
Bradford L. Chamberlain
Ana-Lucia Varbanescu
Hatem Ltaief
Piotr Luszczek (Eds.)

LN
CS

 1
27

28 High Performance
Computing
36th International Conference, ISC High Performance 2021
Virtual Event, June 24 – July 2, 2021
Proceedings

Lecture Notes in Computer Science 12728

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Bradford L. Chamberlain ·
Ana-Lucia Varbanescu · Hatem Ltaief ·
Piotr Luszczek (Eds.)

High Performance
Computing
36th International Conference, ISC High Performance 2021
Virtual Event, June 24 – July 2, 2021
Proceedings

Editors
Bradford L. Chamberlain
Hewlett Packard Enterprise
Seattle, WA, USA

Paul G. Allen School of Computer Science
& Engineering
University of Washington
Seattle, WA, USA

Hatem Ltaief
Extreme Computing Research Center
Thuwal Jeddah, Saudi Arabia

Ana-Lucia Varbanescu
University of Amsterdam
Amsterdam, The Netherlands

Piotr Luszczek
The University of Tennessee, Knoxville
Knoxville, TN, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-78712-7 ISBN 978-3-030-78713-4 (eBook)
https://doi.org/10.1007/978-3-030-78713-4

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021, corrected publication 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6065-2049
https://orcid.org/0000-0002-6897-1095
https://orcid.org/0000-0002-4932-1900
https://orcid.org/0000-0002-0089-6965
https://doi.org/10.1007/978-3-030-78713-4

Preface

ISC High Performance—formerly known as the International Supercomputing
Conference—was founded in 1986 as the Supercomputer Seminar. Originally organized
by Hans Meuer, Professor of Computer Science at the University of Mannheim, and for-
mer director of its computer center, the seminar brought together a group of 81 scientists
and industrial partners who shared an interest in high-performance computing (HPC).
Since then, the annual conference has become a major international event within the
HPC community, causing it to outgrow Mannheim and move to its current location of
Frankfurt by way of Heidelberg, Dresden, Hamburg, and Leipzig over the years. Recent
years have seen a general increase in both the number of high-quality research papers
submitted to the conference and the number of conference attendees. Unfortunately, the
ongoing coronavirus pandemic seems to have resulted in a slight dip in the number of
paper submissions this year, while also requiring ISC-HPC 2021 to be held as a virtual
event rather than the in-person conference in Frankfurt that we had originally hoped for.

The ISC-HPC 2021 call for papers was published in September 2020, inviting
scientists and engineers to submit manuscripts describing their latest research results for
potential publication at the conference. In all, 74 papers were submitted from authors
all over the world. The ISC-HPC 2021 Research Papers Program Committee consisted
of 75 members representing more than 60 institutions and 17 countries from around the
world. After initial reviews were completed, a rebuttal process gave authors the oppor-
tunity to respond to reviewers’ questions and help clarify points of confusion. Final
consensus about the papers’ outcomes was reached through in-depth discussions at per-
track virtual Program Committee meetings, followed by a cross-track virtual meeting
where decisions were finalized. In the end, the Program Committee selected 24 papers
for publication at this year’s conference.

For the past several years, the ISC-HPCconferencehas sponsored an award to encour-
age outstanding research in high-performance computing and to honor the best overall
research paper submitted to the conference. Three years ago, this annual award was
renamed in memory of the late Dr. Hans Meuer, who served as the general chair for ISC
from 1986 through 2014, and who was a co-founder of the TOP500 benchmark project.
This year, from all of the submitted research papers, the Program Committee selected
the best paper based on a combination of its technical depth, realization, impact to the
ISC-HPCcommunity, and novelty.On this basis, the ISC-HPC~2021HansMeuerAward
was awarded toAPerformance Analysis ofModern Parallel ProgrammingModels Using
a Compute-Bound Application byAndrei Poenaru,Wei-Chen Lin, and SimonMcIntosh-
Smith from the University of Bristol. This paper presents an in-depth performance
analysis of a compute-bound application using six portable programming models—
OpenMP, OpenCL, CUDA, OpenACC, Kokkos, and SYCL. The paper’s reviewers and
the members of the Best Paper Committee appreciated the breadth of the study in terms
of spanning representative programming models, compilers, and hardware platforms.
The Best Paper Committee also considered the analysis to be timely and very relevant

vi Preface

to the ISC community. Overall, the paper is an interesting read and provides a model to
follow when comparing portable programming models via a case study.

As the chairs of the Research Papers Program Committee, we would like to express
our gratitude to everyone who submitted papers to ISC-HPC. We also wish to thank
our diligent track chairs and conflict chairs, the members of the Best Paper Committee,
and all of our colleagues who served on the Research Papers Program Committee as
reviewers and referees. We hope that you remain safe during the coming year, and hope
to see you in person in Frankfurt for ISC-HPC 2022.

June 2021 Bradford L. Chamberlain
Ana Lucia Varbanescu

Organization

Program Chair

Martin Schulz TU Munich, Germany

Program Deputy Chair

Keren Bergman Columbia University, USA

Research Papers Program Committee

Research Paper Chairs

Bradford L. Chamberlain
(Chair)

Hewlett Packard Enterprise, USA

Ana Lucia Varbanescu
(Deputy Chair)

University of Amsterdam, Netherlands

Architecture, Networks, and Storage

Ron Brightwell (Chair) Sandia National Laboratories, USA
Nectarios Koziris National Technical University of Athens, Greece
Michael Kuhn Otto von Guericke University Magdeburg, Germany
Jay Lofstead Sandia National Laboratories, USA
Preeti Malakar Indian Institute of Technology Kanpur, India
Kathryn Mohror Lawrence Livermore National Laboratory, USA
Dhabaleswar Panda Ohio State University, USA
Maria S. Perez Universidad Politecnica de Madrid, Spain
John Shalf Lawrence Berkeley National Laboratory, USA
Tor Skeie Simula Research Laboratory, Norway
Guangming Tan Institute of Computing Technology, China
Osamu Tatebe University of Tsukuba, Japan
Carsten Trinitis Technical University of Munich, Germany
Venkatram Vishwanath Argonne National Laboratory, USA

viii Organization

HPC Algorithms and Applications

Florina Ciorba (Chair) University of Basel, Switzerland
Stratos (Efstratios)

Dimopoulos
UCSB and Apple, USA

Pierre Fortin University of Lille, France
Lin Gan Tsinghua University and National Supercomputing

Center in Wuxi, China
Georgios Goumas National Technical University of Athens, Greece
Kamer Kaya Sabancı University, Turkey
Julian Kunkel University of Reading, UK
Hatem Ltaief KAUST, Saudi Arabia
Diana Moise Cray, Switzerland
Gabriel Noaje NVIDIA, Singapore
Tapasya Patki Lawrence Livermore National Laboratory, USA
Olga Pearce Lawrence Livermore National Laboratory, USA
Dirk Pleiter KTH, Sweden
Filippo Spiga NVIDIA, UK
Estela Suarez Forschungszentrum Jülich, Germany
Hongyang Sun Vanderbilt University, USA
Daniele Tafani Fujitsu, Germany
Samuel Thibault University of Bordeaux, France

Machine Learning, AI, and Emerging Technologies

Aparna
Chandramowlishwaran
(Chair)

UCI, USA

Yufei Ding University of California, Santa Barbara, USA
Amir Gholami University of California, Berkeley, USA
Gurbinder Gill Katana Graph Inc., USA
Jiajia Li Pacific Northwest National Laboratory, USA
Maryam Mehri Dehnavi University of Toronto, Canada
Bogdan Nicolae Argonne National Laboratory, USA
Mostofa Patwary NVIDIA, USA
Edgar Solomonik University of Illinois at Urbana-Champaign, USA
Sofia Vallecorsa CERN, Switzerland
Abhinav Vishnu AMD, USA
Rio Yokota Tokyo Institute of Technology, Japan
Yang You National University of Singapore, Singapore

Organization ix

Performance Modeling, Evaluation, and Analysis

Simon McIntosh-Smith
(Chair)

University of Bristol, UK

Sudheer Chunduri Argonne Leadership Computing Facility, USA
Tom Deakin University of Bristol, UK
Georg Hager University of Erlangen-Nuremberg, Germany
Jeff Hammond Intel, USA
Simon Hammond Sandia National Laboratories, USA
Guillaume Mercier Bordeaux INP, France
Ali Mohammed University of Basel, Switzerland
Bernd Mohr Forschungszentrum Jülich, Germany
Gihan Mudalige University of Warwick, UK
Michele Weiland University of Edinburgh, UK
Charlene Yang Lawrence Berkeley National Laboratory, USA
Jidong Zhai Tsinghua University, China

Programming Environments and Systems Software

Christian Terboven (Chair) RWTH Aachen University, Germany
Alexandru Calotoiu ETH Zürich, Germany
Sunita Chandrasekaran University of Delaware, USA
Huimin Cui Institute of Computing Technology, China
Marta Garcia BSC, Spain
Brice Goglin Inria, France
Bilel Hadri KAUST Supercomputing Laboratory, Saudi Arabia
Christian Iwainsky TU Darmstadt, Germany
Michael Klemm AMD and OpenMP ARB, Germany
Dhabaleswar Panda Ohio State University, USA
Christian Plessl Paderborn University, Germany
Swaroop S. Pophale ORNL, USA
Dirk Schmidl Atos, Germany
Sven-Bodo Scholz Radboud University, Netherlands
Thomas R. W. Scogland Lawrence Livermore National Laboratory, USA
Christian Terboven RWTH Aachen University, Germany
Miwako Tsuji RIKEN, Japan

BoFs Committee

Masha Sosonkina (Chair) Old Dominion University, USA
Roman Wyrzykowski

(Deputy Chair)
Czestochowa University of Technology, Poland

Marc Baboulin Université Paris-Saclay, France
Claudia Blaas-Schenner TU Wien, Austria

x Organization

Joshua Booth University of Alabama in Huntsville, USA
Nahid Emad University of Versailles, France
Dominik Göddeke University of Stuttgart, Germany
Mozhgan Kabiri Chimeh NVIDIA, UK
Carola Kruse Centre Européen de Recherche et de Formation

Avancée en Calcul Scientifique, France
Harald Köstler FAU Erlangen-Nuremberg, Germany
Simon McIntosh-Smith University of Bristol, UK
Iosif Meyerov Lobachevsky State University of Nizhni Novogorod,

Russia
Lubomir Riha Technical University of Ostrava, Czech Republic
Marie-Christine Sawley Intel, France
Masha Sosonkina Old Dominion University, USA
Vladimir Stegailov Higher School of Economics and JIHT RAS, Russia
Dave Turner Kansas State University, USA
Roman Wyrzykowski Czestochowa University of Technology, Poland

PhD Forum Committee

Olga Pearce (Chair) Lawrence Livermore National Laboratory, USA
Abhinav Bhatele (Deputy

Chair)
University of Maryland, USA

Eishi Arima University of Tokyo, Japan
Hans-Joachim Bungartz Technical University of Munich, Germany
Florina Ciorba University of Basel, Switzerland
Christian Engelmann Oak Ridge National Laboratory, USA
Georgios Goumas National Technical University of Athens, Greece
Katherine Isaacs University of Arizona, USA
Tanzima Islam Texas State University, USA
Stefan Lankes RWTH Aachen University, Germany
Laercio Lima Pilla CNRS and LRI, France
Shinobu Miwa University of Electro-Communications, Japan
Cosmin E. Oancea University of Copenhagen, Denmark
Amanda Randles Duke University, USA
Bettina Schnor University of Potsdam, Germany

Project Posters Committee

Erwan Raffin (Chair) Atos, France
Christian Perez (Deputy

Chair)
Inria, France

Jean-Thomas Acquaviva Data Direct Networks, France
Marco Aldinucci University of Torino, Italy

Organization xi

Bartosz Bosak Poznan Supercomputing and Networking Center,
Poland

Nick Brown University of Edinburgh, UK
Are Magnus Bruaset Simula Research Laboratory, Norway
Theodoros Christoudias The Cyprus Institute, Cyprus
Andrew Ensor Auckland University of Technology, New Zealand
Claudia Frauen DKRZ, Germany
Ana Gainaru Oak Ridge National Laboratory, USA
Andra Hugo Apple, France
Francesc Lordan Gomis Barcelona Supercomputing Center, Spain
Hatem Ltaief KAUST, Saudi Arabia
Bogdan Nicolae Argonne National Laboratory, USA
Eric Petit Intel, France
Phil Ridley Arm, UK
Hiroyuki Takizawa Tohoku University, Japan
Ben van Werkhoven Netherlands eScience Center, Netherlands
Andreas Wicenec University of Western Australia, Australia
Francieli Zanon Boito Inria, France
Ameli Chi Zhou Shenzhen University, China
Philipp Neumann Helmut Schmidt University, Germany
Christian Perez Inria, France
Erwan Raffin Atos, France

Research Posters Committee

Keita Teranishi (Chair) Sandia National Laboratories, USA
Aparna

Chandramowlishwaran
(Deputy Chair)

UCI, USA

Sridutt Bhalachandra Lawrence Berkeley National Laboratory, USA
Marc Casas Barcelona Supercomputing Center, Spain
Irina Demeshko Los Alamos National Laboratory, USA
Christian Engelmann Oak Ridge National Laboratory, USA
Patrick Flick Google, USA
Kei-ichiro Fukazawa Kyoto University, Japan
Ana Gainaru Oak Ridge National Laboratory, USA
Lin Gan Tsinghua University and National Supercomputing

Center in Wuxi, China
Wilfried Gansterer University of Vienna, Austria
José Gracia University of Stuttgart, Germany
Ryan E. Grant Sandia National Laboratories, University of New

Mexico, USA
Hui Guan University of Massachusetts Amherst, USA
Toshihiro Hanawa The University of Tokyo, Japan
Chirag Jain Indian Institute of Science, India

xii Organization

Oguz Kaya Université Paris-Saclay, France
Kazuhiko Komatsu Tohoku University, Japan
Ignacio Laguna Lawerence Livermore National Laboratory, USA
Seyong Lee ORNL, USA
Jiajia Li Pacific Northwest National Laboratory, USA
Israt Nisa Lawrence Berkeley National Laboratory, USA
Swaroop S. Pophale ORNL, USA
Kento Sato RIKEN, Japan
Jesmin Jahan Tithi Intel, USA
Vadim Voevodin RCC MSU, Russia
Jeffrey Young Georgia Institute of Technology, USA
Rohit Zambre AMD Research, USA

Tutorials Committee

Kevin Huck (Chair) University of Oreagon, USA
Kathryn Mohror (Deputy

Chair)
Lawrence Livermore National Laboratory, USA

Damian Alvarez Forschungszentrum Jülich, Germany
Katie Antypas Lawrence Berkeley National Laboratory, USA
Rosa M. Badia Barcelona Supercomputing Center, Spain
Pavan Balaji Argonne National Laboratory, USA
Jong Choi Oak Ridge National Laboratory, USA
Dan Ellsworth Colorado College, USA
Mozhgan Kabiri Chimeh NVIDIA, UK
Michael O. Lam James Madison University and Lawrence Livermore

National Laboratory, USA
David Lecomber Arm, UK
Kelvin Li IBM, Canada
Simon McIntosh-Smith University of Bristol, UK
C. J. Newburn NVIDIA, USA
Dhabaleswar Panda Ohio State University, USA
Ojas Parekh SNL, USA
Olga Pearce Lawrence Livermore National Laboratory, USA
Christian Plessl Paderborn University, Germany
Harald Servat Intel, Spain
Michela Taufer University of Delaware, USA

Workshops Committee

Heike Jagode (Chair) University of Tennessee Knoxville, USA
Hartwig Anzt (Deputy

Chair)
Karlsruhe Institute of Technology, Germany

Emmanuel Agullo Inria, France

Organization xiii

Richard Barrett Sandia National Laboratories, USA
Roy Campbell Department of Defense, USA
Florina Ciorba University of Basel, Switzerland
Anthony Danalis University of Tennessee Knoxville, USA
Manuel F. Dolz Universitat Jaume I, Spain
Nick Forrington Arm, USA
Judit Gimenez Lucas Barcelona Supercomputing Center, Spain
Thomas Gruber University of Erlangen-Nuremberg, Germany
Joachim Hein Lund University, Sweden
David Henty University of Edinburgh, UK
Marc-Andre Hermanns RWTH Aachen University, Germany
Kevin Huck University of Oregon, USA
Sascha Hunold TU Wien, Austria
Fuerlinger Karl Ludwig Maximilian University Munich, Germany
Eileen Kühn Karlsruhe Institute of Technology, Germany
Diana Moise Cray, Switzerland
Tapasya Patki Lawrence Livermore National Laboratory, USA
Jelena Pjesivac-Grbovic Verily Life Sciences and Google, USA
Philip Roth Oak Ridge National Laboratory, USA
Ana Lucia Varbanescu University of Amsterdam, Netherlands

Proceedings Chairs

Hatem Ltaief (Chair) KAUST, Saudi Arabia
Piotr Luszczek (Deputy

Chair)
Innovative Computing Laboratory, USA

Contents

Architecture, Networks, and Storage

Microarchitecture of a Configurable High-Radix Router for the Post-Moore
Era . 3
Yi Dai, Kai Lu, Junsheng Chang, Xingyun Qi, Jijun Cao,
and Jianmin Zhang

BluesMPI: Efficient MPI Non-blocking Alltoall Offloading Designs
on Modern BlueField Smart NICs . 18
Mohammadreza Bayatpour, Nick Sarkauskas, Hari Subramoni,
Jahanzeb Maqbool Hashmi, and Dhabaleswar K. Panda

Lessons Learned from Accelerating Quicksilver on Programmable
Integrated Unified Memory Architecture (PIUMA) and How That’s
Different from CPU . 38
Jesmin Jahan Tithi, Fabrizio Petrini, and David F. Richards

A Hierarchical Task Scheduler for Heterogeneous Computing 57
Narasinga Rao Miniskar, Frank Liu, Aaron R. Young,
Dwaipayan Chakraborty, and Jeffrey S. Vetter

Machine Learning, AI, and Emerging Technologies

Auto-Precision Scaling for Distributed Deep Learning . 79
Ruobing Han, James Demmel, and Yang You

FPGA Acceleration of Number Theoretic Transform . 98
Tian Ye, Yang Yang, Sanmukh R. Kuppannagari, Rajgopal Kannan,
and Viktor K. Prasanna

Designing a ROCm-Aware MPI Library for AMD GPUs: Early Experiences . . . 118
Kawthar Shafie Khorassani, Jahanzeb Hashmi, Ching-Hsiang Chu,
Chen-Chun Chen, Hari Subramoni, and Dhabaleswar K. Panda

A Tunable Implementation of Quality-of-Service Classes for HPC
Networks . 137
Kevin A. Brown, Neil McGlohon, Sudheer Chunduri, Eric Borch,
Robert B. Ross, Christopher D. Carothers, and Kevin Harms

xvi Contents

Scalability of Streaming Anomaly Detection in an Unbounded Key Space
Using Migrating Threads . 157
Brian A. Page and Peter M. Kogge

HTA: A Scalable High-Throughput Accelerator for Irregular HPC
Workloads . 176
Pouya Fotouhi, Marjan Fariborz, Roberto Proietti, Jason Lowe-Power,
Venkatesh Akella, and S. J. Ben Yoo

Proctor: A Semi-Supervised Performance Anomaly Diagnosis Framework
for Production HPC Systems . 195
Burak Aksar, Yijia Zhang, Emre Ates, Benjamin Schwaller, Omar Aaziz,
Vitus J. Leung, Jim Brandt, Manuel Egele, and Ayse K. Coskun

HPC Algorithms and Applications

COSTA: Communication-Optimal Shuffle and Transpose Algorithm
with Process Relabeling . 217
Marko Kabić, Simon Pintarelli, Anton Kozhevnikov,
and Joost VandeVondele

Enabling AI-Accelerated Multiscale Modeling of Thrombogenesis
at Millisecond and Molecular Resolutions on Supercomputers 237
Yicong Zhu, Peng Zhang, Changnian Han, Guojing Cong,
and Yuefan Deng

Evaluation of the NEC Vector Engine for Legacy CFD Codes 255
Keith Obenschain, Yu Yu Khine, Raghunandan Mathur, Gopal Patnaik,
and Robert Rosenberg

Distributed Sparse Block Grids on GPUs . 272
Pietro Incardona, Tommaso Bianucci, and Ivo F. Sbalzarini

iPUG: Accelerating Breadth-First Graph Traversals Using Manycore
Graphcore IPUs . 291
Luk Burchard, Johannes Moe, Daniel Thilo Schroeder,
Konstantin Pogorelov, and Johannes Langguth

Performance Modeling, Evaluation, and Analysis

Optimizing GPU-Enhanced HPC System and Cloud Procurements
for Scientific Workloads . 313
Richard Todd Evans, Matthew Cawood, Stephen Lien Harrell,
Lei Huang, Si Liu, Chun-Yaung Lu, Amit Ruhela, Yinzhi Wang,
and Zhao Zhang

Contents xvii

A Performance Analysis of Modern Parallel Programming Models Using
a Compute-Bound Application . 332
Andrei Poenaru, Wei-Chen Lin, and Simon McIntosh-Smith

Analytic Modeling of Idle Waves in Parallel Programs: Communication,
Cluster Topology, and Noise Impact . 351
Ayesha Afzal, Georg Hager, and Gerhard Wellein

Performance of the Supercomputer Fugaku for Breadth-First Search
in Graph500 Benchmark . 372
Masahiro Nakao, Koji Ueno, Katsuki Fujisawa, Yuetsu Kodama,
and Mitsuhisa Sato

Under the Hood of SYCL – An Initial Performance Analysis
with An Unstructured-Mesh CFD Application . 391
Istvan Z. Reguly, Andrew M. B. Owenson, Archie Powell,
Stephen A. Jarvis, and Gihan R. Mudalige

Characterizing Containerized HPC Applications Performance at Petascale
on CPU and GPU Architectures . 411
Amit Ruhela, Stephen Lien Harrell, Richard Todd Evans,
Gregory J. Zynda, John Fonner, Matt Vaughn, Tommy Minyard,
and John Cazes

Ubiquitous Performance Analysis . 431
David Boehme, Pascal Aschwanden, Olga Pearce, Kenneth Weiss,
and Matthew LeGendre

Programming Environments and Systems Software

Artemis: Automatic Runtime Tuning of Parallel Execution Parameters
Using Machine Learning . 453
Chad Wood, Giorgis Georgakoudis, David Beckingsale,
David Poliakoff, Alfredo Gimenez, Kevin Huck, Allen Malony,
and Todd Gamblin

Correction to: Performance of the Supercomputer Fugaku for Breadth-First
Search in Graph500 Benchmark . C1
Masahiro Nakao, Koji Ueno, Katsuki Fujisawa, Yuetsu Kodama,
and Mitsuhisa Sato

Author Index . 473

Architecture, Networks, and Storage

Microarchitecture of a Configurable
High-Radix Router for the

Post-Moore Era

Yi Dai(B), Kai Lu(B), Junsheng Chang, Xingyun Qi, Jijun Cao,
and Jianmin Zhang

National University of Defense Technology, Changsha 410073, Hunan, China
{daiyi,Kailu,Changjunsheng,qi xingyun,caojijun,jmZhang}@nudt.edu.cn

Abstract. With Moore’s law approaching its physical limitations, the
exponential growth of pin density and clock frequency on an integrated
circuit has ended. The microprocessor clock frequencies have almost
ceased to grow since 2014, instead of doubling every 36 months before
2005. Based on this observation, we propose a novel architecture to
implement a configurable high-radix router with wider internal ports
but lower arbitration radices. With some special features of our propri-
etary communication stack which can dynamically bind available physi-
cal lanes to provide robust data transmission to the upper network layer,
our Pisces router can flexibly operate at radix-24/48/96 mode with dif-
ferent bandwidth per port. The simulation results demonstrate Pisces
switch achieves stable high throughput under all traffic models. Further-
more, due to the relieved port contention and burst-tolerance attributes,
Pisces router reduces the packet delay by over 59% compared to MBTR
or YARC, under unbalanced traffic models at full load.

Keywords: High-radix routers · Configurable radix · Aggregated
buffer.

1 Introduction

The interconnection network, which mainly dominates the communication band-
width and latency, is increasingly becoming the bottleneck of system perfor-
mance due to the ever-increasing volume of transferred data and variety of com-
munication patterns. One of the most critical barriers toward realizing exas-
cale computing is the data movement and bandwidth challenges [1]. The high-
radix routers used to construct high-radix networks [2–4] mainly determine the
communication latency, throughput, and network cost. By lowering the net-
work diameter while providing path diversity, high-radix routers can effectively
decrease network latency and power [5]. However, with Moore’s law approach-
ing its physical limitations, the I/O pin count and clock frequency have barely
increased since 2014. Increasing the router radix will in turn, reduce per-port
bandwidth under a fixed number of I/O pins. Besides, the arbitration complex-
ity that mainly determines the operation frequency of the router scales with the
c© Springer Nature Switzerland AG 2021
B. L. Chamberlain et al. (Eds.): ISC High Performance 2021, LNCS 12728, pp. 3–17, 2021.
https://doi.org/10.1007/978-3-030-78713-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-78713-4_1

4 Y. Dai et al.

port number, which makes it more challenging to implement a high-radix router
with high switching capacity but narrow ports [6].

In this paper, we propose a novel microarchitecture of a high-radix router
with configurable communication stacks and multi-port shared buffers to enable
resilient packet processing. Attributed to some special features of our self-
developed communication stack which provides transparent packet delivery
between the variable number of physical ports and the network layer fabric,
a low-radix internal switch with wider ports is implemented to provide a high
aggregated switching capacity with reduced hardware complexity. Our Pisces
router can flexibly support radix-24/48/96 switch mode with a variable number
of ports running at the configurable bandwidth.

The OPA (Omni-Path Architecture) switch developed by Intel adopts a hier-
archical crossbar to implement a 48-port switch by integrating four physical ports
as one Mport [7]. Hence up to 12 Mports are interconnected by a central cross-
bar and a local Mport crossbar is used to connect physical ports to the central
crossbar. Although this hierarchical switch architecture can effectively reduce the
arbitration complexity by splitting a high-radix switch into a two-level crossbars.
The router radix and port bandwidth is unconfigurable and still constrained by
pin density.

The contributions of this paper include:

– We propose a novel design approach based on configurable communication
stack to build a scalable and flexible high-radix router with reduced hardware
cost while maintaining very high throughput under all traffic models.

– We propose a new implementation method for a cost-efficient DAMQ
(Dynamically Allocated Multi-Queue) buffer, composed of control DAMQ
and data DAMQ. This type of DAMQ is designed explicitly for the low-
latency packet scheduling with continuous read, write, and concurrency of
read-write. By maximizing the logic reuse of the control DAMQ and data
DAMQ, our scheme implements a combined DAMQ with 48% less logic over-
head while maintaining high throughput and low latency.

– We systematically present the microarchitecture of the Pisces internal switch
and Pisces design highlights for network error tolerance and congestion control
in detail. Notably, we implemented a hierarchical arbitration structure that
can complete a 256-to-1 arbitration within one clock cycle. The simulation
results demonstrate Pisces internal switch considerably reduces the packet
delay by over 59% compared to MBTR [8] and YARC [9], under unbalanced
traffic models.

We organize the paper as follows. In Sect. 2, the microarchitecture of Pisces
router is presented in detail. Besides, we also present the optimization strategies
and trade-off we made to optimize the architecture and performance, including
the communication stack with configurable physical and link transport layer; the
multi-port shared DAMQ with minimum hardware cost; the hierarchical arbi-
tration mechanism; network exception handling, and congestion control. We use
cycle-accurate simulation to evaluate throughput and delay in Sect. 3. Finally,
we conclude in Sect. 4.

