
Ant Colony Optimization
for K-Independent Average Traveling

Salesman Problem

Yu Iwasaki and Koji Hasebe(B)

Department of Computer Science, University of Tsukuba, 1-1-1, Tennodai,
Tsukuba 305-8573, Japan

iwasaki@mas.cs.tsukuba.ac.jp, hasebe@cs.tsukuba.ac.jp

Abstract. In this paper, we propose a K-independent average travel-
ing salesman problem (KI-Average-TSP) extended from the TSP. This
is an optimization problem that minimizes the weighted sum of the aver-
age and standard deviation of K circuits’ costs, with mutually inde-
pendent edges. As a method to solve the KI-Average-TSP, we pro-
pose K-independent average ant colony optimization (KI-Average-ACO)
extended from the original ACO. KI-Average-ACO moves K ants simul-
taneously using the following two heuristics to prevent different circuits
from sharing the same edge. The first heuristic uses a degree of possible
options representing the number of vertices that an ant can reach from
its current vertex. The destination of ants is stochastically determined
by this value to reduce the circuit construction failure rate. The second
heuristic, named 2-best-opt, uses a greedy algorithm in reconstructing a
better path to obtain K circuits if circuit construction fails. Comparison
results between the approximate solution obtained using KI-Average-
ACO and the solution obtained using a quadratic programming method
for a binary search showed that the number of circuits for KI-Average-
ACO was higher, and KI-Average-ACO obtained a better approximate
solution than the quadratic programming method.

Keywords: Ant colony optimization · Traveling salesman problem ·
Heuristics

1 Introduction

One of the common combinatorial optimization problems is the traveling sales-
man problem (TSP) [6]. Given distances (edges) connecting cities, the TSP finds
the shortest routes to visit all cities. The TSP is applied to various problems, such
as vehicle routing and job-shop scheduling [5]. However, optimization problems
in the real world are considered more complicated than the TSP. For example,
in a transportation company’s delivery plans, even if the company constructs
the shortest circuits to access cities, these routes may become inaccessible due
to road damage or accidents.
c© Springer Nature Switzerland AG 2021
Y. Tan and Y. Shi (Eds.): ICSI 2021, LNCS 12689, pp. 333–344, 2021.
https://doi.org/10.1007/978-3-030-78743-1_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78743-1_30&domain=pdf
https://doi.org/10.1007/978-3-030-78743-1_30

334 Y. Iwasaki and K. Hasebe

Fig. 1. An example of K-Independent paths (with K = 2), where multiple paths do
not share the same edge in N = 8 complete graph.

In this study, we consider constructing mutually independent circuits with no
shared edges to improve reliability and propose a K-independent average TSP
(KI-Average-TSP) that minimizes the weighted sum of the average and standard
deviations of K circuits’ costs, where the circuits are mutually independent, that
is, there are no shared edges among the circuits. Compared to a study to find
multiple independent Hamiltonian paths in a graph [12], this study minimizes
the cost by considering the standard deviation in a complete graph so that the
K circuits act as backup routes. Figure 1 shows an example of K = 2 circuits in
a complete graph of N = 8 vertices.

To solve the problem, we propose an ant colony optimization (ACO)-based
K-independent average ACO (KI-Average-ACO). ACO [2,7] is known as a meta-
heuristic solution to the TSP using ant swarm characteristics and simulates the
pheromone communication of ants on a graph to find the approximate shortest
path. In our optimization algorithm, K ants move simultaneously, making it
possible for K ants to use equally favorable edges and reducing the standard
deviation. However, as the ants move, the number of reachable vertices for the
ants decreases, and the circuit construction failure rate increases. Therefore, we
introduce two heuristics to reduce the failure rate of circuit construction. The
key concept of the first heuristic is a degree of possible options that represents
the number of vertices an ant can reach from its current vertex. The destina-
tion of ants is stochastically determined by this number to reduce the circuit
construction failure rate. The second heuristic, called 2-best-opt, is an algorithm
based on the idea of 2-opt [3,6]. It uses a greedy algorithm in reconstructing a
better path to obtain K circuits if circuit construction fails.

In this paper, we evaluated our proposed method by comparing the approxi-
mate solution obtained using KI-Average-ACO with the solution obtained using
a quadratic programming method for a binary search. Comparison results showed
that the number of circuits for KI-Average-ACO was higher, and KI-Average-
ACO obtained a better approximate solution than the quadratic programming
method.

