 8. Let grad(σ0ε
−1) ∈ {L∞(Ω)}3. Then

‖gradϕn − gradϕd‖2,Q ≤ C6fϕ(γ)‖grad(σ0ε
−1)‖∞,Ω‖∂/∂tEext‖2,Q, (71)

κ‖ρn − ρd‖L2(0,T,H−1(Ω)) ≤ C7fϕ(γ)‖grad(σ0ε
−1)‖∞,Ω‖∂/∂tEext‖2,Q, (72)

where positive constants C6 and C7 do not depend on β, γ.
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Proof. We denote H = Hn − Hd, E = En − Ed = E − gradϕ, ρ = ρn − ρd.
Then gradϕ(0) = 0,

curlH = βγσ0E + βε
∂

∂t
(En − gradϕ). (73)

Multiplying (73) by gradϕ, we obtain

(εgradϕ, gradϕ)2,Ω + 2γ

∫ t

0

(σ0gradϕ, gradϕ)2,Ωdt = 2γ

∫ t

0

(σ0E, gradϕ)2,Ωdt.

Since

(σ0E, gradϕ)2,Ω = (σ0ε
−1εE, gradϕ)2,Ω = −(ϕgrad(σ0ε

−1), εE)2,Ω ,

applying the Friedrichs inequality, we have

ε1‖gradϕ‖22,Ω + 2γσ01

∫ t

0
‖gradϕ‖22,Ωdt

≤ 2γA(Ω)‖grad(σ0ε
−1)‖∞,Ω

∫ t

0
‖E‖2,Ω‖gradϕ‖2,Ωdt,

‖gradϕ‖2,Q ≤ A(Ω)2σ−1
01 ‖grad(σ0ε

−1)‖∞,Ω(1 − exp(−γσ01Tε−1
1 ))‖E‖2,Q.

From (67) we obtain (71).
Because κ〈ρ, ψ〉 = (εgrad(ϕ, gradψ)2,Ω for all ψ ∈ H1

0 (Ω), (72) follows from
(71).

Theorem 9. The estimates

‖En − Em‖2,Q ≤ C8fE(γ)‖∂/∂tEext‖2,Q, (74)

‖Hn − Hm‖L∞(0,T,{L2(Ω)}3) ≤ C9fH(γ)‖∂/∂tEext‖2,Q, (75)

‖Hn − Hm‖L2(0,T,H(curl;Ω)) ≤ βC10(1 − exp(−aγ))‖∂/∂tEext‖2,Q (76)

hold, where positive constants C8–C10 do not depend on β, γ.

Proof. Denote H = Hn − Hm, E = En − Em = E − gradϕ. Then H(0) = 0,

curlH = βγσ0E + β
d

dt
εEn, (77)

curlE = −β
∂

∂t
μH. (78)

Multiplying (77) by E and (78) by H, we have

d

dt
(μH,H)2,Ω + 2γ(σ0E,E)2,Ω = −2(ε

∂

∂t
En,E)2,Ω .

Integrating this equality and applying (49), we obtain (74), (75). From (77), (74)
and (12) we get (76)
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Theorem 10. The next estimates are valid.

‖Em − Ed‖2,Q ≤ D1fE(γ)‖∂/∂tEext‖2,Q, (79)

‖Hm − Hd‖L∞(0,T,{L2(Ω)}3) ≤ D2fH(γ)‖∂/∂tEext‖2,Q, (80)

‖Hm − Hd‖L2(0,T,H(curl;Ω)) ≤ βD3(1 − exp(−aγ))‖∂/∂tEext‖2,Q. (81)

If grad(σ0ε
−1) ∈ {L∞(Ω)}3 then

‖Em − Ed‖2,Q ≤ D4fE(γ)‖grad(σ0ε
−1)‖∞,Ω‖∂/∂tEext‖2,Q, (82)

‖Hm − Hd‖L∞(0,T,{L2(Ω)}3) ≤ D5fH(γ)‖grad(σ0ε
−1)‖∞,Ω‖ ∂

∂t
Eext‖2,Q. (83)

Positive constants D1–D5 do not depend on β, γ.

The theorem is proved similarly to the Theorems 8, 9.

6 Discussion

The inequalities established in the paper allow us to evaluate the difference
between quasi-stationary and non-stationary fields in different norms through
norm of the time derivative of the external electric field (‖∂/∂tEext‖2,Q) with
coefficients depending on the parameters β = Δx/(cΔt) and γ = 4πσ∗Δt, which
characterize the velocity of processes.

Note that β → 0 and γ → ∞ for slow processes with Δt → ∞, and
the smallness of β is sufficient for the proximity of magnetic fields for non-
stationary Maxwell’s equations, for the Darwin approximation and for the quasi-
stationary magnetic approximation, although there are alternative estimates
using γ. Accordingly, for the proximity of electric fields, as well as the charge
densities, a smallness of 1/γ is sufficient. It can also be noted when γ → 0
(fast processes) we have the proximity of the magnetic fields for all considered
approximations, as well as the proximity of the potential components of the elec-
tric fields for the Darwin approximation and for the non-stationary Maxwell’s
equations.

The results obtained show that the quasi-stationary Darwin approximation
for the totality of all fields (magnetic field strength, potential and solenoid com-
ponents of the electric field) is closer to the non-stationary system of Maxwell’s
equations than the non-relativistic magnetic approximation. We can say that
this approximation occupies an intermediate position between the non-stationary
system of Maxwell’s equations and the non-relativistic magnetic approximation.

The indicated hierarchy of quasi-stationary fields is most pronounced when
considering problems in homogeneous media. In this case, the magnetic field
and the divergence-free component of the electric field are the same for the Dar-
win approximation and for the quasi-stationary magnetic approximation, the
potential component of the electric field is the same for the Darwin approxi-
mation, for quasi-stationary electric approximation and for the non-stationary
Maxwell’s equations. In general case we can estimate the difference between
these fields depending on the degree of heterogeneity of the media characterized
by the norm of grad(σε−1).
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Numerical Simulation of the Wind
Resonance of the Bridge Based
on Scale-Resolving Approaches
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Abstract. A series of computational and experimental studies of the
wind resonance of the bridge span has been carried out. It is shown that
for some wind directions the numerical solution of the Reynolds equations
system (RANS) does not allow one to estimate the critical flow velocity
at which wind resonance is observed. It has been established that modern
CFD scale-resolving approaches (LES, DES) make it possible to obtain
adequate estimates of the corresponding critical wind speed.

Keywords: Bridge · Wind resonance · Scale-resolving simulation ·
LES · DES · CFD · Numerical simulation

1 Introduction

The solution to the problem of the bridges sustainability against wind resonance
is required due to the intensive road construction. The phenomenon of wind res-
onance occurs when the natural frequency of the bridge is close to the frequency
of the exciting aerodynamic force (for example, the bridge across the Volga in
the Volgograd region (2010) is an example of this phenomenon). It is necessary
to develop a set of methods and approaches to simulate wind resonance. Exciting
aerodynamic force is caused by vortex shedding around the bridge in the air-
flow. The Strouhal number characterizing this process is of the order of 0.05-0.2,
which corresponds to relatively small vortex shedding frequency and process is
quasi-stationary. In such processes, a fixed model is often used for numerical sim-
ulation. The vortex shedding frequency can be estimated by numerical modeling
the bridge section aerodynamics in non-stationary formulation.

In this case, the system of Reynolds-Averaged Navier-Stokes (RANS) equa-
tions is often solved with the Shear Stress Transport (SST) turbulence model.
The Reynolds averaging is a kind of time averaging, where the existence of the
mean (time-average) component of the velocity is assumed. This mean velocity
component should be significantly larger than velocity fluctuation. Usually it is
correct for the well streamlined bodies. Strictly speaking it’s not true for rough
bulky bodies (like bridge) and flows with large turbulence level.
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The RANS system of equations is non-closed. Different semi-empirical turbu-
lence models are used for the closure of this equations system. These turbulent
models are usually systems of differential (sometimes algebraic) equations. The
most commonly used turbulence models are two-parametric k − ε, k − ω, their
mix k − ω SST, one-parametric Spallart-Allmaras model, anisotropic Reynolds
Stress Models. Most turbulence models were adjusted for the aerospace engi-
neering applications, such as 2D airfoil or 3D wing and not adjusted for typical
civil engineering objects. However, in some cases bulky bodies are producing
large powerful essentially laminar vortices, so-called von Karman vortex street.
In this mode the frequency of the vortex shedding still can be obtained by RANS
approach.

The situation when the bulky body produces developed turbulent wake (with-
out major laminar vortices) is more general case. In this situation turbulent vor-
tex cascade is the main feature of the flow. There is no any “mean” velocity
component for the vortices in the middle of the cascade. Obviously, the RANS
approach assumptions are far from the real flow in this flow mode. Usually it is
not possible to simulate the periodic process and to obtain the frequency of the
exciting force in this case [1]. The numerical simulation based on scale-resolving
approaches (such as Large Eddy Simulation, LES or Detached Eddy Simulation,
DES) is more physically adequate. While the solution of the Reynolds equation
system (RANS) simulates all scales of the turbulence by synthetic models, the
approaches such as large eddy simulation (LES) or detached eddy simulation
(DES) involve direct modeling of eddies whose characteristic size is larger than
the mesh element. Small eddies are modeled using subgrid viscosity models (for
example, Smagorinsky model). Than smaller the mesh element size is, the error
caused by subgrid viscosity models is smaller. Thus, it is advisable to use suffi-
ciently refined computational grids in numerical modeling using scale-resolving
approaches.

2 Problem Statement

There is an example of modeling a triangular cylinder in cross flow using scale-
resolving approaches in [2]. There are 26 elements across the edge of the cylinder
there, and 81 elements along its length. The flow velocity is 17.3 m/s, and the
Reynods number Re = 45,500. The time step is 10−5 s. This kind of simulation
requires many computational resources. In addition, the aerodynamic force as
function of time is nonharmonic. It complicates the interpretation of the results.
Therefore, there is the basis for the development of a technique for assessment
of the vibrations amplitude of the bridge based on scale-resolving approaches.
The purpose of this work is to develop such technique. The technique includes
practice description of the physical models, meshes, simulation techniques, data
processing. The technique is confirmed by the comparison with the experimental
data from the bridge section wind tunnel tests. Discussion, insights and ways of
further technique improvement are also provided.
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3 Technique of the Amplitude Estimation Based
on Scale-Resolving Simulation

The technique is developed and applied for a real bridge. The main points of the
technique and the results of its application are below. Comparison of the results
of numerical simulation and tests in the large research gradient wind tunnel
of Moscow State University of Civil Engineering is presented. The numerical
simulation is performed in the scale of the wind tunnel model (1:70) for the
correct comparison of the results.

The geometric model must be suitable for constructing a computational grid
with prismatic elements in the boundary layer. When building a model, one
should neglect the details that have size less than the characteristic mesh element
size near the model. The characteristic cell size should allow approximately 20
cells along the main elements of the bridge (for a beam bridge - along the height of
the beam). It is permissible to use a small length section in numerical modeling if
the cross section of the natural size bridge is constant along the span. The section
must include all major periodic structural elements. The geometric model used
in the present work is shown in Fig. 1.

Fig. 1. Geometric model of the bridge element that is used for numerical simulation
(CFD).

The computational mesh should be sufficiently detailed in the vicinity of the
model and in the vortex shedding area. The boundaries of the computational
domain should comply with the standard recommendations for aerodynamics of
buildings [3]. The characteristic size maximum characteristic size of the object
(usually the width of the bridge). Downstream of the bridge, the mesh should
remain detailed at a distance Lrefined. This distance should be not less than
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the distance corresponding to the 1 vortex period with a frequency equal to the
natural frequency of the bridge model f0 at the considered flow velocity V :

Lrefined ≥ V

f0
(1)

An unstructured tetrahedral computational grid with prismatic layers is built
for the considered bridge (Fig. 2). The characteristic cell size near the bridge
model is 2 mm (scale of the wind tunnel model). The grid contains 10 layers of
prismatic cells with a growth rate of 1.4 to simulate the boundary layer. The
total number of grid elements is 6 820 520, the number of nodes is 1 520 966.
Numerical modeling is performed using the detached eddy simulation method
with the IDDES modification described in [4]. The pressure-velocity coupling
scheme is SIMPLE. For angles of attack other than zero, it is recommended
to use a corrected scheme (SIMPLEC) with a skewness correction (Skewness
Correction is equal to 1). The calculation scheme is an implicit bounded second
order of the bounded central difference type, the number of iterations per one
time step is about 10. It is recommended to use a time step corresponding to
the Courant number of about 1 (in this case, dt = 0.0004 seconds). The flow
velocity V for simulation must correspond to the maximum considered flow
velocity Vmaxnatur. The transformation of the velocity from wind tunnel scale to
natural scale is performed by assuming that the frequency of the vortex shedding
is proportional to the flow velocity and inversely proportional to the size of the
object (the Strouhal number is constant):

Sh =
f0L

V
=

f0naturLnatur

Vmaxnatur
(2)

V =
f0L

f0naturLnatur
Vmaxnatur (3)

In this case V = 5 m/s.
Total numerically simulated time should be of order 2–3 characteristic times

τ , where

τ =
1
δ

(4)

δ—damping coefficient. In this case the damping coefficient is 0.02 1/s. The
equation of forcing oscillations with damping:

ÿ + 2δẏ + ω2
0y = Fy (5)

Fy—vertical component of the exciting force (aerodynamic in this case), y—
vertical bridge coordinate, ω0 = 2πf0—natural round frequency.

However, the required simulation time is about 100–150 s in this case. That
needs quite a lot of calculation time. The simulation of 27 s of real time is per-
formed. Recalculation to the required time is carried out. The recalculation is
based on the copying of the part of the initial process with exclusion of the
transition start process and the correct phase choice.
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Fig. 2. Computational mesh.

Usually in aerodynamic research the Cy coefficient is invesigated:

Fy = Cy
ρV 2

2
S (6)

where ρ—air density, S—characteristic area (in this case multiplication of the
section length Δz by its width b: S = bΔz).

The computational fluid dynamics results for the coefficient Cy(t) for fixed
wing speed V = 5 m/s are presented in Fig. 3.

As one can see, before t = 4 s, there is some kind of start transition process.
This part of data will be moved out the consideration. The spectrum of the Cy
amplitude (at t > 4 s) is presented in Fig. 4.

The spectrum has complex pattern. It is impossible to isolate any fixed fre-
quency. It is concerned with the difficulty of the physical flow pattern. Visual-
ization of the flow as Q-criteria isosurface (Q = 10001/s2) is presented in Fig. 5.

Instanteneous velocity field at one of the side calculation domain boundaries
is presented in Fig. 6.

Numerically dynamics of the bridge as linear oscillator (that corresponds to
the equation of the forced oscillations with damping) is simulated for the esti-
mation of amplitude. Simplectic Euler method is applied for the simulation [5]:

Vyi+1 = Vyi + ayidt (7)

yi+1 = yi + Vi+1dt (8)
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Fig. 3. Coefficient Cy(t) at V = 5 m/s. IDDES, dt = 0.0004 s.

Fig. 4. Amplitude spectrum of the Cy coefficient at V = 5m/s. IDDES, dt = 0.0004 s.
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Fig. 5. Vortex system visualization. Isosurface of Q = 1000 s−2. IDDES, dt = 0.0004 s.

Fig. 6. Instanteneous velocity field at one of the side calculation domain boundaries.
IDDES, dt = 0.0004 s.

where
ayi =

Fy

m
− k

m
yi − 2δVyi (9)

m—bridge section mass, k—hardness coefficient:

k = 4π2mf0 (10)
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Simulation can be performed for any airflow velocity Vx by means of time
step recalculation:

dtx =
V

Vx
dt (11)

Exciting aerodynamic force increase (that is proportional to squared flow
velocity) should be taken into account.

Symplectic integrator conserves energy during any number of time steps.
The part of the stationary process (from 164080 to 323713 time step) is

picked after simulation. The amplitude is obtained at this part of the process as

A =
ymax − ymin

2
(12)

For example bridge vertical coordinate y as function of time at V = 4.7 m/s is
presented in Fig. 7. Approximate oscillation limits y = ȳ ± A are also presented.

Simulation is carried out for wind tunnel flow velocities in the range of
V = 1.9 . . . 5.4 m/s with the step of 0.1 m/s for further processing. Then veloc-
ity uncertainty of wind tunnel of about 0.1 m/s (due to various factors such
as turbulence and other unsteady processes) is taken into account. For it the
averaging of every three adjacent in velocity amplitudes is performed (moving
average is obtained). For transition from wind tunnel to natural scale two actions
are performed (in approach of the constant Strouhal and Scrouton numbers):

1. Amplitude of the oscillations is multiplied by the geometrical scale

Anatur =
Lnatur

L
A (13)

2. Velocity is transformed by the formula:

Vnatur =
Lnatur

L

fnatur
f0

V (14)

4 Results and Discussion

The results are presented in Fig. 8. The results obtained by the above-described
technique are in satisfactory agreement with the experimental data. Never-
theless, at a flow velocity of about 22 m/s, a burst of vibration amplitudes is
observed in numerical studies. This may be due to insufficiently accurate repro-
duction of the dependence of the direction of flow velocity on time. The oscillat-
ing system (bridge) has low damping. This leads to a very rapid change in the
amplitude of the oscillatory process with a slight change in the parameters. It is
necessary to take into account possible changes in the modulus and direction of
the incoming flow velocity. Changes in the velocity modulus are primarily due to
flow turbulence and are taken into account in the described technique by taking
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Fig. 7. Vertical bridge element shift as function of time. Numerical simulation of bridge
dynamics, simplectic Euler method, V = 4.7 m/s

a moving average (the results obtained for 3 different velocities are averaged).
The averaging is performed by the next way:

Anatur (Vnatur)

=
Anatur (Vnatur − 0.1m/s) + Anatur (Vnatur) + Anatur (Vnatur + 0.1m/s)

3
(15)

The averaging step of 0.1 m/s is equal to estimated wind tunnel velocity
scatter. Averaging has 2 major parameters: window size and step of the dynamics
simulation. Basic 3 points window provide sufficiently good results, increase of
the window size smoothens the chart, decrease of the window chart leads to the
basic, very rapidly changing results, that is not physically valid (Fig. 9). Step
of the dynamics simulation effects on the amplitude estimation. Smaller step is
more valid. Greater step effects can be predicted from Fig. 9 (possible loss of
amplitude peaks). Generally, this step should correspond to the uncertainty of
the velocity.

The direction of speed can have the following sources of uncertainty:

– freestream turbulence;
– vertical vibration of the bridge (uncertainty of the order of 1◦);
– model position inaccuracy.
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Fig. 8. Amplitude of bridge bending vibrations as function of wind velocity for numer-
ical simulation estimation (CFD) and physical modeling (wind tunnel). Real scale.

Fig. 9. Influence of the averaging window size.
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It is necessary to investigate these parameters for a full-scale model and a
physical experiment. This will also make it possible in the future to improve
the numerical simulation technique and, probably, to achieve a better agreement
with experimental data.

During last years there are attempts to use fluid-structure interaction (FSI)
schemes for bridge resonance modeling (RANS or scale-resolving approaches are
used) [6–8]. In this case the results of the aerodynamic problem solution are
transferred to the dynamic (or structural) solver, the model of the bridge shifts,
mesh deforms and the process is repeated (so-called two-way FSI). This approach
let to obtain the natural velocity angle change, but is more computationally
expensive. For some flow modes (with developed turbulent wake) it is necessary
to use the scale-resolving approaches that makes problem quite complicated.

5 Conclusion

Scale-resolving approaches allow to obtain physically adequate flow patterns. A
variable aerodynamic force is simulated, while in the case of using approaches
based on the RANS equations, the aerodynamic force acting on the bridge is
constant in time in some cases. A technique for estimating of the vibration
amplitudes of a bridge is proposed. The technique is based on the use of DES
methods in combination with dynamics modeling using the Euler symplectic
method. Satisfactory agreement with the experimental results is obtained.
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Abstract. In this paper, a mathematical model is formulated (in lin-
ear and nonlinear formulations) and investigated, which makes it possi-
ble to describe the propagation of flexural waves in a beam taking into
account the damage of its material. An approach is proposed that deter-
mines new dependences of the flexural waves parameters on the material
damage degree. This approach makes it possible to formulate a self-
consistent problem that includes the equations of material dynamics and
the conditions for its destruction. In the framework of a geometrically
nonlinear model of a damaged rod, the problem of the intense bending
waves formation of a stationary profile is considered. It is shown that
such essentially non-sinusoidal waves can be either periodic or solitary
(localized in space). The dependencies connecting the parameters of the
waves (amplitude, width, wavelength) with the damage to the mate-
rial are determined. It is shown that the periodic waves amplitude and
the solitary waves amplitude increase with increasing material damage
parameter, in turn, the periodic waves length and the solitary waves
width decrease with increasing this parameter.

Keywords: Material damage · Bending wave · Longitudinal wave ·
Material damage degree · Nonlinearity

1 Introduction

Today, the mechanics of a damaged continuum is intensively developed by
many authors. The first works in this field were fundamental studies by L.
M. Kachanov, which are summarized in his monograph [1], and the detailed
investigations and analysis by Yu. N. Rabotnov that are generalized in [2]. The
significance of these pioneer works, which presently are recognized as classical,
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consists in the possibility of using a unified approach for description of the dam-
age of elastic and elastoplastic bodies. The damage is usually understood as a
reduction of an elastic response of the body due to decreasing of the effective
area, through which the internal forces are transmitting from one part of the
body to another. This phenomenon is caused by the appearance and spreading
of the scattered field of microdefects (the microcracks in the case of elasticity,
the dislocations in the case of plasticity, the micropores in the case of creep, and
the surface microcracks in the case of fatigue) [3].

The damage, i.e. the degradation of the mechanical properties of a solid mate-
rial, cannot be measured directly in the same manner as, for example, velocity,
force, or temperature. The damage can be detected indirectly only by analyzing
the response of the elastic structure on the various external impacts. According
to experimental knowledge, the presence of a damages field inside a solid mate-
rial can be observed also by changing of physical features of the structure. For
example, it may be the decreasing of velocity of ultrasonic signal propagation
[4–6], a decrease in the Young’s modulus (the modulus defect) [7], a decrease in
material density (loosening) [8], a hardness change [9], a decrease in the stress
amplitude under the cyclic testing [10,11], and an acceleration of the tertiary
creep [12].

The purpose of the present study is the modeling of the process of acoustic
wave propagation through the damaged material, and estimation of influence of
damage on the phase velocity and attenuation of that wave.

As a rule, in the mechanics of solids, problems of dynamics are considered
separately from problems of damage accumulation. When developing such meth-
ods, it is customary to postulate in advance that the elastic wave velocity is a
given damage function, and then experimentally determine the proportionality
coefficients. The phase wave velocity and wave attenuation are usually consid-
ered to be power functions of frequency and linear functions of damage [13]. With
its undoubted advantages (simplicity), this approach has a number of disadvan-
tages, like any approach that is not based on mathematical models of processes
and systems.

The authors of [14–16] consider the problem to be self-consistent, including,
in addition to the equation of damage development, the dynamic equation of
the theory of elasticity. This approach made it possible to consider a number of
applied problems of wave dynamics of damaged materials and structural elements
[17–23].

2 Mathematical Model

A beam performing bending vibrations is considered. We take into account the
geometric nonlinearity of the beam (i.e., the nonlinear relationship between
deformation and displacement), assuming that the middle line of the beam
remains inextensible. We suppose that the beam was under the static or cyclic
loads, and damage might accumulate in its material. To describe the measure of
damage, we introduce the Kachanov – Rabotnov function Ψ(x, t) which equals to
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zero when there are no damages and is close to 1 when the material is damaged
[1,2].

We designate the displacements of the middle axis during bending as W (x, t).
The dynamics of the beam is described by a set of equations with consider-

ation of the damage of its material:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂2W

∂t2
+ c2sr

2
y

∂4W

∂x4
− c2s

2
∂

∂x

[(
∂W

∂x

)3
]

= β1
∂Ψ

∂x

∂Ψ

∂t
+ αΨ = β2E

∂W

∂x
.

(1)

Here cs =
√

Eρ−1, ry =
√

JyF−1 where E is the Young’s modulus, ρ is
the material density, Jy is the axial moment of inertia, F is the beam‘s cross-
sectional area, α,β1,β2 are constants which characterize the material damage
(α = T−1, where T is the relaxation time [18], while the physical meaning of
other coefficients is not so obvious β1β2 < 0).

System (1) is reduced to one equation with respect to the transverse dis-
placement W (x, t), which has the following form:

∂2W

∂t2
− β1β2E

α

∂2W

∂x2
+ c2sr

2
y

∂4W

∂x4
+

1
α

∂3W

∂t3

+
c2sr

2
y

α

∂5W

∂x4∂t
− c2s

2
∂

∂x

[(
∂W

∂x

)3
]

− c2s
2α

∂2

∂x∂t

[(
∂W

∂x

)3
]

= 0
(2)

This equation in dimensionless variables U = W (W−1
0 ); z = x(r−1

y ); τ =
cs(r−1

y )t will be written as:

∂2U

∂τ2
+ a1

∂2U

∂z2
+ a2

∂3U

∂τ3
+

∂4U

∂z4
+ a2

∂5U

∂z4∂τ

− a3

2
∂

∂z

[(
∂U

∂z

)3
]

− a2a3

2
∂2

∂z∂τ

[(
∂U

∂z

)3
]

= 0
(3)

Where a1 = −β1β2E(αc2s)
−1, a2 = cs(ryα)−1, a3 = W 2

0 (r2y)−1.

3 Nonlinear Stationary Waves

We will seek a solution to Eq. (3) in the class of stationary waves:

U = U(ξ) (4)

where ξ = z−V τ is the “running” coordinate, V = const is the velocity of wave.
For small relaxation times T → 0 (i.e. for α → ∞) with the substitution of

(4), Eq. (3) reduces to the Duffing equation [24]:
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d2Θ

dξ2
+ m1Θ + m2Θ

3 = 0, (5)

Θ = dW (dξ)−1, (6)

m1 = a1 + V 2, (7)

m2 = −0, 5a3. (8)

Here Θ is angle of rotation of the beam‘s cross-section.
The signs of the coefficients m1 and m2 indicate the possibility of the exis-

tence of nonlinear stationary flexural waves. In this case, the first coefficient is
always positive (m1 > 0), and the second is always negative (m2 < 0).

Equation (5) has the first integral:

1
2

(
dΘ

dξ

)2

= E − m1

2
Θ2 − m1

4
Θ4 (9)

which can be interpreted as the energy conservation law for an anharmonic
oscillator. Here E – the constant of integration, which has the meaning of the
initial energy of the system, and the function (10) has the sense of potential
energy.

f(Θ) =
m1

2
Θ2 − m2

4
Θ4 (10)

Equation (9) presumes the separation of variables:

√
2dξ =

dΘ
√

E − f(Θ)
, (11)

and has limited solutions in the region between any real roots of the polyno-
mial E − f(Θ), where E − f(Θ) > 0.

The potential energy function (10) has local maximum fmax = −m2
1/4m2

when Θ = ±√−m1/m2 and local minimum fmin = 0 when Θ = 0 (Fig. 1).
Because of that fact on the phase plane (T ; d T/d) the point (0; 0) is a stable
equilibrium position of the “center” type, and the points (±√

(m1/m2); 0) -
unstable equilibrium positions of the “knot” type. The phase portrait of the
system is shown in Fig. 2.

In this case, bounded solutions of Eq. (9) exist only for 0 ≤ E ≤ fmax.
Moreover, the polynomial E −f(Θ) has four real roots Θ1,2 = ±α0, Θ3,4 = ±β0,
where

α2
0 =

m1 −
√

m2
1 + 4m2E

−m2
, (12)

β2
0 =

m1 +
√

m2
1 + 4m2E

−m2
, (13)
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Emax

f(ϴ)

ϴ

-β0 -α0 α0 β0

-√(m1/m2) √(m1/m2)

Fig. 1. Potential energy of a nonlinear oscillator

Fig. 2. Phase portrait of a nonlinear oscillator.
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α2
0 > β2

0, (14)

and takes positive values when −α0 < Θ < α0. In case when E = fmax =
−m1/4m2 the roots match in pairs Θ1 = Θ3, Θ2 = Θ4, which corresponds to
the motion along the separatrix on the phase plane.

The Eq. (11) takes the following form:

α0β0

√

−m2

2
dξ =

dΘ
√

(1 − (Θ2/α2
0))(1 − (Θ2/β2

0))
, (15)

And with the help of substitution

Θ

α0
= Z, (16)

can be reduced to an elliptic integral of the first kind

√
m2

2
(ξ − ξ0) =

1
β0

Z∫

0

dZ
√

(1 − Z2)(1 − S2Z2)
, (17)

where S2 = α2
0/β2

0.
Inverting the elliptic integral on the right-hand side of (17) for Z = 0,ξ0 = 0,

we obtain a solution describing nonlinear periodic oscillations in the form:

Θ(ξ) = α0sn

(

−
√

1
2
m2β

2
0ξ, S

)

. (18)

In expression (18), we introduce the notations:

A = α0 =

√

(m1 −
√

m2
1 + 4m2E)

−m2
, (19)

k =

√

−1
2
m2β

2
0 =

√
1
2

(

m1 +
√

m2
1 + 4m2E

)

, (20)

S2 =
α2
0

β2
0

=
m1 −

√
m2

1 + 4m2E

m1 +
√

m2
1 + 4m2E

, (21)

where A – amplitude of a stationary wave, k – nonlinear analog of wavenum-
ber, S – the modulus of the elliptic function, and the wavelength Λ is Λ =
4K(S)/k. From relations (19, 20, 21) it follows that when E varies from 0
to Emax = −m2

1/4m2 the vibration frequency decreases from k =
√

m1 to
k =

√
m1/2, and the amplitude of the oscillations changes within 0 ≤ A ≤

A(c) =
√

m1/m2, where A(c) – the amplitude of the oscillation corresponding to
the motion along the separatrix on the phase plane. The modulus of the elliptic
function (coefficient of linear distortion) at the same time changes in the interval
0 ≤ S2 ≤ 1.
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Similarly, excluding E from expressions (19, 20, 21), we obtain relations
between the parameters A, k, S in the solution (18):

S2 = − m1A
2

2m1 + m2A2
, (22)

k =

√
2m1 + m2A2

2
, (23)

Λ =
4K(S)

√

m1 + m2A2

2

. (24)

Another form of these expressions:

A = ±
√

−2m1

m2

S2

1 + S2
, (25)

k =
√

m1

1 + S2
. (26)

Taking into account the introduced designations, solution (18), which
describes nonlinear periodic oscillations along closed phase trajectories near the
separatrix, can be represented as an elliptic sine (Fig. 3):

Θ(ξ) = Asn(kξ, S) (27)

The parameters of a torsional stationary wave are related by relation (27).
When substituting expressions m1,m2 in (27), we obtain:

A =

√
√
√
√4

(
−γ
c2s

+ V 2
)

r2yS2

W 2
0 (1 + S2)

, (28)

k =

√
√
√
√

(
−γ
c2s

+ V 2
)

(1 + S2)
, (29)

A solitary stationary wave has the form of a drop (kink) (Fig. 4) and is
described by the hyperbolic tangent

Θ(ξ) = A(c)th

(
ξ

Δ

)

, (30)

where

A(c) = ±

√
√
√
√2

(
−γ
c2s

+ V 2
)

r2y

W 2
0

(31)
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– wave amplitude,

Δ =

√
√
√
√

2
(

−γ
c2s

+ V 2
) (32)

ξ

Θ

8K(S)4K(S)

А

-А

Fig. 3. Nonlinear periodic stationary wave profile.

ξ/

Θ

А

-А

Δ

Fig. 4. Profile of a nonlinear solitary stationary wave.

– wave width.
Where γ = β1β2E

α - is coefficient characterizing the damage to the material.
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It follows from (28) and (31) that the amplitude of the periodic wave A and
the amplitude of the solitary wave A(c) increase with increasing material damage
parameter. In turn, the length of a periodic wave (see (29)) and the width of a
solitary wave (see (32)) decrease with increasing damage parameter.

It is noteworthy that the ratio of the stationary wave amplitude to the
wavenumber is a constant which is determined only by the inertia radius of
the beam‘s cross section.

A

k
=

2ryS

W0
= const, (33)

Notice, that the product of the wave amplitude by its width is also a constant.

A(c)Δ =
2ry

W0
= const. (34)

For S = 1, expressions (33) and (34) are identical. This is obvious, since at
this value the elliptic sine transforms into a hyperbolic tangent. For a beam of
circular cross-section, the axial inertia radius is half the radius. Relation (33) in
this case can be rewritten as, where d is the beam diameter.

4 Alternative Mathematical Model

When formulating the mathematical model (1), it was assumed that the main
source of material damage is the angle of rotation of the beam cross-section
during bending. It is no less natural to assume that damage mainly depends on
volumetric deformation and this will lead instead of (1) to the following system
of equations:

⎧
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]
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.

(35)

where β3 �= β2

This system is reduced to one equation about lateral displacement:
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1
α
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∂t3
− β1β3E
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2
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∂5W

∂x4∂t
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2
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∂W
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)3
]

− c2s
2α
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∂x∂t

[(
∂W

∂x
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]

= 0
(36)

Note that Eq. (36) contains a term ∼∂3W
∂x3 , in contrast to Eq. (2), which

contains a term ∼∂2W
∂x2 .
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If we look for a solution to Eq. (36) in the form of a traveling stationary wave:

W (x, t) = W (η), (37)

where η = x − V t.
Then it is easy to see that for a small relaxation time, i.e. at α → ∞, this

equation will not be reduced to the equation of the classical Duffing oscillator,
but will have the form:

∂2Θ

∂η2
+ m1Θ + l1

∂Θ

∂η
+ m2Θ

3 = 0 (38)

The notation is introduced here:

Θ =
∂W

∂η
, (39)

m1 =
V 2

c2sr
2
y

, (40)

m2 =
c2s
2r2y

, (41)

l1 = − β1β3

αc2sr
2
y

, (42)

In the phase portrait of the oscillator (38), a singular point of the “center”
type will go to a singular point of the “focus” type, and a singular point of the
“saddle” type to a singular point of the “node” type.

According to the mathematical model (35), it is impossible to form nonlinear
stationary flexural waves in a beam, in the material of which damage accumu-
lates.

5 Conclusion

Analytical solutions are obtained for the dependences of the nonlinear bending
waveparameters, such as amplitude, width and wavelength on the parameter
characterizing the accumulation of damage in the material.

Notice, that the developed approach, which makes it possible to formulate
and solve a self-consistent problem, including the equation of beam dynamics and
the kinetic equation of damage to its material, can be used in the development
of methods for acoustic control of materials and structural elements.
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Abstract. Transmission and processing of information in the brain are
highly complicated processes that are defined by a lot of non-trivial inter-
connections of structural elements of neural networks. To shed light on
peculiarities of such communication, a lot of mathematical models were
introduced and computer simulations were carried out. In this work, a
model describing the impact of neural activity on changes in brain extra-
cellular matrix (ECM) molecules concentration was considered. It was
assumed that the rate of neural activity is periodically changed. For this
case, various regular and chaotic modes in dynamics of ECM-molecules
concentration were observed. The role of the amplitude and frequency of
the periodically varying neuronal firing rate in transitions between var-
ious dynamical modes in the ECM-model were examined. Bifurcational
mechanisms for chaotic oscillations appearance were demonstrated.
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Bifurcations · Emergence of chaos

1 Introduction

Rhythmic behavior of neuronal electrical activity is believed to be responsi-
ble for an information coding and its further processing in the brain. Indeed,
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both carefully controlled experiments and rigorous mathematical modeling have
demonstrated neuronal activity dependence on various external driving [1–6].
At the same time, recent studies shown that type of the neuronal response also
depends on non-trivial interconnections of the brain structural elements. Concen-
tration of neurotransmitters, gliotransmitters, proteases and other components
of the brain extracellular matrix (ECM) can significantly modify the neuronal
response [7–10]. It is now known that neuronal activity dependent concentration
of ECM molecules affect synaptic plasticity and such feedback can have both
positive and negative outcomes.

In this work, we focus on dynamical regimes observed in a model proposed
recently for description of changes in ECM molecules concentration [11]. In
contrast to [11], we assume that level of neuronal activity is a slowly periodi-
cally varying function. Due to existence of the natural periodic environmentally-
induced oscillations known as circadian rhythms or the sleep-wake cycle, such
assumption seems to be matter of course. To study the role of such driving in
dynamical change of ECM molecules concentration, we consider three types of
monostable regimes observed in autonomous system [11].

2 Mathematical Model

The mathematical mechanism behind the neural activity dependent dynamical
changes of ECM molecules concentration was recently described in [8]. In this
study, following by the work [11], we focus on simplified version of the model
that is described by the following nonlinear differential equations:

dZ

dt
= −(αZ + γP P )Z + βZ

⎡
⎣Z0 − Z0 − Z1

1 + exp
(
−Q+αQZ−θZ

kZ

)
⎤
⎦ ,

dP

dt
= −αP P + βP

⎡
⎣P0 − P0 − P1

1 + exp
(
−Q+αQZ−θP

kP

)
⎤
⎦ ,

(1)

where the variable Z corresponds to the concentration of the ECM molecules,
P is the concentration of proteases. The term Q = Q0 + Qs sin ωst reflects
the effect of neural activity on changes in Z and P . Here, similarly to previous
works [8,11,12], we considered Q0 = 5 and studied the role of the parameters Qs

and ωs in dynamical change of ECM-molecules concentration. Another parame-
ters of the system (1) were the following: impact of excitatory ECM-neuron inter-
action is αQ = 0.23, the rates of concentration degradation for ECM-molecules
and proteases are αZ = 0.0001 ms−1 and αP = 0.001 ms−1, respectively, the
corresponding activation rates are βZ = 0.01 ms−1 and βP = 0.01 ms−1, gain
parameter is γP = 0.001, the asymptotic levels with Qs → ±∞ for correspon-
dent activation functions are Z0 = 0, Z1 = 1 and P0 = 0, P1 = 1, the inverse
slopes of the activation curves are kZ = 0.15 and kP = 0.05, activation midpoint
for proteases-curve is θP = 6. In order to study the role of periodically changed
neuronal activity we considered various value of the parameter θZ .
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Fig. 1. Phase portraits for three different monostable regimes of the system (1): (a)
stable focus for θZ = 5.5; (b) stable node θZ = 6; (c) stable limit cycle observed for
θZ = 5.77. In all cases, transients are shown by gray curves.

3 ECM Dynamics for Various Types of Neuronal Activity

Dynamical regimes of the system (1) for Qs = 0 were studied in details in [11].
Various types of monostable and multistable behavior were revealed. In this
work, we focus on the first type of regimes for ECM molecules concentration,
and study the role of a weak periodical change in neuronal firing rate in dynamics
of the system (1). With this aim, we consider three qualitatively different monos-
table modes observed for various constant levels of neuronal activity, particularly,
we focus on three values of the activation midpoint θZ of the ECM-molecules
activation curve.

3.1 Stable ECM-modes for Constant Levels of Neuronal Firing
Rate

It is known from [11], that three types of asymtotically stable regimes, namely,
stable focus, stable node and stable limit cycle can be observed in system (1) for
Qs = 0. In Fig. 1, phase portraits for these modes are presented. Particularly,
in Fig. 1(a), the stable focus obtained for θZ = 5.5 is shown by green point.
This state has the coordinates (Z∗, P ∗) = (4.08, 2.23) and corresponds to a high
level of ECM molecules concentration. In Fig. 1(b), the stable node obtained for
θZ = 6 is shown by blue point. This state has coordinates (Z∗, P ∗) = (0.163, 0)
and corresponds to a low level of ECM molecules concentration. In Fig. 1(c) the
stable limit cycle obtained for θZ = 5.77 is shown by blue closed curve. Gray
curves in Fig. 1 correspond to transients from various initial points and illustrate
the behavior of phase trajectories near vicinity of stable states.

3.2 ECM Dynamics for Periodically Varying Neuronal Firing Rate

To demonstrate changes in the dynamics of the ECM molecules concentration in
the presence of small periodic deviations of Q, bifurcations diagrams were cal-
culated. Namely, the distributions of the maximal values of Z were numerically
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obtained versus the frequency ωs for different values of the amplitude Qs. Inte-
gration of system was carried out by the fourth-order Runge-Kutta method with
a step of 0.01. To obtain a sufficient amount of data for bifurcation diagrams,
the time interval from 0 to 2 · 105 was considered, while the points obtained for
t < 7 · 104 were not taken into account. The parameter ωs was assumed to be
changed in the range from 0 to 0.012 with a step of hω = 5 · 10−5.

Chaos Emergence from Stable Focus. Let us start with the set of param-
eters providing the stable focus shown in Fig. 1(a). One-parameter bifurcation
diagrams obtained for seven values of Qs and for ωs ∈ (0, 0.012) are presented
in Fig. 2 and Fig. 3. For small driving amplitudes Qs, Fig. 2(a), for each value
of the frequency ωs one value of Zmax was obtained. This means that all the
attractors here are stable limit cycles. It should be noted that for considered
parameters, the stable focus of autonomous system has the following complex
eigenvalues: λ1,2 = −0.00129±0.00569i. Its imaginary part defines the frequency
where Zmax (as well as the amplitude of oscillations) is maximal. Thus, for small
driving amplitudes, typical resonance is observed. With the increase of Qs the

Fig. 2. One-parameter bifurcation diagram obtained for θZ = 5.5 and different values
of the parameter Qs: (a) Qs = 0.01; (b) Qs = 0.08; (c) Qs = 0.1; (d) Qs = 0.15; (e)
Qs = 0.17; (f) Qs = 0.185.
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maximum of the curve moves to lower frequencies: for Qs = 0.01 the maximal
value of Zmax is observed for ωmax

s ≈ 0.00545, if Qs = 0.07 then ωmax
s ≈ 0.00425

(not shown). Additionally, due to nonlinearity of the system, for larger driving
amplitudes the shape of the bifurcation curve becomes complicated. The increase
of ωs leads to appearance of the second maximum in dependence Zmax(ωs) as,
for example, for Qs = 0.08, Fig. 2(b). Note, that for this case, a frequency range
exists where period-2 oscillations are observed. The increase of Qs leads to the
increase of the second maximum value of the dependence Zmax(ωs). The diagram
obtained for Qs = 0.1 is shown in Fig. 2(c). In this case, when ωs approaches
0.0071, the period doubling bifurcation occurs. Further increase of ωs leads to
sharp growth of Zmax values, but within the range ωs ∈ (0.0075, 0.0101) simple
period-1 cycle is observed, i.e. Zmax has only one large value. For Qs = 0.15,
Fig. 2(d), bifurcation diagram illustrates non-trivial ωs-dependent changes in the
amplitude of the concentration of ECM molecules with larger values of Zmax for
larger driving frequencies. With further increase of Qs, additional period dou-
bling bifurcations occur, Fig. 2(e) and Fig. 2(f) that finally leads to emergence
of irregular dynamics.

Fig. 3. (a) One-parameter bifurcation diagram obtained for θZ = 5.5 and Qs = 0.2;
(b) enlarged part with chaotic dynamics of the diagram shown in (a); (c) Lyapunov
exponents.

For example, in Fig. 3(a), for Qs = 0.2, driving frequency range Ωch exists
where a large number of Zmax for each value of ωs can be obtained. Note that,
the increase of integration time allows obtaining more unrepeatable values of
Zmax demonstrating dense filling of the entire area with the points. Magnified
part with this complicated distribution of the calculated Zmax values is presented
in Fig. 3(b).

Complicated dynamics, and, particularly, chaotic dynamics is ubiquitous in
nonlinear dynamical systems used for simulation of biological systems behav-
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ior [13–22]. In order to show that dynamics is chaotic, Lyapunov exponents are
usually calculated. Therefore, in Fig. 3(c) the change of Lyapunov exponents
with the increase of the driving frequency is presented. Since the system (1) is
non-autonomous, the spectrum does not contain zero values. As seen from the
data, within the range Ωch the maximal exponent becomes positive confirming
the chaotic character of behavior.

Fig. 4. Phase portraits obtained for θZ = 5.5, Qs = 0.2: (a) ωs = 0.0052; (b) ωs =
0.0054; (c) ωs = 0.0057; (d) ωs = 0.0062; (e) ωs = 0.0069; (f) ωs = 0.007

The mechanism of transition to chaos observed within the range Ωch for
Qs = 0.2 is demonstrated in Fig. 4, where phase portraits for six values of ωs

are presented. Limit cycle for ω = 0.0052 is shown in Fig. 4(a). Such type of
attractor exists within the range ωs ∈ (0.005, 0.00525): within this range, one
value of Zmax is observed in Fig. 2(e). For ωs > 0.00525 bifurcation diagram
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shows that for each ωs several values of Zmax exist. Phase portrait after the
first period doubling bifurcation is shown in Fig. 4(b) where period-2 cycle is
presented. Then the period doubles again and for driving frequencies within the
range ωs ∈ (0.00525, 0.0058) a period-4 stable limit cycle is observed, Fig. 4(c).
Such cascade of doublings of the cycle period (known as Feigenbaum’s scenario
of transition to chaos [23–26]) leads to emergence of a chaotic attractor shown
in Fig. 4(d). Further increase of the driving frequency provokes the backward
period-doubling cascade leading to transition from chaos to various periodic
solutions. Namely, a period-4 stable limit cycle shown in Fig. 4(e) is observed
within the range ωs ∈ (0.00685, 0.00698), whereas for ωs ∈ (0.00698, 0.00754) a
period-2 cycle is observed, Fig. 4(f).

Increase of ECM Molecules Concentration Level for the Stable Node
Regime. For the case shown in Fig. 1(b), the bifurcation diagrams were calcu-
lated for two values of Qs. Note that, in the presence of periodic driving, there is
no any complicated behavior here. In Fig. 5, blue points are the Z∗-coordinates
of the stable node at ωs = 0. For each frequency within the considered range,
Zmax has a unique value, in particular, Zmax > Z∗ for all ωs �= 0. It should
be noted that, for low values of the frequency ωs, the values of Zmax are much
higher than for ωs = 0. This can be explained by the analysis of numerator in
the degree of exponent in the system (1). Obviously, that in the course of time
the term

Q0 + Qs sin(ωst) − θZ (2)

periodically approaches its minimal

Q0 − Qs − θZ = Q0 − (θZ + Qs) (3)

and maximal value

Q0 + Qs − θZ = Q0 − (θZ − Qs) = Q0 − θ∗
Z . (4)

Fig. 5. One-parameter bifurcation diagram obtained for θZ = 6 and different values of
the parameter Qs: (a) Qs = 0.01; (b) Qs = 0.05
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From the bifurcation diagram obtained in [11], it is known that within the
considered range, Z decreases with the increase of θ∗

Z , i.e. has got maximal value
for θ∗

Z = θZ −Qs. When ωs is close to zero, signal changes slowly. For this range,
to obtain Zmax we can consider θ∗

Z as bifurcation parameter of autonomous
system. For example, for θZ = 6 and slow periodic driving Qs sin(ωst) with
Qs = 0.01 we have θ∗

Z = 6 − 0.01 = 5.99, for which autonomous system has
a stable node at (Z∗, P ∗)=(0.179, 0) (for details of the bifurcation diagram
obtained for autonomous system see [11]). As seen from in Fig. 5(a), for non-
autonomous system (1) the closest to zero value of ωs, e.g. ωs = 2 · 10−5, gives
Zmax ≈ 0.178. Similarly, for slow periodic driving Qs sin(ωst) with Qs = 0.05
we have θ∗

Z = 6 − 0.05 = 5.95, for which autonomous system has a stable
node at (Z∗, P ∗)=(0.267, 0). Namely this value is reached by Zmax for small
frequencies, e.g. for ωs = 5 · 10−5 the maximal concentration of ECM molecules
is Zmax ≈ 0.24, while for ωs = 2 · 10−5 is Zmax ≈ 0.259, Fig. 5(b).

Fig. 6. Bifurcation trees obtained for θZ = 5.77 and different values of the parame-
ter Qs: (a) Qs = 0.01; (b) enlarged part with complicated dynamics of the diagram
obtained for Qs = 0.01 for Zmax > 5; (c) Qs = 0.05; (d) Qs = 0.1

Chaos Emergence from Oscillatory Mode. For the case shown in Fig. 1(c),
the bifurcation diagrams were obtained for three values of Qs. Particularly, in
Fig. 6(a), the diagram for Qs = 0.01 is presented. Figure 6(b) is an enlarged part
of Fig. 6(a). As seen from these diagrams, most of the points are placed near
Zmax ≈ 5 that is defined by the maximal Z for the stable cycle of autonomous
system Zmax = 5.11, Fig. 1(c). For large frequencies, several point are located



Chaotic ECM Dynamics Induced by Varying Neuronal Ring Rate 125

near Zmax ≈ 0.5 that corresponds to the minimal Z of the stable cycle in
autonomous system, Zmin = 0.51. This can be explained as follows: due to
the bifurcation mechanism of the cycle emergence when Qs = 0, movement of
the phase point is significantly slower near its minimum (see [11] for details).
Therefore, for high frequencies, driving oscillations begin to reveal itself. This
becomes more evident for larger values of the driving amplitudes: in Figs. 6(c)
and (d) a lot of points are located in the lower part of the diagrams. Particu-
larly, for Qs = 0.1, the phase portraits with small oscillations are presented in
Fig. 7(d, e, f).

Fig. 7. Phase portraits obtained for θZ = 5.77, Qs = 0.1: (a) ωs = 0.0005; (b) ωs =
0.0012; (c) ωs = 0.00125; (d) ωs = 0.004; (e) ωs = 0.006; (f) ωs = 0.012

In Fig. 7(a), limit cycle for ωs = 0.0005 is shown. Such type of dynamics is
observed for small values of ωs where several periodicity windows exist. Within
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these parts of the diagrams only one value of Zmax was obtained. Note that,
the frequency range of the first periodicity window is near the frequency of the
cycle shown in Fig. 1(c), i.e. is near ≈ 0.0005, is observed. Small increase of the
driving frequency near the ranges of periodicity windows leads to emergence of
more complicated periodic attractors. Namely, for ωs = 0.0012, period-2 solution
is observed, Fig. 7(b), whereas for ωs = 0.00125, period-4 cycle shown in Fig. 7(c)
can be revealed.

4 Discussion

Finally, comparing the chaotic attractors observed in our study, we should take
some notes on their similarity and difference. In both cases, we revealed the
transition to chaos through the well-known Feigenbaum’s scenario. At the same
time, the emerged chaotic attractors differ significantly in time series represen-
tation, see Figs. 8(a) and (b) obtained for the same parameters of the driving.
The point is, that for the last case, the origin of the driving-induced chaos is
a limit cycle emerged from the loop of the saddle node separatrix. Therefore,
the dynamics near the smallest values of variables is significantly slower than for
another part of the attractor, Fig. 8(b). This particularly means that during the
same time the change of ECM-molecules concentration is much faster for the
case with the smaller activation midpoint for ECM concentration curve.

Fig. 8. Time series for ECM-molecules concentration Z(t) obtained for the neuronal
firing rate periodically varying with Qs = 0.2 and ωs = 0.006 when (a) θZ = 5.5 and
(b) θZ = 5.77.

Thus, the revealed peculiarities of chaotic change of ECM-molecules concen-
tration in the presence of periodically varying neuronal firing rate shed light on
the role of the natural periodic environmentally-induced oscillations known as
circadian rhythms or the sleep-wake cycle in dynamics of the brain extracellu-
lar matrix and can be helpful for the specialists interested in neurodynamical
modeling.
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5 Conclusions

In this work, the dynamics of ECM molecules concentration in the presence of
an external slowly varying periodic driving has been examined. This driving
is assumed to be dependent on some level of neural network activity that can
naturally changed by well-known circadian rhythms. To study the impact of
these rhythms, three various monostable regimes have been considered. For the
regime with stable node in autonomous case, the increase of ECM molecules
concentration level has been revealed. For the regimes with stable focus and
stable limit cycle in autonomous case, emergence of chaos has been observed.
Summarizing the results, for all the considered regimes the role of external slowly
varying periodic driving is significant. Even weak change of its frequency can
move the considered system to disordered/diseased output mode or, contrariwise,
facilitate the stabilization of its behavior.

References

1. Matsumoto, G., Aihara, K., Hanyu, Y., Takahashi, N., Yoshizawa, S.: Nagumo:
Chaos and phase locking in normal squid axons. J. Phys. Lett. A 123, 162–166
(1987)

2. Swadlow, H.: Monitoring the excitability of neocortical efferent neurons to direct
activation by extracellular current pulses. J. Neurophysiol. 68, 605–619 (1992)

3. Lee, S.-G., Kim, S.: Parameter dependence of stochastic resonance in the stochastic
Hodgkin-Huxley neuron. Phys. Rev. E. 60, 826–830 (1999)

4. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept
in Nonlinear Science. Cambridge University Press, Cambridge (2001)

5. Pankratova, E., Belykh, V., Mosekilde, E.: Role of the driving frequency in a ran-
domly perturbed Hodgkin-Huxley neuron with suprathreshold forcing. Eur. Phys.
J. B 53, 529–536 (2006)

6. Belykh, V., Pankratova, E., Mosekilde, E.: Dynamics and synchronization of noise
perturbed ensembles of periodically activated neuron cells. Int. J. Bifurcat. Chaos
18(09), 2807–2815 (2008)

7. Dityatev, A., Schachner, M., Sonderegger, P.: The dual role of the extracellular
matrix in synaptic plasticity and homeostasis. Nat. Rev. Neurosci. 11, 735–746
(2010). https://doi.org/10.1038/nrn2898

8. Kazantsev, V., Gordleeva, S., Stasenko, S., Dityatev, A.: A homeostatic model of
neuronal firing governed by feedback signals from the extracellular matrix. PLoS
ONE 7(7) (2012). https://doi.org/10.1371/journal.pone.0041646

9. Pankratova, E., Kalyakulina, A., Stasenko, S., Gordleeva, S., Lazarevich, I.,
Kazantsev, V.: Neuronal synchronization enhanced by neuron-astrocyte interac-
tion. Nonlinear Dyn. 97(1), 647–662 (2019)

10. Rozhnova, M.A., Kazantsev, V.B., Pankratova, E.V.: Brain extracellular matrix
impact on neuronal firing reliability and spike-timing jitter. In: Kryzhanovsky, B.,
Dunin-Barkowski, W., Redko, V., Tiumentsev, Y. (eds.) NEUROINFORMATICS
2019. SCI, vol. 856, pp. 190–196. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-30425-6 22

https://doi.org/10.1038/nrn2898
https://doi.org/10.1371/journal.pone.0041646
https://doi.org/10.1007/978-3-030-30425-6_22
https://doi.org/10.1007/978-3-030-30425-6_22


128 M. A. Rozhnova et al.

11. Lazarevich, I., Stasenko, S., Rozhnova, M., Pankratova, E., Dityatev, A., Kazant-
sev, V.: Activity-dependent switches between dynamic regimes of extracellular
matrix expression. PLoS ONE 15(1) (2020). https://doi.org/10.1371/journal.pone.
0227917

12. Rozhnova, M., Pankratova, E., Stasenko, S., Kazantsev, V.: Bifurcation analysis of
multistability and oscillation emergence in a model of brain extracellular matrix.
Chaos, Soliton & Fractals (in Press)

13. Degn, H., Holden, A., Olsen, L. (eds.): Chaos in Biological Systems. Plenum Press,
New York (1987)

14. Elbert, T., Ray, W., Kowalik, Z., Skinner, J., Graf, K., Birbaumer, N.: Chaos and
physiology. Physiol. Rev. 74, 1–47 (1994)

15. Chay, T., Fan, Y., Lee, Y.: Bursting, spiking, chaos, fractals, and universality in
biological rhythms. Int. J. Bifurcat. Chaos 5(3), 595–635 (1995)

16. Korn, H., Faure, P.: Is there chaos in the brain? II. Experimental evidence and
related models. C. R. Biol. 326(9), 787–840 (2003)

17. Rulkov, N.: Regularization of synchronized chaotic bursts. Phys. Rev. Lett. 86,
183–186 (2001)

18. Belykh, V., Pankratova, E.: Chaotic synchronization in ensembles of coupled neu-
rons modeled by the FitzHugh-Rinzel system. Radiophys. Quantum Electron.
49(11), 910–921 (2006)

19. Papasavvas, C., Wang, Y., Trevelyan, A., Kaiser, M: Gain control through divisive
inhibition prevents abrupt transition to chaos in a neural mass model. Phys. Rev. E
Stat. Nonlinear Soft Matter Phys. 92(3), 032723 (2015). https://doi.org/10.1103/
PhysRevE.92.032723

20. Pankratova, E., Kalyakulina, A.: Environmentally induced amplitude death and
firing provocation in large-scale networks of neuronal systems. Regular Chaotic
Dyn. 21, 840–848 (2016)

21. Lavrentovich, M., Hemkin, S.: A mathematical model of spontaneous calcium (II)
oscillations in astrocytes. J. Theor. Biol. 251, 553–560 (2008)

22. Sinitsina, M., Gordleeva, S., Kazantsev, V., Pankratova, E.: Calcium concentra-
tion in astrocytes: emergence of complicated spontaneous oscillations and their
cessation. Izvestiya VUZ, Applied Nonlinear Dynamics (2021, in Press)

23. Feigenbaum, M.: Quantitative universality for a class of nonlinear transformations.
J. Stat. Phys. 19(1), 25–52 (1978)

24. Canavier, C.C., Clark, J.W., Byrne, J.H.: Routes to chaos in a model of a bursting
neuron. Biophys. J. 57(6), 1245–1251 (1990)

25. Sinitsina, M., Gordleeva, S., Kazantsev, V., Pankratova, E.: Emergence of com-
plicated regular and irregular spontaneous Ca2+ oscillations in astrocytes. In: 4th
Scientific School on Dynamics of Complex Networks and their Application in Intel-
lectual Robotics, DCNAIR, Innopolis, Russia, pp. 217–220 (2020)

26. Li, Y., Xiao, L., Wei, Z., Zhang, W.: Zero-Hopf bifurcation analysis in an inertial
two-neural system with delayed Crespi function. Eur. Phys. J. Spec. Top. 229(6–7),
953–962 (2020)

https://doi.org/10.1371/journal.pone.0227917
https://doi.org/10.1371/journal.pone.0227917
https://doi.org/10.1103/PhysRevE.92.032723
https://doi.org/10.1103/PhysRevE.92.032723


Quiescence-to-Oscillations Transition
Features in Dynamics of Spontaneous
Astrocytic Calcium Concentration

Maria S. Sinitsina1(B) , Susanna Yu. Gordleeva3 , Victor B.
Kazantsev2,3,4 , and Evgeniya V. Pankratova1

1 Department of Applied Mathematics, Institute of Information Technologies,
Mathematics and Mechanics, Lobachevsky State University of Nizhni Novgorod,

23, Gagarin Avenue, Nizhny Novgorod 603950, Russia
sinitsina@itmm.unn.ru

2 Neurotechnology Department, Lobachevsky State University of Nizhni Novgorod,
23, Gagarin Avenue, Nizhny Novgorod 603950, Russia

3 Neuroscience and Cognitive Technology Laboratory, Center for Technologies
in Robotics and Mechatronics Components, Innopolis University,

1, Universitetskaya Street, Innopolis 420500, Russia
4 Neuroscience Research Institute, Samara State Medical University,

89, Chapaevskaya Street, Samara 443099, Russia

Abstract. Recent experimental data show that neural network dynam-
ics significantly depends on the properties of an active nonlinear envi-
ronment in the brain. Chemical activity of astrocytes is one of the main
factor modifying the excitability of the neuronal membrane and regu-
lating the efficiency of signal transmission between neurons. It is known
that astrocytes can demonstrate both spontaneous changes in calcium
concentration and calcium signals caused by neuronal activity. We focus
on spontaneous calcium concentration dynamics in astrocytes. Nonlin-
ear differential equations describing molecular t between neuronsrans-
port in the astrocytes are investigated. Particularly, within the frame
of Lavrentovich-Hemkin mathematical model for calcium dynamics, the
bifurcation mechanisms of spontaneous calcium concentration change are
determined. We show that both soft (emergence of small-amplitude oscil-
lations via supercritical Andronov-Hopf bifurcation) and hard (instanta-
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1 Introduction

Brain is a complex multicomponent structure which includes neurons, glial cells
and other elements placed in intercellular space. Wherein, the neurons are the
main signaling cells of the nerve system. In terms of nonlinear dynamics the neu-
rons are generators of electrical pulse signals regulated by an excitation thresh-
old [1–4]. When the threshold is reached, an electrical pulse is generated and
transmitted to another element of a neural network [5–10]. It is believed that
the processes of generation, transmission and transformation of such pulses and
their sequences in neural systems are the basis for information processing in the
brain. Despite the great variety of experimental observations, the main princi-
ples of such processing are still not completely clear, and their search is one of
the most exciting interdisciplinary task of the modern nonlinear science.

For a long time, it was believed that glial cells perform a number of functions
that support the vital activity of neurons. Recent studies, however, show that
astrocytes representing a type of glial cell can generate pulses of chemical activity
in response to the passage of electrical pulse signals through the neural network.
Such pulses represent a short-term increase in intracellular calcium concentra-
tion. An important aspect of the dynamics of a neural network is the influence
of an active nonlinear environment on the generation and transmission of signals
between neurons. Astrocytes play the role of such an active nonlinear environ-
ment for neural networks in the brain. Research results show that astrocytes are
characterized by both spontaneous changes in calcium concentration [11] and
calcium signals caused by the activity of neurons [12,13]. During the generation
of calcium signals, the astrocytes are able to affect signaling functions of neurons,
regulating the excitability of the neuronal membrane and the efficiency of signal
transmission between neurons [14–18,26]. The kinetic equations of biochemical
transformations in astrocytes are known and can be formalized in the form of
systems of nonlinear differential equations. Particularly, in this work, a detailed
study of the calcium concentration dynamics in astrocytes, namely, bifurcation
mechanisms of oscillation emergence are presented.

2 Description of the Mathematical Model

In accordance with Lavrentovich-Hemkin model [19], calcium concentration
changes in the cytosol of astrocytes and in its endoplasmic reticulum, and Ca2+-
dependent dynamics of inositol-1, 4, 5-triphosphate (IP3) concentration are gov-
erned by the following equations:

d[Ca2+]cyt
dt

= Jin − kout[Ca2+]cyt + JCICR − Jserca

+kf ([Ca2+]ER − [Ca2+]cyt),
(1)

d[Ca2+]ER

dt
= Jserca − JCICR + kf ([Ca2+]cyt − [Ca2+]ER), (2)
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[IP3]cyt
dt

= JPLC − kdeg([IP3]cyt), (3)

where the expressions for Jserca, JCICR and JPLC are:

Jserca = vM2

(
[Ca2+]2cyt

[Ca2+]2cyt + k22

)
, (4)

JCICR = 4vM3

(
k2CaA[Ca2+]ncyt(

[Ca2+]ncyt + knCaA

)(
[Ca2+]ncyt + knCaI

)
)

(
[IP3]

m
cyt

[IP3]mcyt+km
ip3

)(
[Ca2+]ER − [Ca2+]cyt

)
,

(5)

JPLC = vp

(
[Ca2+]2cyt

([Ca2+]2cyt + k2p)

)
. (6)

The variables of the considered system are the intracellular calcium con-
centration [Ca2+]cyt, the calcium concentration in the internal storage - the
endoplasmic reticulum (ER) [Ca2+]ER, and the concentration of the secondary
messenger inositol 1, 4, 5-triphosphate [IP3]cyt, which helps to open the channels
and remove calcium into the cytosol. The parameters of the system were chosen
according to the data given in [19], namely: k2 = 0.1µM, kCaA = 0.15µM,
kCaI = 0.15µM, kip3 = 0.1µM, kp = 0.3µM, kdeg = 0.08 s−1, kout = 0.5 s−1,
kf = 0.5 s−1, n = 2.02, m = 2.2. For this set of parameters, and when
vM3 = 40 s−1, vp = 0.05µM/s vM2 = 15µM/s, the dynamics was studied in [19].
The role of extracellular calcium flow in emergence of chaotic astrocytic spon-
taneous calcium oscillations was examined in [20]. In the present study, the rate
of calcium flow through SERCA to the ER from the cytosol, vM2, the rate of
calcium flow through IP3 from the ER to the cytosol, vM3, and the amount of
feedback between calcium in the cytosol and IP3, vp, are assumed to be varied.
Role of these parameters in emergence of regular spontaneous calcium oscilla-
tions in the presence of various level of extracellular calcium Jin is examined.

3 Results

It was shown in [21] that Lavrentovich-Hemkin system has a unique equilibrium
state. We start with the study of its local stability within the framework of well-
known linearization method. Figure 1(a) shows the bifurcation diagram obtained
by changing the parameters vp and vM2. Different colored domains show areas
with different types of phase trajectory behavior in the vicinity of the equilibrium
state. The areas are also numbered for ease of description. Thus, in regions 1 and
4, the equilibrium state is a stable focus and a stable node, respectively. In regions
2 and 3, the equilibrium state is not stable: in region 3 there is a saddle with two-
dimensional unstable and one-dimensional stable manifolds, whereas in region
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2 there is a saddle-focus with two-dimensional unstable and one-dimensional
stable manifolds. Within these areas of parameters, due to the dissipativity of
the considered system, oscillatory modes of spontaneous calcium concentration
in the astrocyte are observed. Moreover, detailed analysis of the behavior of the
system near the boundary between regions 1 and 2 that is depicted by red dots,
showed the difference in emergence of oscillations. In particular, it was found that
the lower part of this curve (when vM2 < v∗

M2) corresponds to a transition with
a so-called soft emergence of a stable limit cycle (supercritical Andronov-Hopf
bifurcation), and the upper parts of this curve (when vM2 > v∗

M2) correspond to a
transition with the birth of an unstable limit cycle - a subcritical Andronov-Hopf
bifurcation occurs here. Note that, the value v∗

M2 defines the point corresponding
to Bautin bifurcation where the branches of sub- and supercritical Andronov-
Hopf bifurcations meet with the fold limit cycle bifurcation (not shown).

Fig. 1. (a) Two-parameter bifurcation diagram on the plane (vp, vM2). Numbered
colored domains indicate areas with different types of the system behavior in vicinity
of the equilibrium state: 1 - stable focus, 2 - saddle-focus, 3 - saddle, 4 - stable node.
Red boundary between regions 1 and 2 corresponds to the transition through the zero
value of the real part of the characteristic exponents (Andronov-Hopf bifurcation);
Jin = 0.03µM/s; Peculiarities of transition via Andronov-Hopf bifurcation is presented
in (b) for vp = 0.05µM/s; (c) for vp = 0.1µM/s; (d) for vp = 0.2µM/s; (e) for
vp = 0.3µM/s. In (b)–(e), Andronov-Hopf bifurcation is depicted by black circle,
arrows show the direction of vM2 parameter change (blue color is for the increase, green
is for the decrease of vM2), red curve shows the change of the real part of complex roots
of characteristic equation. (Color figure online)

Thus, due to the dissipativity of the system, passing through the upper
branches of the red curve, there must already exist a stable limit cycle of a
large amplitude (varying vp from the region 1 to the domain 2). Its birth occurs
for larger values of the parameter vp (for the right branch) and smaller vp (for
the left branch) as a result of fold limit cycle bifurcation. This means that some
bistability range exists, where two types of attracting sets coexist: a stable equi-
librium state and a stable limit cycle.
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To demonstrate different scenarios of oscillations emergence, four values of
the parameter vp were chosen, and the difference between the maximal and the
minimal values of calcium concentration in cytosol were calculated. Zero values
of this difference means that the equilibrium point is stable.

For vp = 0.05µM/s and vp = 0.1µM/s, in Figs. 1(b) and (c), respectively,
soft emergence of a stable limit cycle via supercritical Andronov-Hopf bifurcation
is presented. Blue symbols show the difference between the maximal and the
minimal values of calcium concentration in cytosol obtained with the increase
of the parameter vM2, whereas the green symbols depict the data obtained with
the decrease vM2. In both cases, emergence of oscillations is observed for the
value shown by black circle. This is the bifurcation value where the real part of
the complex roots of characteristic equation becomes equal to zero. The change
of the real part of the complex roots with the change of the parameter vM2 is
shown by red curve in Figs. 1(b)–(e).

