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Abstract. In the state-of-the-art production quality MPI (Message
Passing Interface) libraries, communication progress is either performed
by the main thread or a separate communication progress thread. Tak-
ing advantage of separate communication threads can lead to a higher
overlap of communication and computation as well as reduced total appli-
cation execution time. However, such an approach can also lead to con-
tention for CPU resources leading to sub-par application performance
as the application itself has less number of available cores for computa-
tion. Recently, Mellanox has introduced the BlueField series of adapters
which combine the advanced capabilities of traditional ASIC based net-
work adapters with an array of ARM processors. In this paper, we pro-
pose BluesMPI, a high performance MPI non-blocking Alltoall design
that can be used to offload MPI Ialltoall collective operations from the
host CPU to the Smart NIC. BluesMPI guarantees the full overlap of
communication and computation for Alltoall collective operations while
providing on-par pure communication latency to CPU based on-loading
designs. We explore several designs to achieve the best pure communi-
cation latency for MPI Ialltoall. Our experiments show that BluesMPI
can improve the total execution time of the OSU Micro Benchmark for
MPI Ialltoall and P3DFFT application up to 44% and 30%, respectively.
To the best of our knowledge, this is the first design that efficiently takes
advantage of modern BlueField Smart NICs in deriving the MPI Alltoall
collective operation to get peak overlap of communication and computa-
tion.
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1 Introduction

The rapid growth in the scale of supercomputing systems over the last decade
has been driven by the multi-/many-core architectures, and RDMA-enabled,
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high-performance interconnects such as InfiniBand [8] (IB). The Message Passing
Interface (MPI) [4] has been extensively used for implementing high-performance
parallel applications and it offers various primitives such as point-to-point, col-
lective, and Remote Memory Access operations. An MPI library that supports
highly efficient communication primitives will be essential to the performance of
HPC and parallel deep learning applications.

Overlap of communication and computation is critical for increasing resource
utilization and performance. MPI provides non-blocking point-to-point and col-
lective primitives that are used to achieve communication and computation over-
lap. In MPI, communication must be progressed, either by the main thread by
calling MPI Test or an extra offload entity such as a separate thread, or a hard-
ware feature inside the network. If none of these exist, the amount of overlap will
be limited as the main process thread must context switch from the application
computation to progress the communication inside the MPI library. This also
greatly depends on the application developer on how frequently they explicitly
call MPI Test. The application developer can either call MPI Test or there may
be an asynchronous communication thread in MPI. Both scenarios, however, can
lead to sub-par performance as the main application has less CPU resources for
useful application-level computation. Therefore, network offload mechanisms are
gaining attraction as they have the potential to completely offload the commu-
nication of MPI primitives into the network, maximizing the overlap of com-
munication and computation. However, the area of network offloading of MPI
primitives is still nascent and cannot be used as a universal solution.

Table 1. Designs and features to support efficient non-blocking collectives in repre-
sentative MPI libraries. C#1: computation and communication overlap, C#2: com-
munication latency, challenge #3: network scalability, C#4: availability of cores for
compute, C#5: hardware contexts for multiple communicators

Features of representative MPI libraries

No

offload

Core

[16]-Direct

SHARP

[15]

HW

tag [6]

matching

RDMA-

aware [17]

MPICH [7]

Async

Thrd

MVAPICH2

Async [11]

Proposed

C#1 Poor Good Fair Fair Fair Good Fair Good

C#2 Good Good Good Good Poor Fair Good Good

C#3 Good Fair Good Fair Fair Good Good Good

C#4 Poor Good Good Fair Good Poor Fair Good

C#5 Good Poor Fair Fair Good Good Good Good

Table 1 summarizes the different hardware offloading approaches. Among the
most recent schemes in networking technologies, SHARP collective offload mech-
anism [15] only supports Barrier and Allreduce operations and it supports a few
number of application level communicators as the Switch contexts are limited.
Due to the limitation of SHARP contexts inside each switch, MPI libraries have
to allow only one process per node (also known as the leader process) to use the
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SHARP feature. Therefore, all the processes inside the same node must use host
CPU resources to conduct the intra-node operations before using SHARP. This
can limit the overlap opportunities of SHARP. Hardware Tag Matching for MPI
point-to-point operations [5,6] is another state-of-the-art network offloading fea-
ture for MPI. Even though this mechanism can improve the overlap of communi-
cation and computation of large Rendezvous messages, when this point-to-point
mechanism is used in dense collectives such as Alltoall, its overlap potential
hugely degrades as the scale goes higher. This is due to a limited number of out-
standing tags in this architecture [6]. On the other hand, in recent years, Smart
NICs are able to bring more compute resources into the network and a high
performance middleware such as MPI must take advantage of these additional
resources to fill in the limitations of other in-network technologies. Smart NICs
can act as a brand new host on the network by setting them to “separated host”
mode. Therefore, instead of using them as a packet processing engine where all
packets go through the processors inside the Smart NIC, these Smart NICs have
the potential for any in-network offloading purpose.