Related Work. ACO is a search algorithm that is inspired by the process
by which ants use pheromones to discover the shortest path to food [2]. In

ACO for KI-Average-TSP 335

particular, it is known as metaheuristics for finding approximate solutions to
shortest path problems, as typified by the TSP. An application of ACO is the
vehicle routing problem [11], which delivers resources from a depot to customers
through delivery vehicles. Another application is the multiple TSP [4], which
builds a partial traveling circuit in which multiple salesmen share each other’s
visits to cities from a depot.

On the other hand, a few studies have been conducted on algorithms to find
multiple independent circuits in a complete graph. Teng [12] reported properties
such as the conditions for establishing multiple Hamiltonian paths in a given
graph. However, algorithms for constructing circuits that are independent of
each other have not yet been investigated.

Paper Organization. The organization of this paper is as follows. Section 2
defines KI-Average-TSP and a related problem named KI-Total-TSP. Section 3
introduces our optimization algorithm named KI-Average-ACO. Section 4
presents experimental results. Finally, Sect. 5 concludes the paper and presents
future work.

2 Problem Description

In this section, we give the definition of our target problem named K-independent
average traveling salesman problem (KI-Average-TSP). In addition, although
not directly dealt with in this study, we also define K-independent total trav-
eling salesman problem (KI-Total-TSP), which is another optimization prob-
lem related to KI-Average-TSP. The former is the problem of finding the K-
independent circuits that minimize the weighted sum of average and standard
deviation in a given complete graph, while the latter is the problem that removes
the term of standard deviation from the objective function in KI-Average-TSP
and minimizes only the total cost of K-independent circuits.

Here, let G = (V,E, d) (with |V | = N, |E| = N(N−1)
2) be a weighted undi-

rected complete graph, where dij is the weight of edge (i, j) and N is the number
of cities.

2.1 K-Independent Average TSP

KI-Average-TSP is a problem to minimize the weighted sum of the average and
standard deviations of K independent circuits’ cost in a graph G. The definition
is as follows.

Definition 1. KI-Average-TSP is a problem to perform the following optimiza-
tion in graph G = (V,E).

336 Y. Iwasaki and K. Hasebe

min costavg + γ · costθ
sd (1)

subject to
∑

k∈K

xijk ≤ 1 (∀i, j (i �= j)) (2)

∑

j∈V

xijk = 1 (∀i, k) (3)

∑

j∈V

xjik = 1 (∀i, k) (4)

uik + 1 − (N − 1)(1 − xijk) ≤ ujk (∀i, j, k) (5)
xijk ∈ {0, 1} (6)
0 ≤ uik ≤ N − 1 (7)

where

costavg =
1
K

costsum, (8)

costsd =
√

1
K

(
∑

k∈K

(
∑

i∈V

∑

j∈V

dij · xijk − 1
K

(
∑

i∈V

∑

j∈V

∑

k′∈K

dij · xijk′))2). (9)

The value xijk represents the probability of ant k using the edge connecting
vertex i to vertex j. The value uik is the arc-constraint to excludes subtours based
on the Miller–Tucker–Zemlin formulation [8]. Hereafter, the total cost of the K
circuits is expressed as costsum. The weighted sum is represented as costssd =
costavg + γ · costθ

sd, where costavg and costθ
sd respectively represent the average

and standard deviation of K circuits’ costs. Variables γ, θ are parameters for
weighting the average and standard deviation respectively, and the constraints
are the same as in KI-Total-TSP.

2.2 K-Independent Total TSP

The KI-Total-TSP is a problem to minimize the total cost in K circuits among
the combinations of K independent circuits in the graph G. The definition is as
follows.

Definition 2. KI-Total-TSP is a problem to perform the following optimization
in graph G = (V,E, d).

min
∑

i∈V

∑

j∈V

∑

k∈K

dij · xijk (10)

with the same constraint conditions as in the KI-Average-TSP (i.e., Eqs. 2–7).
We would like to note that the problems introduced above are complementary

to each other. That is, the solution of KI-Average-TSP is useful when finding K
circuits with similar utility values. On the other hand, KI-Total-TSP is useful
when finding K circuits with ranked utility values. Specifically, the former is a
case, where multiple packets are sent simultaneously through K routes, while
the latter is a case, where spare routes should be prepared for a failure of the
current route.

ACO for KI-Average-TSP 337

3 K-Independent Average ACO

3.1 Overview

In this section, we explain the proposed K-independent average ant colony opti-
mization (KI-Average-ACO) algorithm for solving KI-Average-TSP. Considering
that it is difficult to calculate the exact solution to KI-Average-TSP in a feasible
time, we propose KI-Average-ACO to obtain an approximate solution.