Fig. 2. (a) Two-parameter bifurcation diagram on the plane (vp, vM3). As in Fig. 1,
numbered colored domains indicate areas with different types of the system behavior in
vicinity of the equilibrium state: 1 - stable focus, 2 - saddle-focus, 3 - saddle, 4 - stable
node. Red boundary between regions 1 and 2 corresponds to the transition through the
zero value of the real part of the characteristic exponents (Andronov-Hopf bifurcation);
Jin = 0.03µM/s; Peculiarities of transition via Andronov-Hopf bifurcation is presented
in (b) for vp = 0.05µM/s; (c) for vp = 0.1µM/s; (d) for vp = 0.2µM/s; (e) for
vp = 0.3µM/s. In (b)–(e), Andronov-Hopf bifurcation is depicted by black circle,
arrows show the direction of vM3 parameter change (blue color is for the increase, green
is for the decrease of vM3), red curve shows the change of the real part of complex roots
of characteristic equation. (Color figure online)

For vp = 0.2µM/s and vp = 0.3µM/s, in Figs. 1(d) and (e), respectively, hard
emergence of a large-amplitude stable limit cycle occurs with the increase of the
parameter vM2 after the passing through the supercritical Andronov-Hopf bifur-
cation shown by black circle. Here, in contrast to the previous case, various data
for the increase (blue points) and decrease (green points) of the parameter vM2

are obtained: with the increase of vM2 the stability of equilibrium point changes
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via supercritical Andronov-Hopf bifurcation, whereas the oscillation death with
the decrease of vM2 occurs via fold limit cycle.

Similar partition into regions with different types of local stability of the equi-
librium state was obtained for (vp, vM3)-parameter plane, Fig. 2(a). Figures 2(b)–
(e) present similar to observed before scenarios of regular spontaneous calcium
oscillations emergence.

Comparative analysis of the obtained diagrams allows us to conclude that, for
considered range of the parameter vp, at small values of vM2 and vM3, transitions
to the oscillatory regime do not occur. In this case, an increase in the vM2

parameter leads to an increase of the range with oscillatory mode, whereas an
increase in vM3 leads to decrease of this range.

Fig. 3. Difference between the maximal and minimal values of calcium oscillations
in cytosol with the change of vp near the Andronov-Hopf bifurcations for left and
right boundaries obtained when (a)–(b) Jin = 0.03µM/s (near the red boundaries for
vM2 = 15µM/s and vM3 = 40 s−1 in the diagrams of Fig. 1 and Fig. 2, respectively),
and (c)–(d) Jin = 0.05µM/s. Colored arrows show the direction of vp parameter change
(blue color is for the increase, green is for the decrease of vp). (Color figure online)

It should be noted that the diagrams shown in Fig. 1(a) and Fig. 2(a) were
obtained when the flux of calcium ions from the extracellular space to the cytosol
was Jin = 0.03µM/s. An increase in this parameter leads to compression of
all areas of the diagrams to the direction of lower vp values and to decrease
of the range with an oscillatory mode. To demonstrate this, Fig. 3 presents the
difference between the maximal and the minimal values of calcium oscillations in
cytosol for Jin = 0.03µM/s, Figs. 3(a), (b) and for Jin = 0.05µM/s, Figs. 3(c),
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(d). Figures 3(a) and (b), as well as Figs. 3(c) and (d) present the system behavior
near the left and right boundary of oscillations emergence. As seen from the
figures, both the values of vp where the boundaries are observed and the values
of the bistability range width, become less for larger flux of calcium ions from
the extracellular space to the cytosol of astrocyte.

4 Conclusions

In this work, within the framework of Lavrentovich-Hemkin model the bifur-
cation mechanisms of regular spontaneous calcium oscillations emergence had
been studied. Influence of the rate of calcium flow into the endoplasmic retic-
ulum from the cytosol, vM2, the rate of calcium flow in the opposite direction,
vM3, and the magnitude of the feedback between calcium in the cytosol and IP3,
vp, on the change in areas with monostable and bistable behavior of the sys-
tem had been examined. The biophysical mechanisms of the complex repertoire
of intracellular Ca2+ signalling obtained in this work underlie the physiological
and pathophysiological properties of the astrocytic activity [22,23]. Taking into
account the current findings about the possible oscillatory modes of astrocytes,
decoding mechanisms of astrocytic signalling in various brain circuits will be
helpful to fully understanding how neuron-astrocytic interaction originate and
become dysregulated in disease [24,25].
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Abstract. Social media already plays a significant role in human’s daily
life. Therefore, social media and associated network connections have
become an arena of enormous opportunities to perform data analysis. Its
impact on daily life covers areas as diverse as digital marketing, social
opinion analysis, political situation monitoring and natural disaster noti-
fication. Event detection is a “building-block” that sustains goal-oriented
analytics, such as the “real-time evaluation of peoples’ reaction to cer-
tain event(s)”. We propose to develop social models aimed at the extrac-
tion and prediction of event patterns based on online social media event
detection in real-time. At its current stage the research is focused on the
development of highly loaded, fault-tolerant, scalable system for social
media data extraction and real-time analysis.

Keywords: Event detection · Highly loaded · Fault-tolerant · Scalable
architecture · Telegram

1 Introduction

Social media is mostly free and thus a powerful and highly-spreaded infrastruc-
ture for communication with a large audience. For example, a company may get
quick feedback on a certain brand and make influence analysis of its posts [11].
Different Online Social Networks (OSN) establish and strengthen their own rela-
tionships between consumers and producers [22].

Our research goal is to analyse social behavior in the context of messaging
and posts reaction within Telegram OSN messenger. At the beginning of 2019
there were approximately 200 000 users from Kazakhstan [18]. As of April 2020
the Kazakhstan’s audience reached 400 000 users. In January 2021 its world-wide
monthly active users reached 500 million users. Despite its fast growth, Telegram
is a relatively young OSN and has not yet become a subject of intense research.
The authors of Telegram OSN provide many public tools for developers to build
their own client application [19].

Event detection process has been applied for various OSNs and purposes.
Also, an “event” has different definitions according to context and application.
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First we consider an event as “an occurrence causing change in the volume of
text data that discusses the associated topic at a specific time. This occurrence
is characterized by topic and time, and often associated with entities such as
people and location” [3].

Event detection in OSN is important for social analysis, because it allows
to estimate public interest in an occurred event. Moreover, events analysis lead
to the detection of substantial sub-events [20]. For example, at the beginning of
the 2020 year the whole world faced new virus COVID-19. Such high-level event
subsumes many significant low-level sub-events such as illegal reselling essential
items, bullying activity, misinformation spreading, growth of free online services
and infection of celebrities.

Our goal is focused on the intellectual social modelling and event patterns
prediction based on online social media in real-time. To achieve that goal we have
implemented a highly loaded, fault-tolerant, scalable architecture for massive
data extraction from social media.

2 Related Work

Event detection is a topic with high adherence from researchers. A comprehensive
survey on event detection [3] describes four challenges on this topic:

1. New Event Detection (NED)
2. Event Tracking
3. Event Summarization
4. Event Associations

Another survey includes research on event detection about disasters, news,
outbreaks and traffic [15]. The work was focused on analysing only the Twitter.

The natural disasters are causes of common interest that motivates various
researchers. People post messages with essential information during and after
a disaster according to their feelings and real-time situation. Some research
approaches concentrate on the evolution of a rare event, like a storm, in the
real world by analysing activities in a virtual world and constructing temporal
patterns [14].

Event detection technique depends on event characteristics and its category.
A survey on event detection techniques covered events about natural disaster,
trending topics and public opinion in newswire, web forums, emails, blogs and
microblogs [7]. The survey includes researches on OSNs like Twitter, Facebook,
Instagram, Youtube and Pinterest. Domain dependence is a huge challenge for
researchers because techniques are extremely situational dependent. Time con-
straint is another characteristic which is also varying according to event category.
Authors discussed techniques grouped by information flow between users: the-
matic, temporal, spatial and network structure.

A huge survey proposes definitions and categorizations in event detection
process [2]. The authors classified 34 works by event types, pivot techniques,
detection method, detection task and application. The majority of researches
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were for detecting general interest events. Only 20% of examined works were
oriented on real-time event detection.

Researches on event detection valuable for social science. Journalistic’s event
descriptors 5W1H (who? what? when? where? why? how?) were applied for event
detection in news articles [8,21,24]. Such approach needs deep knowledge of
NLP (Natural Language Processing) and depends on language and well-labeled
dataset.

Researchers highlight relevance of event detection in contextual decision mak-
ing, emergence notification tools implementation, better understanding of social
interest [7,15,20].

3 Requirements and Design Approach

Social media generates massive amount of continuously increasing data therefore
imposing stringent requirements for any crawler-based data extraction architec-
ture. Some major requirements include:

1. Crawl over different Online Social Networks (OSN). Since social media crawler
should work with different OSNs then external APIs will be different. However
internal data processing will be identical for all.

2. Plug into new OSN. This process should be gentle and simple.
3. Scalable regarding data pre-processing and analysing.

In order for our architecture to meet the requirements above, it must have
the following properties.

Elasticity. It is the degree to which the system is able to adapt to changes
in workload by providing and removing resources in an autonomous approach,
such that at any given time, the available resources are as close as possible to
current demand [9].

Scalability. It can be differentiated into “structural scalability and load scal-
ability. Structural scalability is the ability of a system to expand in a chosen
dimension without significant changes in its architecture. Load scalability is the
ability of the system to work correctly when the offered traffic increases [1].

Self-service deployment. It is understood as part of the application deploy-
ment topology to implement a specific technical unit [10]. More often, a unit
of deployment is understood as a “standard container”. The goal of a standard
container is to encapsulate a software component and all of its dependencies in
a self-describing and portable format so that any compatible runtime can run it
without additional dependencies, regardless of the underlying machine and the
contents of the container. This is a definition from the Open Container Initiative
(OCI), which is explained in 5 principles of standard containers [17].

In this section we describe the technology that fits our architecture require-
ments. Nowadays there is a paradigm of software development, which lays in
business processes and architecture solutions to the above issues. The paradigm
is called Cloud-Native Application Development (CNA Development) [6]. This
concept refers to a set of technologies and design patterns that have become the
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standard for building large-scale cloud applications. Software development in
this paradigm provides the properties of successful cloud applications, including
dynamic scalability, ultimate resiliency, non-disruptive upgrades, and security.
To enable the creation of applications that meet these requirements, we describe
a microservices architecture that is central to cloud design.

In a huge survey more than 50 works related to the development of cloud
applications were analysed, collected and summarized approaches, methods and
terms [12]. As a result, authors defined the term Cloud-Native Application as
follows: “A cloud application (CNA) is a distributed, flexible and scale-out sys-
tem of (micro) services that isolates state in a minimum of stateful components.
The application and each individual deployment module of this application are
designed according to cloud-centric design patterns and run on a flexible self-
service platform.”

It was proposed to call such applications IDEAL, so that the application was
[Isolated state] isolated, [Distributed] had a distributed architecture, was [Elas-
tic] flexible in the sense of horizontal scaling, was controlled using [Automated]
automated systems, and its components must be loosely coupled [4]. Creation
of cloud applications in this paradigm leads to the following results [23]:

1. faster provision of software solutions to the customer
2. fault tolerance
3. automation of recovery
4. easy and fast horizontal scaling of applications
5. the ability to process a huge amount of data

Our design approach was leaded by our first case study OSN - Telegram.
Nowadays social networks developers usually provide public tools or libraries to
interact with their system and its data. It was mentioned above that Telegram
becomes more and more popular. We decided to construct our social media
crawler firstly based on Telegram OSN. According to official Telegram Database
Library (TDLib) provided by Telegram, we have constructed our Client API
application [4].

4 Cloud-Based Architecture and Data Model Design

In this section we describe our architecture for social media data extraction and
processing. The database structure also presented in Sect. 4.2.

4.1 Cloud-Based Architecture

During this stage of the research we have developed a cloud architecture based
on microservices. Microservices are the decomposition of monolithic business
systems into independently deployable services that perform a single task. The
main way to communicate between services in a cloud application architecture is
through published and versioned APIs (API-based collaboration). In our archi-
tecture microservices communicate via message queue.



142 A. B. Mussina et al.

The individual architecture deployment units are designed and intercon-
nected according to a set of cloud-oriented patterns such as a twelve-factor
app [25], a Circuit Breaker [5]. The Twelve-Factor App methodology is a method-
ology for building software-as-a-service applications. A Circuit Breaker used in
microservices architecture to prevent cascade fails during services communica-
tion. These best practices are designed to enable applications to be built with
portability and resilience when deployed to the web.

We use the flexible OpenStack platform, which is used to deploy and oper-
ate these microservices through autonomous deployment units (containers). This
platform provides additional operational capabilities on top of IaaS infrastruc-
tures, such as auto-scaling application instances and scaling on demand, applica-
tion health management, dynamic routing, load balancing, and log and metrics
aggregation.

In Fig. 1 we depicted the parsing process flow through our cloud architecture
and general view of architecture. Each New message created in OSN is detected
and parsed by a crawler. Firstly, the crawler will save message in database.
Secondly, it will put the textual content of the message in queue. Queue service
has an exchange area and defined queues. Tokenization consumer receive its
data through queue. Consumers are located in a data processing microservice.
This microservice will be exposed later with other processing tools. After data
pre-processing and processing, all extracted information go to database.

4.2 Data-Model Design

The Telegram open-API allows to collect a lot of information about users, chats
and messages. The Fig. 2 shows the conceptual data-model of our relational
database.

The first implemented pre-processing task was message text tokenization.
The token in our case is unigram. Before tokenization, text is cleared from Rus-
sian stop-words taken from RussianAnalyzer in Apache Lucene library [16]. Each
token has its count within users’ messages and chats’ messages. For example, in
Kazakhstan during COVID-19 pandemic and state of emergency, government
pays 42500 tenge of compensation for people who lost their job or income. This
‘42500’ token has total count greater than 11000 among 34 chats, but it was
mainly due to conversations in one news channel.

The second pre-processing tool was topic extraction including lemmatization
of Russian and English language messages. For Russian messages we used Lucene
based library [13]. The topic extraction simply made by tf-idf calculation. We
consider each message as a “document” and combine all messages from chats
during one day and calculate the tf-idf for each token. The top-K tokens with
highest tf-idf are taken as the K topics of the day (we are exploring K = 5).

We are collecting messages, since 19.02.2020, from public groups and channels
from Kazakhstan. At the beginning of April we included chats from Russia,
Belarussia, Ukraine and Uzbekistan. On the 21.01.2021 database consists of 2621
chats, 285 000 users and 1 093 298 messages. The data growth is presented in
Fig. 3.
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Fig. 1. Architecture

Fig. 2. Data conceptual model
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Fig. 3. Extracting data growth

5 Conclusion

We have developed highly loaded, fault-tolerant, scalable architecture for social
media data extraction and storage using Cloud Native Application Development
paradigm. Crawler collects messages from 2141 Telegram chats. Data processing
microservice designed as scalable unit which could be easily exposed with addi-
tional tools. In future work we are going to explore additional related work on
event detection in social networks and define the accurate and effective algorithm
for event detection and event embedding.
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11. Klepek, M., Starzyczná, H.: Marketing communication model for social networks.
J. Bus. Econ. Manag. 19, 500–520 (2018). https://doi.org/10.3846/jbem.2018.6582

12. Kratzke, N., Quint, P.C.: Understanding cloud-native applications after 10 years of
cloud computing - a systematic mapping study. J. Syst. Softw. 126, 1–16 (2017).
https://doi.org/10.1016/j.jss.2017.01.001

13. Kuznetsov, A.: Russian morphology for Apache Lucene. https://github.com/
AKuznetsov/russianmorphology. Accessed 20 Nov 2020

14. Lu, S., Zhou, M., Qi, L., Liu, H.: Clustering-algorithm-based rare-event evolution
analysis via social media data. IEEE Trans. Comput. Soc. Syst. PP, 1–10 (2019).
https://doi.org/10.1109/TCSS.2019.2898774

15. Nurwidyantoro, A.: Event detection in social media: a survey, pp. 1–5, June 2013.
https://doi.org/10.1109/ICTSS.2013.6588106

16. Apache Software Foundation: Lucene 4.0.0 analyzers-common API. https://lucene.
apache.org/core/4 0 0/analyzers-common/. Accessed 15 Sept 2020

17. Open Container Initiative: Open container runtime specification (2020). https://
opencontainers.org/. Accessed 27 May 2016

18. Telegram Analytics: Telegram channels Kazakhstan (2020). https://kaz.tgstat.
com/. Accessed 18 Apr 2020

19. Telegram Library: Telegram database library, version 1.6.0, 31 January 2020.
https://core.telegram.org/tdlib. Accessed 10 Feb 2020

20. Saravanou, A., Katakis, I., Valkanas, G., Gunopulos, D.: Detection and delineation
of events and sub-events in social networks, pp. 1348–1351, April 2018. https://
doi.org/10.1109/ICDE.2018.00147

21. Sharma, S., Kumar, R., Bhadana, P., Gupta, S.: News event extraction using 5W1H
approach & its analysis. Int. J. Sci. Eng. Res. (IJSER) 4(5), 2064–2068 (2013)

22. Sharma, S., Verma, H.V.: Social media marketing: evolution and change. In: Heg-
gde, G., Shainesh, G. (eds.) Social Media Marketing, pp. 19–36. Springer, Singapore
(2018). https://doi.org/10.1007/978-981-10-5323-8 2

23. Stine, M.: Migrating to Cloud-Native Application Architectures. O’Reilly Media
Inc., Sebastopol (2015)

24. Wang, W., Zhao, D., Wang, D.: Chinese news event 5W1H elements extraction
using semantic role labeling. In: 2010 Third International Symposium on Informa-
tion Processing, pp. 484–489 (2010). https://doi.org/10.1109/ISIP.2010.112

25. Wiggins, A.: The twelve-factor app (2014). http://12factor.net. Accessed 14 Feb
2020

https://doi.org/10.1007/s13278-016-0414-1
https://doi.org/10.1007/s13278-016-0414-1
https://doi.org/10.1109/SOSE.2014.9
https://doi.org/10.3846/jbem.2018.6582
https://doi.org/10.1016/j.jss.2017.01.001
https://github.com/AKuznetsov/russianmorphology
https://github.com/AKuznetsov/russianmorphology
https://doi.org/10.1109/TCSS.2019.2898774
https://doi.org/10.1109/ICTSS.2013.6588106
https://lucene.apache.org/core/4_0_0/analyzers-common/
https://lucene.apache.org/core/4_0_0/analyzers-common/
https://opencontainers.org/
https://opencontainers.org/
https://kaz.tgstat.com/
https://kaz.tgstat.com/
https://core.telegram.org/tdlib
https://doi.org/10.1109/ICDE.2018.00147
https://doi.org/10.1109/ICDE.2018.00147
https://doi.org/10.1007/978-981-10-5323-8_2
https://doi.org/10.1109/ISIP.2010.112
http://12factor.net


Node Degree Dynamics in Complex
Networks Generated in Accordance
with a Modification of the Triadic

Closure Model

Sergei Sidorov(B) , Sergei Mironov , Alexey Faizliev ,
and Alexey Grigoriev

Saratov State University, Saratov 410012, Russian Federation
sidorovsp@sgu.ru

http://www.sgu.ru

Abstract. The triadic closure model attempts to reflect the well-known
fact that many real-world networks have a much higher likelihood of a
link between a pair of nodes with a common neighbor than in the random
null model. The effect is especially evident in social networks and is
also widely present in cooperation networks in the field of knowledge,
citation and research, and many others. It should be noted that in the
triadic closure model proposed by P. Holme and B.J. Kim, at the triad
formation step, the new link is attached to any random neighbor (which is
chosen evenly) of the node selected in the previous step (which is chosen
using the preferential attachment mechanism). However, in many real-
world complex networks, the second link is also usually selected using the
preferential attachment mechanism. In this paper, we propose to make
adjustments to the triadic closure model for the case when the nodes
are selected using the preferential attachment mechanism at the triad
formation step. We empirically investigate the dynamics of the mean
value of node degree in the networks generated by this model and show
that it follows a power law.

Keywords: Complex networks · Social networks · Preferential
attachment · Triadic closure · High clustering · Growth model

1 Introduction

One of the most common tool for developing communities in different complex
networks is the so-called triadic closure [12]. It is well-known that many real
networks have a much higher probability of having a link between a pair of
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nodes with a common neighbor with comparison to a random null model. The
effect is especially evident in social networks [2–5,7–11,14–16].

The so-called triadic closure model was developed in the work [6] and is an
extension of the Barabási-Albert model which uses the preferential attachment
mechanism [1]. Both models generate networks with scale-free structure and
the power law degree distribution. However, the triadic closure model induces
networks with a higher clustering than the BA model, and therefore the networks
obtained with use of the triadic closure model are more similar to real social
networks in that sense. In the model, when a new node is added to network, it
forms a link with an existing node in the network, elected with a probability
proportional to its degree (preferential attachment). The remaining m − 1 links
bringing forth by the new node are tied with a probability p to a randomly chosen
neighbor of the node which received the most recent preferentially attached link
(triad formation), while with a probability 1 − p the new node links with a
node chosen with use of preferential attachment mechanism. The triadic closure
model produces networks with varying levels of clustering by differing p. On the
other hand, the degree distribution is the same as in the BA model and follows
a power law with γ = −3 for any p.

Note that in the basic model proposed by P. Holme and B. J. Kim, during
the triad formation step a new link attaches to any random neighbor (which is
uniformly chosen) of the node picked at the previous step (which is chosen using
preferential attachment mechanism). However, empirical evidence shows that in
many complex networks the second link is chosen also with use of preferential
attachment mechanism. Therefore, in this paper we propose to amend the triadic
closure model for the case when nodes are chosen preferentially at the triadic
formation step (not uniformly as it is in the basic model). We empirically inves-
tigate the properties of the networks generated by this model and show that the
dynamics of the expected degree of any node follows the power law.

2 The Modification of the Triadic Closure Model and Its
Analysis

2.1 The Model Description

We propose a modification of the triadic closure model by P. Holme and
B. J. Kim. Let us first describe the rules, by which the network grows. Let t
denote the current iteration. Then at each iteration t:

1. a new node t is added to the network;
2. it would be connected with m other nodes in the network. These nodes are

chosen as follows:
(a) one of the existing nodes i in the network is chosen with a probability

proportional to its degree ki;
(b) the remaining m − 1 links connect the newborn node t with other nodes

in the network, which are selected as follows:
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– (b1) (Triad formation)
with probability p, the new node is connected with one of the neigh-
bors j of the node i, with a probability proportional to kj , i.e. the
degree of vertex j.

– (b2) with probability 1 − p, the link is attached to one of the ver-
tices s of the network (not necessarily adjacent to the node i) with a
probability proportional to the degree of this node ks.

To better replicate a great deal of complex networks, the changes are made
to its core triad formation step (b1). Instead of selecting the arbitrary node, the
selection is carried out with preferential attachment mechanism involved. Another
modification of the triadic closure model has been recently introduced in [13].

2.2 The Model Analysis in Case m = 2 and p = 1

In this subsection we examine the time evolution of networks generated in accor-
dance with the partial case of the model (m = 2 and p = 1). The first parameter
m = 2 leads to only two links being added at each iteration. The second param-
eter p = 1 means that after the first link is attached to a node selected with
preferential attachment, it is also connected with a neighbor of that node, which
is selected with preferential attachment as well.

We start with the analysis of the time-dependent degree for an arbitrary node.
Denote k̄i(t) the (expected) degree of node i at iteration t ≥ i.
Let N(t) be the number of vertices in the graph at iteration t, M(t) be the

number of links at the iteration. It should be noted that N(t) = N0 + (t − 1),
M(t) = M0 + 2(t − 1), where N0 and M0 are the initial number of nodes and
links in the model, respectively.

There are two cases, in which an existing node i can increase its degree each
time a new node enters the network. The first opportunity occurs if node i is
selected at step 2(a), and the second chance takes place when node i is selected
at step 2(b).

For convenience we will approximate the degree ki by means of a continuous
real variable, representing its expectation value over many realizations of the
growth process. Therefore, we calculate the rate at which an existing node i
acquires links at iteration t is

dki(t)
dt

= pa(i) + pb(i), (1)

where pa(i) and pb(i) are the probabilities of choosing node i at steps 2(a) and
2(b) respectively.

The probability of the node i to be chosen from N(t) nodes in the network
at the first preferential attachment step is proportional to its degree, i.e.

pa(i) =
ki(t)

2M(t)
. (2)

We have 2M(t) ∼ 4t. Let p(j, i) = 1, if the link (j, i) exists, and p(j, i) =
0, otherwise. By definition of p(j, i) we have

∑N(t)
j=1 p(j, i) = ki(t). Let si(t)
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denote the sum of the degrees for all neighbors of node j at time t, i.e. si(t) =∑t
j=1 p(i, j)kj(t).
The probability of choosing node i at step 2(b) is equal to the sum over all

nodes adjacent to node i of products of

– the probability of choosing node j at step 2(a), i.e. kj(t)
2M(t) ,

– the probability of choosing node i among kj(t) neighbors of node j, i.e. ki(t)
sj(t)

,

so we get

pb(i) =
N(t)∑

j=1

p(j, i)
kj(t)
2M(t)

ki(t)
sj(t)

=
ki(t)

2M(t)

N(t)∑

j=1

p(j, i)
kj(t)
sj(t)

. (3)

Let γi be defined as follows:

γi(t) :=
N(t)∑

j=1

p(j, i)
kj(t)
sj(t)

. (4)

It follows from (1), (2) and (3) (and since for large t the M(t) ∼ 2t) that

dki(t)
dt

= (1 + γi(t))
ki(t)
4t

. (5)

If we integrate Eq. (5), we have the following dynamics for large t:

ki(t) = cit
1
4 exp

(∫
γi(t)
4t

dt

)

,

where ci can be found from the initial condition ki(i) = 2, since each node i has
degree 2 at the initial moment ti = i.

The following proposition can be proved.

Lemma 1. For each i = 1, 2, . . ., there is a finite limit γi := limt→∞ γi(t) and
0 ≤ . . . ≤ γi+1 ≤ γi ≤ . . . ≤ γ1 ≤ 3.

Equation (7) describes the dynamical behavior of the degree in the network of
single node i. The dynamical exponents have different values for different nodes,
in contrast with the Barabási-Albert model in which the dynamic exponents are
the same for all nodes.

Equations (6) and (7) predict that the degree of a node in the network
increases following a power-law with the dynamical exponent βi ≤ 1. How-
ever, different nodes follow different dynamical law with different value of the
dynamical exponent.

The random graph model described above can easily be implemented and
applied to generate graphs. Now we will show empirically that degree evolution
of each node i follows the power law with βi depending on i:

ki(t) ∼ c

(
t

i

)βi

. (6)
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Figure 1(a) shows the dynamics of degree for different nodes i = 1, 10, 50, 100
for t = 1, 2, . . . , 106. All degree values are non decreasing with maximum val-
ues kmax

2 = 33223.4, kmax
5 = 6033, kmax

10 = 394.4, kmax
50 = 84.4, kmax

100 = 26.6,
achieved at iteration t = 100, 000. Therefore, to present the plots on the figure
we normalized each of them by dividing on the maximum degree for correspond-
ing node. The results were averaged for 10 independent runs (all networks are
of size N = 100, 000). The figure shows that all nodes have different dynam-
ics. Figure 1(b) presents the log-log plot of degree dynamics for the same nodes
i = 1, 10, 50, 100 on t ∈ [1, 106]. All linear regressions are with R2 = 0.999, and
obtained slopes are 1, 0.71, 0.55 and 0.46, respectively.

The empirical results show that the dynamics of the degree growth of each
node follows a power law. However, all nodes have different exponent values βi

(which is 1 for the node i = 1, and βi rapidly decreases to 1
4 with the increase

of i). This is a significant difference from the BA model or the triadic closure
model, for which the exponents are the same and equal to 0.5 for all nodes,
regardless of when a particular node appeared.

Fig. 1. (a) Degree dynamics of nodes i = 1, 10, 50, 100. We normalized each of them by
dividing on the maximum degree for corresponding node. (b) Log-log plots of degree
dynamics of nodes i = 1, 10, 50, 100. The slopes (which are 1, 0.71, 0.55 and 0.46,
respectively) are obtained using the linear regression model. The results were averaged
for 10 independent runs (all networks are of size N = 100, 000).

The empirical experiments also confirm that there is a limit of γi(t) as t → ∞,
γi := limt→∞ γi(t). Figure 2 presents the evolution of normalized γi, i.e. the val-
ues γi

γi,max
, for nodes i = 2, 5, 10, 100, 1000 over time. The results were averaged

for 10 independent runs (all networks are of the same size N = 100, 000).
Thus, we have approximation for large t

ki(t) ∼ 2
(

t

i

) 1
4 (1+γi)

. (7)
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Fig. 2. The dynamics of normalized γi for nodes i = 2, 5, 10, 100, 1000 over time. The
results were averaged for 10 independent runs (all networks are of size N = 100, 000).

2.3 Node Degree Dynamics (General Case)

In this section we find the node degree dynamics for the model described in
Sect. 2.1.

This model is different from the previous as b2 step is included, while 2b
algorithm repeats m − 1 times. This means that the node i can increase its
degree each time a new node enters the network in three cases: at steps 2(a),
2(b1) and 2(b2).

Similarly to previous section, we approximate the degree ki by means of a
continuous real variable through representing its expectation value. The existing
node i increases its degree after new nodes are connected to it on iteration t
(which consists of steps 2(a), 2(b1) and 2(b2)) at a rate described by

dki(t)
dt

= pa(i) + pb1(i) + pb2(i), (8)

where pa(i), pb1(i) and pb2(i) are the probabilities of choosing node i at steps
2(a), 2(b1) and 2(b2) respectively. We have

pa(i) =
ki

2M(t)
∼ ki

4t
. (9)

The probability of choosing node i at step 2(b1) is equal to

pb1(i) = p(m − 1)pb(i) = p(m − 1)
ki

2M(t)

N(t)∑

j=1

p(j, i)
kj

sj
∼ p(m − 1)

ki

4t
γi, (10)

where pb(i) is obtained in (3) and γi is defined in (4).
We have

pb2(i) = (1 − p)(m − 1)
ki

2M(t)
∼ (1 − p)(m − 1)

ki

4t
. (11)
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It follows from (8), (9), (10) and (11) that

dk̄i

dt
=

(
1 + p(m − 1)γi + (1 − p)(m − 1)

) k̄i

4t
. (12)

After we integrate the Eq. (12), we acquire the following dynamics for large t:

k̄i ∼ c

(
t

i

)βi

, (13)

where
βi =

1
4

(
m(1 − p) + p

(
1 + (m − 1)γi

))
.

Equation (13) describes the dynamical behavior of the degree in the network of
single node i. In case m = 2 and p = 1, the dynamics are equal to (7), which
has been acquired for the simple variant of model as described in Sect. 2.2. The
dynamical exponents are different for nodes i and j, i �= j, unlike the Barabási-
Albert model in which the exponent of the dynamics is the same for every node.

Equation (13) offers a number of predictions:

– The degree of a node in the network increases while following a power-law
with the dynamical exponent βi. However, it should be noted that each node
follows different dynamical law with varying value of the exponent.

– The earlier node i was added, the higher its degree ki(t) and the higher its
exponent βi is. Hence, hubs are larger in this model in comparison to BA or
the triadic closure models.

3 Conclusion

This paper considers a modification of the triadic closure model, in which at
the triad closure step, the mechanism of preferential attachment with respect to
the neighbors of the node selected at the previous step is used. The goal of the
paper is to obtain the trajectories describing the expected values of the degrees
for nodes in the networks that are generated using this model. The results show
that the dynamics of the degree of each node in the network follows a power law.
However, unlike the triadic closure or the Barabási-Albert models, for which the
exponent of the power law is the same for all vertices and is equal to 1

2 , in the
modified model the exponents are different for different nodes. For example, for
the nodes that appeared earlier, it is close to 1, while for the nodes that appeared
in the last iterations, it approaches 1

4 . Thus, in this model, the nodes which were
added at the early stages of network growth, get an even greater advantage in
the sense of degree growth rate than in classical models.
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Scalar Problems of Diffraction by
Curvilinear Smooth Screens
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Abstract. The problems of diffraction of monochromatic acoustic waves
by smooth infinitely thin curvilinear sound-soft and sound-hard screens
are considered. The singular integral equations of the diffraction prob-
lems are numerically solved using Galerkin method. A general approach
for definition of basis functions with compact support is proposed in the
case of arbitrary smooth (or piecewise smooth) parameterized screens.
Several examples of such basis functions on non-planar screens are pre-
sented. It is shown that the basis functions possess the denseness prop-
erty. Convergence of the Galerkin method is established in appropriate
Sobolev spaces on manifolds with boundary. The parallel implementa-
tion of the Galerkin method is used. Several numerical tests are carried
out; in particular, the approximate solutions of a test problem are com-
pared with the known analytical solution. The proposed technique can be
used for solving more complicated problems, i.e., problems of diffraction
by systems of solids and screens, or by partially shielded solids without
requiring consistency of grids on volumetric scatterers and surfaces.

Keywords: Acoustic diffraction · Curvilinear parameterized screens ·
Basis functions · Convergence of Galerkin method

1 Introduction

We study the problem of diffraction of an acoustic wave by smooth open curvi-
linear non-planar (sound-soft or sound-hard) oriented screens, which can be
reduced [8] to singular integral equations over the surfaces of the screens.

The integral operators are considered as elliptic pseudo-differential opera-
tors [9] in appropriate Sobolev spaces. Ellipticity and invertibility of the opera-
tors result in the convergence of the Galerkin method with any basis functions
vk that satisfy the approximation condition [3].

In the case of a plane screen, the piecewise-linear functions with a hexagonal
support can be chosen as basis functions [4,6].

In this work, we consider smooth parameterized curvilinear screens. In spite
of piecewise flat approximation [2] of a screen’s surface we properly determine
c© Springer Nature Switzerland AG 2021
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basis functions on the curvilinear screen and show that such basis functions
represent complete systems of functions in solutions’ spaces.

In order to illustrate the proposed approximation technique we show some
numerical results of solving the problem by Galerkin method (the parallel version
of the method was implemented using the MPI [10] interface). In particular, we
represent the comparison of obtained approximate solutions and the well-known
analytical solution on the sound-hard sphere of the diffraction problem on the
unit sphere.

2 Integro-Differential Equation of the Diffraction
Problem

Scattering of an acoustic wave of the form U(x, t) = u0(x)e−iωt by an acoustically
hard screen Ω is described [8] by the hypersingular integral equation

Ahϕ =
∫

Ω

∂

∂nx

∂

∂ny
G(x, y)ϕ(y)dsy =

∂

∂nx
u0(x), x ∈ Ω, (1)

whereas scattering from by a sound-soft screen is reduced to a weakly singular
equation

Asϕ = −
∫

Ω

G(x, y)ϕ(y)dsy = u0(x), x ∈ Ω. (2)

Here is G = eik0|x−y|
4π|x−y| is the Green’s function of the Helmholtz equation in R3.

We consider C∞-smooth oriented bounded surfaces parameterized by a given
vector function

x(t) = (x1(t1, t2), x2(t1, t2), x3(t1, t2)), t ∈ T ⊂ R2, (3)

whose Jacobi matrix’s rank is 2 in T . The parameters domain T is bounded,
with piecewise smooth boundary ∂T.

The operators Ah and As are ΨD operators of order −1 and 1, respectively,
in the following Sobolev spaces:

Ah : H̃1/2(Ω) → H−1/2(Ω), As : H̃−1/2(Ω) → H1/2(Ω),

which follows from the G̊arding inequalities [8].
To define the Sobolev spaces we consider Ω as an open submanifold of a C∞

two-dimensional smooth closed oriented manifold Ω0. Let {Uα} be a finite cover
of Ω0 with coordinate diffeomorphisms κα : Uα → Vα onto Vα ⊂ R2, and {ρα}
be a smooth unity partition subordinating to the cover {Uα}. Define the norm
of the Sobolev space Hs(Ω0) [1],

‖u‖Hs(Ω0) =
∑
α

∥∥u(κ−1
α (t))ρα(κ−1

α (t)))
∥∥

Hs(R2)
. (4)

Then, H̃s(Ω) is the space of functions from Hs(Ω0) with compact support in Ω,
whereas Hs(Ω) is the space of restrictions of functions from Hs(Ω0) to Ω.
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3 Basis Functions and Galerkin Method

We consider the following formulation of Galerkin method

〈Aϕn, vi〉 = 〈f, vi〉, i = 1, ..., n, (5)

using the notation 〈 · , · 〉 for the antidual pairing of spaces H̃1/2(Ω) and
H−1/2(Ω) (or H̃−1/2(Ω) and H1/2(Ω)). The approximate solution to (5) is
denoted by ϕn :=

∑n
i=1 civi.

Let us first describe the way to determine basis functions vi(x), x ∈ Ω so as
to satisfy the approximation condition. To this end, we consider the parameter’s
domain T and define some basis functions v

(0)
i (t), t = (t1, t2) ∈ T, i = 1, ..., n,

for any natural n. The basis functions vi(x) on Ω are defined as follows

vi(x) = v(0)(κ(x)), x ∈ Ω, or vi(x(t)) = v(0)(t), t ∈ T. (6)

where κ(x) : Ω → T is the inverse mapping with respect to x(t) : T → Ω. Let
X

(0)
n = span{v

(0)
1 , ..., v

(0)
n } and Xn = span{v1, ..., vn}.

Theorem 1. Let Ω be a smooth oriented surface in R3 parameterized by a
smooth vector function x(t), t ∈ T ⊂ R2. If subspaces X

(0)
n possess the denseness

property in H̃s(T ) then Xn possess the denseness property in H̃s(Ω).

Proof. We will show that vi(x) form a complete system of functions in H̃s(Ω),
i.e., that for any element u ∈ H̃s(Ω) and for any ε > 0 there exist n and un ∈ Xn

such that
‖u − un‖H̃s(Ω) < ε.

Introduce an open circle B1 = Br(t0) of radius r > 0 centered at t0 ∈
R2 such T ⊂ B and dist(∂T, ∂B) > 0. Let Ω1 be the image of the ball B1

under the same parameterizing mapping x(t) that defines Ω. C∞-smoothness of
the mapping x(t) implies that Ω1 is a smooth surface such that Ω ⊂ Ω1 and
dist(∂Ω, ∂Ω1) > 0.

Let u be an arbitrary function in H̃s(Ω). From definition of the latter space
it follows that the continuation by zero E0u of the function u from the screen
Ω to Ω1 belongs to H̃s(Ω1). In addition, E0u ∈ Hs(Σ) for any smooth closed
oriented surface Σ ⊃ Ω1.

Let (Uα, κα), α = 1, ...,m, be an atlas on Σ, and {ρα} represent a smooth
partition of unity subordinate to {Uα} such that for some index α0

Uα0 = Ω1, κα0(x) = κ(x).

Since u ∈ H̃s(Ω) and x ∈ C∞(T,Ω) then [1] uT (t) := u(x(t)) ∈ H̃s(T ). As
the denseness property for X

(0)
n holds by assumption, then there exist constant

cj(j = 1, . . . , n) such that

‖uT − un,T ‖H̃s(T ) = ‖E0uT − E0un,T ‖H̃s(B1)
= ‖E0uT − E0un,T ‖Hs(R2) < ε. (7)
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Further, we obtain

‖u − un‖H̃s(Ω) = ‖E0u − E0un‖H̃s(Ω1)
= ‖E0u − E0un‖Hs(Σ)

=
m∑

α=1
‖E0u(κ−1

α (t))ϕα(κ−1
α (t)) − E0un(κ−1

α (t))ϕα(κ−1
α (t))‖Hs(R2)

= ‖E0u(κ−1(t))ϕ(κ−1(t)) − E0un(κ−1(t))ϕ(κ−1(t))‖Hs(R2)

= ‖E0uT − E0un,T ‖Hs(R2) < ε.

(8)

Thus, the denseness property of Xn in H̃s(Ω) is satisfied.

Let us now describe the sets of most simple basis functions suitable for solving
scalar problems of diffraction.

Consider the rectangle T = [a1, b1]× [a2, b2] and define for any natural m the
uniform grid

ti,k = ai + khi, i = 1, 2, hi = (bi − ai)/m; k = 0, ...,m.

We will define v
h,(0)
k (k) with hexagonal support,

v
h,(0)
k1,k2

(t) = ṽ(0)((t1 − a1)/h1 − k1, (t2 − a2)/h2 − k2), (9)

where

ṽ(0)(t1, t2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 − t1, t1 ∈ [0, 1], t2 ∈ [0, t1],
1 − t2, t1 ∈ [0, 1], t2 ∈ [t1, 1],

1 + t1 − t2, t1 ∈ [−1, 0], t2 ∈ [0, t1 + 1],
1 + t1, t1 ∈ [−1, 0], t2 ∈ [t1, 0],
1 + t2, t1 ∈ [−1, 0], t2 ∈ [−1, t1],

1 − t1 + t2, t1 ∈ [0, 1], t2 ∈ [t1 − 1, 0].

(10)

We will also use functions piecewise constant functions defined in T,

v
s,(0)
k (t) = v

s,(0)
k1,k2

(t) = χTk
(t), t ∈ T. (11)

where χTk
is the indicator of the subset Tk = (t1,k1 , t1,k1+1) × (t2,k2 , t2,k2+1),

ki = 0, ...,m − 1.
Thus, definition of the basis functions vh

k (x) on a sound-hard or functions
vs

k(x) on a sound-soft screen is reduced to application of formula (6) to functions
(10) and (11), respectively.

Let us prove the theorem on convergence of the Galerkin method.

Theorem 2. Let Ω ⊂ R3 be a C∞-smooth oriented open surface parameterized
by a given function x(t), t ∈ T ⊂ R2. Let the basis functions vi be defined by
formulas (6), (10) or (6), (11). Then the Galerkin method converges for the
operators Ah and As in H̃1/2(Ω) and H̃−1/2(Ω), respectively.

Proof. As indicated above, As and Ah are elliptic operators in spaces chosen.
Moreover the operators are injective. Indeed, the homogeneous integral equa-
tions (2) and (1) are equivalent [6] to Dirichlet and Neumann boundary value
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problems for the Helmholtz equation. These homogeneous problems have only
the trivial solution.

Consequently, convergence of the Galerkin method follows from the denseness
property of basis functions’ subspaces Xn in the solutions’ space X. It is known
that the functions (10) and (11) possess the denseness property in H̃1/2(T ) and
H̃−1/2(T ), respectively, for any rectangle T. The smoothness of parametrization
function x(t) : T → Ω now implies [1] that vh

k ∈ H̃1/2(Ω) and vs
k ∈ H̃1/2(Ω).

Then, the basis functions on a curvilinear screen satisfy the approximation con-
dition, which follows from Theorem 1.

Thus, Galerkin method converges and there holds an error estimate [3]

‖u − un‖H̃±1/2(Ω) ≤ inf
ψ∈Xn

‖u − ψ‖H̃±1/2(Ω). (12)

3.1 Numerical Tests

In this subsection several results of solving the diffraction problem are shown.
First, we consider a test problem of scattering form a sound-hard unit sphere

S1(0) centered at the origin.

Fig. 1. Modulus of the analytical (a) and approximate (b, c) solutions ϕm of the model
scattering problem on the centered sound-hard unit sphere.

The integro-differential equation (1) is known [2] to have eigenfunctions
defined by formulas

sn,m(x) = Pm
n (cos θ) cos(mϕ), Pm

n (u) = (1 − u2)1/2 dm

dun
Pn(u), (13)

where Pn are the Legendre polynomials, and ϕ, θ are the spherical on S1(0).
Figure 1(a) shows the modulus of the analytical solution ϕ(x) to (1) with

the function s3,3(x) representing the right-hand side of the equation, whereas
Fig. 1(b), and (c) represent the approximate solutions ϕn(x). The total number
of basis functions is n = (m − 1)2, and m denotes the grid’s dimensions in
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parameters t1, t2. Note, that we consider only uniform grids γm in the domain
T. If T is a rectangle [a1, b1] × [a2, b2], then γm is defined as below,

γm = {(t1,i1 , t2,i2) : tk,ik = ak + (bk − ak) · ik/m, ik = 0, ...,m}.

Further, the diffraction of an incident plane wave by the sound-hard unit
sphere and a sound-soft torus were studied (see Fig. 1) (Fig. 2).

Fig. 2. Modulus of the potential density ϕ. (a) : diffraction of a plane wave u0 = eik0x2

by the sound-hard sphere S1(0), (b): diffraction of a plane wave u0 = eik0x2 by the
sound-soft 3/4 torus (R = 4, r = 1, φ ∈ [0; 3π/2]).

The described technique of definition of basis function exempts from the
need for matching the computational grids on solids and screens that arises
when solving problems of scattering from partially shielded bodies [7]. It is, thus,
possible to construct grids and determine the basis functions independently on
scatterers of various dimensions. The quantitative parameters of the grids (e.g.,
the number and sizes of finite elements) can be selected independently of each
other. The latter implies that the order of the main matrix and the block sizes
(corresponding to scatterers of different dimensions) can be specified in an almost
arbitrary way, which is especially convenient for parallel implementation of the
numerical method.

Conclusion
Scalar problems of scattering of monochromatic acoustic waves form non-planar
hard and soft screens are considered. The Galerkin method for solving the cor-
responding integral equations on the screens’ surfaces is formulated. The basis
functions are defined on arbitrary parameterized curvilinear screens; the dense-
ness property is proved for the basis functions in appropriate Sobolev spaces
on manifolds with boundary. Several tests were carried out to check the conver-
gence of Galerkin method. In particular, the exact solution of the problem on a
sound-hard sphere was compared with approximate solutions.
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Noise Influence on the Estimation of
Characteristics of Intermittent

Generalized Synchronization Using Local
Lyapunov Exponents
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1 Saratov State University, Saratov 410012, Russia
2 Regional Scientific and Educational Mathematical Center

“Mathematics of Future Technologies”, Saratov 410012, Russia

Abstract. Using the calculation of local Lyapunov exponents the influ-
ence of the stationary noise on statistical characteristics of intermittent
generalized synchronization and critical coupling parameter value corre-
sponding to the generalized synchronization regime onset has been stud-
ied. Two unidirectionally and mutually coupled chaotic Lorenz oscilla-
tors with a complex (two-sheeted) topology of attractors, characterized
by the jump-intermittency, have been chosen as the systems under study.
The dependence of the critical value of the coupling parameter on the
noise intensity has been estimated. We calculated such general charac-
teristics of the intermittency as the distributions of the laminar phase
lengths for fixed values of the coupling parameter and the dependence
of the mean length of the laminar phases on the criticality parameter.
We have shown that the numerically obtained statistical characteristics
greatly correspond to theoretical exponential laws. Obtained results are
in a good agreement with the results of other works and demonstrate
that the method of local Lyapunov exponents has significant stability
to noise and has a strong potential to be applied for different nonlinear
systems coupled unidirectionally or mutually.

Keywords: Intermittent generalized synchronization of chaos ·
Intermittency characteristics · Local Lyapunov exponents

1 Introduction

Generalized synchronization (GS) is one of the fundamental natural and radio-
physics phenomena [1] and it is one of the main types of chaotic synchroniza-
tion [2]. This phenomenon has a wide application potential, for example, in
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medicine [3] and for secure communication [4]. In the context of the flow dynam-
ical systems

ẋ = F(x)
ẏ = G(y,x,g)

(1)

(where g is a vector of the coupling parameters, x,y are vectors of the system
states, F,G are vector of the functional relations, ẋ, ẏ are time derivatives) the
GS is understood as the existence of a functional relation (the functional in
general case) between the states of interacting systems (Eq. (1)).

In this work, as an example, we consider two unidirectionally and mutu-
ally coupled chaotic Lorenz oscillators [5] described by the following system of
ordinary differential equations:

ẋ1,2 = σ(y1,2 − z1,2) + ε1,2(x2,1 − x1,2) + N1,2ψ

ẏ1,2 = r1,2x1,2 − y1,2 + x1,2z1,2

ż1,2 = −b1,2z1,2 + x1,2y1,2

(2)

where σ = 10.0, b1 = 2, b2 = 8/3, r1 = 40, r1 = 35. In the case of unidirectional
coupling ε1 = 0, ε2 = ε, in the case of mutual coupling ε1 = ε2 = ε, N1,2ψ
are the noise terms, where ψ is a random number, corresponding to the normal
distribution with a mean of 0 and a standard deviation of 1. The noise was added
only to the second system, i.e. N1 = 0, N2 = N . The noise amplitude depends
on real number N .

The system parameters were set in such a way that for any choice of ini-
tial conditions the regime of intermittent GS is observed after the transient is
finished [5]. Specifically, in the system (2) a jump intermittency arises due to
the complex attractor topologies of the interacting subsystems [5,6]. It should
be noted that the equations were solved using general Runge-Kutta integration
scheme but the noise was added after each integration step h to the first equation
of the second interacting subsystem as Nψh, where h = 0.003 [7].

So, for the values of the coupling parameter that are slightly less than a cer-
tain critical one instead of a completely asynchronous behavior, as it could be
expected, the intermittent GS regime is observed. In such regime certain inter-
vals of time corresponding to the synchronous (in terms of the GS) states of
the systems (laminar phases) alternate with the asynchronous oscillations of the
systems (turbulent phases). With an increase of the coupling parameter, as the
critical value is approached, the mean length of the laminar phases tends to infin-
ity, and the average duration of the turbulent phases tends to zero. Therefore,
it is customary to consider the statistical characteristics of the laminar phases
due to their considerable amount.

There are several methods to study the intermittent GS, for instance, the
auxiliary system approach [8]. Unfortunately, such approach is not applicable in
the case of the mutually coupled interacting systems [9]. Therefore, it is necessary
to develop the universal methods that could be used to study the intermittent
GS regime of coupled nonlinear systems both in the cases of unidirectional and
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mutual couplings. It should be noted, that there are several attempts allowing to
solve such problem. In particular, in Ref. [5,6] the method based on the analysis
of the location of representation points has been proposed. The principal disad-
vantage of such method is the possibility of its application only to the systems
with two-sheeted topology of attractors. More universal method proposed by us
previously [10,11] is based on the calculation of local Lyapunov exponents. The
goal of the present paper is the study of the possibility of the use of local Lya-
punov exponents for the analysis of the intermittent GS regime in the presence
of noise.

2 Determination of Intermittency Characteristics Using
Local Lyapunov Exponents

The main characteristics of intermittency include distributions of the laminar
phase lengths for fixed values of the coupling parameter and dependence of the
mean length of the laminar phases on the criticality parameter.

To determine these characteristics the separation of laminar phases is
required. In this work we propose the method based on calculation of local
Lyapunov exponents [13,14]. The Benettin algorithm [12] with Gram-Schmidt
orthogonalization is used to acquire the exponents. We use the following formula
where the accumulation time is limited:

Λ ∼= 1
kτ

k∑

j=1

ln
‖x̃j‖

ε
, (3)

where x̃j is the perturbation vector at the j th iteration of the algorithm, k is
the number of algorithm iterations, τ is a dimensionless time interval between
renormalizations, ‖...‖ is the Euclidean norm, and ε = 1 is the initial norm of
the perturbation vectors.

Firstly, an orthonormal basis of unit perturbation vectors is specified. Then,
in equal intervals, the transformation of their measure (in this case, the length) is
calculated, then renormalization and orthogonalization take place and everything
mentioned together constitutes an iteration. The process is repeated until the
value of kτ becomes more or equal to a certain value of an accumulation time T .
After that, the iterations which did not happen within the dimensionless time
interval [T − t, t], where t is currently observed dimensionless time value, are
disposed. This makes it possible to assess the temporal dynamics of the coupled
systems.

Lyapunov exponents characterize the dynamics of the system. Positive values
refer to the chaotic part, i.e. the speed of scattering of the phase trajectories ini-
tially close along a certain direction; the negatives ones correspond to a periodic
motion. Zero Lyapunov exponents are associated with the shift along the time
direction and, thus, attractors always have at least one of them. The number
of the directions and, accordingly, the exponents coincide with the number of
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variables in a full system of differential equations describing the states of the
systems. However, the Lyapunov exponents do not depend on the directions but
rather characterize the systems at all.

The algorithm for identifying the characteristic phases of the behavior from
time series is based on the amplitude method. A certain threshold value Δ of the
investigated quantity, delimiting the areas of this quantity into the corresponding
phases, is set. In this case, at the values less than the threshold a laminar phase
is observed, and at values exceeding it a turbulent one is detected. Since during
evaluation of local Lyapunov exponents the accumulation time is limited and,
therefore, the accuracy of their calculation is quite low, this threshold should be
set a little exceeding zero (Δ = 0.07). The threshold value itself also depends
on the magnitude of the accumulation interval T = kτ and decreases as the last
one increases. The interval was fixed at 400, although it is possible to obtain
characteristics using other values in a wide range of intervals. The choice of the
value depends on the systems under study. It should be much greater than an
average system period of time in order to minimize local Lyapunov exponents
fluctuation. However, too big values lead to a loss of information and, hence, to
an increase of the characteristic estimation error. Also, in order to minimize the
estimation errors we ignore ultra short laminar phases the length of which is 10
or less, whereas the turbulent phases of lengths not exceeding 25 were considered
as parts of the laminar phases.

To understand the further results we should firstly consider the dependencies
of the critical parameter value, related to the onset of the GS regime in the cases
of unidirectional and mutual coupling, on the noise intensity parameter N (see
Fig. 1).

The results indicate that at the beginning with the growth of N up to a
certain value (N ≈ 900 in case of directional coupling and N ≈ 350 in case
of mutual coupling) the critical parameter value also increases1. However, after
that it tends to decrease until it reaches 0 value indicating that the GS regime
arises almost immediately after the transient process dies out. The cause of this
behavior is that the noise influence completely hides all information related to the
initial GS. In such case the noise-induced synchronization regime is observed [15].
Comparison between the results for both coupling cases allows to conclude that
for N in the range of [0, 200] the GS onset in the case of the mutual coupling
occurs for a smaller ε value than in the case of the unidirectional coupling that
is in a good accordance with the known works. So, this range was chosen for
further studies.

1 For relatively small values of the noise intensity comparable with the amplitude of
own oscillations of the system the boundary value of the GS regime onset does not
change dramatically, and in the case of unidirectional coupling even remains almost
constant.
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Fig. 1. a, b - Dependencies of the critical coupling parameter value on the noise inten-
sity parameter N in the case of unidirectional and mutual coupling, respectively

3 Estimation of Statistical Characteristics of the
Intermittent GS

The first statistical characteristic that has been estimated is the distributions
of the laminar phase lengths for fixed values of the coupling parameter (see
Fig. 2). In the regime of jump intermittency such distributions should obey the
exponential law [5].

The numerically obtained distributions were normalized on the number of
laminar phases and their accumulation interval (1000 for a, b, c and 200 for d,
do not mix it up with the one related to the local Lyapunov exponents). The
average relative deviation of the calculated characteristics from the theoretical
exponential law does not exceed 20%. The obtained distributions indicate that
with the noise intensity N increasing the deviation of experimental data from
the theoretical curves also increases. This effect is greater in the case of mutual
coupling since the critical coupling parameter value, as it was shown in Fig. 1,
changes faster with N increasing than in the unidirectional case. So, the lower
values of the coupling parameter become farther from the critical point, at that
the mean length of the laminar phases decreases.

The correctness of the statement mentioned above was confirmed by the
calculation of the other intermittency characteristic which is the dependence of
the mean length of the laminar phases on the coupling parameter ε (see Fig. 3).

It is clearly seen that for all considered values of the noise intensity the
mean length of the laminar phases decreases faster in the case of the mutual
coupling in comparison with the unidirectional case. At that, in both cases the
dependencies of the studied characteristic on the coupling parameter ε obey close
to exponential law

L ≈ C exp(kδ) × exp
(

2
D

(
1
12

+
δ√
3

+
2(−δ)3/2

3 4
√

3
+

δ2

12

))
. (4)
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Fig. 2. Distributions of the laminar phase lengths for fixed values of the coupling
parameter in the case of unidirectional (a, b) and mutual (c, d) couplings, respectively.
The noise intensity parameter N = 25 (a, c) and 50 (b, d). The numbers from 1 to
3 represent results obtained for the coupling parameter ε = {9.5, 9.75, 10.0} (a) and
ε = {5.7, 5.9, 6.1} (b). The lines 4, 5 and 6 represent approximations in a form ln(x) =
ln(1/T ) − x/T , where the mean length of the laminar phases T ≈ {2973, 5967, 14479}
(a), T ≈ {2687, 5287, 12225} (b), T ≈ {1433, 3082, 8208} (c), T ≈ {565, 836, 1316} (d),
respectively.

(where δ = ε − εc, C, k and D are positive constants) in full accordance with
the theory developed in [5].

Thus, the method based on calculation of local Lyapunov exponents makes
it possible to estimate the characteristics of intermittency with a fairly good
accuracy in a sufficiently large range of the coupling parameter values for differ-
ent values of the noise intensity, both in the cases of unidirectional and mutual
couplings. In spite of the noise presence, the obtained characteristics do not
change qualitatively, i.e. for all considered values of the noise intensity the jump
intermittency is observed.
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Fig. 3. Dependencies of the mean length of the laminar phases on the coupling
parameter ε for different values of the noise intensity parameter N in the cases
of unidirectional (a) and mutual (b) couplings. The numbers from 1 to 3 repre-
sent results obtained for the values of the noise intensity N = {0, 100, 200} in the
case of unidirectional coupling (a) and N = {20, 60, 120} in the case of mutual
coupling (b). Solid lines correspond to the theoretical approximations in the form

ln g(x) = a2 + exp b2x + 2d

(
1

12
+

x√
3

+
2(−x3/2)

3 4
√

3
+

x2

12

)

4 Conclusion

To sum up, using the calculation of local Lyapunov exponents the influence of a
stationary noise on general statistical characteristics of intermittent GS of chaos
was estimated. It turns out that the characteristics depend greater on the noise
intensity in the case of mutual coupling than in the case of the unidirectional
one, and it is getting stronger when the coupling parameter tends to the critical
value. Nevertheless, there is a wide range of the coupling parameter values where
the characteristics do not change rapidly. The numerical results are in a good
agreement with the theoretical laws and the other works’ findings [5,6]. The work
demonstrates that the proposed method has a reliable stability to stationary
noise in the case of unidirectional and mutual couplings. Therefore, taking into
account the universality of the local Lyapunov exponents we can state that the
method has strong potential to be applied for various actions with nonlinear
systems under the noise influence. For example, the results can be used when
studying interacting systems under noise presence or developing a scheme for
secure information transmission.
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Abstract. The problem of rolling without sliding of a homogeneous ball
on a fixed surface under the action of gravity is a classical problem of
nonholonomic system dynamics. Usually, when considering this problem,
following the E. J. Routh approach [1] it is convenient to define explicitly
the equation of the surface, on which the ball’s centre is moving. This
surface is equidistant to the surface, over which the contact point is
moving. From the classical works of E. J. Routh [1] and F. Noether [2] it
was known that if the ball rolls on a surface such that its centre moves
along a surface of revolution, then the problem is reduced to solving
the second order linear differential equation. However it is impossible
to find the general solution of this differential equation for an arbitrary
surface of revolution. Therefore it is interesting to study for which surface
of revolution the corresponding second order linear differential equation
admits the explicit solution, for example, Liouvillian solution. To solve
this problem it is possible to apply the Kovacic algorithm [3] to the
corresponding second order linear differential equation. In this paper we
present our own method to derive the corresponding second order linear
differential equation. In the case when the centre of the ball moves along
the paraboloid of revolution we prove that the corresponding second
order linear differential equation admits a Liouvillian solution.

Keywords: Rolling without sliding · Homogeneous ball · Surface of
revolution · Kovacic algorithm

1 Introduction

Investigation of various problems of classical mechanics and mathematical
physics is reduced to solving the second–order linear differential equation with
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variable coefficients. In 1986, the American mathematician J. Kovacic proposed
an algorithm for solving the second–order linear differential equation with ratio-
nal coefficients in the case where the solution can be expressed in terms of so-
called Liouvillian functions [3]. Liouvillian functions are constructed from ratio-
nal functions by algebraic operations, taking exponentials and integration [3,4].
If a second–order linear differential equation has no Liouvillian solutions, the
Kovacic algorithm also allows one to ascertain this fact. Therefore, the Kovacic
algorithm is a very effective method for investigation the problems which solu-
tion are reduced to the integration the second–order linear differential equation.
However, this algorithm is not very known for the specialists in mechanics and
mechanical engineering. The goal of this paper is to avoid this problem and to
made the Kovacic algorithm more popular for the investigation of various prob-
lems, where we need to solve the second–order linear differential equation. In
this paper we discuss the application of the Kovacic algorithm to the problem
of motion of a heavy homogeneous ball on a fixed perfectly rough surface of
revolution.

The paper is organized as follows. In the Sect. 2 we present the detailed
formulation of the problem and we give our own way to reduce the problem to
the integration the second–order linear differential equation. In the Sect. 3 we
prove that the problem of motion of a heavy homogeneous ball on a surface of
revolution such that the centre of a ball moves along a paraboloid of revolution
in integrated in terms of Liouvillian functions.

2 Problem Formulation. General Equations of Motion

Let us consider the problem of motion of a heavy homogeneous ball on any fixed
perfectly rough surface under the action of any forces whose resultant passes
through the centre of the ball [1]. Let G be the centre of gravity of the ball and
let the moving axes GC, GA, GB be respectively a normal to the surface and
some two lines at right angles to be afterwards chosen at our convenience. Let
e1, e2, e3 be the unit vectors of these axes GA, GB and GC respectively. Let
Ω = θ1e1+θ2e2+θ3e3 be the angular velocity of these axes; vG = ue1+ve2+we3

be the velocity of G (then w = 0 since the ball is always in contact with the
supporting surface); ω = ω1e1+ω2e2+ω3e3 be the angular velocity of the body
about these axes. Let R = Fe1 + F ′e2 + Re3 be the reaction, acting on the ball
from the surface and let P = Xe1 + Y e2 + Pe3 be the impressed force on the
centre of gravity of the ball. Let m be the mass of the ball, a – its radius, J – the
moment of inertia of the ball about a diameter. We shall suppose that the ball
rolls on the convex side of the fixed surface and that the positive direction of
the axis GC is drawn outwards from the surface. Then the equations of motion
of the ball can be written in vector form:

mv̇G + [Ω × vG] = P + R, (1)

Jω̇ + [Ω × Jω] =
[−−→
GK × R

]
. (2)
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Equations (1) and (2) represents the behavior of momentum and angular
momentum of the ball respectively. Here

−−→
GK = −ae3 is the radius – vector of

the ball’s point of contact with the surface relative to its centre of gravity. Since
the point of contact of the sphere and surface is at rest we have

vG +
[
ω × −−→

GK
]

= 0. (3)

In scalar form Eqs. (3)–(4) can be written as follows:

mu̇ − mθ3v = X + F, mv̇ + mθ3u = Y + F ′, mθ1v − mθ2u = P + R; (4)

Jω̇1+Jθ2ω3−Jθ3ω2 = F ′a, Jω̇2+Jθ3ω1−Jθ1ω3 = −Fa, ω̇3+θ1ω2−θ2ω1 = 0; (5)

u − aω2 = 0, v + aω1 = 0. (6)

Eliminating F , F ′, ω1, ω2 from the Eqs. (4)–(6) we get:

u̇ − θ3v =
a2X

J + ma2
+

Jaθ1ω3

J + ma2
, v̇ + θ3u =

a2Y

J + ma2
+

Jaθ2ω3

J + ma2
. (7)

The meaning of the Eq. (7) may be found as follows. They are the two equa-
tions of motion of the centre of the ball, which we should have obtained if the
given surface had been smooth and the centre G had been acted on by acceler-
ation forces

Jaθ1ω3

J + ma2
and

Jaθ2ω3

J + ma2

along the axes GA, GB and by the same impressed forces as before reduced in
the ratio

a2

J + ma2
.

The centre G of the ball moves along a surface formed by producing all the
normals to the given surface a constant length equal to the radius of the ball.
Let us take the axes GA, GB to be tangents to the lines of curvature of this
surface. Let us find expression for the angular velocity Ω of the chosen moving
coordinate system GA, GB, GC in terms of the components u and v of the
velocity vG of the ball. We will assume that the surface along which the centre
of the ball moves is given with respect to some fixed coordinate system by the
equation

r = r (q1, q2) , (8)

where q1 and q2 are gaussian coordinates on this surface. We shall assume that
a coordinate grid on the surface (8) consists of curvature lines whose directions
at every point are given by unit vectors:

e1 =
1
h1

∂r

∂q1
, e2 =

1
h2

∂r

∂q2
, (ei · ej) = δi j . (9)
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Here we have denoted by h1, h2 the Lame’s parameters

hi (q1, q2) =
∣∣∣∣
∂r

∂qi

∣∣∣∣ , i = 1, 2.

The vector e3 = [e1 × e2] is a normal vector to the surface (8) at point
(q1, q2). The velocity of centre of the ball vG may be written as follows:

vG =
dr

dt
=

∂r

∂q1
q̇1 +

∂r

∂q2
q̇2 = ue1 + ve2.

Therefore we have the following equation connecting the velocities u and v
with the coordinates q1, q2 and their derivatives

u = h1q̇1, v = h2q̇2. (10)

Let ki (q1, q2), i = 1, 2 be principal curvatures of the surface (8). Then we
have the following equations:

∂e3

∂q1
= −h1k1e1,

∂e3

∂q2
= −h2k2e2. (11)

Equations (11) follow from the Rodrigues’s theorem well known in differential
geometry (see e.g. [5]), where we have to additionally account for the fact that
our coordinate grid on the surface (8) is orthogonal and consists of curvature
lines. Taking into account (9) and (11) it is easy to derive the following equations:

∂e1
∂q1

= − 1
h2

∂h1
∂q2

e2 + h1k1e3,
∂e1
∂q2

= 1
h1

∂h2
∂q1

e2,

∂e2
∂q1

= 1
h2

∂h1
∂q2

e1,
∂e2
∂q2

= − 1
h1

∂h2
∂q1

e1 + h2k2e3.
(12)

The angular velocity of the coordinate system GA, GB, GC can be found by
the well known formula:

Ω = (ė2 · e3) e1 + (ė3 · e1) e2 + (ė1 · e2) e3,

where
ėi =

dei

dt
=

∂ei

∂q1
q̇1 +

∂ei

∂q2
q̇2, i = 1, 2, 3.

Taking into account (11)–(12) we obtain for the angular velocity Ω the fol-
lowing expression

Ω = h2k2q̇2e1 − h1k1q̇1e2 +
(

q̇2
h1

∂h2

∂q1
− q̇1

h2

∂h1

∂q2

)
e3.

This expression can be rewritten in the form

Ω = k2ve1 − k1ue2 +
1

h1h2

(
∂h2

∂q1
v − ∂h1

∂q2
u

)
e3.
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if we take into account Eq. (10). Therefore we have the following expressions for
the components θ1, θ2, θ3 of the angular velocity Ω:

θ1 = k2v, θ2 = −k1u, θ3 =
1

h1h2

(
∂h2

∂q1
v − ∂h1

∂q2
u

)
. (13)

We suppose now that the surface along which the centre of the ball moves is
a surface of revolution, given with respect to some fixed coordinate system by
the equation

r =

⎛
⎝

ρ (q1) cos q2
ρ (q1) sin q2

ζ (q1)

⎞
⎠ . (14)

In this case the Lame’s parameters h1 and h2 take the form:

h1 = h1 (q1) =

√(
dρ

dq1

)2

+
(

dζ

dq1

)2

, h2 = h2 (q1) = ρ (q1) , (15)

and the principal curvatures k1 and k2 may be written as follows:

k1 = k1 (q1) =

(
d2ζ
dq2

1

dρ
dq1

− dζ
dq1

d2ρ
dq2

1

)

((
dρ
dq1

)2

+
(

dζ
dq1

)2
) 3

2
, k2 = k2 (q1) =

dζ
dq1

ρ

√(
dρ
dq1

)2

+
(

dζ
dq1

)2
.

(16)
In this case the meridians and parallels are the lines of curvature. Let the axis

Z of upward vertical be symmetry axis of the considered surface of revolution.
Except the coordinates q1 and q2 we introduce the Euler angles θ, ψ and ϕ,
where the angle the axis GC makes with the axis of Z equals θ and ψ is the
angle the plane containing Z and GC makes with any fixed vertical plane. We
suppose, that the components θ1, θ2, θ3 of the angular velocity Ω are defined
by the Euler kinematic equations:

θ1 = ψ̇ sin θ sinϕ + θ̇ cos ϕ, θ2 = ψ̇ sin θ cos ϕ − θ̇ sin ϕ, θ3 = ψ̇ cos θ + ϕ̇,

in which we put ϕ = −π/2. Therefore we have

θ1 = −ψ̇ sin θ, θ2 = θ̇, θ3 = ψ̇ cos θ. (17)

Comparing these equations with Eq. (13) we find:

− ψ̇ sin θ = k2h2q̇2, θ̇ = −k1h1q̇1, ψ̇ cos θ =
1
h1

dh2

dq1
q̇2. (18)

From the second equation of the system (18) the connection between θ and
q1 is determined. Therefore we can assume that the surface (14) is defined by
the variables θ and q2, i.e.

