
Artemis: Automatic Runtime Tuning
of Parallel Execution Parameters

Using Machine Learning

Chad Wood1(B), Giorgis Georgakoudis2, David Beckingsale2, David Poliakoff3,
Alfredo Gimenez2, Kevin Huck1, Allen Malony1, and Todd Gamblin2

1 University of Oregon, Eugene, OR, USA
{cdw,khuck,malony}@cs.uoregon.edu

2 Lawrence Livermore National Laboratory, Livermore, CA, USA
{georgakoudis1,beckingsale1,giminez1,gamblin2}@llnl.gov

3 Sandia National Laboratory, Albequerque, NM, USA
dzpolia@sandia.gov

Abstract. Portable parallel programming models provide the potential
for high performance and productivity, however they come with a multi-
tude of runtime parameters that can have significant impact on execution
performance. Selecting the optimal set of those parameters is non-trivial,
so that HPC applications perform well in different system environments
and on different input data sets, without the need of time consuming
parameter exploration or major algorithmic adjustments.

We present Artemis, a method for online, feedback-driven, automatic
parameter tuning using machine learning that is generalizable and suit-
able for integration into high-performance codes. Artemis monitors exe-
cution at runtime and creates adaptive models for tuning execution
parameters, while being minimally invasive in application development
and runtime overhead. We demonstrate the effectiveness of Artemis by
optimizing the execution times of three HPC proxy applications: Clev-
erleaf, LULESH, and Kokkos Kernels SpMV. Evaluation shows that
Artemis selects the optimal execution policy with over 85% accuracy,
has modest monitoring overhead of less than 9%, and increases execu-
tion speed by up to 47% despite its runtime overhead.

Keywords: Artemis · HPC · Performance · In situ · Machine learning

1 Introduction

HPC software can contain tens to thousands of parallel code regions, each of
which may have independent performance tuning parameters. Optimal choices
for these tuning parameters can be specific to a target system architecture, the
set of input data to be processed, or the overall shared state of the machine during
a job’s execution. There are costs associated with discovering and maintaining
optimal choices, in a developer’s time to manually adjust settings and rebuild
c© National Technology & Engineering Solutions of Sandia, LLC 2021
B. L. Chamberlain et al. (Eds.): ISC High Performance 2021, LNCS 12728, pp. 453–472, 2021.
https://doi.org/10.1007/978-3-030-78713-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_24&domain=pdf
https://doi.org/10.1007/978-3-030-78713-4_24

454 C. Wood et al.

projects, or the compute time to explore the space of possible configurations to
find optimal settings automatically.

The goal of performance portability in HPC is for applications to operate
optimally across a range of current and future systems without the need for costly
code interventions in each new deployment. Given large job scales, increasing
software complexity, platform diversity, and hardware performance variability, a
performance portability is a challenging problem – with the same inputs, code
performance is observed to change between invocations on the same machine
and, worse, can be variable even during execution.

Recent work has turned to machine learning techniques to train classifica-
tion models on code and execution feature vectors that then can be used to make
dynamic tuning selection for each kernel of interest [3]. For instance, the Apollo [9]
work demonstrated the use of offline machine learning methods to optimize the
selection of RAJA [8] kernels at runtime. The RAJA programming methodology
provides abstractions that allow code regions to be implemented once but com-
piled for a variety of architectures, with several execution policies capable of being
selected at runtime. Apollo’s offline training approach built statistical classifiers
that directly selected values for tuning parameters. The classification model could
then be embedded in RAJA programs to provide a dynamic, low-overhead, data-
driven auto-tuning framework. The decision to do offline training was a trade-off
Apollo made to avoid costly online search for autotuning.

Offline machine learning methods are not sufficient for guiding online opti-
mizations that deliver general performance portability. There are several reasons
for this to be the case: 1. Without knowing what the user is actually doing, com-
binatorial exploration of all possible settings is difficult to exhaust, even with a
decent sampling strategy. A great many different models need to be represented
by whatever ends up being deployed, hopefully providing optimal recommenda-
tions for every unique combination of architectures, configurations, input decks,
and so on. 2. In order to cover all scenarios, the expense of training and re-training
will grow. The entire campaign of parameter testing would need to be done with
any new code deployment, significant modification, change in configuration, use
of new input deck, or increase in job scale. Certainly, moving to a new platform
or modification of an existing platform could trigger a new training study. Ide-
ally, the testing should happen at the full scale and duration that the job was
intended to be run at once its model was in use, but this is a costly proposition.
Ultimately, this suggests that offline training is unable to fully capture enough for
model fitness to be reliable over time. 3. Once trained offline, static models are
unable to adapt to changes between application invocations or simulation steps
in a workflow. Such changes can make even very good models go stale over time.
Furthermore, the potential dynamic variations in the execution environment can
expose gaps in the model due to the fact that they never occurred during training.

To further motivate the need for online methods, we note the paradigmatic
shift in HPC underway in the move to extreme scales and cloud-based computing.
Applications are increasingly being developed and deployed where it is accepted
as a given that there will be dynamism in their runtime environment. Even
within tightly-controlled on-site dedicated clusters, novel in situ resources and

Artemis: Automatic Runtime Tuning of Parallel Execution Parameters 455

services are being deployed in support of classic block-synchronous applications,
decreasing the emphasis on their synchronous behavior to maximally saturate
available computation and I/O resources.

Our current research is motivated by the need to address tuning challenges
presented by these performance complexities and realities of new in situ devel-
opment models: the scale of jobs, asynchronous data movement, and dynamic
performance characteristics of modern hardware. Instead of working against the
general nature of the problem, we propose to embrace it and investigate the pro-
ductive outcomes of adopting modern (online) training techniques. In the spirit
of prior work, we created the Artemis continuous tuning framework to analyze
code kernels online during application execution. Artemis trains new kernel per-
formance models in situ, deploying and evaluating them at runtime, observing
each model’s recommendations during execution to rate its ongoing fitness.

Our primary research contributions are:

– We present Artemis, an online framework that dynamically tunes the execu-
tion of parallel regions by training optimizing models.