Microarchitecture of a Configurable High-Radix Router 5

2 Pisces Router Microarchitecture

The virtual channels (VCs) split a physical link into multiple independent chan-
nels and allocate a dedicated buffer to each of them at each port (of switches,
routers, and end-nodes). Most flow control mechanisms use VCs to provide qual-
ity of service (QoS) or process deadlock [10]. Generally, four VCs are used for
the protocol-level deadlock avoidance. After providing an escape VC for each
adaptive VC to implement fully adaptive routing based on Duato’s theory [11],
the ultimate VC number should be 8. As a result, the arbitration complexity of
Pisces 96-radix switch, will be 768 × 768 with 8 VCs per port, which is infeasible
for high-frequency circuit implementation. High-radix routers with narrow ports
have been widely used to reduce the network diameter and cost. Since the total
bandwidth of the router is determined by the number of differential IO pins,
more ports mean less bandwidth per port.

On the other hand, the complexity of arbitration logic scales quadratically
with the number of ports which makes it more difficulty to improve the clock
frequency [6]. Consequently, processing wider data within one clock cycle might
be the best way to catch up with the ever-increasing bandwidth, however, which
contradicts with more narrow ports for high-radix routers. So we wonder if we
could implement an internal switch operating with wider flits to provide a scal-
able processing capacity for configurable number of ports with different band-
widths. In this way, the arbiter complexity of a 96-radix switch can be con-
siderably reduced, since the internal switch radix is only 24 with each internal
port binding four ports. Also, a configurable communication stack is used to
delivery aggregated flits from the link transport layer to the internal switch in a
transparent way.

2.1 The Configurable Communication Stack with Enhanced Link
Error Tolerance

We implement a proprietary communication stack to provide configurable and
reliable packet transportation to the upper network layer. Hence Pisces router
can be configured to different switch mode with variable number of ports run-
ning at a wide range of bandwidth with 96 to 24 physical ports. The hardware
communication stack includes PMA (Physical Media Attachment) layer, PCS
layer, and LLP (Logical Link Protocol) layer. LLP with packet retransmission
implemented in hardware provides reliable point-to-point data transport to the
upper network layer. Generally, the physical-link layers are implemented for cer-
tain specific bandwidth binding fixed number of lanes. Besides, the basic data
unit of link transfer typically varies with port bandwidth as well. As a result, it
is very difficult to reuse functional components for different port configuration.
However, due to some special features of our proprietary communication stack,
which not only automatically adapt the wide-port to narrow-port transporta-
tion but enhance the link fault tolerance, the hardware cost for configurable
data delivery is effectively reduced. The block diagram of the communication
stack of Pisces router is shown in Fig. 1.

6 Y. Dai et al.

Fig. 1. Configurable communication stack design.

The SerDes (Serializer/Deserializer) macro is commonly used in high-speed
serial communication to provide a PMA layer over a single physical lane. Each
SerDes composed of a pair of functional blocks converting data between serial
and parallel interfaces in each direction. A differential pair transmit the serial
data to minimize the number of I/O pins. The link bit error rate (BER) has
increased by several orders of magnitude with the increase of SerDes signaling
rate ranging form 14 Gbps to 25 Gbps. The forward error correction (FEC)
technique is used to correct bit and avoid link-level retransmission. As long as
the pre-FEC BER is below the FEC limit, all bit errors can be successfully
identified and corrected to avoid packet loss [12]. So we integrate FEC into the
PCS layer denoted as FEC-PCS shown in Fig. 1.

On the other hand, lane degrade tolerance becomes indispensable for high-
speed differential signaling. When lane failure occurs, the PCS layer can auto-
matically distribute and collect data to and from remaining good lanes. In
essence, once a lane failure is detected, PCS will request a connection rene-
gotiation to restart a handshake process with the other side PCS, thus both
sides operating at the proper lane modes. For example, 8x-lane PCS can auto-
matically degrade to 6x-lane operation mode when two lanes fail. This feature,
along with point-to-point packet retransmission, avoids application suspension
due to the poor link quality. The OPA switch supports a similar functional-
ity called dynamic lane scaling, which enables data transmission with one or
more lane failures [7]. To the best of our knowledge, most commercial PCS with
FEC could barely support lane failures. Pisces FEC-PCS supports both FEC
protection and dynamic lane failures against packet loss for highly reliable com-
munication.

The FEC-PCS can provide flexible bandwidth and data width to the LLP
layer by dynamically binding different number of lanes. LLP layer is used to
provide reliable point-to-point packet delivery for each port. As shown in Fig. 1,
four FEC-PCS modules, namely one 8× FEC-PCS, one 4× FEC-PCS, and the
other two 2× FEC-PCS, are set for every 8× SerDes to support radix-24/48/96
switch modes by adapting wide FEC-PCS to narrow FEC-PCS. For example, the
radix-96 switch mode with four narrow ports per 8× SerDes can be configured
by degrading the FEC-PCS with 8× and 4× lanes to 2× lanes. On the other
hand, for the radix-24 switch mode with 8× lanes per port, all 8× SerDes are
assigned to the 8× FEC-PCS, bypassing other FEC-PCS modules.

Microarchitecture of a Configurable High-Radix Router 7

The LLP layer provides reliable packet transmission for each port based on a
sliding window go-back-to-N protocol. For Pisces router, LLP’s basic data unit
for packet organization and credit management is fixed to 64bits. As a result,
LLP’s flit size is independent of the transfer and fabric layers. LLP can operate
at flexible bandwidth with configured flit width. Four LLP components is set
to implement configurable data transmission, that could be attributed to the
following two features. Firstly, flexible interface width to LLP can be provided
by FEC-PCS with different gearbox configuration. Secondly, LLP can be easily
configured to support different bandwidths while operating with fixed data unit
to reduce hardware cost.

Before the packet entering the internal switch, the packet check, route com-
putation, and fabric-flit encapsulation are performed. The packet Check module
(PKC) ensures the integrity of each arriving packet. For example, when some
fatal errors happen at the link layer, LLP has to empty the buffer to recover the
link. There might be corrupted packets entering the switch core. PKC module
will insert the body and tail flits for the incomplete packet. Thereby the vir-
tual cut-through (VCT) switching would not be stalled or suspended by illegal
packets. The Route Computation (RC) module lookups the routeing table con-
figured by the network management software for adaptive routing and network
error tolerance. According to the lookup results and the busy status of available
output ports, the RC module will select a less congested route for the corre-
sponding packet and decode the internal routing information, including the row
number, column number, aggregated port number, and group number to the
packet head’s control field. Finally, LLP data will be assembled and encapsu-
lated as a wider fabric flit processed by the internal switch. At the egress, fabric
flits will be segmented into multiple LLP data units before sending them to the
destined ports.

The internal switch uses the dynamically allocated multi-queue (DAMQ) to
store packets of different VCs. DAMQ maintains a FIFO queue for each VC
and dynamically allocates memory for each arriving packet. As shown in Fig. 1,
each DAMQ is coupled with a VC arbiter to grant a packet from multiple VC
requests then forward it to the destined row buffer of the internal switch. To
provide data path protection, the error correction code (ECC) is generated by
the ECCG module for each fabric flit. When the flit is read out from the DAMQ,
the ECCC module checks the corresponding ECC field for 1-bit error correction
and 2-bit error detection.

2.2 Multi-port Shared DAMQ with Data Prefetch

Although DAMQ involves more complicated logic, it has been widely used to
support multi-VC design with minimum memory overhead by dynamically allo-
cating VC buffers on traffic demand. Our team has been implementing high
performance DAMQ with continuous read and write, and concurrency of read-
write to achieve low delay and high throughput [15]. Besides, with a fair credit
management that can efficiently assign memory on demand among bursty or

8 Y. Dai et al.

uneven VCs, our DAMQ achieves microburst absorption, thus effectively improv-
ing memory utilization and throughput.

For Pisces router, the DAMQ implementation becomes more complicated
as it is shared by multiple ports to support flexible switch mode. All packets
delivered by LLP with different port configuration will be written into a shared
input DAMQ before entering the internal switch. For radix-96 switch mode with
8 VCs per port, up to 32 independent VC queues from four ports need to be
maintained in a DAMQ. Generally, packet data and control info are separately
stored in data DAMQ and control DAMQ to provide independent data and
control path for more efficient packet processing. Due to the increase of VC
number and data width, the data DAMQ could hardly close the timing of a
high frequency processing while providing zero-delay read and concurrent read-
write operation. In this section, we combine data and control DAMQs to largely
eliminate the hardware cost of control logic of data DAMQ. By reusing linked
VC lists and prefetch logic of control DAMQ, our scheme can effectively reduce
the hardware complexity, while maintaining high throughput and low latency.

As discussed in Ref. [15], the control data, including routing and QoS (Quality
of Service) related information, are extracted from the packet head and stored
in a control DAMQ. The control data is always read out in advance to initiate
the head parsing. However, the corresponding packet might remain in the data
DAMQ until the arbiter grants it. In this way, the control and data path are
processed in parallel, hiding packet buffering and reading latency. Due to the
tripled data width, the high-frequency data DAMQ is much more challenging
to implement. In contrast, the control 32-VC DAMQ with tens of bits width is
more feasible to meet a high frequency’s timing constraints.

The control DAMQ is essentially a partial copy of the data DAMQ. For any
flit stored in the data DAMQ, there must be a corresponding control data stored
exactly in the same address as this flit. Based on this observation, we analyze the
processing flow of both the control DAMQ and the data DAMQ when they work
together to schedule a packet. Then we found that most logical process of them
is the same. Therefore, we take a radical scheme to remove most data DAMQ’s
functional modules but remain the full functionalities of the control DAMQ by
treating the data DAMQ as the mirror memory of the control DAMQ. The
implementation of data and control DAMQ can be integrated together as shown
in Fig. 2.

The DAMQ implementation mainly includes the following functional mod-
ules:

– Shared buffer management: contain the read/write access control for shared
memory and multiple read requests arbitration.

– Linked list management: include the head and tail maintenance for each
VC and the idle list of the free buffers.

– Data prefetch module: include bypass and prefetch logic coupled with each
VC and the idle buffer list, to implement continuous read and concurrent
read-write.

Microarchitecture of a Configurable High-Radix Router 9

Fig. 2. The integration of control DAMQ and data DAMQ.

Consequently, the data DAMQ removes most functional modules but main-
tains the idle list associated functions, including the address memory storing the
idle buffer addresses, the head and tail management for the idle list, and the
idle address prefetch logic. Since the flit stored in the data DAMQ might not be
read out synchronously with its control data stored in the control DAMQ, their
idle memory status is different from each other. Hence the data DAMQ needs
to maintain an idle list of its own. Fortunately, due to the small volume of the
address memory, the timing requirements of 1GHz can be easily satisfied by the
data DAMQ. However, the control DAMQ maintains complete DAMQ functions
including up to 32 FIFO queues, which costs 32 head and tail management mod-
ules, plus an idle list management module, as shown in Fig. 2. It is worth noting
that for the lower radix switch mode, such as 48 or 24, the corresponding VC
number should be 16 or 8 with two ports or one port aggregated in one input
DAMQ. The maximum VC number reaches 32 when the radix-96 switch mode
is configured.

When the control data is read out in advance to initiate the arbitration
request, the corresponding data in data DAMQ might not be synchronously
read out until the arbiter finally grants the request. Due to the lack of addresses
maintenance in the data DAMQ, the arbiter has to temporarily register the
address of the control data when receiving an arbitration request. This address
will be returned to the data DAMQ when the associated packet is scheduled
from the data DAMQ in a VCT manner. With this minor modification of the
arbitration logic, our scheme achieves all merits of the previous DAMQ design
[15] but effectively reduce the hardware cost by pruning most functional mod-
ules of the data DAMQ. The synthesis and simulation results demonstrate this

10 Y. Dai et al.

combined DAMQ design reduces about 48% logic cost, including combination
logic and sequential logic, but with the same throughput and latency compared
with the DAMQ proposed in Ref [15].

2.3 The Internal Switch Based on Aggregated Tiles

The Pisces router uses an internal 24 × 24 switch to implement an external
96 × 96 switch by binding four narrow ports to an aggregated wide port. As
we analyzed in Sect. 1 considering the clock frequency ceases to grow, wider
data processing is the most efficient way to improve the bandwidth, meanwhile
reducing the arbitration complexity.

When running at the low-speed modes, the packet injection or arriving rate
from the LLP is two even four times slower than the internal switching band-
width. There must be idle clock cycles under this condition during the VCT
packet scheduling, leading to substantial throughput loss. To address this issue,
the input DAMQ adopts SAF (store-and-forward) flow control to make sure the
packet can be scheduled in a continuous manner [17] without any null cycles.

Fig. 3. The microarchitecture of the internal switch arranged as a 3 × 4 tile matrix
(R= 3, C = 4).

Another reason for the SAF flow control is once the packet from the lower
speed port is granted, other packets might be blocked because of the delay of the
whole packet transmission. Although the SAF flow control increases the sched-
ule delay of a specific packet. This delay can be hidden by processing multiple
packets from four LLPs in an alternative manner. Since the total bandwidth of
the communication stack matches the Aport bandwidth, no throughput is lost.

To further reduce the memory and wire overhead, the internal switch is orga-
nized as a MBTR architecture [8]. There are some options to implement radix-24
switch with different MBTR parameters [8]. Figure 3 shows the microarchitec-
ture of the internal switch. MBTR can build a radix-N switch with (N/A) tiles,
which can be flexibly organized as a R × C tile matrix, where A is the number

Microarchitecture of a Configurable High-Radix Router 11

of switch ports handled in each tile, R is the number of row tiles and C is the
number of column tiles. Besides, the number of row and column buffers of the
subswitch at each tile is AC and AR, respectively. If we use A = 3, which means
binding three ports per tile. The radix-24 switch can be organized as 4 × 2 or
2 × 4 tile array. The total number of column buses of the 4×2 tile matrix reaches
96 which is four times more than that of row buses. For another option of 2 × 4,
although the column buses can be reduced to 48, the 12 × 6 subswitch might
intensify output competition resulting in poor performance under unbalanced
traffic. None of them is a good choice. Then we figure out a MBTR structure
of A = 2 based on aggregated tiles shown in Fig. 3. To reach a better balance
between performance and hardware cost, an ideal option for the radix-24 inter-
nal switch organization is a 3 × 4 matrix of tiles with fewer wire and memory
consumption.

The routing information used by the internal switch is encapsulated in each
packet head. An arbiter associated with each Aport schedules the packets from
the input DAMQ to their destined row buffers. As shown in Fig. 3, each Aport
has a dedicated row buffer at different tiles of the same row. The packet is sent to
different row buffers according to the routing information of column number, via
a dedicated row bus. There are 8 Aports in the same row. Consequently, 8 row
buffers each for one Aport are set at each subswitch. The subswitch schedules the
packet to their destined column buffers according to the routing information of
row number. As shown in Fig. 3, the subswitch’s outputs connect to all 6 Aports
of the same column in a point-to-point manner. As a result, there are 3 column
buffers integrated at each Aport egress, each connecting to one tile of each row.
Hence, 6 column buses connect subswitch’s outputs to each Aport of the same
column. In sum, there are 8 row buffers and 6 column buffers for the tiles binding
two Aports. So we implement 8 × 6 subswitches. The total number of row and
column buffers of Pisces router is 24 and 72. Each buffer is implemented by a
combined DAMQ.

According to the throughput equation for an asymmetrical p×q IQ switch [8],
the throughput of the subswitch 8 × 6 can be calculated by ρ0 = (r+1)−√

r2 + 1
where r = p/q. So the throughput should be 67% with p = 8, q = 6. Under
random traffic the traffic from each Aport is distributed evenly to four row
buffers. Hence the packet injection rate of the subswitch is 25%. As a result,
the non-saturated relative 100% throughput can be achieved by each subswitch.
Moreover, the sufficient and necessary condition of 100% throughput can also
be established by Pisces router with a relative speed up of 1.7, according to the
theoretical analysis of the MBTR throughput in Ref. [8].

Although the radix of the internal switch is considerably reduced by aggre-
gating multi-port into a wider internal Aport. The number of VCs is increased
by four times to bind four ports for radix-96 switch mode. As a result, for the
subswitch 8 × 6, the packet scheduler needs to perform up to 256-to-1 arbitra-
tion for the eight row buffers, each with 32 VC requests. When we adopt the
same arbitration structure of MBTR for the subswitch 8 × 6. There should be a
32 × 1 VC arbiter associated with each row buffer to choose one VC request to

12 Y. Dai et al.

participate in its destined port arbitration. As a result, eight 32 × 1 VC arbiters
fully connect with five 8 × 1 port arbiters to schedule packets to the column
buffer. However, this arbitration structure cannot meet the timing requirements
of a high frequency. To address this issue, we propose a hierarchical arbitration
structure by splitting the 32-to-1 VC arbiter into four 8 × 1 arbiters, coupled
with a 4 × 1 group arbiter that sends the ultimate VC requests to the final port
arbiters. This third-level arbitration structure can considerably reduce the criti-
cal path delay by 40%, completing the whole arbitration within one 1GHz clock
cycle. Only if the VC request is granted simultaneously by the group arbiter
and the port arbiter. The corresponding packet can be scheduled from the row
buffer to the destined column buffer. The entire packet scheduling starts with
the VC arbiter at the input DAMQ that sends the packet to the destined column
by writing it into a dedicated row buffer. This first stage arbitration is called
column routing. The second stage VC arbiter associated with each row buffer
forwards the packet to the column buffer at the final destination Aport.

Another challenge of the internal wide flit arbitration is the successive single-
flit scheduling in a full pipelined way. The minimum packet size is generally
composed of two flits, which provides more timing margin for the arbitration logic
design. However, the full pipelined scheduling of the single flit packet requires
the request generation, VC arbitration, port arbitration and priority updating
to be completed within one clock cycle. The simulation and synthesis results
demonstrate this challenge can be satisfied by the remarkable performance of our
hierarchical arbitration mechanism, which ensures no pipeline stall or throughout
loss when scheduling successive single-flit packets from all 32 VCs.

2.4 Packet Exception Process and Congestion Control

The packets destined to the same Aport but from different tiles of the same
column will be stored in the column buffers at the destined Aport. As shown in
Fig. 4, the DAMQip0,op0 denote the column buffer of the 0th Aport storing the
packets from the 0th row tile. Hence there are three column buffers at the Aport
egress, each connecting to one tile of each row. The Aport egress performs some
critical functionalities such as packet discarding, congestion control, and VC
mapping, which improves network error tolerance and enables QoS and deadlock
avoidance [18].

The hierarchical arbitration structure from the column buffers to Aport is
similar to the subswitch arbitration. The 32 × 1 VC arbiter each associated with
one column buffer is composed of four 8 × 1 VC arbiters coupled with one 4 × 1
group arbiter. A 3 × 1 port arbiter chooses a VC request from three 32 × 1
VC arbiters. The packet granted by the port arbiter might not be validated
and sent to the downstream router under some exception conditions. The packet
exception handling module maintains 32 timers each for a specific VC of the
downstream input DAMQ. The timer monitors the credit-available signal of
the corresponding VC. If the credit timer expires, it indicates that this VC’s
packet has not been scheduled in a long time due to the lack of credits and
the router must prevent the error from propagating throughout the network.

Microarchitecture of a Configurable High-Radix Router 13

Fig. 4. Block diagram of column buffer output logic.

This credit timeout exception could happen when the attached computer node
stops processing the requests from some VC, thereby no credits released to the
upstream router. Once packets are blocked in a router for a long time, this
blockage will backpressure to another router then to the whole network. Once
detecting a timeout of credit unavailability of a specific VC, the Pisces router
will start discarding packets of the VC which incurred the timeout. Another
exception of link disability will also trigger unconditional packet discarding to
prevent the port failure from propagating. More importantly, these exceptions
will be periodically feedback to the route selection module at the ingress to
mask blocked or failed ports, thus ensuring the seamless integrity of a running
computation without route recalculation.

Congestion Control (CC) module is set for each Aport egress to detect net-
work congestion by monitoring the buffer occupancy of local buffers and the
credit status of the downstream buffer. As shown in Fig. 4, these congestion
related status are respectively collected from the three column buffers and the
credit management module of the outgoing port. CC module recognizes conges-
tion based on each VC. When the buffer depth of some VC exceeds the preset
threshold, meanwhile the credit for the downstream buffer access accumulates
very slowly. The packets will be stuck in the local buffers, which means the
congestion source locates at the downstream router that has no enough space
for the packet progress. Thereby, this blocked local port should be regarded as
a victim port. If the output credit is available, but local buffer depth reaches
the congestion threshold, the local port is recognized as a congestion root. In
this case, the CC module will tag the corresponding packets with the FECN
(Forward Explicit Congestion Notification) bit [19] at a configured ratio. When
the packets with FECN tags arrived at the destination NIC (Network Interface
Control), the CNP (Congestion Notification Packet) packets with BECN (Back-
ward Explicit Congestion Notification) bit go back to the source NIC to throttle
the injection rate to relieve the congestion. Especially, Pisces router itself can fix
the local instant congestion by feedbacking the victim port to the route compu-
tation modules. Therefore, the packet destined to the victim port will be routed

14 Y. Dai et al.

to another idle port by masking the victim output. As network congestion has
a significant impact on the packet latency and network throughput, congestion
management is indispensable to improve the communication efficiency and net-
work fairness. The VC mapping module shown in Fig. 4 is used to convert the
traffic VC number for QoS or deadlock avoidance [18].

3 Performance Evaluation

As we analyzed in Sect. 2, Pisces router supports radix-24/48/96 switch mode
by configuring different operating modes of PCS and LLP. For radix-24 switch
mode, the number of VCs of row and column buffers is 8, and just one port
binds to an Aport. Similarly, the VC number and aggregated port number are
respectively 16VCs, and 2 ports/Aport for radix-48 switch mode. At last, 32VCs,
and 4 ports/Aport configurations is set for radix-96 switch mode.

We implement Pisces router in register transfer level (RTL) and conduct
cycle-accurate simulations to evaluate the delay and throughput of the inter-
nal switch under both uniform and unbalanced traffic. We also build a radix-36
YARC and MBTR router in RTL for comparing Pisces router with them. YARC
is made of 36 6 × 6 subswitches arranged as a 6 × 6 array. MBTR consists of 12
tiles organized as a 3 × 4 matrix, each tile binding three ports and integrating
a 12 × 9 subswitch [8]. Moreover, all implementation schemes for YARC and
MBTR, including credit flow control, combined DAMQ, and arbitration imple-
mentation are the same as the Pisces router for a fair comparison. Because of
the architectural difference, Pisces router has four times VC number for each
DAMQ, two times wider flit of the internal switch, and two times shorter packet
length, compared to YARC and MBTR.

A packet’s delay is calculated from the time that the first flit arrives at an
input Aport until the time that the last flit departs from an output Aport. For
Pisces router, both the row and column DAMQ supports up to 32VCs, credit-
based flow control is used for lossless packet switching. Each Aport under test is
connected to a communication stack model that generates traffic to the switch
and mimics the behavior of the PCS layer, LLP layer, and packet assembling
and multiplexing. We generate uniform traffic by allocating destination ports
evenly among injected packets. With hotspot traffic, half of traffic load goes to
one-third of the output ports. For exponential and Poisson traffic, the packet
destinations follow an exponential and Poisson distribution, respectively. As the
method for synthetic traffic generation is just the same as we used for MBTR-36
evaluation in Ref. [8], we compare the Pisces router with our previous MBTR-36
router in terms of throughput and delay.

For all simulation experiments, we evaluate the performance by configuring
the packet injection rate with 10%, 30%, 50%, 70%, 90%, 100%, corresponding
to six points on each curve. Due to the credit-based flow control, when the input
load exceeds the saturated throughput. The backpressure from the flow control
will, in turn, reduce the packet injection rate to make it approximate to the
throughput. The lines labeled as Pisces-4×, Pisces-2×, and Pisces-1× respec-
tively denote the Pisces switch with the configuration of radix-96/48/24 modes.

Microarchitecture of a Configurable High-Radix Router 15

As we discussed above, the number of ports and traffic rate per port are differ-
ent for each switch mode. The number of VCs is 32, 16, and 8, respectively, for
radix-96/48/24 switch mode. Since DAMQ provides dynamic VC allocation on
traffic demand, we generate configurable unbalanced VC for each traffic model.
For example, 25% of the VCs can be assigned to transmit 80% of the traffic.
As analyzed in Ref. [8], an idea credit management for multiple shared VCs
can effectively eliminate the negative effect of uneven and bursty VCs on buffer
utilization. The simulation results suggest that the throughput and delay under
unbalance VC configurations maintain almost the same as that under random
VC distribution when applying combined DAMQ to all router models in com-
parison. This also verifies that the combined DAMQ achieves comparable burst
tolerance capacity to our prior DAMQs [15] but with less hardware cost.

We carry out cycle-accurate evaluation experiments, each running 250us.
The communication stack model built with SystemVerilog mimics the behav-
ior of link transport, flit assembling, and port arbitration for different switch
configurations. For the radix-96 configuration, there are four low-speed ports
participating in the injection arbitration. Once an injection port is granted, its
assembled packet will be forwarded to the destined row buffer. For the radix-48
and radix-24 modes, the packet injection behavior is similar to that of radix-96,
but with different number of injection ports.

We can see from Fig. 5 that all router models have identical throughput under
low traffic load. Although their throughputs both reach 98% under uniform
traffic. The throughput of YARC and MBTR decreases by about 30% and 50%
under hotspot and exponential traffic, respectively, due to the HoL (Head of
Line) blocking. However, the Pisces switch shows stable high throughput under
all traffic models. Surprisingly, Pisces-4×, Pisces-2×, and Pisces-1× even get
a little bit better throughput under unbalanced traffic like Exponential and
Hotspot than relatively balanced Poisson traffic. This phenomenon might be
attributed to the multi-port shared DAMQ that provides more flexible and burst-
tolerant packet buffering for unbalanced and burst traffic. On the other hand,
the port contention is considerably reduced by aggregating multiple lower-speed
ports into one wide internal port.

Fig. 5. Throughput and average flit delay of pisces, MBTR and YARC under uniform,
hotspot, poisson and exponential traffic models.

16 Y. Dai et al.

MBTR achieves indistinguishable delay and throughput from YARC, as
shown in Fig. 5. However, Pisces switch outperforms them by a large margin
almost under all traffic models. Although YARC and MBTR demonstrate more
stable performance under heavy load, Pisces-2x considerably reduces the aver-
age flit delay of them by 21%, 64%, 65%, and 59%, respectively under uniform,
Hotspot, Poisson, and Exponential traffic models. It seems like the unbalanced
traffic has limited impact on the Pisces switch due to the relieved port contention
and burst-tolerance shared buffers.

As shown in Fig. 5, Pisces-4× switch achieves the lowest latency among all
three switch modes. For the high-radix switch mode with narrow ports such
as Pisces-4×, the HoL blocking can be considerably mitigated by more shared
buffering queues and several times higher processing capacity. Although the
aggregated bandwidth of narrow ports matches the internal Aport bandwidth,
the alternative packet scheduling and memory sharing among multiple ports
make the traffic injection to Pisces internal switch more smooth and stable than
direct injection in YARC and MBTR. This also explains why Pisces-1× becomes
unstable under high traffic load and suggests the poorest delay performance.

4 Conclusion

We propose a scalable and flexible high-radix router microarchitecture with con-
figurable port number and bandwidth. Attributed to the enhanced features of
our customized communication stack that can dynamically bind available phys-
ical lanes and automatically adapt the wide-port to narrow-port, Pisces router
implements flexible switch modes for radix 24, 48 and 96 with minimum hard-
ware cost. In this paper, Pisces router implementation challenges and the corre-
sponding solutions are presented in detail, such as multi-port shared DAMQ with
high throughput and low latency, scalable switching architecture based on aggre-
gated tiles, and hierarchical arbitration for single-cycle arbiters. Due to more
smooth packet injection, reduced port contention, and burst-tolerance buffers,
the simulation results demonstrate Pisces switch achieves very high throughput
under all traffic models and reduces the packet delay by over 59% compared to
MBTR under unbalanced traffic models. Moreover, many enhanced new features
of Pisces router, such as link fault tolerance, load balancing, congestion control,
and adaptive routing make Pisces router well qualified for highly reliable large-
scale interconnects of exascale computing systems.