Fig. 1. Timeline of various designs for MPI non-blocking collectives

1.1 Challenges

In this paper, our goal is to efficiently take advantage of modern Smart NICs
in separated host mode to propose novel MPI non-blocking Alltoall designs for
large messages that 1) Achieves maximum overlap of communication and com-
putation without requiring any changes inside the upper-level application, 2)
Leaves the entire host processor for the useful application computation with
minimal context-switching, and 3) Minimizes the overhead involved in offload-
ing to the Smart NIC and provides good communication latency. In other words,
we are envisioning communication offload, as outlined in Fig. 1. To achieve our
goal, we are considering additional compute capabilities that are available in
modern high performance interconnects, such as Smart NICs. One of the latest
developments of such interconnects is the BlueField adapter that is based on
the ConnectX-6 series of Infiniband Mellanox models. This adapter is equipped
with an array of cache-coherent 1999 MHz ARM cores and they can be used as a
general-purpose system [3]. It also provides support for dual-port Remote Direct



BluesMPI: MPI Non-blocking Alltoall Offloading on BlueField Smart NICs 21

Memory Access (RDMA). These developments lead to the following broad chal-
lenge: How can existing production-quality HPC middleware such as
MPI be enhanced to take advantage of emerging networking technolo-
gies to deliver the best performance for HPC and DL applications on
emerging dense many-core CPU/GPU systems?

We break down this broad challenge into the following questions: 1) What
shortcomings regarding MPI exist in current state-of-the-art in-network tech-
nologies? 2) Can we use additional compute resources provided by modern
Smart NICs to accelerate MPI collective primitives? 3) What are the challenges
regarding exploiting these modern Smart NICs for offloading non-blocking All-
toall operations? 4) Can we propose efficient designs to take advantage of Smart
NICs capabilities without requiring the upper-level application changes? 5) How
to minimize pure communication latency of non-blocking Alltoall collective oper-
ations designed using BlueField Smart NICs?, and 6) What are the performance
overheads of each component of the framework and what is the impact of the
proposed design at the microbenchmark level as well as the application-level?

Fig. 2. Comparison of point-to-point latency and bandwidth of the processes on Blue-
Field smart NIC versus processes on the host. Latency Relative Performance (speedup)
is calculated by BF-latency/Host-latency, and bandwidth speedup is calculated by
Host-bw/BF-bw. We can observe that as message size increases, the inter-node perfor-
mance of ARM cores of BlueField (BF) smart NIC converges to the performance of
XEON cores.

1.2 Motivation and Characterization

As an initial step to answering our broad challenge, we need to identify oppor-
tunities provided by Smart NICs and thoroughly characterize a system enabled
with BlueField adapters. Based on this characterization, we conclude which MPI
operations have the potential for offloading to the ARM cores of the BlueField
and provide insights for our proposed Smart NIC-aware MPI library. To do so,
we compare the latency and bandwidth of communication between MPI pro-
cesses on the host cores versus MPI processes running on the ARM cores of the
BlueField adapters using OSU Micro Benchmarks [1]. Please refer to Sect. 1.5
for detailed experimental setup information. For each test, we launch all the
processes on the XEON cores of hosts and measure the latency and bandwidth.
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Then, we perform a similar test by launching all the processes on the ARM cores
of the BlueField Smart NIC and calculate the speedup of host tests versus Smart
NIC tests. The speedup is calculated by ARM-latency/host-latency.

Figures 2(a) and (b) shows that for intra-node operations, as the message size
increases, the performance of intra-node operations diverges from the host pro-
cesses. This is in line with our expectations as for the intra-node operations, CPU
is in charge of the copy operations, and having a faster CPU has a significant
impact on point-to-point performance. Therefore, in our BluesMPI framework,
we avoid going through the CPU based intra-node operations for BluesMPI
worker processes on the Smart NIC. On the other hand, Fig. 2(b) shows an
opposite trend. Here as the message size increases, inter-node latency
of Smart NIC worker processes and host processes converge. This is
because the HCA is in charge of operations and for medium and large messages
(large than 16 KB) where the rendezvous protocol is used for point-to-point
operations. In this protocol, there are no copy operations involved. Therefore, as
message size increases, the network overheads will have more share of the total
latency.