– We provide an implementation of a RAJA parallel execution policy that uses
Artemis to optimize the execution of forall and collapse loop pattern.

– We extend Kokkos to use Artemis for tuning CUDA execution on GPUs.
– We evaluate Artemis using three HPC proxy applications: LULESH, Clev-

erleaf, and Kokkos Kernels SpMV. Results show that Artemis has overhead
of less than 9%, and model training and evaluation overhead is in the order
of hundreds of microseconds. Artemis selects the optimal policy 8̃5% of the
time, and can provide up to 47% speedup.

2 Background

Parallel programming frameworks have emerged to address the performance
portability challenge by providing a “write once, run anywhere” methodology
where alternate versions of a code section (called kernels) can be generated to tar-
get architectural tuning parameters. In this manner, the programming method-
ology decouples the specification of a kernel’s parallelism from the parameters
that govern policies for how to execute the work in different forms. The tuning
of the policy choices and execution variants can be done without changing the
high-level program.

Parallel frameworks such as RAJA [19] and Kokkos [13,14] use lightweight
syntax and standard C++ features for portability and ease of integration into
production applications. Related prior work on Apollo [9] focused on developing
an autotuning extension for RAJA for input-dependent parameters where the
best kernel execution policy depends on information known only at application
runtime. However, Apollo’s methodology required executions under all runtime
scenarios to create an offline static training database, leading to many of the
limitations discussed in the introduction. Thus, it is interesting to pursue a
new question: is it possible to train a classification model online and apply it
during application execution? Of course, this question immediately raises several

456 C. Wood et al.

concerns, mainly having to do with how training data is generated, the overhead
of measurement, and the complexity costs of machine learning algorithms.

3 Artemis: Design and Implementation

Artemis is at once a methodology for in situ, ML-based performance auto-tuning
and an architecture and operational framework for its implementation. The fol-
lowing captures these aspects as we describe how Artemis actually works. In a
nutshell, it is the observation of an application’s execution of its tunable parallel
code regions, extracting features and performance data with different execution
policies, coupled with the training of ML models online to select optimized exe-
cution policies per-region and feature set.

3.1 Design

Without loss of generality, Artemis thinks of applications being iterative where a
sequence of steps are conducted during which parallel regions are being executed.
At the end of those steps, the application ends.

If the a parallel region is to be tuned, it must be provide the different exe-
cution policy variants it can choose between, and then Artemis must be invoked
for that region. In the case of the reference implementations presented here, this
can be largely automated.

The user of Artemis need not be thought of as the ultimate end-user of an
application, but more likely the developer implementing a performance portabil-
ity framework such as RAJA or Kokkos within some application. By design, our
embedding of an Artemis interface into the portability framework layer enables
all parallel regions of an application to be automatically decorated with the nec-
essary Artemis API calls, and furnished with a set of common execution policies
that come pre-packaged, and may be integrated into any application making use
of that performance portability framework. Artemis is designed to be extensible
and programmable, so expert users are always going to be able to provide their
own execution policy variants, or make use of the Artemis API directly without
the benefits of a performance portability layer managing it.

In the common case where an application is making use of performance porta-
bility framework as described above, all an end-user will need to do to is to select
to enable Artemis functionality at build time, and then at run time they could
opt to enable the Artemis tuning capabilities for any given session, which would
then exploit the built-in policies that are bundled with the framework. Essen-
tially, this is the end of involvement for the Artemis user.

Within a step, each parallel region executed is done so for a particular pol-
icy as determined by the policy model. Artemis controls how the policy model
behaves. It could either be controlled to test out different policies during train-
ing, thereby allowing performance measurements to be obtained for analysis, or
it could select a particular policy determined by the auto-tuned model evalua-
tion. Each application step represents an opportunity for parallel region training

Artemis: Automatic Runtime Tuning of Parallel Execution Parameters 457

or re-training. Within a step, each encounter with an Artemis-guided parallel
region allows that region’s model to make an optimized policy selection based
on immediately-observed local features.

Artemis instruments parallel regions to collect data on their execution and
tune them. Marking the beginning of region execution, the user additionally
provides a set of features that characterize the execution and a set of execution
policies that are selectable for the execution of this region. After the call marking
the beginning of a region, the user calls the Artemis API function that returns
the policy to use when executing the region. The region proceeds to execute a
refactored variant of itself that corresponds to that policy selection. Finally, the
instrumented region calls the Artemis API to mark the end of its execution,
and Artemis makes note of the features and performance measurements. Region
execution time is the primary measurement of interest, but it is possible to
capture other performance data for analysis.

Artemis is implemented as a runtime library that merges with the applica-
tion to provide region performance/metadata measurement/analysis, ML model
training, and auto-tuning optimization. It presently targets parallel MPI pro-
grams that use RAJA or Kokkos for on-node parallelization.

3.2 Training and Optimization

The set of user-provided features and policies for each region are the input data
to Artemis for ML training and optimization. During training, Artemis explores
among the available policies and in particular measures their execution times,
which is the optimization target we selected for our experimental evaluation.
Artemis keeps per-region records of the feature set, policy, and measured execu-
tion time as tuples of (feature set, policy, execution time) to compile the training
data and create an optimizing policy selection model. Whenever a region is exe-
cuted multiple times per step, if different features are captured or policies are
explored, each unique combination will have executions times recorded for use
in model development.

By design, Artemis exposes an API call to the user to invoke optimization
on-demand. Artemis expects the user to invoke the optimization API function
after a sensible amount of computation has executed, permitting Artemis to
have collected a representative set of measurement records. This can be different
for different applications, and depends somewhat on the number of optimization
points to be explored when searching the space of available policies. If models are
initially trained from an inadequate set of measurements inputs, such that their
fitness is insufficient to make reasonably accurate predictions of the measures for
an iteration, Artemis will place the deviating regions into a training mode again
to gather data on additional policies, so that future models for that region, within
the run, will be more robustly informed. Programs with iterative algorithms
should typically invoke optimization every time step of execution. When the
user invokes the API, Artemis performs the following steps:

1. For every instrumented region it goes through the measurement records
and finds the policy with the fastest measured execution for each feature set

458 C. Wood et al.

to enunciate the optimal pairs of each unique (feature set, policy) combination
for this region; 2. In case of multi-process execution, Artemis communicates
per-process best policy data between all executing processes to build a unified
pool of these pairs and implement collective training, 3. From those feature set
and policy pairs, it creates the training data to feed to the classification ML
model, where the feature set is the feature input to the model and policy is
the response; 4. Artemis feeds those data to train the ML model and derive an
optimizing policy classifier for each region, that takes as input a feature set and
produces as output the optimized selection policy.

