
A Tunable Implementation
of Quality-of-Service Classes

for HPC Networks

Kevin A. Brown1(B), Neil McGlohon2, Sudheer Chunduri1, Eric Borch3,
Robert B. Ross1, Christopher D. Carothers2, and Kevin Harms1

1 Argonne National Laboratory, Lemont, USA
kabrown@anl.gov

2 Rensselaer Polytechnic Institute, Troy, USA
3 Hewlett Packard Enterprise, Houston, USA

Abstract. High-performance computer (HPC) networks are often
shared by communication traffic from multiple applications with varying
communication characteristics and resource requirements. These applica-
tions contend for shared network buffers and channels, potentially result-
ing in significant performance variations and slowdown of critical com-
munication operations such as low-latency MPI collectives. In order to
ensure predictable communication performance, network resources must
be allocated relative to the communication requirements of applications.

Quality of Service (QoS) solutions can regulate the allocation of
resources by defining traffic classes with specified resource allocations
and assigning applications to these classes, thus improving application
performance predictability. However, it is difficult to accomplish facility-
level goals of ensuring efficient application communication when con-
strained to a limited number of classes.

We propose a practical QoS implementation for large-scale, low-
diameter networks, such as the dragonfly topology, using flexible band-
width shaping along with traffic prioritization to reduce the impact of
interference on communication performance. Our design gives facilities
more control over tuning QoS class to meet application- and site-specific
performance guarantees. The results show that our solution effectively
eliminates the slowdown of high-priority traffic due to interference with
lower-priority traffic, significantly reducing run-to-run variability. We
also demonstrate how port counters can be used to detect when a job-to-
class assignment is inappropriate for a given system and when a workload
is exceeding the bandwidth limits of its class.

Keywords: Interconnect network · 1D dragonfly topology · QoS ·
Traffic class

1 Introduction

Most high-performance computer (HPC) systems are shared by multiple appli-
cations with varying communication characteristics and bandwidth/latency
c© UChicago Argonne, LLC, Operator of Argonne National Laboratory 2021
B. L. Chamberlain et al. (Eds.): ISC High Performance 2021, LNCS 12728, pp. 137–156, 2021.
https://doi.org/10.1007/978-3-030-78713-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-78713-4_8


138 K. A. Brown et al.

requirements. The interconnection networks of large HPC systems use high-
speed switches to route application traffic across the system. These applications
compete for bandwidth and can oversubscribe the links when the available band-
width is less than the total required by the competing traffic flows.

Heavy traffic flows on low-diameter networks, such as fat tree and drag-
onlfy, have been shown to unfairly monopolize link bandwidth when each flow
is given equally unregulated access to the network channels [20]. Without access
constraints, network contention becomes an issue that can result in reduced or
delayed network access for different applications. This may severely harm the
performance of certain types of application traffic. For example, this situation
can lead to significant performance degradation for latency-sensitive communi-
cation traffic, such as small message MPI collectives, while potentially posing
negligible impact on more latency-tolerant patterns such as checkpointing [1].

HPC networks use a variety of techniques to deliver high system throughput
and good application performance. Adaptive routing can be employed to improve
communication performance by re-routing packets around high-traffic areas of
the network, balancing traffic load across network links [20]. Congestion man-
agement is aimed at diagnosing and treating network congestion by temporarily
reducing the rate at which packets are injected into the network, when necessary,
to reduce the total number of packets queued in network buffers [19]. However,
adaptive routing and congestion management techniques cannot allocate net-
work resources, such as buffers and channel bandwidth, to specific applications
or classes of traffic based on their respective performance targets. Quality-of-
service (QoS), on the other hand, can differentiate how resources are allocated
to different types of traffic to better manage resource contention and interference
on heavily loaded networks [6].

Numerous studies exist on QoS for wireless networks, data centers, and the
internet [15]. However, these solutions and supporting hardware are typically
designed to throttle injection at the source or to drop packets in transit when
the flow does not conform to QoS policies. Unfortunately, for HPC, throttling is
not ideal unless the overall network is congested and dropping packets increases
latency and reduces overall system throughput since dropped packets need to be
retransmitted.

QoS solutions for HPC differentiate between different types of traffic by plac-
ing them in different network-defined traffic classes. Each traffic class is allocated
separate network buffers and a guaranteed fraction of the channel bandwidth,
based on the performance requirements of the traffic assigned to the class [13]. A
small number of traffic classes are usually shared by multiple applications since it
is impractical to define a separate class for each of the myriad of traffic patterns.
The effectiveness of the QoS solutions therefore depends on how accurately the
classes can be tuned to consistently guarantee an appropriate fraction of the
resources to their assigned workload, even when the resource availability varies
rapidly as in typical production systems.



Tunable Implementation of QoS Classes 139

Studies up until now have mainly focused on priority-driven QoS or QoS
based mainly on simple, course-grained bandwidth allocations [16,18,22]. Such
solutions do not have the flexibility to effectively configure classes that account
for the variations in workloads, interference patterns, and site-specific priorities
in HPC facilities. There is need for a QoS solution that can simultaneously
balance the needs of multiple competing applications and reallocate bandwidth
in a controlled manner as requirements change. However, in addition to the lack
of appropriate solutions, there is also limited knowledge available on how to
precisely evaluate the suitability of class configurations for HPC workloads with
multiple distinct classes of traffic.

Our work aims to address these issues with the contributions as follows:

– We describe a practical method of implementing QoS classes on large-scale,
low-diameter networks to enable traffic differentiation, prioritization, and
shaping. Our solution allows for better control of bandwidth allocations when
traffic load varies by employing two rate limiters per QoS class: one that sets
an assured amount of bandwidth, and one that sets a maximum amount of
bandwidth at its priority level;

– We propose a scheme for configuring and deploying QoS classes in produc-
tion to match the varying application performance requirements of mixed
workloads on production HPC systems; and

– We evaluate the ability of our scheme to satisfy the relative performance goals
of multiple traffic flows sharing a large-scale 1D dragonfly network.