Figure 2(c) illustrates the bandwidth comparison between the process run-
ning on ARM core of Smart NIC and the processes running on the host XEON
cores. The speedup is calculated by host-BW/ARM-BW. For multiple pair band-
width tests, we used osu mbw mr [1] that calculates the aggregate bandwidth for
multiple pairs of processes. Here experimental results of the inter-node opera-
tion are shown as intra-node operations are not interesting for us anymore. These
results show a similar trend as for large message inter-node latency operations.
Here also as the message size increases, the performance of processes on ARM
cores of Smart NIC converges to the performance of XEON cores of host. This
trend is consistent as the number of pairs increases as well. This shows that
processes on Smart NIC have the potential to handle dense commu-
nication for large messages using RDMA.

Based on this characterization, our proposed BluesMPI framework is purely
based on RDMA operations and the focus is to provide maximum overlap of
communication and computation with low communication latency for dense non-
blocking Alltoall collectives with medium and large messages.

1.3 Contributions

In this paper, we characterize various MPI point-to-point operations and identify
the aspects of the MPI library that can be efficiently driven by the additional
compute resources on the modern Smart NICs. Then based on our characteri-
zation, we propose BluesMPI, an adaptive MPI non-blocking Alltoall collective
offload design on modern Smart NICs. We propose various designs on the top
of BlueField for MPI Ialltoall operations. Our experimental results show that
BluesMPI can successfully take advantage of the available Smart NICs SoC on
the network and lower the execution time of OSU Micro Benchmark by 44%
and P3DFFT application by 30% on 1024 processes. To the best of our knowl-
edge, this is the first design that efficiently takes advantage of modern BlueField
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Smart NICs in deriving the MPI collective operations to get the peak overlap of
communication and computation.

To summarize, this paper makes the following contributions:

– In-depth analysis and characterization of MPI operations running on the
available compute resources of Smart NICs.

– Proposing novel designs for non-blocking Alltoall operations that provide
full overlap of communication and computation and low pure communica-
tion latency.

– Performing a thorough characterization of different components of the pro-
posed BluesMPI framework.

– Performance evaluations of the proposed designs at the micro benchmark level
and application level.

1.4 Overview of BlueField Smart NICs

Within each of the products in the BlueField family is the BlueField Data Pro-
cessing Unit (DPU). This is a system-on-chip containing 64-bit ARMv8 A72
cores connected in a mesh, DDR4 memory controllers, a ConnectX network con-
troller, and an integrated PCIe switch. The DPU is sold as part of products in
different lines of the BlueField family. These include BlueField Smart NICs, Blue-
Field storage controllers, and the BlueField Reference Platform. Figure 3 depicts
a schematic overview of the BlueField Smart NIC architecture. The BlueField
Smart NIC has two modes of operation: Separated Host mode (default) and
Embedded CPU Function Ownership (Smart NIC) mode. Each physical port on
the Smart NIC can be independently configured to either mode [3]. In separated
host mode, the ARM cores can appear on the network as any other host and the
main CPU (i.e. ×86) is exposed through a PCIe function for direct connectiv-
ity to the ConnectX. The ARM cores are exposed through a symmetric (to the
host) PCIe function for their own connectivity to the ConnectX network adapter.
Bandwidth is shared between the two functions. In our experiments, we use this
mode. Embedded CPU Function Ownership (Smart NIC) mode places several
restrictions on the host. In Smart NIC mode, all network controller resources

Fig. 3. BlueField smart NIC architecture
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are controlled by the ARM cores via the Embedded CPU Physical Function
(ECPF). The ECPF in this mode will own the embedded switch (e-switch) as
well. In order to pass traffic to the host, either the e-switch must be set up with
forwarding rules, or kernel netdev representors (Open vSwitch virtual ports)
must be configured on the ARM cores [3].

1.5 Experimental Setup

We used the HPC Advisory Council High-Performance Center (HPCAC) [2]
cluster for our evaluation. HPCAC has 32 nodes that contain the BlueField-
2 network adapters. These adapters have an array of 8 ARM cores operating
at 1999 MHz with 16 GB RAM. Each BlueField adapter is equipped with Mel-
lanox MT41686 HDR ConnectX-6 HCAs (100 Gbps data rate) with PCI-Ex Gen3
interfaces [3]. The host is equipped with the Broadwell series of Xeon dual-socket,
16-core processors operating at 2.60 GHz with 128 GB RAM.