Unlike the original ACO, KI-Average-ACO averages the cost of K circuits
by repeatedly moving K ants along one edge at a time. However, because the
construction failure rate increases when K ants move simultaneously, we use two
heuristics. The first heuristic uses a degree of possible options, which indicates
the feasible vertices the ant can reach. Ants move to vertices with fewer destina-
tions using this index, putting off many potential movable vertices. The second
is 2-best-opt, which searches efficiently by reconstructing failed circuits greed-
ily using 2-opt. Using these heuristics, it is possible to reduce the construction
failure rate while averaging the moving cost of K circuits, rather than repeating
ACO. The pseudocode of KI-Average-ACO is presented in Algorithm 1.

3.2 Simultaneous Movement of Ants

KI-Average-ACO differs from the original ACO in moving K ants along one edge
at a time. In the original Ant System [1] and Max-Min Ant System [10], some ants
construct a path. If these algorithms are applied to KI-Average-TSP repeatedly,
some ants construct a circuit using preferable edges greedily. Consequently, the
cost of the circuit in the latter half of the construction increases, the shape
becomes complicated, and the averaging cannot be satisfied. In contrast, in Line
17 in the pseudocode, KI-Average-ACO moves K ants along one edge at a time,
so that all ants can use their preferred edges. In Line 19, ants are arranged in
descending order of moving cost so far after every movement, and the next ants
move in this order. As a result, it is possible to perform the averaging of the cost
in a greedy manner, because ants, which have consumed bigger moving costs
so far, can move to smaller-cost and pheromone-rich edges more preferentially.
We would like to note that the cost of an edge used becomes infinite and the
pheromone value becomes zero to ensure that it is not used as much as possible
again.

3.3 Heuristic with Degree of Possible Options

KI-Average-ACO moves K ants simultaneously. As a result, close to the K-th
movement, there are possibilities that ants may reuse edges used by other ants,
thereby increasing the construction failure. Therefore, to increase the number of
successes, we introduce the heuristic with the degree of possible options. This
is incorporated into the transition probability equation in Line 17 in the pseu-
docode.

338 Y. Iwasaki and K. Hasebe

Algorithm 1. KI-Average-ACO
1: function ki_average_aco(G, N, K)
2: aco(G) � init G’s pheromone with Ant System
3: ants = []
4: for i = 1 to K do
5: ants.append(Ant())
6: end for
7: for t = 1 to T do
8: make_tsps(G, N, K, ants)
9: 2_best_opt(G, K, ants)

10: pheromone_update(G, ants)
11: end for
12: end function
13:
14: function make_tsps(G, N, K, ants)
15: for i = 1 to N do
16: for j = 1 to K do
17: ants[j].move_one_edge(G) � use the degree of possible options
18: end for
19: ants.sort(key=ant.costsum, reverse=true) � sort ants in descending order
20: end for
21: end function
22:
23: function 2_best_opt(G, N, K, ants)
24: for i = 1 to K do
25: if ants[i].path has duplicated edge then
26: ant = ants[i]
27: alts = []
28: for j = 1 to N do
29: for k = 1 to N do
30: at = ant.2_opt(ant.path[j], ant.path[k])
31: if at.path has no contradiction then
32: alts.append(at)
33: end if
34: end for
35: end for
36: alts.sort(key=ant.costsum)
37: ants[i] = alts[0] � use best swap reducing cost
38: end if
39: end for
40: end function
41:
42: function pheromone_update(G, ants)
43: if ants has no duplicated edge then
44: update(G, ants)
45: end if
46: end function

ACO for KI-Average-TSP 339

Assume that each of the K ants has already moved t times out of N times, and
the set of vertices visited by ant h is Uh. Here, we define Rt

h(x) ⊆ V as a function
that returns a set of vertices where ant h can move consistently from vertex x to
vertex y. The word “consistent” averages that vertex y ∈ Rt

h(x) satisfies y /∈ Uh

and the edge (x, y) is not yet used by other ants 1, 2, . . . , h − 1, h + 1, . . . ,K.
At this time, transition probability equation Ph

ij that ant h selects the next
vertex j from the vertex i is defined by Eq. 11.