Our solution successfully regulates the traffic flows of dynamic communica-
tion workloads to more consistently meet the performance targets of the respec-
tive flows. The two rate limiters enable us to tune classes so as to better match
the performance targets of dynamic workloads compared to prior work with
single rate QoS solutions.

2 Background and Related Work

2.1 Communication Characteristics and Performance Targets

Communication operations can be characterized as being either latency-bound
or bandwidth-bound. Latency-bound transfers have low injection rates, or offered
loads, and the resulting communication time depends on individual packet laten-
cies. Small message MPI collectives, such as MPI Allreduce, are implemented
using algorithms that rely on structured communication to minimize message
count and data volume. However, long tail latencies can disrupt the structure
of the communication and thus severely degrading collective performance. On
the other hand, bandwidth-bound operations move relatively large amounts of
data through the network, and the overall communication time depends on the
throughput instead of individual packet latencies. Bulk data I/O transfers are
examples of bandwidth-bound operations.

To meet their respective performance targets, different types of traffic need
access to the network resource in different manners. Keeping packet latencies



140 K. A. Brown et al.

low in latency-bounded flows requires reducing the time spent queuing in the
network by providing higher priority to network channels. Bandwidth-bounded
flows, however, require high injection rates or longer access to the shared channels
in order to move a large amount of data through the network.

HPC facilities may further classify some traffic as having higher priority than
others based on site-specific goals. For example, facility administrators may deem
that certain latency-sensitive collective operations such as MPI Allreduce should
not be impeded and instead receive highest priority access to network resources,
regardless of the source application. In contrast, they may decide that other
types of traffic – such as network-monitoring data – can be delayed if the traffic
does not require any performance guarantees.

2.2 Managing Contention for Shared Channels on HPC Networks

Contention for shared resources such as channel bandwidth causes interference to
communication performance. Interference over the network significantly degrades
the performance of many HPC applications that are characterized by latency-
sensitive collective communication patterns [7,8]. The main cause of significant
slowdown due to interference is increased queuing delays resulting from head-
of-line (HoL) blocking, i.e. when fast-draining messages get stuck behind slow-
draining messages in shared buffers on congested ports [22].

Adaptive Routing and Congestion Management. Interconnect congestion
can be classified into two categories: intermediate and endpoint congestion [3].
Intermediate congestion occurs when multiple input ports on a router try to use
the same router output port, causing packets to get backed up in the buffers of
the router. Endpoint congestion occurs due to application incasts – traffic from
multiple source endpoints target the same destination endpoint, overwhelming
the endpoint’s ability to accept all the incoming traffic. Adaptive routing can
effectively address intermediate congestion by routing incoming packets to dif-
ferent fabric output ports to avoid oversubscribing any single output port. How-
ever, adaptive routing is ineffective against endpoint congestion because there
are no alternative paths to the endpoint at the destination switch. With end-
point congestion, as traffic backs up from the target endpoint, adaptive routing
will spread incoming traffic to less busy paths and potentially cause traffic to get
backed up on those paths across the network as well. Congestion management
schemes that appropriately abate the incast flows are essential for handling end-
point congestion. These solutions strive to curtail the injection volume at the
congestion-causing sources based on how many packets can be consumed at the
endpoints [19].

2.3 QoS Solutions for HPC

QoS mechanisms are not designed to address endpoint or intermediate conges-
tion. QoS is used to decide which packet to send based on priority and bandwidth



Tunable Implementation of QoS Classes 141

specifications. This is complementary to both adaptive routing, which determines
the path a packet should take, and congestion management, which determines
if a packet should be injected into the network based on the state of congestion
in the network.

Several QoS solutions have been proposed [13,16,18,22] for low-diameter
networks like dragonfly and fat-tree networks, which are very susceptible to inter-
application interference [20]. These solutions use separate buffers for each traffic
class in order to prevent HoL blocking across classes and reduce packet latencies.
Most of these vary the arbitration priority in some manner to reduce packet
latencies, or regulate the bandwidth allocation to different flows, or both. Savoie
et al. [18] proposed grouping application traffic flows into separate QoS classes
and used only priority as a constraint on the QoS classes. However, Jakanaovic
et al. [13] noted that this approach has the potential to degrade overall system
performance since a bandwidth-intensive workload in the high-priority class can
cause prolonged starvation of other workloads. The bandwidth consumption of
the high-priority class should be constrained to prevent unintended starvation.

Wilke and Kenny [22] proposed using four different traffic classes with 25%
of the bandwidth allocated to each class. Their solution includes two classes that
use minimal routing in order to reduce the number of required buffers – minimal
routing requires less buffers than adaptive routing [14]. This limits the flexibility
of their solution since two of the four classes cannot be re-purposed to carry
bandwidth-intensive traffic if the facility requires this.

Mubarak et al. [16] demonstrated that managing the bandwidth allocated
to traffic classes may guarantee that important applications can perform well
despite interference from lower-priority jobs. They proposed each class using a
single rate limiter that must be tuned relative to the other class in order to
assure a fraction of the bandwidth. That is, increasing the bandwidth allocated
to one class will reduce the bandwidth available to other classes. Unfortunately,
their allocations must be tuned to a fixed set of traffic loads while the load on
the network usually varies. It is non-trivial to define a static configuration for all
classes that consistently match the performance requirements of their assigned
workloads given the variability in available resource.

In deploying QoS classes on production systems, multiple studies [16,18,22]
have proposed grouping application traffic flows into a few QoS classes to reduce
the number of classes in required1. The different flows need to be grouped based
on performance requirements and characteristics, and their assigned classes must
now be tuned to match their collective requirements.

3 Design of a Tunable QoS Solution

An ideal QoS solution should be able to simultaneously (i) ensure low packet
latencies for latency-bound traffic, (ii) guarantee high bandwidth for bandwidth-
bound traffic, (iii) prevent unintended starvation, and (iv) provide these assur-
1 Switch hardware can only support a limited number of actives classes due to resource

limitations.



