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Abstract Trajectory planning is considered as a major challenge in autonomous
driving, which faces significant issues like safety and efficiency. This chapter
proposes a novel swarm intelligence meta-heuristic optimization algorithm, called
dragonfly algorithm, for the lane-change behaviour in the navigation of autonomous
vehicles. A multi-objective lane-changing trajectory planning method has been
proposed to optimize the trajectory and avoid collision, which mimics the dynamic
and static swarm behaviours of the natural dragonflies. Whenever the autonomous
vehicle senses an obstacle, automatically the lane-change manoeuvre should take
place. The feasibility and the effectiveness of the algorithm are verified by sim-
ulation results using the lane-change data from the benchmark NGSIM dataset.
Simulation results show that the proposed algorithm for trajectory planning gives
an optimal path for lane-change scenario considering both static and dynamic
obstacles.

Keywords Autonomous driving · Trajectory planning · Dragonfly algorithm ·
Lane-change manoeuvre

1 Introduction

Autonomous driving refers to self-driving vehicles that sense the environment
and make decisions by their own without the involvement of a human driver.
Autonomous driving has been one of the keen areas of research for the past few
decades due to its ability to enhance the safety and efficiency of transportation
system.
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Fig. 1 Lane-change scenario

Trajectory planning has a critical role in autonomous driving technology, and it is
one of the major challenges that must be addressed. In the real-world scenario, the
autonomous vehicles must navigate autonomously and take intelligent decisions.
The vehicle must determine a path for travel from the data it collected from the
static and dynamic environments. Then, the trajectory planning is done to obtain
an optimal path for the smooth movement from the source to destination achieving
certain constraints. It is really important and hard to generate a path that is optimal at
the same time meet the real-time requirements. Path planning involves searching and
computation of optimal collision-free paths. The feasible path of the autonomous
vehicle is generated considering the vehicle geometry, its surroundings, kinematic
controls, etc.

The central idea of this chapter is to design a trajectory planning technique
that can automatically generate an optimal path from the start to the goal position.
Figure 1 shows the lane-changing process by autonomous vehicle, say ego vehicle,
while avoiding obstacle. The obstacle avoidance trajectory must consider the safety
criteria, mainly the longitudinal and lateral distances with the obstacles. To generate
the optimal path, this chapter proposes a meta-heuristic Dragonfly Algorithm (DA).
It is based on swarming behaviours of the natural dragonflies [1, 2]. Several
researches have been done in trajectory planning for autonomous vehicles, and most
of them are based on the searching techniques [3, 4]. But, these techniques have
failed in considering obstacle avoidance behaviour.

2 Related Works

The lane-changing behaviour is essential to perform different driving activities
such as road merging, entry and exit to a highway, vehicle overtaking, etc. [2].
Several studies have been done to meet the trajectory planning problem for the
lane changing in different areas. The major challenge in generating a trajectory
is to ensure the feasibility while considering the different constraints. Different
optimization algorithms have been applied to trajectory planning problem in recent
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years. The commonly used algorithms are Ant Colony Optimization [5], Genetic
Algorithms [6], Particle Swarm Optimization [7], etc.

In global planning approach, a path is generated from the initial position to the
end position from the prior information about the environment. Several methods
have been used for global planning such as A* algorithm [8], RRT algorithm [9]
and Dijkstra’s algorithm [10]. Major drawback of these algorithms is that the whole
trajectory calculation process is very time consuming. Therefore, these algorithms
are not suitable for trajectory planning of real-time applications such as autonomous
vehicles where the obstacles are mainly dynamic.

Local trajectory planning techniques are widely used in most of the real-time
applications. These approaches calculate the trajectories for a limited time window,
which considers the environment conditions. Several geometric algorithms are used
for the local trajectory planning such as splines [11], Bezier curves [12], Clothoid
curves [13, 14], etc. These methods generate smooth trajectories by connecting the
waypoints for the navigation of the vehicles. But, these methods also suffer from
long computation time. Sigmoid curve–based approach is used in [15] for local
trajectory planning for obstacle avoidance behaviour. The safe space between the
autonomous vehicle and the obstacles is also taken into consideration.

A collision-free trajectory planning method using B spline and RRT-based
method is used to improve the robustness of motion planning in autonomous
vehicles [16]. Still there exists a timeout possibility. A non-linear Model Predictive
Control approach for vehicle navigation is suggested, which considers collision-free
trajectory [13]. It generates a dynamic obstacle avoiding trajectory planning with
certain constraints. It failed to study the random movement of moving obstacles.
The real-time motion planner is proposed in [17, 18]. A number of vision-based
approaches are also applied to path planning problems [19, 20].