ρ|q1=q1(θ)
= σ (θ) , ζ|q1=q1(θ)

= τ (θ) . (19)
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The Lame parameters, calculated according to (15), are determined as fol-
lows:

h1 = h1 (θ) =

√(
dσ

dθ

)2

+
(

dτ

dθ

)2

, h2 = h2 (θ) = σ (θ) , (20)

and the principal curvatures k1 = k1 (θ) and k2 = k2 (θ) are calculated by the
formulas:

k1 = k1 (θ) =

(
d2τ
dθ2

dσ
dθ − dτ

dθ
d2σ
dθ2

)

((
dσ
dθ

)2
+

(
dτ
dθ

)2) 3
2
, k2 = k2 (θ) =

dτ
dθ

σ

√(
dσ
dθ

)2
+

(
dτ
dθ

)2 . (21)

From the second equation of the system (18) we obtain, taking into
account (10), that

u = − θ̇

k1
. (22)

From Eq. (6) we get

ω1 = −v

a
, ω2 =

u

a
= − θ̇

ak1
.

Therefore, from the third equation of the system (5) we obtain:

ω̇3 = θ2ω1 − θ1ω2 =
vθ̇

ak1
(k2 − k1) . (23)

Equation (23) can be rewritten as follows:

dω3

dθ
=

v

ak1
(k2 − k1) . (24)

Now we suppose the ball rolls on a surface under the action of gravity. Then
we have

Y = 0, θ3 =
1

h1h2

dh2

dθ
v

and the second equation of the system (7) takes the form:

dv

dθ
− v

h1h2k1

dh2

dθ
=

Ja

J + ma2
ω3. (25)

Differentiating repeatedly (25) and taking into account (24) we have

d

dθ

(
dv

dθ
− v

h1h2k1

dh2

dθ

)
=

J

J + ma2

v

k1
(k2 − k1) . (26)

Thus, the problem of rolling of a ball on a fixed perfectly rough surface under
the action of gravity, under the assumption that the ball’s centre moves along
a given surface of revolution, is reduced to integration the second order linear
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differential equation (26) with respect to the ball’s velocity component v. There-
fore, it is interesting to study for which surfaces of revolution equation (26) is
integrable in Liouvillian functions. For study the problem of existence of Liou-
villian solution of a given second order linear differential equation the Kovacic
algorithm is usually used [3]. Below we prove that the problem of rolling of
a heavy homogeneous ball on a fixed perfectly rough surface is integrable in
Liouvillian functions when the centre of the ball moves along a paraboloid of
revolution.

3 Rolling of a Ball on a Paraboloid of Revolution

Let the perfectly rough surface on which the ball rolls be such that the centre
of the ball moves along a paraboloid of revolution. We write equation of the
paraboloid in the form (14):

r =

⎛
⎝

Rq1 cos q2
Rq1 sin q2

−Rq2
1

2

⎞
⎠ .

In the considered case

ρ (q1) = Rq1, ζ (q1) = −Rq21
2

.

Here R is a parameter having the dimension of length. The Lame’s parameters
h1 and h2 calculated by (15) have a form:

h1 = R
√

1 + q21 , h2 = Rq1,

and the principal curvatures k1 and k2, calculated by (16), have a form:

k1 = − 1

R (1 + q21)
3
2
, k2 = − 1

R
√

1 + q21
.

From the second equation of the system (18) we find the connection between
variables q1 and θ:

θ̇ =
q̇1

1 + q21
.

Therefore we have
q1 = tan θ. (27)

Taking into account (27), we can suppose, that the expressions for ρ (q1) and
ζ (q1) are rewritten as follows:

σ (θ) = R tan θ, τ (θ) = −R

2
tan2 θ.
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As a result we obtain the following expressions for the Lame’s parameters h1

and h2 and the principal curvatures k1 and k2:

h1 =
R

cos3 θ
, h2 = R tan θ, k1 = −cos3 θ

R
, k2 = −cos θ

R
.

The second order linear differential equation (26) can be represented in the
form:

d

dθ

(
dv

dθ
+

v

sin θ cos θ

)
=

J

J + ma2

sin2 θ

cos2 θ
v. (28)

Thus, the problem of motion of a heavy homogeneous ball on a perfectly
rough surface such that the centre of the ball moves along a paraboloid of revo-
lution is reduced to integration the second order linear differential equation (28).
Let us change the independent variable in Eq. (28) by formula x = cos2 θ and
denote:

J

J + ma2
= n2 < 1.

Then Eq. (28) is reduced to the equation with rational coefficients:

d2v

dx2
+

1
x − 1

dv

dx
−

(
n2x2 + 2

(
1 − n2

)
x + n2 − 1

)

4x2 (x − 1)2
v = 0. (29)

Since Eq. (29) is the second–order linear differential equation with rational
coefficients, we can apply the Kovacic algorithm to this differential equation.
The goal of this algorithm is to find a solution of the differential equation

d2v

dx2
+ a (x)

dv

dx
+ b (x) v = 0, (30)

where a (x) and b (x) are rational functions of one (in general case complex) vari-
able x. The first step of the algorithm is to reduce the differential equation (30)
to a simpler form, using the following formula

y (x) = v (x) exp
(

1
2

∫
a (x) dx

)
. (31)

Then Eq. (30) takes the form

d2y

dx2
= R (x) y, R (x) =

1
2

da

dx
+

a2

4
− b, (32)

where R (x) is also rational function of one variable x. The Kovacic algorithm
allows one to find explicitly the solution of Eq. (32), expressed in terms of Liou-
villian functions.

Applying to the differential equation (29) the transformation of the form (31),
we reduce it to the differential equation

d2y

dx2
=

n2 − 1
4x2

y. (33)
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Application of the Kovacic algorithm to the second order linear differential
equation (33) shows that the general solution of this equation can be represented
in the form:

y = C1x
1+n
2 + C2x

1−n
2 ,

where C1 and C2 are arbitrary constants. Therefore, the general solution of
Eq. (33) is expressed in terms of Liouvillian functions. For the differential equa-
tion (28), we corresponding general solution has the form:

v (θ) =
cos θ

sin θ

(
K1 (cos θ)n + K2 (cos θ)−n

)
,

where K1 and K2 are arbitrary constants. Thus the problem of motion of a heavy
homogeneous ball of a surface of revolution such that the centre of the ball moves
along the paraboloid of revolution is integrable in Liouvillian functions.

4 Conclusions

In this paper we apply the Kovacic algorithm to the problem of rolling of a heavy
homogeneous ball on a fixed surface such that the centre of the ball moves along
a given surface of revolution. This problem is reduced to solving the second–
order linear differential equation with respect to the projection of velocity of the
ball’s centre onto the tangent to the parallel of the corresponding of revolution
and we present here our own method to derive the corresponding equation. In
the case when the centre of the ball moves along the paraboloid of revolution
we are presenting the corresponding linear differential equation in explicit form
and reduce its coefficients to a form of rational functions. Using the Kovacic
algorithm we prove that the general solution of the corresponding second–order
linear differential equation is expressed in terms of Liouvillian functions for all
values of parameters of the problem.
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2. Noether, F.: Über rollende Bewegung einer Kugel auf Rotationsflächen. Teubner,
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Optimal Rotor Stabilization
in an Electromagnetic Suspension System Using

Takagi-Sugeno Fuzzy Models

Aleksey V. Mukhin(B)

Lobachevsky State University, Nizhny Novgorod, Russia

Abstract. The paper presents the results of solving the problem of designing
stabilizing output controllers for an electromagnetic suspension system based on
the use of Takagi-Sugeno fuzzymodels. Twomajor problemswere considered: the
construction of stabilizing controllers and the construction of optimal controllers
based on the quadratic performance criterion. To calculate the controllers, an
original nonlinear mathematical model of the plant was replaced by an equivalent
fuzzy model, which is a set of linear subsystems. For the synthesis of control laws,
the apparatus of linear matrix inequalities was used. The calculated controllers for
the fuzzy system were substituted into the original nonlinear object. The results of
the mathematical modeling showed that using Takagi-Sugeno fuzzy models, it is
possible to construct both a stabilizing controller and an optimal controller based
on a quadratic performance criterion. The calculated controllers ensured rotor
stabilization in a fairlywide range of initial deviations, up to themaximumpossible
values. Based on obtained results, it can be concluded that the presented approach,
realized on the use of Takagi-Sugeno fuzzy models, allows one to describe the
rotor dynamics in an electromagnetic suspension system in a wide range of initial
disturbances.

Keywords: Electromagnetic suspension · Takagi-Sugeno fuzzy models · Linear
matrix inequalities

1 Introduction

The operation principle of an electromagnetic suspension is based on the phenomenon of
magnetic levitation. Thanks to this, it becomes possible to overcome gravitywithout con-
tact and to provide the rotor hanging in active magnetic bearings. The obvious advantage
of such systems is, first of all, the absence of mechanical contact and, as a consequence,
the absence of friction. Due to this advantage it is possible to increase significantly the
service life and efficiency compared to traditional mechanical counterparts.

Control of a rotor in an electromagnetic suspension is an important and pressing
problem associated with the wide practical application of electromagnetic bearings.
Electromagnetic bearings are of great interest for a whole range of various fields of
industry and technology, as well as some areas of medicine [1–4].
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Control is realized, as a rule, by changing themagnitude of themagnetic field created
by the electromagnet. For designing the controllers, the most common approach is based
on the use of linearized models [5–9]. Despite the easiness and convenience, an obvious
drawback of linearizedmodels is their limited applicability. Linearizedmodelswork only
in the neighborhood of the equilibrium position, with small initial deviations. In fact, the
initial disturbances of an object can go far beyond the limits of applicability of linearized
models. As a result, such models cannot fully describe the dynamics of the investigated
plant, and the calculated controllers are efficient only under small initial disturbances.
One of the ways to take into account nonlinearities and build nonlinear controllers can
be the use of fuzzy logic and fuzzy systems based on it. Takagi-Sugeno fuzzy controller
design using the negative absolute eigenvalue approach for a class nonlinear and unstable
system including electromagnetic suspension was described in [10].

The article presents the results of solving the rotor control problem in an electro-
magnetic suspension based on the use of continuous fuzzy Takagi-Sugeno models [11].
The control problem was considered under the assumption that the measured variable
is the vertical displacement of the rotor. In the context of this problem, two approaches
were used: the construction of a stabilizing controller and the construction of an opti-
mal controller with a given quadratic performance criterion. For the synthesis of control
laws, the apparatus of linear matrix inequalities was used [12, 13].

The article is organized as follows: the first section presents the derivation of a
fuzzy mathematical model. The second section is the formulation of control problems.
In the third section, systems of linear matrix inequalities are presented, as well as a
procedure for their numerical implementation. The fourth section contains the results of
mathematical modeling.

2 Fuzzy Object Model

The rotor in an electromagnetic suspension is in the field of action of two forces: gravity
andmagnetic attraction. According toNewton’s second law, when these forces are equal,
the body will be stationary. The rotor dynamics in the suspension is described by the
following system of equations [5]

ẋ1 = x2

ẋ2 = 1

2

[
(1 + x3)2

(1 − x1)2
− 1

]

ẋ3 = − (1 + x3)

(1 − x1)
x2 − a(1 − x1)x3 + (1 − x1)u (1)

where x = (x1, x2, x3)T ∈ Rnx is a state system;
u ∈ Rnu is the control;
a is a constant parameter.
The dimensionless variable x1 corresponds to the vertical movement of the rotor, x2

corresponds to the speed of movement, and x3 describes the current in the electromagnet
circuit.
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For the derivation the Takagi-Sugeno fuzzymodel it is necessary to reduce the object
(1) to the following form

ẋ = F(σ )x + B(σ )u, x(0) = x0 (2)

where F(σ ) ∈ Rnx×nx , σ = σ(x) ∈ Rnσ ;
B(σ ) ∈ Rnx×nu .
The elements of the matrices F(σ ) and B(σ )must be continuous nonlinear functions

σ(x). To transform object (1) to form (2), a new phase variable x4 was introduced, which
is equals to

x4 = 1 + x3
1 − x1

(3)

After differentiating expression (3), it is obtained the following linear equation

ẋ4 = ẋ3 + x4x2
1 − x1

= −ax3 + u, (4)

Then, the system (1) takes the form

ẋ1 = x2,

ẋ2 = 1

2

[
x24 − 1

]
,

ẋ3 = −x4x2 − a(1 − x1)x3 + (1 − x1)u

ẋ4 = −ax3 + u (5)

where x∗ = (x1, x2, x3, x4)T ∈ Rn∗
x .

The conversion from (1) to (5) means a mapping of the form Rnx to Rn∗
x . The matrices

F(σ ) and B(σ ) are written as.

F(σ ) =

⎛
⎜⎜⎜⎝

0 1 0 0
0 0 0 σ1

σ2

0
σ3

0
σ4 σ5

−a 0

⎞
⎟⎟⎟⎠, B(σ ) =

⎛
⎜⎜⎝

0
0
σ6

1

⎞
⎟⎟⎠ (6)

The corresponding nonlinear functions are defined as σ1 = 1
2

(
x4 − 1

x4

)
, σ2 = ax3,

σ3 = −x4, σ4 = a(x1 − 1), σ5 = −x2, σ6 = −σ4
a .

Let us define a subset � = {ai1 ≤ xi < ai2, i = 1, n∗
x}, in which a nonlinear object

(5) will be considered. In order to ensure the continuity of the function σ1, it is necessary
to make the following change in the second equation of system (5)

ẋ2 = 1

2

[
x24 − 1

]
= 1

2
(x4 − 1)(x4 + 1) = 1

2
x∗
4

(
x∗
4 + 2

)
(7)

Omitting the asterisk in the new variable, the system takes the following form

ẋ1 = x2,
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ẋ2 = 1

2
x4(x4 + 2),

ẋ3 = −(x4 + 1)x2 − a(1 − x1)x3 + (1 − x1)u,

ẋ4 = −ax3 + u, (8)

the corresponding membership functions of the form

Mi1,2 = ±σi ∓ σ
min,max
i

σmax
i − σmin

i

, i = 1, nσ (9)

The range of values of each membership function forms its own normalized fuzzy
set. Let’s form a base of fuzzy rules for the plant (8)

Ri : IF σ1 isM11 and . . . and σnσ isMnσ 1

THENẋ(t) = Aix(t) + Biu(t)
(10)

where Ri is the fuzzy rule
(
i = 1, r

)
;

r = 2nσ is the rule number.
For each rule there is corresponding linear system with matrices Ai and Bi, which

are defined from F(σ ) depending on values σi. Then, the fuzzy model of the nonlinear
system (8) is represented as a weighted sum of all linear subsystems

ẋ =
∑r

i=1
hi(σ )[Aix + Biu] (11)

where hi(σ ) = ∏nσ

j=1M
j
i1,2

(
σj

)
.

The obtained continuous fuzzy model (11) represents a nonlinear plant (8) on the
considered subset �. Before proceeding to the problem formulation, let us make one
simplification. Since the largest number of nonlinear functions is concentrated in the
third equation of system (8), the linearization of this equation will significantly reduce
the number of rules and thereby simplify the entire further theoretical analysis. After
linearization of this equation in the neighborhood of the equilibrium position, system
(8) takes the form

ẋ1 = x2,

ẋ2 = 1

2
x4(x4 + 2),

ẋ3 = −x2 − ax3 + u,

ẋ4 = −ax3 + u, (12)

The only nonlinear function σ1 is defined as

σ1 = 1

2
(x4 + 2) (13)

The final fuzzy model of the simplified nonlinear system (12) is written in the following
form

ẋ =
∑r

i=1
MiAix + Bu (14)
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3 Formulation of the Problems

Let us consider two control problems: the first is the construction of a stabilizing
fuzzy controller, the second is a fuzzy controller with a quadratic performance crite-
rion. The vertical displacement of the rotor x1 is considered as the measured variable.
Corresponding matrix equation of the measured output

y = C2x (15)

where y ∈ Rny is the measured output;

C2 =
(
1 0 0 0

)
.

The control law of a linear system by the measured output in the form of a linear
dynamic controller has the following form [12]

ẋr(t) = Arixr(t) + Briy

(t) = Crixr(t) + Driy (16)

where xr ∈ Rn∗
x is a controller state.

In the case of a fuzzy system, the original plant is represented as a set of linear
subsystems, each of which is characterized by its own matrices. Let us write a fuzzy
control model in the form of a fuzzy dynamic controller for system (14)

ẋr =
r∑

i=1

MiArixr +
r∑

i=1

MiBriy

u =
r∑

i=1

MiCrixr +
r∑

i=1

MiDriy (17)

In addition, for the second problem, it is necessary to introduce the target output equation
z(t) ∈ Rnz

z(t) = Cx(t) + Du(t) (18)

As a quadratic criterion, it is considered the following functional

‖z(t)‖2 =
∫ ∞

0

(∑n∗
x

i=2
x2i (t) + u2(t)

)
dt (19)

The problem is to calculate a γ-optimal fuzzy controller of the form (17), which will
satisfy the following inequalities [12]

inf
u

‖z(t)‖2 < γ 2|x0|2,∀x0 	= 0 (20)

where γ is the minimum possible positive parameter.
Let us reduce Eq. (18) to the following form

z(t) = (C + DDriC2)x + DCrixr = Ccixc (21)
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Then, the closed-loop fuzzy system takes the following form

ẋc =
r∑

i=1

MiAcixc

z =
r∑

i=1

MiCcixc

(22)

where xc = (xxr)T .
Closed-loop subsystem matrices are defined as follows

Aci =
(
Ai + BDriC2 BCri

BriC2 Ari

)
(23)

Cci = [(C + DDriC2)DCri] (24)

Thus, it is required to calculate a stabilizing type controller and a γ-optimal controller
according to criterion (20).

4 The Solving Methodology

To synthesize control laws, the apparatus of linear matrix inequalities [12], adapted for
the case of fuzzy systems was used.

4.1 Calculation of a Stabilizing Fuzzy Controller

In order to ensure the stability of the closed-loop system (22) with matrices (23), it is
necessary and sufficient to find such a quadratic function matrix X = X T > 0, which
satisfies the following inequalities

AT
ciX + XAci < 0, i = 1, r (25)

We introduce thematrix of parameters of the controllersΘi and represent thematrices
of closed subsystems in the following form

Aci = A0i + B0ΘiC0 (26)

where A0i =
(

Ai 0n∗
x×n∗

x

0n∗
x×n∗

x
0n∗

x×n∗
x

)
, B0 =

(
0n∗

x×n∗
x

B
I 0n∗

x×nu

)
, Θi =

(
Ari Bri

Cri Dri

)
, C0 =(

0n∗
x×n∗

x
I

C2 0ny×n∗
x

)
.

Substitute (26) into (25) and write the resulting inequalities in the form

AT
0iX + XA0i + CT

0 ΘT
i B

T
0 X + XB0ΘiC0 < 0 (27)
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Next, it is necessary to reduce inequalities (27) to a system of linear matrix
inequalities of the form

�i + PT�T
i Q + QTΘiP < 0, i = 1, r (28)

where �i = AT
0iX + XA0i, P = C0, Q = BT

0 X .
According to the elimination lemma, inequalities (28) are solvable with respect to

the Θi if and only if [12]

WT
C (AT

i X11 + X11Ai)WC < 0,X11 = X11
T > 0

WT
BT

(
Y11A

T
i + AiY11

)
WBT

〈
0,Y11 = YT

11

〉
0

(29)

where WC i WBT are matrices whose columns are based for the null spaces of C and
BT , respectively;

X11 i Y11 are upper-left hand submatrices of inverse matrices X and Y , respectively.
In order to implement the condition XY = I , it is necessary and sufficient that X11

and Y11 satisfy the inequality (
X11 I
I Y11

)
> 0 (30)

Thus, the object is stabilized if and only if there are two positive definite symmetric
submatrices X11 and Y11 satisfying the linear matrix inequalities (29) and (30). If the
submatrices X11 and Y11 have been found, then the general matrix X can be restored by
the formula [12].

X =
(

X11 X11 − Y−1
11

X11 − Y−1
11 X11 − Y−1

11

)
(31)

After thematrixX is has been found, thematrices of the parameters of the controllers
Θi are calculated from inequalities (28) and then substituted into the fuzzy dynamic
controller (17).

4.2 Calculation of a Fuzzy γ-Optimal Controller

The problem of γ-optimal fuzzy control consists in calculating such a fuzzy controller
that ensures that condition (20) is satisfied for all linear subsystems. In order to implement
this condition, the norms of the transfer matrices of a closed-loop plant must satisfy the
conditions

‖Hci‖2 < γ |x0| ∀x0 	= 0 (32)

where Hci = [C + DDriC2 DCri](sI − Aci)
−1x0c .

The main idea of calculating controllers of this type is to reduce the matrices of
closed-loop subsystemsAci to linearmatrix inequalities of the form (28). The subsequent
steps are similar to the previous case. First, the matrices �i are calculated, and then
the sought matrices of controllers are found from (28). Since the matrices �i contain
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a common unknown positive definite symmetric block matrix, it is necessary to first
calculate this matrix. Since the ranks of the matrices P and Q are less than the rank of
the matrices �i, then for the system of inequalities (28) is solvable when [12]

WT
P ΨiWP < 0,WT

QΨiWQ < 0 (33)

where WP i WQ are matrices whose columns are based for the null spaces of P and Q,
respectively.

By performing a series of matrix transformations, taking into account the block
structure of matrices, inequalities (33) can be reduced to the following inequalities(

WC2
0

0 I

)T(
AT
i X11 + X11Ai CT

C −γ I

)(
WC2

0
0 I

)
< 0 (34)

NT
(
Y11AT

i + AT
i Y11 Y11C

T

CY11 −γ I

)
N < 0

where i = 1, r;
WC2 iN arematriceswhose columns are based for the null spaces ofC2 and (BTDT ),

respectively;
For the existence of γ-optimal full-order controllers, it is necessary and sufficient that

there exist two positive definite symmetric matrices X11 and Y11 satisfying inequalities
(34), as well as inequalities (

X11 I
I Y11

)
≥ 0 (35)

(
Y11 I
I γ I

)
> 0 (36)

If the matrices X11 and Y11 have been found, then the matrix Y can be calculated
from the formula (31). If the matrix X is has been found, the matrices of the parameters
of the controllers Θi are calculated from inequalities (28) and then substituted into the
fuzzy dynamic controller (17).

Linear matrix inequalities and systems of inequalities define nonlinear but convex
constraints [12]. Therefore, convex optimization methods can be used for numerical
implementation. The solvability of the system of inequalities (29) is reduced by mini-
mizing the parameter t for which a linear matrix inequality of the form F(x) − tI ≤ 0
is valid. The system of inequalities (34–36) is the problem of the solvability of a lin-
ear function with constraints given by a system of linear matrix inequalities. For the
numerical implementation of linear matrix inequality systems, the interior-point method
was used, implemented in the form of standard commands of the MATLAB software
package [14].

5 Results

The calculated controllers were substituted in turn into the original nonlinear plant (1)
with a = 7.5, closed by a fuzzy controller (17). Graphs of transient processes in the
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closed-loop system with a stabilizing type fuzzy controller for different initial values are
shown in Figs. 1 and 2. Graphs of transient processes in the closed-loop system with a
fuzzy γ-optimal controller for the same initial values are shown in Figs. 3 and 4. The
initial values of the controllers were zero.
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Fig. 1. Transient processes in the closed-loop system with a fuzzy stabilizing type controller
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Fig. 2. Transient processes in the closed-loop system with a fuzzy stabilizing type controller
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Fig. 3. Transient processes in the closed-loop system with a fuzzy γ-optimal controller
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Fig. 4. Transient processes in the closed-loop system with a fuzzy γ-optimal controller

The results of mathematical modeling showed that the calculated fuzzy controllers
of both types make it possible to stabilize the rotor in a wide range of initial disturbances,
up to the maximum possible values. Based on the results obtained, it can be concluded
that the calculated fuzzy controllers allow control the object in wide range of initial
disturbances.
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6 Conclusion

The article presents the results of solving the control rotor problem in an electromag-
netic suspension according to the measured output of full order. A fuzzy model of an
object is derived, which is equivalent to the original nonlinear model, as well as a fuzzy
control model. Numerical calculations of fuzzy controllers and mathematical modeling
of transient processes are performed. Based on the obtained results, it can be concluded
that by measuring only the movement of the rotor, it is possible to calculate both a
stabilizing controller and a γ-optimal controller with a quadratic quality criterion. The
calculated fuzzy controllers ensured rotor stabilization under any initial disturbances,
up to the maximum possible values. Thus, the presented fuzzy models, in contrast to the
linearized models, make it possible to control the dynamics and stabilize the rotor in an
electromagnetic suspension in a wide range of initial disturbances.
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Abstract. In Russia, over the past few years, there has been a ten-
dency for an increase in the number of elderly citizens and the incidence
of this category of persons. The situation that has arisen requires an
increase in the efficiency of the existing system of medical institutions
in the context of limited financial and other resources in health care.
This problem cannot be solved without an analytical study aimed at
economic optimisation of costs in each medical institution and in the
network of medical institutions of the subject as a whole. In this paper,
we use a representation of the process of functioning of a network of med-
ical institutions in the form of a control cybernetic system. The authors,
using the cybernetic approach, have synthesized a mathematical model
of the functioning of a typical medical institution of the network in the
form of a control system. The created mathematical model allows for a
single measurement with a given accuracy to generate the values of the
main indicators of the work of a medical institution during each report-
ing period and, thus, to obtain additional statistics of any volume for
these indicators. In the work, on the basis of the additional statistics
obtained, an analysis of the optimal distribution of resources between
medical institutions of a network of a particular subject is carried out,
using the example of Nizhny Novgorod.

Keywords: Control cybernetic system · Mathematical model ·
Functioning of a medical institution · Basic indicators · Measurement
accuracy · Realization of a random variable · Sample values ·
Optimization.

1 Introduction

In works [1–4], a method is proposed for constructing and studying mathematical
models of various kinds of systems and control processes based on the cybernetic
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approach of Lyapunov – Yablonsky. In this article, which is a direct continuation
of the listed works, the synthesis of a mathematical model of the functioning
of a medical institution in the form of a control cybernetic system is carried
out, as well as an analytical and numerical analysis of its activities, taking into
account the errors of observation results. The cybernetic approach allows for a
single measurement of the main indicators of the performance of a particular
medical institution during each reporting year to obtain additional statistics on
the main indicators of any final volume. Using additional statistics, the quality
and dynamics of the functioning of a medical institution were studied. This
paper also proposes a rationale for the selection of criteria for the effectiveness
of the network from the mentioned medical institutions. This allows solving the
problem of optimizing the distribution of resources within a specific network of
medical institutions.

2 Mathematical Model

Let us denote by the symbol t the number of the reporting year from the set
T ∈ {1, 2, . . . , k} of the discrete functioning of a typical hospital Mj with num-
ber j from the set J ∈ {1, 2, . . . , n}. In this notation, the duration of the entire
observation period for the network of n hospitals is k. The administration of the
medical regional unit and the administration of each medical institution Mj dur-
ing each reporting year t selects the so-called regulatory management u(t) from a
set R. Normative management u = u(t) unambiguously determines for a typical
medical institution Mj during the reporting year t the number of x

(u)
j (t) beds

used and the accuracy ε = ε(t) measurements of all parameters and results of net-
work operation. For measurement accuracy, the natural constraint 0 < ε(t) < 1
is valid. Based on the results of the hospital operation Mj in the reporting year
t and when using x

(u)
j (t) beds, only one observation is recorded as the actual

values of various m items of financial costs A
(u)
1,j (t), A(u)

2,j (t), . . . , A(u)
m,j(t), so and

actual values of the number Q
(u)
j (t) of the treated patients, the number of G

(u)
j (t)

deceased, the number of L
(u)
j (t) bed days. The name of all cost items is given

in [2]. In particular, the item A
(u)
m,j(t) plays an important role, as it determines

the total amount of financing of expenses for all cost items of the hospital num-
bered j in the reporting year t. On the basis of only one measurement of these
indicators, it is difficult to evaluate the operation of a network of n nursing
departments and thereby solve the problem of optimizing the process of medical
care. Therefore, it is necessary to develop a methodology for obtaining sample
statistics of a given volume for the value of the cost of cost items, for the number
of patients treated, for the number of patients who died and for the number of
bed-days. To solve this problem in [2,3] with normative control u = u(t) ∈ R, for
a given accuracy ε = ε(t) for a medical institution Mj for each reporting year t
proposed an algorithm for constructing and a method for studying the following
normally distributed random variables: a) the cost A

(u;ε)
i,j (ω; t) the cost of the
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article with the number i ∈ I = {1, 2, . . . , m}; b) the number of Q
(u;ε)
j (ω; t)

treated patients; c) the number of G
(u;ε)
j (ω; t) deceased patients; d) the numbers

L
(u;ε)
j (ω; t) bed-days. Here the real number ω is the value or realization of the

random variable ξ with a uniform distribution law on the segment [0, 1]. By gen-
erating a set of values of the random variable ξ, it is possible to obtain a sample
of a given volume for the cost of cost items, for the number of patients treated,
for the number of patients who died and for the number of bed days.

For the optimal distribution of material and financial resources between
the medical institutions of the network during each reporting year t ∈ T =
{1, 2, . . . , k}, it is necessary to choose the control r(t) ∈ R. Management r(t) sig-
nificantly affects the main parameters and performance indicators of the health
care network, for example, it uniquely determines the number of x

(r)
j (t) beds

used by the medical institution Mj in the reporting year t ... Let us denote by
the symbol [x] the closest integer to the real number x. Then, under control
r = r(t) and for a given value of ω ∈ [0, 1], relation (1) allows calculating with
a given accuracy ε the values A

(r;ε)
i,j (ω; t) of each cost item, values Q

(r;ε)
j (ω; t)

number of patients treated, values G
(r;ε)
j (ω; t) the number of deaths and the

values L
(r;ε)
j (ω; t) the number of bed days for the medical institution Mj for the

reporting year t.

A
(r;ε)
i,j (ω; t) = A

(u;ε)
i,j (ω; t)x(r)

j (t)/x
(u)
j (t),

Q
(r;ε)
j (ω; t) = [Q(u;ε)

j (ω; t)x(r)
j (t)/x

(u)
j (t)], (1)

G
(r;ε)
j (ω; t) = [G(u;ε)

j (ω; t)x(r)
j (t)/x

(u)
j (t)],

L
(r;ε)
j (ω; t) = [L(u;ε)

j (ω; t)x(r)
j (t)/x

(u)
j (t)].

In particular, in papers [2,3], using formulas (1) for r(t) = u(t) and for
different values of the parameters ε = ε(t) and ω, the characteristics A

(u;ε)
i,j (ω; t),

Q
(u;ε)
j (ω; t), G

(u;ε)
j (ω; t), L

(u;ε)
j (ω; t) and studied their properties. For fixed values

of the parameters, we denote ε and ω through the symbols a
(u;ε)
i,j (ω; t), q

(u;ε)
j (ω; t),

g
(u;ε)
j (ω; t), l

(u;ε)
j (ω; t) are constants that are determined from relations (2).

a
(u;ε)
i,j (ω; t) = A

(u;ε)
i,j (ω; t)/x

(u)
j (t),

q
(u;ε)
j (ω; t) = Q

(u;ε)
j (ω; t)/x

(u)
j (t), (2)

g
(u;ε)
j (ω; t) = G

(u;ε)
j (ω; t)/x

(u)
j (t),

l
(u;ε)
j (ω; t) = L

(u;ε)
j (ω; t)/x

(u)
j (t).

For the hospital Mj , constant values or standard coefficients of the form
a
(u;ε)
i,j (ω; t), q

(u;ε)
j (ω; t), g

(u;ε)
j (ω; t) and l

(u;ε)
j (ω; t) per bed are the cost density

articles with the number i, the density of the number of patients treated, the
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density of the number of patients who died and, accordingly, the density of bed-
days. Management r(t) uniquely determines the number of beds x

(r)
j (t) used by

the medical institution Mj in each reporting year t. Therefore, in what follows,
when posing and solving the problem of optimizing the operation of a medical
network, by the mathematical description of the control r(t) we mean an integer
n - dimensional vector x(r)(t) = (x(r)

1 (t), x(r)
2 (t), . . . , x(r)

n (t)) ∈ X(n)(t).
For the sake of simplicity, except for the case r(t) = u(t), we will omit the

symbol r for superscripts and write the control x(t) = (x1(t), x2(t), . . . , xn(t))
instead of control x(r)(t) = (x(r)

1 (t), x(r)
2 (t), . . . , x(r)

n (t)). Due to this, the value
A

(r;ε)
i,j (ω; t), Q

(r;ε)
j (ω; t), G

(r;ε)
j (ω; t), L

(r;ε)
j (ω; t) will now be denoted by A

(ε)
i,j (ω; t),

Q
(ε)
j (ω; t), G

(ε)
j (ω; t) and L

(ε)
j (ω; t). Using relations (1) and (2), the indicated

values will now be calculated using relation (3).

A
(ε)
i,j (ω; t) = a

(u;ε)
i,j (ω; t)xj(t),

Q
(ε)
j (ω; t) = [q(u;ε)j (ω; t)xj(t)], (3)

G
(ε)
j (ω; t) = [g(u;ε)j (ω; t)xj(t)],

L
(ε)
j (ω; t) = [l(u;ε)j (ω; t)xj(t)].

Let us proceed directly to the definition of the domain X(n)(t) or the system of
restrictions on the control variables x1(t), x2(t), . . . , xn(t). This system includes
the following types of restrictions.

1. Limitations on the number of xj(t) beds in the Mj hospital:

xj,min(t) ≤ xj(t) ≤ xj,max(t), j = 1, 2, . . . , n. (4)

Here the values xj,min(t) and xj,max(t) determine the minimum possible number
of beds and the maximum possible number of beds for the medical institution
Mj with the number j. These values for the reporting year t are set by the
operating conditions for a network of n medical institutions. If xj,p(t) reserve of
beds of a medical institution with the number j, which is a known value in the
reporting year t, then xj,max(t) ≤ xj,p(t), xj,min(t) ≥ 0.

2. Limit on the total number of beds on the network:
n∑

j=1

xj(t) ≤ (
n∑

j=1

xj(t))max, (5)

where the value (
∑n

j=1 xj(t))max characterizes the maximum possible number of
beds in a network of medical institutions and is set by the operating conditions
of all medical institutions in the reporting year t. Directly from (4) follows the
relation:

∑n
j=1 xj(t) ≤ ∑n

j=1 xj,max(t). If (
∑n

j=1 xj(t))max =
∑n

j=1 xj,max(t),
then the condition (5) follows directly from (4) and need not be required.

3. Limitations on the total number of patients treated in the network:
n∑

j=1

Q(u;ε)(ω; t) ≤
n∑

j=1

q
(u;ε)
j (ω; t)xj(t) ≤ (

n∑

j=1

q
(u;ε)
j (ω; t)xj(t))max. (6)
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Here the values
∑n

j=1 Q(u;ε)(ω; t) and (
∑n

j=1 q
(u;ε)
j (ω; t)xj(t))max determine

for all medical institutions in the reporting year t the actual number of patients
treated and, accordingly, the maximum possible number of patients treated. The
value (

∑n
j=1 q

(u;ε)
j (ω; t)xj(t))max ≤ (

∑n
j=1 xj(t))max × 365 is determined by the

conditions of operation of all medical institutions in the reporting year t.
For example, if (

∑n
j=1 xj(t))max = 225, then (

∑n
j=1 q

(u;ε)
j (ω; t)xj(t))max ≤

≤ 225×365 = 82125. The quantities q
(u;ε)
1 (ω; t), q

(u;ε)
2 (ω; t),..., q

(u;ε)
n (ω; t) are the

initial information or normative coefficients of the first type for the static opti-
mization model. The value q

(u;ε)
j (ω; t) characterizes the professional and orga-

nizational characteristics of the medical institution with the number j in the
reporting year t in restoring the health of patients.

4. Limitation on the total number of deaths in the network:

n∑

j=1

g
(u;ε)
j (ω; t)xj(t) ≤ G

(u;ε)
j (ω; t), (7)

where the values g
(u;ε)
1 (ω; t), g

(u;ε)
2 (ω; t), . . . , g

(u;ε)
n (ω; t) are also input informa-

tion or normative coefficients of the second type for a static optimization model.
The value g

(u;ε)
j (ω; t) characterizes the professional and organizational charac-

teristics of the medical institution with the number j in the reporting year t in
critical cases of the patient’s condition.

5. Limit on the total number of bed-days on the network:

n∑

j=1

l
(u;ε)
j (ω; t)xj(t) ≤ (

n∑

j=1

xj(t))max × 365, (8)

where the values l
(u;ε)
1 (ω; t), l

(u;ε)
2 (ω; t), . . . , l

(u;ε)
n (ω; t) are initial information or

normative coefficients of the third type for a static optimization model. The
value l

(u;ε)
j (ω; t) also characterizes the professional and organizational properties

of the workload of the medical institution with the number j in the reporting
year t.

6. If the number m determines the total number of cost items of each medical
institution, then the restrictions on the cost of each cost item numbered i in each
reporting year by all medical institutions can be written as:

n∑

j=1

a
(u;ε)
j (ω; t)xj(t) ≤ Ai,plan(t), i = 1, . . . ,m. (9)

In relation (9), the value Ai,plan(t) determines in the reporting year the
planned costs of all medical institutions for the item with the number i. For fixed
i = 1, 2, . . . ,m and j = 1, 2, . . . , n, the value a

(u;ε)
i,j (ω; t) is the initial information

or normative factor of the fourth type for the static optimization model. The
value a

(u;ε)
i,j (ω; t) characterizes the professional and organizational features of

financial costs for item i for hospital numbered j in the reporting year t. At the
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same time, the total volume A
(ε)
m (ω; t) financial expenses for all cost items n of

the network of medical institutions in the reporting year t is calculated using a
formula of the form A

(ε)
m (ω; t) =

∑n
j=1 a

(u;ε)
m,j (ω; t)xj(t).

In the above constraints using the control variables x1(t), x2(t), . . . , xn(t) and
the normative coefficients q

(u;ε)
j (ω; t), g

(u;ε)
j (ω; t), l

(u;ε)
j (ω; t), a

(u;ε)
m,j (ω; t) formulas

for calculating the main indicators Q(ε)(ω; t), G(ε)(ω; t)) , L(ε)(ω; t), A
(ε)
m (ω; t)

efficiency of the network of medical institutions. Therefore, these indicators can
be approximately found using the following linear functions:

Q(ε)(ω; t) ≈ q(ε)(ω;x1(t), . . . , xn(t)) =
n∑

j=1

q
(u;ε)
j (ω; t)xj(t),

G(ε)(ω; t) ≈ g(ε)(ω;x1(t), . . . , xn(t)) =
n∑

j=1

g
(u;ε)
j (ω; t)xj(t), (10)

L(ε)(ω; t) ≈ l(ε)(ω;x1(t), . . . , xn(t)) =
n∑

j=1

l
(u;ε)
j (ω; t)xj(t),

A(ε)
m (ω; t) ≈ a(ε)(ω;x1(t), . . . , xn(t)) =

n∑

j=1

a
(u;ε)
m,j (ω; t)xj(t).

Thus, we can assume that for a network of n hospitals the four linear functions

q(ε)(ω;x1(t), x2(t), . . . , xn(t)), g(ε)(ω;x1(t), x2(t), . . . , xn(t)),

l(ε)(ω;x1(t), x2(t), . . . , xn(t)), a(ε)(ω;x1(t), x2(t), . . . , xn(t))

are responsible for the number of patients treated, for the number of patients
who died, for the number of bed-days and for the total the amount of financial
costs, respectively. For the family of linear functions

q(ε)(ω;x1(t), x2(t), . . . , xn(t)), g(ε)(ω;x1(t), x2(t), . . . , xn(t)),

l(ε)(ω;x1(t), x2(t), . . . , xn(t)), a(ε)(ω;x1(t), x2(t), . . . , xn(t))

it is possible to pose and solve various optimization multicriteria problems, which
depend on the physical meaning of the target indicators. For example, we will
find such a distribution of x∗

1(t), x∗
2(t), . . . , x

∗
n(t) beds in medical institutions for

which at least one from the following optimality conditions:

q(ε)(ω;x∗
1(t), x

∗
2(t), . . . , x

∗
n(t))

= max
{
q(ε)(ω;x1(t), x2(t), . . . , xn(t)) : (x1(t), x2(t), . . . , xn(t)) ∈ X(n)(t)

}
,

g(ε)(ω;x∗
1(t), x

∗
2(t), . . . , x

∗
n(t))

= min
{
g(ε)(ω;x1(t), x2(t), . . . , xn(t)) : (x1(t), x2(t), . . . , xn(t)) ∈ X(n)(t)

}
.



Analysis of Indicators of Optimal Functioning of a Network of Hospitals 199

It is desirable to find such a distribution of x∗
1(t), x

∗
2(t), . . . , x

∗
n(t) beds, which pro-

vides for the reporting year for the entire network of branches nursing care the
maximum number of patients treated and the minimum number of deaths. We will
call this distribution of beds optimal. The constructed static optimization multi-
criteria model of the distribution of the number of beds over medical institutions
in each year t is determined by relations (4)–(10) and the optimality conditions.
These relations and conditions contain n control variables x1(t), x2(t), . . . , xn(t)
and in the general case at most (2n + m + 5) linear independent restrictions.

3 Optimization of Bed Allocation

It is known that one of the most important criteria for the functioning of a
network of medical institutions is the number of patients treated. Consider a
one-criterion optimization model for the distribution of the number of beds by
medical institutions in each reporting year t = 1, 2, . . . , k, taking into account
the measurement errors of actual indicators. To determine and analyze the opti-
mal values of x∗

1(t), x∗
2(t), . . . , x∗

n(t) control variables in the reporting year only
under the condition of maximum of treated patients, it is necessary for fixed
values of the parameters ε and ω to know the initial information in the form
of values of A

(u)
1,j (t), A

(u)
2,j (t), . . . , A

(u)
m,j(t), Q

(u)
j (t), G

(u)
j (t), L

(u)
j (t), A

(u;ε)
1,j (ω; t),

A
(u;ε)
2,j (ω; t), . . . , A

(u;ε)
m,j (ω; t), Q

(u;ε)
j (ω; t), G

(u;ε)
j (ω; t), L

(u;ε)
j (ω; t). In this case,

the one-criterion optimization model of the distribution of the number of beds
by medical institutions in the year t is determined by (4)–(9) and the equality:

q(ε)(ω;x∗
1(t), x

∗
2(t), . . . , x

∗
n(t))

= max
{
q(ε)(ω;x1(t), x2(t), . . . , xn(t)) : (x1(t), x2(t), . . . , xn(t)) ∈ X(n)(t)

}
.

The calculation of the optimal values x∗
1(t), x

∗
2(t), . . . , x

∗
n(t) of control vari-

ables was carried out using the Microsoft Excel based on the data [1] on the
functioning for the period 2007–2015 (t = 1, . . . , 9) networks of 5 medical insti-
tutions (j = 1, . . . , 5) Nizhny Novgorod. Moreover, m = 25, n = 5 and k = 9. In
the calculations, the actual distribution of hospital beds for t was determined by
the set x

(u)
1 (t) = x

(u)
2 (t) = x

(u)
3 (t) = x

(u)
4 (t) = 50 and x

(u)
5 (t) = 25. As an exam-

ple, below is the solution to the optimization problem based on the criterion of
the maximum number of treated patients according to the data for 2015, 2014.

Table 1. Optimization problem solved on actual data in 2015.

Hospital № 34 № 24 № 14 № 11 № 37

x∗
j (t) 93 10 53 38 42

aj(t) 223599,43 296975,85 376255,98 297359,12 394013,12

qj(t) 10,86 8,58 14,58 8,70 12,24

lj(t) 302,92 309,06 318,24 333,12 300,12

gj(t) 0,16 0,06 0,14 1,00 0,40
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From Table 1 it follows that with actual data, the optimal values are: x∗
1(t) =

= 93, x∗
2(t) = 10, x∗

3(t) = 53, x∗
4(t) = 38, x∗

5(t) = 42. The values obtained as
a result of applying the method of generating new statistics according to the
normal law in 2015 with ε = 0, 01 and three different implementations of ω1, ω2,
ω3 are presented in Tables 2, 3 and 4.

Table 2. Optimization problem on the generated data in 2015 with ε = 0, 01 and ω1.

Hospital № 34 № 24 № 14 № 11 № 37

x∗
j (t) 91 11 52 38 42

aj(t) 225047,67 298899,36 378692,98 299285,11 396565,13

qj(t) 10,93 8,64 14,67 8,76 12,32

lj(t) 304,88 311,06 320,30 335,28 302,06

gj(t) 0,16 0,06 0,14 1,01 0,40

From Table 2 it follows that calculated according to the statistics generated
at ε = 0, 01 and realization ω1, the optimal distribution of beds has the form:
x∗
1(t) = 91, x∗

2(t) = 11, x∗
3(t) = 52, x∗

4(t) = 38, x∗
5(t) = 42.

Table 3. Optimization problem on the generated data in 2015 with ε = 0, 01 and ω2.

Hospital № 34 № 24 № 14 № 11 № 37

x∗
j (t) 94 5 53 37 44

aj(t) 224884,93 298683,21 378419,13 299068,68 396278,36

qj(t) 10,92 8,63 14,66 8,75 12,31

lj(t) 304,66 310,84 320,07 335,04 301,85

gj(t) 0,16 0,06 0,14 1,01 0,40

It can be seen from Table 3 that, calculated from the statistics generated at
ε = 0, 01 and realization ω2, the optimal distribution of beds has the following
form: x∗

1(t) = 94, x∗
2(t) = 5, x∗

3(t) = 53, x∗
4(t) = 37, x∗

5(t) = 44.

Table 4. Optimization problem on the generated data in 2015 with ε = 0, 01 and ω3.

Hospital № 34 № 24 № 14 № 11 № 37

x∗
j (t) 95 5 53 37 44

aj(t) 223490,01 296830,54 376071,87 297213,61 393820,32

qj(t) 10,85 8,58 14,57 8,70 12,23

lj(t) 302,77 308,91 318,08 332,96 299,97

gj(t) 0,16 0,06 0,14 1,00 0,40
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From Table 4 it follows that calculated according to statistics generated at
ε = 0, 01 and realization ω3, the optimal distribution of beds has the form:
x∗
1(t) = 95, x∗

2(t) = 5, x∗
3(t) = 53, x∗

4(t) = 37, x∗
5(t) = 44.

The values obtained by applying the method of generating new statistics
according to the normal law in 2015 with ε = 0, 1 and three different implemen-
tations of ω1, ω2, ω3 are presented in Tables 5, 6 and 7.

Table 5. Optimization problem on the generated data in 2015 with ε = 0, 1 and ω1.

Hospital № 34 № 24 № 14 № 11 № 37

x∗
j (t) 102 5 57 40 47

aj(t) 208696,14 277181,90 351177,87 277539,62 367751,47

qj(t) 10,14 8,01 13,61 8,12 11,42

lj(t) 282,73 288,46 297,03 310,92 280,12

gj(t) 0,15 0,06 0,13 0,93 0,37

From Table 5 it can be seen that calculated according to the statistics gener-
ated at ε = 0, 1 and realization ω1, the optimal distribution of beds is as follows:
x∗
1(t) = 102, x∗

2(t) = 5, x∗
3(t) = 57, x∗

4(t) = 40, x∗
5(t) = 47.

Table 6. Optimization problem on the generated data in 2015 with ε = 0, 1 and ω2.

Hospital № 34 № 24 № 14 № 11 № 37

x∗
j (t) 94 6 53 37 43

aj(t) 212381,25 282076,32 357378,90 282440,36 374245,15

qj(t) 10,32 8,15 13,85 8,26 11,63

lj(t) 287,72 293,55 302,27 316,41 285,06

gj(t) 0,15 0,06 0,13 0,95 0,38

From Table 6 it follows that calculated according to statistics generated at
ε = 0, 1 and realization ω2, the optimal distribution of beds has the form: x∗

1(t) =
= 94, x∗

2(t) = 6, x∗
3(t) = 53, x∗

4(t) = 37, x∗
5(t) = 43.

Table 7. Optimization problem on the generated data in 2015 with ε = 0, 1 and ω3.

Hospital № 34 № 24 № 14 № 11 № 37

x∗
j (t) 98 10 56 40 44

aj(t) 212381,25 282076,32 357378,90 282440,36 374245,15

qj(t) 10,32 8,15 13,85 8,26 11,63

lj(t) 287,72 293,55 302,27 316,41 285,06

gj(t) 0,15 0,06 0,13 0,95 0,38
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From Table 7 it can be seen that calculated according to the statistics gen-
erated at ε = 0, 1 and implementation ω3, the optimal distribution of beds has
the form: x∗

1(t) = 98, x∗
2(t) = 10, x∗

3(t) = 56, x∗
4(t) = 40, x∗

5(t) = 44.

Table 8. Optimization problem solved on actual data in 2014.

Hospital № 34 № 24 № 14 № 11 № 37

x∗
j (t) 103 5 53 5 71

aj(t) 173927,94 326254,84 409054,12 355704,48 374803,08

qj(t) 12,08 8,90 14,44 8,28 13,16

lj(t) 341,80 348,94 357,08 347,06 339,68

gj(t) 0,20 0,20 0,22 1,74 1,64

From Table 8 it follows that with actual data, the optimal values are: x∗
1(t) =

= 103, x∗
2(t) = 5, x∗

3(t) = 53, x∗
4(t) = 5, x∗

5(t) = 71.
The values obtained as a result of applying the method of generating new

statistics according to the normal law with ε = 0, 01 and three different imple-
mentations of ω1, ω2, ω3 are presented in Tables 9, 10 and 11.

Table 9. Optimization problem on the generated data in 2014 with ε = 0, 01 and ω1.

Hospital № 34 № 24 № 14 № 11 № 37

x∗
j (t) 110 7 58 5 72

aj(t) 161230,94 302437,75 379192,57 329737,53 372066,96

qj(t) 11,20 8,25 13,39 7,68 13,06

lj(t) 316,85 323,47 331,01 321,72 337,20

gj(t) 0,19 0,19 0,20 1,61 1,63

From Table 9 it follows that calculated according to the statistics generated
ε = 0, 01 and realization ω1, the optimal distribution of beds has the form:
x∗
1(t) = 110, x∗

2(t) = 7, x∗
3(t) = 58, x∗

4(t) = 5, x∗
5(t) = 72.

Table 10. Optimization problem on the generated data in 2014 with ε = 0, 01 and ω2.

Hospital № 34 № 24 № 14 № 11 № 37

x∗
j (t) 104 5 54 5 72

aj(t) 173327,68 325128,87 407642,41 354476,88 373509,57

qj(t) 12,04 8,87 14,39 8,25 13,11

lj(t) 340,62 347,74 355,85 345,86 338,51

gj(t) 0,20 0,20 0,22 1,73 1,63
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From Table 10 it follows that calculated according to the statistics generated
ε = 0, 01 and implementation ω2, the optimal distribution of beds has the form:
x∗
1(t) = 104, x∗

2(t) = 5, x∗
3(t) = 54, x∗

4(t) = 5, x∗
5(t) = 72.

Table 11. Optimization problem on the generated data in 2014 with ε = 0, 01 and ω3.

Hospital № 34 № 24 № 14 № 11 № 37

x∗
j (t) 103 5 54 5 71

aj(t) 174240,28 326840,73 409788,70 356343,26 375476,15

qj(t) 12,10 8,92 14,47 8,29 13,18

lj(t) 342,41 349,57 357,72 347,68 340,29

gj(t) 0,20 0,20 0,22 1,74 1,64

From Table 11 it follows that calculated according to statistics generated at
ε = 0, 01 and implementation ω3, the optimal distribution of beds has the form:
x∗
1(t) = 103, x∗

2(t) = 5, x∗
3(t) = 54, x∗

4(t) = 5, x∗
5(t) = 71.

The values obtained by applying the method of generating new statistics
according to the normal law in 2014 with ε = 0, 1 and three different implemen-
tations of ω1, ω2, ω3 are presented in Tables 12, 13 and 14.

Table 12. Optimization problem on the generated data in 2014 with ε = 0, 1 and ω1.

Hospital № 34 № 24 № 14 № 11 № 37

x∗
j (t) 110 7 58 5 72

aj(t) 161230,94 302437,75 379192,57 329737,53 372066,96

qj(t) 11,20 8,25 13,39 7,68 13,06

lj(t) 316,85 323,47 331,01 321,72 337,20

gj(t) 0,19 0,19 0,20 1,61 1,63

From Table 12 it follows that calculated according to statistics generated
at ε = 0, 1 and ω1, the optimal distribution of beds has the form: x∗

1(t) =
= 110, x∗

2(t) = 7, x∗
3(t) = 58, x∗

4(t) = 5, x∗
5(t) = 72.

Table 13. Optimization problem on the generated data in 2014 with ε = 0, 1 and ω2.

Hospital № 34 № 24 № 14 № 11 № 37

x∗
j (t) 95 5 50 5 70

aj(t) 188248,37 353117,17 442733,77 384991,56 377889,03

qj(t) 13,07 9,63 15,63 8,96 13,27

lj(t) 369,94 377,67 386,48 375,64 342,48

gj(t) 0,22 0,22 0,24 1,88 1,65
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From Table 13 it can be seen that calculated according to statistics generated
at ε = 0, 1 and implementation ω2, the optimal distribution of beds is as follows:
x∗
1(t) = 95, x∗

2(t) = 5, x∗
3(t) = 50, x∗

4(t) = 5, x∗
5(t) = 70.

Table 14. Optimization problem on the generated data in 2014 with ε = 0, 1 and ω3.

Hospital № 34 № 24 № 14 № 11 № 37

x∗
j (t) 107 5 56 5 72

aj(t) 168164,99 315444,68 395500,48 343918,53 373561,20

qj(t) 11,68 8,61 13,96 8,01 13,12

lj(t) 330,47 337,38 345,25 335,56 338,55

gj(t) 0,19 0,19 0,21 1,68 1,63

From Table 14 it can be seen that calculated according to statistics generated
at ε = 0, 1 and implementation ω3, the optimal distribution of beds is as follows:
x∗
1(t) = 107, x∗

2(t) = 5, x∗
3(t) = 56, x∗

4(t) = 5, x∗
5(t) = 72.

4 Conclusion

Based on the results presented in Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
and 14, we can conclude that the accuracy of the ε measurement significantly
affects the obtained optimal distribution of beds in the network of medical insti-
tutions. Moreover, this influence is not linear. For example, in 2015, with
ε = 0,01 (Table 3), the optimal distribution of beds differed from that obtained
from actual data (Table 1) for four hospitals. And for one hospital out of four
(j = 2), the difference was significant, two times. In the case of ε = 0, 1 (Table 7),
the optimal distribution of beds differed from the actual one for all the hospitals
in the network, but no such significant difference as with ε = 0, 01 and j = 2
was observed.
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Abstract. The optimal control problem with a terminal-type objective
function is solved. The controlled process is described by a hyperbolic
PDE with initial and boundary conditions of the second type. The special
control is selected so that the state constraint is executed throughout the
entire action: the integral of the spatial coordinate of the square of the
solution is equal to one. The optimal control problem is considered. Note
that this problem is purely theoretical, but has good practical prospects.
It is proved that for such a particular equation, its solution can be rep-
resented through the solution of a standard linear initial-boundary value
problem of hyperbolic type, which in turn allows us to apply the method
of separated variables. The transition from the original problem to the
problem of optimization by the Fourier coefficients of the solution of
a linear problem is shown. The solution of the initial-boundary value
problem is reduced to the system of differential equations of the second
order. Further we demonstrate a transition to a finite shortened system of
first-order differential equations. The solution can be obtained arbitrar-
ily close to the solution of an infinite-dimensional system by increasing
dimensionality of the shortened system. A description of the algorithm
for iterating over the control coefficients for finding a solution to the
optimal control problem for a shortened system and constructing a min-
imizing sequence are given. The value of the objective function for a
shortened system by increasing dimension can be obtained arbitrarily
close to the original optimal value.

Keywords: Integro-differential PDE · Hyperbolic equation · State
constraint · Infinite-dimensional system of ODEs · Shortened system

1 Introduction

The various problems and difficulties encountered, we work by systems with dis-
tributed parameters are presented in the introduction of the monograph [1]. It
contains a detailed bibliography related to this scientific area. The controlled
processes with state constraints, which is imposed on the solution of distributed
system, make the optimal control problems for such processes particularly dif-
ficult. In some cases, when there is only one state constraint, it is possible to
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satisfy it, if feedback control is used. This assumes that the integral over the
spatial domain will be included in the control [2]. The advantages of this app-
roach compared to other methods for solving similar problems are described in
the introduction [3].

There is dependence between the PDE being studied and standard linear
equations. The class of integro-differential equations to which be method of this
article applies is discussed, for example, in [2–4]. The resulting optimization
problem with a terminal-type objective function and a state constraint is solved.
The methods and algorithms for finding optimal control are similar to those used
in [5] for a PDE that is reduced to a linear parabolic equation.

At present, optimal control problems for second-order hyperbolic equations
are only partially investigated. Any progress in this direction allows us to take
a step forward in the direction of their further study and development of the
General Theory. New methods for solving a certain class of such problems or
a set of known methods that were not previously considered simultaneously
in relation to such an optimization problem, are of a particular interest and
undoubtedly deserve close attention.

2 The Controlled Process and Supporting Statements

We consider the initial-boundary value problem. There has the set Q = [0, l] ×
[0, T ], l > 0, T > 0 with the boundary Σ consisting of points {(x, t) : t = 0 or
(l − x)x = 0}. The function y(x, t) ∈ C2(Q \ Σ) ∩ C1(Q) is called a solution to
the initial-boundary value problem if y(x, t) satysfies on set Q \ Σ the equation:

y′′
tt(x, t) = a2y′′

xx(x, t) + u(x, t). (1)

Moreover the boundary and initial conditions are valid:

y′
x(0, t) = y′

x(l, t) = 0, (2)

y(x, 0) = ϕ(x), y′
t(x, 0) = ψ(x), (3)

where u(x, t) is a continuous control function, a ∈ R. The initial functions are

ϕ(x) ∈ C3[0, l], ψ(x) ∈ C2[0, l]. (4)

In addition, the function ϕ(x) and the function ψ(x) satisfy conditions based on
(2) for t = 0 and ϕ(x) is a positive function.

Let the control u(x, t) be a feedback control and have the form:

u(x, t) =
(

b(x) + η(t)
)

y(x, t) − 2q(t)y′
t(x, t), (5)

where the control functions b(x), η(t) are continuous functions, and q(t) is a
continuously differentiable function.

Let the squares of the norm in the spaces C[0, l] and C(Q) be written as

||b(x)||22 =
∫ l

0

b2(x) dx and ||u(x, t)||2Q =
∫ T

0

∫ l

0

u2(x, t) dx dt

respectively. Denote ϕ̂0 = ||ϕ′
x(x)||22+ ||ψ(x)||22+ ||ϕ(x)||22, it is clear that ϕ̂0 > 0.
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3 The Optimization Problem

There is a formulation of the optimization problem:
There are constraints on the coordinates of the solution

||y(x, t)||2 = 1, t ∈ [0, T ], (6)

and on the control function:
||b(x)||2 ≤ K, (7)

where K is a positive constant. We will believe, that the function b(x) is the
continuously differentiable function and there are additional constraints: b′

x(0) =
b′
x(l) = 0.

For a fixed time T > 0 to minimize the objective function of terminal type

J00(T ) =
∫ l

0

(y(x, T ) − Y (x))2 dx = ||y(x, T ) − Y (x)||22 → min, (8)

where Y (x) is fixed continuous function with constraint: ||Y (x)||2 = 1 and it
satisfies conditions based on (2).

Is there any relationship between the control functions b(x), η(t) and q(t)?
The answer to this question is given in the article [2]. The control function
η(t) = −R[y], so R[y] is an integral operator of the form

R[y] ≡ Ry(t) =
∫ l

0

(b(x)y2(x, t) − a2y′2
x (x, t) + y′2

t (x, t)) dx, (9)

where the function y(x, t) is the solution of the problem (1)–(5), (9).
To fulfill the condition (6), it is necessary [2], in addition to the one described

above, that the continuously differentiable function q(t) is a solution of the
Cauchy problem for the Riccati equation

q′
t(t) + q2(t) = Ry(t), q(0) = 0. (10)

Depending on the function Ry(t) the function q(t) can be bounded on the seg-
ment [0, T ] or unbounded, but for any admissible functions y(x, t) and Ry(t),
the function q(t) exists in some neighborhood of zero. In this article, we are
interested in cases when the function q(t) is bounded on the segment [0, T ]. A
more convenient check for the boundedness of the q(t) function will be described
below. From what has been said and the equality (5), it is clear that the control
has the form:

u(x, t) = b(x)y(x, t) − 2q(t)y′
t(x, t) − R[y]y(x, t). (11)

Thus, the condition (6) is valid. Next, instead of J00(T ), we will write J00(T, b(x))
thus showing the importance of the function b(x) for the objective function.
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4 Auxiliary Initial-Boundary Value Problem

The solution of the original problem can be written using the solution of a linear
auxiliary problem. The function z(x, t) ∈ C2(Q \ Σ) ∩ C1(Q) is solution of a
standard hyperbolic equation of the 2nd order

z′′
tt(x, t) = a2z′′

xx(x, t) + b(x)z(x, t) + f(x, t), (x, t) ∈ Q \ Σ (12)

with the second-type boundary conditions

z′
x(0, t) = z′

x(l, t) = 0, (13)

and initial conditions

z(x, 0) = ϕ(x), z′
t(x, 0) = ψ(x). (14)

The unique solution of this problem exists and one can be found by the sepa-
ration of variables method. Smoothness conditions (4) for initial functions are
necessary for immediate differentiation of the series obtained by applying the
Fourier method, see [7]. For f(x, t) ≡ 0, the problem is called homogeneous. For
this problem (12)–(14) there is the energy inequality [7]:

||z(x, τ)||2Qt
≤ K1(t)(||ϕ(x)||22 + ||ϕ′

x(x)||22 + ||ψ(x)||22 + ||f(x, τ)||2Qt
), (15)

where K1(t) is the positive increasing function that depends only on t, a and
b(x), the set Qt = [0, l] × [0, t]. According to (7), the set of the different valid
functions b(x) is bounded and closed, then there is max

b(x)
K1(T ) = K0.

Existence. Denote by P [w] is the integral operator of the form

P [w] =

(∫ l

0

w2(x, t) dx

)1/2

. (16)

Let p(t) ≡ P [z], where the function z(x, t) is the solution of the problem (12)–
(14) with f(x, t) ≡ 0.

In the article [2], we prove the theorem and its consequences on the depen-
dence between the solution of the initial-boundary value problem described by
the integro-differential equation and the solution of the linear homogeneous prob-
lem (12)–(14). Also the dependencies between the functions p(t), q(t), and Ry(t)
are derived there.

In relation to this problem statement, it is formulated as follows:

Theorem 1. We believe for ∀t ∈ [0, T ]: P [z] �= 0, where z(x, t) is the solu-
tion to the problem (12)–(14) with homogeneous equation (12) (f(x, t) ≡ 0). The
equalities associated with the initial functions

∫ l

0

ϕ2(x) dx = 1;
∫ l

0

ϕ(x)ψ(x) dx = 0. (17)
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are valid. Then on the set Q there is a unique solution to the problem (1)–(3),
(9)–(11), (17), is represented as

y(x, t) =
z(x, t)
P [z]

≡ z(x, t)
p(t)

. (18)

By direct verification from (9), (16), (18), we make sure that there is the
dependence between p(t), q(t) and Ry(t) has the form

p′′
tt(t)
p(t)

= Ry(t), q(t) =
p′

t(t)
p(t)

. (19)

We assume that given the constants T , a, K and the given initial functions
ϕ(x), ψ(x), the function z(x, t) �≡ 0 for t ∈ [0, T ]. This statement is equivalent to
the inequality: P [z] �= 0. The set of the different valid functions b(x) is bounded
and closed, then there is min

b(x),t∈[0,T ]
p(t) = pm > 0, where pm is a constant,

p(t) ≡ P [z(x, t)], where the function z(x, t) is the solution to the homogeneous
problem (12)–(14) with the control function b(x) respectively.

Uniqueness. Let us assume that there are two solutions of the problem (1)–
(3), (9)–(11), (17). Each of them will have an auxiliary task of the type (12)–(14)
and its function Ry(t) and hence its functions qi(t) and pi(t), i = 1, 2, used in
Theorem 1. But the auxiliary task is identical for them. Therefore, there are two
solutions y1(x, t) = z(x, t)/p1(t) and y2(x, t) = z(x, t)/p2(t). From (9), (19) it
follows that

p′′
tt = pRy(t) = p(t)

∫ l

0

(b(x)y2(x, t) − a2y′2
x (x, t) + y′2

t (x, t)) dx

=
1

p(t)

∫ l

0

(b(x)z2(x, t) − a2z′2
x (x, t) + z′2

t (x, t) − 2z(x, t)zt(x, t))
p′

t(t)
p(t)

+z2(x, t)
p′2

t (t)
p2(t)

) dx =
1

p(t)
(γ0(t) + γ1(t)

p′
t(t)
p(t)

+ γ2(t)
p′2

t (t)
p2(t)

) ≡ G(t, p, p′
t).

It is clear that the continuous by its variables function G(t, p, p′
t) is continuously

differentiable by variables on p and p′
t. Because the continuous function p(t) �= 0

and hence p(t) ≥ pm > 0, it and its partial derivatives are the bounded functions.
The functions γi(t), i = 1, 3, are the same as for y1(x, t) that for y2(x, t). By
the generalized Cauchy-Picard theorem for the Cauchy problem of a 2-order
differential equation [9] there is uniqueness solution of the differential equation
p′′

tt = G(t, p, p′
t). It is follows that p1(t) ≡ p2(t). Contradiction. Therefore the

problem (1)–(3), (9)–(11), (17) has a unique solution.

5 The Expansion of the System of Cosines

The system of cosines: vk(x) = cos(λkx), λk = πk/l, k = 0,+∞, is a com-
plete orthogonal system on the segment [0, l], for which is valid the equalities
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∫ l

0
vk(x) dx = 0, k = 1,+∞. We decompose the system of the cosines of the func-

tion z(x, t), b(x), ϕ(x), ψ(x): z(x, t) =
+∞∑
k=0

ξk(t)vk(x), b(x) =
+∞∑
k=0

bkvk(x) and

ϕ(x) =
+∞∑
k=0

ϕkvk(x), ψ(x) =
+∞∑
k=0

ψkvk(x), Y (x) =
+∞∑
k=0

Ykvk(x). By direct calcu-

lation, we make sure that the square of the norm ||v0(x)||22 = l, ||vj(x)||22 = l/2,
j = 1,+∞. Therefore

||z(x, t)||2 =
( +∞∑

j=0

ξ2j (t)||vj ||22
)1/2

=
(

lξ20(t) +
l

2

+∞∑
j=1

ξ2j (t)
)1/2

≡ Θ(ξ(t)), (20)

where ξ is the corresponding vector consisting of ξj(t), j = 0,+∞. It follows
from Theorem 1 that

y(x, t) =
+∞∑
k=0

θk(t)vk(x), where θk(t) =
ξk(t)
Θ(ξ)

.

Theorem 2. Let the function zj(x, t) be the solution of the problem (12)–(14)
with f(x, t) ≡ 0, for which b(x) ≡ bj(x), j = 1, 2 respectively. For any ε > 0,
there exists the positive δ = ε2(K2

0 ϕ̂0)−1, such that if the inequality ||b2(x) −
b1(x)||22 < δ holds for the continuous functions b1(x) and b2(x), then ||z2(x, t) −
z1(x, t)||Q < ε.

We fix the small ε > 0. If we assume that the function ζ(x, t) = z2(x, t) −
z1(x, t), then it is the solution of the problem

ζ ′′
tt(x, t) = a2ζ ′′

xx(x, t) + b2(x)ζ(x, t) + (b2(x) − b1(x))z1(x, t), (21)

satisfying the boundary and initial conditions

ζ ′
x(0, t) = ζ ′

x(l, t) = 0, ζ(x, 0) = 0, ζ ′
t(x, 0) = 0. (22)

The Eq. (21) is a special case of Eq. (12), the inhomogeneous part f(x, t) =
(b2(x) − b1(x))z1(x, t) For this task the energy inequality (15) Applying the
energy inequality twice, first to the problem (21), (22), then to the problem
(12)–(14), we get

||z2(x, t) − z1(x, t)||22 = ||ζ(x, t)||22 ≤ K0||b2(x) − b1(x)||22 · ||z1(x, t)||2QT
< K2

0δϕ̂0 = ε2.

Corollary 1. If the inequality ||z2(x, t) − z1(x, t)||Q < ε is valid, then the
inequality |J00(b2(x), T ) − J00(b1(x), T )| < εK2 is valid too, K2 is a constant.