Acknowledgment. This research was supported by the key technology R&D program
(2018YFB0204300).

References

1. Top Ten Exascale Research Challenges. DOE ASCAC Subcommittee Report (2014)
2. Scott,, S., Abts, D., Kim, J., Dally, W.J.: The black widow high-radix clos network.

In: ISCA, Boston, MA (2006)

Microarchitecture of a Configurable High-Radix Router 17

3. Alverson, R., Roweth, D., Kaplan, L.: The gemini system interconnect. In: HOTI,
pp. 83–87 (2010)

4. Faanes, G., et al.: Cray cascade: a scalable HPC system based on a Dragonfly
network. In: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC): Los Alamitos, p. 103. CA,
USA, Article (2012)

5. Kim, J., Dally, W.J., Towles, B., Gupta, A.K.: Microarchitecture of a high-radix
router. ACM SIGARCH Comput. Architecture News 33(2), 420–431 (2005)

6. Ahn, J.H., Choo, S., Kim J.: Network within a network approach to create a
scalable high-radix router microarchitecture. In: HPCA, pp. 1–12 (2012)

7. Chari, S., Pamidi, M.R.: The intel omni-path architecture (OPA) for machine
learning. white paper (2017)

8. Dai, Y., Lu, K., Xiao, L.Q., Su, J.S.: A cost-efficient router architecture for HPC
inter-connection networks: design and implementation. IEEE Trans. Parallel Dis-
trib. Syst. 30(4), 738–753 (2019)

9. Brick, S.: BlackWidow hardware system overview. In: CUG, Lugano, Switzerland
(2006)

10. Duato, J.: A new theory of deadlock-free adaptive routing in wormhole networks.
IEEE Trans. Parallel Distrib. Syst. 4(12), 1320–1331 (1993)

11. Duato, J., Pinkston, T.: A general theory for deadlock-free adaptive routing using
a mixed set of resources. IEEE Trans. Parallel Distrib. Syst. 12(12), 1219–1235
(2001)

12. Mizuochi T.: Next generation FEC for optical communication. In: Optical Fiber
Communication Conference (p. OTuE5). Optical Society of America (2008)

13. 25G Ethernet Consortium. Low-Latency FEC Specification. https://25gethernet.
org/ll-fec-specification

14. Top 500 organization. http://www.top500.org. Accessed 4 Nov 2020
15. Zhang, H.Y., Wang, K.F., Zhang, J.M., Wu, N., Dai, Y.: A fast and fair shared

buffer for high-radix router. J. Circ. Syst. Comput. 23(01), 1450012 (2014)
16. Wang, K.F., Fang, M., Chen, S.Q.: Design of a tile-based high-radix switch with

high throughput. In: IPCSIT, vol. 17, IACSIT Press, Singapore (2011)
17. Dally, W.: Virtual-channel flow control. In: ISCA (1990)
18. Chen, L., Pinkston, T.M.: Worm-bubble flow control. In: HPCA, Shenzhen, China,

pp. 1–12 (2013)
19. Liu, Q., Russell, R.D., Gran, E.G.: Improvements to the infiniBand congestion

control mechanism. In: HOTI, pp. 27–36 (2016)

https://25gethernet.org/ll-fec-specification
https://25gethernet.org/ll-fec-specification
http://www.top500.org

BluesMPI: Efficient MPI Non-blocking
Alltoall Offloading Designs on Modern

BlueField Smart NICs

Mohammadreza Bayatpour(B), Nick Sarkauskas, Hari Subramoni,
Jahanzeb Maqbool Hashmi, and Dhabaleswar K. Panda

The Ohio State University, Columbus, USA
{bayatpour.1,sarkauskas.1,subramoni.1,hashmi.29,panda.2}@osu.edu

Abstract. In the state-of-the-art production quality MPI (Message
Passing Interface) libraries, communication progress is either performed
by the main thread or a separate communication progress thread. Tak-
ing advantage of separate communication threads can lead to a higher
overlap of communication and computation as well as reduced total appli-
cation execution time. However, such an approach can also lead to con-
tention for CPU resources leading to sub-par application performance
as the application itself has less number of available cores for computa-
tion. Recently, Mellanox has introduced the BlueField series of adapters
which combine the advanced capabilities of traditional ASIC based net-
work adapters with an array of ARM processors. In this paper, we pro-
pose BluesMPI, a high performance MPI non-blocking Alltoall design
that can be used to offload MPI Ialltoall collective operations from the
host CPU to the Smart NIC. BluesMPI guarantees the full overlap of
communication and computation for Alltoall collective operations while
providing on-par pure communication latency to CPU based on-loading
designs. We explore several designs to achieve the best pure communi-
cation latency for MPI Ialltoall. Our experiments show that BluesMPI
can improve the total execution time of the OSU Micro Benchmark for
MPI Ialltoall and P3DFFT application up to 44% and 30%, respectively.
To the best of our knowledge, this is the first design that efficiently takes
advantage of modern BlueField Smart NICs in deriving the MPI Alltoall
collective operation to get peak overlap of communication and computa-
tion.

Keywords: BlueField · SmartNIC · MPI · Alltoall · Offload

1 Introduction

The rapid growth in the scale of supercomputing systems over the last decade
has been driven by the multi-/many-core architectures, and RDMA-enabled,

This research is supported in part by National Science Foundation grants #1818253,
#1854828, #1931537, #2007991, #2018627, and XRAC grant #NCR-130002.

c© Springer Nature Switzerland AG 2021
B. L. Chamberlain et al. (Eds.): ISC High Performance 2021, LNCS 12728, pp. 18–37, 2021.
https://doi.org/10.1007/978-3-030-78713-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-78713-4_2

BluesMPI: MPI Non-blocking Alltoall Offloading on BlueField Smart NICs 19

high-performance interconnects such as InfiniBand [8] (IB). The Message Passing
Interface (MPI) [4] has been extensively used for implementing high-performance
parallel applications and it offers various primitives such as point-to-point, col-
lective, and Remote Memory Access operations. An MPI library that supports
highly efficient communication primitives will be essential to the performance of
HPC and parallel deep learning applications.

Overlap of communication and computation is critical for increasing resource
utilization and performance. MPI provides non-blocking point-to-point and col-
lective primitives that are used to achieve communication and computation over-
lap. In MPI, communication must be progressed, either by the main thread by
calling MPI Test or an extra offload entity such as a separate thread, or a hard-
ware feature inside the network. If none of these exist, the amount of overlap will
be limited as the main process thread must context switch from the application
computation to progress the communication inside the MPI library. This also
greatly depends on the application developer on how frequently they explicitly
call MPI Test. The application developer can either call MPI Test or there may
be an asynchronous communication thread in MPI. Both scenarios, however, can
lead to sub-par performance as the main application has less CPU resources for
useful application-level computation. Therefore, network offload mechanisms are
gaining attraction as they have the potential to completely offload the commu-
nication of MPI primitives into the network, maximizing the overlap of com-
munication and computation. However, the area of network offloading of MPI
primitives is still nascent and cannot be used as a universal solution.

Table 1. Designs and features to support efficient non-blocking collectives in repre-
sentative MPI libraries. C#1: computation and communication overlap, C#2: com-
munication latency, challenge #3: network scalability, C#4: availability of cores for
compute, C#5: hardware contexts for multiple communicators

Features of representative MPI libraries

No

offload

Core

[16]-Direct

SHARP

[15]

HW

tag [6]

matching

RDMA-

aware [17]

MPICH [7]

Async

Thrd

MVAPICH2

Async [11]

Proposed

C#1 Poor Good Fair Fair Fair Good Fair Good

C#2 Good Good Good Good Poor Fair Good Good

C#3 Good Fair Good Fair Fair Good Good Good

C#4 Poor Good Good Fair Good Poor Fair Good

C#5 Good Poor Fair Fair Good Good Good Good

Table 1 summarizes the different hardware offloading approaches. Among the
most recent schemes in networking technologies, SHARP collective offload mech-
anism [15] only supports Barrier and Allreduce operations and it supports a few
number of application level communicators as the Switch contexts are limited.
Due to the limitation of SHARP contexts inside each switch, MPI libraries have
to allow only one process per node (also known as the leader process) to use the

20 M. Bayatpour et al.

SHARP feature. Therefore, all the processes inside the same node must use host
CPU resources to conduct the intra-node operations before using SHARP. This
can limit the overlap opportunities of SHARP. Hardware Tag Matching for MPI
point-to-point operations [5,6] is another state-of-the-art network offloading fea-
ture for MPI. Even though this mechanism can improve the overlap of communi-
cation and computation of large Rendezvous messages, when this point-to-point
mechanism is used in dense collectives such as Alltoall, its overlap potential
hugely degrades as the scale goes higher. This is due to a limited number of out-
standing tags in this architecture [6]. On the other hand, in recent years, Smart
NICs are able to bring more compute resources into the network and a high
performance middleware such as MPI must take advantage of these additional
resources to fill in the limitations of other in-network technologies. Smart NICs
can act as a brand new host on the network by setting them to “separated host”
mode. Therefore, instead of using them as a packet processing engine where all
packets go through the processors inside the Smart NIC, these Smart NICs have
the potential for any in-network offloading purpose.

Fig. 1. Timeline of various designs for MPI non-blocking collectives

1.1 Challenges

In this paper, our goal is to efficiently take advantage of modern Smart NICs
in separated host mode to propose novel MPI non-blocking Alltoall designs for
large messages that 1) Achieves maximum overlap of communication and com-
putation without requiring any changes inside the upper-level application, 2)
Leaves the entire host processor for the useful application computation with
minimal context-switching, and 3) Minimizes the overhead involved in offload-
ing to the Smart NIC and provides good communication latency. In other words,
we are envisioning communication offload, as outlined in Fig. 1. To achieve our
goal, we are considering additional compute capabilities that are available in
modern high performance interconnects, such as Smart NICs. One of the latest
developments of such interconnects is the BlueField adapter that is based on
the ConnectX-6 series of Infiniband Mellanox models. This adapter is equipped
with an array of cache-coherent 1999 MHz ARM cores and they can be used as a
general-purpose system [3]. It also provides support for dual-port Remote Direct

BluesMPI: MPI Non-blocking Alltoall Offloading on BlueField Smart NICs 21

Memory Access (RDMA). These developments lead to the following broad chal-
lenge: How can existing production-quality HPC middleware such as
MPI be enhanced to take advantage of emerging networking technolo-
gies to deliver the best performance for HPC and DL applications on
emerging dense many-core CPU/GPU systems?

We break down this broad challenge into the following questions: 1) What
shortcomings regarding MPI exist in current state-of-the-art in-network tech-
nologies? 2) Can we use additional compute resources provided by modern
Smart NICs to accelerate MPI collective primitives? 3) What are the challenges
regarding exploiting these modern Smart NICs for offloading non-blocking All-
toall operations? 4) Can we propose efficient designs to take advantage of Smart
NICs capabilities without requiring the upper-level application changes? 5) How
to minimize pure communication latency of non-blocking Alltoall collective oper-
ations designed using BlueField Smart NICs?, and 6) What are the performance
overheads of each component of the framework and what is the impact of the
proposed design at the microbenchmark level as well as the application-level?

Fig. 2. Comparison of point-to-point latency and bandwidth of the processes on Blue-
Field smart NIC versus processes on the host. Latency Relative Performance (speedup)
is calculated by BF-latency/Host-latency, and bandwidth speedup is calculated by
Host-bw/BF-bw. We can observe that as message size increases, the inter-node perfor-
mance of ARM cores of BlueField (BF) smart NIC converges to the performance of
XEON cores.

1.2 Motivation and Characterization

As an initial step to answering our broad challenge, we need to identify oppor-
tunities provided by Smart NICs and thoroughly characterize a system enabled
with BlueField adapters. Based on this characterization, we conclude which MPI
operations have the potential for offloading to the ARM cores of the BlueField
and provide insights for our proposed Smart NIC-aware MPI library. To do so,
we compare the latency and bandwidth of communication between MPI pro-
cesses on the host cores versus MPI processes running on the ARM cores of the
BlueField adapters using OSU Micro Benchmarks [1]. Please refer to Sect. 1.5
for detailed experimental setup information. For each test, we launch all the
processes on the XEON cores of hosts and measure the latency and bandwidth.

22 M. Bayatpour et al.

Then, we perform a similar test by launching all the processes on the ARM cores
of the BlueField Smart NIC and calculate the speedup of host tests versus Smart
NIC tests. The speedup is calculated by ARM-latency/host-latency.

Figures 2(a) and (b) shows that for intra-node operations, as the message size
increases, the performance of intra-node operations diverges from the host pro-
cesses. This is in line with our expectations as for the intra-node operations, CPU
is in charge of the copy operations, and having a faster CPU has a significant
impact on point-to-point performance. Therefore, in our BluesMPI framework,
we avoid going through the CPU based intra-node operations for BluesMPI
worker processes on the Smart NIC. On the other hand, Fig. 2(b) shows an
opposite trend. Here as the message size increases, inter-node latency
of Smart NIC worker processes and host processes converge. This is
because the HCA is in charge of operations and for medium and large messages
(large than 16 KB) where the rendezvous protocol is used for point-to-point
operations. In this protocol, there are no copy operations involved. Therefore, as
message size increases, the network overheads will have more share of the total
latency.

Figure 2(c) illustrates the bandwidth comparison between the process run-
ning on ARM core of Smart NIC and the processes running on the host XEON
cores. The speedup is calculated by host-BW/ARM-BW. For multiple pair band-
width tests, we used osu mbw mr [1] that calculates the aggregate bandwidth for
multiple pairs of processes. Here experimental results of the inter-node opera-
tion are shown as intra-node operations are not interesting for us anymore. These
results show a similar trend as for large message inter-node latency operations.
Here also as the message size increases, the performance of processes on ARM
cores of Smart NIC converges to the performance of XEON cores of host. This
trend is consistent as the number of pairs increases as well. This shows that
processes on Smart NIC have the potential to handle dense commu-
nication for large messages using RDMA.

Based on this characterization, our proposed BluesMPI framework is purely
based on RDMA operations and the focus is to provide maximum overlap of
communication and computation with low communication latency for dense non-
blocking Alltoall collectives with medium and large messages.

1.3 Contributions

In this paper, we characterize various MPI point-to-point operations and identify
the aspects of the MPI library that can be efficiently driven by the additional
compute resources on the modern Smart NICs. Then based on our characteri-
zation, we propose BluesMPI, an adaptive MPI non-blocking Alltoall collective
offload design on modern Smart NICs. We propose various designs on the top
of BlueField for MPI Ialltoall operations. Our experimental results show that
BluesMPI can successfully take advantage of the available Smart NICs SoC on
the network and lower the execution time of OSU Micro Benchmark by 44%
and P3DFFT application by 30% on 1024 processes. To the best of our knowl-
edge, this is the first design that efficiently takes advantage of modern BlueField

BluesMPI: MPI Non-blocking Alltoall Offloading on BlueField Smart NICs 23

Smart NICs in deriving the MPI collective operations to get the peak overlap of
communication and computation.

To summarize, this paper makes the following contributions:

– In-depth analysis and characterization of MPI operations running on the
available compute resources of Smart NICs.

– Proposing novel designs for non-blocking Alltoall operations that provide
full overlap of communication and computation and low pure communica-
tion latency.

– Performing a thorough characterization of different components of the pro-
posed BluesMPI framework.

– Performance evaluations of the proposed designs at the micro benchmark level
and application level.

1.4 Overview of BlueField Smart NICs

Within each of the products in the BlueField family is the BlueField Data Pro-
cessing Unit (DPU). This is a system-on-chip containing 64-bit ARMv8 A72
cores connected in a mesh, DDR4 memory controllers, a ConnectX network con-
troller, and an integrated PCIe switch. The DPU is sold as part of products in
different lines of the BlueField family. These include BlueField Smart NICs, Blue-
Field storage controllers, and the BlueField Reference Platform. Figure 3 depicts
a schematic overview of the BlueField Smart NIC architecture. The BlueField
Smart NIC has two modes of operation: Separated Host mode (default) and
Embedded CPU Function Ownership (Smart NIC) mode. Each physical port on
the Smart NIC can be independently configured to either mode [3]. In separated
host mode, the ARM cores can appear on the network as any other host and the
main CPU (i.e. ×86) is exposed through a PCIe function for direct connectiv-
ity to the ConnectX. The ARM cores are exposed through a symmetric (to the
host) PCIe function for their own connectivity to the ConnectX network adapter.
Bandwidth is shared between the two functions. In our experiments, we use this
mode. Embedded CPU Function Ownership (Smart NIC) mode places several
restrictions on the host. In Smart NIC mode, all network controller resources

Fig. 3. BlueField smart NIC architecture

24 M. Bayatpour et al.

are controlled by the ARM cores via the Embedded CPU Physical Function
(ECPF). The ECPF in this mode will own the embedded switch (e-switch) as
well. In order to pass traffic to the host, either the e-switch must be set up with
forwarding rules, or kernel netdev representors (Open vSwitch virtual ports)
must be configured on the ARM cores [3].

1.5 Experimental Setup

We used the HPC Advisory Council High-Performance Center (HPCAC) [2]
cluster for our evaluation. HPCAC has 32 nodes that contain the BlueField-
2 network adapters. These adapters have an array of 8 ARM cores operating
at 1999 MHz with 16 GB RAM. Each BlueField adapter is equipped with Mel-
lanox MT41686 HDR ConnectX-6 HCAs (100 Gbps data rate) with PCI-Ex Gen3
interfaces [3]. The host is equipped with the Broadwell series of Xeon dual-socket,
16-core processors operating at 2.60 GHz with 128 GB RAM.

2 BluesMPI Designs

In this section, we provide the details of various components of the proposed
BluesMPI framework. In Sect. 2.1, we discuss the overall design of the frame-
work and explain each step that is required for non-blocking Alltoall collective
operations to be offloaded onto the Smart NIC. In Sect. 2.2, we describe the
details of various novel designs for non-blocking Alltoall operations.

2.1 BluesMPI Non-blocking Alltoall Collective Offload Framework

In BluesMPI, non-blocking Alltoall collective operations are offloaded to a set
of the Worker processes which have been spawned in the MPI Init to the Smart
NICs that are in the separated host mode. Therefore, all that application’s host
processes have to do is to prepare a set of metadata and provide it to the Worker
processes. Once the collective operations are completed, Worker processes notify
the host processes. BluesMPI framework goes over a set of steps in order to pre-
pare the non-blocking Alltoall collective operations to be offloaded to the Worker
processes on the Smart NIC. Although these steps are described for nonblocking
Alltoall, a similar framework can be used for any other dense collective commu-
nication, with a few modifications. For instance, for Allgather, some of the steps
can be done in the host shared memory to avoid excessive IB link utilization.

Step 0) Buffers Registration with HCA: In the first step, all the processes
inside the host communicator need to register the send buffer and receive buffer
of the MPI collective call with HCA, so that remote processes are able to perform
RDMA Read and Write on these buffers, asynchronously. Memory registration is
a costly operation, therefore, in our designs, we take advantage of a registration
cache to avoid re-registering the same set of buffers more than once.

BluesMPI: MPI Non-blocking Alltoall Offloading on BlueField Smart NICs 25

Step 1) Metadata Aggregation to the Host Communicator Leader Process:
Once a process in the host communicator registers its send and receive buffers,
it creates a collective info object that includes RDMA buffer addresses and
keys. It also includes this process’s rank in MPI COMM WORLD as well as the
count and datatype of this collective call. This information is the Metadata for
the collective call from this host process. The host communicator leader (which
is rank 0 in our design) gathers the Metadata from all the processes in the
communicator.

Fig. 4. BluesMPI procedure to offload non-blocking Alltoall collective operation to the
worker processes on the Smart NIC. Step 0 is not included in this figure.

Step 2) Metadata Registration with HCA and Offloading the Task Object to
Leader of the Workers Group: Once the host communicator leader generates the
array of Metadata, it has to register this array with HCA so that all the Worker
process on the Smart NIC can read whatever information that they require at
any time during progressing the collective. Once the registration is done, the host
communicator leader creates a new task object and sends it to the Workers group
leader. This task object has the information about the type of the collective and
the algorithm which must be performed by the Worker processes on the Smart
NIC. It also has the RDMA information of the Metadata array and the host
communicator size.

From now, the host processes are free to perform useful application compu-
tation. In the meantime, the leader of the Worker group on Smart NIC waits
for the incoming task objects from the leaders of the host communicators. Since
the application could have several sub-communicators, the leader of the Work-
ers group on Smart NIC can receive several task objects at the same time. It
is also possible that even for a single host communicator, several back-to-back
nonblocking collective calls are issued before going into the MPI Wait. In order

26 M. Bayatpour et al.

to handle all these scenarios, the leader of the Worker group on the Smart NIC
creates a FIFO queue and pushes all the new task objects into this queue.

Step 3) Picking up a Task from Queue of Offloaded Tasks and Forward it
to the Non-leader Workers: The leader of the Smart NIC Worker group picks a
task from the head of the tasks queue and broadcasts this object task to all the
processes in the Workers group.

Step 4 and 5) Progress the Collective on Behalf of the Host Communicators:
Once every Worker process on the Smart NIC receives a task object, it unpacks
the object and based on the task type, it performs the appropriate operations
on it. Now every Worker process needs to read the Metadata of the collective
from the host memory. In the following Sect. 2.2, we discuss the algorithm that
we used for nonblocking Alltoall performed by Worker processes.

Step 6) Collective Completion Notification: Once each receive buffer of the
host communicator processes has the correct value which is written by the
Worker processes on the Smart NIC, a completion notification is sent to the
host processes.

Figure 4 summarizes the required steps in the BluesMPI non-blocking Alltoall
collective offload framework.

2.2 Proposed Nonblocking Alltoall Designs in BluesMPI

In this section, we discuss our proposed designs to perform the nonblocking
Alltoall operations by the Worker processes on the Smart NIC. In these designs,
we consider balanced Workers per node, meaning that the number of the Workers
per node is the same between all the nodes. As the first step to perform the
nonblocking Alltoall, Worker processes must receive a task object regarding this
operation. This is done by the steps performed by the BluesMPI framework
discussed in Sect. 2.1. Once each Worker process has access to this task object
and its Metadata, it has full read and write access to every buffer of every process
in the host communicator.

In a perfect scenario, it is expected that the Worker processes issue RDMA
read and write operations to HCA on behalf of the host communicator processes.
This is because once the non-blocking collective is issued by the host process, this
process starts working on the application computations and it is not inside MPI,
progressing the communication. Therefore, in order to have a complete overlap of
communication and computation for the non-blocking collective operation, and
assuming that there is no extra communication progress thread running on the
host CPU, Worker processes should be able to progress the HCA on behalf of the
host processes. However, modern interconnects do not have this support. This
means that even if a remote Worker process on the Smart NIC has the RDMA
address and key of a local memory of host processes, it cannot directly issue
RDMA read or write from the host local memory to the destination memory of
another host process. Therefore, in our proposed non-blocking Alltoall designs,
data is staged in the main memory of the Smart NIC, and then it is forwarded
to the destination. Figure 5(a) depicts a single transfer in our proposed designs.
Scatter destination algorithm works best for medium and large messages [11],

BluesMPI: MPI Non-blocking Alltoall Offloading on BlueField Smart NICs 27

thus our proposed designs are based on this algorithm. In the scatter destination
algorithm for Alltoall, there is a loop with communicator-size iterations and in
each iteration, an exclusive piece of send buffer is sent to the destination receive
buffer of the remote process.

Once the Worker processes running on the ARM cores of the Smart NIC have
the collective Metadata, they share the collective progression among themselves
in a balanced manner. Therefore, if there are PPN number of the processes of
the host communicator in the same node and there are WPN number of Worker
processes per node, each Worker process is responsible for the PPN/WPN num-
ber of the host processes. Depending on how Worker processes on the Smart
NIC take advantage of the staging based message transfer mechanism depicted
in Fig. 5(a), we explore three designs: 1) Direct Design, 2) Message Chunking
Design, and 3) Message Pipelining Design. All of these designs in nature are
scatter destination Alltoall designs.

Fig. 5. (a) A single message transfer from a host communicator process in node A to
another host process on node B in our proposed Alltoall designs. (b) The Proposed
Direct Design in BluesMPI for Ialltoall for 1 PPN, 1 WPN, and 4 nodes scenario.

Direct Design. In this design, each Worker process starts from the first host
process which is assigned to it and then delivers each exclusive piece of data
from the local memory of the host process to all other host processes in the host

28 M. Bayatpour et al.

communicator. If there are N processes in the host communicator, since we are
performing an Alltoall operation, the send buffer of each host process will have
N exclusive data each with a size that depends on the count and datatype inputs
of MPI Ialltoall. Each of these N elements is sent to the appropriate index of the
receive buffer of another process in the host communicator. Therefore, if a Worker
process is responsible for the H number of host processes, it has to perform N × H
number of message transfers on behalf of those H number of host processes that
offloaded their collective communication on this Worker process. Each of these
individual back-to-back staging based transfers uses the mechanism illustrated
in Fig. 5(a) in an asynchronous manner while the host process is performing
the application compute and it is outside of the MPI library. Figure 6 shows
the Direct Design for the first four message transfers of a Worker process. To
further optimize this algorithm, we propose a link efficient load-balanced staging
technique. To achieve load balancing, in this design, we need to make sure that at
any point during the Direct Design, only one Worker process is writing to receive
buffer of a host process. Therefore, instead of allowing each Worker process to
start writing to the destination processes with rank 0, each Worker process sets
its initial destination process to the same host process that is assigned to it.
An example is provided in Fig. 5(b). Figure 7(a) shows that we can achieve 38%
in pure communication latency by taking advantage of this link load-balancing
mechanism.

Fig. 6. Timeline of the proposed staging based Alltoall designs for large messages.
For No Offloading scenario, scatter destination algorithm used in blocking Alltoall is
considered.

Message Chunking Design. One of the major bottlenecks in the Direct
Design is that it suffers from the overheads of the message staging in the Smart
NIC. This is because due to the staging operation, the number of the RDMA
operations doubles compared to the No Offloading CPU driven scatter desti-
nation scenario. Although in the Direct Design, there is a full overlap of com-
munication and computation, still, in order to get noticeable benefit in total
application time, we need to further reduce the pure communication time of
Direct Design. In order to do so, in Message Chunking Design, we break down

BluesMPI: MPI Non-blocking Alltoall Offloading on BlueField Smart NICs 29

Fig. 7. (a) Impact of load-balancing, (b) Impact of chunking, (c) Performance com-
parison of different proposed designs. In these figures, pure communication latency of
MPI Ialltoall is reported.

a single message size of msg size to multiple chunks. Then in each iteration, we
try to overlap the RDMA write of the current chunk with the RDMA read of the
next chunk. Figure 6 illustrates the Message Chunking Design. Infiniband links
are bi-directional, therefore, RDMA Write and Read can happen at the same
time without any extra cost. The base of this algorithm is indeed the Direct
Design, however, in the Message Chunking Design, we replace each staging based
transfer of size msg size with an another primitive that chunks the message to
chunk size equivalent pieces and overlaps the RDMA read and writes of back
to back chunks for this specific message. In this design, chunk size plays a major
role in the pure communication performance. Figure 7(b) shows the impact of
the chunk size compared to Direct Design. All of our experiments are conducted
on the HPCAC cluster which is introduced in Sect. 1.5.