When later executions of the instrumented regions query Artemis for the
policy to execute, the trained model provides the optimizing policy index. Note
that even after training an optimized policy selection model, Artemis continues
to collect execution time data for optimized regions to monitor execution and
trigger re-training, which we discuss next.

3.3 Validation and Retraining

Artemis includes a regression model to trigger re-training, anticipating that
time-dependent or data-dependent behavior may change the execution profiles
of regions, thus rendering previous optimizing models sub-optimal. Specifically,
Artemis creates a regression model to predict execution time given the measure-
ment records. The input features to train this regression model are the features
set by instrumentation, including the policy selection, and the response outputs
are the measured execution times.

At every invocation of the optimization API call by the user, Artemis com-
pares the measured execution time per region, feature set, and policy to the
predicted execution time provided by the regression model. When the measured
time exceeds the predicted time over a threshold, Artemis discards the opti-
mizing model and reverts the region to a training regime, trying out different
execution policies on region execution to collect new data for training an opti-
mized model. On a later invocation of the optimization API call, Artemis creates
the new optimizing classification model and the new regression model for a new
cycle of optimization and monitoring.

3.4 Extending RAJA OpenMP Execution

The RAJA [8] programming model was extended to enable Artemis optimiza-
tion by defining an auto-tuned execution policy for parallel loop programming
patterns implemented with OpenMP. Interestingly, much of region instrumen-
tation is hidden by the end-user of RAJA since instrumentation happens inside
the RAJA header library. The only refactoring required for a RAJA program
is to make on-demand calls to the optimization API of Artemis and use the
Artemis-recommended execution policy when defining parallel kernels through
the RAJA templated API.

Specifically, we create an Artemis tuning policy for the forall program-
ming pattern, which defines a parallel loop region, and for the Collapse kernel

Artemis: Automatic Runtime Tuning of Parallel Execution Parameters 459

pattern, which collapses 2-level and 3-level nested to a single parallel loop, fus-
ing the nested iteration spaces. For this implementation, we choose the forall
and Collapse patterns since they are frequently used in applications. Artemis
can integrate with other parallel patterns of RAJA, such as scans, OpenMP
offloading, and CUDA, which is work-in-progress. The Artemis policy used in
our evaluation framework tunes execution by choosing between two policies:
either OpenMP or sequential. The choice for those two policies is motivated by
prior work [9] concluding that varying additional OpenMP parameters (number
of threads, loop scheduling policy) results in sub-optimal tuning. Nevertheless,
Artemis is general to tune for additional OpenMP parameters, which can be
abstracted as different execution policies to input to the Artemis API. Artemis
instrumentation is within the implementation of those patterns, in the RAJA
header library.

template <typename Iterable , typename Func >
RAJA_INLINE void forall_impl (artemis_exec &,

Iterable &&iter ,
Func && loop_body) {

static Artemis :: Region *region = nullptr;
if (region == nullptr)

region = Artemis :: create_region(num_policies =2);
region ->begin({ distance(begin(iter), end(iter)) });
int policy = region ->getPolicyIndex ();
switch(policy) {
case 0: {

#pragma omp parallel
{ RAJA_EXTRACT_BED_IT(iter);

#pragma omp for
for (decltype(distance_it) i = 0; i < distance_it; ++i)

loop_body(begin_it[i]);
} } break;

case 1: {
RAJA_EXTRACT_BED_IT(iter);
for (decltype(distance_it) i = 0; i < distance_it; ++i)

loop_body(begin_it[i]);
} break; };

region ->end();
}

Fig. 1. Using Artemis in the RAJA forall execution pattern.

Listing 1 shows a code excerpt for the instrumentation of the forall imple-
mentation with Artemis, redacting implementation details for RAJA closure pri-
vatization, for brevity of presentation. Note, the code for the Collapse kernel is
similar. The forall implementation instruments the region execution with a call
to region->begin() providing the number of iterations as the single feature in
the feature set. For the Collapse implementation, the feature set consists of the
iterations of all loop levels, creating a vector of features. Next, the implemen-
tation calls region->getPolicyIndex() which returns an index selecting the
execution policy variant; 0 indicates executing with OpenMP and 1 indicates
executing the region sequentially. This policy index is the input to the following
switch-case statement that selects the execution variant. Lasty, there is a call
to region->end() to marks the end of region execution.

460 C. Wood et al.

This pattern of API use is general, and serves as a model for other interfaces
and ports of Artemis, such as it’s integration with the tuning API of the Kokkos
portability framework.

3.5 Enhancing Kokkos CUDA Execution

Besides RAJA OpenMP execution, we integrate Artemis to tune CUDA kernel
execution within Kokkos [14]. Specifically, our experiment tuned parameters for
the execution of an SpMV kernel computation in CUDA, including the team size,
which is the outer level of parallelism of thread blocks, the vector size, which is
the inner level of parallelism of numbers of threads and the number of rows of
computation assigned to each thread.

3.6 Training Measurement

Initially, when Artemis first encounters an instrumented region, it deploys a
round-robin strategy to collect training data. This strategy cycles through the
set of provided policies, which contains the OpenMP execution policy and the
sequential policy in our RAJA implementation, or policies representing combi-
nations of the various kernel launch parameters in the Kokkos integration. When
searching, Artemis returns a policy index to explore a particular execution vari-
ant. In our implementation, round-robin advances the policy selection index for
each region and each set of unique features independently. While searching the
space of available policies, the Artemis runtime library records the unique feature
set and the measured execution time for each instrumented region.