2 BluesMPI Designs

In this section, we provide the details of various components of the proposed
BluesMPI framework. In Sect. 2.1, we discuss the overall design of the frame-
work and explain each step that is required for non-blocking Alltoall collective
operations to be offloaded onto the Smart NIC. In Sect. 2.2, we describe the
details of various novel designs for non-blocking Alltoall operations.

2.1 BluesMPI Non-blocking Alltoall Collective Offload Framework

In BluesMPI, non-blocking Alltoall collective operations are offloaded to a set
of the Worker processes which have been spawned in the MPI Init to the Smart
NICs that are in the separated host mode. Therefore, all that application’s host
processes have to do is to prepare a set of metadata and provide it to the Worker
processes. Once the collective operations are completed, Worker processes notify
the host processes. BluesMPI framework goes over a set of steps in order to pre-
pare the non-blocking Alltoall collective operations to be offloaded to the Worker
processes on the Smart NIC. Although these steps are described for nonblocking
Alltoall, a similar framework can be used for any other dense collective commu-
nication, with a few modifications. For instance, for Allgather, some of the steps
can be done in the host shared memory to avoid excessive IB link utilization.

Step 0) Buffers Registration with HCA: In the first step, all the processes
inside the host communicator need to register the send buffer and receive buffer
of the MPI collective call with HCA, so that remote processes are able to perform
RDMA Read and Write on these buffers, asynchronously. Memory registration is
a costly operation, therefore, in our designs, we take advantage of a registration
cache to avoid re-registering the same set of buffers more than once.



BluesMPI: MPI Non-blocking Alltoall Offloading on BlueField Smart NICs 25

Step 1) Metadata Aggregation to the Host Communicator Leader Process:
Once a process in the host communicator registers its send and receive buffers,
it creates a collective info object that includes RDMA buffer addresses and
keys. It also includes this process’s rank in MPI COMM WORLD as well as the
count and datatype of this collective call. This information is the Metadata for
the collective call from this host process. The host communicator leader (which
is rank 0 in our design) gathers the Metadata from all the processes in the
communicator.

Fig. 4. BluesMPI procedure to offload non-blocking Alltoall collective operation to the
worker processes on the Smart NIC. Step 0 is not included in this figure.

Step 2) Metadata Registration with HCA and Offloading the Task Object to
Leader of the Workers Group: Once the host communicator leader generates the
array of Metadata, it has to register this array with HCA so that all the Worker
process on the Smart NIC can read whatever information that they require at
any time during progressing the collective. Once the registration is done, the host
communicator leader creates a new task object and sends it to the Workers group
leader. This task object has the information about the type of the collective and
the algorithm which must be performed by the Worker processes on the Smart
NIC. It also has the RDMA information of the Metadata array and the host
communicator size.

From now, the host processes are free to perform useful application compu-
tation. In the meantime, the leader of the Worker group on Smart NIC waits
for the incoming task objects from the leaders of the host communicators. Since
the application could have several sub-communicators, the leader of the Work-
ers group on Smart NIC can receive several task objects at the same time. It
is also possible that even for a single host communicator, several back-to-back
nonblocking collective calls are issued before going into the MPI Wait. In order
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to handle all these scenarios, the leader of the Worker group on the Smart NIC
creates a FIFO queue and pushes all the new task objects into this queue.

Step 3) Picking up a Task from Queue of Offloaded Tasks and Forward it
to the Non-leader Workers: The leader of the Smart NIC Worker group picks a
task from the head of the tasks queue and broadcasts this object task to all the
processes in the Workers group.

Step 4 and 5) Progress the Collective on Behalf of the Host Communicators:
Once every Worker process on the Smart NIC receives a task object, it unpacks
the object and based on the task type, it performs the appropriate operations
on it. Now every Worker process needs to read the Metadata of the collective
from the host memory. In the following Sect. 2.2, we discuss the algorithm that
we used for nonblocking Alltoall performed by Worker processes.

Step 6) Collective Completion Notification: Once each receive buffer of the
host communicator processes has the correct value which is written by the
Worker processes on the Smart NIC, a completion notification is sent to the
host processes.

Figure 4 summarizes the required steps in the BluesMPI non-blocking Alltoall
collective offload framework.