Message Pipelining Design. Message Chunking Design is able to further
reduce the impact of the staging to Smart NIC. However, due to the nature of
this design that it considers each message transfer in an isolated manner, there
are still multiple chunks of the messages that are not taking advantage of the
overlapping between RDMA read and write. This is due to the fact that for each
message transfer, the first RDMA read and last RDMA write are not getting
overlapped with any other operations. This is also depicted in Fig. 6. Although
by increasing the number of the chunks, we can reduce this impact, but on the
other hand, choosing too small chunks can have a negative impact on IB links
as they are able to fill up the bandwidth and get the best performance. In order
to reduce the number of chunks which have not been overlapped, in Message
Pipelining Design, we take advantage of pipelining the back to back transfers.
In this design, RDMA write from Smart NIC to host memory of the current
message transfer of size msg size is overlapped with RDMA read of the next
message from host memory to Smart NIC. In this design, there will be only two
messages which have not been overlapped: the RDMA read of the first message
transfer and the RDMA write of the last message transfer. As the communicator
size N increases, the negative impact of staging to Smart NIC also decreases,
as the total number of transfers increases by a factor of N while the number
of messages which have not been overlapped remains 2. On a small scale and

30 M. Bayatpour et al.

Algorithm 1: Message Pipelining Design (Design-3)
Input : rdma info — Array of Send/Recv/FIN Buffers RDMA Info
Input : world ranks — Array of Host processes ranks in MPI COMM WORLD
Input : host comm size — Host communicator size
Input : worker comm size — Workers communicator size
Input : worker rank — Rank of this worker process in Workers communicator
Input : count — Count
Input : datatype size — Datatype size of a single element
Input : chunk size — Chunk size to be used for data staging procedure
Output: mpi errno

1 begin
2 customers list size =

3 host comm size / worker comm size
4 for i ← 0 to customers list size do
5 Find the host processes that this worker is responsible for
6 customers list[i] =
7 customers list size × worker rank + i
8 end
9 chunk num = msg size / chunk size

10 total msgs = host comm size × customers list size × chunk num
11 for msg ← −1 to total msgs do
12 Prepare for RDMA Read for a single chunk
13 i = (msg +1) / chunk num
14 if msg = total msgs − 1 then
15 Skip RDMA Read, set read completion flag for this chunk and jump to

skip read
16 end

17 src rank = customers list[i / host comm size]
18 src world rank = world ranks[src rank]
19 sendbuf = rdma info[src rank].sendbuf.buf addr
20 src key = rdma info[src rank].sendbuf.rkey
21 dst rank = ((i % host comm size) + src rank) % host comm size
22 src buf = sendbuf + dst rank × msg size + chunk size × ((msg + 1) %

chunk num)
23 Initiate an RDMA Read for a single chunk
24 staging tmp buf read = staging tmp buf + msg size × ((msg + 1) %2)

25 NonBlockingRdmaRead(staging tmp buf read,
26 src key, src buf, src world rank, chunk size)
27 Prepare for RDMA Write for a single chunk
28 skip read:
29 i = msg / chunk num
30 if msg = −1 then
31 Skip RDMA Write, set write completion flag for this chunk and jump to

skip write
32 end

33 src rank = customers list[i / host comm size]
34 dst rank = ((i % host comm size) + src rank) % host comm size

35 dst world rank = world ranks[dst rank]
36 recvbuf = rdma info[dst rank].recvbuf.buf addr
37 dst key = rdma info[dst rank].sendbuf.rkey
38 dst buf = recvbuf + src rank × msg size + chunk size × (msg %

chunk num)
39 staging tmp buf write = staging tmp buf + msg size × (msg %2)

40 NonBlockingRdmaWrite(staging tmp buf write,
41 dst key, dst buf, dst world rank, chunk size)
42 skip write:
43 BlockingWaitRdmaReadWrite()
44 end

45 Barrier(worker comm)
46 Notify all the host processes in the customers list
47 end

BluesMPI: MPI Non-blocking Alltoall Offloading on BlueField Smart NICs 31

especially for large messages, this design is combined with Message Chunking
Design. Therefore, each message is chunked into multiple pieces, and the RDMA
write of the last chunk of each message is overlapped with the RDMA read of the
first chunk of the next message. Algorithm 1 provides further details about the
procedure that worker processes perform to implement this algorithm. Figure 6
compare the pipelining opportunities of all the Direct, Message Chunking, and
Message Pipelining designs. Figure 7(c) compares their performance against each
other.

Once each Worker process is done with the task assigned to it, it goes into a
barrier, and it waits for all other Worker processes in the same group to finish
their task. Once every Worker process is done, they notify thehost processes
which are assigned to them. They do so by issuing an RDMA write to the FIN
flag on the local memory of each host process which was provided to Worker
processes. After this step, each Worker process goes into a broadcast operation,
and they wait for the leader of the Workers group to assign them a new collective
offloading task.

Fig. 8. Performance breakdown of pure communication latency of MPI Ialltoall
directly followed by MPI Wait for different steps of the BluesMPI framework discussed
in Sect. 2.1. These tests run on 8 nodes using Message Pipelining design.

3 Results

In this section, we discuss the experimental analysis of MPI collective primitives
using OSU Micro Benchmarks [1] and a modified P3DFFT [12] application with
nonblocking Alltoall support that is proposed by Kandalla et al. [9]. We provide
a performance breakdown of different steps of BluesMPI framework. BluesMPI
is designed on the top of the MVAPICH2 v2.3 MPI library. Comparisons with
HPCX 2.7.0 with HCOLL NBC flag enabled, MVAPICH2-X v2.3 with MPICH
asynchronous thread enabled, as well as optimized asynchronous thread enabled
are also provided. All the reported numbers are an average of three runs and
micro-benchmark evaluations ran for 1,000 iterations for each message size and

32 M. Bayatpour et al.

an average of three experiments is reported. The standard deviation between
these iterations is kept under 2%.

Fig. 9. Overlap of communication and computation reported by osu ialltoall bench-
mark for various designs.

3.1 Performance Characterization of BluesMPI Framework

In this section, we conduct a performance characterization of different steps of
the BluesMPI framework which are introduced in Sect. 2.1. To do so, light-weight
timers are added inside the BluesMPI framework and the time taken for each
of the six steps of the framework is measured. Figure 8 shows this performance
breakdown of pure communication of MPI alltoall for two tests with 8 nodes. As
we can see here, for smaller message sizes, the overheads of BluesMPI are more
visible compared to larger messages. This is because the overheads of BluesMPI,
which are the steps of 1 to 4 and step 6 (considering step 5 as the useful collec-
tive time) are not dependant on the message size and they only depend on the
Workers group size and host communicator size. This means that if the Work-
ers group size and host communicator size do not change, the overhead remains
constant, regardless of the message size. Therefore, only step 5 is dependant on
the job size and message size of MPI Ialltoall. Figure 8 shows the same trend.
For a single job size, as the message size increases, step 5 latency increases, and
since other steps remain constant, the percentage overhead compared to step
5 decrease. After step 5, steps 4 and 6 have the highest overhead compared to
other steps. This is because these two steps run on the slower ARM cores of the
BlueField and therefore, compared to host-related overhead (steps 0, 1, and 2),
they are more signified.

BluesMPI: MPI Non-blocking Alltoall Offloading on BlueField Smart NICs 33

Fig. 10. Pure communication time of MPI Ialltoall (time of MPI Ialltoall followed by
MPI Wait) for various designs.

Fig. 11. Total execution time of osu ialltoall benchmark for various designs.

3.2 Performance of MPI Collective Operations

In this section, we compare the performance of MPI Ialltoall using the
osu ialltoall benchmark from the OSU Micro Benchmark suite. Figures 9, 10,
and 11 show the impact of our proposed BluesMPI collective offloading frame-
work on the InfiniBand based BlueField Smart NICs. For these tests, we used
our most optimized algorithm which is Message Pipelining Design discussed
in Sect. 2.2. As we can see here, our proposed design can guarantee the peak

34 M. Bayatpour et al.

communication and computation overlap, as indicated in Fig. 9. On the other
hand, BluesMPI high-performance staging based nonblocking alltoall design,
with the proper number of Workers per node, it can gain on-par pure commu-
nication performance with tuned non-offloaded designs for large messages. By
providing the peak communication and computation overlap and achieving low
pure communication latency, BluesMPI can gain up to 2X speedup in the total
osu ialltoall execution time compared to default MVAPICH2-X. Comparing to
the HPCX 2.7.0 with HCOLL NBC flag enabled, we can see that the proposed
design’s pure communication performance is on-par with this library. However,
as the proposed design can provide full overlap of communication and computa-
tion, the total execution time improves up to 2X. The closest in performance of
osu ialltoall is MVAPICH2-X with MPICH asynchronous thread enabled. How-
ever, as we will see in the next section, having a separate thread for each process
running constantly can severely degrade the performance. On the other hand,
our proposed design does not interfere with the main application’s compute,
and therefore, can provide full overlap of communication and computation in a
transparent manner, showing its benefits at the application level.

Fig. 12. CPU time per loop of P3DFFT application for various designs.

3.3 Application Evaluations

In this section, we evaluate the impact of the BluesMPI framework on perfor-
mance of Parallel Three-Dimensional Fast Fourier Transforms (P3DFFT) appli-
cation. This library uses a 2D, or pencil, decomposition and increases the degree
of parallelism and scalability of FFT libraries. The data grid during each itera-
tion is transformed using nonblocking Alltoall collectives [9]. Figure 12 shows the
impact of the proposed BluesMPI designs with various number of Workers per
node and various scales. For these tests, we used the Message Pipelining Design
discussed in Sect. 2.2. The program that we used is test sine.x and we set x and
y grids to 2048. On x-axis, we run the tests for different values of z. As we can
see here, as the scale of the application increases, the benefits of the BluesMPI
also become more visible, gaining up to 30% improvement in the execution time
of this application at 32 PPN 32 Nodes of the BlueField-enabled thor nodes of
HPCAC cluster. It can be seen from this figure that even having a single Worker

BluesMPI: MPI Non-blocking Alltoall Offloading on BlueField Smart NICs 35

on each Smart NIC is having benefit. This is because even with a single Worker
per node BluesMPI can achieve close to full overlap and communication and
computation and if an application can provide enough computation to be over-
lapped with the communication time of the collective, it can see benefit with a
single Worker per Smart NIC as well. On the other hand, MVAPICH2-X with
MPICH asynchronous thread is showing the worst performance. This is because
this thread is constantly running and it interferes with the main application’s
compute resources.

4 Related Work

There have been some recent research efforts that offload networking functions
onto FPGA-based SmartNICs. There are also studies on offloading tasks to
SmartNICs in distributed applications. Floem [13] proposed a dataflow pro-
gramming system aimed at easing the programming effort. Liu et al. [10] built
an “actor” based prototype (called ipipe) and developed several applications
using it. The evaluation showed that by offloading computation to a SmartNIC,
considerable host CPU and latency savings is achievable. Researchers have also
explored various ways of offloading the progression of communication to NICs
for MPI point-to-point and collective operations. Sur et al. [18] discuss different
mechanisms for better computation/communication overlap on InfiniBand clus-
ters. These mechanisms exploit RDMA Read and selective interrupt-based asyn-
chronous progress and achieves nearly complete computation/communication
overlap. Potluri et al. [14] studied novel proxy-based designs to optimize the
internode point to-point and collective MPI primitives for Intel Xeon Phi based
cluster systems connected using InfiniBand network.

5 Conclusion and Future Work

In this paper, we characterized the performance impact of the smart NICs on
MPI and we found out the potential MPI primitives that can be offloaded
into the Smart NICs. Based on our observations, we proposed BluesMPI, an
adaptive non-blocking Alltoall collective offload framework that can be used on
modern Smart NICs. Furthermore, we proposed efficient offloading designs for
non-blocking Alltoall operations on the top of the BlueField Smart NIC. Our
experimental evaluations showed that using the proposed methods, we are able
to efficiently take advantage of the additional compute resource of Smart NICs
in the network and accelerate the performance of OSU Micro Benchmarks and
P3DFFT by a factor of 44% and 30%, respectively. To the best of our knowl-
edge, this is the first design that efficiently takes advantage of modern BlueField
Smart NICs in deriving the MPI collective operations to get the peak overlap of
communication and computation. Our future work is to provide similar designs
for other dense collective operations as well.

36 M. Bayatpour et al.

References

1. http://mvapich.cse.ohio-state.edu/benchmarks
2. High-Performance Center Overview. https://www.hpcadvisorycouncil.com/

cluster center.php
3. Mellanox BlueField. https://docs.mellanox.com/x/iQO3
4. Panda, D.K., Subramoni, H., Chu, C.H., Bayatpour, M.: The MVAPICH project:

Transforming research into high-performance MPI library for HPC community. J.
Comput. Sci. 101208 (2020)

5. Bayatpour, M., et al.: Communication-aware hardware-assisted MPI overlap
engine. In: Sadayappan, P., Chamberlain, B.L., Juckeland, G., Ltaief, H. (eds.) ISC
High Performance 2020. LNCS, vol. 12151, pp. 517–535. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-50743-5 26

6. Bayatpour, M., Ghazimirsaeed, S.M., Xu, S., Subramoni, H., Panda, D.K.: Design
and characterization of infiniband hardware tag matching in MPI. In: 20th Annual
IEEE/ACM CCGRID (2020)

7. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable imple-
mentation of the MPI, message passing interface standard. Technical report,
Argonne National Laboratory and Mississippi State University

8. InfiniBand Trade Association (2017). http://www.infinibandta.com
9. Kandalla, K., Subramoni, H., Tomko, K., Pekurovsky, D., Sur, S., Panda, D.K.:

High-performance and scalable non-blocking all-to-all with collective offload on
infiniband clusters: a study with parallel 3D FFT. Comput. Sci. 26, 237–246 (2011)

10. Liu, M., Cui, T., Schuh, H., Krishnamurthy, A., Peter, S., Gupta, K.: iPipe: a
framework for building distributed applications on SmartNICs. In: SIGCOMM
2019: Proceedings of the ACM Special Interest Group on Data Communication,
pp. 318–333 (2019). https://doi.org/10.1145/3341302.3342079

11. Network-Based Computing Laboratory: MVAPICH2-X (Unified MPI+PGAS
Communication Runtime over OpenFabrics/Gen2 for Exascale Systems). http://
mvapich.cse.ohio-state.edu/overview/mvapich2x/

12. Pekurovsky, D.: P3DFFT library (2006–2009). www.sdsc.edu/us/resources/p3dfft/
13. Phothilimthana, P.M., Liu, M., Kaufmann, A., Simon Peter, R.B., Anderson, T.:

Floem: a programming system for NIC-accelerated network applications. In: Pro-
ceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and Tech-
nologies (MSST). 13th USENIX Symposium on Operating Systems Design and
Implementation (2018)

14. Potluri, S., et al.: MVAPICH-PRISM: a proxy-based communication framework
using InfiniBand and SCIF for Intel MIC clusters. In: Proceedings of SC 2013, SC
2013, pp. 54:1–54:11 (2013)

15. Scalable hierarchical aggregation protocol: scalable hierarchical aggregation proto-
col. https://www.mellanox.com/products/sharp

16. Subramoni, H., Kandalla, K., Sur, S., Panda, D.K.: Design and evaluation of gener-
alized collective communication primitives with overlap using ConnectX-2 offload
engine. In: Internationall Symposium on Hot Interconnects (HotI), August 2010
(2010)

http://mvapich.cse.ohio-state.edu/benchmarks
https://www.hpcadvisorycouncil.com/cluster_center.php
https://www.hpcadvisorycouncil.com/cluster_center.php
https://docs.mellanox.com/x/iQO3
https://doi.org/10.1007/978-3-030-50743-5_26
http://www.infinibandta.com
https://doi.org/10.1145/3341302.3342079
http://mvapich.cse.ohio-state.edu/overview/mvapich2x/
http://mvapich.cse.ohio-state.edu/overview/mvapich2x/
www.sdsc.edu/us/resources/p3dfft/
https://www.mellanox.com/products/sharp

BluesMPI: MPI Non-blocking Alltoall Offloading on BlueField Smart NICs 37

17. Subramoni, H., et al.: Designing non-blocking personalized collectives with near
perfect overlap for RDMA-enabled clusters. In: Kunkel, J.M., Ludwig, T. (eds.)
ISC High Performance 2015. LNCS, vol. 9137, pp. 434–453. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-20119-1 31

18. Sur, S., Jin, H.W., Chai, L., Panda, D.K.: RDMA read based rendezvous proto-
col for MPI over infiniband: design alternatives and benefits. In: Proceedings of
the Eleventh ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 2006 (2006)

https://doi.org/10.1007/978-3-319-20119-1_31

Lessons Learned from Accelerating
Quicksilver on Programmable Integrated
Unified Memory Architecture (PIUMA)

and How That’s Different from CPU

Jesmin Jahan Tithi1(B), Fabrizio Petrini1, and David F. Richards2

1 Parallel Computing Labs, Intel Corporation, 3600 Juliette Ln,
Santa Clara, CA 95054, USA

{jesmin.jahan.tithi,fabrizio.petrini}@intel.com
2 Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

richards12@llnl.gov

Abstract. Quicksilver represents key elements of the Mercury Monte
Carlo Particle Transport simulation software developed at Lawrence Liv-
ermore National Laboratory (LLNL). Mercury is one of the applications
used in the Department of Energy (DOE) for nuclear security and nuclear
reactor simulations. Thus Quicksilver, as a Mercury proxy, influences
DOE’s hardware procurement and co-design activities. Quicksilver has a
complicated implementation and performance profile: its performance is
dominated by latency-bound table look-ups and control flow divergence
that limit SIMD/SIMT parallelization opportunities. Therefore, obtain-
ing high performance for Quicksilver is quite challenging.

This paper shows how to improve Quicksilver’s performance on Intel
Xeon CPUs by 1.8× compared to its original version by selectively repli-
cating conflict-prone data structures. It also shows how to efficiently port
Quicksilver on the new Intel Programmable Integrated Unified Memory
Architecture (PIUMA). Preliminary analysis shows that a PIUMA die
(8 cores) is about 2× faster than an Intel Xeon 8280 socket (28 cores)
and provides better strong scaling efficiency.

Keywords: Dynamic particle simulation · History-based simulation ·
Mercury · Monte-Carlo simulation · Particle transport · PIUMA ·
Quicksilver

1 Introduction

Quicksilver [1,13] is a proxy application representing the memory access pat-
terns, communication patterns, and branch divergence of the Mercury Monte
Carlo Particle Transport code [3] developed at Lawrence Livermore National
Laboratory (LLNL). Quicksilver models Mercury by solving a simplified particle
transport problem and is used to facilitate novel architecture co-design.

Quicksilver’s performance is dominated by latency bound table look-ups and
branch divergence. The code uses template classes containing objects, vectors,
c© Lawrence Livermore National Security, LLC 2021
B. L. Chamberlain et al. (Eds.): ISC High Performance 2021, LNCS 12728, pp. 38–56, 2021.
https://doi.org/doi.org/10.1007/978-3-030-78713-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_3&domain=pdf
https://doi.org/doi.org/10.1007/978-3-030-78713-4_3

Lessons Learned from Accelerating Quicksilver on PIUMA 39

queues, arrays, enums, and pointers to user-defined complex data types. Most of
these data structures are accessed randomly and require multiple levels of indi-
rection and non-unit strides for lookup. The code’s control flow is dominated by
branch divergence and allows few SIMD/SMT opportunities. Due to its irregu-
lar and sparse nature, getting high performance for Quicksilver is challenging.
State-of-the-art GPUs have been reported to do only marginally well compared
to general-purpose CPUs [13].

Intel’s Programmable Integrated Unified Memory Architecture (PIUMA) is
a new architecture optimized for irregular and sparse workloads and developed
under the DARPA HIVE [5] program. PIUMA consists of many multi-threaded
cores and natively supports fine-grained memory and network accesses, a glob-
ally shared address space, and powerful offload engines. PIUMA uses limited
caching and small granularity memory accesses to efficiently deal with the mem-
ory behavior of sparse workload. At the same time, PIUMA uses single-issue
in-order pipelines with many threads to hide memory latency and avoid specula-
tion. PIUMA supports in-network collectives, near-memory compute and remote
atomics in hardware [5]. These characteristics of PIUMA are a good match for
Quicksilver because of its unique application properties—latency bound random
accesses, inefficient caching, and use of atomics. In this paper we show how to
accelerate Quicksilver on PIUMA.

Contributions. This paper makes the following contributions:

– Shows a detailed performance analysis of Quicksilver on Intel Xeon CPUs.
– Improves Quicksilver performance on Xeon by 1.8× compared to baseline.
– Discusses how to port Quicksilver to the Intel PIUMA Architecture.
– Discusses optimizations to obtain 2× speedup and better scaling on PIUMA

compared to Xeon.
– Discusses what additional changes are needed in the Quicksilver/Mercury

code to scale to thousands of threads.

2 Background

2.1 Mercury and Quicksilver

The particle transport problem asks how particles interact with materials or
structures. The Monte Carlo method solves the particle transport problem by
tracking the paths of sample particles through a structure and using pseudo-
random numbers to sample probability distributions of various reactions (scat-
tering, fission, absorption, etc.) that may occur when particles collide with atoms
in a material. Mercury uses distributed memory (MPI-based) particle streaming
as well as domain replication to scale across nodes. It implements threads using
OpenMP with thread-private tally storage and these tallies are the primary
method for collecting data from Monte Carlo transport simulations to record
different stats/events throughout the simulation [13].

Quicksilver is designed to model Mercury’s call tree and memory usage pat-
terns. Quicksilver tracks particles through a 3-dimensional, hexahedral problem

40 J. J. Tithi et al.

domain with either vacuum or reflective boundary conditions. It implements a
3D polyhedral mesh where each mesh element consists of 24 triangular facets.
Particles are tracked as they move through mesh elements and facets until the
particles reach census (the end of the time step), are absorbed, or escape the
problem domain.

A reaction is by far the most expensive event a particle can perform and
induces a significant amount of divergent behavior. Each reaction has an associ-
ated cross-section table that stores the probabilities of such reaction occurring.
During a reaction event, particles must search the cross-section table to deter-
mine which reaction they will experience and then perform that reaction.

2.2 PIUMA

This section gives an overview of the Programmable Integrated Unified Memory
Architecture (PIUMA) and is adapted from article [5]. The PIUMA [5,10,12]
architecture consists of a collection of highly multi-threaded cores (MTC) and
single-threaded cores (STC) as shown in Fig. 1. The MTCs are round-robin
(interleaved) multi-threaded to address the lack of instruction-level parallelism in
most sparse workloads and incorporate latency hiding through thread-level par-
allelism as opposed to aggressive out-of-order speculative execution models. Each
thread can have only one in-flight instruction. This simplifies the core design and
has better energy efficiency. The STCs are in-order stall-on-use cores that can
exploit some instruction and memory-level parallelism but avoid aggressive out-
of-order pipelines to minimize power consumption. While the MTCs are used
as the data-parallel engines in PIUMA, the STCs are used for single-threaded
performance-sensitive tasks, such as memory and thread management.

MTCs and STCs are grouped into blocks. Each block has a large local scratch-
pad (SPAD) for low latency storage. PIUMA blocks are organized into dies and
each die consists of 8 blocks. Each block’s offload region contains a direct memory
access (DMA) engine that executes gather, scatter, copy, initialization, reduc-
tion, and broadcast operations. The DMA engine supports executing atomic
operations at the remote destinations.

All MTCs and STCs in PIUMA have a local instruction cache (I$), data cache
(D$), and register file (RF). PIUMA supports selective data caching. Whether

DRAM DRAM

DRAM DRAM

SPAD

M
TC

M
TC

ST
C

ST
C

BLOCK
OFFLOAD

M
TC

M
TC

ST
C

ST
C

M
TC

M
TC

ST
C

ST
C

M
TC

M
TC

ST
C

ST
C RF

D$

I$

RF

C
O

R
E

O
FF

LO
A

D

D$

I$

C
O

R
E

O
FF

LO
A

D

SPAD BLOCK
OFFLOAD

SPAD BLOCK
OFFLOADSPAD BLOCK

OFFLOAD

SINGLE-THREAD
CORE

MULTI-THREAD
CORE

Fig. 1. High-level diagram of PIUMA architecture (adapted from [5]).

Lessons Learned from Accelerating Quicksilver on PIUMA 41

data is cached is determined by a programmable unique bit in the address. In
general, no global variable is cached by default. Caches are not coherent across
the whole system which helps scalability. Programmers are responsible to choose
what memory accesses to cache (e.g., read-only global variables or local stack),
what to put on SPAD (e.g., frequently reused read-write data structures) or what
to store in the global address space. There are no prefetchers to avoid unnecessary
data fetches and limit power consumption. Instead, the offload engines are used
to efficiently fetch large chunks of data if needed.

PIUMA implements a distributed global address space (DGAS) in hardware
and with DGAS, each core can uniformly access memory across the full system
(containing multiple PIUMA nodes) using simple load/store operations. This
simplifies programming because there is no implementation difference between
accessing local and remote memory. This also eliminates the overhead of set-
ting up communication for remote accesses. There is one memory controller per
block and it supports native 8-byte accesses while supporting standard cache
line accesses as well.

PIUMA also includes ISA-supported remote atomic operations to all memory
locations in the system. Locking, ordering, and compute is managed by hardware
at the remote memory interface to allow fast execution. With high-performing
atomic operations, the programmer can implement efficient synchronization and
dynamic load balancing.

PIUMA uses a low-diameter, high-radix HyperX topology network containing
all-to-all connections on each level. Each link is optimized for 8-byte messages
to avoid the software and hardware inefficiencies of message aggregation and
large buffers prevalent in traditional systems. PIUMA utilizes a small-granularity
interface with concurrent transactions to achieve similar aggregate bandwidths
as traditional implementations. By design, the network bandwidth exceeds local
DRAM bandwidth in PIUMA to support higher remote traffic common in many
sparse workloads.

3 Quicksilver

Because Mercury is not publicly available, we used its proxy, Quicksilver, to
model how the control flow and memory access patterns observed in Monte Carlo
transport map to the PIUMA architecture. Quicksilver’s simplified structure and
smaller code size are also more suitable for the cycle-accurate simulator that is
used to model PIUMA.

The core kernel of Quicksilver has multiple potential execution paths. The
code uses dynamic data structures and multiple levels of indirection for data
lookups. Its small and random memory loads/stores are difficult to cache or coa-
lesce and frequent branching reduces vectorization opportunities. All these prop-
erties make Quicksilver a challenging code for GPUs. Previous work comparing
Quicksilver’s performance on an Nvidia P100 GPU [4] vs. an IBM Power9 pro-
cessor highlighted the impact of divergence on GPU performance [13]. For simu-
lations dominated by collision or facet crossing (i.e., when a specific code branch

42 J. J. Tithi et al.

is taken more frequently and predictably), P100 is 30% faster than Power9. How-
ever, when the events are balanced (branches are taken with equal probabilities
at random), P100 is slower by nearly a factor of two.

3.1 High-Level Algorithm

Pseudo-code for Quicksilver is shown in Algorithm 1.1. The program can be
divided into three sections: cycle init(), cycle tracking() and cycle finalize(). Sim-
ulations run for multiple time steps and each of these functions is called once per
time step. The cycle init() function initializes the particle tracking and builds
the target number of particles at the start of each time step. The cycle finalize()
function handles bookkeeping at the end of the time step and computes global
reductions on all tallies. The majority of the computational work of Quicksilver
occurs in cycle tracking() and the time spent in that section is used to compute
the performance metric or Figure of Merit (FOM).