When Artemis is being used in an MPI application, it is capable of collective
training, whereby training datasets across the processes are analyzed together.

At the end of an application step, every process issues a collective allgather
operation to share their training datasets and gather the training datasets of
every other process. Each process combines them to create a unified training
dataset per region, informed by the rank-offset parallel round-robin searches, to
find the best explored policy that minimizes execution time across both the local
and peer training data.

3.7 Training Model Analysis and Optimization

Artemis processes the metrics gathered during training to construct the matrix
of features to use in model construction. This includes the feature set, the
performance responses, and the optimal policies. A Random Forest Classifier
(RFC) model is trained per region, implemented using the OpenCV machine
learning library. Artemis evaluates this RFC model in later invocations of
region->getPolicyIndex() of a trained region, to return the optimized exe-
cution policy using as input the feature set provided in the arguments of the
region->begin(features) call. We choose RFC modeling because it has fast
evaluation times of O(m log n) complexity for m decision trees of n depth in the

Artemis: Automatic Runtime Tuning of Parallel Execution Parameters 461

forest. Fast evaluation is important for reducing the overhead during execution
since region->getPolicyIndex() is called with every region’s execution. For
experimentation, we set the depth to 2 levels and the forest size to 10 trees,
which has shown to be effective for optimization.

Artemis uses the same measurement data to train a per-region Random For-
est Regression (RFR) model that predicts expected execution time. Artemis uses
this regression model to detect time-dependent or data-dependent divergence in
the execution of a region that invalidates a previously trained RFC optimizing
model, indicating that re-training is needed. In the implementation, RFR mod-
els train with regression accuracy of 1e − 6, hence micro-second resolution for
predicting time, and implement a forest size of 50 trees. RFR evaluation is off
the critical path, hence affords the largest forest size, since it is called only on
invocations of Artemis::processMeasurements(). For time regression analysis,
Artemis compares the profiled execution time with the predicted one for all the
region’s feature sets. If the measured time for a feature set is greater than the
predicted one given a threshold, then the model is considered diverging. This
threshold limits re-trains due to transient perturbations when measuring execu-
tion time. We have experimentally found that this threshold value of 2× filters
out needless re-trains for the applications under test. Nonetheless, the threshold
value is configurable and also re-training can be turned completely off, through
environment variables. If the execution of an application region is pathological,
such that execution time continuously diverges with the same features, then this
region is ineligible for tuning and should be omitted or re-training should be
turned off. This is a challenging scenario to naively automate, and future work
involves exploring strategies to effectively manage regions that do not have stable
performance profiles even when features or loop inputs are held constant.

Artemis counts all diverging feature sets in a region. If they are found to be
more than a threshold, more than half feature sets in a region for our imple-
mentation, Artemis deems the RFC model invalid and sets up the round-robin
search strategy to re-train an optimized model for that region.

Artemis is generalized to support heterogeneous execution, where an appli-
cation deploys to a cluster of heterogeneous machines, or for cases where a het-
erogeneous workload is specified on the same regions. Differences in machine
architectures can be captured as a feature that describes the machine type, e.g.,
CPU or GPU micro-architecture. Differences in a heterogeneous workload, for
the same code region, can be captured as a feature describing the condition
causing it, e.g., the MPI rank or an application-designated parameter.

4 Experimentation Setup

The Artemis framework is intended to target environments where performance
portability is important. When evaluating Artemis we want to compare its ben-
efits to standard configurations of application and systems that they run on. On
the one hand, Artemis is optimizing an application’s execution on a machine
from some point of reference. If that starts with an already optimized version,

462 C. Wood et al.

there is little likely to be gained. Thus, choosing a “default” version of the appli-
cation with standard settings is more appropriate to gauge improvement. On the
other hand, Artemis is optimizing an application across machines, where differ-
ent architecture component (e.g., CPU, memory) could lead to different code
variants being selected. The application code needs to be developed in such a
way that making selection of those code variants is possible without completely
rewriting the application. This is the reason for working with RAJA and Kokkos
for the experiments discussed below.

4.1 Comparators

The applications used in our study are developed with either RAJA or Kokkos,
and we focus our attention on the parallel regions impacted by those portability
frameworks. We define the baseline in performance comparison to be, for OpenMP,
execution with the RAJA OpenMP execution policy using the same thread count
for all regions, or in the CUDA case, the expert-tuned and hard-coded settings
within the Kokkos Kernels suite. This is the default mode of executing these par-
allel applications. To quantify the instrumentation overhead of Artemis, we create
a version of Artemis with this baseline that always selects the fixed default policy
when guiding execution of a region, but does not perform any of the collection of
performance measurements or online training. We call this the Artemis-OpenMP
or Artemis-Expert Heuristic version. Lastly, we denote as Artemis the configura-
tion where Artemis dynamically optimizes execution, using online profiling and
machine learning for optimized policy selection and regression monitoring.

Table 1. Applications and their configurations

Application Inputs Nodes

LULESH –r 100 –c 1 or 2 or 4 or 8 –i 100 1

Cleverleaf Domain: (500, 500), triple point calculation, 1, 2, 4, 8

4 refinement levels, 25 timesteps,

max patch size: 100×100 or 200× 200,

400× 400 or –1×–1(no limit)

Kokkos Kernels SpMV Domain: 100 M to 600 M non-zero values 1

team size: 1–1024, vector size: 1–32

rows per thread: 1–4096

4.2 Applications

We chose three HPC proxy-applications to perform our experiments: LULESH [1,
20] and Cleverleaf [6,10] for OpenMP, and Kokkos Kernels SpMV [24] for CUDA.

Table 1 shows details of the application inputs used and execution config-
urations. LULESH is configurable to create regions of different computational

Artemis: Automatic Runtime Tuning of Parallel Execution Parameters 463

(a) 1 node (b) 2 nodes

(c) 4 nodes (d) 8 nodes

Fig. 2. Cleverleaf, speedup of Artemis-OpenMP and Artemis over the baseline.

cost, to mimic multi-material calculation. Cleverleaf uses adaptive mesh refine-
ment to create a range of problem subdomains, called patches, with varying
computational cost. Thus, both data-dependent and input-dependent settings
can create regions of different computation. Kokkos Kernels SpMV computes a
sparse matrix vector product for very large matrices, allowing for a configurable
count of non-zero values.