Let functions be note y1(x, t) = z1(x, t)/p1(t), y2(x, t) = z2(x, t)/p2(t), then

|J00(b2(x), T ) − J00(b1(x), T )| =
∫ l

0

(y2(x, T ) − y1(x, T ))(y2(x, T ) + y1(x, T )

−2Y (x)) dx ≤ ||y2(x, T ) − y1(x, T )||2 · ||y2(x, T ) + y1(x, T ) − 2Y (x)||2 ≤ 4ε

pm
.
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Corollary 2. If the sequence of functions b̂n(x) → b(x) by the norm, then for
any k = 0,+∞, the convergence is performed ξ̂nk(T ) → ξk(T ), ξ̂nk(t) – Fourier
coefficients of the function ẑn(x, t). The function ẑn(x, t) is the solution of the
homogeneous problem (12)–(14), for which b(x) ≡ b̂n(x).

The true estimation |ξ̂nk(T ) − ξk(T )| <
√

2ε/l, k = 0,+∞, follows from
Theorem 2 and the expression (20).

6 The Infinite-Dimensional System of Differential
Equations

Substituting decomposition of functions on the system of cosines in Eq. (12) and
making standard transformations, described in [7], we get:

+∞∑
k=0

ξ′′
ktt(t)vk(x) =

+∞∑
k=0

−a2λ2
kξk(t)vk(x) +

+∞∑
k=0

bkvk(x)
+∞∑
j=0

ξj(t)vj(x).

Using the formula “product of cosines”: vkvj = 0, 5(v|k−j| + vk+j), we reduce
the product of series to a series

+∞∑
k=0

bkvk(x) ×
+∞∑
j=0

ξj(t)vj(x) =
+∞∑
j=0

κjvj(x)

where κj =
+∞∑
i=0

cjiξi, and the expressions for cji are presented below. Next, we

multiply both sides by vk(x), k = 0,+∞, and take the integral over x from
0 to l. The Eq. (12) is written as an infinite-dimensional system of differential
equations with constant coefficients and initial conditions

ξ′′
tt(t) = (C − Λ)ξ(t), ξk(0) = ϕk, ξ′

kt(0) = ψk, k = 0,+∞, (23)

where ξ(t) is infinite-dimensional vector-function with components ξi(t), i =
0,+∞. Matrix C is stationary matrix of infinite dimensions with elements:

c00 = b0, c0j =
1
2
bj , j = 1,+∞, cii = b0 +

1
2
b2i, i = 1,+∞, (24)

cij =
1
2
(bi+j + b|i−j|), i = 1,+∞, j = 0,+∞. (25)

Matrix Λ = diag(0, a2λ2
1, ..., a

2λ2
j , ...) is infinite-dimensional stationary and diag-

onal matrix.
For the infinite-dimensional system of the first-order differential equations

the theorem of existence has known. Therefore the infinite-dimensional system
of the second-order differential equations (23) is to transform into a system of the
first-order differential equations. In addition, we need to get rid of the members
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a2λ2
kξk(t), because lim

k→+∞
λk = +∞. It will prevent, in the future, to use the

convergence theorem for solutions of shortened problems.
Denote μk = aλk, k = 1,+∞. We will do the change of variables described in

[8], thereby reducing an infinite-dimensional system of second-order differential
equations to an infinite-dimensional system of first-order differential equations,
Let i be an imaginary unit. For k = 1,+∞, we make change of variables (writing
through complex variables is more compact):

ξk(t) = wk(t) exp(iμkt) + w−k(t) exp(−iμkt), (26)

ξ′
k(t) = iμkwk(t) exp(iμkt) − iμkw−k(t) exp(−iμkt). (27)

The functions wk(t) and w−k(t) are complex conjugate functions: w±k(t) =
Ak(t) ± iBk(t), k = 1,+∞. Substituting t = 0 in (26), (27), we get the initial
conditions:

Ak(0) =
ϕk

2
, Bk(0) = − ψk

2μk
, k = 1,+∞. (28)

Then from (26), (27) we have

w′
k(t) exp(iμkt) + w′

−k(t) exp(−iμkt) = 0, k = 1,+∞. (29)

We will use here the system (23) without the zero row. Differentiating (27)
and substituting (23), we get

iμkw′
k(t) exp(iμkt) − iμkw′

−k(t) exp(−iμkt)

= ck0ξ0(t) +
+∞∑
j=1

ckj(wj(t) exp(iμjt) + w−j(t) exp(−iμjt)), k = 1,+∞. (30)

So from (29), (30), we obtain an infinite system of differential equations for
k = 1,+∞.

w′
k(t)=

−i exp(−iμkt)
2μk

⎛
⎝ck0ξ0(t) +

+∞∑
j=1

ckj(wj(t) exp(iμjt) + w−j(t) exp(−iμjt))

⎞
⎠.

We denote

ω2k(t) = Ak(t), ω2k+1(t) = Bk(t), k = 1,+∞; ω0(t) = ξ0(t), ω1(t) = ξ′
0(t), (31)

then for k = 1,+∞, system (23), with (28) and (31) can be rewritten in the
following way:

ω′
0(t) = ω1(t), ω′

1(t) = b0ω0(t)+
+∞∑
j=1

bj

2
(ω2j(t) cos(μjt)+ω2j+1(t) sin(μjt)), (32)

ω′
2k(t) = − ck0

2μk
sin(μkt)ω0(t) −

+∞∑
j=1

γ0
2k,j(t)ω2j(t) +

+∞∑
j=1

γ1
2k,j(t)ω2j+1(t), (33)
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ω′
2k+1(t) = − ck0

2μk
cos(μkt)ω0(t) −

+∞∑
j=1

γ0
2k+1,j(t)ω2j(t) +

+∞∑
j=1

γ1
2k+1,j(t)ω2j+1(t);

(34)
the initial conditions are

ω0(0) = ϕ0, ω1(0) = ψ0, ω2k(0) =
ϕk

2
, ω2k+1(0) = − ψk

2μk
, k = 1,+∞. (35)

For k ≥ 1 the next expressions take place

γ0
2k,j(t) =

ckj

μk
cos(μjt) sin(μkt), γ1

2k,j(t) =
ckj

μk
sin(μjt) sin(μkt), (36)

γ0
2k+1,j(t) =

ckj

μk
cos(μjt) cos(μkt), γ1

2k+1,j(t) =
ckj

μk
sin(μjt) cos(μkt). (37)

7 The Shortened System

We consider the “shortened” system, that is, by fixing N , we look for a
solution to the finite shortened (2N + 2)-dimensional system, taking ωk(t),
k = (2N + 2),+∞, equals to zero. The initial conditions of the first (2N + 2)
unknowns are taken from the initial conditions (35). This shortening of the task
(32)–(37) gives us information about the first N + 1 unknowns of the system
(23)–(25), that is, about ξk(t), k = 0, N . The conditions under which the solu-
tions of a shortened problem converge at t = T and N → +∞ to the solution of
an infinite-dimensional system are described in [6].

Statement 1. In the notation of this paper, the solution of a shortened system
tends at t = T to the value of the solution of an infinite system of differential
equations

dωk

dt
= fk(t, ω1, ω2, ...), k = 0,+∞;

it is enough that
the following conditions were met:

a) functions fk(t, ω1, ω2, ...) are continuous over a set of variables;
b) the functions fk satisfy with respect to the variables ω1, ω2, ..., ... the enhanced

Cauchy-Lipschitz condition.
c) fk(t, 0, 0, ...) ≤ f(t), where f(t) is a function that is continuous on the segment

[0, T ].

The fulfillment of conditions a) and c), as well as b) for k = 0 is obvious (it
is clear from (32)–(37)).
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Let us check that condition b) is met, for k ≥ 1:∣∣∣∣fk(t, ω1, ..., ω
′′
m, ω′

m+1, ω
′
m+2, ω

′
m+3...) − fk(t, ω1, ...ω

′′
m, ω′′

m+1, ω
′′
m+2, ω

′′
m+3...)

∣∣∣∣

=

∣∣∣∣∣∣
+∞∑

j=m+1

fk(t, ..., ω′′
j−1, ω

′
j , ω

′
j+1, ω

′
j+2...) − fk(t, ...ω′′

j−1, ω
′′
j , ω′

j+1, ω
′
j+2...)

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

+∞∑
j=m+1

∂fk

∂ωj
(t, ω1, ..., ω

′′
j−1, ωjcp, ω

′
j+1, ω

′
j+2...)(ω

′
j − ω′′

j )

∣∣∣∣∣∣
≤

+∞∑
j=m+1

∣∣∣∣∂fk

∂ωj
(t, ω1, ..., ω

′′
j−1, ω

′
cp, ω

′
j+1, ω

′
j+2...)

∣∣∣∣ |Δω| ≤ εm1|Δω|,

where Δω = max
j=m+1,+∞

|ω′
j − ω′′

j |, and

+∞∑
j=m+1

∣∣∣∣∂fk

∂ωj
(t, ω1, ..., ωj−1, ω

′
cp, ω

′
j+1, ω

′
j+2...)

∣∣∣∣ =
+∞∑

j=m+1

|γs
k,[j/2](t)| = εm1,

for k = 2,+∞, where s = 0 or s = 1; s = j(mod 2). This expression for k = 1, see
below when this case will be considered. To test the enhanced Cauchy condition,
it remains to prove that lim

m→+∞ εm1 = 0.

Let m′ = [(m + 1)/2], η = [k/2], writing (24), (25) and taking into account
(35), it is easy to see that

+∞∑
j=m+1

|γs
k,[j/2](t)| ≤

+∞∑
j=m+1

|c[k/2],[j/2]|
μk

≤
+∞∑

θ=m′

|b|θ−η|| + |bθ+η|
2μk

≤
+∞∑

θ=m′

|b|θ−η||
μk

.

(38)

Lemma 1. The series of Fourier coefficients of a continuously differentiable
function b(x), decomposed in the system of cosines, converges absolutely.

Note that

bk =
2
l

∫ l

0

b(x)vk dx =
2
l

b(x)
l

πk
sin(λkx)

∣∣∣∣
l

0

− l

πk

2
l

∫ l

0

b′
x(x) sin(λkx) dx = − lbk

πk
,

where bk are the Fourier coefficients of the function b′
x(x), so

+∞∑
k=0

|bk| =
l

π

+∞∑
k=0

|bk|
k

≤ l

2π

+∞∑
k=0

(
1
k2

+ b
2

k).

Series of
+∞∑
k=0

b
2

k is converges due to the convergence of Parseval’s equality for the

function b′
x(x) on the segment [0, l], so the series of Fourier coefficients of the

continuously differentiable function b(x) converges absolutely.
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We consider 3 cases:
1 case k = 1:

εm1 =
+∞∑

j=m+1

0, 5 |bj/2 cos(μj/2t)|, if k = 1, j is even, or

εm1 =
+∞∑

j=m+1

0, 5 |b(j−1)/2 sin(μ(j−1)/2t)|, if k = 1, j is odd, and the majoriz-

ing sequence converges to 0: lim
m→+∞ 0, 5

+∞∑
j=m+1

|b[j/2]| = 0, since the series of

Fourier coefficients of the function b(x) converges absolutely.
Let K1 be the sum of a series of modules bj . Fix some ε > 0, then there is a

natural M0 such that for j ≥ [M0/2], the inequality |K1 − S
|b|
j | < ε is satisfied,

S
|b|
j – partial sum of a series made up of |bi|. Denote [lK1/εaπk] + 1 = M1 and

m0 = max{M0,M1}.
2 case; k = 2,m0, then η ≤ m0/2, for m0 → +∞, the right-hand side (38)

can be evaluated

εm1 ≤ 1
μk

+∞∑
θ=m0

|b|θ−η|| ≤ l

aπk
(K1 − S

|b|
[m0/2]) < ε

l

aπk
.

3 case; k = (m0 + 1),+∞, then the right-hand side (38) can be evaluated by
the expression

εm1 ≤ 1
μk

+∞∑
θ=m0

|b|θ−η|| ≤ lK1

m0π
≤ lK1

M1aπk
< ε.

Thus, in all cases it can be seen that for all k and for any m it is true
lim

m→+∞ εm1 = 0, thus proving that the strengthened Cauchy-Lipschitz condition

– condition b) holds.
So, for a fixed T and N → +∞, the solutions of the shortened task tend the

solution of an infinite-dimensional system (33) with initial conditions (35).
We denote the solution of the Cauchy problem of the shortened problem

corresponding to the system (33) by (2N + 2)-dimensional vector function
ωN (t) = (ωN

0 (t), ..., ωN
2N+1(t)). A shortened system of ODEs, (k = 1, N), repre-

sented as:

ωN
0t

′
(t) = ωN

1 (t), ωN
1t

′
(t) = b0ω

N
0 (t) +

N∑
j=1

1
2
bj(ωN

2j(t) cos(μjt) − ωN
2j+1(t) sin(μjt)),

ωN
2k t

′
(t) = − ck0

2μk
sin(μkt)ωN

0 (t) −
N∑

j=1

γ0
2k,j(t)ω

N
2j(t) +

N∑
j=1

γ1
2k,j(t)ω

N
2j+1(t),

ωN ′
2k+1 t(t) = − ck0

2μk
cos(μkt)ωN

0 (t) −
N∑

j=1

γ0
2k+1,j(t)ω

N
2j(t) +

N∑
j=1

γ1
2k+1,j(t)ω

N
2j+1(t),
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with initial conditions ωN
0 (0) = ϕ0, ωN

0 (0) = ψ0, ωN
2k(0) = ϕk/2, ωN

2k+1(0) =
−ψk/2μk. According to the Theorem from [6],

lim
N→+∞

ωN
j (T ) = ωj(T ), j = 0, 2N + 1. (39)

Reverse substitution:

ξ0(t) = ω0(t), ξk(t) = 2ω2k(t) cos(μkt) − 2ω2k+1(t) sin(μkt), k = 1, N. (40)

If we solve the shortened system, we obtain an approximate solution of infinite
system (32)–(37), and hence the solution of system (23)–(25) too. There are
limits based on the limits (39)

lim
N→+∞

ωN
0 (T ) = ξ0(T ); lim

N→+∞
ωN
2k(T ) cos(μkT ) − ωN

2k+1(T ) sin(μkT ) =
ξk(T )

2
.

(41)
Carefully assessing the system (23)–(25), we note that for the shortened

problem with a fixed N only the parameters of the bk, k = 0, 2N can affect on
functions ξN

k (T ), k = 0, N , (and hence on functions ωN
j (t), j = 0, 2N + 1). As a

result, using the function

b̃N (x) =
2N∑
k=0

bkvk(x) (42)

is sufficient in the shortened problem corresponding to the number N . Vector
(b0, ..., b2N )T uniquely sets the function b̃N (x). Note, however, that in this case
of a finite vector of control parameters (b0, ..., b2N )T , it uniquely defines a con-
tinuously differentiable control function b̃N (x). Similarly, in a shortened problem
corresponding to the number N , it is sufficient to use the functions

ϕ̃N (x) =
N∑

k=0

ϕkvk(x), ψ̃N (x) =
N∑

k=0

ψkvk(x). (43)

8 The Study of an Optimization Problem

We move on to the optimal control task. It is easy to see that the optimal value
of the objective function (8) J00(T ) = 0 for θ∗

k(T ) = Yk, k = 0,+∞, and it
is impossible to improve this result. It is not clear whether it is possible to
achieve it, however, it can be used as a kind of reference point. We transform
the objective function (8):

J00(b(x), T ) =
∫ l

0

(y(x, T ) − Y (x))2 dx = 2 − l(2Y0θ0(T ) +
∞∑

j=1

Yjθj(T )).

The objective function can be rewritten in the equivalent form (that is, the
objective function reach an extremum on the same set of control parameters)

J(b(x), T ) = 2Y0θ0(T ) +
∞∑

j=1

Yjθj(T ) → max or
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J(b0, ..., bj , ..., T ) =

⎛
⎝2Y0ξ0(T ) +

∞∑
j=1

Yjξj(T )

⎞
⎠ Θ−1(ξ(T )) → max (44)

according to Theorem 1. The constraint on the control function (7) written as

lb20 +
l

2

+∞∑
i=1

b2i ≤ K2. (45)

Given the remark at the end of the previous paragraph for the shortened
problem and (42), the constraint (45) will take the form:

lb20 +
2N∑
i=1

l

2
b2i ≤ K2. (46)

Then the objective function (44) of the shortened problem is written:

JN (b0, ..., b2N , T ) = (2Y0ξ
N
0 (T ) +

N∑
j=1

Yjξ
N
j (T ))Θ−1(ξ̄N (T )) → max, (47)

here Θ(ξ
N

(T )) =

(
l(ξN

0 (T ))2 + l
2

N∑
j=1

(ξN
j (T ))2

)1/2

, since ξN
j (t) ≡ 0, j ≥ N + 1.

The objective function is continuous across their variables ξN
k (T ), k = 0, N ,

since p(t) ≥ pm > 0, and (41) holds. Then the equality

JN (b0, ..., b2N , T ) → J(b0, ..., b2N , ..., T ) (48)

is valid when N → +∞. This statement follows from the result of the convergence
theorem for solutions of the shortened systems.

9 The Algorithm for Finding the Optimal Value

So, the optimization problem for a shortened system takes the form: to maximize
the objective function (47) under the condition of the control function (46).

Let us take a sufficiently large N . We will use the (2N + 2)-dimensional par-
alleleriped: −

√
l−1K ≤ b0 ≤

√
l−1K, −

√
2l−1K ≤ bj ≤

√
2l−1K, j = 1, 2N + 1.

We apply brute force method to find the minimizing sequence. The certain
small step hj by j-coordinate is chosen so that the series of h2

j converges:
+∞∑
j=0

h2
j = Sh (for example, hj = δ0/(j + 1), Sh = π2δ20/6, where δ0 – some

small enough positive constant). For each iteration point that satisfies the con-
dition (46), the control vector (b0, ..., b2N )T is constructed, and the shortened
problem is solved. Then (N + 1)-dimensional vector (ξN

0 (T ), ..., ξN
N (T ))T and

JN (b0, ..., b2N , T ) are calculated by the received (2N + 2)-dimensional solution
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vector (ωN
0 (T ), ..., ωN

2N+1(T ))T for problem (32)–(37), whose value is checked for
the maximum of the objective function (47). Further the search continues. In this
process, the found maximum value of J∗

N (b
∗
N , T ) and the corresponding optimal

control parameters of the vector (b∗
0, ..., b

∗
2N )T and vector (ξN∗

0 (T ), ..., ξN∗
N (T ))T

are stored. For further investigation of the problem, we can recommend saving
all possible vectors b

∗
N and ξ

∗
N (T ) at which the maximum value of J∗

N (b
∗
N , T ) is

reached. Next, we take the number (N + 1) and get optimal for this shortened
problem b

∗
N+1 and J∗

N+1(b
∗
N+1, T )

Let stopping the algorithm be that the condition 0 < J∗
N+1(b

∗
N+1, T ) −

J∗
N (b

∗
N , T ) < 0.5ε̃ where ε̃ – some margin of error. It is easy to see that such

a stop of the algorithm will definitely work. As a result, considering various
N , we get the minimizing sequence b

∗
N and optimal value J∗

N (b
∗
N , T ), which with

increasing N can be arbitrarily close to the optimal value of the original problem.
Let C(b(x)) is the set of the continuously differentiable function b(x) ∈

C1[0, l] satisfying the condition (45). Denote J00 = sup
b(x)∈C(b)

J(b(x), T ). For any

sufficiently small ε there is the continuously differentiable function b(x) such
that J00 − J(b(x), T ) < ε. It follows from (45), that starting from some N1, the

inequality 0, 5l ·
∞∑

j=N1+1

b2j < ε1 is true.

Consider the infinite-dimensional vector that is closest to (b0, ..., b2N , ...)T . A
vector of its first N components always falls into the brute force search for short-
ened task: b

bf
= (bbf

0 , bbf
1 , ..., bbf

2N , ...)T , where the coefficients bbf
j = sδ0/(j + 1),

s ∈ Z and |sδ0/(j + 1)| ≤ K
√

(signj + 1)l−1. It defines the function bbf (x). If
the function bbf (x) is not continuously differentiable function, then for j > N2

we replace bbf
j = sδ0/(j + 1) with bbf

j = 0. The new function will also be called
function bbf

j (x). We estimate the norm for sufficiently small δ0 and ε1,

||b(x) − bbf (x)||22 ≤
N1∑
j=0

l
(δ0)2

(j + 1)2
+ ε1 ≤

∞∑
j=0

l
(δ0)2

(j + 1)2
+ ε1 ≤ l(δ0π)2

6
+ ε1 < δ.

Also from Theorem 2 the statement follows: |J(b(x), T ) − J(bbf (x), T )| < ε.
Consider shortened systems for an infinite-dimensional system with parame-
ters bbf

j , j = 0,+∞. Recall that any partial sum of a series decomposed
over the system of cosines is the continuously differentiable function. Also
as proved above from the theorem about the solutions of the shortened sys-
tem, the statement follows: there is a sufficiently large N2 for which it is true
|J(bbf (x), T ) − JN (̃bbf

N (x), T )| < ε. Next, for N > max{N1, N2}, it follows

|J(bbf (x), T ) − JN (̃bbf
N , T )| ≤ 2ε. (49)

According to the algorithm for finding the maximum of the shortened prob-
lem, the inequality is fulfilled J∗

N (b∗
0, ..., b

∗
2N , T ) ≥ JN (̃bbf

N , T ). The inequal-
ity J∗

N (b∗
0, ..., b

∗
2N , T ) ≥ J(b(x), T ) − 2ε is valid (see (49)). Then inequality
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J∗
N (b∗

0, ..., b
∗
2N , T ) ≥ J00 − 3ε is valid too. Due to the randomness of choosing

the constant ε, J∗
N (̃b∗

N , T ) → J00 is executed, when N → +∞.

10 Conclusion

Specific feedback control plays a dual role in the optimization problem. First,
the state constraint is automatically satisfied; second, there is a substitution of
variables that reduces a nonlinear integro-differential equation to a linear one.
This allows you to apply the Fourier method. With respect to the Fourier coeffi-
cients, an infinite-dimensional system of the second-order differential equations
arises. It is further proved that the method of shortened systems can be applied
to the infinite-dimensional system of ODEs obtained after some transformations.
The algorithm based on the brute force method allows you to find the optimal
value of the objective function with any accuracy.
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of Output Processes in Cyclic Control of
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Abstract. A non-classical queuing waiting system are considered. The
queuing system serves conflicting flows with control in a class of cyclic
algorithms. Conflicting flows mean that they cannot be summed up and
this does not allow you to reduce the problem to a simpler case with a sin-
gle flow. Requirements from different conflicting flows are served at non-
overlapping intervals. In addition, there are additional time intervals—
readjustments, due to which the problem of conflicting flows is resolved.
Such systems are adequate models of real-world systems for processing
and transmitting information, technological systems, transport systems,
etc.

Keywords: Conflicting flows · Homogeneous Markov sequence ·
Conditional distribution · Markov process

1 Introduction

Unlike most well-known works, the so-called non-local description of the require-
ments flow proposed in [1–10] is used to construct a mathematical model of
output flows. The description of output flows includes the state of the service
device and the values of queues for conflicting flows. Note that the functioning of
the system under consideration for servicing non-homogeneous requirements and
controlling conflict flows in continuous time is a complex non-Markov process.
Therefore, researching the system characteristics and the output flows prop-
erties in continuous time are a difficult task. Using the theoretical results of
works [11–20], this article substantiates the method of numerical investigation
of the system by simulation methods using computer and information technolo-
gies. The results of studies of the dynamics of output processes for servicing
requirements on a simulation model are interpreted on the problem of managing
conflict non-homogeneous traffic flows at isolated intersections.
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2 Problem Statement at the Content Level

The problem of cyclic control of m conflicting flows Π1, Π2, . . . , Πm non-
homogeneous requirements during their maintenance by the system is consid-
ered. Input flows Πj , j ∈ {1, 2, . . . ,m} are considered conflicting and indepen-
dent. Conflicting input flows means that the maintenance of the flows must
occur at non-overlapping intervals. Moreover, the specified intervals should be
separated by time intervals during which the service of any requirements is pro-
hibited. The flow Πj requests only enter to the Oj drive with an unlimited
number of waiting places. In the system without loss of requests, it is possible to
record the outgoing flow Nj with an unlimited supply of pending requirements
in the Oj storage and with maximum use of the resources of the service device
for each j ∈ {1, 2, . . . ,m}.

Flows Π1, Π2, . . . , Πm are called saturation flows. The need to introduce
saturation flows arises primarily in those real queuing systems in which it is clear
in advance that the service durations of different requirements can be determined
by the state of the service system and, as a result, be dependent and have
different distribution laws. As an example, the process of crossing the stop line
by vehicles with a green traffic light allowing it can be cited. If there is a queue,
the first cars only start moving and move more slowly than those who arrive
at the intersection at the green light interval and continue driving at maximum
speed. The service device has 2m states

Γ (1), Γ (2), . . . , Γ (2m).

For any fixed n ∈ {1, 2, . . . , 2m}, the duration of stay in the state Γ (n) is equal
to Tn. For all j ∈ {1, 2, . . . ,m} in state Γ (2j−1), only the requirements of flow Πj

are served. The maximum possible number of serviced requirements of the flow
Πj in the state Γ (2j−1) is determined by the saturation flow Πj and is equal
to lj . For all j ∈ {1, 2, . . . ,m} in state Γ (2j), the requirements of each of the
flows are not served. The service device changes states cyclically in the following
sequence:

Γ (1) → Γ (2) → . . . → Γ (2m) → Γ (1) → . . .

So, the service of conflicting flows occurs in non-overlapping time intervals, which
are separated by changeover intervals. An adequate mathematical model of this
kind of real problems is the control systems of service with a variable struc-
ture [1].

3 Numerical Study of Output Processes

We consider input flows Π1, Π2, . . . , Πm to be non-ordinary Poisson random
Gnedenko–Kovalenko processes [1]. Then the sequence of calling moments at
which the requirements arrive in the system for each flow Πj is a Poisson process
with the parameter λj . Moreover, let’s assume that at each of these moments,
one or two applications appear, respectively, with probabilities pj or qj = 1−pj .
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Let the random variable ηj(t) for each j ∈ {1, 2, . . . ,m} determine the number of
received requests to the storage Oj along the flow Πj for the time interval [0, t).
An important characteristic of the process of cyclic management of conflicting
flows of requirements is the loading of the service system for each flow and its
overall loading for all or only some pre-fixed flows. Unfortunately, determining
the load of managed unconventional queuing systems is always a difficult task.
In classical single-channel systems with an unlimited queue, Poisson input flow,
and demand service, according to the exponential law, the probability that there
will be at least one demand in the system in stationary mode λμ−1 < 1. Here,
the parameters λ and μ are the intensities of receipt and, respectively, demand
service. Let θ(t) is the total length of those time intervals between zero and the
moment t, during which there will be at least one requirement in the system. It
is well known that for any ε > 0 there is a limit equality

lim
t→∞P(|t−1θ(t) − λμ−1| < ε) = 1.

A random variable of the form t−1θ(t) determines the average relative occupancy
time of the system over the interval [0, t) and approximately coincides with the
value λμ−1 in the sense of convergence in probability for sufficiently large values
of t. Therefore, the constant λμ−1 is naturally called the load or occupancy
measure of the system.

We will now consider the problem of managing conflicting flows of require-
ments in the class of cyclic algorithms in a similar way. Then the probability ρj

that in stationary mode there will be at least one request in the service system
on flow Πj can be called the system loading on this flow. Let’s say we want
to determine the total load ρ1,2 of the system, for example, by two flows Π1

and Π2. Then, due to the independence of the input flows, saturation flows and
cyclic switching of the states of the service device, it is possible to obtain [4]
that the probability of having at least one machine in at least one of the flows
Π1 and Π2 is equal to ρ1 + ρ2 − ρ1ρ2. Therefore, we can assume that for flows
Π1 and Π2 the total load is

ρ1,2 = ρ1 + ρ2 − ρ1ρ2.

Unfortunately, for the process of controlling conflicting traffic flows at lj �= 1, it
is not possible to define a simple formula for the probability ρj . Only for lj = 1
in [4] it was found that for the stationary mode, the probability of having at
least one requirement at the intersection along the flow Πj is equal to

ρj = 1− eλjT

2m
(1+e−λjT2j +e−λj(T2j+T2j+1)+ . . .+e−λj(T−T2j−1))(1−λj(1+qj)),

T = T1 + T2 + . . . + T2m. Even this formula is difficult to calculate without a
computer. Therefore, there is a difficult problem of determining the estimate of
ρ̃j for loading ρj on the flow Πj at lj �= 1.

If the necessary and sufficient conditions for the existence of a stationary
mode in a managed queuing system coincide and simply depend on the intensities
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of receipt and maintenance of requirements, then these conditions are usually
the basis for determining the load or, in extreme cases, evaluating the load. So
the necessary and sufficient conditions for existence of stationary regime in the
system according to the flux j according to the results of [4] can be written in
the form

λjT (1 + qj)/lj < 1,

or the equivalent form

λjT (1 + qj)/[μjT2j−1] < 1.

Here μ−1
j determines the average service time requirements of input flow Πj and

lj = [μjT2j−1]. Hence, as an estimate of ρ̃j it is possible to offer a formula of the
form

ρ̃j = ρ̃j(λj , qj , μj , T, T2j−1) = λjT (1 + qj)/[μjT2j−1].

We will consider the chosen estimate ρ̃j acceptable, or suitable, if it satisfies the
following natural requirements:

1. to estimate ρ̃j the following inequality holds 0 < ρ̃j < 1;
2. at T and T2j−1, the evaluation value ρ̃j(λj , qj , μj , T, T2j−1) does not decrease

with increasing each of the parameters λj , qj and does not increase with each
parameter μj , T2j−1;

3. if some changes to the set of parameters λj , qj , μj , T and T2j−1 value
λjT (1 + qj) − [μjT2j−1] approaches zero, then the value of the estimate ρ̃j

should tend to one.

It is easy to verify that the proposed estimate of ρ̃j for

λjT (1 + qj) < [μjT2j−1]

is appropriate. In the future, for the sake of simplicity, we will call the evaluation
of ρ̃j a quasi-load on the flow of Πj . Now we can give the following appropriate
assessment

ρ̃1,2(λ1, q1, μ1, λ2, q2, μ2, T, T1, T3) = ρ̃1 + ρ̃2 − ρ̃1ρ̃2

to download ρ1,2 = ρ1 + ρ2 − ρ1ρ2 system in two flows Π1 and Π2.
Monitor various real experiments show that with increasing system load typ-

ically increases during Tper the transition process for its entry into the quasi-
stationary mode and time computer modeling to calculate its probability and
the numerical characteristics with specified degree of accuracy and reliability.
Because of this, when the choice of algorithm parameters to determine when
Tper the end of the transition process, and the job accuracy and reliability of
calculations of probability and its numerical characteristics substantially over-
look the importance of load estimation system. For the stationary mode of the
system at lj �= 1, it is analytically impossible to obtain observable formulas for
the laws of distribution of queue lengths, service waiting time, and, finally, for
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the laws of distribution of output flows. To obtain estimates of these distribu-
tions, some numerical characteristics for the solution of the optimization problem
to the minimum weighted average waiting time and service requirements in the
arbitrary flow developed a computer simulation videomodel the cyclic control m
flows.

Let the symbol v = 1, 2, . . . specify the sequence number of the request when
it enters the storage Oj of the service system. Denote by γ0

j,v the time (in seconds)
waiting for the v-th request of flow Πj to start serving in a system with zero
initial queues and by γ+

j,v the time (in seconds) waiting for the v-th request of flow
Πj to start serving in a system with specified non-zero initial queues. At the first
stage of simulation, the time Tper (in seconds) of the transition process or the
moment when the system reaches a quasi-stationary mode is calculated. For this
purpose, for each flow Πj , the arithmetic averages were calculated sequentially
in

˜M(γ0
j,v) = v−1(γ0

j,1 + γ0
j,2 + . . . + γ0

j,v), v = 1, 2, . . . ,

observed waiting times in a system with zero initial queues and calculating the
arithmetic mean

˜M(γ+
j,v) = v−1(γ+

j,1 + γ+
j,2 + . . . + γ+

j,v), v = 1, 2, . . . ,

observed waiting times in a system with a given value xj,0 > 0 of the initial queue.
The time Tper for the quasi-stationary regime or the end of time quasiperiodic
process in the system was considered when the first time occurred a multiple of
k at v, the condition of the

|(˜M(γ0
j,v) − ˜M(γ+

j,v))/˜M(γ0
j,v)| < δ

for all j = 1, 2, . . . ,m. Here, the natural number k and 0 < δ < 1 are the
specified parameters of the algorithm for determining the estimate of the time
˜Tper of the transition process. At the second stage, only the system with zero
initial queues was simulated in order to calculate estimates for each of the m
flows with a given accuracy ε for the main characteristics of the system in the
quasi-stationary mode. In this case, the accuracy value ε of a particular estimate
was equal to the product of a certain constant Δ by the value of this estimate. On
the simulation model for the flow Πj in the quasi-stationary mode with a given
reliability β and a given accuracy ε, the following estimates were calculated:

1. assessment ˜M(γj) and ˜D(γj) for mathematical expectation and dispersion,
respectively, for the time γj waiting the maintenance of arbitrary application
Πj ;

2. evaluation of the form

˜M(γ) = (
m

∑

j=1

λj(1 + qj))−1
m

∑

j=1

λj(1 + qj)˜M(γj)

for the expectation of a weighted average time γ of waiting to start service
application arbitrary flow;
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3. evaluation ˜M(κj) and ˜D(κj) for mathematical expectation and respectively
variance of random length κj queue of cars flow Πj at an arbitrary moment
of switching service device condition Γ (2j−1);

4. evaluation ˜M(ξ′
j) and ˜D(ξ′

j) for the mathematical expectation and variance
respectively of a random number ξ′

j requirements of flow Πj , leaving the drive
Oj in the interval T2j−1;

5. the value ρ̃j of the evaluation of kwasiborski system for each flow Πj , and a
value of ρ̃1,2 assessment for the total system load, for example, for flows Π1

and Π2;
6. estimation of the distribution law and view of the relative frequency histogram

for the value ξ′
j .

As an illustration of the effectiveness of the joint application of analytical
methods and the method of simulation modeling, we present the solution of the
following specific problems. The first task is a qualitative and numerical study of
the process of cyclic control of only two of the most intensive traffic flows Π1 and
Π2 at the intersection. Therefore, the traffic light (service device) has four phases
or states Γ (1), Γ (2), Γ (3) and Γ (4). The second task—definition of quasi-optimal
duration T ∗

1 green phase (state) Γ (1) for flow Π1 and quasi-optimal duration T ∗
3

green phase (state) Γ (3) for flow Π2 according to the condition of minimum for
evaluation ˜M(γ) the mathematical expectation of the average weighted waiting
time of the machine maintenance of the arbitrary transport flow.

Software implementation of the simulation model on a computer is performed
by means of Code Gear RAD Studio 2009 development in the Object Pascal lan-
guage. The simulation model can work both in the mode when requests leave
the system in groups, and in the mode when requests are served sequentially one
by one as they arrive. The computer simulation model allows not only to calcu-
late the main characteristics of the intersection operation with a given degree of
accuracy and reliability in the counting mode, and on this basis to find quasi-
optimal flow control, but also allows you to observe in video mode the entire
process of servicing requirements and managing conflict flows on the example of
car traffic at the intersection.

Consider the example of real intersection, for which λ1 = 0.16 vehicle/h,
q1 = 0.3, μ1 = 1 vehicle/s, λ2 = 0.22 vehicle/h, q2 = 0.4, μ2 = 1 vehicle/h,
T2 = T4 = 4 s. Using a simulation model with

k = 2, δ = 0.1, β = 0.9, Δ = 0.02

and modified method of coordinatewise descent was determined quasi-optimal
values of T ∗

1 = 10 s and T ∗
3 = 15 s. the durations of the green phases of the

traffic light for flow Π1 and, respectively, for flow Π2. The values T ∗
1 and T ∗

3

provide a quasi-load of ρ1,2 = 0.8989 and a value of ˜M(γ) equal to 10.903 s. For
comparison, we note that the durations T1 = 41 s and T3 = 51 s used in practice
give a value of ˜M(γ) = 20.265 s and a value of ρ̃1,2 = 0.8049.

Table 1 shows some of the results of counting at points on the curve of equal
quasi-loads, and Table 2 shows all the results of counting on the line T1+T2 = 25.
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Table 1. Values of estimates of the main characteristics on the curve of equal quasi-
loads.

T T1 T3 ˜M(γ1) ˜M(γ2) ˜M(γ) ˜M(κ1) ˜M(κ2) ρ̃1 ρ̃2 ρ̃1,2 ˜D(κ1) ˜D(κ2) ˜D(ξ′
1)

30 9 13 12.883 10.096 11.22 5.1486 6.1482 0.6933 0.711 0.9113 8.7867 11.635 5.598

31 9 14 14.322 9.2331 11.28 5.4963 5.9406 0.7164 0.682 0.9098 10.570 10.270 5.534

32 10 14 12.201 10.529 11.183 5.0690 6.6167 0.6656 0.704 0.9010 8.1432 12.443 6.499

33 10 15 13.148 9.3841 10.903 5.3938 6.1513 0.6864 0.678 0.8989 8.5311 11.086 6.616

34 10 16 14.324 9.1314 11.226 5.8074 6.1556 0.7072 0.655 0.8989 9.3487 11.067 6.409

Table 2. Values of estimates of the main characteristics on the line T1 + T2 = 25.

T T1 T3 ˜M(γ1) ˜M(γ2) ˜M(γ) ˜M(κ1) ˜M(κ2) ρ̃1 ρ̃2 ρ̃1,2 ˜D(κ1) ˜D(κ2) ˜D(ξ′
1)

33 8 17 25.566 7.3854 14.739 8.0262 5.4289 0.858 0.5979 0.9429 25.515 9.0236 3.167

33 9 16 17.434 8.2612 11.957 6.433 5.6971 0.763 0.6353 0.9134 13.925 9.8279 4.901

33 10 15 13.148 9.3841 10.903 5.3938 6.1513 0.686 0.6776 0.8989 8.5311 11.086 6.616

33 11 14 11.571 10.996 11.239 5.0696 6.7562 0.624 0.726 0.8970 8.2046 12.092 7.463

33 12 13 10.104 13.042 11.923 4.6664 7.3472 0.572 0.7819 0.9066 7.2232 16.161 8.385

33 13 12 8.8784 18.37 14.09 4.2971 9.2859 0.528 0.847 0.9278 6.3238 23.606 8.732

33 14 11 7.9915 33.408 23.223 4.1897 14.067 0.490 0.924 0.9613 5.5462 66.607 8.696

Note that the full search includes 431 points. Quasi-optimal duration T ∗
1 = 10

and T ∗
3 = 15 phases of the lights provide an overall quasijarus ρ1,2 = 0.8989 and

the minimum value of ˜M(γ) equal to 10.903, and thereby solve the problem of
optimization by criterion ˜M(γ). For comparison, note that in practice a longer
duration T1 = 41 and T3 = 51 provide a common quasijarus ρ1,2 = 0.80486
and give value assessment ˜M(γ) the weighted average time γ of waiting for the
machine maintenance random flow at that intersection, equal to the amount
of 20,265. Estimates for the mean waiting time of an arbitrary flow, as a rule,
decreases with decreasing values of the period T of the cyclic control. For exam-
ple, for this intersection at a fixed T = 60, the quasi-optimal value for T1 is
20, which provides a total quasi-load of ρ1,2 = 0, 84114 and an estimate of
˜M(γ) = 13, 808. This estimate is less than the value of 20.265, which corre-
sponds to the values of T1 = 41 and T3 = 51. Note that for this intersection
in the region of the existence of a stationary regime, the minimum value of the
total quasi-load is 0.7661, which is achieved at T = 10000, T1 = 4028.

Qualitative and numerical studies on the simulation model allow us to draw
a very important conclusion for output flows in the case of quasi-optimal control
of conflicting flows in the class of cyclic algorithms. In the case of quasi-optimal
control of conflicting flows in the class of cyclic algorithms, the estimate ˜D(ξ′)
of the weighted average variance of the output flow takes relatively small values.
For example, to the intersection with the settings λ1 = 0.16, q1 = 0.3, μ1 = 1,
λ2 = 0.22, q2 = 0.4, μ2 = 1 and T2 = T4 = T0 = 4, with quasi-optimal control
evaluation ˜D(ξ′) weighted average of the variance of output is equal to 9.5337.
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Table 3. Values of performance ratings.

T T1 T3
˜M(γ1) ˜M(γ2) ˜M(γ) ˜D(ξ′

1)

33 10 15 13.148 9.3841 10.903 9.5337

40 12 20 15.096 8.9403 11.398 12.827

60 20 32 18.223 10.854 13.808 22.235

80 27 45 23.493 12.316 16.812 30.993

100 34 58 28.722 14.096 19.979 41.793

In Table 3 for the specified period durations T = 33, 40, 60, 80, 100 cyclic
control is given the appropriate values:

1. quasi-optimal parameters of the durations T1 and T3 phases of the automatic
traffic lights;

2. evaluation ˜M(γ1) for the mean waiting time of the machine maintenance flow
Π1;

3. evaluation ˜M(γ2) for the mean waiting time of the machine maintenance flow
Π2;

4. evaluation ˜M(γ) for the average weighted waiting time of the machine main-
tenance random flow;

5. assessment ˜D(ξ′) for a weighted average of the variance of the output flow.

From this table, it is easy to see that there is a sharp increase in the estimate
˜D(ξ′) for the weighted average variance of the output flow when deviating from
the quasi-optimal values of the control parameters. It is clear that the output
flows of cars from a certain intersection go to the next intersection adjacent to it
and are already input flows for the next intersection. In practice, it is well known
that the control algorithm at the intersection will be simpler (for example, with
a fixed switching rhythm) and the more successful the smaller the variance of
the input flow, i.e. the more standardized the output and input flows are. This
conclusion confirms the often put forward thesis for random experiments with
control that a relatively large value of the variance of some characteristic of a
random experiment is the result of suboptimal control.

Let us consider another example of a qualitative-numerical study of the pro-
cess of cyclic control of conflict traffic flows Π1 and Π2 at a real intersection
using simulation modeling. For example, an intersection was chosen for which

λ1 = 89/2024 ≈ 0.043, q1 = 40/89 ≈ 0.45,

μ1 = 0.9, λ2 = 0.1; q2 = 0.5, μ2 = 1, T2 = T4 = 4.

In this case, the statistical data of the input flow Π1 coincide with the obser-
vations of the real traffic flow, which are given by Bartlett in [21]. The values
of the parameters μ1, μ2, T2 and T4 were also selected from the experience of a
large number of observations of traffic at real intersections. The simulation was



228 A. Fedotkin and E. Kudryavtsev

carried out at different values of the green light durations T1 and T3 for the flow
Π1 and, accordingly, for flow Π2 from the range

{(T1, T3) : λ1(1+q1)(T1+T3+8)−[μ1T1] < 0, λ2(1+q2)(T1+T3+8)−[μ2T3] < 0}.

The curve of equal loads for flows Π1 and Π2 is determined by an equation of
the form

λ2(1 + q2)/[μ2T3] = λ1(1 + q1)/[μ1T1].

After calculating the estimate of each characteristic of the system with a
given accuracy Δ = 0.01 and a given reliability β = 0.9, the simulation of the
process of movement at this intersection ended.

The value ˜M(γ) of the weighted average time γ of waiting for the start of
servicing of the machine of an arbitrary flow at such an intersection is 6.8966,
and the value of the estimate ˜Tper of the time Tper of the transient process is
12426 s.

As a result of analytical studies and a large number of experiments on the
simulation model, several unexpected conclusions can be drawn. For example,
from the calculations it turns out that with an increase in the estimate ρ̃1,2 for
the load of the intersection, the estimate ˜M(γ) of the weighted average waiting
time, which is one of the main numerical characteristics of the system, increases
significantly according to a nonlinear law. On the contrary, with an increase
in the estimate ρ̃1,2 for the load of the intersection, the estimate ˜D(ξ′) for the
weighted average variance of the output flow, which is determined by the formula

˜D(ξ′) = (λ1(1 + q1) ˜D(ξ′
1) + λ2(1 + q2) ˜D(ξ′

2))(λ1(1 + q1) + λ2(1 + q2))−1.

The noted non-linear nature of the dependence of the weighted average waiting
time and the weighted average variance of the output flow on the load is in good
agreement with observations with heavy traffic on the highway, when on average
more than 1800 vehicles per hour arrive at the intersection.

Let’s give an example of traffic flow control at an intersection with parame-
ters:

λ1 = 0.05, q1 = 0.4, μ1 = 0.9, λ2 = 0.1, q2 = 0.5,

μ2 = 1, T2 = T4 = T0 = 4, Tmin = 18, Tmax = 31.

From Table 4, we directly obtain that the minimum value of the estimate of
the weighted average waiting time for the beginning of the crossing through the
intersection of an arbitrary machine is equal to 6.849. This value is reached at
T

(1)
1 = 5 and T

(1)
3 = 9. On the straight line T1 + T3 = 14, the estimates were

determined ˜M(γ1), ˜M(γ2), ˜M(γ), ˜M(κ1), ˜M(κ2), ρ̃1, ρ̃2, ρ̃1,2, ˜D(κ1), ˜D(κ2),
˜D(ξ′

1), ˜D(ξ′
2). The results of calculating these estimates are shown in Table 5.

From Table 5, we determine the quasi-optimal durations T ∗
1 and T ∗

3 , which
are equal to 5 and, respectively, 9. In this case, the length of the cyclic control
period is 22 and the minimum value ˜M(γ) is 6.849. So, to determine the quasi-
optimal durations T ∗

1 and T ∗
3 by the modified coordinate descent method, the

required number of test pairs (T1, T3) is 21.
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Table 4. Estimates values of the main characteristics on the curve of equal quasi-loads.

T T1 T3 ˜M(γ1) ˜M(γ2) ˜M(γ) ˜M(κ1) ˜M(κ2) ρ̃1 ρ̃2 ρ̃1,2 ˜D(κ1) ˜D(κ2) ˜D(ξ′
1)

˜D(ξ′
2)

18 4 6 8.995 6.532 7.314 1.193 2.036 0.42 0.45 0.68 1.950 3.535 1.282 3.489

19 4 7 10.17 5.924 7.276 1.329 1.983 0.44 0.40 0.66 2.267 3.349 1.338 3.943

20 4 8 10.87 5.571 7.236 1.379 1.987 0.46 0.37 0.66 2.268 3.299 1.329 4.363

21 5 8 8.665 6.162 6.961 1.269 2.147 0.36 0.39 0.61 2.028 3.686 1.790 4.669

22 5 9 9.324 5.730 6.849 1.324 2.100 0.38 0.36 0.61 2.099 3.498 1.820 4.930

23 5 10 10.15 5.469 6.957 1.427 2.081 0.40 0.34 0.60 2.335 3.478 1.910 5.369

24 6 10 8.958 6.030 6.969 1.362 2.270 0.33 0.36 0.57 2.195 3.712 2.293 5.547

25 6 11 9.625 5.726 6.970 1.443 2.247 0.35 0.34 0.57 2.315 3.754 2.345 5.961

26 6 12 10.09 5.550 6.987 1.474 2.240 0.36 0.32 0.57 2.346 3.690 2.331 6.129

27 7 12 9.274 5.984 7.025 1.461 2.393 0.31 0.33 0.54 2.268 3.926 2.629 6.228

28 7 13 9.817 5.814 7.079 1.540 2.386 0.32 0.32 0.54 2.391 3.952 2.709 6.748

29 7 14 10.41 5.627 7.151 1.611 2.400 0.33 0.31 0.54 2.502 3.970 2.809 6.980

30 8 14 9.972 6.092 7.323 1.625 2.521 0.30 0.32 0.52 2.494 4.193 3.048 7.168

31 8 15 10.57 5.932 7.405 1.710 2.548 0.31 0.31 0.52 2.690 4.198 3.192 7.338

Table 5. Estimates values of the main characteristics on the straight line T1+T3 = 14.

T T1 T3 ˜M(γ1) ˜M(γ2) ˜M(γ) ˜M(κ1) ˜M(κ2) ρ̃1 ρ̃2 ρ̃1,2 ˜D(κ1) ˜D(κ2) ˜D(ξ′
1)

˜D(ξ′
2)

22 3 11 38.03 4.263 15.00 3.384 1.787 0.77 0.30 0.83 11.77 2.929 0.560 5.129

22 4 10 13.18 4.991 7.592 1.617 1.954 0.51 0.33 0.67 2.806 3.230 1.365 5.062

22 5 9 9.324 5.730 6.849 1.324 2.100 0.38 0.36 0.61 2.099 3.498 1.820 4.930

22 6 8 7.712 6.612 6.956 1.207 2.270 0.30 0.41 0.59 1.803 3.710 2.049 4.599

22 7 7 6.728 7.908 7.509 1.105 2.486 0.25 0.47 0.60 1.755 4.354 2.136 4.343

22 8 6 5.758 9.527 8.309 1.000 2.741 0.22 0.55 0.64 1.535 4.782 2.185 3.686

22 9 5 5.050 12.82 10.24 0.969 3.271 0.19 0.66 0.72 1.436 6.285 2.264 2.803

22 10 4 4.480 26.15 20.03 0.930 5.201 0.17 0.82 0.85 1.404 19.68 2.424 1.483

Thus, to determine the quasi-optimal durations T ∗
1 and T ∗

3 , the proposed
modified coordinate descent method significantly reduces the number of test
pairs (T1, T3) from 134 to 21.

In practice, with heavy traffic on the highway, as a rule, long durations T
of the cyclic control period are used. In this case, it is possible to choose such
durations T1 and T3 of the traffic light phases at which the point (T1, T3) is
relatively far from the boundaries of the region of existence of the stationary
mode. Therefore, with an increase in the intensity of the input flows of cars within
certain limits, the stationary mode at the intersection will still be preserved.
However, at large values of the durations T , T1 and T3, transport delays at the
intersections greatly increase.

4 Conclusion

The system of cyclic conflict flows control was investigated. An analytical study
of the mathematical model was carried out. Some important numerical charac-
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teristics of the system operation cannot be found analytically. The simulation
method is used to solve this problem. Simulation modeling also makes it possible
to find quasi-optimal values of system parameters.
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Abstract. In the framework of the nested optimization scheme for
reducing a multidimensional global search problem to a family of sub-
problems of less dimensions an information-statistical method for solving
internal subproblems of the nested scheme is considered. The method’s
efficiency depends essentially on parameters influencing its convergence
speed and reliability. Two techniques of the parameter randomization
aimed at the acceleration of the reliable global search are studied. The
experimental results of efficiency evaluation for the considered methods
on two multidimensional multiextremal classes of benchmarks of different
dimensions widely used for testing global optimization methods are pre-
sented. The results demonstrate advantages of the randomized techniques
compared to prototypical method with invariable values of parameters.

Keywords: Global optimization · Dimensionality reduction ·
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1 Introduction

Many problems of decision making can be described as optimization models
with a single objective function being multidimensional and multiextremal. Such
the models are widely spread in optimal design, machine learning, forecasting
problems, etc., and within these areas have important practical applications.
Multiextremality causes the significant complexity of the optimization problems
in the multidimensional case as the necessity of finding out the global solution
leads to the exponential growth of the number of function evaluations. The
complexity and diversity of the global optimization problems have been drawing
attention of many scientists (see, for instance, fundamental monographs [1–7])
and served as a source of different approaches both theoretically substantiated
and intuitive (nature-inspired, or meta-heuristic).
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One of the productive approaches to solving multidimensional optimization
problems consists in transformation of the initial problem to an equivalent (in
the sense of coincidence of solutions) set of the subproblems of less dimensions,
as a rule, univariate ones for which there exist many efficient global optimization
methods. This idea was realized, for example, in the methods which use Peano-
type mappings of multidimensional domains into one-dimensional space [4,8].
Another approach proposed in [9,10] is based on the recursive reduction of a
multidimensional problem to a family of univariate subproblems solved by effec-
tive algorithms of one-dimensional global optimization [4,9–16]. This approach
was theoretically substantiated [4,21] and confirmed its quality in comparison
with other global optimization methods [17–21].

The comparative results of the algorithms on the base of the nested scheme
have shown the combination of this scheme with the information-statistical uni-
variate algorithm of global search is very promising [4]. This algorithm has been
constructed as an optimal statistical procedure in the framework of the model
that considers the objective function as a realization of some stochastic process
with properties close to probabilistic analogue of the Lipschitz condition.

Functioning of this algorithm depends considerably on a parameter (called
reliability parameter) included in an estimation of the Lipschitz constant used
by the algorithm in the course of optimization. If the parameter is small then
the sufficient condition of convergence to global optimum can be violated, at
the same time, too large value of the parameter leads to significant increasing
the number of objective function evaluations. The well-founded choice of the
parameter value depends on the information of the problem to be solved. If
you know the Lipschitz constant of the optimized function (as a rule, it is not
realistic) then the parameter should be chosen so that the adaptive estimation of
the Lipschitz constant L is greater than 2L. Another consideration is the more
complicated objective function is optimized the greater parameter should be
taken. So, with small parameter we can lose the convergence to global optimum,
however, with large parameter value the convergence will be guaranteed, but
the method will spent too many evaluations of the objective function. Usually,
to choose a compromise fixed value of the parameter is difficult. In the paper
we propose to realize such the compromise via randomization of the parameter
choice when two parameters, one is small, the second is sufficiently great, are
randomly chosen with a probability.

Two techniques for forming this probability are considered. The first is to
use just a constant probability. The second technique provides the choice of the
parameter as the result of a 2 × 2 zero-sum game in accordance with rules
proposed in [4]. The main idea of this consideration consists, briefly, in the
following. Let us have two different values of the parameter for choosing them in
optimization. We can model this situation as a game with nature which can be in
two states corresponding to given parameter values. The researcher, obviously,
does not know the state of the nature and chooses his/her own value of the
parameter. So, both the researcher and the nature have strategies consisting in
assignment of parameter values. If the players (researcher and nature) choose
the same parameters, the payoff is equal to zero. Otherwise, the payoff is defined
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according to the model in the framework of which the algorithm has been derived.
Under this consideration the choice of the parameter is determined in accordance
with probabilities of the game model.

For evaluation of randomization efficiency a representative experiment on
hundreds of multiextremal functions of different dimensions from known test
classes [15,17,23] being traditional for testing the global optimization methods
has been performed on the base of building the operational characteristics [17,22]
of the methods compared.

The rest of the paper is organized as follows. Section 2 contains the statement
of global optimization problems and the general scheme of nested optimization.
Section 3 is devoted to the consideration of the randomization techniques applied
to information-statistical algorithm of global search. Section 4 describes results
of experimental testing the methods considered. Section 5 concludes the paper.

2 Global Optimization and Nested Dimensionality
Reduction

In the paper a minimization problem

F ∗ = F (x) → min, x ∈ PN ⊆ RN (1)

is considered where the objective function F (x) is multiextremal in the feasible
domain

PN = {x ∈ RN : aj ≤ x ≤ bj , 1 ≤ j ≤ N} (2)

and finding the global minimum F ∗ over the box PN in N -dimensional Euclidean
space RN is the goal of problem solving.

The objective function is additionally supposed to satisfy over the box PN

the Lipschitz condition, i.e., for all x′, x′′ ∈ PN

|F (x′) − F (x′′)| ≤ L ‖x′ − x′′‖ , (3)

where ‖•‖ denotes the Euclidean norm and the Lipschitz constant L > 0.
There exist many numerical methods for solving Lipschitzian problems (1)–

(2), some of them are referenced in Introduction. We will deal with the algorithms
elaborated on the base of ideas of dimensionality reduction connected with the
nested optimization scheme that allows us to replace the search of global mini-
mum in a multidimensional problem with solving a family of univariate problems.
To explain briefly the main scheme of the nested optimization let us introduce
a family of reduced functions in the following manner.

Let a function F (x) satisfy in the domain (2) the Lipschitz condition (3).
Setting FN (x) ≡ F (x) by definition, let us construct a family of functions

F i(ξi) = min{F i+1(ξi, xi+1) : xi+1 ∈ [ai+1, bi+1]}, 1 ≤ i ≤ N − 1, (4)

where ξi = (x1, ..., xi), 1 ≤ i ≤ N .
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According to [9] and [10] the basic relation of the nested optimization scheme

min
x∈PN

F (x) = min
x1∈[a1,b1]

min
x2∈[a2,b2]

. . . min
xN∈[aN ,bN ]

F (x) (5)

takes place. It means that instead of solving the multidimensional problem (1)–
(2) the one-dimensional problem

F 1(x1) → min, x1 ∈ [a1, b1] ⊂ R1, (6)

can be solved.
However, according to (4), each calculation of the function F 1(x1) at some

fixed point x1 ∈ [a1, b1] requires solving the subproblem

F 2(x1, x2) → min, x2 ∈ [a2, b2] ⊂ R1,

which is a one-dimensional minimization problem with respect to x2, since x1 is
fixed (given by the problem (6)).

In turn, each evaluation of the function F 2(x1, x2) with fixed x1, x2 generates
solving the one-dimensional subproblem

F 3(ξ2, x3) → min, x3 ∈ [a3, b3] ⊂ R1,

etc., up to solving the univariate subproblem

FN (ξN−1, xN ) ≡ F (ξN−1, xN ) → min, xN ∈ [aN , bN ] ⊂ R1, (7)

where ξN−1 is fixed (given in preceding subproblems).
Thus, solving the problem (1)–(2) can be reduced to solving a family of

«nested» one-dimensional subproblems

F i(ξi−1, xi) → min, xi ∈ [ai, bi] ⊂ R1, (8)

where the fixed vector ξi−1 ∈ Pi−1 from (2).
Under Lipschitz condition (3) for the objective function F (x), every reduced

function Fi(ξi) is Lipschitzian as well with the same constant L. So, we can apply
for solving subproblems of the family (8) algorithms of univariate Lipschitzian
optimization, for example, the wide class of characteristical methods [17] includ-
ing information-statistical algorithms [4,12,24,25], etc., methods by Piyavskij
[10] and Shubert [26], Bayesian algorithms [3,27–29] and many others.

One of such the algorithms will be considered in the next section. It is a
modification of the basic information-statistical algorithm of global search [4],
but as opposed to it applies randomization techniques for the parameter choice.

3 Randomized Choice of the Algorithm’s Parameter

Let us rewrite one-dimensional subproblems (8) in a unified form

f(t) → min, t ∈ P1 = [a, b]. (9)
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Under general consideration, a numerical method solving a problem (9) builds
in P1 a sequence of points {tk} = {t1, t2, . . . , tk, . . .}, ti ∈ [a, b], i = 1, 2, . . . ,
and computes in these points values vi = f(ti) of the objective function f(t).
Hereinafter the term “trial” will be used for designation of the objective function
evaluation at a point. The algorithm to be considered will be presented in the
characteristical form [17].

3.1 Computational Scheme of the Algorithm

Two first trials are executed by the algorithm at the points t1 = a and t2 = b
with values v1 = f(t1) and v2 = f(t2).

Let k ≥ 2 trials have been executed at points t1, t2, . . . , tk within P1 and
values vi = f(ti), 1 ≤ i ≤ k, have been obtained. In order to get the point of the
next (k + 1)-th trial it is necessary to implement the following operations.

Step 1. Define a set
Tk = {t0, t1, ..., tk−1}

of k − 1 points in the domain P1 = [a, b] consisting of the coordinates of
the preceding trials ti under assumption that the set Tk is ordered (by the
subscript) in the increasing order of the coordinates, i.e.,

a = t0 < t1 < ... < tk−1 = b. (10)

and juxtapose to the points ti, 0 ≤ i ≤ k − 1, the values vi = f(ti), 0 ≤ i ≤
k − 1, of the objective function f(t) calculated at the preceding iterations.

Step 2. Compute

M = max
1≤i≤k−1

∣
∣
∣
∣

vi − vi−1

ti − ti−1

∣
∣
∣
∣

(11)

and accept for j = 1, 2

μj =
{

rjM, M > 0,
1, M = 0, (12)

where r1 > 1 and r2 > 1 are parameters of the method called reliability
parameters.

Step 3. For each interval (ti−1, ti), 1 ≤ i ≤ k − 1, calculate the values

Cj(i) = μj(ti − ti−1) +
(vi − vi−1)2

μj(ti − ti−1)
− 2(vi + vi−1), j = 1, 2, (13)

called characteristics of the interval.
Step 4. Find the numbers q1 and q2 of intervals (tqj−1, tqj ), j = 1, 2, which the

maximal characteristics

Cj(qj) = max
1≤i≤k−1

Cj(i), j = 1, 2, (14)

correspond to.
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Step 5. For a given probability p, 0 < p < 1, get a value γ of a random variable
uniformly distributed over the interval [0, 1], accept q = q1, μ = μ1 if γ < p
and q = q2, μ = μ2 if γ ≥ p. In other words, choose the parameter r1 with
the probability p and r2 with the probability 1 − p.

Step 6. Calculate

tk+1 =
tq + tq−1

2
− vq − vq−1

2μ
(15)

as the point of the next trial and calculate the value vk+1 = f(tk+1).

From the general theory of characteristical algorithms [17] it is easy derived
the sufficient condition of convergence to the global minimum

max{μ1, μ2} > 2L

where L is the Lipschitz constant of the function f(t).
As a representative of the characteristical algorithms, the described method

can use the termination criterion in the form

tq − tq−1 < ε, (16)

where ε > 0 is a predefined accuracy of the search.

3.2 Techniques of Parameter Randomizing

In the computational scheme of the algorithm the manner of assignment for the
probability p was not specified. The simplest way is to take a constant value for
all iterations. The other techniques can be more flexible when the probability
changes adaptively depending on the situation in the course of optimization.
Under such consideration the dynamic choice of the probability as the optimal
result of a zero-sum game will be used. This model has been proposed in [4] in
the framework of the information-statistical approach to building optimization
methods as statistical decision procedures when the optimized function is con-
sidered as a realization of a stochastic process. The algorithm described in pre-
vious subsection is an example of application of this approach. The game model
for parameter choice supposes there are two possible values of the reliability
parameter, r1 and r2, and is not known which value is better for optimization.
Following [30] the unknown value of the parameter can be considered as a state
of nature, and the problem of optimal parameter selection can be stated (under
stochastic assumptions about objective function) as a game with nature. In this
game players (researcher and nature) have strategies consisting in the choice of
parameter value, either r1 or r2. The loss matrix of the game is

r1 r2
r1 0 D(r1, r2)

r2 D(r2, r1) 0
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Here in the case q1 
= q2 for q1, q2 from (14)

D(r1, r2) = ω1 + ω2 − C2(q2),

D(r2, r1) = ω1 + ω2 − C1(q1),

where C1(q1), C2(q2) from (14) and

ωj = rjM(tqj − tqj−1) − (vqj − vqj−1), j = 1, 2.

If q1 = q2 = q then

D(r1, r2) =
1
2
|vq − vq−1|

(

1 − r2
r1

)

,D(r2, r1) =
1
2
|vq − vq−1|

(

1 − r1
r2

)

.

In this game the optimal mixed strategy of the first player (researcher) real-
izes the choice of the parameter r1 with the probability

p =
D(r1, r2)

D(r1, r2) + D(r2, r1)

and the choice of r2 with the probability 1 − p.
After simplification we can rewrite the expression for the probability p as

p =

⎧

⎪⎨

⎪⎩

r1
r1+r2

, q1 = q2,

ω1+ω2−C2(q2)
2ω1+2ω2−C1(q1)−C2(q2)

, q1 
= q2.
(17)

It should be noted that if r1 = r2 then the randomized methods turn into
the basic algorithm of global search.

4 Computational Experiments

For the efficiency estimation of the randomization compared to versions with con-
stant parameter values two series of experiments have been carried out on the
sets of complicated multiextremal functions from well-known test classes [15,23]
widely used for the experimental study of global optimization methods. For com-
parison the concept of operational characteristics [17,22] has been used. This
approach presents the results in a graphical form that allows visual comparing
the effectiveness of the competitive algorithms. Later this approach has been
generalized and presented as the concept of operational zones [31]. The notion
of the operational characteristic consists in the following. There is a set of opti-
mization problems and each of them is solved by an optimization method with
fixed values of its parameters. After this experiment we can calculate the average
number κ of trials (evaluations of objective functions in problems solved) exe-
cuted by the method during optimization and the number π of problems solved
successfully. Repeating optimization of the test problems with other parameters
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we obtain several pairs (κ, π) and the set of those is called operational charac-
teristic of the method. When operational characteristics of several methods are
placed on the same plane (κ, π) it is easily to compare with each other. Namely,
if for given κ the operational characteristic of one method is placed higher than
the operational characteristic of the other method, then the first algorithm hav-
ing spent the same amount of resources (trials) has solved more problems than
the second method.

The results of testing are presented for three versions of the algorithm
described in Subsect. 3.1:

– Algorithm of Global Search with Constant reliability parameter r (acronym
AGSC);

– Algorithm of Global Search with Fixed probabilty p at Step 5 of the com-
putational scheme (acronym AGSF) for the random choice of the reliability
parameter from two possible values r1 and r2;

– Algorithm of Global Search with Adaptive probability p (acronym AGSA)
determined from the solution (17) of the game model of optimal choice from
two parameters r1 and r2.

These methods were tested with different parameters r, r1, r2 and p (the
latter parameter only for AGSF) and in each variant the points of operational
characteristics were built for several values of the accuracy ε from the termination
criterion (16).

The first series of experiments was carried out on the test class [15,17] consist-
ing of 100 two-dimensional multiextremal problems. Table 1 contains the aver-
age numbers of trials κ and the numbers of successfully solved problems π in
dependence on the accuracy ε for AGSC with different values of the reliability
parameter r.

Table 1. Results for invariable reliability parameter

ε 0.05 0.03 0.2 0.01 0.008 0.004 0.002 0.001 0.0005

r = 1.5 κ 101 124 168 258 284 479 899 1722 4480
π 61 78 83 82 82 82 84 84 85

r = 2 κ 174 226 299 469 533 821 1432 2473 5888
π 72 88 90 91 91 94 96 96 97

r = 2.5 κ 226 326 432 691 794 1255 1936 3518 6164
π 76 94 97 98 98 99 99 99 99

r = 3 κ 281 424 553 913 1048 1662 2567 4079 7085
π 74 97 99 99 99 100 100 100 100

r = 4 κ 419 637 910 1516 1760 2671 4018 6128 9716
π 78 97 100 100 100 100 100 100 100

r = 5 κ 497 817 1226 2110 2458 3839 5829 8779 13610
π 76 94 100 100 100 100 100 100 100
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Operational characteristics based on the data from Table 1 are shown in
Fig. 1. The abscissa axis corresponds to the criterion κ and is presented in the
logarithmic scale and the ordinate axis reflects the criterion π.

Fig. 1. Operational characteristics of AGSC

As we can see, AGSC with small parameters do not solve all the test prob-
lems even for high given accuracy because for some test problems the sufficient
condition of global convergence does not meet. On the other hand, algorithm
with high parameter values executes essentially more trials.

Now let us consider the simple randomization when parameters r1 and r2
are chosen with a fixed probability at all the iterations of the method. First of
all, two parameters are taken with equal probability p = 0.5 and then the first
parameter is chosen with the probability p = 0.3 and the second with p = 0.7.
The experimental results can be found in Table 2. These results are presented as
operational characteristics in Fig. 2 along with data of AGSC for comparison.

In comparison with AGSC, randomizing the parameters gives better results if
the accuracy ε is rough, however, for high reliability when it is necessary to solve
all the problems AGSC attains this aim faster than AGSF with equal probabil-
ities of randomizing. It takes place because of influence of lesser parameter and
if we diminish its probability then randomizing algorithm becomes more posi-
tive. In particular, the method with r1 = 2, r2 = 5, p = 0.3 exceeds AGSC. So,
we can improve functioning the algorithm with invariable parameter by means
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of random mixing different values of the reliability factor, however, instead of
looking for a good parameter value we have to find an efficient probability.

At last, let us look at results of randomized mixing small and high parameters
in the framework of the game model (17) in two versions when AGSA works
with r1 = 1.5, r2 = 4 and with r1 = 2, r2 = 5. Table 3 contains the results of this
experiment.