The cycle tracking() function contains a parallel loop over all particles. For
each particle, three distances are computed: distance to census, distance to cross-
ing a mesh facet, and distance to the next reaction. Distance to census is merely
the distance the particle will travel at its current velocity before the end of
the time step. Distance to facet is a ray-tracing problem. Distance to reaction
considers the probabilities of all possible reactions, determines the mean free
path, and multiplies that mean free path by a random factor. Once these three
distances are computed, the particle executes the segment with the shortest dis-
tance. Moving to census is trivial: it simply updates a tally that counts the
number of census events. Moving to the next facet may involve entering a new
material or possibly moving particles to a different spatial domain handled by
a different MPI process. In the case of a reaction segment, a random reaction
is selected, and control flow branches to the code that handles that reaction.

Algorithm 1.1. Pseudocode for the original Quicksilver code.

Lessons Learned from Accelerating Quicksilver on PIUMA 43

Once the selected segment is complete, tallies are incremented and the three dis-
tances are recomputed to repeat the process until all the particles either reach
census (the end of the time step), are absorbed, or escape.

3.2 A Deeper Analysis of cycle tracking

The cycle tracking() function can be further sub-divided into two computation-
ally expensive sub-modules which account for more than 95% of total runtime for
the Coral2 P1*.inp input files that come with the proxy app [1]. The first sub-
module (MCT Segment outcome) computes distances to census, facet crossing,
and reaction. The second sub-module (CollisionEvent) executes reaction events.
Preliminary analysis shows that for the Coral2 P1 1.inp input file, Collision-
Event takes 53.3% of the total time and MC segment outcome takes 44.6% of
the total time on an Intel R© Xeon Socket with 28 cores.

Both of these functions have low arithmetic intensities. Intel Advisor’s profil-
ing shows that the most expensive loop inside CollisionEvent has an arithmetic
intensity of 0.002, and its performance is bounded by the L2 bandwidth. The
function MCT Nearest facet called inside MCT Segment outcome has an arith-
metic intensity of 0.005 and is bounded by the L3 bandwidth. Other functions
called by CollisionEvent and MCT Nearest Segment are bounded by scalar L1
bandwidth, usable cache bandwidth, inter-loop data dependency, and the speed
of latency bound look-ups. Arithmetic intensities range from 0.002 to 1.3.

The CollisionEvent function presents additional challenges as it is very irreg-
ular and branchy. In Mercury, many thousands of lines code are reachable by
CollisionEvent due to the large number of possible reactions. Furthermore, the
function is write-heavy and calls math functions such as sqrt, log, sin, cos, and
inv. Write-heaviness is linked to frequent object creation (malloc and memcpy)
that can be inefficient in highly threaded code and math functions are typically
slow for in-order single-issue pipeline threads unless supported in the hardware.

Another interesting feature of cycle tracking() is that the time spent in the
parallel loop over particles varies widely from particle to particle. This behavior
arises not only because each particle experiences an effectively random number
of events, but also from the fact that different events require different amounts
of compute time. Figure 2 shows a histogram of the run time for 6,400 particles,
4 × 4 × 4 mesh, 1 × 1 × 1 domain. The slowest particle takes 2× more time than
the median. This suggests cycle tracking will likely benefit from some form of
load balancing.

4 CPU Optimizations

This section discusses different optimizations that can improve Quicksilver’s per-
formance on Xeon over 1.8× compared to its original version.

The baseline code was taken from https://github.com/LLNL/Quicksilver,
commit id 320d271cf68dafd92667cad08531a1caa744a834, updated on July

https://github.com/LLNL/Quicksilver

44 J. J. Tithi et al.

Fig. 2. Variation in runtime for each particle in cycle tracking (in milliseconds).

2nd 2020. We have used the CTS2 Benchmark’s CTS2 1.inp with 40,960 par-
ticles and the Coral2 Benchmark’s CORAL2 P1 1.inp [2] with 163,840 particles
and the following platform to guide the Xeon optimizations:

– CPU Name: Intel R© Xeon R© Platinum 8280 CPU @ 2.70GHz, Turbo boost on
by default (CLX 8280)

– Memory: 196 GiB (DRAM), 39.4 MiB (L3) 1 MiB (L2), 32 KiB (L1)
– Number of Sockets: 1, 28 cores, 28 threads
– Parallelism: shared-memory thread parallel
– Compiler in Xeon: Intel R© 64 Version: 19.0.2.187 Build 20190117

The following compiler flags “-O3 -xCORE-AVX512 -ipo -ansi-alias -finline -
restrict -qopenmp -mP2OPT hpo omp inline atomic=2” are used to compile the
code. The KMP AFFINITY has been set to “verbose,granularity=fine,proc-
list = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27],
explicit”.

4.1 Engineering Optimizations

Because of the large variation in per-particle time observed in Sect. 3 we chose to
focus first on load balancing. Replacing static thread scheduling (#pragma omp
parallel schedule (static,1)) with dynamic thread scheduling (#pragma
omp parallel for schedule (dynamic,1)) improved performance by 1.2× on
one socket (28 cores) of Xeon CLX 8280 running 28 threads.

Next, we focused on the data access patterns in the CollisionEvent function.
The most heavily used data structure in CollisionEvent is NuclearData. The size
of NuclearData is in the order of O(Nreactions ×Nisotopes ×Ngroups ×Nmatterials)
and for the CORAL2 P1 1.inp input, it occupies around 331 KiB of storage
space. This data is accessed randomly and is a potential source of conflict accord-
ing to Intel Advisor. Making NuclearData private for each thread could poten-
tially improve performance by reducing access/queuing delays. Hence, we made
the instances of NuclearData thread private by using the storage specifier static
thread and making sure that each thread called the appropriate allocation and

Lessons Learned from Accelerating Quicksilver on PIUMA 45

Fig. 3. Original vs. Optimized on the CTS2 1.inp input (40,960 particles). The Figure
of Merit (FOM) is segments per second.

initialization functions. With this change, the compiler creates a unique instance
of the variable for each thread that uses it and destroys that instance when the
thread terminates. This simple change improves performance by 1.72× over the
original. We call this approach automatic or compiler-assisted privatization.

We also tried some basic inlining of function calls, inlining atomic tally
updates (tally is the data structure that keeps track of different events) inside
the CollisionEvent, and MC segment outcome functions, and caching read-only
pointers and variables independently. This improved performance by 1.1× with-
out any prior optimizations.

Adding all three optimizations together gives an 1.82× aggregate speedup
over the original code. The keys to this speedup are NuclearData privatization
and dynamic thread scheduling. Other optimizations contributed very little.

Because of the significant memory penalty imposed by privatizing large data
structures, we wanted to determine whether it is possible to get a similar per-
formance gain using fewer copies of NuclearData than one per thread. We man-
ually replicated NuclearData NR times and assigned each thread to access the
(id%NR)-th replica of NuclearData. This improved the runtime from the base-
line version by 1.85×. However, manual privatization requires much more code
changes (40 lines) than the compiler assisted data privatization (6 lines) and
thus one may prefer the latter option.

Figure 3 shows the performance difference between the optimized version vs.
the original code from GitHub on one socket of CLX 8280 on the CTS2 1.inp
Input. In the figure, ‘private-13-copies’ stands for manual privatization with 13
copies of NuclearData created by the first 13 threads and then shared by the
rest using the modulo operation, and ‘auto-private’ refers to compiler-assisted
privatization. Regardless of the privatization method, the optimized code is 1.8×
faster than the original.

Figure 4 shows the performance difference between the optimized version and
the original code on the CORAL2 P1 1.inp. In this case, too, the optimized code
performs 1.8× better than the original.

To summarize, by selectively privatizing a conflict prone data structure and
adding dynamic load-balancing, we were able to obtain around 1.8× speedup.

46 J. J. Tithi et al.

Fig. 4. Original vs. Optimized on the CORAL2 P1 1.inp Input (163,840 particles).
The Figure of Merit (FOM) is segments per second.

4.2 Algorithmic Optimizations

The above optimizations are mainly engineering optimizations. There are algo-
rithmic optimization opportunities that can improve performance, too. For
example, it is possible to change the NuclearData data structure to be a struc-
ture of arrays rather than an array of structures and then compute the prefix
sum of reaction probabilities instead of individual probabilities. That way, it
is possible to replace the O(Nreactions × Nisotopes) cost linear scan through the
reaction tables with a O(log(Nreactions ×Nisotopes)) cost binary search providing
a 2× gain over the original [14]. However, this requires major changes in mul-
tiple data structures which might not be easy to adapt in Mercury. Significant
algorithmic changes are outside the scope of this paper since the goal is to make
minimal changes while porting Quicksilver to PIUMA.

5 Quicksilver on PIUMA

PIUMA has been designed with programmability in mind. It supports C and
many features of C++. It has its own OpenMP style programming extensions to
exploit both Single Program Multiple Data (SPMD) and task-based paralleliza-
tion schemes. PIUMA hardware is not yet available, so a Sniper based cycle-
accurate simulator [9] has been used to model and validate multi-die PIUMA
configurations. In addition, an FPGA-based RTL system has been used to model
up to 1 PIUMA die. The two systems, Sniper and RTL, provide performance
estimates that are within 5% of each other [5].

5.1 Initial Porting Effort

It’s fairly easy to port any OpenMP or pthread style shared-memory code to
PIUMA since any memory location can be read/written by simple load/store
operations (thanks to DGAS).

To port the shared-memory version of Quicksilver to PIUMA, we made the
following changes in the code:

Lessons Learned from Accelerating Quicksilver on PIUMA 47

– Overloaded the ‘new’ and ‘delete’ operators to allow specification of where to
allocate memory (main memory, scratchpad, private or shared).

– Changed the memory allocation calls to match the memory allocation library
of PIUMA which are specialized for DGAS allocations.

– Replaced rand48() with Piuma rand().
– Replaced atomics and synchronizations/barriers with PIUMA versions.
– Removed file I/O operations unsupported by the simulator.
– Found and fixed some memory leaks in the original code.

We also changed the main program to include PIUMA library header files
and the Makefile to support PIUMA runtime. We used the STCs for memory
allocations and initialization and the MTCs to simulate the particles. STCs are
only used in the initialization phase.

Since PIUMA supports a variety of memory allocation options, the porting
process involved deciding how to allocate various data structures in memory. By
default, PIUMA uses an interleaved/striped memory allocation. For a program
running on M cores with M memory controllers, any memory allocation will
be striped in round-robin chunks across those memory controllers. This ensures
even access pressure across the memory controllers and reduces queuing latency
and conflicts for randomly accessed data. PIUMA also allows allocation to a
particular core’s local memory controller or scratchpad (SPAD). When a core
allocates any data on SPAD, it gets allocated to its local SPAD by default.
PIUMA also allows a program to selectively cache data by turning on a given
bit in the address of that data. We initially chose to cache function parame-
ters, global pointers, and variables used in the most time consuming functions
(CollisionEvent and MCT Nearest Facet).

5.2 Comparing PIUMA to Xeon

In addition to the porting changes just described, we also added a few optimiza-
tions intended to make the comparison between PIUMA and Xeon as fair as
possible. These included:

– Conversion of repeated division operation to one division followed by repeated
multiplications, because divisions are costlier than multiplication.

– Replacing software transcendental functions with hardware versions, since
hardware versions are faster.

– Function inlining for most heavily used functions to reduce calling overheads.
– Selective caching for frequently accessed read-only global variables because

cached accesses are faster.
– Use of builtin relaxed atomics whenever feasible since relaxed atomics are

faster than the standard ones.

Since PIUMA does not cache data by default and that PIUMA’s cache is not
as large as Xeon’s, we used the SPAD as a substitute for the cache. SPAD is faster
than the main memory but slower than cache. We know from our Xeon analysis
that NuclearData is a performance-critical data structure so we allocated the

48 J. J. Tithi et al.

Fig. 5. Static vs. dynamic scheduling of particles on PIUMA. Input: 10,240 particles,
4 × 4 × 4 mesh, 1024 particles per MTC.

most heavily used arrays of NuclearData in the SPAD. We allocated certain
tally data (that tracks counts of different events) in the SPAD as well because
Quicksilver does frequent atomic updates on tallies and SPAD atomics are faster
than atomics on main memory.

As we ran Quicksilver on the PIUMA simulator we quickly realized that the
load-imbalance due to static scheduling of the particle loop in cycle tracking was
much worse on PIUMA than Xeon. This is not surprising considering PIUMA’s
much larger number of threads per core. Therefore, we implemented a dynamic
load-balancing technique where each MTC thread atomically updates a shared
global next particle variable by a chunk size and works on that chunk of parti-
cles. Figure 5 shows the thread timeline plots for static and dynamic scheduling.
The thread timelines clearly show that the load imbalance with static partition-
ing is almost completely eliminated by dynamic scheduling.

With these changes, the PIUMA implementation of Quicksilver is quite sim-
ilar to the Xeon implementation from Sect. 4 with data privatization optimiza-
tions removed. We refer to this implementation as the baseline version.

Figure 6 compares performance between the PIUMA baseline implementation
and a Xeon version without NuclearData privatization for the Coral2 P1 1.inp
input with 20,480 particles, 4×4×4 mesh, 1×1×1 domain, and 1 iteration of
tracking. (We are limited to only one iteration of cycle tracking because the
cycle-accurate simulator used to simulate the PIUMA system is significantly
slower than running on actual hardware.) The figure shows that while 1 PIUMA
core performs similarly to 1 Xeon core, PIUMA wins on strong scaling and
16 cores of PIUMA (1,024 MTC threads) are 2× faster than 16 cores of Xeon
CLX 8280. PIUMA’s strong scaling efficiency is 56%, and CLX’s efficiency is
27%. Admittedly, making this comparison with a small number of particles
(about 8× fewer than we used in Sect. 4) disadvantages Xeon. However, as shown
in Fig. 4, Xeon performance flattens rapidly beyond 8 threads for large problems
too. Even if Xeon were to scale as in Fig. 4, PIUMA would be substantially faster
at 16 cores.

The key takeaway here is that without data privatization, a single PIUMA
core runs as fast as a single Xeon core, but when we strong scale to 16 cores,
PIUMA performs 2× better than Xeon—thanks to its lightweight threads and
latency hiding capability.

Lessons Learned from Accelerating Quicksilver on PIUMA 49

Fig. 6. Performance of Quicksilver on CLX and PIUMA, without data privatization

5.3 PIUMA Optimized Version

Next, we set out to optimize the PIUMA version of Quicksilver by addressing
hotspots highlighted by the PIUMA simulator. We also wanted to test Nuclear-
Data privatization since that change provided 1.7× speedup on Xeon. Based on
these objectives, we made the following changes:

– In MC nearest facet, fused the loop over 24 facets to compute the distance
to facets with the loop that finds their minimum. This removes temporary
arrays and reduces repeated object creation.

– Moved tallies to main memory from SPAD and inlined the most expensive
scalar flux update.

– Removed NuclearData from SPAD and created a private copy in each core’s
local main memory.

– Allocated parts of the Domain (node, plane, and points) in the SPAD.
– Cached mesh, node, plane, and points in the MC nearest facet function.

We call this version the optimized version on PIUMA.
Figure 7 shows the performance difference between the optimized version

of Quicksilver on PIUMA and the Xeon code with data privatization on the
Coral2 P1 1.inp input with 20,480 particles, 4×4×4 mesh, 1×1×1 domain. At
16 cores, the PIUMA optimized version is 1.65× faster than its own baseline.
This is slightly less than the 1.7× speedup we obtained on Xeon from data priva-
tization, but the scalability gap remains. With data-privatization optimization
on Xeon, PIUMA is slower than Xeon up to 4 cores, performs similar to Xeon at
8 cores, and around 2× faster at 16 cores. PIUMA shows better strong scaling
at 16 cores where each MTC thread is processing 20 particles and each Xeon
thread is processing 1,280 particles; PIUMA’s strong scaling efficiency is 77%
whereas Xeon’s efficiency is only 24%. Nevertheless, Xeon benefits more than
PIUMA from data privatization, especially at smaller core counts.

Note that, moving NuclearData from SPAD to main memory does not
degrade performance at 16 cores. In fact, the PIUMA performance on 16 cores
improved slightly from 19.22 ms (see Fig. 6) to 19.02 ms by reducing the con-
tention in accessing a single SPAD. As detailed in the next subsection, it also

50 J. J. Tithi et al.

Fig. 7. Performance of Quicksilver on CLX and PIUMA, with data privatization

matters little whether NuclearData is privatized to each core or distributed. The
major portion of the speedup of the optimized PIUMA version comes from loop
fusion, removal of temporaries, and the inlined tally update. In contrast, when
we tested the loop fusion optimization by itself on Xeon, we obtained very little
speedup; only about 2%. This is consistent with the fact that the MTC threads
are very lightweight and significantly slower at temporary object creation com-
pared to a thread running on an out-of-order Xeon core. (It also explains why
Xeon sees relatively little benefit from the same optimization.)

5.4 Exploring Memory Allocation Options on PIUMA

One obvious disadvantage of data privatization optimizations is the extra storage
space required for the private copies. Fortunately, PIUMA’s DGAS architecture
provides a way to avoid that cost. PIUMA provides Malloc at core(id) that allo-
cates data at a memory controller close to the core with a given id but striped
across multiple ports if available. This style of allocation is similar to the default
allocation technique on Xeon and is usually good for data accessed using unit
strides. We used this allocation option in the previous subsection to create core-
private copies of NuclearData. However, PIUMA can also do distributed memory
allocation. The default malloc on PIUMA allocates data in chunks of B bytes
across all cores’ memory controllers. This stripes data across both memory con-
trollers and ports which is good for randomly accessed data because it distributes
access pressure across all controllers evenly.

To understand benefits of private vs. distributed allocations we tested Quick-
silver with two allocation options:

– Private: Each core has its own copy of NuclearData.
– Distributed: A single copy of NuclearData is distributed across all memory

controllers in a stripped/interleaved manner.

As shown in Table 1, the performance of these two options is very similar.
With 20,480 particles, on 8 cores (512 MTCs), the distributed allocation (1
copy) version took 20.64 ms whereas the private allocation (8 copies) version

Lessons Learned from Accelerating Quicksilver on PIUMA 51

Table 1. Distributed vs. private allocation on PIUMA. MC = Memory Controller.

Memory Policy Time (ms)

1 copy interleaved across all MC 20.64

8 copies at 8 MCs 19.35

Table 2. Impact of data replication on PIUMA

Copies Time (ms) Cores per copy

1 35.44 8 cores access a single copy

2 23.27 4 cores access each copy

4 20.33 2 cores access each copy

8 19.35 Each core has own copy

took 19.35 ms. Thus, the benefits of private vs. distributed copies for randomly
accessed data (e.g., NuclearData) is minimal on PIUMA.

To further understand the difference between private and distributed alloca-
tion, we varied the total number of private copies of NuclearData from 1 to 8.
Note that any PIUMA core can access data stored at any other PIUMA core so
the allocations are private only in the sense of locality and do not restrict access.
As shown in Table 2, if only one copy of NuclearData is allocated on just one
core’s local memory, performance suffers badly for 8 cores and 20,480 particles.
The speedup as the number of copies increases is reminiscent of our data priva-
tization trials on Xeon. It is probably not a coincidence that the speedup for a
single copy vs. one copy per core is roughly 1.8× on both Xeon and PIUMA.

The clear lesson here is that it is vitally important to reduce or eliminate
data access conflicts for heavily-used and randomly-accessed data structures like
NuclearData. PIUMA with distributed allocations provides a distinct advantage
since it reduces conflict without the need for multiple copies of the data.

5.5 A Closer Look at Strong Scaling

Although it isn’t very noticeable in Fig. 7, there is a fairly large drop in strong
scaling efficiency from 8 to 16 PIUMA cores on the CORAL 2 input with
20,480 particles. Because a PIUMA die consists of 8 cores, the 16 core simu-
lation requires 2 dies and it is worth asking whether the break in scaling is due
to penalties associated with running on multiple dies.

To understand PIUMA’s scaling, we first examined dynamic scheduling. With
only 20 particles per thread at 16 cores there is reason to be concerned that
some of the efficiency loss could be due to load imbalance. Table 3 compares the
time to finish for the first and last threads as the number of cores increases.
It is immediately apparent that the gap between the first and last thread is
growing relative to the time to finish. For 1 core, the 1.5 ms difference is just
1% of the runtime. Hence, thread imbalance is insignificant. For 16 cores, the

52 J. J. Tithi et al.

Table 3. Strong Scaling efficiency with 20,480 particles.

Last thread finish time First thread finish time

#cores Time (ms) speedup %efficiency Time (ms) speedup %efficiency

1 143.6 1 100 142.1 1 100

2 72.62 2 98.9 71.7 2 99.1

4 37 3.9 97 35.8 4 99.2

8 19.41 7.4 92.5 18.4 7.7 96.5

16 11.62 12.4 77.2 10.4 13.7 85.4

Table 4. Performance on 16 PIUMA cores chosen from various numbers of dies.

dies cores per die total cores Distributed Private

time (ms) time (ms)

2 8 16 11.63 11.83

4 4 16 12.23 12.05

8 2 16 12.68 12.02

16 1 16 12.61 12.17

last thread is 1.2 ms behind the first, but this makes the last thread roughly
10% slower than the first since the runtime is only 11.6 ms. This increase in
thread imbalance contributes to the decline in scaling efficiency. Hence, at least
some of the breakdown in scaling is due to load imbalance. But even using the
first-thread finish time as an idealized model for a perfectly balanced simulation,
there is still a significant decrease in scaling efficiency from 96.5% to 85.4% as
we engage a second die.

To further characterize the effect of running on multiple dies we ran simu-
lations using cores from multiple dies instead of picking them from a minimum
number of dies. The results in Table 4 show that for runs with 16 total cores, it
hardly matters how many dies are used. This is true regardless of whether the
NuclearData is distributed across memory controllers or private to each core.
Even when we pick 16 cores from 16 different dies, slowdown is minimal com-
pared to the minimum 2 dies. This result seems very surprising at first, but can be
explained by the fact that in PIUMA, network bandwidth exceeds local DRAM
bandwidth. In contrast, conventional architectures are designed to accommodate
higher local traffic than remote traffic. It is clear from this analysis that the loss
of scaling efficiency is due to a variety of causes and not solely to the addition
of a second die.

Lessons Learned from Accelerating Quicksilver on PIUMA 53

Table 5. Performance bottlenecks at 2,048 threads on PIUMA.

%Cycles Source

26.14% builtin piuma fence(FENCE DMA,FENCE BLOCKING);

25.97% pos = atomic fetch add(& size, 1, ATOMIC RELAXED);

7.58% return data[index];

5.21% currentCrossSection− = mcs ∗ rections[reactIndex]. crossSection[...]

3.96% start = atomic fetch add(next particleCHUNK ... RELAXED);

3.56% builtin piuma barrier wait(cid);

1.80% for(intreactIndex = 0; reactIndex < numReacts; reactIndex++)

1.49% atomic fetch add(&(... tallies. balanceTask[tally index]. numSegments), 1, ...

1.03% double A = plane.A,B = plane.B,C = plane.C,D = plane.D;

5.6 Hitting the Scaling Limit on PIUMA

If we continue strong scaling the CORAL 2 input by running on 2,048 threads
(i.e., 32 PIUMA cores on 4 dies), Quicksilver stops scaling (see Fig. 7). With
only 10 particles per thread it is tempting to conclude that the amount work
per thread has become too small in comparison to various overheads. However,
a careful analysis reveals a more subtle explanation.

Table 5 shows the lines of code that consume the most compute cycles at
2,048 threads. Starting with the second line of the table, we see that an atomic
fetch add in the ParticleVault uses over 25% of the simulation time. Because
this atomic is called whenever a particle is added to the vault, we would expect
the time spent in this atomic to scale with the number of particles. Why is this
atomic a problem at 2,048 threads but not at smaller thread counts? The answer
is that frequent atomics on a single variable do not scale to 2,048 threads. There
is too much contention. Thus, the strong scaling breakdown is caused not by
the work per thread decreasing compared to a fixed overhead cost, but rather
because the overhead cost has substantially increased at higher thread counts.

The builtin piuma fence shown in line 1 of Table 5 is related to memcpy
and the explanation for it is similar. Quicksilver uses two different classes to rep-
resent particles: MC Particle and MC Base particle. The purpose of MC Base
particle is to reduce data size when transferring particles using MPI calls or
even transferring to the GPU memory. Converting between particle representa-
tions generates memcpy calls which are invoked indirectly via copy constructors
(i.e., malloc followed by a memcpy). Although these conversions are obviously
inefficient, they become a performance problem only at high thread counts.

In PIUMA, memcpy calls are internally converted to DMA calls which need a
fence to indicate completion. Hence, the appearance of builtin fence in Table 5.
When an MTC thread encounters a DMA FENCE, it waits until the DMA
operation is completed. During this process, the threads need to access some
common properties of the ParticleVault (e.g., size, capacity) and some other
shared global variables regarding thread state that are not read-only (cannot
be cached). This overwhelms the single memory controller that stores that data

54 J. J. Tithi et al.

Table 6. Performance Bottleneck With Only One Type of Particle

%Cycles Source

33.22% pos = atomic fetch add(& size, 1, ATOMIC RELAXED);

12.65% start = atomic fetch add(next particleCHUNK ATOMIC RELAXED);

8.55% return data[index];

5.62% currentCrossSection− = mcs ∗ rections[reactIndex]. crossSection[...];

5.04% index = atomic fetch add(&this− > extraV aultIndex, 1, ... RELAXED);

1.94% atomic fetch add(&(.. tallies. balanceTask[tally index]. numSegments), 1, ...

1.92% for(int reactIndex = 0; reactIndex < numReacts; reactIndex + +)

1.74% atomic fetch add fp(& (.. tallies. sFD[particle.domain]. task[tally idx]. cell[particle.cell]. grou

1.09% double A = plane.A,B = plane.B,C = plane.C,D = plane.D;

when simultaneously accessed by 2,048 threads. Once again, we see that the
strong scaling is limited because overheads increase at higher thread counts.

There are other atomic operations that appear in Table 5 such as the atomics
on the variable used for dynamic load-balancing (next particle on line 5) and
atomics used in scale flux tally update (line 8). Essentially, anything that is a
single point of frequent access by all threads becomes problematic at scale.

Fortunately, it is relatively easy to resolve these scaling problems by decreas-
ing the pressure on any single point of access. For example, we could avoid
frequent memcpys by using only a single particle type. Avoiding contention on
the ParticleVault can be done by giving each die (8 cores, 512 threads) its own
vault. We tested the first option using a version of Quicksilver that had only a
single particle class. Table 6 shows that this change indeed removes the memcpy
from the list of bottlenecks. With this change, the atomic operation moves up to
the topmost position in the bottleneck and overall runtime improves very little.

We believe that we can push the scalability beyond 1, 024 threads, and it will
require replicating data structures that require single points of frequent atomics.
Replicating them at a die (or two dies) level, gathering updates locally, and then
reducing/merging globally should solve the current scalability issue.

We have learned from the above exploration that a shared-memory style
implementation with atomics accessing a single copy of a variable is not feasi-
ble when the number of threads crosses a threshold. Similarly, MPI-style pro-
gramming with private data per core can lead to unnecessary data replication.
MPI+X style programming where X is OpenMP, CilkPlus, Pthreads, or another
shared-memory programming paradigm, can help avoid replicating data on dif-
ferent ranks on the same node. However, good performance can be obtained only
when the “+X” can effectively parallelize a large fraction of the code. PIUMA’s
DGAS memory model allows programmers to easily find a sweet spot by choos-
ing between a single distributed copy for data accessed at random or replicated
data when necessary to avoid choking a single memory controller.

Lessons Learned from Accelerating Quicksilver on PIUMA 55

6 Related Work

While there is considerable prior work to optimize Monte Carlo Transport appli-
cations and proxies for GPUs [6–8,11], there is little published work on Quicksil-
ver beyond the original paper [1,13] that compared performance of the power8
CPU and P100 GPU concluding minimal benefit of the GPU. A recent poster
[14] suggests changes in some key data structures and algorithms in the Colli-
sionEvent function can reduce the search cost in the reaction table from linear to
logarithmic. This work is orthogonal to our work since our goal is model Mercury
rather than change its algorithms or internal data structures.