In the OpenMP codes, Artemis dynamically optimizes each parallel region by
selecting OpenMP execution policies only when there is enough work to justify
the overhead of parallel execution, otherwise it will elect for sequential execu-
tion. LULESH inputs create heterogeneous computation by using a large count
of regions (100) that emulate different materials, changing the computational cost
of various region subsets by 1, 2, 4, or 8 times the base cost – LULESH adjusts the
cost of 45% of the regions to be this multiple and 5% of regions to be 10× this
multiple. For Cleverleaf, heterogeneous computation is created by changing the
maximum patch size permitted during refinement, ranging from from 100× 100,
200× 200, 400× 400, up to an unlimited maximum by selecting –1×–1. The RAJA
LULESH implementation does not support distributed execution with MPI, thus
our experiments are single node. Cleverleaf provides support for MPI execution, so
we performed experiments on multiple nodes to show Artemis’s response to Clever-
leaf’s strong scaling properties. Kokkos Kernels SpMV experiments used Artemis
to explore and select policies representing combinations of Kokkos settings and
CUDA kernel launch parameters, across a variety of problem sizes.

4.3 Hardware and Software Platforms

Experiments were run on nodes featuring dual-socket Intel Xeon E5-2695v4 pro-
cessors for 36 cores and 128 GB of RAM per node and the TOSS3 software stack.
We compiled applications and Artemis using GCC version 8.1.0 and MVAPICH2
version 2.3 for MPI support. Artemis used the OpenCV machine learning library
version 4.3.0. For Kokkos CUDA we targeted the NVIDIA V100 (Volta) on an
IBM Power9 architecture, using CUDA version 10.

464 C. Wood et al.

Fig. 3. LULESH, speedup over the baseline of RAJA-OpenMP execution.

4.4 Statistical Evaluation

For each OpenMP proxy application and configuration we performed 10 inde-
pendent measurements. Unless otherwise noted, measurement counts the total
application execution time end-to-end. Confidence intervals shown correspond
to a 95% confidence level, calculated using Bootstrapping to avoid assumptions
on the sampled population’s distribution.

5 Evaluation

Here we provide results and detailed analysis of tuning for OpenMP with RAJA,
as well as summary results from applying Artemis to tune Kokkos settings and
CUDA kernel launch parameters.

For evaluating the performance of Artemis with OpenMP, we compute
the speedup over the baseline of RAJA-OpenMP execution for both Artemis-
OpenMP, which always selects OpenMP execution, and the optimizing Artemis,
which dynamically chooses between OpenMP or sequential execution for a
region, using the machine learning methods we described. Artemis-OpenMP
exposes the instrumentation overhead of Artemis, hence the expected slowdown
compared to non-instrumented RAJA-OpenMP execution. Figure 2 shows results
for Cleverleaf, and Fig. 3 shows results for LULESH. Values on bars show the
mean speedup (or slowdown) compared to RAJA-OpenMP execution.

5.1 Instrumentation Overhead

Observing the slowdown of Artemis-OpenMP, the overhead of instrumentation is
modest, cumulatively less than 9% across both applications and tested configura-
tions of input and node numbers. This shows that Artemis does not overburden
execution and given tuning opportunities, it should recuperate the overhead and
provide speedup over non-instrumented RAJA-OpenMP execution.

5.2 Model Training and Evaluation Overhead

The average training time for LULESH is 310 ms, while for Cleverleaf is 150
ms, which is minimal contrasted with the timescale of execution of regions, as
we show in later measurements, so Artemis recovers this overhead, effectively

Artemis: Automatic Runtime Tuning of Parallel Execution Parameters 465

(a) Patch size 100× 100 (b) Patch size 200× 200

(c) Patch size 400× 400 (d) Patch size −1×−1

Fig. 4. Execution time per timestep for Cleverleaf on 8 nodes, varying the maximum
patch size. Regridding operation performed after every 10 steps.

tuning and speeding up execution. Moreover, model training (or re-training)
is infrequently done as trained models persist during execution. By contrast,
model evaluation happens at every execution of a tunable region. Its overhead
depends on the forest size and tree depth of the trees in the evaluated forest.
Given the limits in forest size (10) and tree depth (2) set in our implementation,
see Sect. 3, we measure the time overhead for evaluating the maximum possible
forest configuration to be less than 10 microseconds.

5.3 Speedup on Cleverleaf

For Cleverleaf, varying the maximum patch size changes the number and size
of computational regions. A smaller size means more regions, hence more paral-
lelism, but also finer-grain decomposition of the computation domain. So, there is
greater disparity between regions that lack enough work, hence sequential policy
is fastest, and regions with enough parallel work, for which OpenMP execution is
fastest. Note, the special value −1×−1 means there is no maximum set and Clev-
erleaf by default prioritizes decomposing in larger regions. Figure 2 shows results
for all node configurations, demonstrating that Artemis consistently speeds up
execution for the smaller patch sizes of 100×100 and 200×200, no less than 8%,
executing with one node, and up to 21%, executing on 8 nodes. For the larger
patch size of 400× 400, execution with Artemis is on par with RAJA-OpenMP,
successfully recuperating the overhead with marginal gains, within measurement
error. For the unlimited patch size of −1 × −1, Artemis results in a net slow-
down, also compared with Artemis-OpenMP, since there is lack of optimization
opportunity, and the training and monitoring overhead inflated execution time.

For further analysis, we show results comparing execution times per timestep
for different execution modes. Figure 4 shows results when executing with 8
nodes. Results for other node counts are similar, thus we omit them for brevity.

466 C. Wood et al.

(a) Cost 1 (b) Cost 2

(c) Cost 4 (d) Cost 8

Fig. 5. Execution time per timestep for LULESH, showing different execution modes
on one node, varying the cost of computational regions.