In this chapter, Dragonfly algorithm is proposed for optimizing the vehicle
trajectory. It is a new approach that has powerful capabilities to solve different
optimization problems. Studies have shown that DA performs better compared to
PSO and gains several multimodal test functions [21]. This approach has several
advantages, which makes it suitable for real-world applications:

1. Convergence is guaranteed during optimization since the weights are changed
adaptively.

2. It always converges to the global optimum.
3. Randomness can be added to the algorithm.

3 Proposed Method

This chapter proposes a trajectory planning method that generates an optimal col-
lision avoidance trajectory for the autonomous vehicle using Dragonfly Algorithm
(DA). Dragonfly algorithm is an optimization technique, which was proposed by
Seyedali Mirjalili in 2015. It is based on the static and dynamic grouping behaviour
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Fig. 2 Dynamic and static dragonfly swarms

of biological dragonflies, which mimics the different phases of optimization and
can be employed to solve a wide range of optimization problems [21]. Dragonflies
are small insects that hunt and eat other small creatures like butterflies, bees etc.
[22]. Dragonflies have a unique swarming behaviour. They form groups only for
two reasons: hunting and migration [23]. The swarm formed for hunting is known
as static (feeding) swarm and the swarm formed for relocation is known as dynamic
swarm. The static and dynamic swarms [21] are illustrated in Fig. 2.

In static swarm, small groups of dragonflies move forward and backward to hunt
other flying insects. A swarm is dynamic where a huge number of dragonflies are
grouped to move in a single direction over a long distance. These dynamic and
static swarms compose the exploitation and exploration stages of DA. These two
behaviours are in accordance with the meta-heuristic stages [21].

The dragonfly individuals exhibit five primitive behaviours which can be used
to model the swarm behaviour. The dragonflies exhibit five properties, which are
shown in Fig. 3 [21]. Each of the behaviour of the dragon flies are modelled as
follows [21]:

1. Separation (Si ) represents the operation to avoid collisions that the individuals
follow with other individuals in the region. It is calculated as [21]:

Si = −
N∑

j=1

X − Xj (1)

where X is the location of the dragonfly, Xj is the location of jth nearest individual,
and N is the number of nearby individuals.

2. Alignment (Ai) represents the dragonfly’s velocity which matches with the other
nearby dragonflies of the same group. It is calculated as [21]:



AMulti-objective Optimal Trajectory Planning for Autonomous Vehicles Using. . . 25

Xi

Xi

F i

E i

(b) Alignment(a) Separation (c) Cohesion

(d) Modified steps for Attraction
     towards the food

(e) Modified steps for Distraction
     from the enemy

(Xi + di)
(Xi + di)

(Xi – di)
(Xi – di)

Fig. 3 Behaviour of dragonflies

Ai =
∑N

j=1 Vj

N
(2)

where Vj represents the velocity of the jth dragonfly.

3. Cohesion (Ci) is the tendency of the individual to move towards the centre of the
group. It can be calculated as [5]:

Ci =
∑N

j=1 Xj

N
− X (3)

4. Attraction (Fi) represents the attraction towards food source and can be repre-
sented as [5] :

Fi = X+ − X (4)

where Fi represents the food source of the ith individual.

5. Distraction (Ei) is the distraction from enemies and is represented as [5]:
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Ei = X− − X (5)

where Ei denotes the location of the enemy of the ith dragonfly
The step vector ΔX and the position X can be used to update the location of the

dragonflies in the search domain. The update is done as follows [21]:

ΔXt+1
i = (sSi + aAi + cCi + f Fi + eEi) + ωΔXt

i (6)

where s, a and c represent the weights for separation, alignment and cohesion,
respectively. F is the food factor, e is the enemy factor, ω is the inertia weight and t
is the iteration vector. The location of the ith dragonfly at (t + 1) is revised as [21]:

Xt+1
i = Xt

i + ΔXt+1
i (7)

The radius of the neighbouring space increases as the algorithm progresses. If
the dragonfly has no neighbours, then the position and velocity are updated using
Levy flight technique, which is a variation of the random walk process to apply
randomness to the position and velocity of dragonflies. The update can be performed
as [5]:

Xt+1
i = Xt

i + levy(d) × Xt
i (8)

3.1 Modelling of Objective Functions for Path Planning

The main objective considered in this chapter is to navigate the autonomous vehicle
in a road with different obstacles. The vehicle should sense the surroundings for
obstacles and avoid them while reaching the destination with optimal smooth
trajectory.

