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Abstract. Maximum-entropy genetic regulatory networks (GRNs) have been
increasingly applied to infer pairwise gene interactions from biological data.
Most maximum-entropy GRNs inferring methods estimate the inverse covariance
matrix based on the assumption that the network is sparse and the problem can
be approximated via convex optimization. However, the assumption might not be
true in reality. To address this issue, in this paper, we propose an adaptive dif-
ferential evolution (DE) algorithm to directly infer the maximum-entropy GRNs,
which is formulated as a constrained optimization problem with the maximum
entropy being the objective function and the first and second moments being two
penalty terms. A GRN inferred by DE is a fully connected network that can reflect
the gene regulatory relations. The experimental results on both simulated and
real data suggest that the proposed method is robust in inferring the small-scale
maximum-entropy GRNs.

Keywords: Maximum-entropy · Genetic regulatory networks · Constrained
optimization · DE algorithm

1 Introduction

In recent years, a large number of methods have been proposed for inferring gene reg-
ulatory networks (GRNs) from gene expression data. Correlations and other statistical
measures that group genes by profile similarity identify functionally related groups of
genes [1, 2]. Much effort has been devoted to inferring GRNs using varies modeling
approaches, ranging from simple Boolean networks to dynamical models of cellular
processes [3, 4]. However, correlation measures do not provide direct insight into the
identification of the gene interactions that give rise to the observed expression patterns
[5]. For this reason, pairwisemaximum-entropy probabilitymodels have been introduced
to infer the GRNs [6]. The logic of such methods is to determine the probability distribu-
tion governing the microarray data where the entropy-reducing constraint their pairwise
correlations is faithfully encoded [6]. Consequently, the real-valued maximum-entropy
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distribution given first and second moments is found as a Boltzmann-like distribution,
which is determined by themean and the covariancematrix C, and the inverse covariance
matrix M (also known as the precision or concentration matrix) [7].

Statistical inference methods using partial correlations in the context of Gaussian
graphical models (GGMs) have led to similar results. By assuming that the precision
matrix is sparse and the data samples are drawn independently from the samedistribution,
the most commonly used method to infer the maximum-entropy networks are spectral
decomposition [6] and graphical lasso [8].

Although the above methods have been successfully used to estimate the regulatory
relationships amonggenes, their performancemaybe limited in someareas. The inferring
performance of the spectral decompositionmethod is not good enoughwhen the samples
are very few. Although the graphical lasso is better than spectral decomposition on small
samples, its GRNs can not reflect gene regulatory relations (expression and repression)
and it is difficult how to choose the right lasso penalty to fit the sparseness is very difficult
[9].

To address the above problems, in this paper, we proposed a new way to infer the
maximum-entropy GRNs, which is formulated as a constrained optimization problem,
using a differential evolution (DE) algorithm. DE has achieved widely successes on
various complex constrained optimization problems [10]. We set maximum entropy as
the objective function and its subject to the constraint of first and second moment as
the penalty functions based on the pairwise maximum-entropy probability models. To
demonstrate the performance of the proposed method, the method is compared with
other state-of-the-art methods on two synthetic datasets and four real-world datasets.
The GRNs obtained by the DE are fully connected networks that reflect gene regu-
latory relations to identify GRNs involved in diverse cellular processes. Experiment
results demonstrate that our method outperforms the other two state-of-the-art inferring
maximum-entropy GRNs methods on synthetic datasets. In the meantime, the real data
results suggest that the proposed approach is robust to inferring small-scale GRNs.

The rest of this paper is organized as follows. In the Sect. 2, we introduce the
background of the maximum-entropy GRNs. In the Sect. 3, we present our proposed
framework in detail. In the Sect. 4, we describe the performance of our method on
synthetic and real-world datasets. Finally, Sect. 5 concludes this work.