In Table 3 the rows labeled as Speedup contain acceleration coefficients of
AGSA compared to AGSC with r2 and the same accuracy ε. Here the acceleration
coefficient α is defined as

α =
κC

κA
, (18)

Table 2. Results of AGSF

ε 0.05 0.03 0.2 0.01 0.008 0.004 0.002 0.001 0.0005

r1 = 1.5, r2 = 4 κ 158 201 267 452 564 967 1889 3884 6927
p = 0.5 π 66 84 93 97 97 99 99 100 100
r1 = 2, r2 = 5 κ 211 313 438 746 892 1695 2944 5140 9440
p = 0.5 π 69 93 99 99 99 99 100 100 100
r1 = 1.5, r2 = 4 κ 218 315 379 703 882 1718 2930 5160 8280
p = 0.3 π 82 95 96 98 98 100 100 100 100
r1 = 2, r2 = 5 κ 276 417 611 1135 1418 2543 4493 7284 11638
p = 0.3 π 75 96 100 100 100 100 100 100 100

Fig. 2. Operational characteristics of AGSF and AGSC
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Table 3. Results for adaptive randomization by AGSA

ε 0.05 0.03 0.2 0.01 0.008 0.004 0.002 0.001 0.0005

r1 = 1.5 κ 220 291 389 693 854 1634 2770 4839 80073
r2 = 4 π 82 96 96 100 100 100 100 100 100
Speedup 1.90 2.19 2.34 2.19 2.06 1.64 1.45 1.27 1.20
r1 = 2 κ 295 417 603 1085 1336 2367 4150 6678 11343
r2 = 5 π 78 99 100 100 100 100 100 100 100
Speedup 1.68 1.96 2.03 1.94 1.84 1.62 1.40 1.31 1.20

where κC is number of trials spent by AGSC and κA is number of trials executed
by AGSA.

Operational characteristics of AGSA and AGSC with r = 4 and r = 5 are
presented in Fig. 3.

Fig. 3. Operational characteristics of AGSA and AGSC

As it follows from Table 3 and Fig. 3 the randomized algorithm has signifi-
cant advantage over opponent with invariable parameter. AGSA accelerates the
search in all the cases and can be faster up to two times. Moreover, as opposed
to AGSF it is free from the necessity to guess appropriate probability of ran-
domizing.

The second experiment with algorithms mentioned above was conducted for
100 multiextremal 3-dimensional functions from the test class GKLS [23] with
tuned complexity. The test functions defined in the box P3 with ai = −1, bi =
1, 1 ≤ i ≤ 3, were generated with the following parameters of the class:
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– number of local minima - 50;
– radius of the attraction region of the global minimizer - 0.2;
– distance from the global minimizer to the vertex of the paraboloid - 0.5.

Some of the most interesting results can be found in Table 4.
The line Speedup contains the acceleration coefficients (18).
The top parts of operational characteristics built according to data from

Table 4 are shown in Fig. 4.

Table 4. GKLS experiments

ε 0.05 0.03 0.2 0.01 0.008

AGSC κ 10334 20797 35939 75971 89820
r = 4 π 40 89 100 100 100
AGSC κ 14264 32912 60497 129524 153115
r = 5 π 36 99 100 100 100
AGSF p = 0.3 κ 7994 15990 29692 77506 97785
r1 = 2, r2 = 5 π 44 96 99 100 100
AGSA κ 5026 9721 16516 40097 54046
r1 = 1.5, r2 = 4 π 64 92 99 100 100
AGSA κ 7797 14748 27973 68842 92112
r1 = 2, r2 = 5 π 65 92 100 100 100
Speedup 1.83 2.23 2.16 1.88 1.66

Fig. 4. GKLS experiment
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As well as in the 2-dimensional case, the algorithm AGSA with randomization
on the base of the game theory model demonstrates the best results. It accelerates
the global optimum search in comparison with the method AGSC with invariable
parameter up to 2.3 times for different accuracies and achieves the global solution
sought for all the test functions faster than its rivals.

5 Conclusion

In this paper the nested optimization scheme in combination with the core
information-statistical algorithm of global search is considered. For accelerat-
ing the optimization two techniques of algorithm’s parameter randomization are
studied. These techniques allow balancing rapid convergence and reliability of
the method which depend contradictorily on its parameter. Efficiency of these
techniques are estimated in a representative experiment on two sets of com-
plicated multiextremal functions of different dimensions taken from well-known
test classes widely used for testing global optimization algorithms. The results
of the experiment demonstrate the randomization techniques allow achieving
significant acceleration in comparison with the core algorithm with invariable
parameter. The most efficient technique is the random choice of the parameter
realized as an optimal mixed strategy in a game theory model.

As a further way to continue investigations in this direction, the comparison
and combination with acceleration techniques on the base of other approaches,
for example, local tuning [15,24,32], monotonous transformations [19,20] and
multiple Lipschitz constants [33], could be interesting. Moreover, the develop-
ment of parallel versions of the considered algorithms can be promising for solv-
ing optimization problems of high dimensions.

References

1. Horst, R., Pardalos, P.M.: Handbook of Global Optimization. Kluwer Academic
Publishers, Dordrecht (1995)

2. Pintér, J.D.: Global Optimization in Action. Kluwer Academic Publishers, Dor-
drecht (1996)

3. Mockus, J., Eddy, W., Mockus, A., Mockus, L., Reklaitis, G.: Bayesian Heuris-
tic Approach to Discrete and Global Optimization. Kluwer Academic Publishers,
Dordrecht (1996)

4. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints:
Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)
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Abstract. The purpose of the work is to calculate the evolutionar-
ily stable strategy of zooplankton diel vertical migrations from known
data of the environment using principles of evolutionary optimality and
selection.

At the first stage of the research, the fitness function is identified using
artificial neural network technologies. The training sample is formed
based on empirical observations. It includes pairwise comparison results
of the selective advantages of a certain set of species. Key parameters of
each strategy are calculated: energy gain from ingested food, metabolic
losses, energy costs on movement, population losses from predation and
unfavorable living conditions. The problem of finding coefficients of the
fitness function is reduced to a classification problem. The single-layer
neural network is built to solve this problem. The use of this technology
allows one to construct the fitness function in the form of a linear con-
volution of key parameters with identified coefficients.

At the second stage, an evolutionarily stable strategy of the zooplank-
ton behavior is found by maximizing the identified fitness function. The
maximization problem is solved using optimal control methods. A feature
of this work is the use of piecewise linear approximations of environmen-
tal factors: the distribution of food and predator depending on the depth.

As a result of the study, mathematical and software tools have been
created for modeling and analyzing the hereditary behavior of living
organisms in an aquatic ecosystem. Mathematical modeling of diel ver-
tical migrations of zooplankton in Saanich Bay has been carried out.

Keywords: Diel vertical migrations of zooplankton · Fitness
function · Ranking order · Machine-learned ranking · Pattern
recognition · Optimal control

1 Introduction

The phenomena of daily recurring vertical migrations of zooplankton were dis-
covered more than two hundred years ago [1]. The study of the marine zooplank-
ton’s behavior is of great importance due to zooplancton is a key link in the food
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chain. It plays a decisive role in the aquatic ecosystem; its diel migrations rep-
resent one of the most significant synchronous movements of biomass on earth.
As a result, they affect carbon exchange and the climate of the planet [2–5]. In
this regard, the problem of mathematical modeling of zooplankton’s diel vertical
migrations is of great importance [6–12].

Currently, Darwin’s idea “survival of the fittest” is effectively used for mod-
eling biological processes [13,14]. It is possible to predict the results of evo-
lution and to study the direction of changes in ecological systems comparing
fitness of different biological species. Maximizing the fitness function provides
the possibility to identify evolutionarily stable hereditary behavioral strategies
(i.e. strategies that persist in the community against the appearance of possible
mutations [15]). In particular, the use of the fitness concept for modeling diel
migrations of zooplankton provides the opportunity to explain the quantitative
characteristics of the behavior and its dependence on the age of an individ-
ual [16–18]. In this case, the main difficulty is the identification of the fitness
function and its parameters.

There is a general approach to solving this problem based on studying the
dynamics of a population distribution over the space of hereditary elements.
This approach was proposed in [19] and was further developed in a series of
works [20–22]. It was shown that on the set of hereditary elements it is possible
to introduce a partial ranking order reflecting selective advantages by analyzing
the long-term dynamics of the corresponding numbers of individuals [23]. The
fitness function is introduced as a comparison function expressing the given
ranking order. Then the problem of identifying the fitness function is reduced to
expressing this function through the known hereditary features of elements.

In [24], the methodology for deriving the mathematical expression of the
fitness function was developed for wide classes of population models, taking
into account age heterogeneity. However, the parameters and coefficients of the
model cannot quite often be measured empirically, and by themselves presuppose
identification making the restoration of the fitness function much more difficult.
Therefore, it seems interesting to construct the fitness function directly on the
basis of the known population dynamics. In this case, the problem of restoring
the fitness function is a special case of the well-known ranking problem [25].
For its solution, there is a wide arsenal of computer methods, in particular,
machine learning methods (learning-to-rank) [26–32]. In [33,34], the problem of
ranking hereditary elements and identifying the corresponding fitness function
was reduced to the problem of classification - dividing ordered pairs of elements
into two classes: “the first element is better than the second” and “the second
element is better than the first”.

In this work, this technique is used to identify the fitness function of diel ver-
tical migrations of zooplankton. Parameters of the fitness function are identified
on the basis of empirical observations. A feature of this work is the use of piece-
wise linear approximations of the distribution of food and predator depending
on the depth of immersion. An evolutionarily stable behavior strategy is found
by maximizing the identified fitness function using optimal control methods. As
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a result, mathematical modeling of diel vertical migrations of zooplankton in
Saanich Bay is carried out.

2 Materials and Methods

The present study is based on the following methodology for comparing the
selective advantages of hereditary elements (behavior strategies) [24]. Let some
compact metric space V of hereditary elements v be given. For example, such
elements v can be continuous functions. Each element v at each moment of time t
is assigned a certain number ρ(v, t) (indicator of presence), which numerically
characterizes the presence of v in the community at time t. The indicator of
presence satisfies the following requirements: it is zero when the element is not
present in the community; it is strictly larger than zero when the element is
presented to the community; the indicator is continuously dependent on time;
its tendency to zero corresponds to the loss (extinction, disappearance) of this
element in the community. This indicator can be the number, biomass of the
subpopulation with a given hereditary element, the density of distribution of
the population in the space of hereditary elements, etc.

Using the introduced indicator of presence, the selective advantages of various
hereditary elements are compared with each other, namely, it is considered that
the element v is better than the element w if

lim
t→∞

ρ(w, t)
ρ(v, t)

= 0. (1)

In the case when the presence indicator is uniformly above bounded (the
community size is uniformly above bounded), the limit (1) means that the ele-
ment v displaces the element w from the community over time. Thus, a partial
order of selective advantages is given on the set V .

It is assumed that the introduced order can be expressed using the compar-
ison functional J(v), that is, there is a functional that satisfies the condition
J(v) > J(w) if and only if v is better than w. Then the functional J is a fitness
function reflecting the selective advantages of hereditary elements.

If the change of the presence indicator in time is uniquely determined by a
finite set M(v) = (M1(v), . . . , Mn(v)) of key hereditary parameters (features)
of the element v, then the functional J will be a function of these parameters:
J(v) = J(M(v)). If this function is sufficiently smooth, then it is expedient to
use Taylor’s expansions for its approximation. The simplest approximation is a
linear convolution of key parameters

J(M) =
n∑

i=1

λiMi.

Here, the weights λi reflect the impact of each key parameter on overall
fitness. The problem of identifying the fitness function is reduced to determining
the values of the convolution coefficients.
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It is obvious that the representation of the function J in the form of a linear
combination of key parameters is not always possible. In the case when the
linear approximation problem is unsolvable, it is necessary to use a higher order
approximation - second, third, etc. But in this case, too, the problem is reduced
to finding the coefficients of the corresponding Taylor approximation [25,34].
Here we consider the simplest case of linear approximation, but the developed
approach can be successfully applied to higher order approximations [25,34].

If it is known that the element v is better than the element w (from the analysis
of thedynamicsof thepresence indicator), then the inequalityJ(M(v)) > J(M(w))
should be fulfilled, respectively, the coefficients λi should satisfy the inequality

n∑

i=1

λiMi(v) >

n∑

i=1

λiMi(w).

Knowing the results of comparing hereditary elements from a certain finite
set, one can build a system of linear inequalities with respect to the convolution
coefficients, which can be solved using linear programming methods [17].

Nevertheless, identification of these coefficients is also possible based on clas-
sification methods [33,34]. Let us associate an ordered pair of elements (v, w)
with a point M(v) − M(w), a pair (w, v) with a point M(w) − M(v) in the
n-dimensional space of key parameters. Then the hyperplane

n∑

i=1

λiMi = 0

should separate these points from each other. A certain set of pairs of hereditary
elements with known comparison results defines in a n-dimensional space two sets
of points that must lie on opposite sides of this hyperplane. Thus, the problem
of finding the convolution coefficients is reduced to finding the components of
the normal to the separating hyperplane. This is the classification problem, for
the solution of which there is a sufficient arsenal of well-proven methods [26].
For example, the separating hyperplane can be constructed using the Fisher
determinant [35]. The classification problem is solved quite simply by the nearest
neighbors method, but this method has limited application here, since it does
not always allow one to find the coefficients of the separating hyperplane. One of
the promising methods for solving this problem is the construction of a learning
neural network [36,37].

The formulated problem is also a special case of the pattern recognition
problem [33,34]. But in contrast to classical problems of this type, here it is not
a simple assignment of an element to one of the two classes, but a comparison
of elements according to the principle “better or worse”. Such a comparison
is equivalent to recognizing the belonging of ordered pairs of elements “first,
second” to one of two classes: “the first is better than the second” or “the first
is worse than the second.”

The use of machine learning methods is more preferable than the use of
traditional linear programming methods [17]. Classical methods are extremely
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sensitive to the accuracy of the values of key parameters for a set of elements from
the training set. A small inaccuracy in the values of key parameters can lead to
the incompatibility of the system of linear inequalities. To obtain an acceptable
estimate of the convolution coefficients, it is necessary to use a sufficiently large
training set (hundreds of elements), and this leads to technical difficulties in
resolving a large system of inequalities. Adding new elements to the training set
may result in the need for software updates. These problems are absent in the
case of using machine learning methods.

As the experience of using various methods shows [34], the greatest effect
can be obtained by using neural networks to solve the set problem. The neural
networks technology provides greater flexibility of the algorithm with regard to
expanding the training set, adding new experimental results of pair comparison.
The use of neural networks provides a lower error rate compared to the nearest
neighbors method.

It is known from the results of numerous studies that the main environmental
factors affecting the behavior of zooplankton are: the degree of saturation of the
water layer (with a vertical coordinate x) with food (phytoplankton) E0(x),
metabolic costs E2(x) for maintaining viability in the water layer x (depends
on the temperature of the layer), the number of predators (fish) Sx(x) in the
water layer x, the predator activity St(t) depending on the time of day t, the
presence of unfavorable factors G(x) in the water layer, such as temperature,
hydrogen sulfide concentration, etc. [1,6]. All of these factors are mathematically
represented as functions of vertical coordinate or time.

Let us introduce a coordinate system so that x = 0 coincides with the water
surface; x = −D is the level of the lethal hydrogen sulfide concentration (max-
imum immersion depth); x = −C is the level, below which there are neither
predators feeding on zooplankton, nor phytoplankton, which feeds on zooplank-
ton (D, C – positive constants, C < D). Let t be a time of day ranging from 0
to 1, with 0 being noon, 1/2 – midnight, 1 – next noon.

We take the following approximations of external factors:

E0 =
{

σ1(x + C), x > −C,
0, x < −C;

Sx =
{

σ2(x + C), x > −C,
0, x < −C;

St = cos 2πt + ε cos 6πt + 1; S = Sx · St; G = δ(x + D/2)2; E2 = σ3(x + D).
In addition, it is assumed that the metabolic costs of zooplankton vertical

migrations are proportional to the kinetic energy of movement, which in turn is
proportional to the square of the speed: E1 = ẋ2.

On the one hand, the introduced functions E0, E1, E2, S,G represent a good
approximation to the actually observed data, on the other hand, their rel-
ative simplicity allows us to investigate and solve the optimization problem
analytically.
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Figures 1, 2, 3 and 4 show the graphs of the functions E0(x), G(x), Sx(x), St(t) at
D=120, C = 50, ε = −0.013, σ1 = 0.018, σ2 = 1.8, σ3 = 1, (which corresponds
to the data of empirical observations [1,6,18]).

Fig. 1. Amount of food (E0(x)).
Dots show the empirical data.

Fig. 2. Additional mortality caused
by approaching habitat boundaries
(G(x)).

Fig. 3. Mortality due to predation
Sx(x). The curve line shows the
given observations and the line seg-
ments represent its approximation.

Fig. 4. Number of attacks in time
(St(t)).

3 Results

3.1 Fitness Identification

The linear approximations of the fitness function were built using a neural net-
work.

Let x(t) be the hereditary strategy of the zooplankton behavior, the depth
of immersion depending on the time of day. It is obvious that the function x(t)
must be continuous periodic with a period T = 1 (one day). This implies the
condition x(0) = x(1). It is also assumed that this function is smooth.
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It is possible to calculate the key parameters of the behavioral strategy v on
the base of known functions of external factors

M1(v) =
∫ 1

0

E0(x(t)) dt, M2(v) = −
∫ 1

0

Sx(x(t))St(t) dt,

M3(v) = −
∫ 1

0

E1(x(t)) dt = −
∫ 1

0

ẋ2 dt,

M4(v) = −
∫ 1

0

G(x(t)) dt, M5(v) = −
∫ 1

0

E2(x(t)) dt

and the corresponding vector M(v) = (M1(v),M2(v),M3(v),M4(v),M5(v)).
It is assumed that the fitness function depends on these parameters linearly

as follows

J(v) = αM1(v) + γM2(v) + βM3(v) + δM4(v) + ξM5(v)

or

J(v) =
∫ 1

0

(αE0 − βE1 − γS − δG − ξE2)dt. (2)

Weighting coefficients α, γ, β, δ, ξ determine the impact of each factor on over-
all fitness. The problem is to find the values of these coefficients.

The linear form of the fitness function corresponds to the energy balance
equation discussed in [38]. This equation assumes that the population repro-
ductive effect consists of the energy gain from food, minus the energy costs for
vertical movements, population losses as a result of predation, and losses due to
unfavorable living conditions.

To solve this problem, it is necessary to use information about known strate-
gies of behavior. We can compare strategies v and w with each other, if we know
the long-term dynamics of corresponding indicators ρ(v, t) and ρ(w, t). Then we
can use the described above technology to estimate the coefficients α, γ, β, δ, ξ
on the base of comparison results for a certain set of pairs.

To solve this problem, a single-layer neural network was built, which allows
us to recognize pairs of hereditary strategies by their belonging to two classes -
“the first strategy is better than the second” or “the second strategy is better
than the first”.

This mathematically corresponds to constructing a hyperplane in a five-
dimensional space separating two sets of points.

The coordinates of the normal of the constructed hyperplane correspond to
the values of the required coefficients α, γ, β, δ, ξ.

For the computer solution using neural network technologies, the following
standard free software was used: Scikit-learn machine learning library for the
Python programming language, Pandas software library in Python for data pro-
cessing and analysis.

The training sample was built taking into account the empirical results of
observing the behavior of zooplankton [18,39]. It contains comparing results for
202 strategies or 2031 pairs.
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The training sample was divided at a percentage of 70% for training by 30%
for testing using the train test split module from the sklearn.model selection
library. The quality of training was assessed using the Logloss metric. The learn-
ing error in this metric is 9.99e−16. The second check method was also used,
using the cross val score function from the sklearn.model selection library. The
recognition is performed with an accuracy of 96.3%.

Figure 5 shows a visualization of the solution to the corresponding classifica-
tion problem.

Fig. 5. Solution of the linear classification problem for two classes of pairs of strategies.

Here the projections of the points of the training sample are shown. They cor-
respond to different pairs of strategies onto the plane of two key parameters that
have the meaning of food consumed per day – M1 and daily losses from predators
– M2. The projections have coordinates (M1(v) − M1(w),M2(v) − M2(w)). The
crosses mark the points corresponding to the pairs (v, w) for which v is better
than w; the circles mark the points for which v is worse than w. The straight
line corresponds to the intersection of the separating hyperplane and the plane
of the parameters M1 and M2. The graph shows that the hyperplane accurately
separates two classes of points from each other.

Found values of fitness coefficients are α = 344.444, β = 3.25·10−5, γ = 1.461,
δ = 0.03, ξ = 2.24.

3.2 Optimization Problem Solution

The problem of constructing the evolutionarily stable strategy for zooplankton
was solved as an optimal control problem [16,22,40–42] by maximizing the fitness
function (2).
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Let us introduce the notation

u(t) = ẋ(t)

then the function u can be regarded as a control.
The conjugate system and transversality conditions have the following

form [40]

ψ̇ =
{

(ασ1 − γσ2(cos 2πt + ε cos 6πt + 1) − 2δ(x + D/2) − ξσ3, x > −C,
−2δ(x + D/2) − ξσ3, x < −C;

ψ(0) = ψ(1).

According to the minimum principle [40], the Hamilton function

Hτ [u] = ψu + βu2

attains its minimum at the optimal control u(τ) for almost all times τ . Hence
it follows that the optimal strategy x(t) of zooplankton behavior should satisfy
the following conditions

ẍ − δ
β x = 1

2β (γσ2(cos 2πt + ε cos 6πt + 1) − ασ1 + δD + ξσ3), x > −C;

ẍ − δ
β x = 1

2β (δD + ξσ3), x < −C.

Note that the functional (2) is symmetric with respect to the replacement
of the variable t by τ = 1 − t. Therefore, the solution in the interval 0 ≤ t ≤ 1
must be symmetric with respect to the time instant t = 1/2 and satisfy the
condition ẋ(1) = −ẋ(0). Taking into account the periodicity of the solution, we
conclude that ẋ(1) = ẋ(0) = 0.

Then the optimal solution x(t) is a continuous connection of functions

x = C1 cosh
(√

δ
β (t − 1

2 )
)
− γσ2

2

(
cos 2πt
4π2β+δ + ε cos 6πt

32π2β+δ

)
− γσ2−ασ1+δD+ξσ3

2δ , x > −C;

x = C2 cosh
(√

δ
β t

)
− δD+ξσ3

2δ , x < −C, t < 1/2;

x = C2 cosh
(√

δ
β (1 − t)

)
− δD+ξσ3

2δ , x < −C, t > 1/2.

The constants C1 and C2 were calculated numerically to ensure a continuous
connection. One can calculate the value of the constant C2 with a fixed arbitrary
constant C1, at which two functions are continuously connected. Then one can
choose such C1, at which functional (2) reaches its maximum. The standard
Maple 17 package was used to solve the problem numerically.

Figure 6 shows the calculated trajectory of zooplankton movement in compar-
ison with the empirically observed strategy of vertical movement of zooplankton
in Saanich Bay [39]. Found constants are C1 = −0.003, C2 = 0.054.
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Fig. 6. Comparison with experimental data obtained on 01.04.2010 from Saanich. The
dotted line indicates the path most likely followed by zooplankton, and the continuous
line is the line obtained by our model with D=120, C =50, α=344.444, β=3.25 ·10−5,
γ = 1.461, δ = 0.03, ξ = 2.24, ε = −0.013, σ1 = 0.018, σ2 = 1.8, σ3 = 1 and constants
C1 = −0.003, C2 = 0.054.

4 Summary

This study continues a series of works by the authors devoted to modeling the
behavior of a zooplankton population using the principles of evolutionary opti-
mality and selection. It is shown how artificial neural networks can be used to
identify the fitness function of living organisms. The fitness function is built on
the basis of pairwise comparison of the selective advantages of a certain set of
species. The problem of finding the coefficients of the fitness function is reduced
to the problem of classification. The parameters of the fitness function are iden-
tified on the basis of empirical observations.

Mathematical and software tools have been created for modeling and analyz-
ing the hereditary behavior of living organisms in an aquatic ecosystem, deter-
mining their evolutionarily stable strategy and predicting changes in the system.

A feature of this work is the use of piecewise linear approximations of the
distribution of food and predator depending on the depth of immersion. An evo-
lutionarily stable strategy of zooplankton behavior is found by maximizing the
identified fitness function by optimal control methods. As a result, mathematical
modeling of diel vertical migrations of zooplankton in Saanich Bay is carried out.

It should be noted that results of work were implemented in the educa-
tional process of Lobachevsky State University of Nizhny Novgorod. The results
are used within studying of the discipline “Mathematical modeling of selection
processes” [43,44]. They are used for the providing final qualification works of
bachelors and masters. It provides the close connection of science and education
and corresponds to the modern trends of the education modernization [45].
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Abstract. In this paper, we consider multi-objective minimax prob-
lems with criteria being maxima of functionals. We determine a domain
in the criteria space containing Pareto optimal points. The upper bound-
ary of this domain corresponds to Pareto suboptimal solutions minimiz-
ing maxima of weighted sums of these functionals, while the lower one
is computed using the same Pareto suboptimal solutions. This domain
allows to evaluate a “proximity” of any solutions of the multi-objective
problem to Pareto optimal solutions, which minimize weighted sums of
the criteria. The proposed approach is applied to multi-objective control
designs for continuous and discrete LTV systems and LTI systems over
finite and infinite time horizons, respectively. The criteria used are H∞
norms with transients for several controlled outputs. Pareto suboptimal
controls in such problems turn out to be H∞ controls with transients
for combined outputs. State feedback gains of these controllers are com-
puted in terms of solutions to differential or difference LMIs. Numerical
example illustrates the theoretical results.

Keywords: Multi-objective control · Pareto set · H∞ norm with
transients · Differential/Difference linear matrix inequalities

1 Introduction

Real control problems are multi-objective, as a rule. Finding the Pareto set, and
hence the Pareto optimal solutions, i.e. unimprovable for all criteria simultane-
ously, is a complex problem. Traditionally, it is reduced to the single-criterion
minimization of the so-called optimal cost function in the form of a certain con-
volution of the selected criteria. The most convenient convolution is a weighted
sum of criteria. Multi-objective minimax problems with maxima of certain func-
tionals as criteria are especially difficult to solve in view of the optimal cost
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function to be a weighted sum of the maxima of different functionals. There
are only a few multi-objective control problems for which Pareto optimal solu-
tions have been found: linear-quadratic Gaussian controls in [1] and H2 optimal
controls in [2] based on the Q-parametrization of stabilizing controllers for LTI
systems on the infinite time interval, as well as generalized H2 optimal controls
in [3,4] for LTV systems on a finite horizon and LTI systems on the infinite
horizon. In [5,6], Pareto suboptimal controls were derived for multi-objective
problems with N criteria in the form of H∞ and γ0 norms, whose relative losses,
in comparison with the Pareto optimal ones, do not exceed 1 − √

N/N .
Multi-objective control problems with criteria involving H∞ norms or H∞

norms with transients, taking initial conditions into account explicitly, are
beyond the scope of more standard design techniques as, for example, those
based on Riccati equations. In order to cope with such problems the concept
of the mixed H2/H∞ norm and the Lyapunov shaping paradigm were intro-
duced in [7–12] to force all Lyapunov matrices used in several constraints to
be the same. This is the more important source of conservatism related to the
multi-objective control design. This conservatism was demonstrated by [13,14]
with using genetic algorithms. The technical restriction of using a single Lya-
punov function was to some extent ruled out in the approach based on extended
or dilated LMI characterizations for design specifications; see [15,16]. This is
obtained at the expense of imposing conservative constraints on the extra instru-
mental variables. In [17], a certain approach was used, which involved obtaining
finite-dimensional Q-approximations of Pareto optimal controllers for the syn-
thesis of a two-objective control. In all these studies, the question remains unan-
swered to what extent the values of the individual criteria in the closed-loop
systems with multi-objective controls, synthesized taking into account the addi-
tional constraints or on the basis of approximations, exceed the corresponding
values of the criteria for Pareto optimal controls.

To answer this key question it is required either to know Pareto set itself
or locate this set inside a domain with certain boundaries. However, there have
been no theoretical results and corresponding technique to date that would have
allowed to do it in multi-objective control problems with H∞ criteria. This is
exactly the question our paper addresses.

The contribution of the paper is twofold. First, an universal technique for
multi-objective minimax problems including those with H∞ criteria is proposed
to compute two-sided boundaries of a domain containing Pareto optimal points.
We derive Pareto suboptimal solutions corresponding to the upper boundary of
this domain in the criteria space and evaluate quantitatively a “proximity” of
these solutions to Pareto optimal ones. Second, in order to implement this tech-
nique, we propose a new characterization of H∞ norm with transients for LTV
continuous and discrete time systems over finite horizon in terms of differential
and difference LMIs, respectively.

The paper is organized as follows. In Sect. 2, we consider multi-objective
minimax problems and demonstrate how to assess two-sided boundaries of the
domain in which the Pareto optimal points being the minima of the weighted
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sum of criteria are located. These boundaries for two-objective minimax prob-
lems are upper and lower curves, between which the specified domain is located.
Pareto suboptimal solutions are defined to correspond to the upper boundary of
the specified domain and an assessment of their suboptimality index is given. In
Sect. 3, we revisit the characterizations of H∞ norm with transients, presented
in [18] in terms of differential matrix Riccati equations for LTV continuous time
systems on finite horizon and in [19,20] in terms of LMIs for LTI continuous
and discrete time systems on the infinite horizon. We provide new characteri-
zations of H∞ norm with transients in terms of differential/difference LMIs for
continuous/discrete LTV systems on finite horizon. In Sect. 4, LMI based Pareto
suboptimal controls are synthesized for multi-objective problems involving H∞
norm with transients design specifications. Illustrative example for two-objective
problems is given in Sect. 5. The final conclusions are made in Sect. 6.

2 Two-Sided Boundaries of a Domain Containing Pareto
Optimal Points

The problem is to find Pareto optimal solutions in a multi-objective problem with
criteria Ji(Θ), i = 1, . . . , N , each of which is a maximum of some nonnegative
function Fi(Θ,ω) ≥ 0 with respect to some variables ω ∈ Ω, i.e.

Ji(Θ) = sup
ω∈Ω

Fi(Θ,ω), i = 1, . . . , N. (1)

We remind that solution ΘP is said to be Pareto optimal if there doesn’t exist
such a solution Θ that inequalities Ji(Θ) ≤ Ji(ΘP ), i = 1, . . . , N hold, with at
least one inequality being strict (see, for example [21]). Pareto set is the point set
in the N -dimension criterion space corresponding to all Pareto optimal solutions

P = {J(ΘP ) = (J1(ΘP ), . . . , JN (ΘP ))}.

The most convenient technique of finding Pareto optimal solutions is the
weighted sum scalarization, i.e. by solving a single objective problem for the
so-called optimal cost function in the form of the weighted sum of criteria

Jα(Θ) =
N∑

i=1

αiJi(Θ) ∀α ∈ S,

S = {(α1, . . . , αN ) : αi > 0,
N∑

i=1

αi = 1}.

As is well-known, parameters Θα minimizing the optimal cost function

min
Θ

Jα(Θ) = Jα(Θα) = μ(α)

are Pareto optimal solutions of the multi-objective problem [21]. Denote the
point set in the criteria space corresponding to Θα for all α ∈ S as follows

PL = {J(Θα) = (J1(Θα), . . . , JN (Θα)) ∀α ∈ S} .
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Generally speaking, it may not exhaust the whole Pareto set, i.e. PL ⊆ P.
It is rather difficult to immediately find the solutions Θα of the multi-

objective minimax problems, since the optimal cost functions for such problems
turn out to be weighted sums of the maxima of different functions. To overcome
this difficulty let us estimate the optimal cost function from below, replacing the
sum of the weighted maxima by the maximum of the weighted sum

Jα(Θ) =
N∑

i=1

αi sup
ω∈Ω

Fi(Θ,ω) ≥

sup
ω∈Ω

N∑

i=1

αiFi(Θ,ω) = sup
ω∈Ω

Fα(Θ,ω) = Ĵα(Θ).
(2)

Let us call

Ĵα(Θ) = sup
ω∈Ω

N∑

i=1

αiFi(Θ,ω)

the suboptimal cost function, and

Θ̂α = arg min
Θ

Ĵα(Θ), Ĵα(Θ̂α) = μ−(α) ∀α ∈ S (3)

the Pareto suboptimal solutions of the multi-objective problem. We will show
that one can specify the boundaries of the domain in the criteria space, which
contains the subset PL, and thus estimate the suboptimality index of the solu-
tions Θ̂α.

0
Π−

α Πα Π+
α

J(Θα)

J(Θ̂α)

J1

J2

Fig. 1. Pareto optimal point J(Θα) located between hyperplanes

The equality

Jα(Θα) =
N∑

i=1

αiJi(Θα) = μ(α)
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means that in the criteria space, the point J(Θα) belongs to hyperplane Πα (see
Fig. 1) with equation

nT
αJ = μ(α), nT

α = (α1, . . . , αN ).

The distance of this hyperplane to the origin is equal to dα = |nα|−1μ(α). Since

μ+(α) =
N∑

i=1

αiJi(Θ̂α) ≥
N∑

i=1

αiJi(Θα) = μ(α), (4)

Pareto suboptimal solution Θ̂α corresponds to the point J(Θ̂α), which belongs
to the hyperplane Π+

α with equation nT
αJ = μ+(α). This hyperplane is at the

distance d+α = |nα|−1μ+(α) ≥ dα from the origin.

0

Σ0

Σ−
α

J1

J2

Fig. 2. Domain Σ0 containing Pareto optimal points

Since

μ(α) =
N∑

i=1

αiJi(Θα) ≥ Ĵα(Θα) ≥ Ĵα(Θ̂α) = μ−(α), (5)

the distance from point J(Θα) to the origin is not less than d−
α = |nα|−1μ−(α),

which is the distance from the hyperplane Π−
α with equation nT

αJ = μ−(α) to
the origin, i.e. dα ≥ d−

α . Thus, Pareto optimal point J(Θα) ∈ Πα is located
between two parallel hyperplanes Π−

α and Π+
α .

Let us define the sets

Σ−
α =

{

(J1, . . . , JN ) :
N∑

i=1

αiJi < μ−(α), Ji ≥ 0
}

,

Σ+
α =

{

(J1, . . . , JN ) :
N∑

i=1

αiJi ≤ μ+(α), Ji ≥ 0
}

,

Σ− =
⋃

α∈S
Σ−

α , Σ+ =
⋃

α∈S
Σ+

α , Σ0 = Σ+\Σ−

(6)
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and prove that Pareto optimal points J(Θα) ∈ PL belongs to the set Σ0 (see
Fig. 2).

Since
N∑

i=1

αiJi(Θα) ≤
N∑

i=1

αiJi(Θ̂α) = μ+(α),

we get J(Θα) ∈ Σ+. Now we will show that, for any fixed α̂ ∈ S, one has
J(Θα̂) �∈ Σ−, i.e. J(Θα̂) �∈ Σ−

α for all α ∈ S. It follows from (5) that J(Θα̂) �∈ Σ−
α̂ .

Let there exist α �= α̂ such that J(Θα̂) ∈ Σ−
α , i.e.

N∑

i=1

αiJi(Θα̂) < μ−(α). Since

μ−(α) = Ĵα(Θ̂α) ≤ Ĵα(Θα) ≤ Jα(Θα) = μ(α),

we have
N∑

i=1

αiJi(Θα̂) <

N∑

i=1

αiJi(Θα),

i.e. Jα(Θα̂) < Jα(Θα). However, this is contrary to the fact that Θα provides
the minimum of the optimal cost function Jα(Θ). Thus, Θα ∈ Σ0 and we arrive
at the following statement.

Theorem 2.1. The set PL corresponding to Pareto optimal solutions Θα

minimizing optimal cost functions Jα(Θ) =
∑N

i=1 αi supω∈Ω Fi(Θ,ω) for all α ∈
S is a subset of Σ0 defined in (6), (4), (5).

For two-objective problems the lower and upper boundaries of the domain
Σ0 in the criteria space (J1, J2) are envelopes of families of straight lines

αJ1 + (1 − α)J2 = Ĵα(Θ̂α),
αJ1 + (1 − α)J2 = αJ1(Θ̂α) + (1 − α)J2(Θ̂α).

Note that the straight lines J1 = minΘ J1(Θ) and J2 = minΘ J2(Θ) correspond
to α = 1 and α = 0, respectively.

Now it is possible to assess the quality of Pareto suboptimal solutions Θ̂α

in relation to Pareto optimal solutions Θα. For a quantitative estimate of the
proximity between Pareto suboptimal and optimal solutions we introduce the
suboptimality index

η = max
α∈S

d+α − d−
α

d+α
= max

α∈S
μ+(α) − μ−(α)

μ+(α)
.

The suboptimality index is determined by the relative value of the maximum
“distance” between the boundaries of the set Σ0. The closer η to zero, the more
accurate the estimate of the Pareto set and the closer to each other the values
of the corresponding criteria for Pareto suboptimal and optimal solutions.

3 H∞ Norm with Transients

In this section, we consider the system performances, which will be chosen as
criteria in multi-objective control problems. Let an LTV system be governed by
the equation
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∂x = A(t)x(t) + B(t)v(t), x(t0) = x0

z(t) = C(t)x(t) + D(t)v(t), t ∈ [t0, tf ], (7)

where ∂ denotes differential operator for continuous-time systems or shift opera-
tor, i.e. ∂x(t) = x(t+1), for discrete-time systems, x ∈ Rnx is the state, v ∈ Rnv

is the disturbance and z ∈ Rnz is the controlled output. H∞ norm with tran-
sients of the system (7) on finite horizon [t0, tf ] from input v to output z under
an uncertain initial state for given weighting matrices of initial state R = RT > 0
and terminal state ST = S ≥ 0 is defined as

γ∞, 0 = sup
x0, v

(‖z‖2[t0, tf ]
+ xT(tf )Sx(tf )

xT
0 R−1x0 + ‖v‖2[t0, tf ]

)1/2

, (8)

where supremum is taken over all initial states x(t0) = x0 and all disturbances
v ∈ L2 or v ∈ l2 which are not vanished simultaneously. The following notations

‖ξ‖2[t0, tf ]
=

tf∫

t0

|ξ(t)|2dt, ‖ξ‖2[t0, tf ]
=

tf−1∑

t=t0

|ξ(t)|2

are used for continuous- or discrete-time systems, respectively. If the initial state
is zero, H∞ norm with transients becomes the standard H∞ norm, and if the
disturbance is absent, i.e. v(t) ≡ 0, H∞ norm with transients becomes γ0 norm
(see [20] for details) corresponding to the maximal disturbance attenuation level
caused by uncertain initial states. When S = 0, the terminal state is not taken
into account in H∞ norm with transients.

In [18], it was established that H∞ norm with transients for LTV continuous-
time systems on finite horizon is computed by solving the Riccati differential
equation with initial and terminal conditions. The following theorem shows that
H∞ norm with transients for continuous- or discrete-time systems on finite hori-
zon can be calculated by minimizing a linear function under differential or dif-
ference LMI constraints.

Theorem 3.1. Let the inequality

γ2I − DT(t)D(t) > 0 ∀t ∈ [t0, tf ] (9)

be fulfilled for a given γ. H∞ norm with transients of system (7) satisfies inequal-
ity γ∞, 0 < γ if and only if differential LMI

⎛

⎝
−Ẏ (t) + Y (t)AT(t) + A(t)Y (t) ∗ ∗

BT(t) −I ∗
C(t)Y (t) D(t) −γ2I

⎞

⎠ ≤ 0 (10)

for continuous time t ∈ [t0, tf ] or difference LMI
⎛

⎜
⎜
⎝

−Y (t + 1) ∗ ∗ ∗
Y (t)AT(t) −Y (t) ∗ ∗

BT(t) 0 −I ∗
0 C(t)Y (t) D(t) −γ2I

⎞

⎟
⎟
⎠ ≤ 0 (11)
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for discrete time t = t0, . . . , tf − 1, equality

Y (t0) = R (12)

and LMI (
Y (tf ) ∗

S1/2Y (tf ) γ2I

)

> 0 (13)

are feasible with respect to Y (t) > 0 and γ2 > 0.
Proof. We will give a sketch of proof for continuous-time case. The full proof

including the discrete-time case is presented in [22]. Firstly, we will show that
the inequality γ∞, 0 < γ implies inequalities (10) or (11), (13), and equality (12).
Let us define functional

J̄(v) = γ2
[
‖v‖2[t0, tf ]

+ xT
0 R−1x0

]
− ‖z‖2[t0, tf ]

(14)

on trajectories of the system (7). The inequality γ∞, 0 < γ is equivalent to

J̄(v) > xT(tf )Sx(tf )
∀x0 ∈ Rnx , ∀v ∈ L2 : xT

0 R−1x0 + ‖v‖2[t0, tf ]
�= 0.

(15)

Consider the minimization problem of the functional (14) with respect to v(t),
which is feasible due to (15). Let us introduce Bellman function

V (t, x) = min
v

{
γ2

[
‖v‖2[t0, t] + xT

0 R−1x0

]
− ‖z‖2[t0, t]

}
,

where x = x(t) is the system state at the moment t. The corresponding Bellman
equation has the form

min
v(t)

(
−V̇ − |z|2 + γ2|v|2

)
= 0,

V (t0, x) = γ2xTR−1x.
(16)

It is not difficult to verify that the solution of this minimization problem for
the continuous-time system is a quadratic form V (t, x) = xTQ−1(t)x, where the
matrix Q(t) satisfies the Riccati equation

Q̇ = AQ + QAT + QCTCQ + (BT + DTCQ)T×
(γ2I − DTD)−1(BT + DTCQ), Q(t0) = γ−2R.

(17)

From Eq. (16) it follows that inequality

V̇ + |z|2 − γ2|v|2 ≤ 0 (18)

is fulfilled for V (t, x) = xTQ−1(t)x along any trajectory of the system (7)
under any disturbances v(t). The last inequality can be rewritten in the form of
quadratic inequality ξTMξ ≤ 0, ξT = (xT vT), where matrix M is negatively
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semi-definite. Some simple manipulations with inequality M ≤ 0 and substitu-
tion Q = γ−2Y imply (10). Note that according to (17) we have Y (t0) = R.
Finally, from (15) it follows

J̄(v) ≥ V (tf , x(tf ))
= γ2xT(tf )Y −1(tf )x(tf ) > xT(tf )Sx(tf )

that is equivalent to γ2Y −1(tf ) > S. Subsequent application of Schur’s lemma
results in LMI (13). Therefore, the necessity part of the theorem is proven.

Now, let LMIs (10) or (11), (13), and equality (12) be feasible with respect
to Y (t) > 0 and γ2 > 0. It is easy to verify that function V (t, x) = γ2xTY −1(t)x
satisfies (18) along trajectories of system (7). Integrating or summing these
inequalities over interval [t0, tf ] and taking into account (13), we get

‖z‖2[t0, tf ]
+ xT(tf )Sx(tf ) < γ2

[
xT
0 R−1x0 + ‖v‖2[t0, tf ]

]

for any disturbance v and initial state x0. Therefore, γ∞, 0 < γ, which concludes
the proof.

For internally stable LTI system (7) with A(t) ≡ A, B(t) ≡ B, C(t) ≡ C,
D(t) ≡ D, H∞ norm with transients, standard H∞ norm, i.e. for zero initial
state, and γ0 norm over infinite horizon are defined as

γs
∞, 0 = sup

x0, v

‖z‖[0, ∞)
(
xT
0 R−1x0 + ‖v‖2[0, ∞)

)1/2
,

γs
∞ = sup

v �=0

‖z‖[0, ∞)

‖v‖[0, ∞)
, γs

0 = sup
x0 �=0

‖z‖[0, ∞)
(
xT
0 R−1x0

)1/2
,

where superscript s corresponds to a stationary system.
Theorem 3.2. H∞ norm with transients for internally stable LTI system

(7) over infinite horizon satisfies inequality γs
∞, 0 < γ if and only if LMIs

⎛

⎝
Y AT + AY ∗ ∗

BT −I ∗
CY D −γ2I

⎞

⎠ < 0, Y > R (19)

for the continuous-time system or
⎛

⎜
⎜
⎝

−Y ∗ ∗ ∗
Y AT −Y ∗ ∗
BT 0 −I ∗
0 CY D −γ2I

⎞

⎟
⎟
⎠ < 0, Y > R (20)

for the discrete-time system are feasible with respect to Y and γ2.
The proof of this theorem follows immediately from the papers [19] and [20]

for continuous- and discrete-time systems, respectively.
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4 Synthesizing Pareto Suboptimal H∞ Controllers with
Transients

The control problem we wish to address is that of designing a linear time-varying
state-feedback controller u = Θ(t)x that reduces all controlled outputs zi, i =
1, . . . , N of an LTV system governed by the equation

∂x = A(t)x(t) + Bv(t)v(t) + Bu(t)u(t),
zi(t) = Ci(t)x(t) + Dv i(t)v(t) + Du i(t)u(t). (21)

More specifically, consider a multi-objective control problem with squared H∞
norms with transients as criteria

Ji(Θ) = sup
x0, v

‖zi‖2[t0, tf ]
+ xT(tf )Six(tf )

xT
0 R−1x0 + ‖v‖2[t0, tf ]

, i = 1, . . . , N.

According to (2) the suboptimal cost function for this problem can be written
as

Ĵα(Θ) = sup
x0, v

‖zα‖2[t0, tf ]
+ xT(tf )Sαx(tf )

xT
0 R−1x0 + ‖v‖2[t0, tf ]

,

where
zα(t) = [Cα(t) + Du α(t)Θ(t)]x(t) + Dv α(t)v(t), (22)

Cα(t)=

⎛

⎜
⎝

α
1/2
1 C1(t)

· · ·
α
1/2
N CN (t)

⎞

⎟
⎠ ,Du α(t)=

⎛

⎜
⎝

α
1/2
1 Du 1(t)

· · ·
α
1/2
N Du N (t)

⎞

⎟
⎠ ,

Dv α(t) =

⎛

⎜
⎝

α
1/2
1 Dv 1(t)

· · ·
α
1/2
N Dv N (t)

⎞

⎟
⎠ , Sα =

N∑

i=1

αiSi.

This means that Ĵα(Θ) is the squared H∞ norm with transients of system (21)
with combined output zα and terminal state matrix Sα. Therefore, Pareto sub-
optimal solutions to this multi-objective problem are the corresponding optimal
H∞ controls with transients for all α ∈ S. To compute state-feedback gains
of these control laws one should replace matrices A(t), B(t), C(t) and D(t) in
LMI (10) for the continuous-time case or LMI (11) for the discrete-time case by
the matrices A(t)+Bu(t)Θ(t), Bv(t), Cα(t)+Du α(t)Θ(t), Dv α(t), respectively,
and introduce variables Z(t) = Θ(t)Y (t). Solving the corresponding LMIs with
Y (t0) = R and terminal state matrix Sα, we get Θ̂α(t) = Z(t)Y −1(t). Note that
to calculate the state-feedback gain in the continuous-time case a discretization
of the differential LMIs is needed. Pareto suboptimal solutions to multi-objective
problems with standard H∞ or γ0 norms as criteria are computed in similar way
under Y (t0) = 0 or B(t) ≡ 0, respectively.

Let us consider multi-objective control problems for LTI systems described
by the Eq. (21), u = Θx with stationary matrices and criteria being squared H∞
norms with transients
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Ji(Θ) = sup
x0, v

‖zi‖2[0, ∞)

xT
0 R−1x0 + ‖v‖2[0, ∞)

, i = 1, . . . , N.

In this case, the suboptimal cost function will be as follows

Ĵα(Θ) = sup
x0, v

‖zα‖2[0, ∞)

xT
0 R−1x0 + ‖v‖2[0, ∞)

for all α ∈ S, where combined output zα(t) is defined as in (22) with all sta-
tionary matrices. This is H∞ norm with transients for the combined output
zα(t). Gain matrices Θ̂α of Pareto suboptimal state-feedbacks are computed as
Θ̂α = ZY −1 by solving LMIs (19) or (20), in which matrices A, B, C and D
are replaced by matrices A + BuΘ, Bv, Cα + Du αΘ and Dv α, respectively, and
Z = ΘY .

5 Illustrative Example: Vibration Isolation

Consider a mechanical two-degree-of-freedom system consisting of an elastic
body modeled by elastically linked material points connected to a moving base
by means of an isolator. This system is described by the equations

ẍ1 = −2βẋ1 + βẋ2 − 2x1 + x2 + v + u,
ẍ2 = −β(ẋ2 − ẋ1) − x2 + x1 + v

with nonzero initial states, where x1 and x2 are coordinates of the material points
with respect to the moving base, u is the active component of the isolator, v is the
external disturbance coinciding up to a sign with acceleration of the moving base,
β = 0.1 is the damping parameter. The vibration isolation problem is to find
a stationary state-feedback control u = θ1x1 + θ2x2 + θ3ẋ1 + θ4ẋ2 minimizing
in Pareto sense both the deformation of the mechanical system and the force
generated by the isolator. Let the controlled outputs be as follows

z1 = (x1, x2 − x1)�, z2 = −x1 − βẋ1 + u,

then the corresponding H∞ norms with transients over infinite horizon can be
chosen as the performance measures of the system.

By using inequalities (19) for R = I, we find domain Σ0 and suboptimal-
ity index η = 0.2768 (Fig. 3). The point A with coordinates (4.256, 5.582),
obtained for α = 0.64, belongs to the upper boundary of domain Σ0 and
the corresponding state-feedback gain of the Pareto suboptimal controller is
Θ = (−1.7651, 0.7337, −2.7555, −2.6619)T.

For comparizon we synthesized multi-objective controls by using LMI for-
mulations for each H∞ norm with transients in the framework of the Lyapunov
shaping paradigm. More precisely, state-feedback gains of these controllers were
determined when solving the problem inf J2(Θ) provided that J1(Θ) < γ2 with γ
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Fig. 3. Localization of Pareto set in the vibration isolation problem

being a parameter. They are computed as Θ̃γ = ZγY −1
γ , where Yγ and Zγ are the

solutions to the problem inf γ2
2 subject to two pairs LMIs of the form (19), in one

of which matrices A, B, C, D are replaced by matrices A+BuΘ, Bv, C1+Du 1Θ,
Dv 1, respectively, and in the other by matrices A + BuΘ, Bv, C2 + Du 2Θ, Dv 2,
γ = γ2, and Z = ΘY . The point B with coordinates (4.959, 5.913) in Fig. 3 cor-
responds to state-feedback gain Θ = (−0.472, 0.252, −1.745, −1.385)T of one
from these controllers.

6 Conclusion

The paper deals with multi-objective problems with maxima of several function-
als as criteria. The maxima of the weighted sums of these functionals are defined
as the suboptimal cost functions and their minima as Pareto suboptimal solu-
tions. We pick the domain in criteria space that contains Pareto optimal points
corresponding to minima of weighted sums of criteria. The upper and lower
boundaries of this domain are computed by means of the Pareto suboptimal
solutions. This allows to evaluate a “proximity” for any suboptimal solutions to
the optimal ones. This approach is applied to multi-objective control problems
with criteria being H∞ norms with transients for several controlled outputs.
It turned out that Pareto suboptimal controls in these problems are H∞ con-
trols with transients for combined outputs. The state-feedback gains of these
controllers for continuous and discrete LTV systems over finite horizon are char-
acterized in terms of differential or difference LMIs, whereas for LTI systems
over infinite horizon, in terms of LMIs.



272 D. Balandin et al.

References
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14. Molina-Cristóbal, A., Griffin, I., Fleming, P., Owens, D.: Linear matrix inequalities
and evolutionary optimization in multiobjective control. Int. J. Syst. Sci. 37(8),
513–522 (2006)

15. Oliveira, M., Geromel, J., Bernussou, J.: An LMI optimisation approach to multi-
objective controller design for discrete-time systems. In: Proceedings IEEE CDC,
Arizona, pp. 3611–3616 (1999)

16. Ebihara, Y., Hagiwara, T.: Characterisations for continuous-time control multi-
objective controller synthesis. Automatica 40(8), 2003–2009 (2004)

17. Hindi, H., Hassibi, B., Boyd, S.: Multiobjective H2/H∞-optimal control via finite
dimensional Q- parametrization and linear matrix inequalities. In: Proceedings
1998 American Control Conference, Philadelphia, pp. 3244–3249 (1998)

18. Khargonekar, P., Nagpal, K., Poolla, K.: H∞ control with transients. SIAM J.
Control Optim. 29(6), 1373–1393 (1991)

19. Balandin, D.V., Kogan, M.M.: LMI based H∞- optimal control with transients.
Int. J. Control 83(8), 1664–1673 (2010)

20. Balandin, D.V., Kogan, M.M., Krivdina, L.N., Fedyukov, A.A.: Design of gener-
alized discrete-time H∞-optimal control over finite and infinite intervals. Autom.
Remote Control 75(1), 1–17 (2014)

21. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin - Heidelberg (2005).
https://doi.org/10.1007/3-540-27659-9

22. Balandin, D.V., Biryukov, R.S., Kogan, M.M.: Multi-objective H∞ controls with
transients. Automatica. submitted for publication

https://doi.org/10.1007/3-540-27659-9


Estimating a Set of the States in the Case
of an Error in the Measured Output for

Controlled System

Alexander A. Fedyukov(B)

Lobachevsky State University of Nizhni Novgorod, 603950 Nizhny Novgorod, Russia

Abstract. In the problem of state stabilization under constraints on
state and control variables, it is assumed that the state of the system is
measurable. However, in real situations, the state of the system is mea-
sured, as a rule, with an error. Therefore, the question of the possibility
of using the obtained controller in this situation remains open. In this
article, we study the problem of estimating the set of admissible initial
states for a dynamic system, in which the controller obtained in the state
feedback control synthesis problem under constraints imposed on state
and control variables, will provide stabilization even in the case when
the system state is measured with an error. The sufficient conditions
are derived in terms of linear matrix inequalities to estimate the set of
admissible initial states of a dynamical system. The solution is based
on the application of the method of Lyapunov functions and technique
of linear matrix inequalities. The key point in the proof of the theo-
rem is the application of the S-procedure being non-defective under two
constraints. As an example, the problem of stabilization of an inverted
pendulum is considered. Numerical experiments have confirmed the the-
oretical results.

Keywords: Stabilization · Linear matrix inequalities · State feedback
control

1 Introduction

There are different ways of constructing controllers [1–6], including a method
based on the use of the technique of linear matrix inequalities [1]. In the problem
of state stabilization, it is assumed that the state of the system is measurable and
control is constructed in the form of linear state feedback. With the help of mod-
ern software (for example, software for engineering calculations MATLAB [7]),
we can get the parameters of such a controller. At the same time, a situation
is possible when the obtained solution cannot be physically implemented. This
is due to the fact that the synthesis of linear control laws based on the linear
model of the controlled object can be effectively applied only where the linear
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model more or less adequately describes the real object, i.e. in a limited region
of phase space. Note also that in real operating conditions the system must be
in the area of its permissible states. In this regard, it becomes necessary to take
into account the limitation on the phase variables of the object and control in
the model. The problem of control synthesis under given constraints is complex
and relevant at the present time [2,3,8].

In [2,3], the problem of synthesis of state control is considered and solved,
which provides stabilization of a dynamic object under constraints on state and
control variables. In the phase space, the set of admissible initial states of the
system is obtained, at which the controller stabilizes the system. However, in
real situations the state of the system is measured, as a rule, with an error.
Therefore, the question of the possibility of using the controller obtained in [2,3]
remains open in this situation.

In this article, we study the problem of estimating the set of admissible initial
states for a dynamic system, in which the controller obtained in the state feed-
back control synthesis problem under constraints imposed on state and control
variables, will also provide stabilization in the case when the state of the system
is measured with an error. The sufficient conditions are derived in terms of linear
matrix inequalities to estimate the set of admissible initial states of a dynamical
system. The solution is based on the application of the method of Lyapunov
functions and technique of linear matrix inequalities. The key point in the proof
of the theorem is the application of the S-procedure being non-defective under
two constraints [9]. As an example, the problem of stabilization of an inverted
pendulum is considered. Numerical experiments have confirmed the theoretical
results.

2 Preliminary Information

Consider a controlled object

ẋ = Ax + Bu, x(0) = x0, (1)

zi = Cix + Diu, i = 1, 2, ..., N, (2)

where x ∈ Rn—state of the system, u ∈ Rl control, zi ∈ Rmi—controlled system
outputs; A, B, Ci and Di—given matrices of appropriate sizes.

The problem of stabilizing the object (1) using control in the form of linear
state feedback

u = Kx, (3)

which ensures the asymptotic stability of the closed-loop system (1), (2), (3) and
its fulfillment for given values γi of the constraints

max
t≥0

|zi(t)| ≤ γi , i = 1, 2, ..., N, (4)

was discussed in [2,3]. Using the technique of linear matrix inequalities and the
non-degradation of the S-procedure for quadratic inequalities [10], conditions
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were formulated on the set of initial states, starting from which the phase tra-
jectories of system (1), closed by control (3), asymptotically approached the zero
state and did not go beyond boundaries of the set defined by constraints (4). To
solve the control synthesis problem in [3], a linear system with a constraint is
analyzed. Consider the asymptotically stable linear system

ẋ = Ax, (5)

z = Cx,

where the matrix A is Hurwitz, i.e. all eigenvalues of this matrix have strictly
negative real parts. The problem is posed of finding a set of initial states x(0) =
x0, starting from which the phase trajectory does not go beyond the set defined
by the constraint

max
t≥0

|z(t)| ≤ γ, (6)

for a given value γ > 0.
Note that if a function V (x) = xT Y −1x with a matrix Y = Y T > 0 is

a quadratic Lyapunov function of system (5), then all trajectories of this sys-
tem outgoing from a set E(Y ) = {x : xT Y −1x ≤ 1}, bounded by an ellipsoid
xT Y −1x = 1, inscribed in the region of the phase space specified by the inequal-
ity |z(t)| ≤ γ, satisfy constraint (6). In the matrix inequality Y > 0, the sign
“>” means the positive definiteness of the matrix Y , i.e. uT Y u > 0, ∀u ∈ Rn,
u �= 0. It is shown in this paper that the region of the phase space, defined by the
union of all such sets E(Y ) for all possible Lyapunov functions of the indicated
form, can be distinguished in terms of linear matrix inequalities.

Theorem 1. If the matrix Y = Y T > 0 satisfies the system of linear matrix
inequalities

Y AT + AY < 0,(
Y Y CT

CY γ2I

)
≥ 0,

(7)

then all trajectories of system (5) with initial conditions x(0) ∈ E(Y ) satisfy
constraint (6).

This theorem was formulated and proved in [2,3].
Note that there are a lot of matrices Y , satisfying the system of matrix

inequalities (7). This, in turn, means that there are many sets of initial states
determined by the corresponding ellipsoids. Therefore, there is a desire to find a
set that is maximum in accordance with some criterion. In particular, maximiza-
tion of the trace of the matrix Y under the constraints specified by linear matrix
inequalities (7), or maximization of the volume of the corresponding ellipsoid
can serve as criteria for searching for a set possessing, in a sense, “maximum”
size.

In the case of analyzing an asymptotically stable linear system with several
constraints, we define the set of initial states of the “largest” size as the set
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obtained by the intersection of ellipsoids with “maximal” sizes corresponding to
each of these constraints.

The key point in solving the problem of stabilizing the plant (1) in the class of
linear state feedbacks (3) under constraints (4) is the choice of a single Lyapunov
function of the closed-loop system subject to constraints and the application of
the S-procedure being non-defective under one constraint [10]. This allows us
to represent sufficient conditions for finding the matrix of parameters of the
controller (3) in terms of linear matrix inequalities. An S-procedure under one
constraint is a trick that allows us to replace two inequalities for quadratic forms
with their equivalent single inequality. It is as follows. Let there be an inequality

F (x) < 0, x �= 0, (8)

for all x ∈ Rn, satisfying the inequality

G(x) ≤ 0, (9)

where F (x) and G(x) are quadratic forms. Then we can compose a quadratic
form S(x) = F (x) − λG(x) and consider the inequality

S(x) < 0, x �= 0, (10)

for some λ ≥ 0. Replacing inequalities (8) and (9) by inequality (10) is called an
S-procedure.

It is obvious that the fulfillment of (10) implies the fulfillment of (8) under
condition (9). But the converse is also true. Provided that exists x0 for which
G(x0) < 0, the fulfillment of inequality (8) under condition (9) implies the
existence λ > 0, for which holds the inequality

F (x) − λG(x) < 0, x �= 0.

In this case, it is said that the S-procedure being non-defective for one restriction.
The authors use this technique in [2,3] for everyone i, which allows us to reduce
the process of finding a single Lyapunov function of a closed-loop system to
solving a system of linear matrix inequalities.

If a function V (x) = xT Y −1x with a matrix Y = Y T > 0 is a single quadratic
Lyapunov function of system (1), closed by control (3), then all trajectories of
this system outgoing from a set E(Y ) = {x : xT Y −1x ≤ 1}, bounded by an
ellipsoid xT Y −1x = 1, inscribed in the phase space region defined by inequalities
|zi(t)| ≤ γi, i = 1, 2, ..., N , satisfy constraints (4). In [2,3] was formulated and
proved the following theorem.

Theorem 2. If matrices Y = Y T > 0, Z and values γi > 0, i = 1, 2, ..., N ,
satisfy the system of linear matrix inequalities

Y AT + AY + ZT BT + BZ < 0,(
Y Y CT

i + ZT DT
i

CiY + DiZ γ2
i I

)
≥ 0, i = 1, 2, ..., N,

(11)



Estimating a Set of the States 277

then all trajectories of system (1) closed by control (3) with initial conditions
x(0) ∈ E(Y ) satisfy constraints (4). The matrix of parameters of the control law
(3) for a dynamical system with constraints is calculated as

K = ZY −1. (12)

Note that if the matrix of parameters of the control law (12) is found,

then for all initial states x(0) ∈
N⋂

i=1

E(Yi) the phase trajectories of system

(1) closed by control (3) will asymptotically approach the zero state and not
go beyond the boundaries of the set defined by constraints (4). Here the sets
E(Yi) = {x : xT Y −1

i x ≤ 1} are obtained as sets of initial states x(0) = x0 for
an asymptotically stable linear system for which the phase trajectory does not
go beyond the limits of the set defined by the constraint max

t≥0
|zi(t)| ≤ γi. In this

case, it is desirable to choose sets E(Yi) that have, in a certain sense, “maxi-
mum” size (for example, in the sense of maximizing the trace of the matrix Yi,
or maximizing the volume of the corresponding ellipsoid).

As noted above, the key point in solving the problem of stabilization of
the plant (1) in the class of linear state feedbacks (3) under constraints (4) is
the choice of a single Lyapunov function of the closed-loop system taking into
account the constraints. This is due to the fact that otherwise, choosing our own
Lyapunov function for each constraint max

t≥0
|zi(t)| ≤ γi, we arrive at the system

of bilinear matrix inequalities

AT Xi + KT BT Xi + XiA + XiBK < 0,(
γ2

i Xi CT
i + KT DT

i

Ci + DiK I

)
≥ 0, i = 1, 2, ..., N,

relatively unknown matrices Xi = XT
i > 0, i = 1, 2, ..., N and K. At present,

there are no computationally efficient numerical methods for solving this class
of problems.

Note that the result obtained in [2,3] does not allow us to indicate the “com-
plete” set of initial states, the phase trajectories of the system from which do not
violate the constraints. As an example, consider a controlled inverted pendulum

ϕ̈ − ϕ = u, (13)

with restrictions on ϕ—the angle of deviation of the pendulum link from the
vertical and u—control:

max
t≥0

|ϕ(t)| ≤ 0.1, max
t≥0

|u(t)| ≤ 1. (14)

We represent the equation and restrictions in the form (1), (2), where

A =
(

0 1
1 0

)
, B =

(
0
1

)
, C1 =

(
1 0

)
, D1 = 0, C2 =

(
0 0

)
, D2 = 1.
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Control found for object (13)

u = −11.1888ϕ − 3.5402ϕ̇, (15)

which ensures the asymptotic stability of the closed-loop system (13), (15) and
the fulfillment of constraints (14). Control (15) was obtained as a result of search-
ing for a matrix Y with a maximum trace and satisfying the system of linear
matrix inequalities (11).

Fig. 1. Estimation of the set of admissible initial states obtained by the intersection of
ellipsoids in the stabilization problem for an inverted pendulum under constraints on
the angle and control

In Fig. 1 and Fig. 2 in the phase plane the dashed lines mark the restrictions

|ϕ(t)| ≤ 0.1, |u(t)| ≤ 1. (16)

In Fig. 1, ellipse 1 limits the estimate of the set of initial states, at the choice
of which control (15) provides stabilization of the inverted pendulum under the
first constraint, i.e. by the angle ϕ of deflection of the pendulum. Ellipse 2
limits the estimate of the set of initial states, when chosen, the control provides
stabilization under the second constraint, i.e. with control restrictions. At the
intersection of ellipses, we obtain an estimate for the region of admissible initial
states for which the control stabilizes the object under two constraints. In Fig. 1
and Fig. 2 this area is marked in light gray. A phase portrait of a closed system
can be constructed and analyzed. In Fig. 2, the set of admissible initial states is
marked in gray, starting from which the phase trajectories of system (13), closed
by control (15), asymptotically approach the zero state and do not go beyond
the boundaries of the set specified by constraints (14). As an example, trajectory
1 is given for the initial state ϕ = −0.09, ϕ̇ = 0.36. In dark color in Fig. 2, the
set of initial states is marked, at the choice of which the phase trajectories of
the system will go beyond the boundaries of the region (16). As an example,
trajectory 2 is given for the initial state ϕ = −0.095, ϕ̇ = 0.56.
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Fig. 2. The set of admissible initial states and its estimate obtained by the intersection
of ellipsoids in the stabilization problem for an inverted pendulum under constraints
on the angle and control

3 Formulation of the Problem

Suppose that for the object (1), (2) the stabilization problem under constraints
on state and control variables is solved and the state control law (3) is found. In
a real situation, the state of a dynamic system is measured with some error. In
this regard, we introduce the measured output of the system

y = (I + Δ(t))x, (17)

where I—identity matrix of size n × n, and the matrix Δ(t) determines the
relative measurement errors of the phase variables, and satisfies the condition
ΔT Δ ≤ δ2I, δ > 0—given parameter. Consider the problem of stabilizing system
(1), (2) by the controller

u = Ky, (18)

with restrictions on state and control variables (4). The question arises about
the influence of errors in measuring phase variables on the fulfillment of con-
straints (4). In other words, the question arises of how the set of initial states
of the system will change, for which controller (18) provides stabilization under
constraints (4) and in the case of an error in the measured output (17).

4 Estimation of the Set of Admissible Initial States

Let us represent the measured output of system (17) as

y = x + w, (19)

where w = Δ(t)x. Since the uncertainty matrix Δ(t) satisfies the condition
ΔT Δ ≤ δ2I, then

wT w ≤ δ2xT x. (20)
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We write the closed-loop system (1), (2), (18), (19) in the form

ẋ = Ax + Bw, (21)

zi = Cix + Diw, i = 1, 2, ..., N,

where A = A + BK, B = BK, Ci = Ci + DiK, Di = DiK.
Consider an auxiliary problem. Suppose it is required to find the sets of

admissible initial states for which the control (18) provides system stabilization
(21) for each i with one constraint max

t≥0
|zi(t)| ≤ γi. The following theorem is

true.

Theorem 3. Let the matrix Xi = XT
i > 0 and values μ1 > 0, μ2 > 0, δ > 0,

γi > 0 satisfy the system of matrix inequalities
(

A
T
Xi + XiA + μ1δ

2I XiB

B
T
Xi −μ1I

)
< 0,

(
Ci

T
Ci + μ2δ

2I − γ2
i Xi Ci

T
Di

Di
T
Ci Di

T
Di − μ2I

)
≤ 0.

(22)

Then all trajectories of the closed-loop system (21) with the initial conditions
x(0) ∈ E(Xi), E(Xi) = {x : xT Xix ≤ 1}, satisfy the constraint

max
t≥0

|zi(t)| ≤ γi.

Proof. In the region of phase space given by the inequality |zi(t)| ≤ γi, we
inscribe the ellipsoid xT Xix = 1. Let us show that the fulfillment of the first
inequality of system (22) ensures the fulfillment of the condition that a quadratic
function V (x) = xT Xix with a matrix Xi = XT

i > 0 is a Lyapunov function for
a closed system. On any trajectory of the closed-loop system (21), the condition

V̇ (x) = (Ax + Bw)T Xix + xT Xi(Ax + Bw) < 0. (23)

According to the fact that the S-procedure is not defective under one con-
straint, inequality (23) holds for all x, w such that |x|2 + |w|2 �= 0, satisfying
inequality (20) if and only if for some number μ1 > 0 and for all x, w performed
the inequality

(Ax + Bw)T Xix + xT Xi(Ax + Bw) − μ1(wT w − δ2xT x) < 0.

We write it in the form
(

x
w

)T
(

A
T
Xi + XiA + μ1δ

2I XiB

B
T
Xi −μ1I

)(
x
w

)
< 0.