The problem of trajectory planning is considered as a minimization problem and
two objective functions are considered in this chapter. The first function helps the
vehicle to traverse to the destination avoiding the obstacles and second enables it
to obtain a short smooth trajectory. The algorithm chooses the best path from the
several paths for the vehicle to travel.

When the vehicle reaches the obstacle, the sensors detect it and the range of the
obstacle is calculated. Dragonfly algorithm is then initiated to avoid the collision.
It will find the best next position avoiding the obstacle while reaching the goal.
The food source gives the optimal path for the ego vehicle to move. The position
of the ego vehicle is updated as Eq. (6). The best approximations are stored and
retrieved by an archive. The food source of the dragonfly is chosen from the archive.
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Therefore, the food source is always a good candidate solution. Therefore, the
quality of the food source is proportional to the optimal path length. The next
position of the ego vehicle always depends on the distance between food source and
goal and the obstacle. The important factors considered here are obstacle avoidance
behaviour and goal-finding behaviour.

The collision avoidance is modelled using obstacle avoidance behaviour. The
position of the food source is selected as the global best path, which satisfies the
safety criteria of the system by maintaining the maximum distance between the ego
vehicle and the obstacle. The objective function can be calculated as the Euclidean
distance between the best position and the obstacle in the environment [23].

Distanceobj−F =
√

(Xob − XFi)
2 + (Yob − YFi)

2 (9)

where (Xob, Yob) gives the position of the obstacle and (XFi, YFi) gives the location
of the food source.

The nearest obstacle to the vehicle is calculated as [23]:

DistanceObj−V =
√

(Xob − XV )2 + (Yob − YV )2 (10)

The food source must be kept at the minimum distance from the goal. The food
source gives the global best position. The goal-finding behaviour can be calculated
as the Euclidean distance between the food source and the goal. It can be represented
as [23]:

DistanceG−F =
√

(XG − XFi)
2 + (YG − YFi)

2 (11)

These two behaviours can be combined to find the objective function of the
system. It can be represented as [23] :

Objective function = C1.1/ (min (DistanceOB−F )) + c2.DistanceG−F (12)

where C1 and C2 are the fitting parameters, and they have a huge influence on the
optimal trajectory.

3.2 Algorithm

The pseudo-code for the trajectory planning is given in Algorithm 1.
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Algorithm 1 TP_Dragonfly

Input : Dragonfly Population P, Number of Dragonflies N
Output : Optimal Path Coordinates

1 : Initialize the starting and goal positions of the autonomous vehicle.
2 : Follow the reference trajectory until an obstacle is sensed

3 : if vehicle senses obstacles, start dragonfly algorithm

4 : Initialize the population of dragonflies randomly Pi (1,2,…N)

5 : Set the step vectors ∆Xi (1,2,..m)

6 : while (t < Maximum number of iterations) do

7         Calculate the fitness of each dragonfly f(Xi)

8         Update the location of the food source and enemy

9         Update the weights for inertia ,separation s, alignment a, cohesion c, food factor f and enemy factor e

10       Compute S, A, C, F, and E using (1) – (5)

11       Update neighbor radius, velocity vector, position vector using (6) – (8)

12       Move the vehicle to the global best position

13  end while

4 Simulation Results

The proposed TP_Dragonfly algorithm for trajectory planning is simulated using
Matlab. The lane-changing scenario is evaluated using the real data from the NGSIM
(Next Generation Simulation) dataset. Next Generation Simulation (NGSIM) pro-
gram is the project by US Federal Highway Administration and is collected by
detailed vehicle trajectory data on southbound US 101 and Lankershim Boulevard
in Los Angeles. The data from the NGSIM dataset provides real traffic information
such as vehicle velocity, position, acceleration, lane, etc. This data is used for
studying the features of lane-changing process and for validating the lane-changing
models.

In the simulation, the positions, velocities and accelerations of ego vehicle and
other vehicles including the obstacles are obtained from NGSIM dataset, and the
optimal trajectory is generated by the proposed model. For each time step, the
proposed method plans the trajectory of the ego vehicle dynamically. Figure 4 shows
the trajectory planning using the proposed TP_Dragonfly algorithm.

This proposed method can be applied for both static and dynamic obstacles.
When the ego vehicle senses a static obstacle, it starts changing the lane considering
the safety criteria. But for the dynamic obstacles, when the speed of the ego vehicle
is greater than the speed of the dynamic obstacle in front, then the ego vehicle
starts the lane change. The ego vehicle follows the reference path until it senses the
obstacle. When the vehicle detects the obstacle, then the TP_Dragonfly algorithm is
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Fig. 4 Schematic diagram showing activation of TP_Dragonfly Algorithm

Table 1 Parameter values
selected for TP_Dragonfly

Sl No Symbol Value

T Max. Number of Iterations 430
N Population Size 100
S Separation 0.1
A Alignment 0.1
C Cohesion 0.7
F Food 1
E Enemy 1
C1 Fitting Parameter 1 1
C2 Fitting Parameter 2 1×10−4

r1, r2 Random Numbers [0,1]

activated to find an optimal path that avoids the obstacle. TP_Dragonfly algorithm
calculates the next best position based on the objective functions and move forward
avoiding the obstacle and reaches the destination.