2 Maximum-Entropy GRNs

Pairwise associations between genes can be determined by gene expression and are com-
monly estimated by the sample Pearson correlation coefficient computed for each pair of
genes. However, the Pearson correlation is a misleading measure for direct dependence
as it only reflects the association between two genes while ignoring the influence of the
remaining ones. Therefore, the relevance network approach is not suitable to deduce
direct interactions from a dataset [11].
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To address these problems, maximum-entropy GRNs is proposed. It relies on Boltz-
mann’s concept of entropy maximization to support statistical inference with minimal
reliance on the form of missing information, which can remove the variational effect
due to the influence of the remaining variables.

Let the state vector x = (x1, …, xN ) denote the expression levels of the N genes
that are probed in a microarray experiment, and a series of T measurements then has
associated with it T distinct state vectors. Let ρ(x) denote the probability that the genome
is in the arbitrary state x. We determine ρ(x) by maximizing the Shannon entropy.

S = −ρ(
−→
x) ln(

−→
x) (1)

subject to the ρ(x) is normalized

∑
−→x ρ(

−→
x) = 1 (2)

first moment, <xi>, and second moment, <xi, xj>

<xi> =
∑

−→x ρ(
−→
x)xi = 1

T

∑T

k=1
xki (3)

<xi, xj> =
∑

−→x ρ(
−→
x)xixj = 1

T

∑T

k=1
xki x

k
j (4)

Equation (2) provides the normalization condition that the probabilities of all observ-
able states sum to 1. Equations (3) and (4) ensure that the distribution ρ(x) preserves the
mean expression level of each gene and the correlations between genes. This procedure
leads to a Boltzmann-like distribution:

ρ(x) ∼ e−H

where

H =
1

2

∑
ij
xiMijxj

Note that, because <xi, xj> = <xj, xi>, the number of constraints is 1 + N + N(N +
1)/2. In the same reason Mij = M ji, the number of Mij should be estimated is N(N +
1)/2.

The elements of the matrix M are the effective pairwise gene interactions that repro-
duce the gene profile covariances exactly while maximizing the entropy of the system.
The intensity and type of an element Mij: a positive value denotes expression (facilita-
tion) and a negative value denotes repression while a zero (0) value implies that there is
no interaction between i and j [6, 11].

The matrix of M can be obtained by inverting the matrix of their covariances C.
However, in the high dimensional setting where the number of features p is larger than
the number of observations n, the empirical covariance matrix C is singular and so can
not be inverted to yield an estimate of M. If p ≈ n, then even if C is not singular the
estimate for C will suffer from very high variance [5].
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Spectral decomposition and graphical lasso are proposed to get around this problem
by estimating the inverse covariance matrix based on the assumption that the network
is sparse and the problem can be approximated via convex optimization. However, the
assumption might not be true in reality. The performance of spectral decomposition is
not good enough at solving the small sample problem. Although the graphical lasso
has better inferring performance, its GRNs cannot reflect the gene regulatory relations
(expression and repression). Also, it is difficult to choose a right lasso penalty to control
the sparseness of the inferred networks [9].

3 Method

To address the above problems, in this paper, we proposed a new way to infer the
maximum-entropy GRNs, a constrained optimization problem, by using an adaptive
differential evolution (DE) algorithm.DEas a nature-inspiredmethod has become amore
feasible and popular choice among researchers due to their competitive performance on
complex search spaces to address the constrained optimization problems [10].

However, the performance of the classic DE is still entirely dependent on control
parameters and mutation strategies to both experimental studies and theoretical analyses
[12]. The adaptive and self-adaptive DE algorithms have shown faster and more reliable
convergence performance than the classicDE algorithms formany benchmark problems.

For this reason, themain objectives of thiswork are three-fold. First, we setmaximum
entropy as the objective function and its subject to the constraint of first and second
moment as the penalty functions. Second, the Probability Matching (PM) method is
integrated into DE to implement the adaptive strategy selection. Third, the JADE [13]
is used to set controls mutation factor F and crossover probability CR in an adaptive
manner. Details behind algorithm are elucidated as follows.