This inequality is equivalent to the first inequality of system (22).
Let us show that the fulfillment of the second inequality of system (22)

ensures the fulfillment of the condition |zi(t)| ≤ γi. For quadratic forms, the
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S - procedure is valid under two constraints [9]. The theorem states the fol-
lowing. Let there be given quadratic forms F (x) = xT A0x, G1(x) = xT A1x,
G2(x) = xT A2x, where x ∈ Rn, Ai = AT

i ∈ Rn×n, i = 0, 1, 2 and numbers
a0, a1, a2. Let’s make a quadratic form S(x) = F (x) − τ1G1(x) − τ2G2(x) and
consider the system of inequalities

S(x) ≤ 0, a0 ≥ τ1a1 + τ2a2, (24)

with some τ1 ≥ 0, τ2 ≥ 0. Consider the inequality

F (x) ≤ a0, (25)

which, for all x ∈ Rn, satisfies the system of inequalities

G1(x) ≤ a1, G2(x) ≤ a2. (26)

Then the fulfillment of inequalities (24) implies the fulfillment of inequality (25)
under the condition (26).

Conversely, in case, if n ≥ 3, there are numbers τ3, τ4 and a vector x0 ∈ Rn

such that
τ3A1 + τ4A2 > 0, G1(x0) < a1, G2(x0) < a2,

then inequality (25) under condition (26) implies the existence of numbers τ1 ≥ 0,
τ2 ≥ 0 for which condition (24) is satisfied.

Let’s apply the statement to solve the problem. Since the S-procedure being
non-defective under two constraints, the inequality max

t≥0
|zi(t)| ≤ γi subject to

condition (20) and condition xT Xix ≤ 1 for all x, w such that |x|2 + |w|2 �= 0, is
equivalent to the existence of numbers μ2 ≥ 0, μ3 ≥ 0 for which performed the
inequality

|zi(t)|2 − γ2
i − μ2(wT w − δ2xT x) − μ3(xT Xix − 1) ≤ 0. (27)

In this case, there must be numbers μ4, μ5 and a vector
(

x0

w0

)
, such that

μ4

(
Xi 0
0 0

)
+ μ5

(−δ2I 0
0 1

)
> 0 (28)

and
(

x0

w0

)T (
Xi 0
0 0

) (
x0

w0

)
< 1,

(
x0

w0

)T (−δ2I 0
0 1

) (
x0

w0

)
< 0. (29)

We write inequality (27) in the form

(Cix+Diw)T (Cix+Diw)− γ2
i −μ2(wT w − δ2xT x)−μ3(xT Xix− 1) ≤ 0. (30)

Inequality (30) is true for all x, w. Means

μ2
3 ≤ γ2

i , (Cix + Diw)T (Cix + Diw) − μ2(wT w − δ2xT x) ≤ μ3(xT Xix).
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Hence

(Cix + Diw)T (Cix + Diw) − μ2(wT w − δ2xT x) ≤ γ2
i (xT Xix). (31)

We write inequality (31) in the form

(
x
w

)T
(

Ci
T
Ci + μ2δ

2I − γ2
i Xi Ci

T
Di

Di
T
Ci Di

T
Di − μ2I

)(
x
w

)
≤ 0. (32)

Matrix inequality (32) is equivalent to the second matrix inequality in system
(22).

Find numbers μ4, μ5, satisfying inequality (28). Let us rewrite condition (28)
as μ5 > 0, μ4Xi − μ5δ

2I > 0. Hence, given that Xi = XT
i > 0, to satisfy these

inequalities, it suffices to choose μ4 = 2δ2

min|eig(Xi)| , μ5 = 1.

Let us find a vector
(

x0

w0

)
, satisfying inequalities (29). Since V (x) = xT Xix

is the Lyapunov function, for all x ∈ E(Xi) inequality holds xT Xix ≤ 1. There-
fore, the first inequality (29) is satisfied if the point x0 lies inside the ellipsoid
E(Xi). By virtue of inequality (20), for the second inequality (29) to hold, we
choose w0 = δ

2x0. The statement is proven.

Let us denote by Ξi the set of all matrices Xi, satisfying inequalities (22).
Let us choose the trace criterion as a criterion for minimality Xi. The maximum
over all Xi ∈ Ξi region E(X∗

i ), is found by minimizing the trace of the matrix
Xi. This operation is standard in the MATLAB software package for engineering
calculations [7] using the CVX application.

Let us formulate sufficient conditions for finding the region of admissible
initial states of a dynamic system under which control (18), with the matrix
of controller parameters K obtained in the problem of control synthesis under
constraints imposed on state and control variables, will provide stabilization
also in the case when the state of the system is measured with an error. Let the
matrices X∗

i , i = 1, 2, ..., N , have a minimal trace and are solutions of system (22)
for values γi, respectively. Then all trajectories of the closed-loop system (21)
with the initial conditions x(0) ∈ E(X∗

i ), E(X∗
i ) = {x : xT X∗

i x ≤ 1} will satisfy

the constraint max
t≥0

|zi(t)| ≤ γi. Therefore, for all initial states x(0) ∈
N⋂

i=1

E(X∗
i ),

the control with a given matrix of controller parameters K, stabilizes the closed-
loop system under constraints (4).

5 Numerical Simulation Results

Consider a controlled inverted pendulum

ϕ̈ − ϕ = u, (33)
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with restrictions on ϕ—the angle of deviation of the pendulum link from the
vertical and u—control:

max
t≥0

|ϕ(t)| ≤ 0.1, max
t≥0

|u(t)| ≤ 1. (34)

Numerical solution obtained in MATLAB package. For object (33), a number
of problems have been solved. For the stabilization problem, in the absence of
an error in the measurement of the state, the control is obtained

u = −11.1888ϕ − 3.5402ϕ̇, (35)

which ensures the asymptotic stability of the closed-loop system (33), (35) and
the fulfillment of constraints (34).

Fig. 3. Intersection of areas Σ0, Σ0.05, Σ0.1 and Σ0.2

In Fig. 3 in the phase plane, the dotted line marks the restrictions

|ϕ(t)| ≤ 0.1, |u(t)| ≤ 1.

Let us estimate the change in the estimate of the region of admissible initial
states of the dynamic system, at which control (35) will provide stabilization
even in the case when the state of the system is measured with an error. We
denote Σδ an estimate for the set of admissible initial states for which the control
stabilizes the system for the value δ.

The algorithm for constructing area Σδ is as follows. Consider two ellipses.
The first ellipse E(X∗

1 ) = {x : xT X∗
1x ≤ 1} limits the estimate of the set of

initial states, at the choice of which control (35) provides stabilization of the
inverted pendulum under the first constraint, i.e. by the angle ϕ of deflection
of the pendulum. Here, the matrix X∗

1 is a matrix with a minimum trace that
satisfies the system of linear matrix inequalities (22) for given values δ and γ1.
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The second ellipse E(X∗
2 ) = {x : xT X∗

2x ≤ 1} limits the estimate of the set of
initial states, when chosen, control (35) provides stabilization under the second
constraint, i.e. with control restrictions. Here, the matrix X∗

2 is a matrix with
a minimum trace that satisfies the system of linear matrix inequalities (22) for
given values δ and γ2. At the intersection of ellipses, we obtain the desired
estimate for the set of admissible initial states for which the control stabilizes
the object under two constraints for a given value δ.

In Fig. 3 shows the areas Σ0, Σ0.05, Σ0.1, Σ0.2 corresponding to the values
δ = 0, δ = 0.05, δ = 0.1, δ = 0.2, and shows the intersection of these areas. It
follows from the figure that the area Σ0.2 lies inside the area Σ0.1, which in turn
lies inside the area Σ0.05, and the area Σ0.05 lies inside Σ0.

Fig. 4. The graph the dependence of the area of the region Σδ

Let us calculate the dependence of the area S of the region Σδ on the value
δ, which determines the magnitude of the error in the measured output of the
system. In Fig. 4 shows a graph of this dependence. In particular, the values
S(0) = 0.0819, S(0.05) = 0.0696, S(0.1) = 0.0541, S(0.2) = 0.0285.

The performed calculations showed that the ellipses responsible for the con-
straints on the deflection angle of the pendulum link at the values δ = 0, δ = 0.05,
δ = 0.1 and δ = 0.2 are close to each other. Consequently, the size of the region
Σδ of admissible initial states is mainly influenced by both the value of the
parameter value δ, and the presence of a control constraint in the problem.

6 Conclusions

The problem is posed and solved to estimate the region of admissible initial
states of a dynamic system, at which the controller obtained in the problem
of synthesis of state control under constraints imposed on state and control
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variables will also provide stabilization in the case when the system state is
measured with an error. In terms of linear matrix inequalities, conditions are
obtained that make it possible to estimate the set of admissible initial states
of a dynamical system. The problem of stabilization of an inverted pendulum is
considered as an example. Numerical experiments confirm the theoretical results.

Note that when solving practical problems of controlling real physical objects,
complete information about the state of the system is usually inaccessible to
measurement. In this regard, a nontrivial problem arises of stabilizing dynamic
objects by the measured system output. In the future, it is planned to consider
the situation when part of the phase variables or their linear combination is mea-
sured. It is supposed to solve the stabilization problem using a static controller
under constraints on the phase and control variables, and also to estimate the
region of admissible initial states for the obtained controller in the presence of
an error in the measurements of the output variables.
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Abstract. This paper addresses the multicriteria problem of choosing a
rational solution when designing complex devices on the example of inte-
grated radar and communication system (IRCS) operating in a changing
environment. The mathematical model is built as a multicriteria sys-
tem for making optimal decisions, with particular criteria being divided
into three subsets characterizing “costs”, “efficiency” and “reliability”.
A “design-action” approach is proposed, in which weighting coefficients
of particular criteria relative importance are assigned within each group
independently at the design stage of the device. Further, in the process
of functioning (operation) of the technical system, based on the results of
the environment analysis, relative importance between the three gropus
of particular criteria is automatically determined and optimal function-
ing parameters are calculated. Relative importance weights, both at the
design stage and at the action stage, can be assigned as exact values
or calculated on the principle of a guaranteed result using the user’s
qualitative preferences.

Keywords: Multicriteria optimization · Wireless system · IRCS ·
Effective solution set · Reliability

1 Introduction

Recently, wireless systems and devices have become more complex, often being
multi-modular and multifunctional. Their design is a difficult problem associated
both with the choice of parameters during design and with their configuration
during operation to adapt to changes in the external environment. These param-
eters are, in particular, frequency ranges and signal structure.

It is obvious that the problem of optimization of technical system parameters
is multicriteria. One of the well-known and effective in practice approaches to
its solution is to reduce the problem to bicriteria one by dividing the criteria
into two groups “cost” and “efficiency”. This approach is essentially a search for
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a compromise between device performance and device manufacturing, mainte-
nance and operating costs.

In this paper it is proposed to allocate the separate group of criteria repre-
senting “reliability” which is a crucial property of technical systems. Reliability
is the third fundamental aspect of any technical system along with its perfor-
mance and costs. Reliability shows likelihood that a system will perform its
function over a specified period of time, or will operate without failure under
certain conditions. By analogy with bicriteria this method is called tricriteria.
The reliability criterion is formed either as a generalized criterion from a set of
particular criteria, or can be expressed as a single indicator.

In the considered three-criterion problem, it is assumed to use a general-
ized optimality criterion with weighting coefficients of the relative importance of
particular criteria in two stages. At the design stage of the device, the decision
maker formulates quantitatively or qualitatively preferences within three groups
of criteria. At the stage of device operation, the system automatically prioritizes
between groups of particular optimality criteria and makes the final decision on
the choice of parameters.

2 Model for Making a Rational Decision on the Choice of
Wireless System Parameters

Since in the presence of several particular criteria of optimality, the optimal
solution (the best according to all criteria) most often does not exist and a
feasible solution is chosen as rational, which can be reasonably explained to
other specialists [1].

Signal Parameters of the Integrated Radar and Communication Sys-
tem as Variable Parameters. The problem of multicriteria search for optimal
parameters of a wireless system is considered on the example of the integrated
wireless system, which simultaneously performs the functions of radar and com-
munication. These systems are used in airplanes, drones, unmanned vehicles,
vehicles with automatic control support, et al. The design and management of
such multifunctional systems are complex technical tasks, which are essentially
multicriteria optimization problems.

For both radar and communication, an OFDM (Orthogonal frequency-
division multiplexing) signal consisting of closely spaced orthogonal subcarriers
is used. The total signal energy can be distributed over subchannels, and depend-
ing on this distribution, the functioning of the system changes and, accordingly,
the values of the criteria describing the system [2].

Let us assume that in the investigated mathematical model, from the point
of view of a given subject area, the object of choice is a vector x = (x1, . . . , xn)
of n parameters that are used in a given technical device.

The parameter vector x must belong to a certain region of feasible solutions
D, which is given a priori and is determined at the design stage. In special
cases, the area D can be a discrete range of values of a sufficiently high power, a
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hypercube, and suggests the possible presence of complex nonlinear restrictions
on the parameters [3].

Variable parameters in the system include, first, the distribution of energy
over the subchannels, specified in the form of a normalized vector x =
(x1, . . . , xN ). The value xi is the power transmitted over the i-th subchannel. The
distribution can be changed directly during operation. In addition, the config-
urable parameters are the number of subchannels, the width of the subchannel,
the center frequency, the number of pulses, the pulse repetition interval, the
number of OFDM symbols, the duration of the OFDM symbol, but they are
usually specified during design before commissioning. In our work, we consider
the energy distribution over subchannels as variable parameters and investigate
the behavior of the criteria when they change. Consider four particular criteria
for assessing the performance of the IRCS.

Q1: The communication efficiency.
Q2: The accuracy of determining the distance to the target.
Q3: The accuracy of determining the target speed.
Q4: The accuracy of determining the target reflection coefficients.
It is proposed to use the channel capacity as a characteristic of the commu-

nication efficiency. According to the Shannon-Hartley theorem, the bandwidth
of a channel, measured in bits per second, can be found as

C = B · log2(1 +
s

Np
), (1)

where S is the average power of the received signal, Np is the average noise
power, B is the channel bandwidth measured in hertz [4,5].

For a channel with frequency selective attenuation, which is divided into N
subchannels of width Δf , there is a generalization of the bandwidth formula

C =
N∑

m=1

Δf · log2(1 +
|xm|2|hm|2

σ2
2

), (2)

where hm is the transfer function of the m-th subchannel, σm is the noise power,
which is assumed to be even throughout the channel [2].

To assess the performance of the radar, we use the value of the lower bound
from the Cramer-Rao inequality. The Cramer-Rao inequality is used to obtain
the boundaries of the minimum measurement errors [6,7]. The Cramer-Rao
boundary was chosen as the accuracy estimate because the procedure for finding
it requires less computational work compared to others, such as the Battachari
boundary, for which calculating high-order partial derivatives is needed, or the
Barankin boundary, for which finding the maximum of the function is needed.
The latter generally give a slightly more accurate lower bound than the Cramer-
Rao inequality, and in the case of an unbiased estimate, the Cramer-Rao bound
is an exact result [8]. Thus, the Cramer-Rao boundary is optimal meaning accu-
racy and computational complexity.
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In the case when θ̂(x) is an unbiased estimate of the parameter θ and
the regularity conditions are satisfied, the Cramer-Rao inequality is written as
follows:

Dθ θ̂(x) ≥ 1
In(θ)

, (3)

In(θ) is Fisher’s information, Dθ θ̂(x) is the variance, for an unbiased estimate
equal to Dθ θ̂(x) = M(θ̂ − θt)2, where θt is the true value of θ, M is the math-
ematical expectation [9]. The Cramer-Rao bounds for time delay, velocity and
reflection coefficients are obtained from the Cramer-Rao matrix equal to the
inverse Fisher information matrix [6,7]:

⎡

⎣
CRB(τ) CRB(τ, ν) CRB(τ,η)

CRB(ν, τ) CRB(ν) CRB(ν,η)
CRB(η, τ) CRB(η, ν) CRB(η)

⎤

⎦ =

⎡

⎣
Jττ Jτν Jτη

Jντ Jνν Jνη

Jη ,τ Jη ,ν Jη)

⎤

⎦
−1

. (4)

The Cramer-Rao boundary for target distance can be found through the bound-
ary for the time delay. To improve radar accuracy, the aforementioned radar
criteria should be minimized provided the total signal power is limited:

xQ2 = argminCRB(R),x ∈ C
N ,xHx = 1; (5)

xQ3 = argminCRB(ν),x ∈ C
N ,xHx = 1; (6)

xQ4 = argmin(tr[CRB(η)]),x ∈ C
N ,xHx = 1. (7)

The communication efficiency criterion Q1 is defined as the reciprocal of the
channel capacity and is to be minimized.

xQ1 = argmin
1

∑N
m=1 Δf · log2(1 + |xm|2|hm|2

σ2
2

)
,x ∈ C

N ,xHx = 1. (8)

Figure 1 shows, as an example, the values of the communication efficiency
criterion for different energy distributions (different colors) for different noise
levels in the channel. The calculation was carried out for the case of 8 subcarriers,
the subchannel width is 0.25 MHz, and the center frequency is 5 GHz.

(a) low noise level (b) high noise level

Fig. 1. Dependence of the communication efficiency criterion of IRCS on the power
distribution over subchannels in the case of 8 subcarriers with different noise levels.
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These pictures demonstrate that optimal solution depends on the envi-
ronment which is likely to change significantly for wireless system operating
situations.

3 Objects and Criteria

Objects and Criteria as Characteristics of the Selected Solution
Quality
“Cost” Criteria. Let us assume that from the point of view of this subject area,
a vector M of numerical characteristics (particular cost criteria) with respect to
option x is used as a “cost”: P (x) = (P1(x), ..., PM (x)). The generalized “cost”
criterion G(x) = G(P1(x), ..., GM (x)) is constructed for final decision making
using the vector of the weighting coefficients y = (y1, . . . , yM ) by various methods
described in [10].

“Efficiency” Criteria. The efficiency of the system with the selected parameters
x is another group of particular criteria. By analogy with the “cost” criteria,
generalized efficiency criterion F (x) = F (Q(x)) is constructed from K particular
quality criteria Q(x) = (Q1(x), ..., QK(x)) using the vector of the weighting
coefficients w = (w1, . . . , wK).

These two groups of criteria are discussed in more detail in [11,12].

“Reliability” Criteria. Criteria of the third group represent “reliability”. Char-
acteristics of this type are described by a vector R(x) consisting of L particular
reliability criteria R(x) = (R1(x), ..., RL(x)). Using the weighting coefficients
v = (v1, . . . , vL) the generalized criterion H(x) = H(R(x)) is constructed.

We will assume that all particular criteria above are reduced to the direction
of minimization.

The weighting coefficients y, w, v reflect the relative importance of particu-
lar criteria [13]. It is assumed here that the assigned values of the importance
weighting coefficients w remain unchanged for the entire region of feasible solu-
tions D. The sets of permissible values of the weight coefficients are determined
by the following relations:

y ∈ D1 = {z ∈ R
M |zi ≥ 0, i = 1, ...,M ;

M∑

i=1

zi = 1}. (9)

w ∈ D2 = {z ∈ R
K |zi ≥ 0, i = 1, ...,K;

K∑

i=1

zi = 1}. (10)

v ∈ D3 = {z ∈ R
L|zi ≥ 0, i = 1, ..., L;

L∑

i=1

zi = 1}. (11)
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The generalized criteria G(x), F (x) and H(x) can be used in several forms,
e.g. the generalized criterion “reliability” is formed as the additive criterion

H(x) =
L∑

k=1

vkRk(x), (12)

or a generalized logical criterion (criterion of maximum caution)

H(x) = max
1≤k≤L

(vkRk(x)). (13)

4 Using Designer Preferences During the Development
Phase

4.1 Three-Criteria Approach

Each configuration of the varied parameters is characterized by three criteria
G(x), F (x) and H(x) that form the area of compromises and the corresponding
area of Pareto optimal solutions.

In particular, the final solution can be obtained using the additive generalized
criterion

(G(x) + F (x) + H(x)) → min, (14)

here x ∈ D, values of weighting coefficients is defined by user according to (9)–
(11), and all particular and generalized criteria are reduced to the direction of
minimization.

In this approach, the weights are assigned by the developer at design stage
independently within each group of particular criteria. In accordance with the
decision-making process in the organization, preferences and, therefore, impor-
tance weight factors are set separately by different groups of specialists. This
approach involves the assignment of precise importance factors, which can be
obtained in various ways, e.g. by an examination.

4.2 Single Criteria Approach

This approach involves using a generalized optimal criterion (14) and weighting
factors of the form (9)–(11) subject to:

M∑

i=1

yi +
K∑

i=1

wi +
L∑

i=1

vi = 1. (15)

The weights y, w, v also reflect the relative importance of particular criteria,
but are assigned simultaneously by the decision maker:

Qi � Qj ⇔ wi ≥ wj ;Pi � Pj ⇔ yi ≥ yj ;Ri � Rj ⇔ vi ≥ vj . (16)
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Let us consider the previously proposed approach, in which the dependence
of weighting coefficients on the particular criteria values at each point of fea-
sible solution region D is analyzed. Assuming that the decision maker cannot
accurately determine the numerical values of the weighting coefficients y, w, v,
one can consider them as uncontrollable factors and, applying the principle of
guaranteed result, go to the next decision-making model:

min
x∈D

{
max
y,w,v

(G(x) + F (x) + H(x))
}

. (17)

Here weighting coefficients y, w, v are defined according to (15). Assuming
that the structure of coefficient admissible values region remains unchanged while
searching for the optimal solution, then the weight coefficients are functions of
the parameters x.

Assume that the decision maker has formulated additional qualitative infor-
mation that establishes, for some Lq pairs of particular criteria (not necessarily
for all C2

n admissible pairs), the preference of the i-th criterion over the j-th on
the entire set D of feasible solutions:

e1l = {Pi � Pj} ⇔ yi � yj , l = 1, ..., L1 � M (M − 1) /2

e2l = {Qi � Qj} ⇔ wi � wj , l = 1, ..., L2 � K (K − 1) /2

e3l = {Ri � Rj} ⇔ vi � vj , l = 1, ..., L3 � L (L − 1) /2

(18)

Thus, importance weight coefficients are calculated automatically with the
decision maker’s qualitative preferences in each criteria group separately. More-
over, if the ranges of particular criteria admissible values are not empty, then
the qualitative information about preferences is consistent.

The static solution of the optimal parameters search problem involves calcu-
lations at the stage of device development in accordance with (17).

5 Use of Intergroup Preferences During Operation

The described tricriteria approach and the principles of using qualitative infor-
mation about preferences allows one to automatically calculate the importance
weight factors during the evice operation. Such analysis and calculations are
possible when intergroup preferences are formulated automatically based on an
analysis of the environment and conditions.

Based on the preliminary analysis, the following intergroup pairs of prefer-
ences can be formulated:

{P � Q} or {Q � P} ; {P � R} or {R � P} ; {R � Q} or {Q � R} . (19)

The pairs of preferences must have the transitivity property, that is, the
corresponding preference graph must not have a cycle.

From each pair high-quality information in transformed to pairwise prefer-
ences and the corresponding ratios, for example
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{P � Q} ⇒ yi � wj , i = 1, ...,M ; j = 1, ...,K. (20)

This leads to a further narrowing of the weight coefficient admissible values
range (15) and taking into account the intergroup preference relations when
solving the problem (17).

6 Conclusion

This paper describes the tricriteria approach to the search optimal design of tech-
nical systems, that is dividing criteria into three subsets of “costs”, “efficiency”
and “reliability”. The principles of constructing particular and generalized cri-
teria of “reliability” are given. The tricriteria model for the multicriteria design
of integrated radar and communication system with specific criteria of “relia-
bility” has been developed. The following approach to wireless system design is
suggested:

Step 1. The criteria are divided into three groups “efficiency”, “cost” and
“reliability”. Within each group, preferences are established and importance
weights are determined in accordance with the principle of a guaranteed result.

Step 2. The decision maker solve the problem of rational choice at the design
stage by specifying the exact values of all particular criteria weight coefficients
or specifying quality preferences.

Step 3. The decision maker formulates preferences within the criteria groups.
The article proposes an approach in which the selection problem is solved

automatically during operation, taking into account environmental conditions.
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Abstract. The paper is devoted to reachable sets of linear time-varying
systems under uncertain initial states and disturbances with a bounded
uncertainty measure. The uncertainty measure is the sum of a quadratic
form of the initial state and the integral over the finite-time interval from
a quadratic form of the disturbance. Method of evaluation of ellipsoidal
reachable sets has been cosidered for such systems using matrix differ-
ential Riccati equation. Applying this method allows to find minimal
ellipsoidal set that is defined by optimal observer. Besides, linear time-
varying system with parametric time-varying uncertainty is being exam-
ined. Evaluation of ellipsoidal reachable sets is also given in the article.
Applying the both methods is demonstrated with numerical modeling
with the Mathieu-Hill equation for parametric vibrations and resonance
illustrates this method and pendulum equation. Euler iterative method
is applied to compute required evaluations.

Keywords: Reachable sets · Ellipsoidal sets · Optimal observer ·
Parametric uncertainty

1 Introduction

One of the main problems of dynamic system control theory is researching the
opportunity of reaching this or that state under control. Reachable sets studying
allows us to solve it.

Reachable sets play a large role in different parts of control theory. The
main are optimal control problems, disturbance evaluation, etc. It makes them
applicable to practically all spheres of activity: technical field (preservation of
given trajectory by pilotless aircraft, taking into account the speed and direction
of the wind [1] and building manipulator path [2]), economics [3], medicine [4],
chemistry [5], etc.

In this article reachable sets application to solve unknown initial state prob-
lem and parametric uncertainty problem are researched.
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2 Reachable Sets

Let’s consider a system:

ẋ = A(t)x(t) + B(t)v(t), x(t0) = x0 ∈ M, t ∈ [t0, T ], (1)

where x ∈ Rnx is system state; v ∈ Rnv is disturbance acting on system: v =
v(σ), σ ∈ [t0, t]; M is closed set in state space defining class of possible initial
system states:

M(t, R) = {(x, v(σ)) : xT (t0)R−1x(t0) +
∫ t

t0

vT (σ)G−1v(σ) ≤ 1}. (2)

A class of trajectories emerges from each point of the M . These trajectories
correspond to different values of disturbance. Reachable set for system at t ≥ t0
is class of all trajectory ends x(t) emerging from M at t ≥ t0.

For the system under disturbance reachable set describes area in which the
system comes under disturbance and allows us to evaluate accuracy of system
hitting a finite state [6–10]. Reachable sets allow us to realise whether it is
possible to put the system into the given state provided we add a control to the
system.

3 Finding of Reachable Sets

3.1 Unknown Initial State Problem

Let’s consider system (1). We suppose that x(t0) and v = v(σ) are in the set:

S(t, t0, R,G) = {(x, v(σ)) : x = R1/2ω1, v(σ) = G1/2(σ)ω2(σ),
|ω1|2 +

∫ t

τ
||ω2(σ)|2|dσ ≤ 1} (3)

for given R = RT ≥ 0 and G(σ) = GT (σ) ≥ 0.

Theorem 1. Reachable set for system (1) at t ≥ t0 in any initial states and
disturbances satisfying (3) with R ≥ 0 and G(σ) ≥ 0, σ ∈ [t0, t], t ∈ [t0, T ] is
ellipsoid E(Y (t)) with its matrix satisfying equation:

Ẏ = A(t)Y + Y AT (t) + B(t)G(t)BT (t) (4)

(proof given in [11]).

Example 1. Let’s demonstrate the described method using the example of the
Mathieu equation:

ẍ + ω2
0(1 + ε sin (ωt))x = v, x(0) = 0, ẋ(0) = 0. (5)

System matrixes:

A =
(

0 1
−ω2

0(1 + ε sin (ωt)) 0

)
, B =

(
0
1

)
(6)
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Initial state matrix and constraint matrix:

R =
(

0 1
1 0

)
, B =

(
0
1

)
(7)

We solve the Eq. (4) for finding reachable sets. Let’s choose parametric values:
ω0 = π, ω = 2π, ε = 0.1.

We solve the problem at time [0, 1]. Euler difference scheme is applied to solve
the problem. The method of finding ellipsoids for special cases of uncertainty is
described in [11].

Fig. 1. Reachable sets for system with unknown initial state.

All reachable sets at t > t0 contain inside reachable set at t = t0 (Fig. 1).

3.2 Parametric Uncertainty Problem

Let’s consider problem from [15]. It’s of the form of

ẋ = Â(t)x(t), Â = A + FΩ(t)E, x(t0) = x0, t ∈ [t0, T ] (8)

where A is matrix of initial system; F , E are given constant matrixes; Ω(t) is
unknown matrix function: ΩT (t)Ω(t) ≤ I.

We add disturbance and denote: ω(t) = Ω(t)E(t)x(t).

ẋ = A(t)x(t) + B(t)v(t) + F (t)ω(t), x(t0) = x0, t ∈ [t0, T ]
ωT (t)ω(t) ≤ zT z, z = E(t)x(t);
xT
0 R−1x0 +

∫ T

t0
vT (t)v(t)dt ≤ 1

(9)

Theorem 2. Reachable set of (9) is contained in reachable set that is repre-
sentable as ellipsoid E(Y (t)). Its matrix satisfies inequality1

Ẏ ≥ Y AT + Y A + BBT + μ−2FFT + μ2Y ET EY (10)

with initial state Y (t0) = R.
1 A differential matrix inequality is understood as the positive definiteness of the

matrix Ẏ − (Y AT + Y A + BBT + µ−2FFT + µ2Y ETEY ) ≥ 0.
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Proof. Let’s consider quadratic form V = xT Y −1x for system (9). Its matrix Y
is positively defined symmetrical matrix and satisfies (10).

Let’s find derivative in virtue of system of quadratic form:

V̇ = xT [−Y −1Ẏ Y −1 + AT Y −1 + Y −1A]x + vT BT Y −1x + xT Y −1Bv
+ωT FT Y −1x + xT Y −1Fω

(11)

Using (10) we obtain:

V̇ ≤ vT v + μ2(|ω|2 − |z|2) − (v − v∗)T (v − v∗) − (μω − μ−1ω∗)T (μω − μ−1ω∗),
v∗ = BT Y −1x, ω∗ = FT Y −1x

Having integrated at [t0, T ] and using constraints (9) we obtain:

xT (t)Y −1(t)x(t) ≤ 1 (12)

So, at any t ∈ [t0, T ] reachable set of system with parametric uncertainty (9)
is inside ellipsoid (12).

Finding Function η(t). Let’s write down (10) in the form of:

Ẏ ≥ Y AT + Y A + BBT + η(t)FFT + η−1(t)Y ET EY, Y (t0) = R, η(t) = μ−2(t)
(13)

To find the function, we turn to the numerical characteristics of the matrices.
Let’s take the trace of the matrix as such a characteristic.

We denote Ẏ = Γ then

trace(Γ) = trace(Y AT + AY + BBT ) + η trace(FFT ) + η−1 trace(Y ET EY )
(14)

Let’s make the right part minimization by parameter η:

η∗ =

√
trace(Y ET EY )

trace(FFT )

It allows us to find the least ellipsoid defined by matrix Y (t).

Example 2. Let’s consider linear oscillator with floating stiffness coefficient:

ẋ1 = x2

ẋ2 = −ω2
0(1 + εΩ(t))x1

(15)

System matrixes:

A =
(

0 1
−ω2

0 0

)
, B =

(
0
1

)
, F =

(
0
ω2
0

)
, E =

(−ε 0
)

(16)

Initial state matrix:

R =
(

1 0
0 1

)



Application of Optimal Evaluation of LT-VS Using RS 299

Let’s choose parametric values: ω0 = π, ε = 0.1.
We solve the problem with zero initial state at time [0, 1]. Euler difference

scheme is applied to solve the problem. Ellipsoid including all possible reachable
sets for system being satisfied (9) is find with the help of solution of inequality
(10). The method of finding ellipsoids for special cases of uncertainty is described
in [11].

The special case being considered in this article is Ω(t) = sin (t + ϕ), ϕ =
[π/6;π/4;π/2;π; 2π].

Ellipsoid obtained from solution of inequality and ellipsoids for different val-
ues of ϕ are displayed in Fig. 2.

Fig. 2. Reachable sets for system with parametric uncertainty.

All reachable sets in special cases contain inside reachable set describing all
possible states of system (8).

4 Reachable Sets Evaluation in the Unknown Initial
State Problem

Let’s consider the way of reachable sets optimal evaluation given in the arti-
cle [11].

Let’s examine a linear time-varying system

ẋ = A(t)x + B(t)v,
y = C(t)x + D(t)v (17)

with unknown initial state x(t0).
Let initial state and disturbance are representable as

x(t0) − x∗ = R1/2w1, v(t) = G1/2(t)w2(t),

|w1|2 +
∫ t

t0

|w2(σ)|2dσ ≤ 1, t ∈ [t0, T ].
(18)
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Let’s consider evaluation problem of state x(t) of system (17) by means of
measurement of the output y(σ), σ ∈ [t0, t] for given matrix R = RT > 0 and
matrix function GT (σ) = G(σ) > 0.

Then:
|x(t0) − x∗|2R + ||v||2G[t0;t]

≤ 1. (19)

Let’s derive a full-order observer [12]

˙̂x = A(t)x̂ + L(t)[y − C(t)x̂], x̂(t0) = x∗, (20)

where x̂(t) is evaluation of state x(t), L(t) is observer parameters matrix to be
defined.

Let’s denote evaluation error as ε(t) = x(t) − x̂(t) that satisfies

ε̇ = Ac(t)ε + Bc(t)v, ε(t0) = x(t0) − x∗, (21)

where Ac(t) = A(t) − L(t)C(t), Bc(t) = B(t) − L(t)D(t).
We use the following theorem to find optimal ellipsoidal evaluation of state

of (17) [11].

Theorem 3. If det[D(σ)G(σ)DT (σ)] �= 0, σ ∈ [t0, t], then optimal observer
(20) guaranteeing optimal ellipsoidal evaluation E(Y∗(t), x̂(t)) of state of (17) at
t ≥ t0 in any initial states and disturbances satisfying constraint (18) with R ≥ 0
and G(σ) ≥ 0, σ ∈ [t0, t] given by

L∗(t) = [D(t)G(t)BT (t) + C(t)Y∗(t)]T [D(t)G(t)DT (t)]−1, (22)

where matrix Y∗(t) ≥ 0 is the solution of matrix differential Riccati equation

Ẏ = A(t)Y + Y AT (t) + B(t)G(t)BT (t)

− [D(t)G(t)BT (t) + C(t)Y ]T [D(t)G(t)DT (t)]−1[D(t)G(t)BT (t) + C(t)Y ]
(23)

with initial state Y (t0) = R. Besides if R > 0 then Y∗(t) > 0, t ∈ [t0, T ].
So, for system (20) reachable set is the ellipsoid E(Y (t)) with its matrix

satisfying equation

Ẏ = Ac(t)Y + Y AT
c (t) + Bc(t)G(t)BT

c (t) (24)

with initial state Y (t0) = R.
In other words for system (17) state x(t) is inside the ellipsoid E(Y (t)) with

its center in x̂(t) given by equation of observer (20).

The derived set allows us to find state x(t) at any t.

Example 3. Let’s demonstrate the described method using the example of the
Mathieu-Hill dying-away equation [13,14]:

ẍ + εẋ + ω2
0(t)(1 + F (t))x = u + v, F (t) =

2μ

a + b cos ωt
(25)
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where a > 0, b > 0, a > b. Let’s add output y = x1 + x2 + v and solve this
problem over time [0, 4].

The system becomes:

A =
(

0 1
−ω2

0(1 + F (t)) ε

)
, B =

(
0
1

)
, C =

(
1 1

)
, D = 1 (26)

Matrixes for (18):

G = 1, R =
(

0.2 0.1
0.1 0.3

)
(27)

Let’s choose parameter values: ω0 = π, ω = 2π, ε = 0.1, a = 1, b = 0.5,
μ = 0.1.

We solve Eq. (23) to find reachable set of the system under disturbance. Using
its solution we calculate L∗(t) with the help of (22) and matrixes of close-loop
system Ac and Bc. After that, we find reachable set solving (24).

We plot trajectories of system and observer for clarity. To do that we add
tyme-varying disturbance v = 0.5 sin πt to system (17) and establish its initial
state in

x0 =
(

0.01
0.01

)
. (28)

Then using (18) we calculate initial state for optimal observer (20):

x0 − R1/2

(
0

0.2

)
. (29)

Let’s plot trajectory of system and location of observer. For this purpose
we separately plot (x1, x2) and (x3, x4) (see Fig. 3). Reachable sets evolution at
t = 0, t = 2 and t = 4 and their centers are displayed in Fig. 3 too.

Fig. 3. System trajectories and reachable sets evolution.

Size of reachable sets reduce in time. They simultaneously contain system
trajectory and observer location that is its center.
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5 Conclusion

Optimal evaluation of reachable set for system with unknown initial state and
parametric uncertainty problem have been considered in this article. Numerical
experiments have been carried out for the assigned problems. The construction of
reachable sets for systems with an unknown initial state has been demonstrated
using the Mathieu equation as an example. Reachable set has been constructed,
which includes the reachable sets for all admissible values of the parameters for the
linear oscillator with floating stiffness coefficient equation. Finally, an evaluation
of the reachable sets at different times has been constructed for the Mathieu-Hill
dying-away equation. It is assumed that the problem will develop towards the eval-
uation of reachable sets for problems with parametric uncertainty.
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Abstract. A new M2H3D code (Moving Mesh Hydrodynamics in 3D)
was described. A new approach to vectorization of computational fluid
dynamics algorithms adapted for astrophysical applications is proposed.
A computational model is briefly described as an example of the app-
roach. A review of papers on vectorization of calculations to simulate
hydrodynamic processes and related problems is presented. The compu-
tational technology and vector instructions used to speed up the critical
parts of the code are described. A performance of 90 gigaflops with a sin-
gle Intel Cascade Lake processor using an AVX2 technology is achieved.
Some numerical examples are given.

Keywords: HPC · Computational astrophysics · SIMD intrinsics

1 Introduction

Vector extensions can significantly speed up the calculations [1], of astrophysi-
cal problems in particular [2]. Vectorization is one of the basic components of
Intel Xeon Phi processors that calls for a special design of the corresponding
numerical methods and codes [3–5]. In recent years, vector calculations have
been widely used to organize computations in numerous problems of compu-
tational astrophysics. Vectorization has been effectively employed to simulate
hydrodynamic flows [6,7], N-body gravitational interaction [8–11], and plasma
physics [12]. Some original methods for solving the corresponding Poisson equa-
tions [13] and hydrodynamic equations [14] have been developed. In the paper,
we are described the vectorization of developed code from papers [15,16].

In Sect. 2, a numerical model of gravitational hydrodynamics is briefly
described. Section 3 is devoted to a description of the code. Section 4 presents
some numerical examples of using the code. Conclusions to the paper are given
in Sect. 5.
c© Springer Nature Switzerland AG 2021
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2 Numerical Model

Consider the conservation laws of hydrodynamics in flux-conservative form

∂

∂t

⎛
⎜⎜⎜⎜⎝

ρ
ρux

ρuy

ρuz

ρE

⎞
⎟⎟⎟⎟⎠

+
∂

∂x

⎛
⎜⎜⎜⎜⎝

ρux

ρuxux + p
ρuyux

ρuzux

[ρE + p]ux

⎞
⎟⎟⎟⎟⎠

+
∂

∂y

⎛
⎜⎜⎜⎜⎝

ρuy

ρuxuy

ρuyuy + p
ρuzuy

[ρE + p] uy

⎞
⎟⎟⎟⎟⎠

+
∂

∂z

⎛
⎜⎜⎜⎜⎝

ρuz

ρuxuz

ρuyuz

ρuzuz + p
[ρE + p] uz

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

0
−ρ �x Φ
−ρ �y Φ
−ρ �z Φ

−ρ(u,�Φ)

⎞
⎟⎟⎟⎟⎠

,

with the Poisson equation for the gravitational potential

�Φ = 4πGρ,

where ρ is the gas density, u = (ux, uy, uz) is the velocity vector, p is the gas
pressure, E = p/(γ − 1) + ρu2/2 is the total mechanical energy of the gas, γ is
the adiabatic index, Φ is the gravitational potential, and G is the gravitational
constant. To solve the equations of hydrodynamics, we use a Godunov-type
scheme adapted for tetrahedral grids [15,16], and to solve a Riemann problem, a
Rusanov-type scheme [4,5] with a piecewise linear reconstruction of the physical
variables [17]. To solve the Poisson equation, a potential defined at the calcula-
tion grid nodes and a finite element method in a weak formulation for a Laplace
operator discretization are employed. When constructing a high-order accurate
scheme for solving the hydrodynamic equations, the density function, as well as
the potential, are considered at the tetrahedron nodes. On the domain boundary,
a fundamental solution of the Laplace equation is used in the form of boundary
conditions of the first kind. The conjugate gradient method is used to solve the
thus obtained sparse system of equations.

3 Code

In this section, the code design, main data structures, and vectorization of the
calculations will be described. Some basic parts of the code in the C/C++ lan-
guage or, for simplicity, in a pseudocode (when it is more convenient) will be
presented. We hope that these examples would help the readers to implement
the code.

3.1 Data Structures

The main feature of polygonal grids is the use of analytical geometry procedures.
A list of appropriate procedures will be presented below. All procedures are based
on a three-dimensional vector (see Listing 1.1):
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Listing 1.1. 3D vector

s t r u c t vector3d
{
double x , y , z ;

} ;

Let us define a set of physical variables, such as density, velocity vector, pres-
sure, and speed of sound cs =

√
γp
ρ . Although the speed of sound is easy to

reconstruct, it is also more convenient to use it. A set of conservative variables
is chosen depending on the equations to be solved (see Listing 1.2):

Listing 1.2. Physical and conservative variables

s t r u c t phys i c s
{
double dens i ty , pres sure , sound ,

v e l o c i t y x , v e l o c i t y y , v e l o c i t y z ;
} ;

s t r u c t con s e rva t i v e
{
double dens i ty , energy ,

momentum x , momentum y , momentum z ;
} ;

A more complex construction for a new type called conservative was used in
vector computations. A simpler hydrodynamic model without solving the equa-
tion for total energy will be used for vectorization. Such models (for instance,
adiabatic or isothermal gas models) are widespread in astrophysics. For vector-
ization, we employed a C/C++ construction called union, in which the structure
and the vector type of the data are used (see Listing 1.3):

Listing 1.3. Conservative variables with vectorization

s t r u c t s c a l a r c o n s e r v a t i v e
{
double dens i ty , momentum x , momentum y , momentum z ;

} ;

union con s e rva t i v e
{

s c a l a r c o n s e r v a t i v e s c a l a r v e c t o r ;
m256d s imd vector ;

} ;

To describe the nodes, we will store their coordinates, the number of neighboring
nodes, an array of numbers of the neighboring nodes, the status (whether a node
is a boundary one or not), the number of cells in which it is included, the set
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of the physical variables considered at the node, and the gravitational potential
value (see Listing 1.4):

Listing 1.4. “Node” data structure

s t r u c t node
{

vector3d po int ; //node coo rd ina t e s
i n t number of ne igh ; // number and numbers
i n t ∗neighbours ; // o f ne ighbor ing nodes
i n t in bo rde r ; // s t a tu s ’ ’ on the boundary ’ ’
i n t numbe r o f c e l l s ; // number o f ad jacent c e l l s
phys i c s hydro ; // phy s i c a l v a r i a b l e s
double g rav i ty ; // po t e n t i a l func t i on

} ;

To reconstruct the potential by a finite element method, we need linear basic
functions and the potential gradient (see Listing 1.5). Data of this type will be
used in a cell that will be described at the end of this subsection. Assume that
each tetrahedral cell ABCD is constructed to be non-degenerate. We will use
four basic functions, φi = aix + biy + ciz + di and Φi, where i = A,B,C,D are
the cell nodes.

Listing 1.5. “Gravity” data structure

s t r u c t grav i ty te rm
{
double a [A |B |C |D] , // c o e f f i c i e n t s o f l i n e a r f unc t i on s

b [A |B |C |D] ,
c [A |B |C |D] ,
d [A |B |C |D] ;

double phi [A|B |C |D] ; // g rav i ty va lue s at nodes
double grad f ix , // po t e n t i a l g rad i en t

grad f iy ,
g r a d f i z ;

} ;

The structure notation is slightly shortened by listing the variants in the square
brackets. The description of the data structures ends with a description of a cell
(see Listing 1.6):

Listing 1.6. “Cell” data structure

s t r u c t c e l l
{
// number o f nodes
i n t numA, numB, numC, numD;
// numbers o f ne ighbor ing c e l l s
i n t ngh [ABC|ABD|ACD|BCD] ;
// c e l l volume
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double vo l ;
// f a c e area
double sq [ABC|ABD|ACD|BCD] ;
// cente r o f i n s c r i b ed sphere
vector3d cente r ;
// rad iu s o f i n s c r i b ed sphere
double rad iu s ;

// ve c to r s o f normals
vector3d nrm [ABC|ABD|ACD|BCD] ;
// phy s i c a l v a r i a b l e s
phys i c s hydro ;
// con s e rva t i v e v a r i a b l e s
c on s e rva t i v e vec to r ;
// g rav i ty
grav i ty te rm grav i ty ;
// Riemann problem s o l u t i o n s
con s e rva t i v e f l u x [ABC|ABD|ACD|BCD] ;

// p i e c ew i s e l i n e a r r e c on s t ru c t i on
// o f v a r i a b l e s and f l u x e s
phys i c s rechydro [ABC|ABD|ACD|BCD] ;
c on s e rva t i v e vec to r [ABC|ABD|ACD|BCD] ;
c on s e rva t i v e f l u x [ABC|ABD|ACD|BCD] x ;
c on s e rva t i v e f l u x [ABC|ABD|ACD|BCD] y ;
c on s e rva t i v e f l u x [ABC|ABD|ACD|BCD] z ;

} ;

Let us consider calculation grid reading.

3.2 Grid Format

A calculation grid format is constructed so that no procedures for finding nodes
or cells in any computational situation are needed in the hydrodynamic code.
The grid is stored in the following four files:

1. nodes.dat – node coordinates,
2. cells.dat – tetrahedra splitting the calculation domain,
3. portrait.dat – a grid portrait with node links,
4. border.dat – numbers of nodes lying on the domain boundary.

We used an explicit separation of the node geometry and the logic of work
with nodes and cells. This approach simplifies the development, debugging, and
subsequent maintenance of an application. The algorithm of work with these
files in a pseudo-language is given below (see Listing 1.7):
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Listing 1.7. Calculation grid loading

read f i l e nodes . dat :
read n # read number o f c a l c u l a t i o n g r id nodes
do i =1,n # cyc l e over a l l nodes
read x , y , z # read node coo rd ina t e s

enddo # end o f cy c l e

read f i l e c e l l s . dat :
read m # read number o f c e l l s
do i =1,m # cyc l e over a l l c e l l s
read a , b , c , d # read tet rahedron node numbers
read abc # read c e l l number − neighbor on f a c e abc
read abd # read c e l l number − neighbor on f a c e abd
read acd # read c e l l number − neighbor on f a c e acd
read bcd # read c e l l number − neighbor on f a c e bcd

enddo # end o f cy c l e
# i f the ne ighbor ing c e l l number i s 1 ,
# the f a c e i s ex t e rna l

read f i l e p o r t r a i t . dat :
read n # read number o f c a l c u l a t i o n g r id nodes
do i =1,n # cyc l e over a l l nodes
read l # read number o f ad jacent ( i −1) nodes
do j =1, l # cyc l e o f ad jacent nodes
read k # read adjacent node number

enddo # end o f cy c l e o f ad jacent nodes
enddo # end o f cy c l e o f nodes

read f i l e border . dat :
read n # read number o f g r id boundary nodes
do i =1,n # cyc l e over boundary c e l l s
read k # read boundary node number

enddo # end o f cy c l e o f boundary c e l l s

File portrait.dat is very important for constructing a sparse matrix portrait in
which the numbers of adjacent nodes and the node in question are arranged
in ascending order. File border.dat is used to take into account the boundary
conditions of the Poisson equation. We used a Fortran-like grid reading procedure
to shorten the program code, which is written in C/C++.

3.3 Geometry Subroutine

To implement analytical geometry procedures, we used the following functions:

1. length – distance from point to origin of coordinates,
2. distance – distance between two points,
3. square – triangle area by its three vertices,
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4. volume – tetrahedron volume by its four vertices,
5. scalar dot – Euclidean inner product,
6. normal – construct a normal to a triangle face given by its three vertices at

a given tetrahedron center,
7. center of sphere – find the center of the sphere inscribed in a tetrahedron

with its given vertices and face areas,
8. radius of sphere – find the radius of the sphere inscribed in a tetrahedron

with its given face areas and volume,
9. determinant4by4 – determinant of a 4 × 4 matrix.

These procedures, which are simple from the point of view of analytical geometry,
are sufficient for implementing the program code.

3.4 Physical Variables Reconstruction

To develop a high-order accuracy method, the numerical solution is recon-
structed. For this, we perform the following algorithm:

1. for all nodes: average the physical variables over cells adjacent to the node
in question,

2. for all cells and for each cell face: calculate three values for each physical
variable f : f− – the value of the physical variable at the opposite cell node,
f0 – the value of the physical variable at the center of the cell in question, f+
– the value of the physical variable in the cell adjacent to the face in question,

3. for all cells and for each cell face: recalculate the values of the physical
variable with a piecewise linear reconstruction by the equation

f0 = f0 +
min(max(f0−, 0),max(f+0, 0)) + max(min(f0−, 0),min(f+0, 0))

2
,

where f0− = f0 − f−, f+0 = f+ − f0.
4. for all cells and for each cell face: calculate the fluxes for each cell with

the recalculated values f0, (to be used for solving a Riemann problem).

Skip this step if a first-order accuracy scheme is constructed.

3.5 Hydrodynamic Equations Solver

Let us rewrite the equations of gravitational hydrodynamics in vector form:

∂u

∂t
+

∂f(u)
∂x

+
∂g(u)

∂y
+

∂h(u)
∂z

= q(u),

where u is the vector of conservative variables, f(u), g(u), h(u) are the fluxes
in corresponding directions, and q(u) is the right-hand side vector. Consider an
arbitrary tetrahedron cell i, and use index j to describe the set of adjacent cells.
Determine the outer normals nij of cell i in the direction of cells j. The volume
Vi of the tetrahedron and the areas Sij of the triangles are found using the above
procedures. The Godunov-type scheme to be used is
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un+1
i − un

i

τ
+

∑
j

Sij

Vi

(
Fijn

x
ij + Gijn

y
ij + Hijn

z
ij

)
= qn

i ,

where Fij = R (
f, un

i , un
j

)
, Gij = R (

g, un
i , un

j

)
, Hij = R (

h, un
i , un

j

)
is the solu-

tion of a Riemann problem R (
w, uL, uR

)
for the equations

∂u

∂t
+

∂w(u)
∂x

= 0,

with initial conditions u(x, t) = uL at x < 0 and u(x, t) = uR at x ≥ 0. To solve
the Riemann problem, a Rusanov-type scheme is used:

R (
w, uL, uR

)
=

w
(
uL

)
+ w

(
uR

)
2

+

∣∣∂w
∂u

∣∣
2

(
uL − uR

)
.

Note that this procedure is the most computer time-consuming, and we will
speed it up using vector instructions.

3.6 Poisson Solver

Recall that to solve the Poisson equation four basic functions are defined on each
tetrahedron. Each of these functions is equal to unity only at a single node and
zero at the other nodes:

φi(x, y, z) = aix + biy + ciz + di,

where i = A,B,C,D. The coefficients ai, bi, ci, di are reconstructed by Cramer’s
method. For this, we introduced a function for calculating the determinant of a
4 × 4 matrix. The gradient of each of the basic functions in a tetrahedron has a
simple analytical form:

�φi = (ai, bi, ci).

The sum of these functions makes it possible to construct the gradient of the
potential in a tetrahedron cell:

�Φ =

⎛
⎝

ΦAaA + ΦBaB + ΦCaC + ΦDaD

ΦAbA + ΦBbB + ΦCbC + ΦDbD

ΦAcA + ΦBcB + ΦCcC + ΦDcD

⎞
⎠ ,

where Φi are the values of the potential at the corresponding nodes. Equations
for the stiffness matrix S and the mass matrix M in a finite element statement
for the tetrahedron in question can be found in [16]. On the domain boundary, a
fundamental solution to the Laplace equations is used in the form of boundary
conditions of the first kind. To solve the thus obtained sparse system of equations,
the conjugate gradient method (or the GMRES method) is used.

3.7 Vectorization

As noted above, the most computer time-consuming part is the calculation by
the finite-volume scheme. The following code implements the Godunov scheme
using AVX2 intrinsics (see Listing 1.8):
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Listing 1.8. Vectorization of the Godunov scheme

// OpenMP pragma adjustment
#pragma omp p a r a l l e l f o r d e f au l t ( none ) \

// shared memory ob j e c t s
shared ( c e l l s , tau ) \
// p r i va t e v a r i a b l e s
p r i va t e ( i , tauvec , numbe r o f c e l l s \

// area to volume r a t i o
sqdivvolabc , sqdivvolabd , \
sqd ivvo lacd , sqd ivvo lbcd ) \

// number o f OpenMP threads
num threads (MIC NUM THREADS) \
// task ass ignment method
schedu le ( dynamic )

// the Godunov scheme
f o r ( i = 0 ; i < numbe r o f c e l l s ; i++ )
{

// load ing o f time step in to vec to r
tauvec = mm256 set1 pd(−tau ) ;

// volume o f c e l l
cvo l = c e l l s [ i ] . vo l ;

// load ing o f area to volume r a t i o s in to ve c to r s
sqd ivvo labc = mm256 set1 pd ( c e l l s [ i ] . sqabc / cvo l ) ;
sqdivvo labd = mm256 set1 pd ( c e l l s [ i ] . sqabd / cvo l ) ;
sqd ivvo lacd = mm256 set1 pd ( c e l l s [ i ] . sqacd / cvo l ) ;
sqd ivvo lbcd = mm256 set1 pd ( c e l l s [ i ] . sqbcd / cvo l ) ;

// vec to r implementation o f the scheme
c e l l s [ i ] . v ec to r . s imd vector =

mm256 mul pd (
tauvec ,
mm256 add pd (

mm256 add pd (
mm256 mul pd ( sqdivvolabc ,

c e l l s [ i ] . f l uxabc . s imd vector ) ,
mm256 mul pd ( sqdivvolabd ,

c e l l s [ i ] . f luxabd . s imd vector )
) ,

mm256 add pd (
mm256 mul pd ( sqdivvolacd ,

c e l l s [ i ] . f l uxacd . s imd vector ) ,
mm256 mul pd ( sqdivvolbcd ,
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c e l l s [ i ] . f luxbcd . s imd vector )
)

)
) ;

}
Let us test the implementation on Intel Cascade Lake processors in a cluster
called NKS-1P of the Siberian Supercomputer Center. For the study, a 48-core
Intel Xeon Platinum 8268 processor was used. For this, the number of threads
will be varied, and the performance will be measured in gigaflops. The following
line was used for compilation:

mpiicc -xCORE-AVX2 -qopenmp -O2 -o hllk3d main.cpp -lm

Fig. 1. The performance of vectorized code implementing the Godunov scheme with
some numbers of OpenMP threads.

A performance of 90 gigaflops has been achieved (see Fig. 1), which corre-
sponds to approximately 62% of that with AVX-512 technology [2], and is much
greater than that in the first results of computational experiments on Intel Xeon
Phi accelerators [3].

4 Numerical Example

4.1 Sedov Blast Wave

The Sedov point explosion problem is one of the main test problems for numerical
methods and their software implementations in solving problems of supernova
explosions based on core collapse. Consider a domain bounded by a radius R =
0.5. The adiabatic index γ = 5/3, which corresponds to neutral atomic hydrogen.
The initial density in the domain ρ0 = 1, and the initial pressure p0 = 10−5.
An energy is injected at the initial time, E0 = 0.6. The explosion area is limited
by a radius r = 0.01. A density profile and an angular momentum profile are
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Fig. 2. Density and angular momentum profiles for the Sedov problem.

considered at time t = 0.05. The Sedov point explosion test is a standard test
of the ability of a method and its implementation to reproduce strong shock
waves with large Mach numbers, which takes place in explosions of spherical
objects such as massive stars. The sound speed of the medium is rather small
and, therefore, the Mach number can reach a value of M ≈ 1500. One can see
that the above-developed numerical method reproduces the shock front quite
well.

4.2 Evrard Collapse

The Evrard collapse problem is of interest in that first there is a short process of
compression of the center, its rapid heating, and further expansion. To solve this
problem, a non-rotating cloud is simulated with a dimensionless radius R0 = 1, a
density distribution within the radius ρ(r) = 1/(2πr), adiabatic index γ = 5/3,
and a total internal energy u = 0.05. The energy behavior is in quantitative and
qualitative agreement (see Fig. 3) with the results obtained by other authors [18].

Fig. 3. Behavior of energy in simulation of Evrard collapse.
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5 Conclusions

A new approach to the vectorization of computational fluid dynamics algorithms
adapted for simulating astrophysical applications was presented. A new compu-
tational model of gravitational hydrodynamics was briefly described. With a
vectorization procedure that implements a Godunov-type scheme, AVX2 tools
were used to achieve a performance of 90 gigaflops with a single Intel Cas-
cade Lake processor. Classical numerical examples (the Sedov problem and the
Evrard collapse test) have been used to test the model. In future M2H3D code
will should use to numerical simulation of star formation.
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Abstract. Modern architectures of central processors, in particular,
AMD Zen 2 and Intel Cascade Lake, allow one to build shared memory
systems with more than 100 computational cores. This paper presents
the results of comparing the performance of these architectures shown
on numerical modeling of mitosis in eukaryotes. The MiCoSi software
that was developed by the authors and previously demonstrated a linear
scalability when executed on cluster systems was used as a benchmark.
The testing was performed on Amazon EC2 cloud nodes with 96 logical
cores each. It is shown that, in relation to the problem of mitosis mod-
eling, the two architectures under study have similar performance, while
in some cases, Intel Cascade Lake bypasses its competitor AMD Zen 2
by 5–23%.

Keywords: Manycore processors · Shared memory · Parallel
programming · Cell division · Mitosis · Prometaphase

1 Introduction

Modern processor architectures such as AMD Zen 2 and Intel Cascade Lake
allow one to build computing systems with dozens or even hundreds of shared-
memory computing cores. As a result, many theoretical and applied scientific
problems that previously could be numerically solved on small clusters now can
run on individual workstations.

This brings up the question of whether modern software packages can run
on such systems in their natural SMP mode without any cluster emulation or
separation of calculations by processes. This problem can relate both to archi-
tecture of the package itself, which does not allow to effectively use an increased
number of cores, and to the specifics of memory organization, access to which
is complicated due to the chiplet layout and multiprocessor configurations. As a
result, the authors of numerous recently published papers assessed separately the
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scalability of various algorithms, libraries, and packages when they are executed
on systems with a really large number of cores. We pursue similar goals consid-
ering the problem of modeling cell division which is typical of such disciplines
as biophysics and computational biology.

This paper has the following structure. Section 2 contains a comparison of
the 48-core Amazon EC2 cloud nodes with processors based on AMD Zen 2
and Intel Cascade Lake architectures. Section 3 provides a brief description of
the studied process of a eukaryotic cell division (mitosis) which results in the
formation of two daughter cells. Section 4 is dedicated to the structure of the
numerical algorithm and the chosen parallelization scheme. The specific settings
of the virtual experiments and the characteristics of the MiCoSi package we are
developing are given in Sect. 5. Finally, Sect. 6 contains conclusions about the
performance of both architectures in relation to the considered subject area.

2 Computer Systems

2.1 Technical Specifications

The calculations were performed on the c5ad (AMD) and c5d (Intel) nodes of the
Amazon EC2 cloud, which allow to create a computing system with 48 physical
cores and a total memory of 192 GB. It is worth explaining that in Amazon EC2,
one can only select the number of cores for which a certain level of performance
is guaranteed. The specific processor models and even their architecture may
change depending on the configuration of the virtual node and probably the
selected data center.

Our measurements have shown that AMD EPYC 7R32 processors based on
Zen 2 are always allocated for c5ad nodes. As for the c5d family, the architecture
does vary. The maximum configuration with 48 cores (c5d.24xlarge) uses Cascade
Lake processors, but when the number of cores decreases to eight (c5d.4xlarge),
the former are replaced by a processor model of previous generation, based on
a very similar, but still different Skylake-SP architecture.

Information about the technical characteristics of the nodes presented in
Table 1 was obtained by summarizing the official documentation and the results
of third-party tests. Since the processors in question were created specifically for
Amazon, the values of similar models are given for unknown parameters.

It should be also noted that Zen 2 and Cascade Lake architectures support
multiprocessor configurations, and the number of cores provided by Amazon
EC2 cloud does not correspond to their uppermost capabilities. According to
the documentation, for AMD EPYC processors, the maximum possible number
of cores per node equals 128 (2 processors with 64 cores) while for Intel Xeon
this figure reaches 224 (8 processors with 28 cores).

2.2 Comparison of Zen 2 with Cascade Lake

Due to their relative novelty, the Zen 2 and Cascade Lake architectures have
not yet received significant coverage in the scientific literature. As a result, the
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Table 1. Technical characteristics of the computer systems used.

Amazon EC2 node c5ad.24xlarge c5d.4xlarge c5d.24xlarge

Processor AMD EPYC 7R32 Intel Xeon
Platinum 8124M

Intel Xeon
Platinum 8275CL

Architecture Zen 2 Skylake-SP Cascade Lake

Year 2019* 2017 2019**

Technology, nm 7+14 14 14

TDP, W 280 240 240 × 2

Number of
cores/threads

48/96 8/16 from 18/36 24/48× 2

Base frequency, GHz 2.2* 3.0 3.0

Dynamic frequency,
GHz

3.3 3.5 3.9

L1/L2 caches, KB/core 32+32/512 32+32/1024 32+32/1024

L3 cache, MB 192 24.75 35.75 × 2

Type of memory DDR4-3200* DDR4-2666 DDR4-2933**

Number of memory
channels

8 6 6 × 2

Memory size, GB 192 32 192

*AMD EPYC 7552
**Intel Xeon Platinum 8270

comparison that follows is based on the information from technical presentations
and documentation provided by their manufacturers, AMD and Intel.

AMD EPYC processors [1,2] are based on individual chiplets (Fig. 1), referred
to as Core Complex Die (CCD). They are completely independent chips pro-
duced by 7 nm technology and subsequently combined into a single processor.
Each such CCD chiplet, in turn, is divided into two groups of four cores (Core
Complex, CCX), equipped with 16 MB of L3 cache memory. Another indepen-
dent IO-chiplet is responsible for working with RAM and I/O interfaces. It is
manufactured using 12 or 14 nm technology and adapted to a specific processor
model. For example, the EPYC 7R32 processor uses an IO-chiplet manufactured
by 14 nm technology and equipped with eight memory channels, which results
in a total bandwidth of about 200 GB/s.

All CCD chiplets (and even CCX groups) cannot communicate with each
other directly or address RAM explicitly. Corresponding requests must go
through IO-chiplet to which they are connected by a high-speed bus. Depending
on the model, the Zen 2-based processor can contain up to 8+1 chips, which
in total provides up to 64 physical cores visible to the operating system. In addi-
tion to them, the server models contain another specialized ARM core responsi-
ble for implicit encryption of the contents of RAM.

Intel solutions [3] use a more classic monolithic architecture (Fig. 1), and the
increase in the number of cores is provided by multiprocessor configurations.
They may contain 10, 18, or 28 computing cores per chip but some of them may
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Fig. 1. The architecture of processors used in the c5ad.24xlarge (AMD Zen 2) and
c5d.24xlarge (Intel Cascade Lake) nodes of Amazon EC2 cloud.

be disabled. For example, c5d.24xlarge nodes are based on processors with 28
cores, while only 24 of them are in operation. Each core has its own personal
L2 cache of 1 MB, and also contains a portion of the total L3 cache (1.375 of
35.75 MB) available to all cores. Also, unlike Zen 2, the Cascade Lake archi-
tecture supports AVX-512 vector extensions, allowing, for example, the core to
perform eight FP64 operations per CPU cycle.

All cores of a single processor are connected to each other by a high-speed on-
chip interconnect with a topology in the form of rows and columns. Two memory
controllers are implemented on each chip, providing a total of six channels and a
bandwidth of about 128 GB/s per socket. Inter-chip interconnect referred to as
Ultra Path Interconnect (UPI) and characterized by low latency and a bandwidth
of about 60 GB/s, is used to communicate with cores and memory controllers
from another socket.

It is almost impossible to determine which of these architectures is more
preferable comparing only their technical characteristics. The main advantage of
the chiplet approach is much larger number of transistors. For example, it allowed
to significantly increase the total size of L3 cache (192 MB for Zen 2 versus
71.5 MB for Cascade Lake, see Table 1). However, due to the chiplet layout, L3
cache is no longer shared and a single core can use no more than 16 of 192 MB
cache.

The situation with memory access looks quite similar. In Zen 2, all memory
controllers are placed on a separate IO-chiplet, so the memory is unified, but at
the cost of additional latency. In Cascade Lake, the access time depends on the
exact location of memory controller that is processing the request, namely on the
same chip as the core or in a neighboring socket. In the latter case, an additional
data transfer is performed over the UPI links, which increases the latency and
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potentially can even reduce the throughput. On the other hand, this architecture
allowed for higher peak throughput (256 GB/s for Cascade Lake versus 200 GB/s
for Zen 2).

2.3 Related Works

Usually, manycore processors are considered only as a tool for solving scientific
problems. This explains the comparative scarcity papers dedicated to a full–
fledged comparison of the performance of SMP systems from Intel and AMD. For
example, the authors of [4] evaluate the scalability with the number of cores for
the modified NAS Parallel Benchmark Suite, but the measurements were carried
out on the already outdated architectures Intel Haswell (18 cores× 4 sockets) and
AMD Piledriver (16 cores× 4 sockets). It is also worth noting similar estimates
for single-socket systems based on Intel Haswell/Broadwell and AMD Zen, but
for calculations using the Vienna Ab initio Simulation Package [5].

A larger-scale comparison of the Intel Skylake and AMD Zen architectures
was undertaken in [6] by performing hydrodynamic calculations on 100 nodes
of two supercomputers using an in-house software Hydro3D as a benchmark.
According to their results, the cluster based on Intel processors had better scal-
ability with the number of nodes. However, the AMD Zen architecture, due to
the larger number of cores (64 versus 40 per node), still provided the shortest
calculation time.

Of particular interest is the work [7], dedicated to the analysis of data with
CERN LHCb detector in real time, which used processors based on Intel Skylake
(2× 16 cores) and AMD Zen 2 (1× 64 cores). The transition from AVX2 to AVX-
512 vector extensions, which are supported only by Intel processors, resulted only
in a slight (about 10%) increase in performance, while in general, the AMD Zen 2
architecture appeared to be more preferable. For the same number of cores, it
beat Intel Skylake by about 16%, but when all 64 cores were used, the gap
increased to 93%.

3 The Simulated Biological Process

The cell cycle of the vast majority of eukaryotic cells consists of four repeated
stages, the key of which is mitotic division that results in the formation of two
genetically identical daughter cells. Violation of this process can lead to cell
death or, even worse, to the appearance of aneuploid daughter cells with an
altered set of chromosomes, which in some cases can lead to the development of
malignant neoplasms [8]. There are various protective mechanisms that suppress
possible “errors” of cell division, and currently the understanding of their work
is an important fundamental task [9].

The complexity of studying mitosis arises from the small physical sizes of
the objects under study (fractions of a micrometer), as well as the variety of
biochemical reactions involved in the process of cell division. As a result, bio-
physicists actively use the apparatus of mathematical modeling to quantitatively
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supplement and expand the experimental data. For example, authors [10] dis-
cussed the potentially exact formula for the polymerization rate of microtubules
consisting of tubulin proteins when they start to interact with chromosomes dur-
ing the first ten minutes of mitosis. An example of another area of research is the
paper [11], in which a computer model of a yeast cell was used to evaluate such
characteristics of living cells that have not yet been experimentally established.

The authors of this paper attempt to build their own complex mathematical
model of mammalian cells division [12] which will holistically describe the course
of three consecutive stages of mitosis, namely prometaphase, metaphase, and
anaphase (Fig. 2). During the first stage, the nuclear membrane is destructed
and chromosomes are released into the cytoplasm. Prometaphase is followed by
metaphase with growth of tubulin microtubules and the appearance of their
attachments to the chromosomes to pull the latter to the corresponding spindle
poles. After some time, a balance of exerted forces aligns attached chromosomes
in the equatorial plane of the cell. This stage is followed by anaphase, in which the
centromere that binds the sister chromosomes breaks leading to the chromosomes
distribution between two new daughter nuclei.

Fig. 2. Schematic representation of the stages of cell division accounted in the proposed
model.