2.2 Proposed Nonblocking Alltoall Designs in BluesMPI

In this section, we discuss our proposed designs to perform the nonblocking
Alltoall operations by the Worker processes on the Smart NIC. In these designs,
we consider balanced Workers per node, meaning that the number of the Workers
per node is the same between all the nodes. As the first step to perform the
nonblocking Alltoall, Worker processes must receive a task object regarding this
operation. This is done by the steps performed by the BluesMPI framework
discussed in Sect. 2.1. Once each Worker process has access to this task object
and its Metadata, it has full read and write access to every buffer of every process
in the host communicator.

In a perfect scenario, it is expected that the Worker processes issue RDMA
read and write operations to HCA on behalf of the host communicator processes.
This is because once the non-blocking collective is issued by the host process, this
process starts working on the application computations and it is not inside MPI,
progressing the communication. Therefore, in order to have a complete overlap of
communication and computation for the non-blocking collective operation, and
assuming that there is no extra communication progress thread running on the
host CPU, Worker processes should be able to progress the HCA on behalf of the
host processes. However, modern interconnects do not have this support. This
means that even if a remote Worker process on the Smart NIC has the RDMA
address and key of a local memory of host processes, it cannot directly issue
RDMA read or write from the host local memory to the destination memory of
another host process. Therefore, in our proposed non-blocking Alltoall designs,
data is staged in the main memory of the Smart NIC, and then it is forwarded
to the destination. Figure 5(a) depicts a single transfer in our proposed designs.
Scatter destination algorithm works best for medium and large messages [11],
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thus our proposed designs are based on this algorithm. In the scatter destination
algorithm for Alltoall, there is a loop with communicator-size iterations and in
each iteration, an exclusive piece of send buffer is sent to the destination receive
buffer of the remote process.

Once the Worker processes running on the ARM cores of the Smart NIC have
the collective Metadata, they share the collective progression among themselves
in a balanced manner. Therefore, if there are PPN number of the processes of
the host communicator in the same node and there are WPN number of Worker
processes per node, each Worker process is responsible for the PPN/WPN num-
ber of the host processes. Depending on how Worker processes on the Smart
NIC take advantage of the staging based message transfer mechanism depicted
in Fig. 5(a), we explore three designs: 1) Direct Design, 2) Message Chunking
Design, and 3) Message Pipelining Design. All of these designs in nature are
scatter destination Alltoall designs.

Fig. 5. (a) A single message transfer from a host communicator process in node A to
another host process on node B in our proposed Alltoall designs. (b) The Proposed
Direct Design in BluesMPI for Ialltoall for 1 PPN, 1 WPN, and 4 nodes scenario.

Direct Design. In this design, each Worker process starts from the first host
process which is assigned to it and then delivers each exclusive piece of data
from the local memory of the host process to all other host processes in the host
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communicator. If there are N processes in the host communicator, since we are
performing an Alltoall operation, the send buffer of each host process will have
N exclusive data each with a size that depends on the count and datatype inputs
of MPI Ialltoall. Each of these N elements is sent to the appropriate index of the
receive buffer of another process in the host communicator. Therefore, if a Worker
process is responsible for the H number of host processes, it has to perform N × H
number of message transfers on behalf of those H number of host processes that
offloaded their collective communication on this Worker process. Each of these
individual back-to-back staging based transfers uses the mechanism illustrated
in Fig. 5(a) in an asynchronous manner while the host process is performing
the application compute and it is outside of the MPI library. Figure 6 shows
the Direct Design for the first four message transfers of a Worker process. To
further optimize this algorithm, we propose a link efficient load-balanced staging
technique. To achieve load balancing, in this design, we need to make sure that at
any point during the Direct Design, only one Worker process is writing to receive
buffer of a host process. Therefore, instead of allowing each Worker process to
start writing to the destination processes with rank 0, each Worker process sets
its initial destination process to the same host process that is assigned to it.
An example is provided in Fig. 5(b). Figure 7(a) shows that we can achieve 38%
in pure communication latency by taking advantage of this link load-balancing
mechanism.

Fig. 6. Timeline of the proposed staging based Alltoall designs for large messages.
For No Offloading scenario, scatter destination algorithm used in blocking Alltoall is
considered.