Note that Cleverleaf performs a re-gridding operation [7] every 10 timesteps that
re-shuffles domain decomposition to reduce computation error, thus the spikes
in execution time in the 10th and 20th timesteps.

Observing results, Artemis inflates execution time for the first timestep across
all patch sizes, since this step includes training for bootstrapping tunable regions.
For most of the rest of timesteps, Artemis reduces execution time, by as much
as 40% for the least patch size of 100 × 100, compared to the default execution
with RAJA-OpenMP. Artemis tuning potential lessens the larger the patch size,
since larger regions favor OpenMP execution. Nevertheless, observing Fig. 4d for
the largest patch size selection, Artemis correctly selects OpenMP execution and
any performance lost is due to the initial training overhead. Notably, Cleverleaf
execution with 8 nodes has second to sub-second timesteps, and Artemis is fast
enough to optimize execution even at this short time scale. Expectedly, Artemis-
OpenMP has slightly higher execution time per timestep compared to RAJA-
OpenMP, reflecting instrumentation overhead as seen by the speedup results.

5.4 Effectiveness of Cleverleaf Policy Selection

Cleverleaf instantiates a multitude of regions and each region executes with mul-
tiple different feature sets, corresponding to different patch sizes from decom-
posing the domain and load balancing. So, to highlight Artemis effectiveness we
fix the patch size to 100 × 100, which presents the most optimization potential,
and pick one region to plot the average execution time of each feature set for the
top-20 most frequently executed ones, contrasting OpenMP only execution vs.
sequential execution vs. Artemis execution with dynamic policy selection. The
region comprises of feature sets corresponding to 2d collapsed loops, so there are
two values describing (outer,inner) loop iterations. Depending on the feature set
size, OpenMP or sequential is the best. For example, feature set (3,201) executes
faster with OpenMP and feature set (55, 2) executes faster sequentially. Observ-
ing execution times measured for Artemis, policy recommendations converge to

Artemis: Automatic Runtime Tuning of Parallel Execution Parameters 467

the optimal policy for the majority of feature sets for which the performance
difference between the sequential and OpenMP policy selection is more than
20%. Artemis selects the optimal policy in 10 of the 15 such regions.

Further, we find positive results for the accuracy of Artemis in selecting
optimal policies. For the initial timestep, Artemis has low accuracy, ranging from
10% to 20%, due to training, without any discernible trend among different patch
sizes. However, accuracy significantly improves after this initial, training step to
a range of 85% to 95%, showing Artemis is effective in selecting the optimal
policy most of the time.

5.5 Strong Scaling with Different Node Counts

Figs. 2a–d show results for increasing node counts. Following the discussion on
smaller patch sizes that present optimization opportunities for Artemis, increas-
ing the number of nodes also boosts the speedup achieved by Artemis. Clever-
leaf distributes computational regions among different MPI ranks and executes
bulk-synchronous, advancing the simulation time step after all MPI ranks have
finished processing. Artemis dynamically optimizes execution per rank, thus it
reduces execution time on the critical path, with multiplicative effect on the
overall execution.

5.6 Speedup on LULESH

Figure 3 shows results for LULESH on a single node due to the limitation of
the RAJA version of LULESH supporting only single node execution. For this
experiment, the number of regions is kept constant (100) and the cost of com-
putation varies between 1× (default) and 8×, as explained in Sect. 4. Similarly
to Cleverleaf, the instrumentation overhead of Artemis, shown by observing the
slowdown of Artemis-OpenMP, is within 9% of non-instrumented execution of
RAJA-OpenMP.

Regarding speedup of Artemis, it is consistently faster than RAJA-OpenMP.
Artemis improves execution time even for the default setting of cost 1× by 16%.
Expectedly, increasing the cost creates more computational disparity between
LULESH computational regions, thus Artemis achieves higher speedup. For the
highest cost value we experiment with, a cost of 8×, Artemis achieves significant
speedup of 47% over the RAJA-OpenMP baseline.

For more detailed results, Fig. 5 shows execution time per timestep for all
execution modes varying the cost of computational regions. Observations are
similar to Cleverleaf, the first timestep under Artemis is slower due to train-
ing while the rest of the timesteps execute faster than RAJA-OpenMP. Artemis
speeds up the execution of timestep up to 50% compared to RAJA-OpenMP,
increasingly so as the cost input increases. Different than Cleverleaf, the reso-
lution of the execution time of LULESH is much more fine-grain, in the range
of hundreds of milliseconds. Nonetheless, Artemis effectively optimizes execu-
tion even at this time scale, showing that training effectively optimizes policy
selection and overcomes any instrumentation overhead.

468 C. Wood et al.

Fig. 6. Artemis improves performance of the Kokkos SpMV kernel up to 16.8% com-
pared to the hardcoded expert heuristic.

5.7 Speedup on Kokkos Kernels SpMV

Figure 6 shows the results of our integration with Kokkos, tuning the paral-
lel team size, vector size, and number of rows assigned to each thread. The
x-axis shows scaling the number of non-zero elements y-axis plots the average
execution time for 1500 SpMV kernel invocations. Expert Heuristic is the exist-
ing, hardcoded tuning strategy set by the expert kernel developer, setting those
parameters based on the input data and expert knowledge. This heuristic func-
tion settles on 1 row per thread, a vector length of 2, and a team size of 256 for
inputs shown. Artemis-Expert Heuristic exposes the instrumentation overhead
of Artemis, by foregoing tuning, instead executing with the same settings of the
expert heuristic. The performance of Artemis-Expert Heuristic is on par with
execution of Expert Heuristic without Artemis intervening, thus instrumentation
overhead is minimal. Artemis shows the performance improvement when tuning
is enabled. Kokkos provides a range of 664 selectable policies to Artemis for tun-
ing, with parameters team size ranging from 1–1024, vector size from 1–32, and
number of rows per thread from 1–4096. Results show that Artemis succesfully
navigates the tuning space, and provides increasingly faster performance as the
problem size increases, for a maximum of 16.8% performance improvement on
the largest input of 600 M non-zero elements.