The parameters used for simulation are shown in Table 1.
The efficiency of the proposed TP_Dragonfly algorithm relies on the accuracy of

approximations of the parameters.
The proposed method can be validated using different lane-changing behaviours

existing in the real world. The overtaking behaviour can be shown from the data
given in the NGSIM dataset. This NGSIM data can be used to verify the efficiency
of the proposed approach.

When the ego vehicle senses a static obstacle, it changes the lane to avoid
collision. It initiates TP_Dragonfly algorithm to obtain the optimal path. Figure 5a
and b shows the lane-changing behaviour of ego vehicle when a static obstacle is
encountered.

When the speed of the ego vehicle is higher than that of the vehicle in front,
the ego vehicle slowly changes the lane just before it approaches the vehicle in
front. This vehicle is identified as a dynamic obstacle by the ego vehicle sensors,
and it starts choosing a lane-change process by initiating TP_Dragonfly algorithm
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Fig. 5 Lane-change scenario for static obstacle

to generate an optimal path. Figure 6a shows the lane-changing behaviour of ego
vehicle when it senses a dynamic obstacle.

Figure 6b shows the overtake scenario for the vehicle from the NGSIM dataset.
The change of the speed of ego vehicle shows that the lane change adjusts the speed
dynamically to adapt the change in the velocity of other vehicles.

The lateral positions and lateral velocity of the ego vehicle while changing the
lane when sensing a dynamic obstacle are shown in Figs. 6c and d.

Figure 7 shows the lane-change trajectories generated by the proposed method
and by the NGSIM data for the vehicle id 456 in NGSIM data. The vehicle detects a
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Fig. 6 (a) Lane-change scenario for dynamic obstacle. (b) Lane-changing scenario for dynamic
obstacle. (c) Lane-change scenario for dynamic obstacle. (d) Lane-change scenario for dynamic
obstacle
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Fig. 6 (continued)

static obstacle, and it decides to change the lane. It is clear that the proposed method
generates the optimal path.

The Fig. 8 compares the lane-change trajectories for vehicle taken from the
NGSIM data for the vehicle id 466 in NGSIM data, which changes the lane as a
result of the presence of moving obstacle. The ego vehicle moves at a speed of
60 km/h, and the obstacle vehicle moves at a speed of 45 km/h. The trajectory
generated by the proposed method shows that it outperforms the real trajectory.
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Fig. 7 Comparison of the trajectories generated for static obstacles

Fig. 8 Comparison of the trajectories generated for dynamic obstacles

The results show that the lane-change behaviour while sensing an obstacle in the
current lane works well for the proposed TP_Dragonfly algorithm, which generates
the optimal trajectory for lane change.

4.1 Influence of the Fitting Parameters on the Trajectory

Two fitting parameters C1 and C2 are used for the objective functions, and they have
direct influence on the trajectory of the ego vehicle. The larger C1 value makes the
vehicle move away from the obstacle and a smaller value makes it collide with the
obstacle. The fitting parameter C2 decides the probability of the vehicle to reach
the goal in optimal path. If C2 is large, there is high probability that the vehicle
reaches the goal through an optimal path else it generates larger paths. The fitting
parameters decide the convergence of the objective function, and the optimal values
of these parameters eliminate the local minima. In this chapter, the fitting parameters
are selected by trial and error. Figures 9 and 10 show the effect of C1 and C2 on the
generated trajectory.



34 R. Syama and C. Mala

x

Ego Vehicle Obstacle

smaller C1

Larger C1

Generated Optimal Path

Lane 2

Reference
Path

Lane 1

y

Fig. 9 Effect on fitting parameter C1 on trajectory
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Fig. 10 Effect on fitting parameter C2 on trajectory

5 Conclusion

This chapter proposes an optimal trajectory planning technique for autonomous
vehicles using a bio-inspired Dragonfly algorithm. The lane-change behaviour of
the autonomous vehicles on approaching an obstacle is studied, and an optimal
trajectory is generated for navigation to the goal for both static and dynamic
obstacles. The simulation results show that this approach is feasible in the generation
of optimal path for real-time data. The influence of fitting parameters on the
trajectory is also investigated.
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