142 K. A. Brown et al.

Fig. 1. Illustration of our QoS solution design. Packets are assigned to classes at com-
pute node endpoints, placed in the appropriate class buffers on switches, and then are
colored and compete for access to output channels based on the QoS policy. (Color
figure online)

ances while network load varies. Since throughput and/or packet latencies affect
a traffic flow’s ability to meet its relative performance targets, QoS mechanisms
should allow for regulating resources that affect the resulting packet latency and
bandwidth available to traffic flows. Per-class buffers and priority-based arbi-
tration can be used to prevent HoL blocking and expedite packet forwarding,
thereby reducing packet latencies. Bandwidth guarantees (or assured injection
rates) can be defined on each class to ensure a fraction of channel bandwidth
is available to traffic using that class when channels are oversubscribed, thereby
preventing starvation. Importantly, QoS should also manage the reallocation of
bandwidth when traffic load changes such that more important flows get priority
access to bandwidth released by other flows. This provides more useful resource
partitioning for dynamic workloads.

3.1 Flexible Traffic Shaping Using Two Rate Limits

In a production system, network bandwidth usage varies dynamically as the
traffic load changes. However, most QoS solutions use only a single assured rate
limit to allocate bandwidth and cannot accommodate changing load require-
ments. When flows reduce their injection rates, their unused bandwidth is left
unregulated for other traffic to consume, regardless of their importance. Control-
ling how unused bandwidth gets reallocated to specific workloads can improve
the performance of important flows. By using an additional peak rate limit, we
can give priority access to a portion of the unused bandwidth.

We propose a QoS mechanism that can be more easily tuned to satisfy the
needs of HPC workloads and reallocate unused bandwidth more efficiently com-
pared to other solutions. This solution allows for configuring an arbitrary num-



Tunable Implementation of QoS Classes 143

ber of traffic classes2 with independent buffers and unique relative priorities to
enable traffic prioritization. To achieve bandwidth shaping, each class is config-
urable with two rate limits: an assured rate (AR) limit and a peak rate (PR)
limit, where AR ≤ PR ≤ 100%, based on the Two Rate Three Color Marking
design [21] for metering packet streams. The AR provides guaranteed bandwidth
allocations and

∑n
i=1 ARi ≤ 100%, where n is the number of classes. PR con-

trols how excess/unused bandwidth is reallocated for controlled traffic shaping
as the load changes. In our design, as illustrated in Fig. 1, packets at the front
of switch port buffers are marked as either green, yellow, or red, depending on
the current injection rate of its respective class. A packet is marked as red if
the class exceeds its PR (and hence AR); it is marked as yellow if only the AR
(but not PR) has been exceeded; or it is marked as green if its class does not
exceed its AR (thus not PR either). Marking is done at each injection cycle for
the purpose of output port arbitration, and stalled packets are re-marked based
on the new injection rate in subsequent cycles. The packet content is unchanged
and marking information is not communicated downstream.

Output port arbitration is priority-based within the constraints of the classes’
rate limits. That is, green packets are sent first from higher priority classes;
otherwise, yellow packets are sent in a similar priority order when there are
no green packets to send be sent. If neither green nor yellow packets can be
sent, a red packet will be chosen from any class by round-robin – priorities are
ignored and each class has an equal chance of getting access to the output port.
Note that flow control can stop any class from sending if downstream buffers are
unavailable, in which case a packet from another class is sent.

We use token buckets, to meter each of the two rate limits per class [21].
Tokens accumulate in each bucket at the rate of the limit it meters, i.e., the
assured rate bucket will accumulate tokens at the assured rate limit defined on
the class, etc. Whenever a green or yellow packet is sent from a class, a token
is removed from each of the two buckets with available tokens. No token can
be removed when a red packet is sent because the peak rate limit has been
exceeded, at which point both buckets are empty. Empty buckets means the
traffic has completely consumed the bandwidth allocated to the class.

3.2 Defining QoS Classes for HPC Traffic

QoS classes for HPC traffic should be configured based on the traffic flow they
are assigned. Additionally, systems should use the minimum number of classes
required for their workloads to prevent resource fragmentation. Classes have
strict priorities relative to each other, so we first consider the traffic flow’s pri-
ority relative to that of other flows when deciding traffic-to-class assignments.
When all other factors are equal, the priority will determine which flow progresses
first and achieves lower latency. Inline with industry standards and recommen-
dations [9,17], we argue that the following traffic classes and class assignments
2 The number of traffic classes that can be configured on a given switch will be limited

by how many class buffers and rate limiting counters are supported by that switch
hardware.



144 K. A. Brown et al.

are relevant for the majority of workloads on shared HPC systems and can be
efficiently supported by our solution:

Low-Latency Class: Guarantees low packet latencies. This class has the high-
est arbitration priority to reduce queuing delays and a low assured rate limit to
prevent starving other classes.

Suitable Traffic: important traffic that is primarily latency-bound and does not
require high throughput, such as small message collectives.

Bulk Data Class: Guarantees high communication throughput. This class is
typically allocated bandwidth commensurate with the I/O throughput of the
system and the importance of I/O performance to the system workloads.

Suitable Traffic: traffic that moves a lot of data at once, requires high throughput
and is not latency-sensitive, such as bulk I/O transfers to network file systems.

Scavenger Class: Guarantees minimal progression of traffic and minimal inter-
ference to other classes. This class has the lowest priority and a low assured rate
limit to prevent it from impacting the performance of traffic in other classes.

Suitable Traffic: traffic that can be temporarily ignored without significant
impact to overall productivity and user experience, such as scraping network
counters.

Best-Effort Class: Guarantees best-effort progress of traffic with mixed
latency-sensitivity and bandwidth requirements. This class is given a relatively
high priority and allocated sufficiently high injection rates based on the high
volume of data transferred by its combined expected workload.