3.1 Problem Formulation

The general form of the constrained optimization problem will be expressed as follows:

min f (x)

s.t. gi(x) ≤ 0, i = 1, 2, · · · , j

hi(x) = 0, i = j + 1, j + 2, · · · ,m (5)

where x = (x1, x2, …, xn) are the decision variables of the objective function f (x), gi is
an inequality constraint describing the variable, which role of the inequality constraint
is to form the search area in the feasible domain. hi is equality constraint that forms a
boundary value condition in the feasible domain, which role is to control the boundary
of the search area. Normally, we define the objective function as min f (x) and penalty
function as

Gi(x) =
{
max{0, gi(x)}, 1 ≤ i ≤ j
max{0, |hi(x) − δ|}, j + 1 ≤ i ≤ m
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G(x) =
m∑

i=1

Gi(x) (6)

where δ is a small positive tolerance value. The final fit function would be like

Fit = f (x) + σG(x) (7)

where σ is the punitive coefficient.
In this paper, Eq. (1) is set to the objective function and its subject to the constraint of

first and secondmoment Eqs. (2–4) are set to the penalty functions. Then the optimization
problems (1–4) can convert into the optimization problem (7) that will be minimized by
DE. The initial population {xi = (x1,i,0, x2,i,0, …, xD,i,0)|i = 1, 2, …, NP} is randomly
generated according to a uniform distribution [−1, 1], where D = N(N + 1)/2 (the
number of Mij) is the dimension of the problem and NP is the population size.

3.2 Strategy Selection: Probability Matching

Suppose there are K > 1 strategies in the pool A = {a1, · · ·, aK} and a probability
P(t) = {p1(t), · · · , pk(t)}(∀t : pmin ≤ pi(t) ≤ 1;∑K

i=1pi(t) = 1). In this work, the PM
technique is used to adaptively update the probability pa(t) of each strategy a based on
its known performance and updated by the rewards received. Denote ra(t) as the reward
that a strategy a receives after its application at time t. qa(t) is the empirical estimate of
a strategy a, that is updated as follows [14]:

qa(t + 1) = qa(t) + α[ra(t) . qa(t)] (8)

where α ∈ (0, 1] is the adaptation rate. Based on this quality estimate, the PM method
updates the probability pa(t) of applying each operator as follows:

pa(t + 1) = pmin + (1 − K · pmin) qa(t+1)
∑ K

i=1qi(t+1)
(9)

where pmin ∈ (0, 1) is the minimal probability value of each strategy, used to ensure that
no operator gets lost [13].

In order to assign the credit for each strategy, we adopt the relative fitness
improvement ηi proposed in [12] as follows:

ηi = δ

cfi
· |pfi − cfi| (10)

where i = 1, · · ·, NP. δ is the fitness of the best-so-far solution in the population. pf i and
cf i are the fitness of the target parent and its offspring, respectively. If no improvement
is achieved, a null credit is assigned.

Denote Sa as the set of all relative fitness improvements achieved by the application
of a strategy a (a = 1, · · ·, K) during generation t. At the end of the generation, a unique
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reward is used to update the quality measure kept by the PM method (Eq. 9). The credit
assignment is as follows [14]:

ra(t) =
∑ |Sa|

i=1Sa(i)

|Sa| (11)

where |Sa| is the number of elements in Sa. If | Sa | = 0, ra(t) = 0.
In DE, many schemes have been proposed, applying different mutation strategies

and/or recombination operations in the reproduction stage [15]. In order to constitute the
strategy pool used in thiswork,wehave chosen four strategies: ‘DE/rand/1’, ‘DE/rand/2’,
‘DE/rand-to-best/1’ and ‘DE/current-to-rand/1’.

3.3 Parameter Adaptation

The parameter adaptation is similar to JADE. At each generation g, the crossover prob-
ability CRi of each individual xi is independently generated according to a normal
distribution of mean μCR and standard deviation 0.1 as

CRi = randni(μCR , 0.1) (12)

and then truncated to [0, 1] [13]. Denote SCR as the set of all successful crossover
probabilities CRi’s at generation g. The mean μCR is initialized to be 0.5 and then
updated at the end of each generation as

μCR = (1 − c) · μCR + c · meanA(SCR) (13)

where c is a positive constant between 0 and 1 andmeanA(·) is the usual arithmetic mean.
Similarly, at each generation g, the mutation factor Fi of each individual xi is inde-

pendently generated according to a Cauchy distribution with location parameter μF and
scale parameter 0.1 as:

Fi = randni(μF , 0.1) (14)

and then truncated to be 1 if Fi ≥ 1 or regenerated if Fi ≤ 0 [13]. Denote SF as the set of
all successful mutation factors in generation g. The location parameterμF of the Cauchy
distribution is initialized to be 0.5 and then updated at the end of each generation is as
follows:

μF = (1 − c) · μF + c · meanL(SF ) (15)

where meanL(·) is the Lehmer mean [13].