It is worth noting that there are numerous papers dedicated to the construc-
tion of mathematical models of the dividing cell and its individual parts, often
based on mutually exclusive approaches to the description of mitosis. Many well-
known models that were relevant as of 2012 are described and classified in the
review [13].

4 Numerical Algorithm

The model of eukaryotic cell under consideration belongs to the class of the
mechanical ones. Specifically, the chromosomes are represented by the closest
geometric shapes (Fig. 3), which move both under the action of forces from the
microtubules and according to some artificial laws that depend on the model
settings. If the viscosity of cytoplasm is accounted for, the acceleration of chro-
mosomes can be neglected. Knowing the forces acting on the chromosome at
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a particular time, one can calculate its linear and angular velocities. Further,
by numerically integrating the velocities using the one-step Adams method, one
can reproduce the trajectory of the chromosome motion during the modeled time
interval [tstart, tend].

The structure of the numerical algorithm is shown in the listing in Table 2.
From the point of view of biophysics, it is interesting to study not individual cells,
but their ensembles consisting of 100 to 500 identical cells. Thus, the algorithm
by its nature has a fairly good potential for parallelization (lines 2 and 5). To
simulate a single cell, three loops at each time step should be performed. In
the first (lines 7–14), the state of microtubules is updated and their collisions
with chromosomes are searched. If the microtubule comes into contact with the
chromosome, it can attach to its kinetochore (line 13), and also, depending on
the model settings and probabilistic events, break off or begin to shorten.

The second loop (lines 16–20) is responsible for updating the position of the
chromosomes. Each of them is affected by three types of forces (line 17) that
originate from the dynamics of microtubules, Brownian motion of molecules,
and the influence of the sister chromosome. Knowing the sum of these forces,
one can construct a SLAE with a 6×6 matrix, the solution of which is the values
of linear and angular velocities (line 18). After that, it is possible to update the
position and orientation of the pair of sister chromosomes (lines 19–20). Finally,
the last loop (lines 22–23) consists of only two iterations and is required to move
the spindle poles artificially.

The main computational complexity arises when the loop for microtubules
is executed (lines 7–14). The attempts to adapt it to the SIMD architecture
were not very successful due to the large number of branches within a single
iteration. For example, for the scenarios discussed in Sect. 5, the CUDA version
of the algorithm provided an acceleration of about 2- to 6-fold relative to a
single processor core. The application of techniques such as reordering iterations
and using a hardware rasterizer allowed to increase the speed up to dozens of
times, but significantly complicated the code and hindered the development of
the mathematical model.

On the other hand, a more elegant solution turned out to be the paral-
lelization of the loop by cells for the MIMD architecture (line 5), for which
OpenMP+MPI technologies were used. Our measurements have shown [14] that
when the ensembles of 1000 cells were simulated on ten nodes of the Lomonosov-
2 cluster, an ideal scalability across cores was observed. Thus, this algorithm is a
fairly illustrative example of the fact that manycore architectures such as Zen 2
or Cascade Lake can be in demand, including their usage in scientific modeling.
The reason lies in the fact that some problems of computational biology are
difficult to adapt to graphics accelerators while the computing power of classical
clusters turns out to be redundant for them.
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Table 2. Pseudocode of an algorithm that implements one of the versions of the cell
division model proposed by the authors.

1 t ← tstart

2 cells[1..N] ← InitializeCells()

3

4 while t < tend

5 parallel for each cell in cells

6

7 for each mt in cell.mtubules

8 ProbabilisticEvents(mt)

9 GrowOrShrink(mt, Δt)

10 if not mt.bound

11 for each chr in cell.chromosomes

12 if HasCollision(mt, chr) and MayAttach(mt, chr)

13 Bind(chr, mt)

14 break

15

16 for each chr in cell.chromosomes

17 force, torque ← ComputeForces(chr.bound mtubules)

18 v, w ← ComputeVelocities(force, torque)

19 chr.pos ← chr.pos + v * Δt

20 chr.orient ← chr.orient + w * Δt

21

22 for each pole in cell.poles

23 MovePole(pole)

24 t ← t + Δt

5 Testing Methodology

To evaluate the performance of computing systems, we used the open source
package MiCoSi [12]. It contains the implementation of the three-dimensional
mathematical model of a dividing cell described in Sects. 3 and 4, and also has
interfaces to flexibly configure numerical experiments and to measure physi-
cal quantities of interest. The solver version corresponded to the git revision
eb11432, the package was built using the Visual C++ 2017 compiler and suc-
cessfully passed all functional and unit tests.

The choice of the Amazon EC2 cloud and the Windows platform for testing
was caused by the fact that MiCoSi software package is primarily addressed to
users with modest programming skills. It is assumed that, using the user-friendly
C# language, they will be able to create and debug a simple program on a local
machine and then export the data they are interested in, for example, in the
form of CSV tables for subsequent analysis using Excel or Python. In this case,
to conduct large-scale computational experiments, it will be enough to transfer
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several files to the Amazon EC2 node, run calculations there, and then download
tables with the results.

As a specific numerical experiment used as a benchmark, a program was
developed to simulate prometaphase, a stage of cell division that lasts about
180 s and is characterized by the divergence of spindle poles in diametrically
opposite parts of the cell. Such divergence generates a large number of inter-
actions between tubulin microtubules and pairs of chromosomes that are freely
floating in cytoplasm.

Two basic scenarios were considered. In the first, hereinafter referred to as
‘Compute-bound’ (Fig. 3a), the virtual cell consists of three pairs of chromosomes
and 3000 microtubules. The simulation is performed in 0.1-s increments, and
only the parameters of the final state of the cell are saved to the disk. This
scenario generates a substantial computational load for performing geometric
checks, as well as drawing up and solving SLAE for the subsequent determination
of velocities. The second scenario, designated as ‘IO-bound’ (Fig. 3B), describes
a simpler cell with one pair of chromosomes and 1000 microtubules. In addition,
the states are unloaded every 0.01 s, resulting in about 628 MB of output data.
As a result, the operations of serialization and packaging of information in the
binary stream format *.cell begin to prevail.

Fig. 3. Visualization of cells used for numerical simulation of prometaphase. (a)
‘Compute-bound’ scenario, 3 pairs of chromosomes and 3000 microtubules; (b) ‘IO-
bound’ scenario, 1 pair of chromosomes and 1000 microtubules.

The size of the ensemble, depending on the type of test, was 48 and 384
virtual cells. The number of processor cores involved in the simulations was
constrained by limiting the tasks, i.e. by subdividing the cells into groups
of cells with exactly predetermined size. The total time spent executing the
Launcher.StartAndWait() method was used as a metric. Testing was accom-
plished in the Amazon EC2 cloud on c5d (Intel Skylake-SP and Cascade Lake)
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and c5ad (AMD Zen 2) nodes with Windows Server 2019/20H2 installed. The
software was launched from local NVMe disks that have a physical connection
to the nodes.

6 Results and Discussion

6.1 Support for a Large Number of Cores Is Required Not Only
from Applications, But Also from Operating Systems and
Compilers

In a list of changes made over the past three years to the Visual C++ and gcc
compilers, one can notice references to a lot of improvements in the architectures
under study. In addition to the expected progressive enhancements, a support
for chiplet processors is also declared, which should result in a noticeable perfor-
mance gain for some patterns of memory operations. To evaluate this effect, the
testing was performed using two versions of Visual C++ 2017 compiler, namely
VC++ 14.1 (May 2017) and VC++ 14.16 (January 2021).

The situation with Windows Server operating system looks similar. Accord-
ing to the documentation from AMD, it is required to use versions that are
based on at least the update 1903 (May 2019), as the new scheduler is better
aware of the structure of caches, which increases the final speed by dozens of
percent. As our tests have shown, these limitations are much more severe. The
version based on the previous update 1809 (October 2018), installed in the Ama-
zon EC2 cloud by default, forcibly sets the affinity mask and does not allow a
single process to run on all the cores. Only 24 physical cores were used on the
c5d.24xlarge (Cascade Lake) nodes, while only 32 physical cores were available
on the c5ad.24xlarge (Zen 2) nodes. When the system was upgraded to version
20H2 (October 2020), these problems disappeared.

The total effect of the simultaneous update of the operating system and
the compiler was indeed significant. When using 8–24 cores in the ‘Compute-
bound’ scenario, the computation time was reduced by about 7–12% (Cascade
Lake) and 9–18% (Zen 2). The greatest acceleration was observed for the ‘IO-
bound’ scenario on the Zen 2 processor with the gain in the range 27–50%, which
significantly improved the scalability with the number of cores.

6.2 For Intensive Computations on a Small Number of Cores,
Cascade Lake and Zen 2 Demonstrate Similar Performance

Figure 4a shows the measurements at the c5d.4xlarge (Cascade Lake or Skylake-
SP, depending on the launch) and c5ad.4xlarge (Zen 2) nodes, with eight physical
cores each. In such scenarios, Intel Xeon processors can run at slightly higher
clock speeds (3.9 GHz vs. 3.3 GHz), which may explain their better performance,
although the gain was insignificant. In both cases, the scalability was near-linear
(6-fold and 6.9-fold on eight cores). After switching to virtual cores, the Intel
technology, which allows for the division of one physical core into two logical
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Fig. 4. Performance comparison when using c5ad.4xlarge (AMD Zen 2) and c5d.4xlarge
(Intel Cascade Lake) nodes on an ensemble of 48 cells, more is better. (a) ‘Compute-
bound’ scenario, without data unloading; (b) ‘IO-bound’ scenario, uploading data in
0.01 s increments.

ones, demonstrated slightly better results. For example, 16 Cascade Lake logical
cores were 43% faster than 8 physical cores. For Zen 2, the speed up was 36%.

Unfortunately, the Cascade Lake and Skylake-SP architectures can hardly be
compared objectively, since the nodes with Windows Server 20H2 have always
been created only on the basis of Cascade Lake. Neglecting these differences,
although it is not quite correct, the performance gain from switching to a new
platform can be estimated as 13–17%.

6.3 On Active Memory Operations, Cascade Lake Is Slightly Ahead
of Zen 2

The ‘IO-bound’ scenario (Fig. 4b) predictably demonstrated that from a certain
point on, adding computational threads lead only to a decrease in performance.
In both cases, this threshold turned out to be 6–8 cores. It is important to note
that when operations with memory dominate over computations, the Cascade
Lake architecture shows better results, consistently beating Zen 2 by 13–23%.
These observations correlate well with technical specifications of these two archi-
tectures. At full load, Cascade Lake provides a larger number of memory chan-
nels per core (0.25 vs. 0.167 for Zen 2) and higher bandwidth per core (5.34 vs.
4.16 GB/s for Zen 2). It is also worth to account for the fact that the chiplet
architecture of Zen 2 processors always causes additional latency, while Cascade
Lake has cores and memory controllers both located on the same chip.
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6.4 When the Second Socket Cores Are Used, Cascade Lake
Sometimes Loses to Zen 2

The most interesting results have been obtained when the MiCoSi package was
executed on all 96 logical cores of the c5d.24xlarge and c5ad.24xlarge nodes
(Fig. 5). As noted in Sect. 6.1, these tests could only be performed on Windows
Server 20H2, since older systems artificially limited the number of cores available
to the process.

When the absolute performance is compared (Fig. 5a), the graph is clearly
divided into two parts. In the range of 8–24 cores, Cascade Lake is the winner,
consistently outperforming Zen 2 by 5–15%. However, for 32–96 cores, episodic
failures begin to occur, thus allowing Zen 2 to significantly bypass its competi-
tor. Such a picture is very characteristic of multi-socket systems which require
a separate optimization of the executed program with special account for the
physical heterogeneity of memory.

Fig. 5. Comparison of the performance of c5ad.24xlarge (AMD Zen 2) and c5d.24xlarge
(Intel Cascade Lake) nodes with a predominance of computing load on an ensemble of
384 virtual cells, more is better.

Modern processors dynamically adjust the frequency even for a group of
cores, remaining within the acceptable TDP level, which can somewhat “worsen”
the scalability curve at their maximum load. Accordingly, the slight performance
degradation observed for Zen 2 when switching from 32 to 48 cores may be of a
similar nature. The base frequency of this processor is only 2.2 GHz, while for a
group of cores it can increase up to 3.3 GHz.

It is also worth noting that in the relation to the effect of using logical cores,
in the analogy with Sect. 6.2, a system based on AMD processors gets a greater
benefit. For Zen 2, the acceleration brought about by the transition from 48
physical cores to 96 logical ones was 73%, while for Cascade Lake it appeared
to be just 47%.
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7 Conclusion

The use of synthetic benchmarks such as Linpack and HPCG is the most objec-
tive method of hardware platforms comparison, since they make it possible to
measure the performance in absolute terms and approach the theoretically pos-
sible limits. Nevertheless, applied benchmarks that estimate the relative per-
formance when solving a problem from an applied discipline are of particular
interest. They are the ones that allow for making preliminary conclusions about
the speedup one could expect when migrating to a new hardware platform.

The results of the comparison of Zen 2 and Cascade Lake in solving the con-
sidered problem of computational biology are an illustrative example of such an
applied benchmark. The architectures considered are based on two alternative
approaches: a chiplet layout and a large monolithic die. They can be easily com-
pared based exclusively on technical characteristics or by extrapolating synthetic
tests, while the latter is not quite correct. For example, Cascade Lake processors
are produced using the formally outdated 14 nm technology and contain several
times less L3 cache memory. Meanwhile, with the same number of cores, they
have higher frequencies and support the new AVX-512 instruction set. Thus, it
is quite difficult to make a full and objective comparison without solving applied
problems from significantly different subject areas.

If one focuses only on the cost of renting the appropriate hardware, for the
MiCoSi package, the Cascade Lake architecture is a preferred choice. The c5d and
c5ad nodes presented in the Amazon EC2 cloud are positioned as interchangeable
ones with the same rental price per core. At the same time, Intel solutions provide
better performance in the scenario of intensive work with memory (13–23%) and
slightly higher speed when accomplishing computations on the cores of a single
die (5–15%). The only advantage of Zen 2-based processors is a much higher
speed when running on 32 and 96 cores (19–50%). However, due to the lack of
linear scalability with the number of cores, there are all reasons to believe that
the observed ‘performance spike’ is caused by insufficient optimization of the
MiCoSi package or by the chosen testing method.
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Abstract. The multiplication of a sparse matrix by a vector (SpMV) is
the main and most expensive component of iterative methods for sparse
linear systems and eigenvalue problems. As rounding errors often lead to
poor convergence of iterative methods, in this article we implement and
evaluate the SpMV using high-precision arithmetic on graphics process-
ing units (GPUs). We present two implementations that use the com-
pressed sparse row (CSR) format. The first implementation is a scalar
high-precision CSR kernel using one thread per matrix row. The sec-
ond implementation consists of two steps. At the first step, the matrix
and vector are multiplied element-by-element. The high efficiency of this
step is achieved by using a residue number system, which allows all dig-
its of a high-precision number to be computed in parallel using multiple
threads. The second step is a segmented reduction of the intermediate
results. Experimental evaluation demonstrates that with the same pre-
cision, our implementations are generally faster than CSR kernels built
on top of existing high-precision general purpose libraries for GPUs.

Keywords: Sparse matrices · SpMV · GPU programming ·
High-precision arithmetic

1 Introduction

Single and double precision arithmetic is widely used in scientific computing and
is natively supported by modern hardware and programming languages. How-
ever, floating-point operations introduce round-off errors that affect the results
of calculations and in some cases cause problems. For example, in sparse linear
algebra, iterative Krylov methods are widely used [17]. These methods converge
in theory, but when using finite-precision floating-point arithmetic, they may
converge slowly or even not at all [18]. High-precision arithmetic can be used to
reduce the influence of round-off errors on numerical results.
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Sparse matrix vector multiplication (SpMV), which calculates y = Ax for a
given sparse matrix A, occupies an important place in linear algebra algorithms
and is the most important computational kernel for iterative linear solvers. A
large body of research is devoted to the development of sparse matrix stor-
age formats and native-precision SpMV implementations optimized for parallel
computing platforms such as graphics processing units (GPUs) [1,3,12]. In turn,
[5,7,14,18] offer high-precision versions of SpMV and other linear algebra kernels
using double-double (DD) arithmetic that represents numbers by two double-
precision floating-point numbers to emulate quadruple precision [6]. Well-known
implementations of DD arithmetic are QD [6] and Lis [11]. In turn, the GQD
library [13] is the GPU version of QD, while CAMPARY [10] supports not only
the DD format, but also several other n-double formats for GPUs.

We discuss high-precision SpMV implementations from MPRES-BLAS1, a
library of high-precision linear algebra operations for CUDA-enabled GPUs [8].
MPRES-BLAS differs from existing high-precision libraries in that it uses a
residue number system (RNS) rather than weighted number systems to pro-
vide high-precision capabilities. The RNS is interesting, in particular, because
it provides efficient addition, subtraction and multiplication of large integers.
These operations work on residues in parallel, and independently without carry
propagation between them, instead of directly with the complete number [2].

MPRES-BLAS currently provides several different SpMV implementations
in various sparse matrix formats. In particular, both scalar and vector high-
precision kernels are available for the compressed sparse row (CSR) format. In
addition, there is also a two-step SpMV, which is significantly different from the
others. In this article, we discuss the scalar and two-step CSR implementations.

The rest of the article is structured as follows. In Sect. 2, we briefly describe
the CSR matrix storage format. Section 3 contains the high-precision data types
supported by the MPRES-BLAS library. The high-precision SpMV implementa-
tions are discussed in Sect. 4. An experimental evaluation is provided in Sect. 5,
while conclusions are given in Sect. 6.

2 Compressed Sparse Row

The sparse matrix storage format has a significant impact on the performance
of SpMV computation. There are several traditional formats such as Coordinate
(COO), Diagonal (DIA), Compressed Sparse Row (CSR), ELLPACK/ITPACK,
and Hybrid (HYB). Recently, many research efforts have been devoted to devel-
oping variations on traditional sparse storage formats optimized for parallel
architectures. An extensive review of storage formats employed on modern GPUs
that have appeared in the literature in recent years is given in [3].

In our high-precision SpMV implementations, we use the CSR format, which
is the most common in iterative solvers. An example of the CSR format is shown
in Fig. 1, where, similarly to [3], AS is an array of nonzero matrix coefficients,
JA is an array of column indices and IRP is an array of row pointers.
1 Available at https://github.com/kisupov/mpres-blas.

https://github.com/kisupov/mpres-blas
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Fig. 1. Compressed Sparse Row (CSR) matrix storage format.

The main advantage of the CSR format is that it only stores nonzero matrix
entries, without padding entries required in ELLPACK and DIA formats. This is
especially important when the matrix entries are represented by high-precision
numbers.

3 High-Precision Data Types of MPRES-BLAS

In MPRES-BLAS, a high-precision floating-point number x is represented as an
object x = 〈s,X, e, I(X/M)〉, defined as follows:

– s is the sign of the number (either 0 or 1);
– X = (x1, x2, . . . , xn) is the significand also called the mantissa;
– e is the integer exponent of the number;
– I(X/M) is the extra part of the number needed to efficiently perform some

complex operations in the RNS domain, such as sign determination, overflow
detection, comparison, and rounding.

Being represented in the RNS [16] with a moduli set {m1,m2, . . . ,mn}, the
significand can take the values in the range from 0 to M − 1, where M is the
product of all the mi’s. The size of the moduli set n specifies the number of
digits in the significand, and each digit xi is the least non-negative remainder
when X is divided by mi.

We can convert a high-precision number from the presented number format
to the usual weighted form using the following formula:

x = (−1)s ×
∣
∣
∣M1|x1w1|m1 + M2|x2w2|m2 + · · · + Mn|xnwn|mn

∣
∣
∣
M

× 2e,

where Mi = M/mi, and wi is the multiplicative inverse of Mi modulo mi.
The additional attribute I(X/M) included in the high-precision number for-

mat is called the interval evaluation of the significand. This evaluation repre-
sents an interval defined by its lower and upper bounds X/M and X/M that are
finite precision floating-point numbers satisfying X/M ≤ X/M ≤ X/M . That
is, I(X/M) represents the range of possible values of X = (x1, x2, . . . , xn) scaled
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by the moduli product M , and although the exact magnitude (i.e., weighted rep-
resentation) of X remains unknown, the range provided is sufficient to efficiently
perform many operations that are inherently difficult in the RNS.

The bounds X/M and X/M are native-precision floating-point numbers with
an extended exponent range, which prevents numerical underflow in the case of
large M (for M < 21000, the binary 64 format is enough for X/M and X/M).
The interval evaluation is calculated when converting a number to high-precision
representation. When performing an arithmetic operation on high-precision num-
bers, the interval evaluation of the result is obtained in O(1) time using interval
arithmetic formulas. In addition, if required, I(X/M) can be recalculated at
any time from the residues (x1, x2, . . . , xn) using only standard floating-point
operations, i.e., without laborious RNS-to-binary conversion.

The high-precision floating-point data types in MPRES-BLAS is defined as
C structures shown in Fig. 2.

Fig. 2. High-precision floating-point data types.

The mp float t type represents a single number, and the significand part
is stored as a static array (digits[n]). For arrays, the mp array t type can
be used, which stores a high-precision N -element array in a decomposed form,
i.e., as a set of arrays representing separate parts of high-precision numbers. In
particular, the significand parts are stored as an integer array of length n × N .
The mp array t type also includes the fields len (actual vector length) and buf
(a buffer to transfer auxiliary variables between computational kernels). There
is also the mp collection t type, which is a lightweight version of mp array t.

4 High-Precision SpMV for GPU

In this section, we discuss two implementations of high-precision matrix-vector
product in CUDA. The input data for the implementations are a high-precision
vector x of N elements and a high-precision sparse matrix A with NNZ nonzero
elements, K rows and N columns. The result of the operation is a high-precision
vector y of size K. We start with a scalar SpMV CSR kernel and then present a
two-step implementation.
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4.1 Scalar Kernel

The paper [1] describes a straightforward CUDA implementation of SpMV that
uses one thread per matrix row to parallelize the computation; see Fig. 20 in [1].
If in this implementation, which is referred to as the scalar kernel, we replace the
standard floating-point operations with the corresponding high-precision opera-
tions from the MPRES-BLAS library, we get our first high-precision SpMV. The
pseudocode for this version is given in Algorithm 1.

Algorithm 1. High-precision scalar CSR kernel
1: row = threadIdx.x + blockIdx.x * blockDim.x
2: while row < K do
3: dot = 0
4: for i = IRP(row):IRP(row + 1) do
5: mp mul(prod, AS(i), x(JA(i))) � High-precision multiplication
6: mp add(dot, dot, prod) � High-precision addition
7: end for
8: y(row) = dot
9: row += gridDim.x * blockDim.x

10: end while

In this kernel, each high-precision arithmetic routine is performed by one
thread. The nonzero matrix entries are stored as an array of mp float t
instances (AS). The input and output vectors are represented by similar arrays.
For multiplying two high-precision numbers of the mp float t type, MPRES-
BLAS provides the mp mul function. In turn, the mp add function performs high-
precision addition of two numbers.

Advantages:
– No coordination among threads within the same thread block/warp is

required, so there is no need to use shared memory of the GPU. Note
that in the case of high-precision arithmetic, shared memory can be a
limiting factor for the occupancy of CUDA kernels (if the size of each
high-precision number is too large).

– Unlike the two-step implementation discussed in the next subsection, the
scalar kernel does not require extra memory space to store intermediate
results.

Drawbacks:
– In RNS, all digits of a number can be computed in parallel by assigning

one thread to compute one digit, however, in Algorithm 1, both high-
precision addition and multiplication are computed by a single thread.
If the precision (the number of RNS moduli) is quite high, sequential
computation of all digits of the significand can take a long time, resulting
in poor kernel performance, especially when the kernel is applied to a
matrix with a many nonzero entries per row.



Sparse Matrix-Vector Product in High-Precision Arithmetic for GPU 339

– In the CSR format, column indices (JA) and nonzero values (AS) are
stored in row-major order, i.e., for a given row, these values are located
contiguously in memory; however, they are not accessed simultaneously,
which leads to an inefficient access pattern, since threads from the same
warp access global memory with a stride. Moreover, the size of the stride
depends on both the precision and the length of the matrix rows.

4.2 Two-Step Implementation

Our second SpMV CSR implementation uses the mp collection t type to store
nonzero matrix entries, as shown in the example in Fig. 3, where n = 4, i.e., the
significand of each nonzero value ◦ ∈ {a, b, c, d, e, f} consists of four digits, x1,
x2, x3, x4. The symbol “.” is used to access the parts of a high-precision number;
l and u denote the lower and upper bounds of I(X/M).

Fig. 3. High-precision CSR format.

The input vector x and the output vector y are stored as mp array t
instances. The implementation also requires a temporary global memory array
BUF of size NNZ. The computation is a sequence of two steps:

1. The matrix A and vector x are multiplied element-by-element. The interme-
diate results are stored in the global memory array BUF .

2. A matrix-based segmented reduction of the BUF array is performed to pro-
duce the output vector y.

The first step is highly parallelizable thanks to the use of RNS. At this step,
not only all elements of the intermediate array are computed in parallel, but also
all the digits of each element. That is, n threads simultaneously compute one
high-precision multiplication and the ith thread is assigned to calculate the ith
digit modulo mi. This approach is implemented using three kernel launches [9]:
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1. Kernel #1—processing signs, exponents and additional information;
2. Kernel #2—processing digits;
3. Kernel #3—rounding.

The pseudocode of the kernels is presented in Algorithms 2, 3, and 4. In
Algorithm 2, the functions rn down and rnd up indicate that the computation is
performed in finite precision floating-point arithmetic with rounding down and
rounding up, respectively. In Algorithm 4, the rnd bits function calculates the
number of rounding bits using the interval evaluation of the significand, and
the pow2 scal function scales the significand by 2bits. After scaling, the interval
evaluation is recalculated using the calc eval function.

Algorithm 2. Element-by-element multiplication of A and x — Kernel #1
1: i = blockDim.x * blockIdx.x + threadIdx.x
2: while i < NNZ do
3: id = JA(i)
4: BUF.sign(i) = AS.sign(i) xor x.sign(id)
5: BUF.exp(i) = AS.exp(i) + x.exp(id)
6: BUF.eval(i) = rnd down(AS.eval(i) * x.eval(id) / ONE.upp)
7: BUF.eval(NNZ + i) = rnd up(AS.eval(NNZ + i) * x.eval(N + id) / ONE.low)
8: i += gridDim.x * blockDim.x
9: end while

Algorithm 3. Element-by-element multiplication of A and x — Kernel #2
1: tid = threadIdx.x mod n � n is the RNS moduli set size
2: m = MODULI(tid)
3: i = blockIdx.x * blockDim.x + threadIdx.x
4: j = (blockIdx.x * blockDim.x + threadIdx.x) / n
5: while i < NNZ * n do
6: BUF.digits(i) = (AS.digits(i) * x.digits(JA(j) * n + tid)) mod m
7: i += gridDim.x * blockDim.x
8: j += gridDim.x * blockDim.x / n
9: end while

Algorithm 4. Element-by-element multiplication of A and x — Kernel #3
1: i = blockDim.x * blockIdx.x + threadIdx.x
2: while i < NNZ do
3: bits = rnd bits(BUF.eval(i))
4: if bits > 0 then
5: BUF.exp(i) += bits
6: start = i * n
7: end = n * (i + 1) - 1
8: BUF.digits(start:end) = pow2 scal(BUF.digits(start:end), bits)
9: BUF.eval(i) = calc eval(BUF.digits(start:end))

10: end if
11: i += gridDim.x * blockDim.x
12: end while
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The pseudocode of the segmented reduction kernel is given in Algorithm 5.

Algorithm 5. Segmented reduction of the intermediate array BUF
1: tid = threadIdx.x
2: row = threadIdx.x + blockIdx.x * blockDim.x
3: if row < K then
4: sum(tid) = 0
5: for i = IRP(row):IRP(row + 1) do
6: mp add(sum(tid), sum(tid), BUF(i))
7: end for
8: y(row) = sum(tid) � Output vector
9: end if

We summarize the advantages and drawbacks of the described two-step
SpMV implementation as follows:

Advantages:
– The first step is highly parallelizable, since each digit of a high-precision

number is computed by its own thread as shown in Algorithm 3.
– The element-by-element multiplication kernels (Algorithms 2 and 3)

accesses the JA and AS arrays contiguously, producing the coalesced
memory access pattern (this is not the case of the rounding kernel shown
in Algorithm 4).

– The performance of the first step does not depend on the length of the
matrix rows, since the matrix is treated as a one-dimensional array.

Drawbacks:
– Additional space must be allocated in the global GPU memory to store

intermediate results (the BUF array).
– The approach leads to an increase in the number of global memory

accesses.
– Unlike multiplication, one high-precision addition operation is computed

by one thread, so the reduction kernel suffers from the same drawbacks
as the scalar kernel from the previous subsection.

5 Performance Evaluation

We evaluated the performance of the presented SpMV implementations on
matrices of different sparsity patterns from SuiteSparse Matrix Collection2. An
overview of the matrices is presented in Table 1, where NNZ is total the number
of nonzero values, while MAXNZR and AVGNZR is the maximum and average
number of nonzero values per matrix row.

2 https://sparse.tamu.edu.

https://sparse.tamu.edu
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Table 1. Matrices for experiments.

Name Rows Nonzeros MAXNZR AVGNZR

sme3Db 29 067 2 081 063 345 71

torso3 259 156 4 429 042 22 17

marine1 400 320 6 226 538 18 15

degme 185 501 8 127 528 624 079 43

atmosmodl 1 489 752 10 319 760 7 7

SiO2 155 331 11 283 503 2 749 72

The experiments were performed on a system with an NVIDIA RTX 2080
GPU (46 streaming multiprocessors, 8 GB of GDDR6 memory, compute capabil-
ity version 7.5), an Intel Core i5 7500 processor and 16 GB of DDR4 RAM, run-
ning Ubuntu 20.04.1 LTS. We used CUDA Toolkit version 11.1.105 and NVIDIA
driver version 455.32.00. The source code was compiled with the -O3 option.

In the experiments, we evaluated the following high-precision SpMV imple-
mentations:

MPRES-BLAS (scalar) — Scalar high-precision CSR kernel presented in
Subsect. 4.1

MPRES-BLAS (two-step) — Two-step high-precision CSR implementation
presented in Subsect. 4.2

CAMPARY (scalar) — Scalar CSR kernel using the CAMPARY
high-precision library [10]

CUMP (scalar) — Scalar CSR kernel using the CUMP high-precision
library [15]

MPFR (OpenMP) — Multicore CSR implementation using MPFR, a
highly optimized library for high precision on CPUs
[4]

The first four implementations were run on the GPU, while the last one was
run in parallel on 4 CPU threads with 4 physical cores. The performance P is
measured in high-precision operations per second: P = 2 × NNZ/T , where T is
the measured execution time. Note that each high-precision operation consists
of several standard operations.

The evaluation results are shown in Table 2. We observe that the kernel
using CAMPARY is the better choice for 106-bit precision. This is because the
CAMPARY library provides optimized algorithms for DD arithmetic. In all other
test cases, except for the “degme” matrix, the MPRES-BLAS implementations
run faster.

Comparing the two MPRES-BLAS implementations, we see that the two-
step one is less dependent on the precision than the scalar one. In particular, on
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the “marine1” matrix, when the precision increases by 8 times, the performance
of the two-step SpMV decreases by 3.4 times, while the performance of the scalar
SpMV decreases by 5.3 times, and the two-step version provides a speedup of
up to 66% for 848-bit precision.

Unsurprisingly, the efficiency of high-precision SpMV depends on the matrix
structure and sparsity pattern. The evaluated implementations exhibit fine-
grained parallelism and hence perform better on the matrices “atmosmodl”,
“torso3”, and “marine1”, which have a large number of rows with few nonzero
entries per row.

On the other hand, the “degme” matrix contains a number of very long rows,
which increases the amount of computation performed by each GPU thread.

Table 2. Performance of various high-precision SpMV implementations in millions of
high-precision op/s.

Matrix Precision

in bits

MPRES-BLAS

(two-step)

MPRES-BLAS

(scalar)

CAMPARY

(scalar)

CUMP

(scalar)

MPFR

(OpenMP)

sme3Db 106 474.0 493.8 6813.3 410.4 83.1

212 682.9 647.8 479.0 316.3 73.8

424 446.7 372.5 92.5 225.0 69.2

636 316.7 236.2 31.3 173.6 61.9

848 259.6 172.3 16.0 129.4 54.4

torso3 106 1124.0 1032.8 11704.7 731.0 100.2

212 998.6 1071.1 837.9 539.2 88.6

424 604.7 579.8 155.0 375.5 38.1

636 426.3 320.9 56.0 276.4 70.5

848 333.3 239.3 26.4 208.1 70.1

marine1 106 1105.4 1023.9 10466.9 642.0 99.4

212 939.0 922.8 784.6 439.7 82.7

424 572.3 498.3 145.2 278.9 82.9

636 417.5 282.8 53.8 200.2 71.2

848 320.8 193.4 25.9 148.1 70.3

degme 106 14.4 8.1 79.4 9.5 77.1

212 11.6 6.8 6.7 7.7 64.6

424 8.2 4.5 1.0 7.3 64.2

636 6.3 3.1 0.4 6.1 54.0

848 4.1 2.3 0.2 5.3 50.5

atmosmodl 106 1209.4 1206.9 12377.4 961.9 87.7

212 1052.7 1190.3 864.6 694.2 72.5

424 575.3 579.8 163.3 467.5 77.1

636 420.4 320.3 68.7 335.1 67.2

848 319.0 218.5 31.0 249.5 66.8

SiO2 106 349.2 331.2 3194.1 385.7 64.2

212 659.9 552.0 247.9 327.9 57.9

424 412.0 325.6 49.6 221.2 51.9

636 297.4 218.5 18.6 164.3 48.7

848 223.9 180.3 7.0 119.2 47.1
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Moreover, a very large stride between simultaneously addressed matrix entries
leads to a drop in the effective memory bandwidth. The result is that the GPU
implementations showed worse performance than the parallel CPU implementa-
tion using MPFR. For matrices with long rows, the GPU performance can be
improved by assigning a group of threads to process each matrix row.

6 Conclusions

In this paper, we discussed two implementations of high-precision sparse matrix-
vector multiplication in CUDA that are part of the MPRES-BLAS library. The
high-precision capabilities of MPRES-BLAS are provided by using the residue
number system, which has several advantages over weighted number systems.
In particular, there is no carry propagation, which allows all digits of a high-
precision number to be computed in parallel. This RNS benefit is exploited in
our two-step SpMV routine, which is less dependent on the precision than the
scalar CSR kernel. On the other hand, the two-step SpMV requires additional
global memory space for intermediate results, while the scalar kernel does not.

It is worth noting that matrices that appear in real-world applications are
usually represented in single or double precision and it is not necessary to convert
them to higher precision. With this in mind, we will implement the multiplication
of a sparse double-precision matrix by a high-precision vector and apply it to
improve the convergence of iterative solvers.
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Abstract. The paper aims to compare the performance of deep con-
volutional network inference. Experiments are carried out on a high-
end server with two Intel Xeon Platinum 8260L 2.4 GHz CPUs (48
cores in total). Performance analysis is done using the ResNet-50 and
GoogleNet-v3 models. The inference is implemented employing the com-
monly used software libraries, namely Intel Distribution of Caffe, Tensor-
Flow, PyTorch, MXNet, OpenCV, and the Intel Distribution of Open-
VINO toolkit. We compare total run time and the number of processed
frames per second and examine the strong scaling efficiency when using
up to 48 CPU cores. Experiments have shown that OpenVINO provides
the best performance and scales well up to 48 cores. We also observe that
OpenVINO in the Throughput mode compared to latency mode acceler-
ates inference from 4.9x for an image batch size of 1 to 1.4x for an image
batch size of 32. We found that INT8 quantization in OpenVINO sub-
stantially improves the inference performance while maintaining almost
the same classification quality.

Keywords: Deep learning inference · Convolutional neural networks ·
Performance analysis · Low-precision computations · Scaling efficiency

1 Introduction

Deep learning (DL) methods and models are commonly used in many research
areas, namely pattern recognition [18,28,30], video analysis [13], natural lan-
guage processing [33], bioinformatics [25], computational physics [15,16,24], and
many others. The life cycle of DL models consists of three stages. At the first
stage, the topology of the model is developed and trained. At the second stage,
the constructed model is verified. At the last stage, the model is deployed
into commercial products. The training procedure is often very computationally
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intensive and, as a rule, is performed only once on high-performance servers.
On the contrary, employing the constructed model (deep learning inference) is
reduced to a direct pass through the previously tuned neural network, which
does not require high-performance hardware. However, there is a need to per-
form such inference multiple times for different input data, which explains the
need to optimize inference implementations for modern and upcoming comput-
ing architectures. Intel Corporation made significant progress in this direction. A
new toolkit for high performance deep learning inference, called OpenVINO, con-
tains a wide range of inference tools optimized for Intel platforms. The purpose
of this paper is to investigate the inference performance for two convolutional
neural network models using state-of-the-art deep learning libraries. As in other
studies [19,26,32], performance analysis is made on Intel CPU.

2 Related Work

Compared to classical machine learning methods, DL algorithms are computa-
tionally intensive both in training and in the use of deep models. During the
last decade, pre-trained deep neural networks have become commonly used in
various industries, including real-time systems, for which performance, latency,
and throughput critically affect their applicability. Therefore, benchmarking the
inference of deep models comes to the fore. There are specific software frame-
works designed for benchmarking deep models. Such systems assess the DL train-
ing and inference performance of several widely used deep models on various
hardware platforms.

MLPerf [26] is one of the commonly used benchmarks for measuring the
performance of deep models on CPUs, GPUs, ASICs, and mobile devices. The
results presented on the official project page are mainly obtained using NVidia
GPUs, but there are also configurations with Intel Xeon CPUs and various neu-
ral accelerators. On the project web site, we can compare the performance in
training and inference of deep models. DAWNBench [14] is another widely used
benchmark. It contains performance data for three well-known DL models on dif-
ferent hardware. The results are collected by the user community. Deep Learning
Workbench [17] is a GUI application for benchmarking and tuning the perfor-
mance of deep models on various types of target devices.

Deep models performance analysis is a state-of-the-art topic. In [19], the
inference performance results of deep models trained using TensorFlow on desk-
tops (CPUs, GPUs, mobile SoC) are presented. The authors demonstrate an
increase in inference performance as the next generation of hardware becomes
available. In [32], the performance of manycore Intel Xeon Phi processors is
assessed in training and inference of models using the Caffe and TensorFlow
software libraries, including distributed training on two nodes with Intel Xeon
Phi 7210. In [29], inference performance is compared for mobile and edge devices.
The authors also provide performance data for the Intel Neural Compute Stick 2
neural coprocessor, which acts as an external USB device. Another research area
is the selection of optimal parameter values to obtain the best performance on
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the available hardware configurations. When processing large amounts of data,
fine-tuned parameters can save thousands of hours of CPU time. Paper [23]
explores how DL algorithms load servers compared to other applications. The
authors provide performance analysis data for DL models used in Facebook. The
results of profiling individual operators of deep models are studied.

Research [22], supported by VMWare, analyzes the performance of multi-
socket systems based on Gen 2 Intel Cascade Lake CPUs and the impact of vir-
tualization with vSphere on performance. The paper presents a promising app-
roach to improve performance, namely the creation of several virtual machines
(VM) on one server when each VM processes its part of a dataset independently.

One of the commonly used methods for improving the performance of deep
models is their quantization. This procedure is based on the employing of low-
precision arithmetic. Quantization provides memory usage gains, while hardware
support for INT8 data types leads to performance gains. The paper [20] reveals
the essence of quantizing deep models, considers key problems of employing
quantization, and compares the main features of several frameworks, support-
ing quantization. The authors also report on the performance gains achieved
empirically by quantization. In paper [31], the theoretical basis of quantization
algorithms is given in more detail, and the quality of quantization of deep models
in several applications is empirically estimated.

We compare the performance and scaling efficiency of six DL frameworks,
compute performance metrics and describe how to select the optimal run param-
eters. The tests are carried out on a high-end server with two Intel Xeon CPUs
(48 cores and 96 threads in total), which support INT8 computations at the
hardware level. We also study the impact of different modes and settings of the
OpenVINO toolkit on the performance and scaling efficiency of DL inference.

3 Deep Learning Frameworks

We present a comparative analysis of the performance of the following DL infer-
ence frameworks: Intel Distribution of Caffe [5], TensorFlow [10], PyTorch [9],
MXNet [1], OpenCV [8], and the Intel Distribution of OpenVINO toolkit [6].
Intel Distribution of Caffe is an implementation of the well-established Caffe
library [2], optimized for Intel hardware. TensorFlow and PyTorch are among
the commonly employed software libraries for solving research problems. The
MXNet package is a cross-platform, high-performance library. It has a wide
range of programming interfaces, employs symbolic computations, and imple-
ments a distributed training procedure. OpenCV is a commonly used library of
CV algorithms, which includes a module that provides inference of deep models
trained using a variety of frameworks. Typically, the library is used for the rapid
development of image/video processing and analysis applications. OpenVINO is
a relatively new framework that implements DL inference.

Note that many of the above toolkits have been already comprehen-
sively described, therefore we take a closer look at OpenVINO’s DL inference
tools. OpenVINO implements optimizing DL models and allows building high-
performance applications using deep models. The inference is optimized for
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various Intel hardware: CPUs, Intel Processor Graphics, Intel Movidius VPU,
FPGA, Intel Gaussian & Neural Accelerator. OpenVINO supports the inference
of models trained using a large number of commonly employed DL frameworks
by converting pre-trained models to an intermediate representation and optimiz-
ing the model structure internally. DL inference involves a direct pass through
the neural network for a set of input data, hereinafter referred to as a “batch”.
Such a single direct pass for a batch will be referred to as a “request”.

OpenVINO supports two inference modes [21]. The first mode minimizes an
execution time of a single request (latency mode). This mode assumes creating
and executing one inference request on the selected device. The following request
is executed only when the previous one completes. Reducing the execution time
of a single request is achieved by parallelizing computations on separate network
layers. This mode is synchronous and mainly aims to speed up the execution of
individual requests. The second mode maximizes throughput (throughput mode).
This mode assumes the creation of a set of inference requests. The order of exe-
cution of requests can be arbitrary. Run time improvement is provided due to the
parallel processing of several requests during their execution. This mode is used
in applications for which it is important to reduce the system’s response time, for
example, for CV or robotics applications such as analyzing the traffic situation
from a stationary camera or video recorder, for multimedia applications, such
as suppression of noise in an audio stream. The maximum throughput mode is
used for problems that do not have strict restrictions on the processing time
of one request. This mode allows faster completion of the processing of a large
number of independent requests, for example, in an analysis of a text of search
queries to a server. Inference in this mode can be asynchronous. The mode aims
to increase the throughput of the inference system.

Applying low-precision computations is another resource for reducing the
computation time of DL applications. Low-precision DL model training is widely
used and provides excellent performance due to hardware support. However,
employing low-precision computations can also improve the performance of
DL inference. In this regard, some DL packages support the so-called INT8-
quantization procedure. Model quantization in OpenVINO is implemented by
adding specific quantization layers to a model. Firstly, the quantization of
weights is performed. During this step, ranges of values of weights and acti-
vation functions are calculated, after which these ranges are rounded to the
closest integer value [11]. Secondly, to improve the quality of the model, addi-
tional training of the quantized weights can be fine-tuned on a small subset of
the training dataset.

4 Experimental Settings

4.1 Computational Infrastructure

The experiments are performed on a high-end two-socket system with the fol-
lowing characteristics: 2x Intel Xeon Platinum 8260L 2.4 GHz (2× 24 cores and
2 × 48 threads overall) processors, TurboBoost is off, 196 GB RAM, CentOS 7.
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The following DL libraries are used to compare performance: Intel Distribution
of Caffe 1.1.0, Tensorflow 1.14.0, PyTorch 1.3.0, MXNet 1.5.0, OpenCV 4.1.1,
Intel Distribution of OpenVINO toolkit 2020.2. We employ precompiled ver-
sions of frameworks, included in Anaconda 4.5.12, the codes are compiled with
MKL-DNN support [7]. The performance testing infrastructure is developed in
Python. The source codes are publicly available on GitHub [4].

4.2 Models and Data

We test performance and scaling efficiency using two state-of-the-art deep mod-
els: ResNet-50 [18] and Inception-v3 (GoogleNet-v3) [28]. These models allow
solving the image classification problem with a large number of categories. The
selected models contain 25 and 23 million parameters, respectively. We choose
these two networks for the following reasons. Firstly, a large number of exist-
ing deep model topologies are developed based on the ResNet and Inception
architectures, which allows using the performance results obtained in the article
as an approximate estimate of the performance of many applications. Secondly,
there exist pre-trained models for all selected DL frameworks. We also note that
the ResNet-50 model is commonly used in research on the performance of deep
models [12,14,26,29]. The quality of the models is assessed on the validation set
(50 000 images) of the ImageNet dataset (ILSVRC2012) [27]. The inference per-
formance of deep models is analyzed on a subset of the first 12 288 images of the
ImageNet dataset. In all intermediate figures, we present results for the ResNet-
50 model, since the results for GoogleNet-v3 differ only in absolute values, but
reflect the same trends.

4.3 Performance Metrics

In all experiments, we assume that the set of test images is split into batches
of equal size. The batch size is a parameter of the experiment. It will be shown
below that choosing a relevant batch size critically affects performance. During
the experiment, the total processing time of all batches is calculated. This metric
reflects the total time for solving the problem; it is valid for all the DL frameworks
under consideration. Along with this, the following metrics are calculated for
Intel Distribution of Caffe, TensorFlow, MXNet, PyTorch, and for OpenVINO
in the latency mode: 1) Latency. It is the median of the processing times of
one batch. 2) The average number of frames processed per second (Frames per
Second, FPS). It is the ratio of the batch size to the latency.

For the throughput mode in OpenVINO, we also calculate the FPS metric,
which is defined as the ratio of the product of the image batch size and the
number of iterations to the execution time of all requests.
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5 Results and Discussion

5.1 Performance and Scalability Analysis of DL Inference

The DL inference is parallelized for shared memory systems employing the
OpenMP and TBB technologies. Inference performance highly depends on the
selection of the relevant values of parameters, in particular, the number of
threads and the size of a batch of processed data. This section describes how
we select the optimal values of such parameters when inferring the ResNet-50
and GoogleNet-v3 models. We also compute run time and scaling efficiency of
the selected frameworks when the batch size changes. The frameworks under
consideration use the MKL-DNN library to implement computations on neu-
ral network layers. While selecting the values of the parameters, the number of
threads varies from 1 to 96, the size of the batch of images (batch size) is chosen
from the set {1, 48, 96, 192, 384}. We also empirically find the best settings of
affinity mask when a framework employs MKL-DNN parallelized with OpenMP.

Firstly, we tune the inference parameters for Intel Distribution of Caffe. The
best performance results were obtained for the value of the parameter AFFIN-
ITY set to “compact, 1.0”. We found that the optimal number of threads is
equal to 48, which corresponds to the number of physical cores in the system
(Fig. 1(a)). It is also shown that using 48 threads provides the best FPS for all
batch size values, namely over 450 and 300 frames per second for ResNet-50 and
GoogleNet-v3, respectively. Also, for batch sizes greater than 1, the speedup
and FPS do not depend on the amount of input data being processed (the cor-
responding curves practically coincide). The framework demonstrates over 63%
scaling efficiency in experiments with a large enough value of the batch size. In
this case, the processing is performed in real-time for all enumerated parameters
when the inference is run in parallel with the number of threads exceeding two.

Secondly, we run the same experiments for MXNet, also based on the MKL-
DNN library, parallelized with OpenMP (Fig. 1(b)). Therefore, the best perfor-
mance is achieved with the same affinity mask properties. The general conclu-
sions drawn for Caffe are also true for MXNet. The framework demonstrates
a scaling efficiency of 55% for the ResNet-50 model and over 63% for the
GoogleNet-v3 model. The FPS value is approximately 300 frames per second
for both models.

Next, we performed the same experiments using TensorFlow (Fig. 1(c)). Ten-
sorFlow also takes advantage of the MKL-DNN library parallelized on OpenMP.
The best results are obtained with the “AFFINITY = scatter” setting. The
inference works with FPS equal to 242 for ResNet-50 and 116 for GoogleNet-v3.
Scaling efficiency when using the maximum number of cores is not as high as for
Caffe and MXNet. It is equal to 37% for ResNet-50 and 23% for GoogleNet-v3.

Figure 2(a) shows the performance results for the PyTorch framework built
using MKL-DNN. The best results in most runs for the ResNet-50 model are
obtained with the setting “AFFINITY = scatter”, they are shown in the dia-
grams. The inference of the GoogleNet-v3 model in the PyTorch 1.3.0 framework
is run without MKL-DNN support due to incomplete support for all layers.



352 E. P. Vasiliev et al.

Fig. 1. FPS and speedup of DL inference in Intel Distribution of Caffe, MXNet and
TensorFlow on the ResNet-50 model. The number of images in one batch is chosen
from the set {1, 48, 96, 192, 384}. The number of threads varies from 1 to 96. The
results on the GoogleNet-v3 model reflect the same trends.

Therefore, the maximum performance is not achieved. For the same reason, the
demonstrated speedup and FPS values for sequential inference are much lower
than those in other frameworks. In such limitations, PyTorch demonstrates scal-
ing efficiency above 45% for the ResNet-50 model using MKL-DNN and up to
17% for the GoogleNet-v3 model without MKL-DNN. The best FPS values are
equal to 230 and 44 fps for ResNet-50 and GoogleNet-v3, respectively.

DL inference in the OpenCV library can be run in two modes. The first mode
uses an internal implementation of the layers in the library, the second one—
an implementation from OpenVINO. Consider the results obtained in the first
mode. Performance data are shown in Fig. 2(b). The OpenCV library scales well
with an efficiency of 73% for ResNet-50 and 60% for GoogleNet-v3. Not that
while scaling efficiency is good, the best FPS values are not very high (189 and
98 fps for ResNet-50 and GoogleNet-v3, respectively). Unlike other frameworks,
the optimal number of threads for OpenCV is equal to the number of logical
cores in a dual-processor system.
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Fig. 2. FPS and speedup of DL inference in PyTorch and OpenCV on the ResNet-50
model. The number of images in one batch is chosen from the set {1, 48, 96, 192, 384}.
The number of threads varies from 1 to 96. The results on the GoogleNet-v3 model
reflect the same trends.

To run the inference using OpenCV in the second mode, we use a version of
the library that supports the inference of OpenVINO models using the Open-
VINO Inference Engine (Fig. 2(c)). The conclusions regarding the selection of
the optimal parameters made for Caffe are also valid for this run mode of the
OpenCV library. OpenCV demonstrates scaling efficiency above 45% in exper-
iments with large values of batch size, the maximum values of FPS are 384 for
ResNet-50 and 235 for GoogleNet-v3.

Finally, we perform the same experiments using OpenVINO. To run the
inference, we employ the ResNet-50 and GoogleNet-v3 models trained using
Caffe [2] and TensorFlow, respectively. Models are converted and optimized for
Intel CPUs into an intermediate representation format using a specific tool from
OpenVINO. Further, the converted models are used for inference. It is shown
(Fig. 3) that OpenVINO outperforms other frameworks. The optimal value of
the number of threads coincides with the number of physical cores, regardless
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of the batch size value. The framework demonstrates scaling efficiency over 59%
and inference performance up to 500 fps.

Fig. 3. FPS and speedup of DL inference in OpenVINO on ResNet-50. The number of
images in one batch is chosen from the set {1, 48, 96, 192, 384}. The number of threads
varies from 1 to 96. The results on GoogleNet-v3 reflect the same trends.

Note that OpenVINO can choose the relevant number of threads when infer-
ring deep models. Figure 4 illustrates this fact. It is shown that when launched
with the default parameters, OpenVINO chooses the number of threads so that
we could not manually improve performance.

Fig. 4. Performance of the OpenVINO inference depending on the number of threads
for two models: ResNet-50 and GoogleNet-v3. Each color corresponds to the number of
threads. The red line shows the performance results when executing OpenVINO with
default settings. It corresponds to the best results.

Experiments show that all considered frameworks demonstrate high perfor-
mance and scalability when using 48 computational cores due to employing
a highly optimized MKL-DNN library. The best performance is achieved by
the OpenVINO and Intel Distribution for Caffe frameworks (about 500 fps for
ResNet-50 and 300 fps for GoogleNet-v3). To achieve optimal performance, it is
enough to choose the value of batch size greater or equal to the number of cores.
Further increasing this setting does not change the results.
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5.2 Performance and Accuracy of Quantized Models in OpenVINO

The quantization procedure in OpenVINO is implemented as follows. First, we
need to download the original model trained in the FP32 or FP16 data types.
Next, the model is converted to an intermediate representation of OpenVINO
using the Model Optimizer tool. The model is then calibrated to INT8 represen-
tation using the Calibration Tool from OpenVINO. We used the DefaultQuanti-
zation algorithm [3] with default parameters. This algorithm sequentially applies
Activation Channel Alignment, Min-max Quantization and Fast Bias Correction
methods [3]. The model is trained for 2% of images from the validation dataset.
The selection of the optimal parameters for employing the inference of INT8
models in the latency mode is performed as described in the previous section.
The experimental results (Fig. 5) show that all our conclusions are also valid for
calibrated models. The optimal number of threads corresponds to the number
of physical cores, and the batch size should be taken greater or equal to 48.
OpenVINO demonstrates scaling efficiency over 52% for the ResNet-50 model
and up to 45% for the GoogleNet-v3 model. The inference performance of cali-
brated models grows by about 3 times and reaches 1604 fps for ResNet-50 and
894 fps for GoogleNet-v3. The substantial performance gain can be attributed to
both the reduction in the size of the model weights by 4 times, which allows for
more optimal data caching and the use of new vector neural network instructions
(VNNI) from the AVX-512 instruction set.

Fig. 5. Performance of the OpenVINO inference in the latency mode after INT8 cali-
bration of ResNet-50. The results on GoogleNet-v3 reflect the same trends.

To assess the applicability of calibrated models, it is necessary to check their
accuracy. This paper operates with pre-trained models from the Open Model
Zoo or the official model repositories for each framework. Figure 6 reports the
obtained values of the commonly employed quality indicators of image classi-
fication top-1 and top-5. These indicators have the following meaning. A DL
inference procedure forms a vector whose elements contain probabilities of the
image belonging to corresponding classes. The top-N metric is equal to the ratio
of the number of images for which the true class is among the N maximum
confidences of the predicted classes to the total number of processed images.
We employ the Accuracy Checker tool, which is part of the Intel Distribution
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of OpenVINO toolkit. From the computed metrics, we conclude that the mod-
els classify images with nearly the same quality as before quantization and the
achieved values correspond to the published ones. There are only slight deviations
from the original results. Such deviations arise because of the following reasons.
Firstly, each training experiment is unique due to a random initial state of the
weights. Secondly, frameworks can have different implementations of the basic
layers. It can also affect the results of performing elementary matrix operations
that prevail in the inference process. Lastly, small deviations in the accuracy
could also be a consequence of the weights quantization. However, we do not
observe significant errors.

Fig. 6. The values of top-1 and top-5 accuracy metrics for original and INT8 quantized
models.

5.3 Performance Analysis of the Throughput Mode in OpenVINO

The throughput mode allows for improving inference performance without
increasing the batch size. OpenVINO splits computational resources into groups,
called streams, in which computations can be performed simultaneously. Each
stream processes one inference request taken from the queue of available requests.
Consequently, OpenVINO can efficiently run multiple inference requests on the
CPU (and other devices) in parallel, improving the throughput and better uti-
lizing manycore CPUs.

Our experiment is as follows. Firstly, we choose the batch size and the number
of requests that OpenVINO should process in parallel. Secondly, we set the
number of streams corresponding to the size of the queue of available requests.
The number of threads is taken by default. The dataset is then split into batches
of a given size. The batches are added to the queue using the Round Robin
algorithm. The number of batches equal to the number of requests is processed
simultaneously. We vary the batch size and the number of requests to find the
best values in terms of performance.

Figure 7(a) shows the experimental results. The maximum performance was
obtained when using batches of 4 and 8 images when processing 24 or 48 requests
simultaneously. As the number of images in each batch increases further, perfor-
mance starts to degrade slightly. An important advantage of image processing in
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the throughput mode is sufficient performance even for requests with a batch of
one image, provided there are enough requests. Anyway, the throughput mode
greatly outperforms the latency mode in terms of total time.

Fig. 7. DL inference performance in the throughput mode of OpenVINO depending on
the batch size and the number of requests when using the FP32 and INT8 data types.
The results on GoogleNet-v3 reflect the same trends.

By varying the number of simultaneous inference requests, we can draw the
following conclusion (Fig. 7(b)). The number of requests should be a divisor of
the number of CPU cores. For example, when using 32 requests, there is a loss
of up to 20% of performance. Hence, for the considered models the best number
of requests is equal to 24 (2 cores per 1 request) or 48 (1 core per 1 request).

5.4 Final Comparison

The best found parameters are presented in Table 1. Figure 8 shows the total
processing time for a test set of 12288 images when using six DL frameworks.
OpenVINO in the latency mode and Intel Distribution for Caffe, both working
in the FP32 mode, demonstrate the best performance, while MXNet achieves
similar results. Using the throughput mode and INT8 quantization in Open-
VINO substantially reduces the run time. Note that the GoogleNet-v3 model in
PyTorch 1.3.0 was implemented without MKL-DNN due to incomplete support
for all layers, so maximum performance was not achieved.
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Table 1. Empirically the best values of the parameters for DL inference of two models
on two 24-cores CPUs (th – the number of threads; bs – the batch size; sn – the number
of streams; rn – the number of requests).

Precision ResNet-50 GoogleNet-v3

Intel Caffe FP32 th = 48, bs = 512 th = 48, bs = 96

OpenCV FP32 th = 96, bs = 512 th = 48, bs = 512

TensorFlow FP32 th = 96, bs = 512 th = 96, bs = 384

MXNet FP32 th = 48, bs = 128 th = 48, bs = 192

PyTorch FP32 th = 48, bs = 96 th = 48, bs = 192

OpenVINO latency mode FP32 th = default(48),

bs = 128

th = default(48),

bs = 384

OpenVINO latency mode INT8 th = default(48),

bs = 64

th = default(48),

bs = 96

OpenVINO throughput mode FP32 th = default(48), bs = 16

sn = 24, rn = 24

th = 48, bs = 24,

sn = 24, rn = 48

OpenVINO throughput mode INT8 th = default(48), bs = 8

sn = 48, rn = 48

th = default(48), bs = 12

sn = 48, rn = 48

Fig. 8. Total run time for inference of two deep models: ResNet-50 and GoogleNet-v3.
The dataset contains 12 288 images. Six DL frameworks are tested.

6 Conclusions

The paper analyzes the performance of DL libraries for a dual-processor server
based on the Intel Cascade Lake generation CPUs. We found that the choice
of parameters (binding threads to computational cores strategy, the number of
threads, the number of images in the batch, the operating mode of the frame-
work, the mode-specific settings) substantially affect performance. As a result
of experiments with two DL models, we have formulated recommendations for
choosing parameter values. Note that the OpenVINO toolkit partially solves this
problem by successfully selecting some of the settings by default.

Experiments have shown that all six frameworks show sufficient performance
and can utilize dozens of computational cores. The best results were shown by
the OpenVINO toolkit and Intel Distribution for Caffe. INT8 quantization in
OpenVINO allowed us to get the 3x performance gain while achieving almost the
same accuracy. Employing the throughput mode of OpenVINO leads to further
reducing the run time due to better utilization of a manycore system, from 4.9x
with a batch size of 1 to 1.4x with a batch size of 32.
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Abstract. The paper considers the problem of choosing the optimal
parameters for the operation of 3 horizontal wind turbines of the wind
farm in the town Tiksi, in the Sakha Republic. The open-source WRF-
ARW and FLORIS packages are used to calculate the physical parame-
ters in the wind farm. During the calculation, the values of wind veloc-
ity, temperature, pressure fields, and the value of the generated power
of wind power plants were obtained. The optimization problem is for-
mulated, the objective function is defined, and 2 variable parameters are
selected, namely, yaw angle and angle of attack. The calculations were
carried out on the computing cluster of ISP RAS.
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1 Introduction

The design and selection of optimal parameters for horizontal wind turbines
in the wind farm is an urgent task, especially in the case of the construction
of new wind farms in the Russian Federation. One of the interesting areas for
research may be the problem of choosing the best operating modes of the wind
farm, taking into account the influence of local weather conditions, as well as
the relative location of the wind turbine in a real area. The variable parameters
include the angular rotation velocity of the wind turbine, the yaw angle, the
angle of rotation of the blade with respect to the vector of the incoming flow,
and others.
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2 Wind Farm in the Town Tiksi

The wind farm built by RusHydro together with its Japanese partners in the
Arctic town Tiksi, which is home to more than 4.6 thousand people, has demon-
strated high efficiency and reliability in the harsh Arctic climate. In the winter
of 2018–2020, the air temperature in Tiksi dropped to minus 42◦, and the wind
velocity reached 30 m/s.

In November 2018, in the Arctic urban-type settlement of Tiksi, which is
an important transport hub for the Northern Sea Route, 3 wind turbines from
Komaihaltec company from Japan with a capacity of 0.3 MW each were put into
operation with the participation of Sakhaenergo and RusHydro. Now the wind
farm works together with the existing diesel power plant of the town.

The wind turbines (WT) of the Tiksi wind farm are located at an altitude
of about 120 m above sea level, 4 km from the town Tiksi and 2.7 km from the
Laptev Sea, Fig. 1.

Fig. 1. The map of the town in Tiksi. Open Street Map, 11.09.2019.

Turbines coordinates are: 71◦39′24.8′′N 128◦46′17.6′′E (WT1), 71◦39′20.′′N
128◦45′55.7′′E (WT2), 71◦39′12.02′′N 128◦45′43.57′′E (WT3), see Fig. 2.
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Fig. 2. Satellite image of the wind turbines location. Google Earth, 25.09.2020.

2.1 Mathematical Model in WRF-ARW Code

The calculation code WRF-ARW (WRF – Weather Research and Forecasting,
ARW – Advanced Research WRF) is actively used to predict the capacity of
the wind farm. The WRF-ARW model is a model of a regional weather forecast,
for the construction of which it needs boundary and initial conditions [1,2].
Data sources in this case can be global models, observational data, or forecast
reanalysis data. As a parent model for WRF-ARW, data from calculations based
on the Global Forecast System (GFS) model is usually used. Figure 3 shows an
algorithm for the interaction of different calculation models for different levels
of calculation of physical quantities.

The WRF-ARW model allows one to obtain a large range of physical quan-
tities that describe weather conditions. As a rule, the main parameters are the
distribution of wind velocity, temperature, and pressure. Secondary parame-
ters may include air humidity, precipitation distribution, precipitation type, and
much more. In WRF-ARW, there are various parameterization models, includ-
ing the model for parameterizing the operation of a wind turbine – the Actuator
Disk Model [3].

The WRF-ARW model is based on non-hydrostatic equations for a compress-
ible fluid written in Cartesian coordinates horizontally and using the orographic
coordinate η vertically. In older versions of the package, η was determined using
the hydrostatic pressure ph:

η =
pd − pt

ps − pt
, (1)

where pd is the hydrostatic component of dry air pressure, ps and ph refer to
values of pd along the surface and top boundaries respectively. In WRF-ARW
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version 4, the vertical coordinate was generalized to reduce the influence of the
surface on the coordinate grid with increasing height:

pd = B(η)(ps − ph) + [η − B(η)](p0 − ph) + ph,

where p0 is a reference sea-level pressure. Here B(η) defines the relative weighting
between the terrain-following sigma coordinate and a pure pressure coordinate,
such that η corresponds to the sigma coordinate (1) for B(η) = η and reverts
to a hydrostatic pressure coordinate for B(η) = 0. For a smooth transition from
the sigma coordinate near the surface to the pressure coordinate at the upper
levels, B(η) is defined by a third order polynomial.

The governing equations system is represented as follows. The momentum
equations are written as

∂tU + mx[∂x(Uu) + ∂y(V u)] + ∂η(Ωu) (2)
+ (mx/my)(α/αd)[μd(∂xφ′ + αd∂xp′ + α′

d∂xp) + ∂xφ(∂ηp′ − μ′
d)] = FU ,

∂tV + my[∂x(Uv) + ∂y(V v)] + (my/mx)∂η(Ωu) (3)
+ (my/mx)(α/αd)[μd(∂yφ′ + αd∂yp′ + α′

d∂yp) + ∂yφ(∂ηp′ − μ′
d)] = FV ,

∂tW + mx[∂x(Uw) + ∂y(V w)] + ∂η(Ωw) (4)

− m−1
y g(α/αd)[∂ηp′ − μd(qv + qc + qr)] + m−1

y μ′
dg = FW ,

and the mass conservation equation and geopotential equation is given by

∂tμ
′
d + mxmy[∂xU + ∂yV ] + my∂ηΩ = 0, (5)

∂tφ
′ + μ−1

d [mxmy(U∂xφ + V ∂yφ) + myΩ∂ηφ − mygW ] = 0. (6)

The conservation equations for the potential temperature Θm and the scalar
moisture Qm equations:

∂tΘm + mxmy[∂x(Uθm) + ∂y(V θm)] + my∂η(Ωθm) = FΘm
, (7)

∂tQm + mxmy[∂x(Uqm) + ∂y(V qm)] + my∂η(Ωqm) = FQm
, (8)

and the diagnostic equation for dry hydrostatic pressure:

∂ηφ′ = −μdα
′
d − αdμ

′
d, (9)

with the diagnostic relation for the full pressure (dry air plus water vapor):

p = p0

(
Rdθm

p0αd

)γ

. (10)

The following notations is used in the system (2)–(10):

U = μdu/my, V = μdv/mx, W = μdw/my, Ω = μdω/my,

Θm = μdθm, Qm = μdqm,
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where v = (u, v, w) – velocity vector, ω = η̇ – vertical velocity in terms of
orographic coordinates, μd defines mass of the dry air column, φ – geopotential,
mx, my – map scale factors. θm = θ(1+(Rv/Rd)qv) ≈ θ(1+1.61qv) is the moist
potential temperature and qm = qv, qc, qr, qi... represents the mixing ratios of
moisture variables (water vapor, cloud water, rain water, ...). αd is the inverse
density of the dry air (1/ρd) and α is the inverse density taking into account the
full parcel density α = αd(1+qv +qc +qr +qi + ...)−1. The right-hand-side terms
FU , FV , FW , FΘm

and FQm
represent forcing terms arising from physical models,

turbulent mixing, spherical projections, and the earth’s rotation, g – acceleration
due to the gravity. Hydrostatically-balanced reference state variables (denoted
by overbars) are a function of height only and satisfy the governing equations
for an atmosphere at rest.

Fig. 3. How to model the operation of a wind farm.

WRF-ARW code supports the configuration of the shared and distributed
memory of server. The code could be compiled with OpenMP and OpenMPI
libraries for parallel calculations. The goal of parallel option is to speed-up the
computing time on supercomputer.

2.2 Numerical Domain, Grid, and Results of Calculation

The layout of the numerical domain for the area of the town Tiksi with the
image of nested domains is shown in Fig. 4. The calculations in the WRF-ARW
package were performed for the following calendar dates: 29.09.2019, 30.09.2019,
01.10.2019.
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Fig. 4. Layout of the main area with the image of nested domains.

To compare the results, the Tiksi weather station was selected: 71◦34′48′′

N 128◦54′E, altitude 7 m above sea level. Data on the temperature at the level
of 2 m above the surface, the pressure, and wind velocity at the surface (at the
level of the weather station) were displayed at the point closest to the location
of the weather station in the d05 region. The graph of the velocity comparison is
shown in Fig. 6. The model configuration and simulation results are given in [4].

In general, the results of the model correspond to real data, in any case, they
repeat the profile of changes in indicators. Also, the wind farm energy generation
was modeled using the built-in model, which was analyzed in [3]. The character-
istics of the wind turbine, namely: the power curve and the thrust coefficient as
a function of velocity, were taken from the parameters of similar wind turbines
from open sources on the Internet (Fig. 5). The result of the simulation is the
dynamics of the power of the Tiksi wind farm in a given period, Fig. 7. One can
see that the results correspond to the average wind value in the specified area.

The results of the calculation showed that the efficiency of the wind farm does
not exceed 20% for the selected days. In this regard, there is a need to choose
the optimal parameters for the operation of wind turbines. This parameter can
be the angle of rotation of the nacelle (the yaw angle).

The calculations were performed using 12-cores computer node. Several cases
with different configuration of physical parameters were launched simultaneously.
The average computation time for one case was about 24 h.
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Fig. 5. The power curve and cP , cT coefficients for a single wind turbine.