Message Chunking Design. One of the major bottlenecks in the Direct
Design is that it suffers from the overheads of the message staging in the Smart
NIC. This is because due to the staging operation, the number of the RDMA
operations doubles compared to the No Offloading CPU driven scatter desti-
nation scenario. Although in the Direct Design, there is a full overlap of com-
munication and computation, still, in order to get noticeable benefit in total
application time, we need to further reduce the pure communication time of
Direct Design. In order to do so, in Message Chunking Design, we break down
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Fig. 7. (a) Impact of load-balancing, (b) Impact of chunking, (c) Performance com-
parison of different proposed designs. In these figures, pure communication latency of
MPI Ialltoall is reported.

a single message size of msg size to multiple chunks. Then in each iteration, we
try to overlap the RDMA write of the current chunk with the RDMA read of the
next chunk. Figure 6 illustrates the Message Chunking Design. Infiniband links
are bi-directional, therefore, RDMA Write and Read can happen at the same
time without any extra cost. The base of this algorithm is indeed the Direct
Design, however, in the Message Chunking Design, we replace each staging based
transfer of size msg size with an another primitive that chunks the message to
chunk size equivalent pieces and overlaps the RDMA read and writes of back
to back chunks for this specific message. In this design, chunk size plays a major
role in the pure communication performance. Figure 7(b) shows the impact of
the chunk size compared to Direct Design. All of our experiments are conducted
on the HPCAC cluster which is introduced in Sect. 1.5.

Message Pipelining Design. Message Chunking Design is able to further
reduce the impact of the staging to Smart NIC. However, due to the nature of
this design that it considers each message transfer in an isolated manner, there
are still multiple chunks of the messages that are not taking advantage of the
overlapping between RDMA read and write. This is due to the fact that for each
message transfer, the first RDMA read and last RDMA write are not getting
overlapped with any other operations. This is also depicted in Fig. 6. Although
by increasing the number of the chunks, we can reduce this impact, but on the
other hand, choosing too small chunks can have a negative impact on IB links
as they are able to fill up the bandwidth and get the best performance. In order
to reduce the number of chunks which have not been overlapped, in Message
Pipelining Design, we take advantage of pipelining the back to back transfers.
In this design, RDMA write from Smart NIC to host memory of the current
message transfer of size msg size is overlapped with RDMA read of the next
message from host memory to Smart NIC. In this design, there will be only two
messages which have not been overlapped: the RDMA read of the first message
transfer and the RDMA write of the last message transfer. As the communicator
size N increases, the negative impact of staging to Smart NIC also decreases,
as the total number of transfers increases by a factor of N while the number
of messages which have not been overlapped remains 2. On a small scale and
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Algorithm 1: Message Pipelining Design (Design-3)
Input : rdma info — Array of Send/Recv/FIN Buffers RDMA Info
Input : world ranks — Array of Host processes ranks in MPI COMM WORLD
Input : host comm size — Host communicator size
Input : worker comm size — Workers communicator size
Input : worker rank — Rank of this worker process in Workers communicator
Input : count — Count
Input : datatype size — Datatype size of a single element
Input : chunk size — Chunk size to be used for data staging procedure
Output: mpi errno

1 begin
2 customers list size =

3 host comm size / worker comm size
4 for i ← 0 to customers list size do
5 Find the host processes that this worker is responsible for
6 customers list[i] =
7 customers list size × worker rank + i
8 end
9 chunk num = msg size / chunk size

10 total msgs = host comm size × customers list size × chunk num
11 for msg ← −1 to total msgs do
12 Prepare for RDMA Read for a single chunk
13 i = (msg +1) / chunk num
14 if msg = total msgs − 1 then
15 Skip RDMA Read, set read completion flag for this chunk and jump to

skip read
16 end

17 src rank = customers list[i / host comm size ]
18 src world rank = world ranks[src rank]
19 sendbuf = rdma info[src rank].sendbuf.buf addr
20 src key = rdma info[src rank].sendbuf.rkey
21 dst rank = ((i % host comm size) + src rank) % host comm size
22 src buf = sendbuf + dst rank × msg size + chunk size × ((msg + 1) %

chunk num)
23 Initiate an RDMA Read for a single chunk
24 staging tmp buf read = staging tmp buf + msg size × ((msg + 1) %2)

25 NonBlockingRdmaRead( staging tmp buf read,
26 src key, src buf, src world rank, chunk size )
27 Prepare for RDMA Write for a single chunk
28 skip read:
29 i = msg / chunk num
30 if msg = −1 then
31 Skip RDMA Write, set write completion flag for this chunk and jump to

skip write
32 end

33 src rank = customers list[i / host comm size ]
34 dst rank = ((i % host comm size) + src rank) % host comm size