3.4 Optimization Work Flow

The probability matching method and JADE are used respectively to select the mutate
strategy and set the parameter adaptively. In Algorithm 1, the use of our adaptive DE for
inferring Maximum-Entropy GRNs is illustrated.
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4 Experimental Results

Let θij and θ̂ij denote the elements in the true GRNs and the inferred GRNs, respectively.
Whether the absolute value of a particular element is 0 or 1 can be evaluated by a
threshold defined for the purpose of inclusion of an interaction in a GRN. An edge can
be characterized into four types: true positive (TP), false positive (FP), true negative
(TN), and false negative (FN), with their definitions as follows:

TP: if θij = 1 and θ̂ij = 1; TN: if θij = 0 and θ̂ij = 0.
FP: if θij = 0 and θ̂ij = 1; FN: if θij = 1 and θ̂ij = 0.

Then the metrics based on which the proposed methodology can be evaluated. (1)
True Positive Rate (TPR)/Recall: this signifies the fraction of the total number of existing
edges in the original network, correctly predicted in the inferredGRNs; (2) False Positive
Rate (FPR)/Complimentary Specificity: this signifies the fraction of the total number of
nonexistent edges, incorrectly predicted in the inferred GRNs; (3) Positive Predictive
Value (PPV)/Precision: this signifies the fraction of the total number of inferred edges,
which is correct. (4) F-Score: this signifies the harmonicmean of the precision and recall.
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4.1 Simulation Studies

We first build a random ER random network denoted by its adjacency binary matrix M
with non-zero element substituted by a uniform distribution value on [−0.6, − 0.3] ∪
[0.3, 0.6]. To ensure the positive definiteness of the covariance matrix, the real precision
matrix � is set as

� = M+σ I

σ is the absolute value of the eigenvalues of M, and I is an identity matrix. After this
procedure, the synthetic gene expression data could be generated with zero means and
covariance C = �−1. In order to test the performance of our method with the other two
state-of-art method which can deal with the small sample problem (p ≈ n). We generate
two small-scale groups of samples (group 1 with n = 5 samples and p = 5 genes; group
2 with n = 10 samples and p = 10 genes) to simulate the small-scale GRNs. 10 random
datasets are generated for the above two groups. The empirical covariance matrix C in
each dataset is singular and so can not be inverted to yield an estimate of M.

The gene interaction network comprising the genes showing the strongest couplings
is highly interconnected. For this reason, we choose the top 20% strongest pairwise
interaction to identify the most consistent predicted edges for the construction of the
final GRNs.

Fig. 1. The experiment results on two small-scale groups of samples: (A) 10 datasets of 5 genes
network with 5 samples. (B) 10 datasets of 10 genes network with 10 samples.

Figure 1 presents the average performance on two different scale networks datasets.
For graphical lasso, its sparsity-controlling parameter is chosen automatically by cross-
validation. In particular, we run 10 times of the DE on each dataset and take the best
optimization result as the final inferring result.

We canfind that ourmethod dominates the other twomethods on inferringmaximum-
entropy GRNs. As the number of genes increases, there is a degradation on the perfor-
mance of all threemethods, ourmethod could still achieve competitive performancewith
the other two comparative methods. The results suggest that our approach can effectively
solve the small sample problem while meantime reflecting the gene regulatory relations.
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4.2 Real Data Analysis

In this section, the proposed method for inferring maximum-entropy GRNs has been
employed to identify the causal relationships among the genes from an in vivo (exper-
imental) microarray dataset. The said dataset summarizes the dynamics of the well
illustrated transcriptional network involved in the SOS DNA repair mechanism of E.
coli studied experimentally by Ronen et al. [16]. The study included eight genes heavily
involved in the SOS repair mechanism: recA, lexA (the master repressor), uvrA, uvrD,
uvrY, umuD, ruvA, and polB. The original network has been shown in Fig. 2.