Ph
ij =

[τij]α[ηij]β∑
u∈Nt

h(i)
[τiu]α[ηiu]β

× 1
|Rt

h(j)|
, (11)

ηij =
1

dij
(12)

where τij is the pheromone quantity of the edge (i, j) and ηij is the heuristic
value. N t

h(i) is a set of vertices where an ant h can move from vertex i in
the t-th move. In Eq. 11, the transition probability is divided by the number
of vertices |Rt

h(j)| that ant h can move from vertex j. Using this operation,
ants can preferentially move to vertices that have little non-affordably movable
vertices. This reduces the construction failure rate. The time complexity of KI-
Average-ACO with this heuristic is O(KN3), while that without this heuristic is
O(KN2). Although the time complexity is increased by O(N) during the moving
process, the construction failure rate is reduced.

3.4 2-best-opt

In Line 9, we use the heuristic called 2-best-opt to improve paths after con-
structing the circuits to further increase the success probability of constructing
independent circuits and minimizing costssd. Procedures of the 2-best-opt are
depicted from Line 23 to 40.

Assume that in the K paths after the construction, an edge e = (a, b) is
redundantly used in multiple paths of F (> 1) ants. At this time, 2-best-opt is
performed for each of the l1, l2, . . . , lF paths of F ants. 2-best-opt is the following
operation and is shown in Fig. 2 and from Line 23 to 40.

Consider a case where an edge e = (a, b) is redundantly used by other paths
of a certain path l and other N − 1 edges e′ = (c, d) of the path l are exchanged
by 2-opt. At this time, if the two new edges e1 = (a, c) and e2 = (b, d) are not
yet used for any K paths, the number of use of edges can be reduced without
contradiction, and the edge e′ is added to the replacement candidate set S in
Line 30 to 33. Then, among the exchange candidates of these edges, an edge
e′ ∈ S is selected and swapped by e in 2-opt, so that the moving cost of the path
l becomes the smallest by exchanging with the edge e in Line 36 and 37.

The time complexity of KI-Average-ACO with 2-best-opt is O(KN2), how-
ever, experimental results described in Sect. 4 show that the running time of
2-best-opt is smaller than KI-Average-ACO without this heuristic. Using this

340 Y. Iwasaki and K. Hasebe

Fig. 2. The example of 2-best-opt which is trying to swap e = (a, b) and e′ = (c, d)
because the edge e is used twice. Swapped edges e1 = (a, c), e2 = (b, d) can reduce
usage count in e = (a, b).

2-best-opt, the overlapping edges causing the failure can be corrected greedily
and the construction failure rate and costssd can be reduced.

3.5 Pheromone Update

After performing 2-best-opt, in Line 10, if K paths are reconstructed and are
independent of each other, the pheromone update equation, Eq. 13, is executed.

τij(t + 1) = ρ · τij(t) +
K∑

h=1

Δh
ij , (13)

Δh
ij =

{
1

Ch+costθ
sd

((i, j) ∈ lh)

0 (otherwise)
(14)

where ρ is the retention rate of the pheromone, Ch is the cost of the circuit
constructed by ant h, lh is the path of ant h, and θ is equal to θ in Eq. 1. However,
if the K paths are not independent of each other, the updating equation for the
pheromone on the graph and the evaporation of pheromone are not performed
from Line 43 to 45. This tries to centralize searching by updating.

4 Empirical Study

4.1 Parameters and Settings

This section presents two experiments to evaluate our algorithm. In the first
experiment, the performance of the two heuristics used in KI-Average-ACO was
evaluated. In the second experiment, KI-Average-TSPs were solved using KI-
Average-ACO and a combinatorial optimization method to compare their solu-
tions and the time taken to obtain these solutions.

ACO for KI-Average-TSP 341

Table 1. Parameter settings.

Parameter Value

α (pheromone rate) 1
β (heuristic rate) 3
ρ (pheromone residual rate) 0.97
Number of ants N

AT (number of the cycles in Ant System) 200
KT (number of the cycles in KI-Average-ACO) 1000
LT (number of trials) 10

The parameters in the experiments are as shown in Table 1. Here, AT repre-
sents the number of cycles to initialize the pheromone using the Ant System on
the graph before starting KI-Average-ACO. KT represents the number of cycles
that KI-Average-ACO executes to build K paths. LT represents the number of
experimental trials performed.

4.2 Performance Evaluation of Heuristics

To evaluate the performance of the heuristics used in KI-Average-ACO, we con-
sidered four cases with and without each heuristic and compared them by solving
KI-Average TSP for each case. In every case, the pheromone was always updated.