35 dst world rank = world ranks[dst rank]
36 recvbuf = rdma info[dst rank].recvbuf.buf addr
37 dst key = rdma info[dst rank].sendbuf.rkey
38 dst buf = recvbuf + src rank × msg size + chunk size × (msg %

chunk num)
39 staging tmp buf write = staging tmp buf + msg size × (msg %2)

40 NonBlockingRdmaWrite( staging tmp buf write,
41 dst key, dst buf, dst world rank, chunk size )
42 skip write:
43 BlockingWaitRdmaReadWrite()
44 end

45 Barrier(worker comm)
46 Notify all the host processes in the customers list
47 end
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especially for large messages, this design is combined with Message Chunking
Design. Therefore, each message is chunked into multiple pieces, and the RDMA
write of the last chunk of each message is overlapped with the RDMA read of the
first chunk of the next message. Algorithm 1 provides further details about the
procedure that worker processes perform to implement this algorithm. Figure 6
compare the pipelining opportunities of all the Direct, Message Chunking, and
Message Pipelining designs. Figure 7(c) compares their performance against each
other.

Once each Worker process is done with the task assigned to it, it goes into a
barrier, and it waits for all other Worker processes in the same group to finish
their task. Once every Worker process is done, they notify thehost processes
which are assigned to them. They do so by issuing an RDMA write to the FIN
flag on the local memory of each host process which was provided to Worker
processes. After this step, each Worker process goes into a broadcast operation,
and they wait for the leader of the Workers group to assign them a new collective
offloading task.

Fig. 8. Performance breakdown of pure communication latency of MPI Ialltoall
directly followed by MPI Wait for different steps of the BluesMPI framework discussed
in Sect. 2.1. These tests run on 8 nodes using Message Pipelining design.

3 Results

In this section, we discuss the experimental analysis of MPI collective primitives
using OSU Micro Benchmarks [1] and a modified P3DFFT [12] application with
nonblocking Alltoall support that is proposed by Kandalla et al. [9]. We provide
a performance breakdown of different steps of BluesMPI framework. BluesMPI
is designed on the top of the MVAPICH2 v2.3 MPI library. Comparisons with
HPCX 2.7.0 with HCOLL NBC flag enabled, MVAPICH2-X v2.3 with MPICH
asynchronous thread enabled, as well as optimized asynchronous thread enabled
are also provided. All the reported numbers are an average of three runs and
micro-benchmark evaluations ran for 1,000 iterations for each message size and



32 M. Bayatpour et al.

an average of three experiments is reported. The standard deviation between
these iterations is kept under 2%.

Fig. 9. Overlap of communication and computation reported by osu ialltoall bench-
mark for various designs.

3.1 Performance Characterization of BluesMPI Framework

In this section, we conduct a performance characterization of different steps of
the BluesMPI framework which are introduced in Sect. 2.1. To do so, light-weight
timers are added inside the BluesMPI framework and the time taken for each
of the six steps of the framework is measured. Figure 8 shows this performance
breakdown of pure communication of MPI alltoall for two tests with 8 nodes. As
we can see here, for smaller message sizes, the overheads of BluesMPI are more
visible compared to larger messages. This is because the overheads of BluesMPI,
which are the steps of 1 to 4 and step 6 (considering step 5 as the useful collec-
tive time) are not dependant on the message size and they only depend on the
Workers group size and host communicator size. This means that if the Work-
ers group size and host communicator size do not change, the overhead remains
constant, regardless of the message size. Therefore, only step 5 is dependant on
the job size and message size of MPI Ialltoall. Figure 8 shows the same trend.
For a single job size, as the message size increases, step 5 latency increases, and
since other steps remain constant, the percentage overhead compared to step
5 decrease. After step 5, steps 4 and 6 have the highest overhead compared to
other steps. This is because these two steps run on the slower ARM cores of the
BlueField and therefore, compared to host-related overhead (steps 0, 1, and 2),
they are more signified.
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Fig. 10. Pure communication time of MPI Ialltoall (time of MPI Ialltoall followed by
MPI Wait) for various designs.

Fig. 11. Total execution time of osu ialltoall benchmark for various designs.