Fig. 2. The original structure of the SOS DNA repair transcriptional network of E.coli. The solid
black lines denote activation, and the dashed red lines denote repression.

We choose the absolute value of Mij > 0.7 as the inferred Maximum-Entropy GRNs
for the 4 datasets. Table 1 displays a comparison of the statistical properties of the
inferred GRNs with those presented in recent investigative work [17–19] for different
experimental datasets. Table 2 shows the top 3 genes in our inferred GRNs.

Table 1. Comparison of results obtained from the E.coli experiments with those presented in a
recent investigative work.

Dataset Precision Recall F-score

[17] [18] [19] DE [17] [18] [19] DE [17] [18] [19] DE

1 0.23 0.36 0.44 0.50 0.43 0.71 1 0.71 0.30 0.48 0.61 0.59

2 0.58 0.26 0.30 0.45 1 0.57 1 0.71 0.73 0.36 0.46 0.55

3 0.31 0.38 0.41 0.56 0.57 0.71 1 0.71 0.40 0.50 0.58 0.63

4 0 0.27 0.25 0.43 0 0.43 0.57 0.43 0 0.33 0.35 0.43

Mean 0.28 0.32 0.35 0.50 0.5 0.61 0.9 0.64 0.36 0.42 0.49 0.55

Experiment results show that our method performs better in Precision than the other
methods in all experiments except themethod [17] in experiment 2. However, themethod
[17] fails to identify any true positive in experiment 4.

We have to concede that the method [19] has a higher Recall than our GRNs, but its
Precision is significantly less than our method. When viewed from the aspect of F-score,
our method performs better by comprehensive considering of the Precision and Recall
in all 4 experiments.
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In Table 2, it should be noticed that lexA (themaster gene) is the nodewith the highest
degree in our inferred GRNs in all four experiments, so our GRNs find the master gene
correctly. In the meantime, the lexA—uvrY and lexA—polB are not predicted in our
GRNs except experiment 2.

Table 2. Top 3 nodes with the highest degree in our inferred GRNs

Dataset Rank1 Rank2 Rank3

1 lexA uvrA recA

2 lexA uvrA recA

3 lexA uvrA uvrD

4 lexA recA ruvA

5 Conclusion

In this paper, we propose a DE based inferring method that can effectively estimate
maximum-entropy GRNs. Unlike the other inferring methods of inverse the covariance
we consider the inferring maximum-entropy GRNs as a constrained optimization prob-
lem and the best individuals searched by our method is the inferred maximum-entropy
GRNs.

First, we assume that the maximum-entropy distribution is a Boltzmann-like distri-
bution. Under this assumption, we set maximum entropy as the objective function and
its subject to the constraint of first and second moment as the penalty functions. Then
the probability matching method and JADE are used respectively to select the mutate
strategy and set the parameter adaptively to improve the success rate of the algorithm.

The GRNs resulting from the DE is a fully connected network that fulfills the
maximum-entropy GRNs reflecting gene regulatory relations (expression and repres-
sion),which graphical lasso can not. For this reason,we can identify connections between
genes involved in diverse cellular processes by choosing the different degrees of pairwise
interactions.

It outperforms the other two state-of-the-art inferring maximum-entropy GRNs
methods on synthetic datasets. In the meantime, the real data results suggest that it
can find the master gene, so the proposed approach is robust to inferring small-scale
GRNs.

The performance of nature-inspired algorithms often deteriorates rapidly as the
dimensionality of the problem increases. Small-scale and large-scale constrained opti-
mization are two completely different problems. There are too few true predictions and
a large number of incorrect predictions [19]. Thus, the methodology implemented in this
paper needs to be enriched further by studying its performance in larger networks. This
provides a vital scope for further research.
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