Suitable Traffic: traffic that does not strongly map to any other class. Most
application traffic will use this class.

Our QoS solution supports these and other class definitions by tuning the
dual rate limits and relative arbitration priority on each class. For example, a
system may need to support streaming real-time data, in which case such streams
may require a high-priority class with the highest bandwidth allocation. One
main requirement of an effective traffic-class assignment is that traffic sharing the
same class are not adversarial to each other in terms of latency and bandwidth.

The following section demonstrates how traffic shaping with our dual-rate
solution provides more consistent communication performance with dynamic
workloads than other single-rate QoS solutions. We also show how QoS classes
with dual-rate limits can be more easily tuned to simultaneous satisfy multiple
performance targets and regulate diverse traffic loads.

4 Evaluation of QoS Solution

4.1 CODES Simulation Toolkit

To collect the data evaluated in this work, we use the CODES HPC interconnec-
tion network simulator [5] since HPC hardware does not yet support dual-rate



Tunable Implementation of QoS Classes 145

QoS. CODES is a Parallel Discrete Event Simulation (PDES) toolkit built on
top of the Rensselaer Optimistic Simulation System (ROSS) [2] PDES engine.
CODES allows for fine-grained, link-level simulations of packets moving across
high-performance networks. Additionally, these simulations allow for testing and
evaluation of different mechanisms such as adaptive routing algorithms, con-
gestion management, and, as demonstrated in this work, QoS techniques. We
implemented our QoS solution in CODES based on the design outlined in the
previous section.

4.2 Network Setup

We simulate a tapered 1D dragonfly network with 8320 node endpoints. The
network interconnect consists of 1040 routers with 16 routers per group. Each
router has eight terminal channels, 15 local channels, and four global channels.
The ratio of terminal channels to global channels results in a 2:1 taper of the
global network bandwidth, similar to systems such as Theta, Edison, Malbec,
and Shandy [10], which increases the potential for contention among competing
traffic flows. We use 25 GB/s injection bandwidth for all channels, 10 ns delay for
terminal and local channels, and 100 ns delay for global channels. The simulated
router delay is 300 ns and the network packet size is set to 160 bytes. These taper
and delay configurations are representative real-world dragonfly systems [10].
We use a progressive-adaptive routing algorithm for the network and a random
job-to-node allocation scheme. Studies show that this random node allocation
strategy improves job throughput for dragonfly systems [23] such as the ones
listed above.

4.3 Workload Setup

We use the uniform random traffic (UR) pattern to generate interference on
our network because other synthetic patterns, such as random-permutation, can
cause congestion hotspots [3] for which QoS is not the appropriate solution.
Additionally, unlike real application traffic, this synthetic traffic pattern (i) pro-
vides more precise control for managing when and how the traffic load changes
and (ii) is less sensitive to the topology, routing, and congestion management
capabilities of the systems. This allows us to succinctly capture the difference in
traffic shaping capabilities of the dual-rate scheme versus the single-rate scheme.

The UR jobs use 640 B messages and vary the injection load by varying the
delay between injecting successive messages, representative of loads recorded
on a production HPC system [11]. These small messages allow us to minimize
local incasts and evenly spread load across the system. We also use a Scal-
able Workload Model (SWM) [12] of MPI Allreduce – a common operation on
HPC systems [4] – to simulate latency-sensitive traffic. SWMs are skeletons of
applications and benchmarks that capture the communication patterns of the
workload that they model. Each allreduce SWM job performs at least 15 calls to



146 K. A. Brown et al.

Fig. 2. Partitioning a single port bandwidth between four classes using single-rate
and dual-rate QoS solutions. The injection rate in each class 100% of the bandwidth.
The peak rate limit on the dual-rate QoS classes ensure that unused bandwidth is
reallocated to the highest-priority class when the traffic load changes as the flow in
class 1 completes around 23 µs.

MPI Allreduce, reducing 8 bytes of data across all ranks of the job and requir-
ing very low bandwidth. Our early evaluation survey of different load levels and
message sizes produced similar results to experiments presented in this paper.

4.4 Bandwidth Shaping for Dynamic Workloads

The workloads on large production systems often exhibit variations in traffic load
as applications start and stop communication operations and vary the volume
or frequency sending traffic.

Reallocating Unused Bandwidth with Dual Rate Limits: When a QoS
class has an assured bandwidth allocation, it is guaranteed a fraction of the
bandwidth of all channels in the system. If traffic in this class does not use
all of its allocation on a channel, the unused portion of the allocation can be
consumed by flows from other classes. Controlling how the unused bandwidth
gets consumed can improve the performance of more important flows over less
important ones.

To demonstrate that our dual-rate solution allows for controlling the reallo-
cation of unused bandwidth, we simulate four traffic flows sharing the bandwidth
of a 16 B/ns channel. Each flow attempts to use 100% of the injection band-
width to stream 1000 packets over the shared channel. The port is configured
with four traffic classes (0, 1, 2, and 3), with one flow assigned to each class.
Classes are assured a fraction of the link bandwidth relative to a designated
minimum required rate of its assigned flow. The flow in class 3 is designated as
having little importance and should not interfere with the other flows; therefore,



Tunable Implementation of QoS Classes 147

Table 1. Configuration for workload with variations in traffic load. UR jobs inject
uniform random traffic.

Job Nodes QoS class Initial rate (%) New rate (%)

all reduce32 1 32 0 - low latency <0.08 –

all reduce32 2 32 0 - low latency <0.08 –

all reduce256 1 256 0 - low latency <0.08 –

all reduce256 2 256 0 - low latency <0.08 –

UR-LL 64 0 - low latency 3 –

UR-BE 4160 1 - best effort 50 85

UR-IO 1760 2 - bulk data 80 20

UR-S 1760 3 - scavenger 20 60

class 3 is assured none of the link bandwidth. We compare our QoS solution –
which uses two rate limits – to another design that uses a single-rate limit [16].