6 Related Work

Existing tuning frameworks are either application-specific [5,28], programming-
model-specific [2,23], hardware-specific [4,15], or feature the need for offline
training [9,27], and thus have limited scope. By design, Artemis is a general
framework that gives an API to tune at any of those levels, and we show its
generality by integrating Artemis with the RAJA programming model, tuning
a variety of HPC proxy applications and kernels. The closest to our work is the

Artemis: Automatic Runtime Tuning of Parallel Execution Parameters 469

Apollo paper by Beckingsale et al. [9], with the important distinction that, rather
than exhaustive offline tuning, the Artemis framework performs the search space
exploration at runtime.

Empirical techniques directly measure all the possible variants and select
the fastest. Established projects like the ATLAS [4,29] and FFTW [15] libraries
apply this technique with great success, but it requires the up front cost of find-
ing the best code variant choices for each system. ATF [25,26]presents a generic
extensible framework for automated tuning, independent of programming lan-
guage or domain. Oski [28] performs runtime tuning, optimizing over sparse
linear algebra kernels. Orio [17] and OpenTuner [2] are able to facilitate general
purpose kernel tuning using empirical techniques to select the best performing
configurations for production. ActiveHarmony [18] uses parallel search strate-
gies to perform online tuning, though sweeping large parameter spaces can take
significant amounts of time.

Using some form of a model to predict the performance of the code, analytical
examples make tuning decisions based on model output. Similarly to Artemis,
AutoTuneTMP [23] makes use of C++ template metaprogramming to abstract-
away the tuning mechanisms of kernels and facilitate performance portability.
It constrains the search space for online training using parameterized kernel
definitions. Unlike Artemis’s use of RAJA policies that are compiled in alongside
the application, AutoTuneTMP uses JIT compilation and dynamic linking at
runtime to produce kernel variants, a mechanism which could impose non-trivial
overhead in a large large class of HPC codes in production settings. Mira [21] uses
static performance analysis to generate and explore performance models offline.
Mira’s abstract performance models allow it to avoid some of the limitations to
offline learning.

A statistical model is built by applying machine learning techniques, and this
model is used to make tuning decisions. Sreenivasan et al. [27] demonstrated
performance gains using an OpenMP autotuner framework that performs offline
tuning using a random forest statistical model of the reduced search space to
eliminate exhaustive tuning. HiPerBOt [22] presents an active learning frame-
work that uses Bayesian techniques to maintain optimal outcomes while collaps-
ing the required number of samples for learning.

Other work [11,12,16] has looked into auto-tuning the number of OpenMP
threads in multi-program execution. Those approaches look at architectural met-
rics, such as Instructions-Per-Cycle and memory stalls, to dynamically throttle
thread allocation when contention occurs.

7 Conclusion and Future Work

We have presented Artemis, a novel framework that optimizes performance by
tuning an application’s parallel computational regions online. Artemis provides
a powerful API to integrate online tuning in existing applications, by defin-
ing tunable regions and execution variants. Artemis automatically adapts to
data-dependent or time-dependent changes in execution using decision tree and

470 C. Wood et al.

regression models. We integrated Artemis with RAJA and Kokkos and evaluated
online tuning performance on HPC proxy applications: Cleverleaf and LULESH,
and a CUDA SpMV kernel. Results show that Artemis is up to 47% faster and
its operating overhead is minimal.

Future work includes: 1. using Artemis for tuning of additional GPU-offloaded
compute kernels with heterogeneous memory hierarchies. 2. tuning additional par-
allel execution parameters such as loop tiling and nesting. 3. expanding experi-
mentation to large applications by extending the Artemis codebase and integra-
tion with RAJA, Kokkos, and lower level parallel programming models, such as
OpenMP, CUDA, and HIP.

Acknowledgment. This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344 (LLNL-CONF-809192). Additional support was provided by a LLNL sub-
contract to the University of Oregon, No. B631536. This document was prepared as an
account of work sponsored by an agency of the United States government. Neither the
United States government nor Lawrence Livermore National Security, LLC, nor any of
their employees makes any warranty, expressed or implied, or assumes any legal liabil-
ity or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process,
or service by trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.

References

1. Hydrodynamics Challenge Problem, Lawrence Livermore National Laboratory.
Tech. Rep. LLNL-TR-490254, Lawrence Livermore National Laboratory

2. Ansel, J., et al.: Opentuner: an extensible framework for program autotuning. In:
Proceedings of the 23rd International Conference on Parallel Architectures and
Compilation, pp. 303–316 (2014)

3. Balaprakash, P., Dongarra, J., Gamblin, T., Hall, M., Hollingsworth, J.K., Nor-
ris, B., Vuduc, R.: Autotuning in high-performance computing applications. Proc.
IEEE 106(11), 2068–2083 (2018)

4. Baldeschwieler, J.E., Blumofe, R.D., Brewer, E.A.: Atlas: an infrastructure for
global computing. In: Proceedings of the 7th Workshop on ACM SIGOPS European
Workshop: Systems Support for Worldwide Applications, pp. 165–172 (1996)

5. Bari, M.A.S., Chaimov, N., Malik, A.M., Huck, K.A., Chapman, B., Malony, A.D.,
Sarood, O.: Arcs: adaptive runtime configuration selection for power-constrained
openmp applications. In: 2016 IEEE International Conference on Cluster Comput-
ing, pp. 461–470. IEEE (2016)

6. Beckingsale, D.A., Gaudin, W.P., Herdman, J.A., Jarvis, S.A.: Resident block-
structured adaptive mesh refinement on thousands of graphics processing units.
In: 44th International Conference on Parallel Processing, pp. 61–70 (2015)

Artemis: Automatic Runtime Tuning of Parallel Execution Parameters 471

7. Beckingsale, D., Gaudin, W., Herdman, A., Jarvis, S.: Resident block-structured
adaptive mesh refinement on thousands of graphics processing units. In: 2015 44th
International Conference on Parallel Processing, pp. 61–70. IEEE (2015)