PIUMA is a recently proposed architecture, and work to date has focused
mainly on graph algorithms and related kernels (e.g., SpMV, Graph500, Trian-
gle Counting, BFS, k-truss, Louvain, Nerstrand) [5]. These are different (and
relatively simpler) than Quicksilver. Therefore, this is the first research work
that gives us some intuition on the performance of a Monte Carlo transport
application on a PIUMA-like DGAS architecture.

7 Conclusion

We have described our experiences optimizing the Quicksilver proxy app on
both Xeon and a new Programmable Integrated Unified Memory Architecture
(PIUMA). On Xeon, we achieved over 1.8× speedup compared to the original,
mainly from selective data replication of randomly accessed data. In contrast,
data replication provided little benefit to PIUMA’s specialized memory archi-
tecture. Instead, PIUMA performance was significantly improved by loop fusion
and elimination of temporary object creation. Comparing our best versions on
each platform PIUMA is 2× faster than Xeon and scales better.

Although we focus on Quicksilver, the lessons learned should be universal
and applicable to a broad class of applications running on PIUMA. We learned:

– For randomly accessed data, contiguous allocation on one memory controller
is inefficient.

– Any data that is allocated in a single memory controller and is accessed
frequently by all threads is a bottleneck. Placing variables accessed by atom-
ics on SPAD improves performance. Ideally, any single point of atomics
should be avoided. Instead, privatizing the data and reducing it at the end
(with/without atomics) should help.

– Selectively using SPAD and caching improves performance.
– If there is low caching efficiency for a particular data structure, do not cache,

especially, if that takes away space from other cacheable data. Cache those
data that have some spatial and (possibly) temporal locality.

– Dynamic allocation and frequent memcpy called by MTC threads during
computation are slow in PIUMA. Allocating ahead of time and reusing them
during an actual run is the way to go.

56 J. J. Tithi et al.

Acknowledgments. This research was, in part, funded by the U.S. Government. The
views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of the
U.S. Government. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-
CONF-817842. Thanks to Marcin Lisowski and Joanna Gagatko from Intel for their
initial help with Quicksilver on PIUMA. We would also like to thank Sebastian Szkoda,
Vincent Cave and Wim Heirman from Intel for their help with PIUMA runtime.

References

1. Co-design at Lawrence Livermore National Laboratory: Quicksilver, Lawrence
Livermore National Laboratory (LLNL), Livermore, CA, United States. https://
computing.llnl.gov/projects/co-design/quicksilver, https://github.com/LLNL/
Quicksilver

2. “Coral2”. https://asc.llnl.gov/coral-2-benchmarks/
3. “Mercury”. https://wci.llnl.gov/simulation/computer-codes/mercury
4. Nvidia P100. https://www.nvidia.com/en-us/data-center/tesla-p100/
5. Aananthakrishnan, S., et al.: PIUMA: programmable integrated unified memory

architecture. arXiv preprint arXiv:2010.06277 (2020)
6. Bergmann, R.M., Vujić, J.L.: Algorithmic choices in WARP-A framework for con-

tinuous energy Monte Carlo neutron transport in general 3D geometries on GPUs.
Ann. Nucl. Energy 77, 176–193 (2015)

7. Bleile, R., Brantley, P., O’Brien, M., Childs, H.: Algorithmic improvements for
portable event-based Monte Carlo transport using the nvidia thrust library. Tech.
rep., Lawrence Livermore National Lab. (LLNL), Livermore, CA, USA (2016)

8. Brown, F.B., Martin, W.R.: Monte Carlo methods for radiation transport analysis
on vector computers. Progress Nucl. Energy 14(3), 269–299 (1984)

9. Carlson, T.E., Heirman, W., Eyerman, S., Hur, I., Eeckhout, L.: An evaluation of
high-level mechanistic core models. ACM Trans. Archit. Code Optim. 11(3), 1–25
(2014). https://doi.org/10.1145/2629677

10. David, S.: DARPA ERI: HIVE and intel PUMA graph processor. WikiChip
Fuse (2019). https://fuse.wikichip.org/news/2611/darpa-eri-hive-and-intel-puma-
graph-processor/

11. Hamilton, S.P., Slattery, S.R., Evans, T.M.: Multigroup monte carlo on GPUs:
comparison of history-and event-based algorithms. Ann. Nucl. Energy 113, 506–
518 (2018)

12. McCreary, D.: Intel’s incredible PIUMA graph analytics hardware. Medium
(2020). https://dmccreary.medium.com/intels-incredible-piuma-graph-analytics-
hardware-a2e9c3daf8d8

13. Richards, D.F., Bleile, R.C., Brantley, P.S., Dawson, S.A., McKinley, M.S.,
O’Brien, M.J.: Quicksilver: a proxy app for the Monte Carlo transport code mer-
cury. In: CLUSTER, pp. 866–873. IEEE (2017)

14. Tithi, J.J., Liu, X., Petrini, F.: Accelerating quicksilver-a Monte Carlo proxy app
on multicores. https://www.youtube.com/watch?v=ARrymLNiL7M

https://computing.llnl.gov/projects/co-design/quicksilver
https://computing.llnl.gov/projects/co-design/quicksilver
https://github.com/LLNL/Quicksilver
https://github.com/LLNL/Quicksilver
https://asc.llnl.gov/coral-2-benchmarks/
https://wci.llnl.gov/simulation/computer-codes/mercury
https://www.nvidia.com/en-us/data-center/tesla-p100/
http://arxiv.org/abs/2010.06277
https://doi.org/10.1145/2629677
https://fuse.wikichip.org/news/2611/darpa-eri-hive-and-intel-puma-graph-processor/
https://fuse.wikichip.org/news/2611/darpa-eri-hive-and-intel-puma-graph-processor/
https://dmccreary.medium.com/intels-incredible-piuma-graph-analytics-hardware-a2e9c3daf8d8
https://dmccreary.medium.com/intels-incredible-piuma-graph-analytics-hardware-a2e9c3daf8d8
https://www.youtube.com/watch?v=ARrymLNiL7M

A Hierarchical Task Scheduler
for Heterogeneous Computing

Narasinga Rao Miniskar1(B) , Frank Liu1 , Aaron R. Young1 ,
Dwaipayan Chakraborty2 , and Jeffrey S. Vetter1

1 Advanced Computing Systems Research Section, Oak Ridge National Laboratory,
Oak Ridge, TN 37831, USA

{miniskarnr,liufy,youngar,vetter}@ornl.gov
2 Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA

Abstract. Heterogeneous computing is one of the future directions
of HPC. Task scheduling in heterogeneous computing must balance
the challenge of optimizing the application performance and the need
for an intuitive interface with the programming run-time to maintain
programming portability. The challenge is further compounded by the
varying data communication time between tasks. This paper proposes
RANGER, a hardware-assisted task-scheduling framework. By integrat-
ing RISC-V cores with accelerators, the RANGER scheduling frame-
work divides scheduling into global and local levels. At the local level,
RANGER further partitions each task into fine-grained subtasks to
reduce the overall makespan. At the global level, RANGER maintains
the coarse granularity of the task specification, thereby maintaining pro-
gramming portability. The extensive experimental results demonstrate
that RANGER achieves a 12.7× performance improvement on average,
while only requires 2.7% of area overhead.

Keywords: Extreme heterogeneity · Accelerators · HPC system
architecture · Challenges in programming for massive scale

1 Introduction

As technology scaling comes to a standstill, heterogeneous computing has become
a viable solution for ensuring the continuous performance improvement of high-
performance computing (HPC). One specific notion of heterogeneous computing
is the future of “extreme” heterogeneity [35], which is when the general-purpose

This manuscript has been co-authored by UT-Battelle, LLC under Contract No. DE-
AC05-00OR22725 with the U.S. Department of Energy. The United States Government
retains and the publisher, by accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide
license to publish or reproduce the published form of this manuscript, or allow others to
do so, for United States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance with the
DOE Public Access Plan.

c© UT-Battelle, LLC 2021
B. L. Chamberlain et al. (Eds.): ISC High Performance 2021, LNCS 12728, pp. 57–76, 2021.
https://doi.org/10.1007/978-3-030-78713-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_4&domain=pdf
http://orcid.org/0000-0001-8259-8891
http://orcid.org/0000-0001-6615-0739
http://orcid.org/0000-0002-5448-4667
http://orcid.org/0000-0002-3524-9071
http://orcid.org/0000-0002-2449-6720
http://energy.gov/downloads/doe-public-access-plan
https://doi.org/10.1007/978-3-030-78713-4_4

58 N. R. Miniskar et al.

microprocessors are augmented by diverse types of accelerators in vastly differ-
ent architectures (e.g., general purpose GPUs, FPGAs, neuromorphic arrays and
special-purpose accelerator ASICs). These accelerators can have diverse func-
tionalities (e.g., different computational kernels in machine learning) but are
also spatially distributed. To fully materialize the potential of heterogeneous
accelerators, it is crucial to maintain and improve the programming portability
and productivity of the applications and to intelligently manage the resources
presented by the heterogeneous accelerators.

Task parallelism is a highly effective parallel programming model for achiev-
ing programming portability and productivity. It allows the run-time to automat-
ically schedule atomic computing tasks on the available resources while honoring
the data dependencies between tasks. Task parallelism is widely used in many
programming systems as either a direct abstraction available to the user or in
the underlying implementation (e.g., OpenMP [23], OpenACC [22], CUDA [21],
Charm++ [14], Cilk [6], OpenCL [16]). In task parallelism, the dependencies
among different tasks can be represented by a directed acyclic graph (DAG),
which contains information such as task computation time on different devices
(i.e., CPUs or accelerators) represented by the nodes or vertices of the DAG, the
data dependencies among the tasks represented by the directed edges, and the
amount of data that must be communicated between different tasks represented
as an edge property of the DAG. Even for homogeneous devices, task scheduling
is NP-complete [34]. Hence, many research activities are focused on developing
heuristics to ensure good completion times (i.e., makespans). Task scheduling
in a heterogeneous computing environment is a much more challenging problem
not only due to the different execution times of the heterogeneous devices but
also due to varying data communication latency between devices.

With its many diverse accelerators, extremely heterogeneous computing
poses some unique challenges for task scheduling. First, as the accelerators
become more diverse, one-size-fits-all, cookie-cutter-style device management
might not be optimal. Each kernel accelerator has a unique data access pat-
tern and requirement for the hardware resources (e.g., sustained bandwidth to
the global memory, size of the scratchpad memory). It is difficult to balance the
needs of all kernel accelerators by a generic, centralized scheduler. Second, as
more kernel accelerators with diverse capabilities become available, it becomes
necessary to ensure that a larger pool of tasks is present to ensure application
scalability. Performing task scheduling for many tasks for an increasing number
of devices will require substantial computing resources. Finally, a larger pool
of tasks poses a widening dichotomy between the optimal management of the
resources and the need to ensure programming portability.

This work proposes RANGER, a hierarchical task scheduler, to address these
challenges. From an algorithm perspective, RANGER performs task scheduling
at two levels. At the top (i.e., global) level, RANGER considers the scheduling
decision of the current task and its immediate child tasks on the decision tree
to ensure global optimality. At the lower (i.e., local) level, RANGER deploys an
accelerator-specific scheduler to further partition the task into subtasks while

A Hierarchical Task Scheduler for Heterogeneous Computing 59

considering the nature of the computational kernel, its computational density,
and the available hardware resources, such as the scratchpad memory module.
Because the local schedulers have direct control over the interconnect switching
fabric and other available hardware resources (e.g., accelerators, DMAs), they
are capable of making optimal control decisions. In regard to implementation,
instead of burdening the top-level global task scheduler with many subtasks,
which are substantially more in quantity, each kernel accelerator is augmented
with a customized RISC-V core to off-load the computational overhead of low-
level scheduling and resource management. The most notable benefit of the hier-
archical scheduling approach is that it bridges the dichotomy of coarse-grained
scheduling desired by interfacing with programming models with the need for
fine-grained, kernel/accelerator-dependent local task scheduling to ensure the
overall optimality. Through extensive experimentation, we demonstrated that
RANGER achieves a 12.7× makespan improvement on average compared with
an equivalent centralized scheduler, while only requires a 2.74% area overhead.
The experiments also demonstrated the excellent scalability of the RANGER
architecture with respect to the number of parallel applications

The main contributions of this work are as follows.

1. We propose RANGER, a hierarchical task-scheduling framework for
extremely heterogeneous computing.

2. We design and implement the overall RANGER architecture, as well as cus-
tomized RISC-V cores and related logic in the GEM5 simulator[5].

3. We design and implement local Accelerator-Specific Command Schedulers
(ASCS).

4. We conduct thorough experimentation to demonstrate the effectiveness of
RANGER and to provide quantitative area and computational overhead.

The remainder of this paper is organized as follows. Section 2 discusses the back-
ground of task scheduling and related work. Section 3 describes the details of
RANGER and its implementations. Section 4 presents experimental evaluations,
followed by conclusions and future work in Sect. 5.

2 Background and Related Work

Task scheduling is a well-studied topic in disciplines such as computer archi-
tecture, programming languages, embedded systems, and real-time computing.
A list of representative related works [1,6,7,9,11,15,17,19,20,24,29,34] cover
diverse topics, such as static (i.e., offline) and dynamic (i.e., online) scheduling,
scheduling with hard deadlines, and hardware-enabled scheduling policies.

In this paper, we assume that the dependencies among tasks are either fully
or partially known. A widely accepted formalism to describe task dependencies
is based on graphs [1,33]. An example is shown in Fig. 1 in which an application
is represented by a DAG, defined by the tuple G = (V,E), and a companion
computation cost matrix (CCM). The vertex set V of size v represents the tasks
in the application, and the edge set E of size e represents the data dependencies

60 N. R. Miniskar et al.

between the tasks. If there is an edge (eij) from task Ti to Tj , it means that
task Tj has a data dependency to task Ti. Hence, task Tj cannot start until
task Ti is completed. The CCM of size v × p represents the execution time of
each task on each processing device, where p is the size of the processor set
P . Each edge also contains a weight, which represents the communication cost
between the tasks. Theoretically, the communication time depends not only on
the tasks but also on which device the communication is originated and on which
device it is terminated. However, one common approximation is to estimate the
communication time based on the amount of data that must be transferred and
the average communication bandwidth, as well as the average starting latency.
This common approximation is defined as follows [33]:

c(i,j) = L +
data(i,j)

B
, (1)

where B is the average communication bandwidth between computing devices,
and data(i,j) reflects the amount of data that must be transferred from task i to
task j. L represents the average latency before any bulk data communication can
be started. Generally, L could include hardware latency, such as the signal hand-
shaking time for interconnects, and software latency, such as the time needed
for context switching by the operating systems. With this approximation, the
average communication time between tasks can be determined as shown by the
edge weights in Fig. 1.

Fig. 1. DAG of an application with 10 tasks and the CCM for each task on three
devices.

The objective of task scheduling is to minimize the overall execution time
of the application or makespan. Because the task scheduling problem is NP-
complete [34], many existing methods are based on heuristics. Among static

A Hierarchical Task Scheduler for Heterogeneous Computing 61

task schedulers, Predict Earliest Finish Time (PEFT) [1] has a good trade-off
between accuracy and computational complexity. Based on the Heterogeneous
Earliest Finish Time (HEFT) [33] scheduler, PEFT considers the impact that
the current scheduling decision has on all subsequent scheduling decisions within
the decision tree. To estimate the potential impact of a scheduling decision, it
uses a clever method to compute an optimal cost table, thereby avoiding the
costly operation of fully traversing the whole decision tree.

The concept of a task is the atomic unit for data transferring and compu-
tation. Implicitly, it is assumed that the data needed for each task have been
readily transferred to the local scratchpad memory on each device before the
computation can start. For each application, the task specifications can be given
at different levels. For example, tasks can be further partitioned into finer sub-
tasks by inspecting the computation kernels and the dependencies between more
fine-grained subcomponents. The granularity of the task specification has signif-
icant practical implications. On one hand, coarse-grained task specifications are
more acceptable and have better programming portability in the programming
models. They also imply fewer number data transfers and better data transfer-
ring efficiency. However, a higher computational density in each task also means
that larger amounts of data must be transferred and stored on the local memory,
which requires a larger local scratchpad memory module on each device. On the
other hand, partitioning tasks into finer granularity has the benefit of requir-
ing smaller scratchpad memory on each accelerator device. The larger number
of tasks also gives the scheduler the opportunity to fully leverage all available
devices, thus potentially achieving better scalability. However, because there are
many more data transferring jobs, data transferring becomes less efficient due
to the larger number of starting latency.

The biggest hurdle of fine-grained tasks specification is the severe loss of
the programming portability. As shown later in this paper, the need to specify
many tasks in the programming systems makes it difficult to interface with the
programming models. This constraint was investigated in a recent study [31] by
analyzing applications’ performance and their efficiency via a proposed metric
called minimum effective task granularity. The paper concluded that the cost of
sending data reflected as part of hardware latency and dispatching tasks reflected
in the software latency impose a floor on the granularity.

Another body of closely related work is off-loading scheduling tasks to hard-
ware. The concept was explored in several studies [3,8,26,30]. In a more recent
study [20], a Rocket Chip [4]-based hardware scheduler demonstrated impressive
performance improvements when compared with a pure software implementation
of the same scheduling method.

In this paper, we propose RANGER, a hierarchical scheduler, to address the
conflicting dichotomy between programming portability and the requirements
for better resource management in heterogeneous computing. At the top (i.e.,
global) level, RANGER maintains the task specifications at a coarse granularity.
Hence, it is easy for RANGER to interface with existing task dependency speci-
fication mechanisms implemented in various programming models. At the lower

62 N. R. Miniskar et al.

level, RANGER uses Accelerator-Specific Command Scheduler (ASCS), which
are specifically designed for each device to interface with the top-level scheduler
and global memory. Based on the characteristics of the computational kernel
and available resources, ASCS partitions each task into subtasks and manages
them. In the RANGER architecture, the ASCS is executed on a customized
RISC-V [36] processor core embedded in each accelerator to off-load the com-
putations of task scheduling from the central host. The fine-grained subtask
specifications and local ASCS schedulers ensure better use of the local hardware
resources, such as the local scratchpad memory. The amortized data commu-
nication latency also makes it possible for the global coarse-grained scheduler
to better use available accelerator devices. Unlike other hardware off-loading of
task scheduling work—such as in Arnold et al. [3] and Morais et al. [20]—the
main novelty of RANGER is the combination of two techniques by developing
hardware-assisted hierarchical scheduling to address the conflicting dichotomy
between programming portability and the resource requirement.

3 RANGER Architecture and Implementation

This section describes the RANGER architecture design, accelerator devices,
and overall hierarchical task-scheduling method.

3.1 Baseline Accelerator Architecture

The baseline heterogeneous computing platform is a heterogeneous computing
platform, as shown in Fig. 2. The host, an array of heterogeneous accelerator
devices, and the main memory are connected by a shared bus. A top-level run-
time runs on the host, which is responsible for communicating with the appli-
cations, determining the task schedules and assignments, and dispatching the
scheduling decisions to each device. Once a task is dispatched to a device, each
device would communicate with the global memory through its DMA channel,
fetch the needed data from global memory to scratchpad memory on the device,
launch the computation, and transfer the results back to global main memory
after the task has completed. The global main memory usually has the character-
istics of higher density and lower cost per gigabyte but longer access time (e.g.,
DRAM memory). On the other hand, the local scratchpad memory has much
faster access time but at a lower density (e.g., SRAM memory). First-in-first-out
(FIFO) logic circuits are inserted at various interfaces. The global bus can be
implemented with different switching fabrics. This study uses the AXI bus [2],
the industry standard for on-chip interconnect, although it is also possible to
use various network-on-chip (NoC) switching fabrics.

A Hierarchical Task Scheduler for Heterogeneous Computing 63

Fig. 2. Baseline architecture design of the heterogeneous accelerator platform.

3.2 RANGER Architecture and Memory-Mapped IO Interface

The RANGER architecture is shown in Fig. 3. Compared with the baseline archi-
tecture design shown in Fig. 2, each device is augmented with a RISC-V pro-
cessor, which takes control of the interface to the global bus, as well as the
scratchpad memory and accelerator.

A more detailed view of each device is shown in Fig. 4. The accelerator on
each device interfaces with the RISC-V core through memory-mapped I/O. This
is facilitated by the added MEMCTRL logic, which can determine whether the
requested memory operation (LOAD/STORE) is intended for the accelerator,
the DMA-In or DMA-Out channel to the local scratchpad memory, or the main

Fig. 3. RANGER architecture design of the heterogeneous accelerator platform.

64 N. R. Miniskar et al.

Fig. 4. RANGER Device: RISC-V, accelerator and DMA channels with memory-
mapped I/O.

memory (DRAM). Furthermore, each DMA channel and the accelerator on the
device also have their own unique memory-mapped registers.

As an illustration, a memory-mapped register for a convolution accelerator
(CONV) is shown in Table 1. The DMA memory-mapped I/O configuration
enables the transferring of any tile representing a 3D array in the DRAM memory
to the local scratchpad SRAM by specifying offsets in the (x, y, z) plane. The
number of banks in the SRAM is designed to be twice the number of inputs
and outputs required for the accelerator to ensure that the SRAM design is
equivalent to a bank conflict-free design. The assignment of the SRAM bank
to the input buffer is determined by the controller kernel, which runs on the
embedded RISC-V core.

Table 1. Memory-mapped IO registers of a convolution accelerator in RANGER

A Hierarchical Task Scheduler for Heterogeneous Computing 65

3.3 Top-Level Scheduler

The top-level, coarse-grained global scheduler runs on the host shown in Fig. 3.
Theoretically, any task scheduler from a rich body of research can be used as the
top-level scheduler. In this study, PEFT [1] was implemented as the global sched-
uler to make it easier to compare RANGER performance with other solutions. To
populate the required CCM of PEFT, each device—RISC-V, the added control
logic, the DMA interface, and the accelerator—was implemented in GEM5. Each
task was profiled to generate the corresponding entry in the CCM. It is also pos-
sible to use other performance prediction techniques, such as Johnston et al. [13]
or Liu et al. [18]. The run-time range of each task in this study is on the order of
milliseconds. Hence, extra effort was taken to optimize the coarse-grained sched-
uler to ensure that each scheduling decision can be completed within 1 ms on
the customized RISC-V core. The computed scheduling decisions are formatted
as the mapping of tasks to the available devices in which each task specification
contains a set of commands and input/output memory locations. These com-
mands are pushed into the FIFO queue of the corresponding device, as shown
in Fig. 3.

3.4 Low-Level Scheduler

The low-level scheduler is responsible for further partitioning the given task
into finer granularity. The partitioning and sequencing of the subtasks and their
dependencies can vary from one kernel accelerator to the other. For example,
a convolution kernel requires two sets of input and generates one set of out-
put, whereas a batch normalization (BN) kernel has only one set of input and
one set of output. Furthermore, each of these two kernels has different com-
putational density. To maintain the flexibility and ensure the optimality, the
authors developed ASCS. Based on the sizes of the inputs and outputs of a given
task, its computational density, and the amount of available scratchpad SRAM
memory, an ASCS scheduler generates subtasks, each of which also contains the
instructions on how to configure the accelerator/DMA-channel-specific memory-
mapped addresses. By doing so, ASCS provides more fine-grained control of the
DMA channels and its interface to the global DRAM.

Because of their application-specific nature, the ASCS schedulers are spe-
cially tailored for each kernel accelerator as a part of the accelerator develop-
ment process. They are also parameterized so that when the accelerator hardware
specification (e.g., the size of the accelerator, the amount of scratchpad memory)
changes, the ASCS schedulers can be easily updated.

66 N. R. Miniskar et al.

For example, a high-level description of the ASCS scheduler for the convo-
lution accelerator is shown in Algorithm 1. The functionality of a convolution
operation is to compute a stream of output by convoluting a stream of input
with a set of given weights. The convolution is carried out by the unit of “tile.”
Depending on the available scratchpad memory, different tile size configurations
can lead to different decisions on whether to leverage weight reuse, input reuse,
or output reuse. In Algorithm 1, the subtasks pipeline is created and initialized
in lines 1 and 2. Depending on the tile configuration, single or double buffers are
allocated, as shown in line 3. After initialization, the four nested loops shown
from lines 4 to 7 iterate in order of tile height, tile weight, the channels, and the
inputs. The pipelined subtasks are identified by their individual timestamps and
maintained in a circular queue.

Within the innermost loop, the DMA process to fetch the weights, inputs,
and outputs will be activated, as required, based on the data reuse leveraged by
the kernel. Lines 11, 13, and 16 indicate the configuration of DMA channels for
the weights, input, and output tiles. Line 17 is the computation of the scheduled
subtask. Line 18 performs the configuration of the DMA channels and accelerator
for the next subtask in the queue. All three routines are nonblocking and thus
are executed concurrently.

The ASCS routines are designed and developed to be lightweight and are exe-
cuted on the RISC-V processor on each accelerator device. Combined with the
added peripheral logic, they provide configurability and flexibility to the accel-
erator. By considering the available computational resources (e.g., the number
of Multiplier-Accumulator or MAC units), computational density of the kernel,
and size of the available scratchpad memory, the ASCS schedulers in RANGER
ensure that the optimal tile size is used so that the execution time of the subtasks,
DMA transferring time, and computation time of the subtasks are balanced to
achieve maximal throughput for the given task, as illustrated in Fig. 5.

3.5 Implementation Details of Accelerator Kernels

This study implemented three types of accelerators: 2D CONV, BN, and fully
connected dense layer (DENSE). Multiple flavors of each type are implemented
by changing the number of MAC units and the scratchpad memory size.
For example, five flavors of CONV accelerator were implemented: CONV1024,
CONV512, CONV256, CONV128, and CONV64. Generally speaking, the bigger
accelerators have higher performance but also require larger area. The acceler-
ator statistics are listed in Table 2. The BN accelerator requires less scratchpad
memory because the nature of the kernel is similar to the inner product opera-
tion in the numerical linear algebra. The area estimates are based on the data
extracted from various designs fabricated on a TSMC 16 nm CMOS technol-
ogy [27].

A Hierarchical Task Scheduler for Heterogeneous Computing 67

Algorithm 1: High-level description of ASCS scheduling algorithm for the convolution
kernel.

Fig. 5. Illustration of ASCS subtask execution pipeline. The “C” blocks include the
configuration of DMA channels and accelerators for each subtask. Starting from the
second subtask, they are concurrently executed with the DMA transfer of the previous
subtask.

Using these kernel accelerators, we implemented multiple heterogeneous
designs of the RANGER architecture, as shown in Table 3. The cycle-accurate
GEM5 simulator was extended [5] to include the accelerators, memory-mapped
I/O logic, and DMA components. The DMA component was implemented from
scratch with the support of tiled 3D data transfer and burst mode use of the
DMA channels. For each heterogeneous design, we also implemented a baseline
version with only the accelerators and without the RISC-V core and extra control
logic. Overall, the implementation is realized by ∼1,800 lines of C++ code and
∼700 lines of Python code for configuration. The statistics and characteristics
of these RANGER and baseline designs are tabulated in Table 3.

68 N. R. Miniskar et al.

Table 2. List of kernel accelerators and their area estimations in a TSMC 16 nm
technology.