The class configurations and results for both QoS solutions are shown in
Fig. 2. For single-rate QoS, classes 0, 1, and 2 are able to share the port’s
bandwidth at their respective assured rates of 20%, 45%, and 35% from the
start of the run. Class 3 is starved and unable to send because it is not assured
a fraction of the bandwidth and the port is fully utilized by the other flows. As
traffic in classes 1 and 2 complete after 22 µs, the remaining active flows equally
share the unused bandwidth that becomes available. The flow in class 3 is able
to compete for – and consume – a fraction of the unused bandwidth, partially
blocking the higher-priority flow in class 0. However, dual-rate QoS uses peak
rate limits to regulate access to the used bandwidth based on class priority, up
until the class’s peak rate limit. Our dual-rate solution could also be tuned to
reallocate excess bandwidth to other classes besides class 0 by reducing the peak
rate limit of class 0.

Maintaining Performance Despite Changing Network Loads: Properly
tuned QoS classes should maintain the relative performance targets of their
assigned traffic flows regardless of changes in the network load. If a flow requires
more than its allocation and unused (or unallocated) bandwidth becomes avail-
able, the class should (i) be able to use the available bandwidth if it has suf-
ficiently high priority or (ii) be blocked by another class if the other class is
carrying more important traffic as done in the previous experiment.

To demonstrate the effects of system-wide network load variations on per-
formance predictability, we evaluate a workload comprised of eight jobs with
multiple changes in traffic load over time. Table 1 describes the jobs and their
class assignments. Four allreduce jobs of two different job sizes and a uniform
random (UR) job are placed in the low-latency class. The other classes are each
assigned one UR jobs with different injection load intensities. The class configu-
rations and UR job injection loads were selected to reflect their class’s expected



148 K. A. Brown et al.

Fig. 3. Change in class throughput over time as the injection rates vary at times T1,
T2, and T3, as indicated in the Injection Rate Variations table.

workloads that were discussed in Sect. 3. That is, the low-latency class will guar-
antee low packet latencies for traffic with a light injection load; the best-effort
class will carry most application traffic and should guarantee high throughput;
the bulk data class will carry I/O data and should have sufficiently high band-
width without interfering with the low latency and best effort classes; and the
scavenger class should ensure progress of its traffic while causing minimal inter-
ference to other flows. Details of the class configurations will be discussed in
the following subsection. We create these classes for both dual-rate and single-
rate QoS schemes to study each scheme’s ability to maintain performance pre-
dictability as the traffic load varies. Figure 3 shows the class configurations and
the resulting injection throughput during the run. The plots report the average
per-node throughput of traffic in each class for both QoS schemes. If traffic flows
from two classes that never share a channel, there will be no interference and
both flows can theoretically be injected at 100% of the peak node injection rate
simultaneously. However, on large systems, flows from multiple classes will con-
tend for shared channels and potentially reduce the throughput that each flow
can sustain. The QoS solutions manage this contention to improve workload
throughput.

The results in Fig. 3 show that dual-rate QoS classes guarantee consistently
high throughput for class 1 (best effort) traffic throughout the experiment. The
flow in class 1 maintains its initially desired 50% rate until its injection rate
is increased to 85% at 0.4 ms (T2 in the plot), exceeding the peak rate limit
of 80% for class 1. From that point, it could only sustain a 60% injection rate
due to the heavy load on the network causing the excess packets to be stalled
and reducing the effective available global bandwidth. The increased network
load and stalls caused ≈8% more packets to be routed non-minimally in class



Tunable Implementation of QoS Classes 149

Fig. 4. Distribution of MPI AllReduce operation latency across the ranks of each allre-
duce jobs. We achieve near baseline (Standalone) latencies when allreduce jobs use the
low latency class of the dual-rate and single-rate QoS configurations.

1 between 0.4 ms and 0.8 ms. Non-minimally routed packets take two global
hops on dragonfly networks, and the additional hop reduces the effective global
bandwidth [14]. With single-rate QoS, class 1 could sustain only a 40% injection
rate even though it desires 50% and it is assured 50% of the system bandwidth.
This flow is able to increase its throughput after the load from class 2 is reduced
at 0.2 ms (T1). The flow in class 2 has high throughput at start of the simulation
when class 1 was not very loaded. After its load is reduced to 20%, which is within
its assured rates for both solutions, it sustains this throughput for the rest of
the run.

At 0.6 ms (T3) when the load in class 3 increases to 60%, the dual-rate
solution is able to prevent traffic in class 3 from severely affecting the flow in
class 1. The peak rate for class 1 was set to 80%, allowing this class to claim
more of the unused bandwidth and reduce the interference from class 3: class 3 is
only able to use more than it’s assured rate after the other classes have exceeded
their peak rates. On the other hand, the single-rate solution assured 50% of the
bandwidth to class 1, which is now carrying 85% load, resulting in both class
1 and class 3 competing for the available bandwidth. Single-rate QoS shapes
traffic as required only when the load distribution among the classes matches the
class configurations, as shown between times T2 and T3 on the single-rate QoS
plot in the figure. Otherwise, network load and interference from lower-priority
classes can degrade performance. The dual-rate solution is able to provide more
consistent throughput for class 1 regardless of load changes from other workloads
in the network.

While maintaining high throughout for traffic in class 1 (best-effort), dual-
rate QoS is also able to meet the latency targets of the allreduce jobs in the
low-latency class. Figure 4 shows the MPI Allreduce performance when using
the dual-rate and single-rate QoS configurations, with both cases yielding near
Standalone performance – where each allreduce job is ran on an idle system
without background traffic. Performance is much worse in the no-QoS case when
allreduce jobs run concurrently with the UR jobs without using separate QoS
classes, i.e., traffic from all jobs share a single class. These results confirm that the
dual-rate solution can also facilitate performance repeatability for low-latency
traffic despite variations in network load.



150 K. A. Brown et al.

Fig. 5. Breakdown of system-wide QoS stalls per class as the traffic load changes. At
0.2 ms, load in class 2 is reduced; at 0.4 ms, load in class 1 is increased; at 0.6 ms, load
in class 3 is increased. Figure 3 show the injection load and class configuration details.