8. Beckingsale, D.A., Hornung, R.D., Scogland, T.R.W., Vargas, A.: Performance
portable C++ programming with RAJA. In: Proceedings of the 24th Symposium
on Principles and Practice of Parallel Programming, pp. 455–456 (2019)

9. Beckingsale, D.A., Pearce, O., Laguna, I., Gamblin, T.: Apollo: reusable models for
fast, dynamic tuning of input-dependent code. In: 31st IEEE International Parallel
& Distributed Processing Symposium, pp. 307–316 (2017)

10. Beckingsale, D.A.: Towards scalable adaptive mesh refinement on future parallel
architectures. Ph.D. thesis, University of Warwick (2015)

11. Creech, T., Kotha, A., Barua, R.: Efficient multiprogramming for multicores with
scaf. In: 2013 46th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pp. 334–345 (2013)

12. Creech, T., Barua, R.: Transparently space sharing a multicore among multiple pro-
cesses. ACM Trans. Parallel Comput. 3(3) (Nov 2016). https://doi.org/10.1145/
3001910

13. Edwards, H.C., Trott, C.R.: Kokkos: Enabling performance portability across
manycore architectures. In: 2013 Extreme Scaling Workshop (xsw 2013), pp. 18–24.
IEEE (2013)

14. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore perfor-
mance portability through polymorphic memory access patterns. J. Parallel Dis-
trib. Comput. 74(12), 3202–3216 (2014)

15. Frigo, M., Johnson, S.G.: FFTW an adaptive software architecture for the FFT. In:
Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP 1998) (Cat. No. 98CH36181). vol. 3, pp. 1381–1384.
IEEE (1998)

16. Georgakoudis, G., Vandierendonck, H., Thoman, P., Supinski, B.R.D., Fahringer,
T., Nikolopoulos, D.S.: Scalo: scalability-aware parallelism orchestration for multi-
threaded workloads. ACM Trans. Archit. Code Optim. 14(4) (Dec 2017). https://
doi.org/10.1145/3158643

17. Hartono, A., Norris, B., Sadayappan, P.: Annotation-based empirical performance
tuning using orio. In: 2009 IEEE International Symposium on Parallel & Dis-
tributed Processing, pp. 1–11. IEEE (2009)

18. Hollingsworth, J., Tiwari, A.: End-to-end auto-tuning with active harmony. In: Per-
formance Tuning of Scientific Applications, pp. 217–238, CRC Press, Boca Raton
(2010)

19. Hornung, R.D., Keasler, J.A.: The RAJA Portability Layer: Overview and Status.
Tech. Rep, Lawrence Livermore National Lab (2014)

20. Karlin, I., Keasler, J.A., Neely, R.: Lulesh 2.0 updates and changes. Tech. Rep.
LLNL-TR-641973, Lawrence Livermore National Laboratory (August 2013)

21. Meng, K., Norris, B.: Mira: a framework for static performance analysis. In: 2017
IEEE International Conference on Cluster Computing (CLUSTER), pp. 103–113.
IEEE (2017)

22. Menon, H., Bhatele, A., Gamblin, T.: Auto-tuning parameter choices in HPC appli-
cations using Bayesian optimization. In: 2020 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS) (2020)

23. Pfander, D., Brunn, M., Pflüger, D.: AutoTuneTmp: auto-tuning in C++ with
runtime template metaprogramming. In: 2018 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pp. 1123–1132. IEEE
(2018)

https://doi.org/10.1145/3001910
https://doi.org/10.1145/3001910
https://doi.org/10.1145/3158643
https://doi.org/10.1145/3158643

472 C. Wood et al.

24. Rajamanickam, S.: Kokkos kernels: Performance portable kernels for sparse/dense
linear algebra graph and machine learning kernels. Tech. Rep., Sandia National
Lab. (SNL-NM), Albuquerque, NM (United States) (2020)

25. Rasch, A., Gorlatch, S.: ATW a generic directive-based auto-tuning framework.
Concurr. Comput. Prac. Exp. 31, e4423 (2019)

26. Rasch, A., Haidl, M., Gorlatch, S.: AFT: a generic auto-tuning framework. In:
2017 IEEE 19th International Conference on High Performance Computing and
Communications; IEEE 15th International Conference on Smart City; IEEE 3rd
International Conference on Data Science and Systems (HPCC/SmartCity/DSS),
pp. 64–71. IEEE (2017)

27. Sreenivasan, V., Javali, R., Hall, M., Balaprakash, P., Scogland, T.R.W., de Supin-
ski, B.R.: A framework for enabling openMP autotuning. In: Fan, X., de Supinski,
B.R., Sinnen, O., Giacaman, N. (eds.) IWOMP 2019. LNCS, vol. 11718, pp. 50–60.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28596-8 4

28. Vuduc, R., Demmel, J.W., Yelick, K.A.: OSKI: a library of automatically tuned
sparse matrix kernels. J. Phys. Conf. Ser. 16, 521 (2005)

29. Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated empirical optimizations of
software and the atlas project. Parallel Comput. 27(1–2), 3–35 (2001)

https://doi.org/10.1007/978-3-030-28596-8_4

	Artemis: Automatic Runtime Tuning of Parallel Execution Parameters Using Machine Learning
	1 Introduction
	2 Background
	3 Artemis: Design and Implementation
	3.1 Design
	3.2 Training and Optimization
	3.3 Validation and Retraining
	3.4 Extending RAJA OpenMP Execution
	3.5 Enhancing Kokkos CUDA Execution
	3.6 Training Measurement
	3.7 Training Model Analysis and Optimization

	4 Experimentation Setup
	4.1 Comparators
	4.2 Applications
	4.3 Hardware and Software Platforms
	4.4 Statistical Evaluation

	5 Evaluation
	5.1 Instrumentation Overhead
	5.2 Model Training and Evaluation Overhead
	5.3 Speedup on Cleverleaf
	5.4 Effectiveness of Cleverleaf Policy Selection
	5.5 Strong Scaling with Different Node Counts
	5.6 Speedup on LULESH
	5.7 Speedup on Kokkos Kernels SpMV

	6 Related Work
	7 Conclusion and Future Work
	References