3.2 Performance of MPI Collective Operations

In this section, we compare the performance of MPI Ialltoall using the
osu ialltoall benchmark from the OSU Micro Benchmark suite. Figures 9, 10,
and 11 show the impact of our proposed BluesMPI collective offloading frame-
work on the InfiniBand based BlueField Smart NICs. For these tests, we used
our most optimized algorithm which is Message Pipelining Design discussed
in Sect. 2.2. As we can see here, our proposed design can guarantee the peak
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communication and computation overlap, as indicated in Fig. 9. On the other
hand, BluesMPI high-performance staging based nonblocking alltoall design,
with the proper number of Workers per node, it can gain on-par pure commu-
nication performance with tuned non-offloaded designs for large messages. By
providing the peak communication and computation overlap and achieving low
pure communication latency, BluesMPI can gain up to 2X speedup in the total
osu ialltoall execution time compared to default MVAPICH2-X. Comparing to
the HPCX 2.7.0 with HCOLL NBC flag enabled, we can see that the proposed
design’s pure communication performance is on-par with this library. However,
as the proposed design can provide full overlap of communication and computa-
tion, the total execution time improves up to 2X. The closest in performance of
osu ialltoall is MVAPICH2-X with MPICH asynchronous thread enabled. How-
ever, as we will see in the next section, having a separate thread for each process
running constantly can severely degrade the performance. On the other hand,
our proposed design does not interfere with the main application’s compute,
and therefore, can provide full overlap of communication and computation in a
transparent manner, showing its benefits at the application level.

Fig. 12. CPU time per loop of P3DFFT application for various designs.

3.3 Application Evaluations

In this section, we evaluate the impact of the BluesMPI framework on perfor-
mance of Parallel Three-Dimensional Fast Fourier Transforms (P3DFFT) appli-
cation. This library uses a 2D, or pencil, decomposition and increases the degree
of parallelism and scalability of FFT libraries. The data grid during each itera-
tion is transformed using nonblocking Alltoall collectives [9]. Figure 12 shows the
impact of the proposed BluesMPI designs with various number of Workers per
node and various scales. For these tests, we used the Message Pipelining Design
discussed in Sect. 2.2. The program that we used is test sine.x and we set x and
y grids to 2048. On x-axis, we run the tests for different values of z. As we can
see here, as the scale of the application increases, the benefits of the BluesMPI
also become more visible, gaining up to 30% improvement in the execution time
of this application at 32 PPN 32 Nodes of the BlueField-enabled thor nodes of
HPCAC cluster. It can be seen from this figure that even having a single Worker
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on each Smart NIC is having benefit. This is because even with a single Worker
per node BluesMPI can achieve close to full overlap and communication and
computation and if an application can provide enough computation to be over-
lapped with the communication time of the collective, it can see benefit with a
single Worker per Smart NIC as well. On the other hand, MVAPICH2-X with
MPICH asynchronous thread is showing the worst performance. This is because
this thread is constantly running and it interferes with the main application’s
compute resources.

4 Related Work

There have been some recent research efforts that offload networking functions
onto FPGA-based SmartNICs. There are also studies on offloading tasks to
SmartNICs in distributed applications. Floem [13] proposed a dataflow pro-
gramming system aimed at easing the programming effort. Liu et al. [10] built
an “actor” based prototype (called ipipe) and developed several applications
using it. The evaluation showed that by offloading computation to a SmartNIC,
considerable host CPU and latency savings is achievable. Researchers have also
explored various ways of offloading the progression of communication to NICs
for MPI point-to-point and collective operations. Sur et al. [18] discuss different
mechanisms for better computation/communication overlap on InfiniBand clus-
ters. These mechanisms exploit RDMA Read and selective interrupt-based asyn-
chronous progress and achieves nearly complete computation/communication
overlap. Potluri et al. [14] studied novel proxy-based designs to optimize the
internode point to-point and collective MPI primitives for Intel Xeon Phi based
cluster systems connected using InfiniBand network.

5 Conclusion and Future Work

In this paper, we characterized the performance impact of the smart NICs on
MPI and we found out the potential MPI primitives that can be offloaded
into the Smart NICs. Based on our observations, we proposed BluesMPI, an
adaptive non-blocking Alltoall collective offload framework that can be used on
modern Smart NICs. Furthermore, we proposed efficient offloading designs for
non-blocking Alltoall operations on the top of the BlueField Smart NIC. Our
experimental evaluations showed that using the proposed methods, we are able
to efficiently take advantage of the additional compute resource of Smart NICs
in the network and accelerate the performance of OSU Micro Benchmarks and
P3DFFT by a factor of 44% and 30%, respectively. To the best of our knowl-
edge, this is the first design that efficiently takes advantage of modern BlueField
Smart NICs in deriving the MPI collective operations to get the peak overlap of
communication and computation. Our future work is to provide similar designs
for other dense collective operations as well.
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