Fig. 6. Comparison of wind velocity at the location of the Tiksi weather station for
model and real data.
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Fig. 7. Simulation change in the total power generation capacity of the Tiksi wind
farm on 29.09–01.10.

The simulations were done using the resources of the UniHUB HPC cluster
of ISP RAS with 32 computer nodes.

2.3 Setting Task of Optimizing the Generated Capacity of the
Wind Farm

It is known that the front wind turbines have a significant impact on the opera-
tion of the rear wind turbines. There is a concept of velocity deficit. The vortex
trail behind the wind turbine may deviate.

Data from a weather station located 10 km from the wind farm shows that
the wind direction changes in the range of angles from θ1 = 0◦ to θ2 = 90◦.
Thus, there is the problem of choosing the optimal angle of rotation of the
engine nacelle of the wind turbine (yaw rate), the angle of rotation of the blade
to obtain maximum power capacity of wind turbines.

Work in the field of optimization calculations for wind farms and the design
of wind turbines was practically not carried out earlier in the Russian Federation.
Among the international teams that deal with optimization issues in the design of
new wind farms, there are research groups from JHU, USA (Prof. C. Meneveau);
KU Leuven, Belgium (Dr. Johan Meyers); EPFL, Lausanne, Switzerland (Prof.
Fernando Porte-Agel); NREL (Dr. P. A. Fleming); Stanford University (Dr. J.
Park); Aalborg University, Aalborg, Denmark (Prof. Zheng Chen) [5–14]. These
teams considered the following tasks:

1. optimization of the location of wind turbines in the wind farm [5–7];
2. selection of optimal parameters (yaw angle of the wind wheel axis, angular

rotation velocity, control parameters, etc.) [10–14];
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3. optimization of the geometric shape of the wind turbine blade in order to
reduce the noise level on the ground and increase the durability of the struc-
ture made of composite material.

To solve such problems, an objective function was formed, which took into
account various criteria and restrictions on the parameters to be changed. Among
the optimization methods used, one can distinguish:

– genetic algorithms;
– sequential quadratic programming;
– cross-entropy method;
– an approach based on a combination of the conjugate gradient method,

the Polak-Ribière method for determining weight coefficients, and the Brent
search algorithm [8,9];

– machine learning methods based on “Bayesian ascent” [10,11];
– the particle swarm method [12,13].

The yaw angle’s optimization problem for the wind wheel axis was studied
in papers [15–17].

The authors of the work [9] solved the optimization problem using an app-
roach with a cooperative game. All agents (participants) strive to maximize the
overall goal. Interaction between agents is taken into account.

The vector maximization problem is solved:

x∗ = arg max
x

N∑
i=1

ϕifi(x), ϕi = 1, i = 1, N ; (11)

maximize
x

f(x) �
N∑

i=1

Pi(α,o, U, θW ), subject to xl � x � xu, (12)

where xl, xu – lower and upper bounds, ϕi represents the weighting coefficient
on the objective function fi(x).

Because it is difficult to accurately determine the analytical function for the
cardinality, the authors used Bayesian optimization (BO).

The problem is solved:

x∗ = arg max
x

f(x) (13)

Observing for the behavior of the function:

y = f(x) + ε. (14)

The BO uses 2 phases: training and optimization.
In this paper, the objective function f(x) associated with the total power

generation was formulated.
It is known that the power for a single wind turbine is equal to:

P =
1
2
ρAU3Cp(α, 0). (15)
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An arbitrary set of parameters can be considered in an optimization problem:

x = (x1, . . . , xi, . . . , xN ). (16)

The target function for the total capacity of the wind farm is defined as:

fi(x) = Pi(α,o, U, θW ) (17)

The goal of any optimization is to achieve the maximum values of perfor-
mance indicators while meeting the specified limits. At the stage of setting
the problem, the researcher determines a set of parameters that need to be
maximized, minimized, or limited. The indicators are optimized by varying the
input parameters. The researcher sets the composition of the variable variables,
the ranges of their changes, and, possibly, the relationship with other input
parameters.

Usually, when conducting optimization studies, it is necessary to solve not
one, but several optimization problems that differ:

– the composition of variable variables (from minimal changes in the project to
a complete redesign);

– values of constraints (analysis of the possibility of relaxing individual require-
ments for the project);

– the number and composition of optimization criteria (from a complete set of
alternative projects to a single option).

In the course of solving the problem, it is necessary to solve the problem of
finding the maximum of the objective function f(x):

max
x

f(x) �
N∑

i=1

Pi(α,o, U, θW ), xl ≤ x ≤ xu, (18)

where x = (α1, o1, . . . , αN , oN ), N – the number of wind turbines.
The generated power of wind turbines depends on 4 parameters: the angle

of rotation of the blades (angle of attack), the values of the flow velocity, the
angle of direction of the vector flow velocity, yaw rate. The range of changes in
2 selected parameters out of 4 set according to changes in weather data in the
area of the location of the wind farm in the town Tiksi, as well as the technical
characteristics of a wind turbine with a power of P = 0.3 MW. The range for
changing all parameters is known, the yaw angle o varies from 0◦ to 25◦, the
angle of rotation of the blade α from −10◦ to 10◦.

3 Analytical Models for Calculation of Wake Parameters

Analytical models in comparison with models based on the solution of par-
tial differential equations are simpler and require less computing resources of
the computer. The open package FLORIS (FLOw Redirection and Induction in
Steady-state) contains various analytical models for calculating the vortex traces
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of wind turbines in the wind farm, [18]. The FLORIS package was developed in
the Python programming language at NREL (USA), TU Delft.

One of the first analytical models for calculating the parameters of the vortex
wake was developed by N. Jensen in Denmark in 1983 [19]. In this paper, it was
proposed to use the “top-hat shape” model for the cylinder to calculate the
velocity deficit in the track (see Fig. 8) and written in the form:

ΔU

U∞
=

(
1 − √

1 − cT

)
/

(
1 +

2kwakex

d0

)2

, (19)

where
ΔU

U∞
is a normalized (dimensionless) velocity deficit.

ΔU

U∞
=

U∞ − UW

U∞
. (20)

The Eq. (19) has been widely used in the literature and has been implemented
in commercial software (WasP, WindPRO, WindSim). However, there were two
limitations to this model: 1) the assumption of the distribution of the velocity
deficit was unrealistic; 2) only the law of conservation of mass was used to derive
Eq. (19).

Fig. 8. Velocity profile for the wind turbine according to the a) “top-hat shape” model;
b) Gaussian distribution model. Picture is taken from [20].

Subsequently, Frandsen [21] applied the equations of conservation of mass
and amount of motion for the control volume (Fig. 9) around the wind turbine
and proposed the following expression:

ΔU

U∞
=

1
2

(
1 −

√
1 − 2

A0

AW
cT

)
. (21)
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Fig. 9. Example of using the control volume: a) quadrilateral; b) rectangle. Picture is
taken from [20].

Vortex traces behind bodies in free flow have been actively studied in the
theory of shear flows. In these studies, a self-similar Gaussian profile was found
to calculate the velocity deficit.

The self-similar Gauss profile was discovered in experiments in wind tunnels,
in numerical calculations, and in operating wind farms. An analytical model
with a self-similar Gauss profile was obtained in [20]:

ΔU

U∞
=

(
1 −

√
1 − cT

8(k∗x/d0 + ε)2

)
(22)

× exp

(
− 1

2(k∗x/d0 + ε)2

{(
z − zh

d0

)2

+
(

y

d0

)2
})

.

The analytical models (19)–(22), which were proposed by different authors
to predict the deficit of the streamwise velocity in the of wind turbine, were
implemented in open source software code FLORIS. FLORIS code is written on
Python and is available on github.com [18].

In this paper, the calculation was carried out for a model wind farm with 3
wind turbines according to the Jimenez model, taking into account the influence
of changes in the yaw angle for the nacelle [7].

An example of the calculation for a wind farm in the FLORIS package is
shown in Fig. 10. The size of the numerical domain was selected with 500 m in
the OY direction and 3200 m in the OX direction. The velocity was defined as
8 m/s at the inlet of the numerical domain. The wind farm consisted of 3 NREL
5 MW wind turbines. They were located on the same straight line, respectively,
with coordinates 0, 7D, 14D.

Fig. 10. Initial position of wind turbines in wind farm.
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Fig. 11. Velocity value field for 3 wind turbines.

The wind direction was 270◦. The initial position of wind turbines is shown
in Fig. 10.

The possible range of yaw angle changes for wind turbines is from 0 to 25◦. We
used the SLSQP (Sequential Least SQuares Programming) optimization algo-
rithm. SLSQP is a nonlinear, gradient-based algorithm that can handle inequal-
ity constraints. Iterations are generated by solving quadratic sub-problems. The
solution to the optimization problem, the best option is to rotate the nacelle for
the first wind turbine is at a 25-degree angle, for the 2nd wind turbine the yaw
angle is 19◦, for the 3rd wind turbine the yaw angle is 4.3◦ (Fig. 11). The total
power gain amounted to 15.1%.

On of the future directions of work could be dealt with using Globalizer
Software, developed at the Lobachevsky National Research University for multi-
extreme optimization problems, see the paper [22] to solve the optimization
problems for wind farms.

4 Conclusion

This approach, using meteorological data, wind farm data, open-source software
WRF-ARW and FLORIS, allows us to formulate the problem of choosing the
optimal parameters for the operation of wind turbines in the wind farm. In
the future, it is planned to apply the chosen approach to solve the problem of
choosing the optimal parameters for the operation of 3 Japanese wind turbines
in the wind farm in the Arctic town Tiksi, taking into account the wind rose
and complex terrain.

References

1. Skamarock, W.C., et al.: A description of the advanced research WRF model ver-
sion 4. UCAR/NCAR (2019). https://doi.org/10.5065/1DFH-6P97

2. Jiménez, P.A., Navarro, J., Palomares, A.M., Dudhia, J.: Mesoscale modeling of
offshore wind turbine wakes at the wind farm resolving scale: a composite-based
analysis with the weather research and forecasting model over horns rev. Wind
Energy 18(3), 559–566 (2014). https://doi.org/10.1002/we.1708

https://doi.org/10.5065/1DFH-6P97
https://doi.org/10.1002/we.1708


374 S. V. Strijhak et al.

3. Fitch, A.C., et al.: Local and mesoscale impacts of wind farms as parameterized in
a mesoscale NWP model. Mon. Weather Rev. 140(9), 3017–3038 (2012). https://
doi.org/10.1175/mwr-d-11-00352.1

4. Ivanov, A., Strijhak, S., Zakharov, M.: Modeling weather conditions in the port
area and coastal zone of Tiksi bay. Proc. Inst. Syst. Program. RAS 31(6), 163–176
(2019). https://doi.org/10.15514/ispras-2019-31(6)-9
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Abstract. For a variety of applications natural tests can be properly
replaced with simulations and simulated object with a model. Even though
simulations promise many benefits they also require the most computa-
tional power. Simulations are performed with massive parallel computing
machines which are also often referred to as supercomputer. However, even
they may lack compute resource to solve practical problems, especially
if a simulation process is arranged in a non-efficient manner. The paper
addresses one of the issues of efficient simulations, namely proper simula-
tion planning for modeling. The method exploits a modification of Shepard
method for model interpolation as well as a priori evaluation of data points
to be simulated in order to increase model accuracy. The evaluation is per-
formed using a Voronoi diagram based on previous seeds matching sim-
ulations. A Voronoi diagram is constructed in a multidimensional space
by radial growth from the seeds outward with additional correction. Com-
pared to naive grid-based approaches the method reduces the number of
required simulations by six times.

Keywords: Design of experiments · Surrogate modeling ·
Metamodeling · Multidimensional interpolation · Sequential sampling

1 Introduction

High-fidelity simulations in engineering design reduce the need for naturals tests.
On the other hand, replacing natural tests with simulations often requires sig-
nificant computing resource. Just one iteration to calculate the sharp edge and
cosine gust simulations lasting more than 8300 CPU hours (4 h of wall clock
time on 2016 cores) is a good example [1]. A major way to cut the need for
computing power is to apply metamodeling. A metamodel (known as surrogate
model) approximates system response from a limited number of selected original
model responses directed by the design of experiments (DoE). The accuracy of
metamodels correlates to the experimental designs applied. Proper DoE drives
towards reducing the number of virtual tests without compromising the meta-
model accuracy. While building a metamodel, DoE can embody two response
sampling techniques, namely one-stage sampling and sequential sampling [2].
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One-stage sampling relies on Classical design of experiments and Space-filling
methods [3]. The idea of Classical designed experiments is to mitigate the effect
of a random error on the approval or rejection of a hypothesis. Classical exper-
imental design methods include such approaches as Central composite, Box-
Behnken and Plackett-Burman design [4], alphabetical optimal [5] and others.
For supercomputer high-fidelity simulations Space-filling methods that provide
uniform filling of the space are preferable. There is a variety of Space-filling
methods available, e.g. Latin Hypercube [6,7], Orthogonal Arrays [8], Hammer-
sley sequence [9], Uniform designs [10]. One-stage sampling approaches provide
uniform distribution but due to the difficulty of determining adequate and suf-
ficient sampling size they are often redundant. To eliminate this effect Monte
Carlo-like processes can be considered (regardless of their inefficiency).

Another way to reduce sampling size is using sequential sampling. Sequential
sampling (known as adaptive sampling) prefers so-called significant regions over
regions with trivial inner dependencies. Preference is worked out of the prior
samples. Sequential sampling usually performs better in terms of sampling set
size. Due to these features, sequential sampling has gained popularity in recent
years [11–15].

The paper suggests a sequential DoE method. The latter one implements
a modification of Shepard method for model interpolation as well as a priori
evaluation of the data points to be simulated to increase the model accuracy. The
problem statement is introduced in Sect. 2. Various interpolation algorithms for
the problem are discussed in the Sect. 3. Pre-sampling based on Voronoi diagram
borders points estimation and construction of approximated Voronoi diagram
based on seeds matching simulations introduced in the Sect. 4. Yet another pre-
sampling algorithm based on points estimation lying on intersection of Voronoi
diagram borders and base vectors considered in the Sect. 5. Two algorithms of
obtaining the i + 1 iteration batch’s points discussed in the Sect. 6. Finally, the
application of the presented algorithms for solving the model problem and the
practical problem of the motion of a body in a liquid are considered in the Sect. 7.

2 Problem Statement

The metamodel creation problem can be stated as an optimization problem
which consists in minimizing the error between metamodel prediction F̃ and the
real measurement F as well as the number of experiments K. The input data
for this task are as follows:

1. list and scope of model variable parameters x ∈ X ⊂ Rn.
2. list of unknown functions y = F (x), y ∈ Rm.
3. size of sequential sampling batch L. Application of L > 1 provides the ability

of parallel simulation. Denote batch count by Kb = �K/L�.
4. training set of points obtained in previous iterations (base points):

Pi = (xj , yj), yj = F (xj), i = 1, ...,Kb, j = 1, ..., i × L.
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5. maximum number of simulation experiments Kmax,K ≤ Kmax, maximum
number of batch Kbmax = �Kmax/L�.

6. the required accuracy A of metamodel:

ymaxj
= max(Fj(x)), j = 1, ...,m, ymax ∈ Rm;

yminj
= min(Fj(x)), j = 1, ...,m, ymin ∈ Rm;

|Fj(x) − F̃Kbj (x)| < A(ymaxj
− yminj

),∀x ∈ X, j = 1, ...,m.

On each i step of sequential sampling the solution of the following problems
is provided:

1. constructing smooth interpolation functions F̃i(x), x ∈ X, passing throw base
points of i iteration, F̃i(xi) = yi = F (xi), (xi, yi) ∈ Pi.

2. constructing a generalized error estimation function e(x) for the constructed
interpolations in the model parameter space. Pre-sampling with constructed
error estimation function:

e(x) =
√

Σj=1,...,m(F (x) − F̃i(x))2, x ∈ X, e(x) ∈ R, i = 1, ...,Kb.

3. obtaining the i + 1 iteration batch’s points from the pre-sampled points,
i < Kb.

3 Multidimensional Interpolation Method Selection

The function value yj to be interpolated is known at given base points xj =
(xj1, ..., xjn), (xj , yj) ∈ Pi, i = 1, ...,Kb and the interpolation problem consist
in yielding values at arbitrary points. Since in general the base points may not
correspond to the nodes of some regular grid, the general interpolation methods
that do not use a regular grid are of interest. For this class of problems, the
following interpolation algorithms are well known:

1. Gaussian process regression (Kriging)—method of interpolation for which
the interpolated values are modeled by a Gaussian process governed by prior
covariances [16];

2. inverse weighted distance method (IDW)—assigned values to unknown points
are calculated with a weighted average of the values available at the known
points, where the weights of the known points are inversely proportional to
the distance to these points [17];

3. natural neighbor interpolation—method based on the Voronoi diagram for a
set of spatial points, the weights of the known points are selected in proportion
to a fraction of the Voronoi diagram cell that would fall inside the Voronoi
diagram cell corresponding to the desired point [18];

4. Shepard’s method—as an estimate of the value at an arbitrary point, it uses
the weighted average of the polynomial approximating functions constructed
around each of the known point by the least squares method (both linear
functions and second and third degree polynomials can be used) [19].
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These algorithms, for a relatively small computational cost, provide the cal-
culation of “smooth” interpolations of target characteristics that depend on a
significant number of variable parameters of the model of a high-tech product.
It is experimentally established that the second-order Shepard method demon-
strates the best results for constructing interpolation functions for the problems
under consideration, both in terms of accuracy and speed of calculation.

4 Pre-sampling Based on Voronoi Diagram Borders
Points Estimation

One of the main issues during sequential sampling is error estimation between
metamodel prediction F̃i and the real measurement F , as well as obtaining the
i + 1 iteration batch points at which the obtained dependencies have, with high
probability, the maximum error.

At each iteration only the data about the base points can be considered
reliable since in general case the features of the desired dependencies are a priori
unknown. At these points, the difference between the obtained metamodel and
real measurement is 0. The problem of calculating the error estimate of the
interpolation functions is reformulated in terms of the contribution of each base
point to the obtained dependence.

As in [15] space partitioning based on Voronoi diagrams is considered and
the evaluation of possible error ẽ(x) considered as the difference between inter-
polation function F̃i(x) and a new interpolation function F̃ oj

i (x) is constructed
without (xj , yj) ∈ Pi corresponding to each cell:

ẽj(x) =

√
Σl=1,...,m(F̃i(x) − F̃ oj

i (x))2, x ∈ X, e(x) ∈ R, i = 1, ..., Kb, (xj , yj) ∈ Pi.

In contrast to [15], estimation of the error ẽj(xv) where xv are points on the cell
boundaries of a Voronoi diagram is considered. Thus, estimation is based on the
assumption of smoothness of the functions F (x) and F̃i(x) so the error evaluation
function e(x) near the base points (except for the neighbourhood itself to a base
points) should also be smooth, as it is defined as the distance. Therefore, most
likely, the interpolation functions in general case have the maximum deviation
from the target functions at points that lie at the maximum distance from base
points being the boundaries of the cells of the Voronoi diagram for a given set
of base points. The boundary points where the “error” exceeds the required
accuracy are included in pre-selected points PBi.

Construction of approximated Voronoi diagram based on seeds matching
simulations:

1. the accuracy ε is selected depending on the required metamodel accuracy A
(so the step in the space of variable parameters is selected). Thus a regular
grid in the space of variable parameters is implicitly set (there is no need to
store the nodes of the regular grid).

2. for each base point, the nearest nodes of the generated grid are denoted as
“base node”.
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3. each “base node” becomes the source of the “wave”, which in the first cycle
includes the nodes located from the reference nodes at a distance of no more
than ε and in the second cycle at a distance of no more than 2ε and so on;

4. the meeting of two “waves” from different sources determines the quasi-
boundary points.

5. the reverse wave from quasi-boundary points determines the area along which
the boundary of the domains of the Voronoi diagram passes.

5 Pre-sampling Based on Points Estimation Lying on
Intersection of Voronoi Diagram Borders and Base
Vectors

The algorithm described in previous section shows good results in terms of deter-
mining the points most likely to contain the maximum error but it requires con-
sideration of a significant number of points. Based on the fact that the “close”
points that were selected during pre-sampling stage will still be eliminated, the
number of calculations can be significantly reduced. For this purpose as in [12],
only the vertices of the Voronoi diagram can be considered. In this paper, we
propose a different approach based on determining the intersection points of the
rays released collinearly to the base vectors and the boundaries of the Voronoi
diagram (which, generally speaking, does not require the construction of the
Voronoi diagram itself). The main steps of the algorithm are:

1. search rays rj,k, k = 1, ..., 3n − 1, are defined for each base point xj ∈ Pi.
The search rays are chosen to be collinear to the base vectors, consisting
of all possible combinations of 1,−1, 0 on all coordinate axes (obviously, by
adding and excluding the base vectors, the construction of the metamodel
can be easily parametrized in order to increase or decrease the accuracy and
performance).

2. for each base point xj , the distances dj,k to the nearest points in the directions
k are determined. For each direction, the points that fall in hypercone with
cone angle 60◦ are selected.

3. the metamodel is constructed using one of the methods presented in Sect. 3.
4. for each base point (xj , yj) ∈ Pi, an interpolation function F̃ oj

i is constructed.
(For each direction, at least two points located at the minimum distance are
selected).

5. the first stage of the pre-sampling is performed, on which the search rays are
selected. The selected set of rays include rays rj,k that satisfy the following
condition:

√
Σl=1,...,m(F̃i(xr) − F̃ oj

i (xr))2 > A
√

Σ(max(xj) − min(xj))2,

(xj , yj) ∈ Pi, xr ∈ rj,k,
√

Σ(xr − xj)2 = dj,k/2.
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6. the corner points of the hypercube constructed around the input data are
added to the selected points of the first stage (if the base points don’t already
contain them).

7. for each of the directions pre-selected at the first stage, the intersection of the
base ray with the boundary of the Voronoi diagram is considered xrv (binary
search can be used for this purpose, instead of building the Voronoi diagram
directly).

8. border points where the “error” ẽj(xrv) exceeds the specified accuracy are
included in the pre-selection of points PBi.

6 Obtaining the Next Iteration Batch’s Points

6.1 Batch Points Sampling

The second stage of sampling consists in selecting the required number of points
from pre-sampling points set. The selection of a given number of points from the
pre-selection is based on the following requirements:

1. it’s advisable to select the points with the highest values of the error estimate;
2. it’s impractical to select points located “close” to each other in the parameter

space.

Two methods are proposed for the final selection of points:

1. dichotomy method for point selection;
2. iterative method for selecting points based on the convolution of normalized

criteria.

6.2 Sampling Based on Dichotomy Method

The main steps of the dichotomy method for selecting points are:

1. select an initial interval of threshold that determines the allowed distance
between the selected points: the minimum allowable value (left boundary of
the interval) is defined as 0, the maximum value (right border of the interval)
is defined as the magnitude distance between a pair of maximally distant
points in the multidimensional space of parameters;

2. select the current threshold value—the center of the range of acceptable
threshold values;

3. all obtained points are sorted in descending order of the error estimate values;
4. the point with the maximum error estimate is selected—it is placed in the

set of “selected points”, and points for which the distance to the selected
point does not exceed the current threshold value are excluded from the set
of points;

5. as long as the ordered set of “boundary points” is not empty, go to step 4,
otherwise step 6;
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6. if the number of “selected points” exceeds the specified limit, the left bound-
ary of the interval is assumed to be equal to the current threshold value,
otherwise the right boundary of the interval is assumed to be equal to the
current threshold value;

7. until the left border of the interval is equal to the right border, go to step 2,
otherwise exit.

6.3 Iterative Sampling Method

The main steps of the iterative point selection method are:

1. at each iteration of the method, until the required number of points are
selected, the value of the criterion function is calculated. The selection crite-
rion is the additive convolution of 3 normalized criteria in the range from 0
to 1:
(a) the estimation of error ẽj(x);
(b) the distance to the nearest point of base points set or the points selected

in the previous iteration;
(c) the percentage of original data points and points selected at the previous

iteration fall within hypersphere centered in the considered point and a
radius equal to the average minimum distance (the average distance from
the points to their closest points).

2. the point with maximal criterion value falls into the final set.

7 Algorithms Complexity

7.1 Shepard’s Method Complexity

Since the Sheppard method is based on the application of the least squares
method for each of the p points, p = |Pi|, the complexity of constructing the
interpolation function will be O(n2p). Thus construction of interpolation func-
tion F̃i and p functions F̃ oj

i (x) (Sect. 4 and 5) required O(n2p2)).

7.2 Construction of Approximated Voronoi Diagram Complexity

Construction of approximated Voronoi diagram based on seeds matching simu-
lations as in Sect. 4 in the worst case requires iterating through all the points of
quasi-grid. Count of points of quasi-grid is qk = (max(xjk) − min(xjk))/ε, k =
1, ..., n, xj ∈ Pi. Thus complexity of constructing is O(cn) where c is constant.
Count of pre-sampled points s by this method in the worst case are nearly count
of points of quasi-grid s = aΣk(qk) where a < 1 is constant.
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7.3 Obtaining Points Lying on Intersection of Voronoi Diagram
Borders and Base Vectors Complexity

Count of considered points lying on intersection of Voronoi diagram borders and
base vectors complexity as in Sect. 5 corresponds to count of rays for each of
p points, p = |Pi|. Thus complexity of construction is O(p(3n)). Count of pre-
sampled points s by this method in the worst case corresponds to the number
of rays s = p(3n − 1).

7.4 Sampling Based on Dichotomy Method Complexity

Complexity of sampling method depends of count of pre-sampled points s
(Sect. 7.2, 7.3). Before sampling, it is necessary to calculate the distances between
the pre-selected points—O(s2). At each iteration, it is necessary to select L
points and at each selection, exclude points that are too close by performing
calculations for each of s points. The estimation of the number of iterations—
O(log(s)). Thus, the total complexity of procedure is O(s2)+O(sLlog(s)). Since
L is less than s by definition, the total complexity is O(s2).

7.5 Iterative Sampling Method Complexity

Complexity of sampling method depends of count of pre-sampled points s
(Sect. 7.2, 7.3). For each of pre-sampled points the criterion—O(s) and the near-
est distance between pre-sampled points and base points—O(sp), p = |Pi| have to
be calculated. On each of L itterations the update of distance between remained
pre-sampled points, base points and sampled points may need O(L(s − L/2)).
Thus the complexity is O(sp).

8 Experiments

8.1 Model Experiments

As an illustration of the work of the presented algorithms, an example of a
multiextremal function is considered:

y = (sin(x2
1) + cos(x2

2))e
−(x2

1+x2
2)/8).

The 3D view of the presented function is shown in Fig. 1.
Figure 2 shows a comparison of the results of the pre-sample points algorithm

using error estimates on the border of a Voronoi diagram with final sampling
based on dichotomy method (triangles) and pre-sampling based on points esti-
mation lying on intersection of Voronoi diagram borders and base vector with
iterative sampling method (circles) based on the analysis of the metamodel con-
structed by base points (rectangles). In the figure, the function values are shown
in grayscale, where black is the minimum value and white is the maximum value.
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Fig. 1. 3D view of a multiextremal three-dimensional function

Fig. 2. Comparison of the algorithms

Figure 3 shows the result of points sampling, superimposed on a graph show-
ing the difference between the constructed metamodel on i iteration and analyt-
ical model. In the figure, the values of the error function are shown in greyscale,
where black is the minimum value and white is the maximum value, black also
shows the areas where the interpolation function is within the specified accuracy
(10% of the difference between the minimum and maximum value). The figure
shows that presented algorithms accurately enough determine the areas of the
greatest “error” and offer the points for their correction.
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Fig. 3. Difference between the constructed metamodel on i iteration and analytical
model

To evaluate the results of the algorithm application, the average errors in
the grid nodes of a metamodel constructed by sequential sampling and a meta-
model constructed by interpolation of the similar number of points uniformly
distributed in space were compared. The results of the tests with following
parameters: n = 2,m = 1, A = 0.1,Kbmax = 100, L = 10,Kb = 17, are shown
in Fig. 4.

Fig. 4. Comparison of the average errors reduction
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The graphs below show the following results:

1. An increase in the average accuracy of the obtained solution by more than 2
times with metamodel build by sequential sampling.

2. The accuracy of function behavior reflection is about 5 times higher.

8.2 Application of Algorithms for the Practical Problem of the
Body Motion in a Liquid

The proposed algorithm was tested on the practical problem of determining
the hydrodynamic characteristics of a body moving in a liquid. The following
parameters are used as variable parameters: speed of movement, angular velocity,
angle of attack, and drift angle. The coefficients of forces and moments acting on
the model are estimated as hydrodynamic characteristics (objective functions).
Thus, the following characteristics were considered:

1. the dimension of the problem parameter space is n = 4;
2. number of objective functions is m = 6;
3. function characteristics are multi-extreme, smooth functions;
4. accuracy is A = 0.1;
5. maximum points Kbmax = 100, L = 10.

To evaluate the results of the algorithm application, the average errors in the
grid nodes of a metamodel created by sequential sampling and a metamodel con-
structed by interpolation of the similar number of points uniformly distributed
in space were compared. The results of the tests are shown in Fig. 5.

Fig. 5. Comparison of the average errors reduction
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The graphs below show the following results:

1. the reduction by a factor of 6 is observed in the scope of virtual testing—the
average accuracy of the interpolation function based on a uniform grid with
130 iterations corresponds to the interpolation accuracy based on the points
obtained by the Shepard interpolation algorithm on the Voronoi diagrams
with 20 iterations;

2. a good level of interpolation accuracy of the desired dependencies is
observed—the interpolation function for 200 iterations based on a uniform
mesh never reached the accuracy of interpolation functions constructed on
the points obtained by the Shepard interpolation algorithm using the Voronoi
diagrams with 90 iterations.
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Abstract. This paper introduces the dynamic block of a new high spa-
tial resolution sea ice model. Arctic region irregular triangular grid gener-
ating technology based on the INMOST package is presented. The mesh
refined in areas of high ice concentration, at the coastline, and in narrow
passages. The parallel finite element implementation of the model with
several time integration schemes for the momentum balance equation
is presented. For the ice mass and compactness transport equations the
Taylor-Galerkin-Flux-Correction scheme was implemented. An optimiza-
tion of the time integration scheme for the momentum equation is pro-
posed, which allows to accelerate the standard stationary mEVP method
used in modern ice models (CICE, LIM, FESIM). The idea of the pro-
posed nonstationary mEVP-opt method is to approximate the iteration
parameter to the locally optimal one obtained from the estimate of the
integration step in the approximation of the linearized transition oper-
ator. The numerical experiment to reproduce the most computationally
complex mode of slow ridging was performed. The result is compared
to the Picard method one with 10 pseudo-iterations, which gives high
accuracy at high computational costs. It is shown that the new mEVP-
opt method provides a significant reduction in the computation time
compared to mEVP with a slight increase in the number of operations.
Represented dynamic core will be generalized for a multicategory ice
thickness case, supplemented by thermodynamics blocks, ice thickness
redistribution due to ridging, and data assimilation procedure. It could
be used as a high-quality sea ice forecast tool.

Keywords: Sea ice · Viscous-plastic rheology · INMOST · Ani2D ·
Ani3D · Supercomputer modeling · Ocean modeling

1 Introduction

Ice models play an important role in predictive systems and climate models,
and the presence of ice significantly affects heat and mass transfer between the
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ocean and the atmosphere. Ice dynamics is of practical interest for the design
of offshore hydrocarbon production facilities and for forecasting the routes of
Arctic expeditions.

The presented work consists of two parts. The first part is devoted to the
construction of a computational domain triangulation - the area of the Arctic
Ocean with all adjacent seas and a detailed description of the coastline. The
following is a description of a parallel system for interpolating geodata onto
a model grid, which is used to fill the model with data and generate output.
Basically, geodata in the world scientific community are usually distributed in
the netCDF format on a rectangular grid with depth levels. The proposed model
is built on an unstructured triangular mesh, the process of interpolating scalars
and vectors from rectangular to triangular mesh and vice versa requires a special
explanation.

The second part of the work is devoted to the description of the optimiza-
tion of the most widespread method of numerical integration of the momentum
balance equation. The active development of ice models began after the intro-
duction of equations for the dynamics of sea ice with viscous-plastic rheology
[6]. Subsequently, many methods were proposed for the numerical integration of
the momentum balance equations [2,7], and their optimizations as well [10]. In
this paper, we present a nonstationary method based on the classical mEVP-
approach [2] and the idea of a local decrease in the square of the residual norm
of a linearized functional, which increases the convergence rate. This method
can be applied to optimize computations in sea ice dynamics blocks. The main
advantage of the finite element approach for modeling sea ice is the ability to
accurately account for coastline heterogeneity, the ability to thicken the mesh in
the area of solution features and areas of the user interest. The physical formula-
tion of this problem leads to ill-conditioned discrete operators, which affects the
computational complexity of the solution. Therefore, optimizations of methods
like mEVP need to be developed for efficient and economical use of ice models
in conjunction with ocean models.

2 Building a Model Grid

The Arctic region, located above 45◦ latitude, was selected as the computational
domain. Coastal contours were taken from the open coastline database GSHHG
[17] using the GMT package [16]. We used the roughest resolution available as
a starting point. However, practice has shown, that there are inconsistencies in
the presented coastal contours, which are expressed in the self-intersection of
coastline segments. Another disadvantage is the presence of narrow bays and
adjacent coastlines forming sharp corners. To eliminate this drawbacks, the fol-
lowing smoothing technique is used, which pursues the main goal: one can delete
some vertices in a broken coastline, but can not move them. Firstly, this require-
ment is necessary for writing an automated coastline smoothing program for
an arbitrary “bad” contour. Secondly, it leaves the possibility of adding a more
detailed part of a broken coastline from the same database between existing
vertices. The following parameterized procedure is executed:
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1. If the length of the segment exceeds the specified value, then its end point is
deleted;

2. If two adjacent line segments form an angle less than the predetermined value,
then the corner vertex is removed;

3. Fix a vertex and a natural number n. If among the n of the following segments
there is a segment close to the selected point at a distance less than a fixed
value, then this segment and all previous points (up to the fixed point) are
deleted;

4. Each island with less than 5 line segments is removed.

At the initial stage of building the grid, the river mouths were removed, and
the computational domain was closed through the water passing along 45◦ lati-
tude. Then modificated coastline data submited to the procedure for construct-
ing a regular triangulation by Ani-2D AFT package [3]. The regular triangulation
is shown in Fig. 1.

Fig. 1. Regular triangulation.

Regular triangulation has an obvious drawback - there is practically no ice at
low latitudes, an excessive number of nodes in such places leads to unnecessary
computations. Thus, a mesh thickening procedure was applied in an area with a
potentially high ice concentration. We used data on satellite measurements of ice
concentration for the last 10 years [12] and special functionality of the Ani-2D
AFT package, which allows one to set the desired local size of the triangle at a
specified point.



392 S. Petrov and N. Iakovlev

The boundary between high and low concentration ice is rather sharp. In
order to smooth the boundary, satellite data on ice concentration at the nodes
of a rectangular grid were transformed using the discrete Laplace operator

anew
i,j = −ai−1,j + ai+1,j + ai,j−1 + ai,j+1 − 4ai,j

h2
,

where h is spacial resolution of the rectangular grid. The minimum possible
concentration is considered equal to amin = 0.05. Maximal size of a triangle was
set 5 times larger than the minimal one dmax = 5dmin. If a(x, y) is the value of
the bilinear interpolant of concentration at the point (x, y), then the desired size
of the triangle at this point d(x, y) is calculated by

d(x, y) = dmax +
dmin − dmax

1 − amin
· (a(x, y) − amin).

The result of triangulation with a mesh refining to an area with high potential
ice concentration for dmin ≈ 10 km is shown in Fig. 2.

Fig. 2. Thickened triangulation.

The constructed model area consists of 329 670 nodes, 642 387 triangles,
and 17 049 boundary edges. It is clear that solutions to problems of similar
dimensions need to be designed taking into account the parallel architecture of
the supercomputer.

Note that the use of geographic (longitude/latitude) coordinates as model
ones is difficult due to the singularity at the North Pole. To work around this
problem, model coordinates differ from geographic ones by rotating the North
Pole to the geographic equator. This is achieved by choosing the Euler angles
(−30◦,−90◦, 0◦).
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3 Features of the INMOST Package

The INMOST [4] software package is developed and maintained at the INM
RAS. This package is designed for massively parallel modeling on grids of arbi-
trary structure, both in 2D and 3D. INMOST is well optimized for using finite
element and finite volume approximations. The INMOST package is written
in the C++ and includes MPI and OpenMP functionality for multiprocessor
and multithreaded computations. To construct an efficient parallel division of
the computational domain into subdomains corresponding to different processes,
minimizing the number of exchanges, this model uses the ParMETIS [9] library
integrated into INMOST. The mesh data corresponding to elements (node, edge,
triangle) is stored in an ordered format, which provides optimal search algo-
rithms. Figure 3 shows the division of the model grid into 20 processes.

Fig. 3. Decomposition of the model grid by 20 processes.

The library PETSc [1], also integrated into INMOST, is used for the parallel
solution of linear systems.

As mentioned earlier, most geodata are distributed in netCDF format on a
rectangular grid with multiple levels. To implement the dynamic block of the
ice model, one need to know the initial distribution of ice concentration and
height, as well as the distribution of the ocean level every few steps of model
integration. We decided to fill the model with data from the operational oceanic
European forecast system TOPAZ4 [15], which is part of the European Earth
operational forecast program Copernicus. This choice is due to the openness of
the resource for non-commercial research, regular updates and support. TOPAZ4
data are received online every hour, which allows to validate the developed model
according this data in the future.

The netCDF [14] standard library allows parallel reading and writing from
a netCDF file. TOPAZ4 data is located on a rectangular grid in stereographic
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projection onto the tangent plane to the North Pole of the Earth. Each processor
reads only the part of the rectangular grid it needs, which optimizes further
calculations in terms of time and memory used. The result of parallel bilinear
interpolation of scalar fields is shown in Fig. 4 and Fig. 5.

Fig. 4. Distribution of sea ice con-
centration at 00:00 on April 1, 2020
according to TOPAZ4 data, interpo-
lated on the model grid.

Fig. 5. Ocean level distribution at
00:00 on April 1, 2020 according to
TOPAZ4 data, interpolated to the
model grid.

In addition to scalar fields, the dynamic core of the model requires regular
updating of the oceanic and atmospheric forcing. The data on the zonal velocity
components of the boundary layer of the atmosphere and ocean are shown in
Fig. 6 and Fig. 7 respectively.

4 Optimized Method for Numerical Integration of the
Sea Ice Momentum Balance with Viscous-Plastic
Rheology

Various numerical integration methods are used in dynamic blocks of modern
global sea ice models with viscous-plastic rheology. The following two are most
common: mEVP [2], VP-Picard [8]. This paper makes a comparison of these
methods qualitatively and in terms of the residual norm in a square model area
of 1000 km size with artificial external forcing, periodic in time and space, which,
despite its simplicity, implements a computationally complex mode of slow ridg-
ing. Also an alternative accelerated method mEVP-opt is proposed. It is based
on the classical mEVP method and the idea of local decay of the squared residual
norm of the linearized operator.
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4.1 Governing Equations

The 2D system of sea ice dynamics with viscous-plastic rheology consists of
momentum balance and two transport equations - ice concentration and mass
advection [6]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m(∂t + fk×)u = aτ − Cdaρ0(u − u0)|u − u0| + F − mg∇H

τ = Caρa|ua|ua

Fl = ∂σkl

∂xk
, l = 1, 2

σkl(u) = P0
2(Δ+Δmin)

[
(ε̇d − Δ)δkl + 1

e2 (2ε̇kl − ε̇dδkl)
]

ε̇kl = 1
2 (∂kul + ∂luk); ε̇d = ε̇kk = ε̇11 + ε̇22

ε̇s = ((̇ε11 − ε̇22)2 + 4ε̇212)
1/2; Δ = (ε̇2d + 1

e2 ε̇2s)
1/2

P0 = p∗he−C(1−a)

σ1(2) = σ11 ± σ22, ε̇1(2) = ε̇11 ± ε̇22

∂ta + ∇ · (ua) = 0, a ≤ 1
∂tm + ∇ · (um) = 0
m = ahρ,

(1)

where k is the unit vertical vector, f is the Coriolis parameter, m,a, h mass,
concentration and height of the ice, u,u0,ua - ice, water and air velocities,
ρ, ρ0, ρa - ice, water and air densities, σij - stress tensor components, ε̇ij are the
components of the strain rate tensor, e = 2 is the ellipticity parameter, P0 is the
pressure, H is the ocean level.

The transport equations are solved by the conservative Taylor-Galerkin finite
element scheme with Flux-Correction technology [11] applied.

4.2 mEVP Method

The essence of the mEVP-approach [2] for solving the momentum balance equa-
tion is to apply the explicit Euler scheme in time separately for the main com-
ponents of the stress tensor and velocities:

α(σp+1
1 − σp

1) =
P0

Δp + Δmin
(ε̇p

1 − Δp) − σp
1

α(σp+1
2 − σp

2) =
P0

(Δp + Δmin) · e2
ε̇p
2 − σp

2

α(σp+1
12 − σp

12) =
P0

(Δp + Δmin) · e2
ε̇p
12 − σp

12

β(up+1 − up) = −up+1 + un − Δtf × up+1

+
Δt

m

[
Fp+1 + aτ + Cdaρ0(un

0 − up+1)|up
0 − up| − mg∇Hn

]
.

(2)

Here the index p corresponds to the local iteration, and n is the number of
the global time step. Typical parameter values used in models: α = β = 500
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Fig. 6. Distribution of the zonal wind
speed component at 00:00 on April 1,
2020 according to TOPAZ4 data, inter-
polated to the model grid.

Fig. 7. Distribution of the zonal water
speed component at 00:00 on April 1,
2020 according to TOPAZ4 data, inter-
polated to the model grid.

with NmEVP = 500 pseudoiterations. The described process will be referred as
mEVP-500. The main advantage of this approach is no need to solve a system
of linear equations at each iteration. This property is obtained through the use
of a lumped (diagonalized matrix with diagonal entries equal to row sum) mass
matrix after applying the Galerkin method for spatial discretization.

4.3 VP-Picard Method

The second most popular approach for solving the momentum balance equation
is the Picard iteration method [8]. The values of bulk and shear viscosities are
taken from the previous pseudo-iteration and are used to form a new approx-
imation of the stress tensor components. These components are then plugged
directly into the momentum balance equation and new values for the velocities
are calculated. Thus, an implicit time scheme is organized, which allows avoiding
significant restrictions on the integration step. However, the described scheme
requires solving a linear system at each pseudo iteration, which significantly
enhance computations. The Picard method with 10 pseudo-iterations will be
called VP-10. Figure 8 shows a comparison of the relative residual norm of the
VP-10 and mEVP-500 methods. One can see that the solution obtained by the
former tends to the latter once. Moreover, VP-10 gives a more accurate result.
Convergence requires at least 1400 iterations of mEVP-500.
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4.4 mEVP-opt Method

Discretized in time and space momentum balance equation from (1) according
to the mEVP method (2) can be written in the standard form

α(xk+1 − xk) + A(xk)xk + f(xk) = b, (3)

which is a stationary simple iteration method with parameter α. The vector
x = (σT

1 , σT
2 , σT

12,u
T ,vT )T consists of global nodal values of stress and velocity

components. The residual of the equation is written as r(x) = A(x)x+ f(x)−b.
The idea of the optimized mEVP-opt method is to organize a non-stationary
simple iteration method (3), where the optimal value of the αopt parameter is
estimated by minimizing the squared residual norm in the linear approximation
[13]:

||r(xk+1)||2 = ||A(xk+1)xk+1 + f(xk+1) − b||2

= ||A(xk+1)[xk +
1
α

(
b − A(xk)xk − f(xk)

)
] + f(xk+1) − b)||2

≈ ||
[
A(xk)xk + f(xk) − b

]
− 1

α
A(xk)

[
A(xk)xk + f(xk) − b

]
||2

= ||r(xk) − 1
α

A(xk)r(xk)||2

= ||r(xk)||2 − 2
α

(
r(xk), A(xk)r(xk)

)
+

1
α2

||A(xk)r(xk)||2

⇒ αopt =

⎡

⎣

(
r(xk), A(xk)r(xk)

)

‖A(xk)r(xk)‖2

⎤

⎦

−1

.

(4)

The derived estimate is rough, due to the rigid assumption of the linearity.
Direct use of the optimal iteration parameter at each step α = αopt (4) causes
the method to be unstable. Therefore, we suggest to use the following step recal-
culation procedure, starting with α0 = αdef (αdef = 500 in case of mEVP-500)

αk+1 = αk +
(αk

opt − αk)
Cααdef

.

We used value Cα = 2.0. Also on the new αk+1 following restrictions are
imposed

1. Decreasing step: αk+1 < αk;
2. The relative decrement should not exceed some predetermined value ε:

|αk+1−αk|
αdef

< ε. In code we use ε = 0.05;
3. The stability condition for the mEVP method [5].

If any of the conditions listed above is not satisfied, the next step is assigned
equal to the previous one αk+1 = αk.
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4.5 Numerical Experiments

For the numerical experiment, a square domain was chosen. Size of square
is L = 1000 km, that approximately corresponds to the real Arctic size.
The initial conditions and external forcing are set as ua = 5 + (sin(2πt

T ) −
3) sin(2πx

L ) sin(πy
L ), va = 5+(sin(2πt

T )−3) sin(2πy
L ) sin(πx

L ), T = 4 days, according
to [5]. The water velocity is set as u0 = 0.1 2y−L

L , v0 = −0.1 2x−L
L . All velocities

are measured in m/s. Ocean level is calculated according to geostrophic balance.
The initial ice height is 2 m throughout the entire domain. The ice concentration
increases linearly from 0 to 1 in the easterly direction.

Figure 9 shows the residual advantage of the mEVP-opt method over the
standard mEVP. One can see that the convergence of mEVP-opt is achieved in
800–1000 iterations.
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Figure 10 shows a qualitative picture of the better convergence of mEVP-opt
to the VP-10 solution compared to the standard mEVP method. It demonstrates
that on the top of Fig. 10b the region of the maximum velocity obtained by the
mEVP method is not reproduced. One can also notice that the left border of
positive velocities is overestimated. Thus, we can conclude that 800 iterations
of the mEVP method are not enough to obtain a precise solution. These disad-
vantages are not present in the velocities, calculated by the mEVP-opt method,
that is shown in Fig. 10c.
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(a) VP-10 (b) mEVP-500, 800 it. (c) mEVP-500-opt, 800 it.

Fig. 10. Distribution of the zonal ice velocity component after 7 h of modeling.

5 Conclusion

This paper describes the process of constructing a triangulation of the Arctic
region with a thickening of the grid in the area of potentially high ice concentra-
tion in detail. To construct the triangulation, the Ani2D package and satellite
data on ice concentration over the past 10 years were used. The dynamic core
of the developed model is based on the INMOST package. The results of model
grid decomposition and interpolation of scalar and vector fields are presented.
An optimized mEVP-opt method for numerical integration of the sea ice momen-
tum balance equation with visco-plastic rheology is proposed. Qualitatively and
quantitatively (by residual), the advantage of this method over the standard
mEVP is shown at slightly higher computational costs.
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Abstract. A low-latency high bandwidth interconnect that makes a
unified system from a collection of nodes is a heart of any modern su-
percomputer. At the moment, Infiniband is the main commercially avail-
able type of interconnect without any other real competition world-wide.
Proprietary interconnects are known to stand behind effcient super-
computer systems. Since 2016, the supercomputer centre of JIHT RAS
deploys systems based on the Angara interconnect developed in Moscow
by JSC NICEVT. In this paper, we present the performance analysis for
two recently upgraded supercomputers in JIHT RAS that are based on
two types of Angara interconnect and modern AMD Epyc CPUs and
AMD Instinct MI50 GPUs. The general properties of Angara intercon-
nects are described and compared with Infiniband FDR. The details of
HPL benchmark runs on both systems are analysed.

Keywords: Angara · Infiniband · Epyc · MI50 · HPL · Scalability ·
Efficiency

1 Introduction

In the past few years, the growth in the computing power of supercomputers is
provided not so much by the processor frequency as by the increase in the number
of computational nodes and the number of cores. For this reason, the contribu-
tion of high-speed interconnect to the maximum computing performance of a
supercomputer permanently increases. This trend makes it promising to create
high-performance computing systems with interconnects that provide the lowest
latency and the highest throughput. Currently, there are several interconnects
that provide low latency (about 1 µs) and high throughput (several tens of
GBytes per second). Among the former leaders of this industry we can men-
tion Quadrics [1] (1996–2009), Myrinet [2] (since 1995) and Intel Omni-Path [3]
(2015–2019). Currently, the market is dominated by Infiniband [4] (since 2000)
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with a small share of other types of interconnects, e.g. NUMAlink [5] (since
1996) and RapidIO [6] (since 2000). At the moment, we can refer to two types of
interconnect under development in Russia: the Angara interconnect is developed
by JCS NICEVT [7,8] and the SMPO-10G is developed by the Russian Federal
Nuclear Center – All-Russian Research Institute of Experimental Physics [9].
During the last several years, the Angara interconnect has obtained a history
of practical usage [10,11]. In 2021–2022 the second generation of the Angara
interconnect is expected to be released.

In this article, we present a comparative analysis of the Angara network and
the Infiniband FDR network as parts of two supercomputers at the JIHT RAS.
The comparison is based not only on the basic characteristics of the network
but also on the results of the HPL benchmark. The main computations for the
benchmark are performed on modern AMD Epyc CPUs on the Fisher super-
computer on AMD Instinct MI50 GPUs on the Desmos supercomputer. For the
efficient execution of the benchmark, the optimal parameters of the benchmark
configuration are selected, and some methods of speeding up the calculation are
performed, including the frequency boosting technology.

Our comparative analysis of the effectiveness of interconnects has two main
parts. The first part consists of studying the basic characteristics of two inter-
connects on the supercomputers under study. These tests include traditional
measurements such as point-to-point latency for several node locations and node-
to-node connectivity, which is especially important for the Angara network. In
addition to them, we consider some of the most frequently used operations in par-
allel calculations, such as Allreduce and AlltoAll. The purpose of this extended
set of microtests is to characterize various aspects of interconnect usage. The
second part of the performance evaluation consists of application-level tests. We
use the HPL benchmark. We not only present the overall performance results
but also show the performance of the processors during the benchmark run.

The rest of this paper is organized as follows. In Sect. 2, we give an overview
of modern interconnects with an emphasis on the new Angara interconnect. In
Sect. 3, we describe in detail the supercomputers on the basis of which the com-
parative analysis of interconnects is carried out. Sections 4 presents a comparison
of Angara interconnect and Infiniband FDR based on micro-tests. Sections 5 and
6 present interconnects comparison based on the HPL benchmark on two differ-
ent supercomputers. Then we draw conclusions in Sect. 7.

2 Related Work

In this paper, we present the results for the Angara network with torus topology
and for its variant with the fat-tree topology.

Torus topologies of the interconnect have several attractive aspects in com-
parison with fat-tree topologies. In 1990s, the development of supercomputers
had its peak during the remarkable success of Cray T3E systems based on the
3D torus interconnect topology [12] that was the first supercomputer that pro-
vided 1 TFlops of sustained performance. In June 1998, Cray T3E occupied 4 of
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top-5 records of the Top500 list. In 2004, after several years of the dominance of
Beowulf clusters, a custom-built torus interconnect appeared in the IBM Blue-
Gene/L supercomputer [13]. Subsequent supercomputers of Cray and IBM had
torus interconnects as well (with the exception of the latest Cray XC series
based on the Aries interconnect with the Dragonfly topology). Fujitsu designed
K Computer and the current No.1 in Top500 Fugaku that both are based on
the Tofu torus interconnects [14,15]. The Aurora Booster and Green Ice Booster
supercomputers are based on the Extoll torus interconnect [16].

The development of a new type of supercomputer-oriented interconnect hard-
ware is a complex endeavor requiring simultaneous development of the corre-
sponding software stack. This software stack should enable the correct and effi-
cient operation of all the software packages of end-users. From the economical
point of view, the usage of the main type of presently commercially available
interconnects (the Mellanox Infiniband) is always cheaper than the development
of new technology. Due to these complexity of development and economical con-
siderations, the number of supercomputer interconnect types is quite limited.
Among the novel types of interconnects in addition to those listed above, we
can mention, for example, the Atos BXI [17], the TaihuLight interconnect [18]
and the Cray Slingshot interconnect [19]. These interconnects are available for
purchase within the supercomputer installation only that emphasizes the high
importance of the development of the corresponding technologies. An interest-
ing review of high-performance computing development trends has recently been
published with a focus on the supercomputer interconnects [20].

Table 1. The main characteristics of the Fisher and Desmos supercomputers

Cluster Fisher Fisher Fisher Desmos Desmos

Compute

Nodes

Host1-17 Angr1-20 Angr21-40 Host1-32 Host17,26-32

Chassis Supermicro

1023US-TR4

Gigabyte

H262-Z62

Gigabyte

H262-Z67

Supermicro

1018GR-T

Supermicro

1018GR-T

Processor 2 x Epyc

7301 16c

2 x Epyc

7301 16c

2 x Epyc

7662 64c

Xeon

E5-1650v3 6c

Xeon

E5-1650v3 6c

GPU – – – Instinct

MI50 32 GB

Instinct

MI50 32 GB

Memory 256GB 128GB 256GB 32GB 32GB

Interconnect Infiniband

FDR

Angara

switch

Angara

switch

Angara

4D-Torus

Infiniband

FDR

MPI OpenMPI-

3.1.0

MPICH 3.2

for Angara

MPICH 3.2

for Angara

MPICH 3.2

for Angara

OpenMPI-4.0

The hybrid supercomputer Desmos in JIHT RAS was the first supercomputer
based on the Angara network with the in-depth analysis of performance for var-
ious applications [11,21–23]. The MPI communication over the Angara network
was reviewed for the systems with torus topology, Desmos including [24,25].
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In September 2018, Desmos (equipped with AMD FirePro S9150 GPUs) was
ranked as No. 45 in the Top50 list of supercomputers (the open-source HPL-
GPU benchmark based on OpenCL [26] was used for running LINPACK).

3 Hardware

The main details about the supercomputers Desmos and Fisher are given in
Table 1 and illustrated in Figs. 1 and 2. Fisher has a segment with Infiniband
FDR and air cooling and a segment with Angara and immersion cooling [27].

20 nodes of Fisher (angr21-40) are based on a new type of servers with Epyc
7662 64 core CPUs. The novelty of this hardware is the reason of unstable work
of some chassis that is why we do not consider the nodes angr21-24. The unstable
work of PSUs in the nodes angr29-32 caused lower CPU frequencies (see below).

Fig. 1. The scheme of the Fisher supercomputer.
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Fig. 2. The scheme of the Desmos supercomputer.

4 Comparison of Angara and Infiniband FDR

Message Passing Interface (MPI) is a de-facto standard for writing large-scale
scientific codes. Various HPC applications, including LINPACK, utilize MPI for
inter-process communication and synchronization during computations. Hence
the performance of MPI library, which is usually highly optimized for an underly-
ing interconnect, plays an important role in the overall application performance.

Ohio State University (OSU) benchmark was selected in order to study initial
Angara and InfiniBand FDR performance under typical MPI workloads and
compare these interconnect architectures face-to-face. Figure 3 show the results
of comparison Angara and IB FDR interconnects installed both in Desmos and
Fisher supercomputers on osu latency and osu bw tests, correspondingly. The
osu latency benchmark measures the time between the MPI Send is started at
source node and the corresponding MPI Recv completed on destination node.
The osu bandwidth benchmark is aimed to estimate the amount of data that
could be transmitted between MPI ranks for a fixed period of time using MPI
Point-to-point operations. Each test included 1 pair of MPI ranks located on 2
different nodes.

P2P latency tests with small-message size with Angara MPI show a 1.2–1.5x
speedup in comparison with IB FDR. Higher CPU frequency allows the software
layer of the networking stack to generate smaller messages for a fixed period of
time. Thus the CPU installed on compute node could also make a significant
impact on the performance of network operations. AMD Epyc CPUs used in the
Fisher cluster have 1.5x less base frequency than Xeon Haswell CPUs in Desmos.
This fact matches with the observation of the similar 1.5–2x P2P latency gap
for both interconnects installed on these supercomputers.



406 A. Shamsutdinov et al.

Message size, Byte

La
te

nc
y,

 u
s

1

2

3

4

5
6

0 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

Angara, Fisher, MPICH 3.2 IB FDR, Fisher, OpenMPI 4.1.0
Angara, Desmos, MPICH 3.2 IB FDR, Desmos, OpenMPI 4.0.3

Baseline MPI Point-to-Point Latency tests

Fig. 3. Comparison of IB FDR and Angara interconnects using MPI point-to-point
latency for small message size on Fisher and Desmos supercomputers.

Experiments on the Fisher supercomputer show that MPI rank placement
could affect the latency and bandwidth of point-to-point operations because
of the Angara switch inner topology (Fig. 4). It is possible to choose a process
mapping when data packets have to flow through the multiple crossbar segments
for nodes connected to the same switch. Each crossbar segment adds a constant
latency (<150 ns). On the Fisher cluster we observe up to 400 ns P2P latency
slow down for small (<64 B) MPI messages due to this hardware constraint.

Allreduce and AlltoAll operations are amongst the most important commu-
nication patterns in parallel computing. The performance comparison of these
MPI operations on the Fisher cluster with IB FDR and Angara interconnects is
presented on Figs. 5 and 6. Small-medium (≤16 KB) message Allreduce shows
up to 40% less latency with Angara network on Fisher and Desmos supercom-
puters while scaling up to 16 compute nodes with 1 process per node. For large
message sizes the performance results for the both networks are approximately
the same.

5 High-Performance Linpack Benchmarks on Fisher

High-Performance Linpack (HPL) is a benchmark used for measuring a sys-
tem’s fp64 computing power. It is the most popular solution for evaluating high-
performance computing systems due to its high scalability when running on
multiple compute nodes. The TOP-500 rating is based on HPL results, includ-
ing the most powerful supercomputers in the world. In this rating, not only the
obtained result in Gflops is important, but also the ratio of the obtained perfor-
mance to the peak one, which is called the system efficiency. One of the essential
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components for obtaining high results on a supercomputer is the interconnect,
which is responsible for the speed of data exchange between computing nodes.
This section discusses how the use of different interconnects Infiniband FDR and
Angara Switch affects the resulting performance in the HPL benchmark and the
results achieved in the HPL benchmark on new Fisher compute nodes with
AMD Epyc 7662 processors. For our tests, HPL is explicitly built for the Fisher
supercomputer, using MPICH3.2-angara library with the Angara interconnect
support for compute nodes in immersion segment, AMD Optimizing C/C++
Compiler (AOCC) version 2.2, and AMD BLIS 2.2 library with the support of
the new Zen 2 architecture. For the Fisher’s air segment with Infiniband FDR
HPL is built with OpenMPI 3.1.0 library.

5.1 Comparison of Performance on Fisher’s Air Segment and
Fisher’s Immersion Segment

In this subsection, we study how the use of different interconnects affects the
resulting performance in HPL. For our tests, we use compute nodes in different
segments of Fisher, air segment and immersion segment, with different inter-
connects. The Fisher air segment (host1-16) and the Fisher immersion segment
(angr1-20) have the same CPU (2 x AMD Epyc 7301), so only the interconnect
and used cooling system can affect the achieved results in HPL. To verify that
all nodes deliver similar performance and are ready for HPL tests on multiple
nodes (e.g., see [26]), five runs of HPL are executed on each node with AMD
Epyc 7301, and the average value of performance in Gflops is taken. Peak perfor-
mance of one node with two AMD Epycs 7301 equals 563,2 Gflops, with a base
clock frequency of 2.2 GHz. Configuration of HPL benchmark for single node
launch: SMT is enabled, 8 MPI processes per node, 8 OpenMP threads per MPI
process. With these parameters, the best performance is achieved in both single
node and multiple nodes tests. The size of Ns (problem size) is set at 85000,
size of Nb (block size) is set at 512 as the optimal value for both small and big
problem sizes. Results of single node tests are shown in Fig. 7.

The average performance of nodes angr1-20 is 535,80 Gflops with average
efficiency of 95,13%, which is slightly higher, then nodes host1-16 with average
performance of 523,91 Gflops and average efficiency of 93,02%. Since interconnect
is not used during single node runs, only the immersion cooling system could be
the reason for an additional performance boost by providing better temperatures
and better average clock speeds.

In order to compare performance of interconnects Angara and Infiniband
FDR, HPL is tested on multiple nodes of Fisher (Fig. 8). The numerical values
of the HPL performance and efficiency for the range of the computational nodes
numbers are presented in the Table 2. Configuration of HPL run on multiple
nodes: 8 MPI processes per node, 8 OpenMP threads per mpi process. Size of
Ns (problem size) takes approximately 85% of available memory. Size on Nb
(block size) is set at 512.
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Fig. 7. Average performance of single node tests on angr1-20 (immersion segment) and
host1-16 (air segment).

Overall performance in Gflops is slightly higher on the nodes with the Angara
interconnect, and the average difference in efficiency is 0,65%. This difference in
efficiency can be explained by the fact that the immersion segment has better
cooling systems, allowing processors to achieve higher clock speeds. There is no
detected effect that could give a preference to one of the two interconnects under
consideration.

Fig. 8. Comparison of HPL performance and efficiency for IB FDR and Angara inter-
connects on the supercomputer Fisher.
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Table 2. HPL performance and efficiency on Fisher nodes with IB FDR and Angara
interconnects.

Interconnect Infiniband FDR Angara

Number of nodes Performance, Gflops Efficiency, % Performance, Gflops Efficiency, %

1 523 93,02 532 94,56

2 1064 94,49 1069 94,93

4 2112 93,76 2121 94,17

6 3104 91,88 3135 92,78

8 4054 89,98 4077 90,50

10 4956 88,00 4992 88,65

12 6020 89,08 6103 90,31

16 7847 87,08 7875 87,39

5.2 Fisher Immersion Segment’s Results with Epyc 7662

In this subsection, we study the HPL results achieved on Fisher compute nodes
with new AMD EPYC 7662 processors with the Angara interconnect. AMD
EPYC 7662 is a Zen 2 architecture processor released in 2020, with 64 cores
and peak performance of 2048 Gflops. The peak performance of a node with
two AMD Epyc 7662 is 4096 Gflops, which means that with a large number of
nodes, the results obtained in the HPL benchmark for CPUs can compete with
the results of the HPL benchmark for GPUs. Configuration of HPL run on a
single node: SMT is disabled, 8 MPI processes per node, 16 OpenMP threads per
mpi process. Multiple combinations of MPI and OpenMP are tested: 2 MPI +
64 OpenMP, 4 MPI + 32 OpenMP, 8 MPI + 16 OpenMP, 30 MPI + 4 OpenMP.
Results on the single node are similar for 2 MPI + 64 OpenMP and 8 MPI + 16
OpenMP, but when running on multiple nodes, 8 MPI + 16 OpenMP performs
better. A combination of 16 MPI + 8 OpenMP is not using all cores under load
properly. The size of Ns is set at 165184, size of Nb is set at 232. The results of
a single node run are shown in Fig. 9.

The average performance of nodes angr21-40 is 3461,7 Gflops with an average
efficiency of 84,51%. Low efficiency on Epyc 7662 compared to Epyc 7301 can
be explained by low clock speeds on all cores during the HPL run.

Figure 10 shows the average clock speeds of all cores during the HPL run on
a single node, where angr1 is the node with Epyc 7301 and angr25 is the node
with Epyc 7662. During the run on angr25 average clock speed is 2110 MHz,
while the base clock speed of Epyc 7662 is 2000 MHz. The average clock speed
on angr1 is 2492 MHz, while the base clock speed of Epyc 7301 is 2200 MHz.
Older processors AMD Epyc 7301 achieve higher clock speeds than the new
AMD Epyc 7662. This fact can be explained by the fact that while 64-core 7662
CPUs work near the TDP limit for this CPU family, the base frequencies of
16-core 7301 CPUs are further from the TDP limit and the frequency boost is
more pronounced.
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Results of HPL tests on multiple nodes are shown on Fig. 11 and in the
Table 3. Configuration of HPL run on multiple nodes: 8 MPI processes per node,
16 OpenMP threads per MPI process, size of N is set at approximately 85% of
available memory (Nb = 232).

For the global HPL run an important role plays a MPICH 3.2-angara back-
end optimization, in which internal buffers are polled every time only for those
processes for which the MPI receive function is called. Also we increase the size
of backend internal buffers, and eventually we obtain better global performance.

6 High-Performance Linpack Benchmarks on Desmos

In the previous section, we studied the performance of different interconnects on
the supercomputer Fisher, where we used the HPL benchmark for CPUs. How-
ever, the highest results in HPL are often obtained by using the HPL benchmark

Fig. 9. Average HPL performance on nodes angr21-40 (Fisher segment with liquid
immersion cooling).

Fig. 10. Average clock speeds of cores during HPL run on nodes angr25 (liquid immer-
sion cooling) and angr1 (air cooling).
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Fig. 11. HPL performance on multiple nodes angr21-40 (the Fisher segment with liquid
immersion cooling).

Table 3. HPL performance and efficiency on Fisher nodes with liquid immersion
cooling

Number of nodes Performance, Gflops Efficiency, %

1 3461 84,51

2 6802 83,03

4 13324 81,32

5 16500 80,57

8 24301 74,16

16 46711 71,28

20 59465 72,59

for GPUs, which can provide higher performance. In this section, we are study-
ing the performance of different interconnects in the HPL benchmark for GPUs
on supercomputer Desmos, which compute nodes have a new AMG MI50 GPU
with a peak performance of 6.6 Tflops. 8 nodes of Desmos were equipped with an
alternative Infiniband FDR interconnect. All tests are done with the experimen-
tal HPL binaries compiled with OpenMPI and MPICH for AMD MI50 32 GB
provided by AMD. The matrix size in this HPL benchmark is limited by GPU
memory. Compute nodes of Desmos have Intel Xeon E5-1650v3 CPU, which
peak performance is 336 Gflops, however in HPL benchmark for GPUs, only a
small part of the matrix is computed on the CPU, so using an older generation
processor shouldn’t have a significant impact on the final performance. To verify
that all nodes deliver similar performance, five runs of HPL are executed on each
node, and the average value of performance in Gflops is taken. Results of single
node tests are shown in Fig. 12. Configuration of HPL run on a single node: 1
MPI process per node, 6 OpenMP threads per MPI process. The size of N is set
at 63000, size of Nb is set at 384.
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Fig. 12. HPL performance on multiple nodes of Desmos.

The average performance of nodes host17,26-32 is 4542,42 Gflops with aver-
age efficiency of 68.82%. Low efficiency can be partially explained by the power
limit of 225 W set in the ROCm GPU driver. Higher results on AMD MI50 can
probably be obtained by increasing the power limit to 300 W.

To compare performance obtained using Infiniband FDR and Angara inter-
connects, HPL is tested on multiple nodes of Desmos (Fig. 13). The numerical
values of the HPL performance and efficiency for the range of the computational
nodes numbers are presented in the Table 4. Configuration of HPL run on mul-
tiple nodes: 1 MPI processes per node, 6 OpenMP threads per one MPI process.
Ns’s size is set at approximately 96% of available memory, the size of Nb is set
at 384.

Fig. 13. Comparison of HPL performance and efficiency of IB FDR and Angara inter-
connects on the Desmos supercomputer.
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Table 4. HPL performance and efficiency on Desmos nodes with IB FDR and Angara
interconnects.

Interconnect Infiniband Angara

Number of nodes Performance, Gflops Efficiency, % Performance, Gflops Efficiency, %

1 4542 68,89 4542 68,89

2 8197 61,43 8247 62,48

4 13984 52,97 13478 51,05

6 20036 50,60 19728 49,82

8 24336 46,09 25760 48,79

The difference in performance ranged from 50 to 506 Gflops for 1, 2, 4, 6
nodes, but the difference for eight nodes is 1424 Glops in favor of Angara.

7 Conclusion

MPI benchmarks show that the Angara interconnect in its torus and switch-
based variants have latencies competitive with Infiniband FDR. HPL bench-
marks of the systems with identical CPUs and GPUs show that the Angara
interconnect provides similar performance to Infiniband FDR in HPL bench-
mark for CPUs and has a slight advantage in HPL benchmark for GPUs on
the Desmos supercomputer with torus topology. Angara gives better scaling of
the HPL benchmark even for eight nodes. The deployment of the recent 64-core
Epyc Rome CPUs and Instinct MI50 GPUs revealed problems in getting HPL
performance close to the peak floating-point performance. These problems are
expected to be resolved for CPUs by tuning BIOS settings and for GPUs by
using the driver with an unlocked power limit.
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