Monitoring QoS Stalls to Understand Class Configuration and Behav-
ior: Class configurations should be tuned to prevent some flows from being
unintentionally delayed while simultaneously ensuring other flows are appropri-
ately stalled. However, dynamic workloads present a challenge since they do not
have static injection rates to properly guide bandwidth allocations. With dual
rate limits per class, each class can be tuned to support a range of traffic loads.
Additionally, monitoring how packets get stalled by classes expose how traffic is
shaped and the appropriateness of the class configuration for the workloads.

As discussed in Sect. 3.2, traffic in a class is shaped by marking its packet
red if the class exceeds its peak rate, yellow if only the assured rate is exceeded,
or green if neither rate has been exceeded. Our solution reports three types of
stalls based on these colors to expose traffic shaping:

Green Stall: The class is blocked from injecting if it has a green packet and a
higher priority class also has a green packet ready to inject.

Yellow Stall: The class is blocked from injecting if has a yellow packet and
either (i) a higher-priority class has a yellow packet ready to inject or (ii) any
other class has a green packet ready to inject.

Red Stall: The class is blocked from injecting if has a red packet and either
(i) another class has a green or yellow packet ready to inject or (ii) it loses to
another class in round-robin arbitration.

Figure 5 reports the per-packet stall rates of each stall type over all switch-to-
switch channels for the traffic described in Fig. 3. A value of 1 QoS stall/packet
means that one packet was stalled for each injected packet, increasing packet
latency and potentially reducing class throughput. By analyzing the type of
stalls, we can determine which rate limit caused the stall and how its tuning
may affect traffic shaping.

Classes 0 and 1 experience overall low QoS stall rates, confirming that their
overalls flows were not being delayed. The assured rate limit of class 0 is slightly
above the low injection rate of its assigned traffic, guaranteeing sufficient band-
width to progress quickly, and the peak rate limit is high enough to accommodate
momentary bursts. Class 1 is mostly stalled after its injection rate exceeds its



Tunable Implementation of QoS Classes 151

Table 2. Configuration for workload with mission critical traffic along with traditional
HPC workload. UR jobs inject uniform random traffic.

Job Nodes Class Injection rate (%)

UR-MC 832 0 - mission critical 80

allreduce512 256 1 - low latency 0.8

allreduce512 256 1 - low latency 0.8

UR-LL 512 1 - low latency 4

UR-BE 4160 2 - best effort 80

UR-IO 1760 3 - bulk data 90

UR-S 512 4 - scavenger 5

peak rate at 0.4 ms. Stalled packets block minimal routing paths, causing the
increased use of non-minimal routing paths with extra global hops to reduce the
effective available global bandwidth as mentioned earlier.

The relatively high green and yellow stall rates for class 2 confirm that its
flow was regulated to limit its effect on class 1 or class 0, as intended. The yellow
stall rate of class 2 is reduced when its injection rate drops to match its assured
rate at 0.2 ms. The relatively low network load between 0.2 ms - 0.4 ms allowed
the throughout of class 3 to be increased, signalled by the eventual reduction in
its rate of yellow and red stalls. However, the initial spike in class 3 red stalls
from 0.2 ms - 0.3 ms is due to the previously blocked packets being streamed
into the network, causing the class to exceed its 20% peak bandwidth allocation.
Overall, class 3 has the highest stall rates because it has the lowest priority
and a low bandwidth allocation, and is prevented from unduly affecting more
important flows.

The changes in the stall rates indicate how traffic shaping is being triggered
by the composition of the network load. Having appropriately configured these
HPC-oriented QoS classes to control the reallocation of bandwidth to the higher-
priority flows, the stalls confirm that traffic is being shaped as intended.

4.5 Supporting Specially Defined QoS Classes

Workload configurations and requirements vary across HPC centers. While we
contend that the traffic class configurations defined in Sect. 3.2 should be appro-
priate for most HPC workloads, centers may also need to define other classes for
special workloads. When these special workloads run along the traditional HPC
workloads, the QoS mechanism must satisfy the relative performance targets of
both sets of workloads. We demonstrate how our QoS solution can support the
creation of a site-specific mission critical class to carry traffic that must never
be delayed by other HPC workloads. The mission critical class is assigned the
highest arbitration priority and assured 100% of the system bandwidth to min-
imize the delay from traffic in other classes. With dual-rate QoS, other classes
can be configured with peak rate limits to provide priority-ordered access to



152 K. A. Brown et al.

Fig. 6. Change in class throughput over time as mission critical traffic is transferred.
*The mission-critical job suspends sending traffic at 0.3 ms and resumes at 0.6 ms.
Workload and traffic-to-class assignments details are provided in Table 2. Traffic in
class 2 (best effort) is able to sustain higher throughput with the dual-rate solution,
even when the mission critical traffic is present.

unused bandwidth, respecting the relative importance of the different types of
HPC traffic. However, defining the mission critical class with single-rate QoS
does not allow for any regulation of HPC traffic.

We ran the workload setup in Table 2 using both single-rate and dual rate-
QoS. Figure 6 shows the class configurations and throughput results for both
QoS solutions. With the dual-rate solution, we ensure that class 2 has priority
access to 50% of the unused bandwidth, allowing it to sustain high throughput
despite heavy interference from traffic in class 3. For the single-rate QoS classes,
however, the traffic in class 3 is unregulated and reduces the throughput of the
higher priority class 2 traffic.

We allocate peak bandwidths to reduce the likelihood of a class being blocked
when the mission critical traffic is not occupying a channel. These rates could
be tuned differently depending on the goals of the system administrator. The
assured and peak rate limits in our dual-rate QoS solution can be tuned inde-
pendently to satisfy the performance requirements of traffic using the class while
respecting the performance targets of traffic in other classes.