As the graphs used for the optimization problems, we selected three graphs
ulysses22, bays29, and att48, which have a different number of vertices from
TSPLIB [9], the dataset often used for performance evaluations of TSP solution
algorithms.

We attempted to construct 6 circuits in each graph. Here, we set K to this
value because it is about half of 10 (= � 22−1

2 �), which is the maximum number of
independent paths for the smallest graph, ulysses22. We measured the weighted
cost costssd, execution time, and construction failure rate. Even if only one edge
is duplicated, this is considered as a construction failure. For example, if the
construction failure rate is 0.48, this means that one or more edges have been
used in duplicates in 480 of 1,000 trials. The results of the above experiments
are shown in Table 2. Here, DPO, 2BO, DPO+2BO, and NONE represent cases,
where only the heuristic with degree of possible options was used, only 2-best-
opt was used, both two heuristics were used, and neither of the two was used,
respectively.

Table 2 shows the comparison results of the heuristic performance in KI-
Average-ACO. These results show that 2-best-opt, in particular, improves the
circuit construction failure rate in all three graphs. Moreover, the execution time
of 2-best-opt is not long, so this heuristic would be feasible. On the other hand,
heuristic with the degree of possible options did not contribute to reduce the cost
of the solution even though the execution time was longer than that of 2-best-opt.
This is because the execution time of this heuristic takes O(N), and costly edges

342 Y. Iwasaki and K. Hasebe

Table 2. Performance of heuristics in KI-Average-ACO.

Problem Heuristics Cost of solution Required time Failure rate

ulysses22 NONE 6.39× 104 14 0.999
DPO 5.22× 104 55 0.999
2BO 5.33× 104 16 0.0
DPO+2BO 5.84× 104 57 0.0

bays29 NONE 1.15× 104 32 0.994
DPO 1.01× 104 126 0.970
2BO 8.97× 103 34 0.0
DPO+2BO 9.83× 103 126 0.0

att48 NONE 2.96× 105 70 0.989
DPO 4.12× 105 488 0.964
2BO 2.91× 105 72 0.0
DPO+2BO 3.43× 105 489 0.0

were also selected to give priority to the reduction of the circuit construction
failure rate. However, for ulysses22, the cost of solution was the smallest when
heuristic with the degree of possible options was used. This suggests that this
heuristic may also be useful depending on the problem type.

4.3 Performance Evaluation of KI-Average-ACO

We evaluated the performance of KI-Average-ACO. Specifically, we compared
the costs of solutions obtained using KI-Average-ACO to that obtained using
a combinatorial optimization algorithm. In the experiments, we used the graph
gr17 with N = 17 as a problem to solve. The weighted parameters γ and θ of
the KI-Average-TSPs were set as 1 and 2, respectively. These parameter settings
in Eq. 1 minimized the weighted sum of average and variance.

In general, it is difficult to find the exact solution for KI-Average-TSP. Indeed,
in our preliminary experiments, we observed that exact solutions could be found
only for problems, where the size of the graph is N < 8 and the number of
circuits is K < 3 in a feasible time. Therefore, we evaluated the performance of
KI-Average-ACO and the combinatorial optimization algorithm by comparing
the costs of approximate solutions instead of exact solutions. The combinatorial
optimization algorithm used as the comparison target is as follows. Since the
standard deviation can be calculated from K circuits, a binary search was used
to determine whether the maximum difference d of costs between the K circuits
could be less than or equal to a certain threshold value. Repeating this operation,
while gradually lowering the threshold value within a predetermined time limit,
minimized the maximum difference in the costs of K circuits (thus, the standard
deviation was also approximately minimized). In this case, the time limit was
set to 300 s.

ACO for KI-Average-TSP 343

Fig. 3. Costs of solutions for KI-Average-TSP.

Figure 3 shows the experimental results. The horizontal and vertical axes
of the graph represent the K number of circuits in the problem and the total
costs of the solutions, respectively. “KI-Average-ACO” and “MO” represent the
results obtained using our algorithm and the mathematical optimization algo-
rithm, respectively. Here, the plots of MO for K = 6, 7 are lost because MO did
not find any solution within the time limit. This figure shows that for K = 1, 2, 3,
the total cost of the solutions obtained by the proposed algorithm was almost
the same as that of MO. Furthermore, for K = 4, 5, 6, 7, our algorithm obtained
better solutions. We would like to remark on the result when K = 8. It is con-
sidered that the reason why MO obtained a solution, in this case, is that the
solution has to use all edges, so it is no longer necessary to decide whether or not
to use edges in the solution. On the other hand, this did not bring any benefit
to the solution of our algorithm even though it took more time to calculate as
the problem became more complicated. As a result, no solution could be found.
However, this is a special case, and overall, we have observed that it is useful,
especially when the problems are complicated compared to the mathematical
optimization algorithm.