Accelerator Functionality MAC Units SRAM Size (KB) Area (mm2)

1 CONV1024 2D Convolution 1024 256.0 1.81

2 CONV512 2D Convolution 512 256.0 1.28

3 CONV256 2D Convolution 256 256.0 1.01

4 CONV128 2D Convolution 128 256.0 0.88

5 CONV64 2D Convolution 64 128.0 0.59

6 BN1024 Batch Normilization 1024 8.0 1.09

7 BN512 Batch Normilization 512 4.0 0.55

8 BN256 Batch Normilization 256 2.0 0.28

9 BN128 Batch Normilization 128 1.0 0.14

10 BN64 Batch Normilization 64 0.5 0.08

11 DENSE1024 Dense 1024 128.0 1.30

12 DENSE512 Dense 512 128.0 0.76

13 DENSE256 Dense 256 128.0 0.50

14 DENSE128 Dense 128 128.0 0.37

15 DENSE64 Dense 64 128.0 0.30

Table 3. Various heterogeneous designs, the number of kernel accelerators, and the
estimated area. Design A and B are the aliases of Design 1 and 2, respectively.

Design Accelerators Area mm2

2D Convolution Batch Normilization Dense Total

1024 512 256 128 64 1024 512 256 128 64 1024 512 256 128 64 RANGER Baseline Overhead

Design 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 11.290 10.945 3.15 %

Design 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 30 22.581 21.891 3.15 %

Design 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 35 28.266 27.461 2.93 %

Design 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2 2 40 33.951 33.031 2.79 %

Design 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 45 39.636 38.601 2.68 %

Design 6 6 6 6 6 6 2 2 2 2 2 2 2 2 2 2 50 45.321 44.171 2.60 %

Design 7 7 7 7 7 7 2 2 2 2 2 2 2 2 2 2 55 51.006 49.741 2.54 %

Design 8 8 8 8 8 8 2 2 2 2 2 2 2 2 2 2 60 56.691 55.311 2.49 %

Design 9 9 9 9 9 9 2 2 2 2 2 2 2 2 2 2 65 62.376 60.881 2.46 %

Design 10 10 10 10 10 10 2 2 2 2 2 2 2 2 2 2 70 68.061 66.451 2.42 %

Design A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 11.290 10.945 3.15 %

Design B 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 30 22.581 21.891 3.15 %

Design C 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 45 33.871 32.836 3.15 %

Design D 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 60 45.161 43.781 3.15 %

Design E 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 75 56.452 54.727 3.15 %

Design F 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 90 67.742 65.672 3.15 %

Design G 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 105 79.032 76.617 3.15 %

Design H 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 120 90.323 87.563 3.15 %

Average 2.74 %

A Hierarchical Task Scheduler for Heterogeneous Computing 69

The area of each RISC-V core is estimated to be 0.023 mm2 [37] in the TSMC
16 nm technology. Table 3 shows that the RANGER architecture only requires
∼2.74% of area overhead compared with the corresponding baseline designs. The
largest RANGER core has an estimate area of 90 mm2. As a comparison, a quad-
core Intel Coffee Lake processor has the die area of 126 mm2 in a comparable
technology [12].

4 Experimental Evaluation

To evaluate the performance of RANGER, the authors used a run-time frame-
work running on the host RISC-V core shown in Fig. 3. The task descriptions
are specified in JSON format, which is the output of a Python-based converter.
Values of CCM of the top-level scheduler are the profiling results of the indi-
vidual kernels in GEM5. The makespans of tasks and applications are extracted
from the performance counters of DMAs from GEM5.

4.1 Application Benchmarks

The inference phase of four widely used deep neural networks (DNNs) were used
as the benchmarks: InceptionV3 [32], ResNet-50 [10], UNet [25], and Vgg16 [28].
We would like to point out that RANGER is a general-purpose scheduler and
can handle any DAG tasks. In this study DNNs inference applications were
the chosen simply because their DAGs are readily available, and they represent
increasingly important workloads. The details of these four DNNs are omitted
due to space limitation. Each inference application comprises three types of
computational kernels: CONV, BN, and fully connected DENSE. For example,
InceptionV3 is represented by 189 tasks—94 CONV, 94 BN, and one DENSE—
with its task DAG shown in Fig. 6.

Fig. 6. Task DAG of Inception-v3. The left-most node is the source node of the DAG,
and the sink node is at the extreme right.

The execution time of each application is measured by the cycle counts
reported by GEM5. For comparison, the same set of applications was also run on

70 N. R. Miniskar et al.

Table 4. Comparison of makespans for various RANGER and baseline designs. On
average, RANGER achieves a 12.7× speedup.

Makespan

Model Inception-v3 Resnet-50 VGG16 UNet

Architecture design RANGER Baseline Speedup RANGER Baseline Speedup RANGER Baseline Speedup RANGER Baseline Speedup

Design 1 94,788,333 762,320,311 8.04× 88,346,488 504,482,689 5.71× 389,202,487 3,193,921,550 8.21× 336,496,490 1,233,341,834 3.67×
Design 2 53,422,061 752,853,720 14.09× 57,531,844 500,829,541 8.71× 209,315,117 3,149,123,579 15.04× 201,002,387 1,177,865,323 5.86×
Design 3 41,881,254 752,544,223 17.97× 52,782,400 500,433,710 9.48× 191,533,321 3,147,951,787 16.44× 173,986,414 1,171,882,097 6.74×
Design 4 38,749,897 752,450,123 19.42× 52,195,186 500,340,314 9.59× 181,632,752 3,147,767,996 17.33× 157,652,345 1,169,892,512 7.42×
Design 5 37,999,017 752,407,810 19.80× 52,191,088 500,295,143 9.59× 180,193,518 3,147,649,984 17.47× 150,250,684 1,169,590,055 7.78×
Design 6 37,988,551 752,393,040 19.81× 52,191,088 500,288,595 9.59× 180,193,518 3,147,724,843 17.47× 150,250,684 1,169,578,215 7.78×
Design 7 37,914,589 752,387,551 19.84× 52,190,081 500,282,221 9.59× 180,193,518 3,147,642,459 17.47× 150,250,684 1,169,575,296 7.78×
Design 8 37,898,912 752,382,660 19.85× 52,190,081 500,275,555 9.59× 180,193,518 3,147,724,163 17.47× 150,250,684 1,169,574,480 7.78×
Design 9 37,891,335 752,382,660 19.86× 52,190,081 500,272,549 9.59× 180,193,518 3,147,669,094 17.47× 150,250,684 1,169,574,480 7.78×
Design 10 37,618,903 752,367,084 20.00× 52,190,081 500,264,005 9.59× 178,630,640 3,147,724,117 17.62× 147,870,807 1,169,574,480 7.91×
Design A 94,788,333 762,320,311 8.04× 88,346,488 504,482,689 5.71× 389,202,487 3,193,921,550 8.21× 336,496,490 1,233,341,834 3.67×
Design B 53,422,061 752,853,720 14.09× 57,531,844 500,829,541 8.71× 209,315,117 3,149,123,579 15.04× 201,002,387 1,177,865,323 5.86×
Design C 42,241,318 752,541,894 17.82× 52,447,643 500,420,375 9.54× 174,801,184 3,144,474,922 17.99× 173,986,414 1,171,816,637 6.74×
Design D 38,570,566 752,444,207 19.51× 51,672,158 500,332,941 9.68× 155,344,163 3,144,196,072 20.24× 157,652,123 1,169,797,015 7.42×
Design E 37,793,805 752,406,134 19.91× 51,362,009 500,254,081 9.74× 153,596,950 3,144,134,148 20.47× 150,247,240 1,169,471,954 7.78×
Design F 37,793,452 752,401,577 19.91× 51,162,596 500,254,081 9.78× 153,596,950 3,144,134,148 20.47× 150,247,240 1,169,470,736 7.78×
Design G 37,708,203 752,386,686 19.95× 51,162,596 500,254,081 9.78× 153,596,950 3,144,134,148 20.47× 150,247,240 1,169,468,346 7.78×
Design H 37,704,900 752,386,686 19.95× 51,161,299 500,254,081 9.78× 153,596,950 3,144,134,148 20.47× 150,247,240 1,169,468,346 7.78×
Average 17.66× 9.10× 16.96× 6.96×

the baseline design shown in Fig. 2 with the detailed design specs tabulated in
Table 3. The results are tabulated in Table 4. As shown in the table, across mul-
tiple design points, the average speedup of Inception-v3, ResNet, VGG16, and
UNet achieved by RANGER are 17.66×, 9.10×, 16.96×, and 6.96× respectively,
with the average speedup of 12.7× across all four applications.

To execute the benchmarks on the accelerator cores by using the baseline
architecture, the tasks in each application must be further partitioned based on
the amount of scratchpad memory available. The numbers of the fine-grained
subtasks are shown in Table 5, which also includes the corresponding RANGER
task numbers as a comparison. In this case, scheduling these subtasks is com-
puted by the host. Figure 7 shows RANGER scheduling decisions of 10 Inception-
v3 applications running in parallel on Design 1 from Table 3.

Table 5. The numbers of tasks that the global host must consider in RANGER and
baseline architecture.

Architecture RANGER Baseline Increase

Model

Inception-v3 189 20,469 108×
Resnet-50 107 6,824 64×
UNet 17 12,372 728×
VGG16 16 38,064 2,379×

A Hierarchical Task Scheduler for Heterogeneous Computing 71

4.2 Scalability Study

This section further investigates the scalability of the RANGER architecture.
To saturate the many kernel accelerators in the designs, we increased the rep-
etition of the applications to 10 (i.e., during each experiment,10 identical but
independent applications were issued on a given RANGER design). The results
are plotted with respect to various RANGER designs in Fig. 8. This study is
similar to the strong-scaling study in the traditional HPC applications. The plot
clearly shows that the speedup is plateaued to ∼2× at Design 3, which has 35
kernel accelerators.

Fig. 7. Scheduling decisions of 10 parallel instances of Inception-v3 computed by
RANGER on Design 1. Each box represents a task being scheduled on a particular
device.

Fig. 8. Measured speedup of RANGER by running 10 parallel instances of each appli-
cation with respect to Designs 1–10, which contain an increasing number of kernel
accelerators. The speedup plateaus at Design 3 due to an insufficient number of tasks
for the available kernel accelerators.

72 N. R. Miniskar et al.

In the second study, the experiment was repeated by varying the application
repetitions, which is similar to the weak-scaling study of HPC workloads. The
results are shown in Fig. 9. With repetition set to 100, the RANGER architecture
demonstrates good scalability from Design A, which has 15 kernel accelerators,
to Design H, which contains 120 kernel accelerators.

4.3 Overhead of the Local Schedulers

The speedups achieved by RANGER are contributions of the top-level hierarchi-
cal scheduling scheme and the implementation of the low-level ASCS. To inves-
tigate the performance inefficiency caused by the two-level scheduling scheme,
a collection of hypothetical reference designs were designed. Compared with
RANGER designs, each reference design has an identical number of kernel accel-
erators as its RANGER counterpart but with a sufficiently large scratchpad
memory to accommodate all needed data. Hence, there is no need to invoke
local schedulers because there is no need to further partition each task. Instead,
the host processor can directly dispatch the tasks to the accelerators based on
the top-level scheduling decisions. With much larger scratchpad memory mod-
ules, the estimated areas of the reference designs are listed in Table 6. These
reference designs cannot be realistically implemented due to their large areas.
For instance, nine out of 10 reference designs have the estimate area of over
200 mm2, which makes them extremely expensive to manufacture. As a refer-
ence point, an octa-core Intel Coffee Lake processor on a comparable technology
only has a die area of 174 mm2 [12].

Fig. 9. Measured speedup of RANGER by running an increasing number of instances
of the same application on Designs A–H. RANGER demonstrates excellent scalability
with 100 instances of application running in parallel.

A Hierarchical Task Scheduler for Heterogeneous Computing 73

Table 6. Area estimate of reference designs compared with their RANGER counter-
parts. Designs of these sizes are extremely expensive to manufacture.

Model Area mm2

Architecture design RANGER Reference Difference

Design 1 11 165 14.61×
Design 2 23 275 12.18×
Design 3 28 337 11.93×
Design 4 34 440 12.96×
Design 5 40 445 11.23×
Design 6 45 484 10.67×
Design 7 51 512 10.04×
Design 8 57 546 9.63×
Design 9 62 603 9.67×
Design 10 68 662 9.73×

Table 7. Comparison of makespans for RANGER and reference. On average,
RANGER shows only 10.88% of penalty, which is the measurement of performance
overhead of the local ASCS.

Makespan

Model Inception-v3 Resnet-50 VGG16 UNet

Architecture design RANGER Reference Difference RANGER Reference Difference RANGER Reference Difference RANGER Reference Difference

Design 1 94,788,333 95,707,644 −0.96% 88,346,488 88,621,038 -0.31% 389,202,487 214,684,328 81.29% 336,496,490 216,796,889 55.21%

Design 2 53,422,061 56,538,771 −5.51% 57,531,844 63,717,300 −9.71% 209,315,117 165,634,098 26.37% 201,002,387 156,806,696 28.18%

Design 3 41,881,254 45,388,469 −7.73% 52,782,400 58,538,562 −9.83% 191,533,321 150,559,308 27.21% 173,986,414 145,184,318 19.84%

Design 4 38,749,897 40,891,867 −5.24% 52,195,186 56,076,426 −6.92% 181,632,752 144,136,809 26.01% 157,652,345 134,955,240 16.82%

Design 5 37,999,017 39,601,255 −4.05% 52,191,088 55,193,132 −5.44% 180,193,518 141,111,694 27.70% 150,250,684 129,117,096 16.37%

Design 6 37,988,551 38,921,698 −2.40% 52,191,088 54,871,507 −4.88% 180,193,518 139,536,510 29.14% 150,250,684 128,893,489 16.57%

Design 7 37,914,589 38,412,723 −1.30% 52,190,081 54,847,500 −4.85% 180,193,518 138,354,082 30.24% 150,250,684 127,945,051 17.43%

Design 8 37,898,912 38,260,460 −0.94% 52,190,081 54,561,879 −4.35% 180,193,518 137,473,689 31.07% 150,250,684 127,915,851 17.46%

Design 9 37,891,335 38,260,436 −0.96% 52,190,081 54,561,879 −4.35% 180,193,518 137,473,689 31.07% 150,250,684 127,915,851 17.46%

Design 10 37,618,903 37,782,552 −0.43% 52,190,081 53,711,730 −2.83% 178,630,640 134,278,895 33.03% 147,870,807 121,184,411 22.02%

Average −2.95% −5.06% 31.01% 20.53%

The comparison on the RANGER design makespans and the reference designs
are tabulated in Table 7. For Inception-v3 and ResNet, RANGER designs clearly
have similar makespans with small but consistent improvements. For VGG16 and
UNet, RANGER designs show a 31–21% degradation of the makespans. Across
all four applications, RANGER shows an average of 10.88% on makespan penal-
ties. The host runs the identical top-level scheduler with identical DAG specifica-
tions in both RANGER and reference studies. Therefore, the measured penalty
directly indicates the performance overhead of the low-level ASCS scheduler.
However, given the impracticality of the reference designs, the authors believe
that this magnitude of overhead is completely acceptable.

74 N. R. Miniskar et al.

5 Conclusion

This paper presents RANGER, a framework and architecture design for hierar-
chical task scheduling in extremely heterogeneous computing. As a framework,
one crucial benefit of hierarchical scheduling is that it only requires coarse-
grained task dependency specifications at the top level, whereas more fine-
grained, accelerator-specific scheduling can be performed at the lower level. The
coarse-grained task specifications make it much easier to maintain programming
portability and productivity in heterogeneous computing. Introducing localized
low-level schedulers enables the deployment of more sophisticated, accelerator-
specific scheduling solutions to better utilize hardware resources. From an archi-
tecture perspective, RANGER uses customized RISC-V cores to mitigate the
computational overhead of task scheduling. Through extensive experimentation,
we demonstrated that RANGER architecture achieves 12.7× performance gains
on average in terms of makespan with only a 2.7% area overhead in a 16 nm
technology.

In future work, we plan to further improve the global and local schedulers
in RANGER. They also plan to integrate RANGER with contemporary parallel
run-times to further explore its potential.

Acknowledgments. This material is based upon work supported by the US Depart-
ment of Energy (DOE) Office of Science, Office of Advanced Scientific Computing
Research under contract number DE-AC05-00OR22725.

This research was supported in part by the DOE Advanced Scientific Computing
Research Program Sawtooth Project and the Laboratory Directed Research and Devel-
opment Program of Oak Ridge National Laboratory, managed by UT-Battelle LLC for
DOE.

References

1. Arabnejad, H., Barbosa, J.G.: List scheduling algorithm for heterogeneous systems
by an optimistic cost table. IEEE Trans. Parallel Distrib. Syst. 25(3), 682–694
(2013)

2. ARM Corp.: AMBA: the standard for on-chip communication. https://www.arm.
com/products/silicon-ip-system/embedded-system-design/amba-specifications.
Accessed 10 Dec 2020

3. Arnold, O., Noethen, B., Fettweis, G.: Instruction set architecture extensions for a
dynamic task scheduling unit. In: 2012 IEEE Computer Society Annual Symposium
on VLSI, pp. 249–254. IEEE (2012)

4. Asanovic, K., et al.: The Rocket chip generator. EECS Department, University of
California, Berkeley, Technical report UCB/EECS-2016-17 (2016)

5. Binkert, N., et al.: The GEM5 simulator. ACM SIGARCH Comput. Archit. News
39(2), 1–7 (2011)

6. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: an efficient multithreaded runtime system. J. Parallel Distrib. Comput.
37(1), 55–69 (1996)

7. Canon, L.C., Marchal, L., Simon, B., Vivien, F.: Online scheduling of task graphs
on heterogeneous platforms. IEEE Trans. Parallel Distrib. Syst. 31, 721–732 (2019)

https://www.arm.com/products/silicon-ip-system/embedded-system-design/amba-specifications
https://www.arm.com/products/silicon-ip-system/embedded-system-design/amba-specifications

A Hierarchical Task Scheduler for Heterogeneous Computing 75

8. Dallou, T., Engelhardt, N., Elhossini, A., Juurlink, B.: Nexus#: a distributed
hardware task manager for task-based programming models. In: 2015 IEEE Inter-
national Parallel and Distributed Processing Symposium, pp. 1129–1138. IEEE
(2015)

9. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 mul-
tithreaded language. In: Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation, pp. 212–223 (1998)

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

11. Huang, T.W., Lin, C.X., Guo, G., Wong, M.: Cpp-Taskflow: fast task-based par-
allel programming using modern C++. In: 2019 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pp. 974–983. IEEE (2019)

12. Intel Corp.: Coffee lake - microarchitecture - intel. https://en.wikichip.org/wiki/
intel/microarchitectures/coffee lake. Accessed 10 Dec 2020

13. Johnston, B., Milthorpe, J.: AIWC: OpenCL-based architecture-independent work-
load characterization. In: 2018 IEEE/ACM 5th Workshop on the LLVM Compiler
Infrastructure in HPC (LLVM-HPC), pp. 81–91. IEEE (2018)

14. Kale, L.V., Krishnan, S.: Charm++: parallel programming with message-driven
objects. In: Wilson, G.V., Lu, P. (eds.) Parallel Programming Using C++, vol. 1,
pp. 175–213. MIT Press, Cambridge (1996)

15. Kaleem, R., Barik, R., Shpeisman, T., Hu, C., Lewis, B.T., Pingali, K.: Adaptive
heterogeneous scheduling for integrated GPUs. In: 2014 23rd International Confer-
ence on Parallel Architecture and Compilation Techniques (PACT), pp. 151–162.
IEEE (2014)

16. Khronos Group: OpenCL: the open standard for parallel programming of hetero-
geneous systems (2019)

17. Kukanov, A., Voss, M.J.: The foundations for scalable multi-core software in Intel
Threading Building Blocks. Intel Technol. J. 11(4) (2007)

18. Liu, F., Miniskar, N.R., Chakraborty, D., Vetter, J.S.: DEFFE: a data-efficient
framework for performance characterization in domain-specific computing. In: Pro-
ceedings of the 17th ACM International Conference on Computing Frontiers, pp.
182–191 (2020)

19. Ma, Z., Catthoor, F., Vounckx, J.: Hierarchical task scheduler for interleaving
subtasks on heterogeneous multiprocessor platforms. In: Proceedings of the 2005
Asia and South Pacific Design Automation Conference, pp. 952–955 (2005)

20. Morais, L., et al.: Adding tightly-integrated task scheduling acceleration to a RISC-
V multi-core processor. In: Proceedings of the 52nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pp. 861–872 (2019)

21. Nickolls, J., Buck, I.: NVIDIA CUDA software and GPU parallel computing archi-
tecture. In: Microprocessor Forum (2007)

22. OpenACC: OpenACC: directives for accelerators (2015)
23. OpenMP: OpenMP reference (1999)
24. Robison, A.D.: Composable parallel patterns with Intel Cilk Plus. Comput. Sci.

Eng. 15(2), 66–71 (2013)
25. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-

ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

https://en.wikichip.org/wiki/intel/microarchitectures/coffee_lake
https://en.wikichip.org/wiki/intel/microarchitectures/coffee_lake
https://doi.org/10.1007/978-3-319-24574-4_28

76 N. R. Miniskar et al.

26. Shao, Y.S., Xi, S.L., Srinivasan, V., Wei, G.Y., Brooks, D.: Co-designing acceler-
ators and SoC interfaces using gem5-Aladdin. In: 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 1–12. IEEE (2016)

27. Sijstermans, F.: The NVIDIA deep learning accelerator. In: Proceedings Hot Chips:
A Symposium on High Performance Chips, August 2018

28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

29. Sinnen, O.: Task Scheduling for Parallel Systems, vol. 60. Wiley, Hoboken (2007)
30. Själander, M., Terechko, A., Duranton, M.: A look-ahead task management unit

for embedded multi-core architectures. In: 2008 11th EUROMICRO Conference
on Digital System Design Architectures, Methods and Tools, pp. 149–157. IEEE
(2008)

31. Slaughter, E., et al.: Task bench: a parameterized benchmark for evaluating parallel
runtime performance, pp. 1–30 (2020)

32. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

33. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst.
13(3), 260–274 (2002)

34. Ullman, J.D.: NP-complete scheduling problems. J. Comput. Syst. Sci. 10(3), 384–
393 (1975)

35. Vetter, J.S., Brightwell, R., et al.: Extreme heterogeneity 2018: DOE ASCR basic
research needs workshop on extreme heterogeneity (2018). https://doi.org/10.
2172/1473756

36. Waterman, A., Lee, Y., Avizienis, R., Cook, H., Patterson, D.A., Asanovic, K.:
The RISC-V instruction set. In: Hot Chips Symposium, p. 1 (2013)

37. Western Digital Corp.: RISC-V: accelerating next-generation compute require-
ments. https://www.westerndigital.com/company/innovations/risc-v. Accessed 10
Dec 2020

http://arxiv.org/abs/1409.1556
https://doi.org/10.2172/1473756
https://doi.org/10.2172/1473756
https://www.westerndigital.com/company/innovations/risc-v

Machine Learning, AI, and Emerging
Technologies

Auto-Precision Scaling for Distributed
Deep Learning

Ruobing Han1(B), James Demmel2, and Yang You3

1 Georgia Institute of Technology, Atlanta, GA, USA
hanruobing@gatech.edu

2 University of California, Berkeley, CA, USA
demmel@berkeley.edu

3 National University of Singapore, Singapore, Singapore
youy@comp.nus.edu.sg

Abstract. It has been reported that the communication cost for syn-
chronizing gradients can be a bottleneck, which limits the scalability of
distributed deep learning. Using low-precision gradients is a promising
technique for reducing the bandwidth requirement. In this work, we pro-
pose Auto Precision Scaling (APS), an algorithm that can improve the
accuracy when we communicate gradients by low-precision floating-point
values. APS can improve the accuracy for all precisions with a trivial
communication cost. Our experimental results show that for many appli-
cations, APS can train state-of-the-art models by 8-bit gradients with
no or only a tiny accuracy loss (<0.05%). Furthermore, we can avoid
any accuracy loss by designing a hybrid-precision technique. Finally, we
propose a performance model to evaluate the proposed method. Our
experimental results show that APS can get a significant speedup over
state-of-the-art methods. To make it available to researchers and develop-
ers, we design and implement CPD (Customized-Precision Deep Learn-
ing) system, which can simulate the training process using an arbitrary
low-precision customized floating-point format. We integrate CPD into
PyTorch and make it open-source (https://github.com/drcut/CPD).

Keywords: Low precision · Distributed deep learning · Scalability

1 Introduction

State-of-the-art deep learning models are becoming deeper and larger, which
take an extremely long time to train. As a result, distributed memory systems
are becoming popular to train these huge models. Most researchers are using
synchronous SGD for data-parallel training [10,14,24,26]. However, we can not
always improve the training speed by just using more processors, as the commu-
nication cost is a non-trivial overhead for distributed systems and multi-GPU
systems. For example, communication can take 40% of wall-clock time for BERT
training on a 8 NVIDIA GTX1080Ti GPU server. A potential solution is to use

c© Springer Nature Switzerland AG 2021
B. L. Chamberlain et al. (Eds.): ISC High Performance 2021, LNCS 12728, pp. 79–97, 2021.
https://doi.org/10.1007/978-3-030-78713-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_5&domain=pdf
https://github.com/drcut/CPD
https://doi.org/10.1007/978-3-030-78713-4_5

80 R. Han et al.

low-precision gradients [14,20]. However, for IEEE floating point system, pre-
vious methods can only use 16-bit for communicating gradients. One reason is
that current communication systems only support half/single/double-precision
formats. To solve this problem, we build a system that allows researchers to
use an arbitrary low precision format (<32 bits) to communicate gradients. We
refer to it as CPD: A High-Performance System for Customized-Precision Deep
Learning. We integrate CPD into PyTorch for public usage.

We find that directly using low-precision gradients can easily hurt testing
accuracy and even make the training diverge. One reason is that the values
in gradients may easily underflow or overflow as the numerical range of the low
precision is quite narrow compared to that of the high precision. So there are lots
of zeros and INF values, which can make the training process diverge. To solve
this problem, we propose the APS (Auto-Precision-Scaling) algorithm, which is a
layer-wise adaptive scheme for efficient gradients communication. With APS, we
can make the distributed training converge with only 8 bits or even 4 bits totally
for the sign, exponent (exp) and mantissa (man). In our experiments, APS can
improve the accuracy for any precision with a minor overhead. Compared to
previous methods, the main contributions of our paper include:

– we propose APS, a layer-wise adaptive scheme, that can improve the accuracy
for arbitrary low-precision formats;

– we are able to use several 8-bit floating point formats to train state-of-the-art
classification models and segmentation models on distributed systems;

– we are able to use 8-bit floating point formats for gradients to train ResNet-50
on a 256-node distributed system;

– we build a system that can use arbitrarily customized low-precision floating-
point operations and make it open-source to the public.

2 Related Work

[Gradient Sparsification]. A large DNN model typically has millions of ele-
ments in parameters and gradients. Researchers found that some values in gradi-
ents are much more important than others [8]: larger values in gradients will have
a greater impact on the parameter updating and the training process. Based on
this finding, some works only synchronize a part of gradients at each iteration.
There are several methods to choose the threshold and accumulate the stale
gradients with new gradients [8,17,20]. For example, [17] proposed DGC, which
communicates a fraction of the gradients each iteration and store the remaining
gradients locally with momentum correction to maintain the accuracy. While
in [22], some layer’s gradients will be randomly dropped out in each iteration
to reduce the communication cost. All of these methods depend on gradients’
magnitude rather than gradients’ precision used during communication, so our
method is orthogonal to these methods: we can use the above algorithms to
select the gradients and use APS to communicate them with low precision.

Auto-Precision Scaling for Distributed Deep Learning 81

[Gradient Quantization]. Researchers can use half-precision floating-point to
communicate gradients in AlexNet/ResNet training with 100+ nodes [14,19,20].
The underflow/overflow issue is a serious problem in low-precision computation.
To solve this problem, [19] suggests researchers should carefully select a con-
stant scalar to scale the loss value, which in turn will scale the gradient value.
The constant scalars typically are different for different models and precisions.
Instead of using low-precision floating point for gradients, some researchers [4,23]
proposed algorithms that quantize the gradients. Both QSGD [4] and TernGrad
[23] use the same idea: they encode the gradients to unbiased estimate gra-
dients represented by fewer bits and communicate these gradients with some
extra information, and finally decode these communicated results into the normal
gradients.