While it is possible to create a single-rate QoS solution using peak rates
instead of assured rates, it would still be challenging to tune such a solution for
dynamic workloads, as highlighted with these results. Using only a peak rate,
the dual-rate QoS classes were unable to increase the allocation of bandwidth
available to class 2 when the mission critical job was not injecting. Furthermore,
the aggregate peak rate allocations can exceed the link bandwidth, meaning
allocations are not guaranteed and lower-priority classes can be starved.



Tunable Implementation of QoS Classes 153

5 Discussion

5.1 Tuning Class Configurations to Match Workload Requirements

Proper QoS tuning requires accurately matching class configurations to their
expected traffic load, which requires accurate knowledge of the system’s expected
workloads and performance targets. Our QoS solution regulates network resource
allocation under varying traffic load using dual rate limits. For the assured rate
limits, we recommend starting with the minimum required rate needed to attain
acceptable throughput and/or latency for traffic assigned to the class. Peak rate
limits can be set to the maximum expected traffic load while being mindful of
the requirements of other classes. These limits can then be tuned using the QoS
stall metrics as guides. Increases in yellow and red stall rates are indicators that
constraints rate limit constraints are being applied since these packets get stalled
only when the assured/peak rate has been exceeded. Additionally, green stall
rates are indicators of priority constraints being applied priority since packets are
marked green when the class has not exceeded its assured rate. The acceptable
stall rates for a configuration will depend on the workload and the desired traffic
shaping outcome. QoS stall rates can therefore be used to flag inappropriate
traffic-to-class assignment when unexpected shaping is observed. High stall rates
indicate that the traffic has exceeded its class’s expected load and will experience
increased packet latencies as well as potentially reducing the effective available
global bandwidth.

5.2 Production Deployment

Our QoS design can be deployed on any interconnect architecture that supports
network traffic classes with independent switch buffers and programmable output
port arbitration, as most modern architectures do. Hence, this solution can also
be used on other low-diameter topologies such as fat-tree, hyper-x, Slim Fly, and
megafly, similar to other solutions [16,22]. While comparison of the different
topologies is not the focus of this work, our solution will still provide more
flexible control of network resources than the other solutions across the different
topologies. Furthermore, being able to tune classes using stall counters will ease
the integration of QoS in HPC centers.

The network drivers will provide APIs for assigning different messages to
QoS classes. Communication libraries like MPI or parallel I/O libraries can be
extended to utilize these APIs and automatically assign messages to different
classes based on pre-defined message size/rate thresholds. Such an approach
would be transparent to system users while allowing administrators to define
system-wide configurations, preventing inappropriate traffic-to-class assignment.
Another approach is for the user to choose class assignments for the different
operations within their applications. Otherwise, a combination of the these two
approaches may also be used when rolling out the QoS solution.



154 K. A. Brown et al.

6 Conclusions

HPC networks often run multiple applications with differing communication pat-
terns that compete for network resources. Because different applications may be
running at any given time, network contention can result in large run-to-run
performance variations for communication-sensitive applications.

Our QoS proposal classifies application traffic into one of several QoS classes,
based on performance requirements, and effectively allocates resources among
these classes. Each class’s arbitration priority, assured bandwidth limit, and
peak bandwidth limit can be tuned to match the traffic load assigned to the
class. Using this solution, we can define a limited number of QoS classes –
Low-latency, Best-effort, Bulk data, and Scavenger – to effectively support the
diverse traffic loads on HPC systems. Our solution can ensure consistent, low-
latency performance for latency-sensitive traffic, achieving near-baseline perfor-
mance for MPI Allreduce operations. It also provides the ability to maintain the
high throughput required by a best-effort class, securing sufficient bandwidth for
applications in order to guarantee overall system throughput.

Our solution’s flexibility in provisioning multiple QoS classes with explicit,
tunable assured and peak rate limits allows individual HPC sites to tailor class
settings to their needs. The dual-rate limits support controlled bandwidth real-
location as traffic load changes, ensuring relative performance targets can be
more effectively met in dynamic environments. Furthermore, the use of QoS
stall metrics can isolate adversarial traffic-to-class assignments and help tune
the configuration, deployment, and management of QoS in production. Future
work will consider how to automatically assign and, and potentially reassign,
traffic to classes while the workload in running. We will also investigate the
interaction of our dual-rate QoS with different adaptive routing and congestion
management solutions.

Acknowledgement. This work was supported by the Argonne Leadership Comput-
ing Facility, which is a DOE Office of Science User Facility supported under Con-
tract DE-AC02-06CH11357, and by the Exascale Computing Project – learn more
at https://www.exascaleproject.org/. We also gratefully acknowledge the computing
resources provided and operated by the Joint Laboratory for System Evaluation (JLSE)
at Argonne National Laboratory.

References

1. Brown, K.A., Jain, N., Matsuoka, S., Schulz, M., Bhatele, A.: Interference between
I/O and MPI traffic on fat-tree networks. In: Proceedings of the 47th Interna-
tional Conference on Parallel Processing, ICPP 2018, pp. 1–10. Association for
Computing Machinery, New York, August 2018

2. Carothers, C.D., Bauer, D., Pearce, S.: ROSS: a high-performance, low memory,
modular time warp system. In: Proceedings Fourteenth Workshop on Parallel and
Distributed Simulation, pp. 53–60 (2000)

https://www.exascaleproject.org/


Tunable Implementation of QoS Classes 155

3. Chunduri, S., et al.: GPCNeT: designing a benchmark suite for inducing and mea-
suring contention in HPC networks. In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. SC 2019.
Association for Computing Machinery, New York (2019)

4. Chunduri, S., Parker, S., Balaji, P., Harms, K., Kumaran, K.: Characterization of
MPI usage on a production supercomputer. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and Analysis.
SC 2018. IEEE Press (2018)

5. Cope, J., Liu, N., Lang, S., Carns, P., Carothers, C., Ross, R.: CODES: enabling
co-design of multilayer exascale storage architectures (2011)