5 Conclusions and Future Work

In this study, we proposed two problems named KI-Average-TSP and KI-Total-
TSP, which were extensions of the TSP. We also proposed KI-Average-ACO, an
optimization algorithm to solve KI-Average-TSP. The idea behind our algorithm
is to move K ants simultaneously. However, to reduce the failure rate of circuit
construction, we introduced two heuristics with the degree of possible options
and 2-best-opt, a heuristic based on 2-opt. We evaluated the performance of
our algorithm and the effectiveness of the heuristics. In the experiments, we
observed that 2-best-opt significantly contributed to reducing solution costs and

344 Y. Iwasaki and K. Hasebe

construction failure rates. In addition, the solution cost of KI-Average-ACO was
reduced when the circuit to be constructed was larger compared to the solution
cost of the mathematical optimization algorithm for a binary search.

One of the important future directions is to apply our algorithm to realistic
problems. In particular, we would like to generalize KI-Average-TSP to formulate
an optimization problem that allows m < K edges to be shared between circuits
and to find its solution algorithm.

References

1. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of
cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 26(1), 29–41
(1996)

2. Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances.
In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics, vol. 146, pp.
311–351. Springer, Boston (2019). https://doi.org/10.1007/978-1-4419-1665-5_8

3. Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: a case study in
local optimization. Local Search Comb. Optim. 1(1), 215–310 (1997)

4. Pan, J., Wang, D.: An ant colony optimization algorithm for multiple travelling
salesman problem, pp. 210–213, January 2006. https://doi.org/10.1109/ICICIC.
2006.40

5. Lenstra, J.K., Kan, A.R.: Some simple applications of the travelling salesman prob-
lem. J. Oper. Res. Soc. 26(4), 717–733 (1975)

6. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-
salesman problem. Oper. Res. 21(2), 498–516 (1973)

7. Matai, R., Singh, S.P., Mittal, M.L.: Traveling salesman problem: an overview of
applications, formulations, and solution approaches. In: Traveling Salesman Prob-
lem, Theory and Applications, vol. 1 (2010)

8. Pataki, G.: Teaching integer programming formulations using the traveling sales-
man problem. SIAM Rev. 45(1), 116–123 (2003)

9. Skorobohatyj, G.: MP-TESTDATA - the TSPLIB symmetric traveling salesman
problem instances. http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/

10. Stützle, T., Hoos, H.H.: Max-min ant system. Futur. Gener. Comput. Syst. 16(8),
889–914 (2000)

11. Tan, W.F., Lee, L.S., Majid, Z.A., Seow, H.V.: Ant colony optimization for capac-
itated vehicle routing problem. J. Comput. Sci. 8(6), 846–852 (2012)

12. Teng, Y.H., Tan, J.J., Ho, T.Y., Hsu, L.H.: On mutually independent
Hamiltonian paths. Appl. Math. Lett. 19(4), 345–350 (2006). https://doi.
org/10.1016/j.aml.2005.05.012. http://www.sciencedirect.com/science/article/pii/
S0893965905002387

https://doi.org/10.1007/978-1-4419-1665-5_8
https://doi.org/10.1109/ICICIC.2006.40
https://doi.org/10.1109/ICICIC.2006.40
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/
https://doi.org/10.1016/j.aml.2005.05.012
https://doi.org/10.1016/j.aml.2005.05.012
http://www.sciencedirect.com/science/article/pii/S0893965905002387
http://www.sciencedirect.com/science/article/pii/S0893965905002387

	Ant Colony Optimization for K-Independent Average Traveling Salesman Problem
	1 Introduction
	2 Problem Description
	2.1 K-Independent Average TSP
	2.2 K-Independent Total TSP

	3 K-Independent Average ACO
	3.1 Overview
	3.2 Simultaneous Movement of Ants
	3.3 Heuristic with Degree of Possible Options
	3.4 2-best-opt
	3.5 Pheromone Update

	4 Empirical Study
	4.1 Parameters and Settings
	4.2 Performance Evaluation of Heuristics
	4.3 Performance Evaluation of KI-Average-ACO

	5 Conclusions and Future Work
	References