6. Dordal, P.L.: An Introduction to Computer Networks, August 2020
7. Grant, R.E., Pedretti, K.T., Gentile, A.: Overtime: a tool for analyzing perfor-

mance variation due to network interference. In: Proceedings of the 3rd Workshop
on Exascale MPI, ExaMPI 2015, pp. 1–10. Association for Computing Machinery,
New York, November 2015

8. Groves, T., Gu, Y., Wright, N.J.: Understanding performance variability on the
aries dragonfly network. In: 2017 IEEE International Conference on Cluster Com-
puting (CLUSTER), pp. 809–813, September 2017. iSSN 2168-9253

9. Hewlett Packard Enterprise: Shasta Software Workshop (2019). https://cug.
org/proceedings/cug2019 proceedings/includes/files/inv113s1-file1.pdf. Accessed
19 Oct 2020

10. Hewlett Packard Enterprise: Measuring Network Performance to Better Manage
IT. Technical White Paper a50002193ENW, August 2020

11. Jha, S., Brandt, J., Gentile, A., Kalbarczyk, Z., Iyer, R.: Characterizing super-
computer traffic networks through link-level analysis. In: 2018 IEEE International
Conference on Cluster Computing (CLUSTER), pp. 562–570, September 2018.
https://doi.org/10.1109/CLUSTER.2018.00072, iSSN: 2168-9253

12. John Thompson: Scalable Workload Models for System Simulations (2014).
https://hpc.pnl.gov//modsim/2014/Presentations/Thompson.pdf. Accessed 19
Oct 2020

13. Jokanovic, A., Sancho, J.C., Labarta, J., Rodriguez, G., Minkenberg, C.: Effective
quality-of-service policy for capacity high-performance computing systems. In: 2012
IEEE 14th International Conference on High Performance Computing and Com-
munication 2012 IEEE 9th International Conference on Embedded Software and
Systems, pp. 598–607, June 2012. https://doi.org/10.1109/HPCC.2012.86

14. Kim, J., Dally, W.J., Scott, S., Abts, D.: Technology-driven, highly-scalable drag-
onfly topology. In: Proceedings - International Symposium on Computer Architec-
ture, pp. 77–88 (2008)

15. Li, F., Niaki, A.A., Choffnes, D., Gill, P., Mislove, A.: A large-scale analysis of
deployed traffic differentiation practices. In: Proceedings of the ACM Special Inter-
est Group on Data Communication, Beijing China, pp. 130–144. ACM, August
2019

16. Mubarak, M., et al.: Evaluating quality of service traffic classes on the Megafly net-
work. In: Weiland, M., Juckeland, G., Trinitis, C., Sadayappan, P. (eds.) ISC High
Performance 2019. LNCS, vol. 11501, pp. 3–20. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-20656-7 1

17. OFI Working Group: Libfabric Programmer’s manual (2020). https://ofiwg.github.
io/libfabric/master/man/fi endpoint.3.html. Accessed 19 Oct 2020

18. Savoie, L., Lowenthal, D.K., de Supinski, B.R., Mohror, K., Jain, N.: Mitigating
inter-job interference via process-level quality-of-service. In: 2019 IEEE Interna-
tional Conference on Cluster Computing (CLUSTER), pp. 1–5 (2019)

https://cug.org/proceedings/cug2019_proceedings/includes/files/inv113s1-file1.pdf
https://cug.org/proceedings/cug2019_proceedings/includes/files/inv113s1-file1.pdf
https://doi.org/10.1109/CLUSTER.2018.00072
https://hpc.pnl.gov//modsim/2014/Presentations/Thompson.pdf
https://doi.org/10.1109/HPCC.2012.86
https://doi.org/10.1007/978-3-030-20656-7_1
https://doi.org/10.1007/978-3-030-20656-7_1
https://ofiwg.github.io/libfabric/master/man/fi_endpoint.3.html
https://ofiwg.github.io/libfabric/master/man/fi_endpoint.3.html


156 K. A. Brown et al.

19. Sensi, D.D., Girolamo, S.D., McMahon, K.H., Roweth, D., Hoefler, T.: An in-
depth analysis of the slingshot interconnect. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC20), November 2020

20. Smith, S.A., et al.: Mitigating inter-job interference using adaptive flow-aware rout-
ing. In: SC18: International Conference for High Performance Computing, Net-
working, Storage and Analysis, pp. 346–360, November 2018

21. Society, T.I.: A Two Rate Three Color Marker (1999). https://tools.ietf.org/html/
rfc2698. Accessed 01 June 2020

22. Wilke, J., Kenny, J.: Opportunities and limitations of quality-of-service in message
passing applications on adaptively routed dragonfly and fat tree networks. In: 2020
IEEE International Conference on Cluster Computing (CLUSTER) (2020)

23. Zhang, Y., Tuncer, O., Kaplan, F., Olcoz, K., Leung, V.J., Coskun, A.K.: Level-
spread: a new job allocation policy for dragonfly networks. In: 2018 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS), pp. 1123–1132
(2018)

https://tools.ietf.org/html/rfc2698
https://tools.ietf.org/html/rfc2698

	A Tunable Implementation of Quality-of-Service Classes for HPC Networks
	1 Introduction
	2 Background and Related Work
	2.1 Communication Characteristics and Performance Targets
	2.2 Managing Contention for Shared Channels on HPC Networks
	2.3 QoS Solutions for HPC

	3 Design of a Tunable QoS Solution
	3.1 Flexible Traffic Shaping Using Two Rate Limits
	3.2 Defining QoS Classes for HPC Traffic

	4 Evaluation of QoS Solution
	4.1 CODES Simulation Toolkit
	4.2 Network Setup
	4.3 Workload Setup
	4.4 Bandwidth Shaping for Dynamic Workloads
	4.5 Supporting Specially Defined QoS Classes

	5 Discussion
	5.1 Tuning Class Configurations to Match Workload Requirements
	5.2 Production Deployment

	6 Conclusions
	References