Although these two algorithms also use fewer bits to represent gradients,
APS is significantly different from them. Instead of using a customized data
structure to represent gradients with fewer bits, APS uses floating-point format
to communicate gradients. APS is able to mitigate the round-off error so that
we can have numerical values close to the original precision. APS is transparent
for high level users, which means they can use the same hyper-parameters and
training strategies but with less time spent on communication. For large scale
distributed systems, it is extremely expensive to fine-tune the hyper-parameters
as it will require lots of computing resources. Thus, it is highly necessary to
maintain the same hyper-parameter set. Although QSGD can also maintain the
hyper-parameter set, it introduces an extra hyper-parameter, the bucket size,
which may significantly affect the accuracy. Ternary can not maintain the same
hyper-parameter set because it asks users to decrease dropout ratio to keep more
neurons, use smaller weight decay and disable ternarizing in the last classifica-
tion layer while training on distributed systems. Besides, compared to training
on small-scale distributed systems, training on large-scale distributed systems
will require lots of accumulation operations, which requires a high numerical
precision. Otherwise, the results will be significantly different due to the accu-
mulative effect. The validation of Ternary is only verified on small distributed
systems with no more than eight nodes. QSGD is verified on a distributed system
that has only 16 nodes. APS does not require any additional hyper-parameters,
and it can maintain the hyper-parameter set used for FP32. Besides, we have

Table 1. The difference between APS and other methods.

Methods Same hyper
parameter as
FP32

Communication cost with gradient size L Extra hyper
parameter

APS Yes Allreduce (8 bits) + Allreduce (8L bits) No

Loss scaling [19] Yes Allreduce (L * 16 bits) Scaling factor

TernGrad [23] No Uses special distributed system No

QSGD [4] No Depends on coding algorithm Bucket size

Flex16+5 [16] Yes Single node. Gradients: (16L+5) bits No

82 R. Han et al.

verified the validation of APS on a large scale distributed system (256 nodes)
with state-of-the-art deep learning models. Table 1 summarizes the difference
between APS and other methods.

[Low-Precision for Deep Learning]. There are several papers that explored
the possibility of using a lower precision for DNN. However, most of them were
focused on the inference stage. Recently, [19] used the half-precision format
(IEEE 754 16-bit) in DNN training. With the help of loss-scaling (the scale
factor is a manually-tuned hyper-parameter), they achieve a similar accuracy as
the FP32 format. After that, [21] used 8 bits in DNN training (16 bits for parts
of the data) and achieve a comparable accuracy as the baseline. The specific
design of 8 bits and 16 bits are based on the information of data distributions.
[15] looked into older representations of FP to produce faster silicon. Different
from floating-point, some researchers tried using fixed-point and its variants. [6]
used a dynamical fixed point (DFXP) format for parameters, activations and
gradients. DFXP will change the scaling factor if overflow occurs during train-
ing. Instead of changing the scaling factor after overflow happens, [6] designed a
predictor to change the scaling factor in advance to avoid overflow. However, the
previous low precision (<16 bits) DNN training studies are mainly focused on
single node (i.e. small-batch training). If we want to finish the training in a short
time, we need distributed training on clusters. Although some works use low pre-
cision gradient [19,21], they do not communicate these low precision gradient.
Low precision gradient synchronization will result in round-off error dilemma
and hurt the accuracy (Sect. 4.2). In addition to saving bandwidth for synchro-
nization, APS can be used as an algorithm to improve the accuracy for any given
precision. We believe this is an important property as many new floating point
formats have been proposed [21]. Please see Table 2 for more details.

Fig. 1. Gradients distributions for different Neural Networks.

[Customized-Precision System]. Most state-of-the-art systems only support
a fixed number of bits in a floating-point format. For example, CUDA only sup-
ports floating-point formats with 16, 32, and 64 bits for fixed exponent/mantissa
bits. QPyTorch [27] is a recent system that allows users to assign customized
number of bits to exponent/mantissa in DNN training. However, QPyTorch has
several limitations for real-world applications. When users design a format with
only a few bits for exponent, the cast results from IEEE FP32 to the low pre-
cision format are numerically incorrect, which leads to a serious bug. Besides,

Auto-Precision Scaling for Distributed Deep Learning 83

it only supports IEEE 754 single-precision for all-reduce operations, which are
being used at each iteration for distributed training. To solve these problems, we
develop the CPD (Customized-Precision Distributed Deep Learning) system.

3 APS: Auto-Precision-Scaling

3.1 The Limitation of the Loss Scaling Algorithm

The loss scaling algorithm is being used in recent large-scale systems [14,19,20].
The key idea of loss scaling is: as the ranges that can be presented by low pre-
cision and high precision are different, users can scale all layers’ gradients with
a factor to potentially solve the overflow/underflow problem. According to the
properties of derivative, users can easily scale all gradients by multiplying the
loss value with this factor (see Fig. 3(b)). The loss scaling algorithm requires
researchers to find a suitable loss scaling factor for each model, as the gradient
distributions for different models are quite different in real-world applications
(Fig. 1). Besides, there are several widely used precision formats [15,21]. For
different formats, the representation ranges are also different (Table 2). There-
fore, even for the same model, the suitable loss scaling factors are different when
training with different precisions. To make things more complicated, even within
a single model, the distributions of different layers are quite different (Fig. 2).
Previous researchers also reported the gradient distribution for a single layer
also changes in training process [6,16]. These inconsistencies may make the loss
scaling algorithm extremely unreliable in real-world applications.

Table 2. Different floating-point formats have different representation ranges.

Format Exp bits Man bits Range

IEEE 754 FP32 8 23 [2−149, 2127]
IEEE 754 FP16 5 10 [2−24, 215]
BFloat16 8 7 [2−133, 2127]
FP16 in [21] 6 9 [2−39, 231]
FP8 in [21] 5 2 [2−16, 215]

3.2 Layer-Wise Precision for Scaling the Gradients

To solve these problems, we propose Auto Precision Scaling algorithm (APS),
which uses a layer-wise scheme to scale the gradients. Let us refer to the layer
ID as i and the gradient of this layer as gradi. Then the algorithm computes
the exponent values of |gradi| as grad_expi. Assume the model has n lay-
ers, the algorithm stores a vector E = {grad_exp1, grad_exp2, ..., grad_expi,
..., grad_expn} in the memory and does an all-reduce operation for this vector

84 R. Han et al.

Fig. 2. Gradients distributions of different layers in ResNet50 with 8K batch size.

to get the maximum value in the whole system. Then the algorithm shifts the
gradients of each layer based on the information of vector E and cast them to
a lower precision. After finishing an all-reduce operation for these low precision
gradients, the algorithm casts them to a higher precision and then shifts them
to the original exponent. For more details, please see Algorithm 1. Besides, we
can synchronize the gradients for several consecutive layers as a whole tensor,
which can speed up communication process by reducing the latency.

Algorithm 1. Auto Precision scaling algorithm
Input: Gradient: gradient (high precision)
Input: exp_bit: bits of low precision exponent
Input: man_bit: bits of low precision mantissa
Input: N : numbers of distributed nodes
1: upper_bound_exp ←2exp_bits−1−1
2: for all g ∈ Gradient do
3: max_grad_exp ← FindMaxExp(g ∗ N)
4: f̃ ← upper_bound_exp - AllReduce(max_grad_exp, MAX)
5: g ← g∗2f̃
6: low_g ←Cast(g, exp_bit, man_bit) � cast to low precision
7: low_g ← AllReduce(low_g, SUM)
8: g ←Cast(low_g, 8, 23) � cast back to high precision (exp: 8, man: 23)
9: g ← g/2f̃

10: end for
11:
12: function FindMaxExp(Tensor)
13: max_exp ← −INF
14: for all i ∈ Tensor do
15: if i! = 0 then
16: tmp_exp ← ceil(log2(abs(i)))
17: if tmp_exp > max_exp then
18: max_exp ← tmp_exp
19: end if
20: end if
21: end for
22: return max_exp
23: end function
24:

Figure 3 shows the comparison between the loss scaling algorithm and APS
algorithm. When we use 8 bits (exp: 5 bits, man: 2 bits), we can only represent
values with exponents in [−16, 15], shown as the area between the two black
lines. Values greater than 215 will overflow and cast to INF, while values smaller
than 2−16 will underflow and cast to 0. The blue curve and green curve represent

Auto-Precision Scaling for Distributed Deep Learning 85

the gradients’ distribution of two layers separately. The loss scaling algorithm
will scale all layers’ gradients with a given constant number, which is carefully
selected by hand to avoid the overflow for the maximum gradients. In this case,
the loss scaling algorithm will scale all gradients by 2−5. The scaled gradients are
represented by dashed curves (Fig. 3(b)). Although it can avoid overflow, it will
cause some small values to underflow, which will be cast to 0. APS algorithm
will scale each layer with a different constant. In other words, the algorithm
will automatically scale each layer’s gradient with the greatest factor that does
not cause overflow. As for the situation the figure shows, we will scale the blue
layer by 210, and the green layer by 2−5 (Fig. 3(c)). We highlight the difference
between APS and other widely-used techniques in Table 1.

Fig. 3. These figures show the comparison between loss scaling and APS. When we
use 8 bits (exp: 5 bits, man: 2 bits), we can only represent values with exponents in
[−16, 15], shown as the area between the two black lines. The gradient distributions of
two layers are represented by blue/green curves separately. Values greater than 215 will
overflow and cast to INF, while values smaller than 2−16 will underflow and cast to 0.
The dashed curves represent the data distributions after scaled. (Color figure online)

3.3 Technical Details for APS

Using the Power of 2 as Scaling Factors. For loss scaling [19], users can
choose arbitrary values as scaling factors. However, in APS, the algorithm will
only choose a scaling factor that is the power of two. This choice can take
advantage of the properties of the floating-point numbers. By doing so, we can
minimize the round-off error. For example, Fig. 4 shows an example of using
value 10 or 8 for the scaling factor. We use 8 bits precision (exp: 5 bits, man: 2
bits). The gray box denotes the sign bit, the yellow box denotes the exponent
bit, and green box denotes the mantissa bit. For a normal floating-point format,
when multiplied by 8 (a value that is the power of 2), only the exponent part will
be changed, and the mantissa part will remain the same. So after it is multiplied
and divided by 8, the output value is still the same as the input value. While
using 10 as the scaling factor, both the exponent and mantissa part will be
changed, which may truncate the numerical value. Either multiplied by 10 or
divided by 10 will cause a round-off error.

86 R. Han et al.

Fig. 4. It is necessary to use the power of 2 as scaling factor.

Trade-Off Between Underflow and Overflow. In most cases, numbers rep-
resented by high precision formats are out of the ranges low precision formats
can represent. So the scaling technique can be a trade-off between underflow and
overflow. An example is shown in Fig. 5. The original distribution is shown in
the green curve, it has both an underflow part and an overflow part. Using a
scaling factor larger than 1 will move the green curve to the red curve, which
is affected by overflow. In contrast, the blue curve, shifted by a scaling factor
smaller than 1, is affected by underflow. However, overflow often can be much
more harmful than underflow for deep neural networks training. In backward
propagation, the gradients of latter layers are used to calculate the gradients
of previous layers. When the gradients of latter layers are overflow and cast to
INF, all the gradients in previous layers that depend on them will also be INF.
According to the rules of floating point, in most cases, the operators’ outputs
will be INF if there is an INF for operand. And this domino effect will make the
training process diverge as we will lose lots of important information. Therefore,
our experiments and analysis indicate that we should choose a scaling factor
that can avoid overflow. Among all these working values, we choose the largest
one, which makes the smallest fraction fall into the underflow range.

Fig. 5. The green curve is the original data distribution. The blue/red dashed curves
are distributions scaled by factors smaller/greater than 1.0, which leads to different
underflow/overflow fractions. (Color figure online)

Find the Maximum Scaling Factor. The above section suggests that we
should choose the maximum scaling factor which does not incur overflow. This
condition is described by Eq. (1), we have to find the maximum value that meets
this condition. In this section, we define g as gradients, f as the scaling factor,

Auto-Precision Scaling for Distributed Deep Learning 87

p̂ as the upper bound of the required floating point precision, N as the number
of nodes in the system, ĝ as the maximum element of the gradients, and f̃ as
log2 factor. Thus, we have the summation over all the distributed nodes:

∣
∣
∣
∣
∣

N∑

i=1

(gi × f)

∣
∣
∣
∣
∣
≤ p̂ (1)

However, as each node only knows its local gradients, it is hard to exactly
get the maximum factor with negligible communication cost. So in APS, we use
a heuristic algorithm to find a suitable scaling factor. We relax the bound in Eq.
(1) as Eq. (2).

∣
∣
∣
∣
∣

N∑

i=1

(gi × f)

∣
∣
∣
∣
∣
= f ×

∣
∣
∣
∣
∣

N∑

i=1

gi

∣
∣
∣
∣
∣
≤ f ×

N∑

i=1

|gi| ≤ f × N × |ĝ| (2)

A straightforward approach is to just communicate each node’s largest gra-
dient to get the global maximum gradient and then calculate the factor. On top
of that, we want to do further optimizations to speed up the communication
process. The condition can be written as Eq. (3):

f ≤ p̂

|N × ĝ| (3)

As Sect. 3.3 suggests that we should use only the power of 2 as the scaling
factor, we can further transform Eq. (3) (f = 2f̃ and f̃ is an integer):

f̃ <�log2(
p̂

|N × ĝ|)� = �log2(p̂) − log2(|N × ĝ|)� (4)

So we will assign f̃ = log2(p̂) − �log2(|N × ĝ|)� to meet the requirements. For a
given floating-point number, the logarithm is exactly equal to the exponent part.
So instead of communicating |N × ĝ|, we only communicate �log2(|N × ĝ|)�. If
we use IEEE 754 floating-point precision and communicate the former value, we
have to communicate 32-bit floating point numbers. While using the latter one,
we only need to communicate 8 bits, as IEEE 754 floating-point format has 8
bits for exponent.

Fig. 6. 4K batch size for CIFAR10 on 8 nodes

88 R. Han et al.

4 Experiments

It is hardware friendly to use a power of 2 as the number of bits. This is efficient
for both memory access and computational operations. So we tried using 4 and
8 bits for gradients in distributed training. We provide an emulator of CPD
implementation to make sure our experiments can be reproduced on any device.
The major concern for using mixed precision is the casting from high precision
to low precision. The standard IEEE floating-point format uses the rounding-
to-nearest method, while some researchers prefer stochastic rounding [4,21,23]
which can get an unbiased estimate for high precision values. Although stochastic
rounding has nice mathematical properties, its randomness makes it hard to
reproduce. Also, in some situations, it is slower than the rounding-to-nearest
method. So in the following experiments, we use round-to-nearest even method,
which is a special case of the round-to-nearest method. We fix the number of
epochs as the same for all precisions for a given model. As mentioned before, we
not only focus on reducing the communication cost, but also want to make APS
algorithm transparent for users, which means APS will not change the training
process. Therefore, unless otherwise noted, the low precision training will use the
same hyper-parameter as IEEE FP32. All hyper-parameters are referenced from
previous related work [1–3,10], we didn’t try to fine-tune the hyper-parameters.
We use IEEE FP32 for parameters and activations.

Besides, we also compare the training curves between APS and the baseline.
In this way, we are able to show that using APS does not affect the training
process. Most importantly, we also compare the training curves and accuracies
with/without APS, to show that APS can improve the accuracy for a given pre-
cision. In our experiments, the machines on all distributed systems run the same
software environment: 64-bit Ubuntu 16.04 with CUDA toolkit 9.0, cuDNN7.6
and PyTorch1.3.1.

4.1 Training on Small-Scale Distributed Systems

In this section, we pick state-of-the-art deep learning models (DavidNet and
Resnet18 for classification and FCN for segmentation) and train them on an 8-
node distributed system, and each node has a NVIDIA V100 GPU. We use ring
all-reduce [9] for all experiments in this distributed system. For classification
models, we use CIFAR10 dataset and set the batch size as 4K for both models,
which means the local batch size is 512 per node in the distributed system. For
ResNet18, we set the learning rate as 1.6 and use 5 epochs for learning rate
warming up [10] from 0.1. We decay the learning rate with a factor of 0.1 at
40th and 80th epoch. We use Momentum SGD with 0.9 for m. Besides, we use a
weight decay γ of 0.0001. For DavidNet, we use Nesterov momentum with m of
0.9 and set γ as 0.256 for weight decay. We first increase the learning rate from
0 to 0.4 linearly in the first 5 epochs and then decrease it to zero linearly in the
last 20 epochs. We summarize the relationship between gradient precisions and
the accuracy for DavidNet/ResNet18 in Table 4. We also show the comparison

Auto-Precision Scaling for Distributed Deep Learning 89

for the training curves of different precisions in Fig. 6. These results show that
APS can make a significant difference in low-precision learning.

Fig. 7. Training FCN on cityscapes dataset with batch size 16 on 8 nodes. Using 8 bits
with APS, we can have a similar training curve as IEEE FP32

Table 3. FCN model on cityscapes with batch size 16 on 8 nodes. APS can achieve
even higher accuracy with low precision (exp: 4 man: 3) compared to FP32.

Precision (exp, man) Using APS MIOU MAcc

(8, 23): 32 bits / 75.16 82.84

(4, 3): 8 bits Yes 75.88 84.34
No 74.60 82.55

(5, 2): 8 bits Yes 74.76 82.62
No 74.41 82.30

In addition to the classification models, we also select a state-of-the-art seg-
mentation model, FCN [18] (with pre-trained ResNet50 for backbone), for exper-
iments. We use cityscape [5] for dataset. We do our experiments on MMSegmen-
tation [2] and use its hyper-parameter. In the training, we set crop size as 769
× 769 and train 40K iterations. The experimental results in Table 3 and Fig. 7
show that we can use 8 bits (exp: 4 man: 3) to maintain the testing accuracy by
APS.1 LARS [25] is a state-of-the-art method being widely used for distributed
training which can significantly improve the testing accuracy. As LARS will set
the local learning rate for each layer separately based on gradients, we want to
study the relationship between LARS and low-precision gradients. We suspect
LARS maybe sensitive to gradients. So we try using LARS with low precision
gradients to see if the round-off error caused by the low precision communica-
tion hurts the accuracy or not. We train ResNet18 on CIFAR10 dataset with 8K
batch size using 8 nodes and find low precision will hurt the accuracy. On the
other hand, by using APS, we can maintain the same accuracy and even improve
accuracy. The results are shown in Table 5 and Fig. 8. Perhaps surprisingly, the
1

mIOU: Mean Intersection-Over-Union, the average IOU over each semantic class. mAcc: (pixels in the detected
area that match the ground truth)/total number of pixels in the ground truth. The higher the two metricses, the
better the quality.

90 R. Han et al.

Table 4. Models are trained on CIFAR10 dataset with 4K batch size by 8 nodes. For
all precisions, even by 4 bits, APS can make the training processes converge with little
or no accuracy loss.

Model Precision (exp, man) Using APS Accuracy

DavidNet (8, 23): 32 bits / 88.2
(5, 2): 8 bits Yes 88.4

No 88.3
(4, 3): 8 bits Yes 88.6

No 10.0
(3, 0): 4 bits Yes 81.3

No 10.0
ResNet18 (8, 23): 32 bits / 91.4

(5, 2): 8 bits Yes 91.4
No 90.1

(4, 3): 8 bits Yes 91.6
No 90.4

(3, 0): 4 bits Yes 86.7
No 10.0

models’ qualities training with low precision are close or even slightly higher
than these model trained with high precision, This phenomenon is also reported
in [17,19]. This may be due to the fact that low precision can relieve overfitting,
like L1 normalization.

Fig. 8. ResNet18 on CIFAR10 with 8K batch size by LARS. APS allows LARS to
maintain the same accuracy as 32 bits while using low-precision communication.

4.2 Training on Large-Scale Distributed Systems

We train ResNet50 [12] on a 256-node distributed system. Instead of ring all-
reduce used in Sect. 4.1, we use the Hierarchical all-reduce [14,20]: we partition

Auto-Precision Scaling for Distributed Deep Learning 91

the nodes into 16 groups, and assign a master node for each group. Each all-
reduce operation will finish 3 steps: (1) within each group, all worker nodes
send their local gradients to the master node; (2) we conduct the ring all-reduce
across all the master nodes; (3) within each group, the master node broadcasts
the global gradients to all the worker nodes. There are two reasons why we use
the hierarchical all-reduce approach:

Table 5. ResNet18 with LARS. APS can improve the accuracy for both (exp: 5, man:
2) and (exp: 4, man: 3). It can even get a higher accuracy than 32-bit precision.

Precision (exp, man) Using APS Testing accuracy

(8, 23): 32 bits / 92.072
(4,3): 8 bits Yes 92.44

No 92.036
(5,2): 8 bits Yes 92.015

No 91.737

Fig. 9. Training ResNet50 with 32 bits, 8 bits, and hybrid precision.

– Performance: the ring all-reduce with p nodes need to finish 2(p − 1) steps
(each step transfers the same amount of data). The hierarchical all-reduce
with a group size of k only needs 4(k−1)+2(p/k−1) steps. In our experiments
with 256 nodes and a group size of 16, we only need to finish 74 steps, instead
of 510 steps for using ring all-reduce.

– Round-off error: when we use a low precision floating point to add a small
number with a large number, the smaller number may be truncated and cast
as zero in this addition operation. This situation is common in all-reduce
process. To avoid this problem, we should try to minimize the number of
large-and-small additions. If we use ring all-reduce, we have to add a local
gradient with the summation of all other nodes’ local gradients in the last
step. The summation may be 255x larger than this local gradient if we have
256 nodes. When we use the hierarchical all-reduce, we have only 16 nodes for

92 R. Han et al.

Fig. 10. The time of communication on 32 nodes.

intra-group reduction. In this situation, the last step will add a local gradient
with a 15x larger gradient. The situation is the same as inter-group all-reduce
among 16 master nodes.

Taking the above two factors into account, we choose to use the hierarchical
all-reduce with a group size of 16. In the following section, we prove that this
group size can minimize the round-off error. We use 8K batch size to train
ResNet50 on ImageNet dataset [7]. As APS does not require us to modify the
hyper-parameters, we use the same setting and data preprocessing as [10], except
the learnable scaling coefficient γ is initialized as 1 for all BN layers in our
experiments. We adopt the initialization of [11] for the 1000-way fully-connected
layer. Based on the suggestions of [21,23], we use IEEE FP32 for the gradient
of the last layer (i.e. classification layer) and low precision for all other layers’
gradient. We also have the experimental results of using low precision for all
layers, please see Fig. 9 for details. We try using the APS algorithm on different
precisions (Table 6), and find APS only needs 8 bits to achieve roughly the same
accuracy as the standard 32-bit format. We can further improve the accuracy
by hybrid precision: using FP32 for the first 30 epochs and 8 bits for the last

Table 6. We use APS to train ResNet50 with 8K batch size (256 nodes). APS can
improve the accuracy for 8-bit gradient. With APS, we can use 8-bit gradient for the
whole training process, with only a tiny loss in testing accuracy (<0.05%).

Precision (exp, man) With APS Top-1 accuracy

(8, 23): 32 bits / 76.02
(5,2): 8 bits Yes 75.98

No 71.00
(4,3): 8 bits Yes 75.93

No 0.1
(8, 23) + (4, 3) Yes 76.09

Auto-Precision Scaling for Distributed Deep Learning 93

Table 7. Training ResNet50 with APS by low precision for different layers. We can
improve the accuracy by using high precision for the last classification layer.

Precision for other
layers

Precision for the last
classification layer

Top-1
accuracy

(5, 2) (5,2) 75.08
FP32 75.98

(4, 3) (4, 3) 75.46
FP32 75.93

60 epochs. This method can help us maintain the same accuracy as IEEE FP32
(Table 7).

We also have a comparison between different group sizes and present the
results in Table 8. To further explain the difference between different group sizes,
we compare the average round-off error for the gradient of the first convolutional
layer’s weight using 8 bits (exp: 5, man: 2) and present the result in Table 9. The
average round-off error is described by Eq. 5 (the gradients got by the high/low
precision communication are denoted as grad_h and grad_l separately and we
assume there are N elements in the gradient tensor). It shows using the hier-
archical all-reduce can decrease the round-off error compared to ring-allreduce.
It also shows that 16 is the most suitable group size for a 256-node distributed
system.

average_round_off_error =

∑N
i=0

∣
∣
∣
grad_hi−grad_li

grad_hi

∣
∣
∣

N
(5)

Table 8. For ResNet-50 on a 256-node system, using a group size of 16 can improve
the accuracy compared to a group size of 32 for 8 bits, as it can reduce the round-off
error. We use low precision gradients for all layers

Precision (exp, man) Group size Top-1 accuracy

(4, 3): 8bits 32 74.95
16 75.46

(5, 2): 8bits 32 74.91
16 75.08

4.3 Performance Analysis

In this section, we analyze the performance of APS on a distributed system
with 32 V100 GPUs. In detail, there are 4 servers, each servers is installed with

94 R. Han et al.

Table 9. The average round-off error for the first convolutional layer’s weight of
ResNet-50 using 8 bits (exponent: 5 bits, mantissa: 2 bits) on a 256-node cluster.

Group size 4 8 16 32 64 256 (ring all reduce)

Round-off error 55% 44.21% 41.83% 49.62% 58.21% 85.22%

8 GPUs. All servers are connected by InfiniBand and share a distributed file
system.

[Layer-Wise Performance Analysis]. Figure 10 shows the time cost for syn-
chronizing gradients of some layers in ResNet50 (gradient shape of each layer:
res5c_branch2a: 2048 * 512, res5c_branch2b: 512 * 512 * 3 * 3, res5c_branch2c:
512 * 2048). The blue bars denote the time cost by using half precision without
APS. The bars on the right set of each blue bars show the total time for using
APS to communicate the same gradient. The gray bars denote the time cost
to get the global maximum gradient. The orange bars denote the time cost to
communicate gradients using 8 bits. For all layers, APS with 8 bits can speed up
the communication process. Our experiments show that merging short messages
into a single one can reduce the overall communication time. Here, res5c_2a,
res5c_2b, res5c_2c are three consecutive layers in ResNet50. We synchronize
them as a whole, and present the result on the rightmost column in Fig. 10. We
can achieve a 1.36× speedup over half-precision.

[End-to-End Performance Analysis]. We also analyze the end to end per-
formance for using 8 bits gradients with APS algorithm. We record the time for
each iteration. Half-precision training [14,20] (using half-precision for both com-
putation and communication) is used for baseline. The baseline’s time (t_base)
includes two parts: (1) the gradients all-reduce operation and (2) the computa-
tion and data processing time. APS’s communication time (t_aps) includes the
time for three parts: (1) gradients all-reduce operation, (2) reducing the global
maximum value for each gradient, and (3) the computation and data processing
time. In Fig. 11, we show the time cost for iterations with different batch size
for different models. For ResNet-50, with batch size 32, t_base = 137.67ms and
t_aps = 122.95ms per iteration. The speedup is 1.12x. While for batch size 8,
the speedup is 1.18x. For ResNet-18 with batch size 256, the speedup is 1.35x.
Even for DavidNet that has relative few parameters, we can also achieve 1.15x
speed up with batch size 16. Considering ResNet and DavidNet have been well
optimized by industry vendors, we think this level of speedup is very good. As
the communication cost will increase with a larger number of nodes, we believe
APS can achieve a higher speedup for larger systems. We are also designing a
new computer architecture with a startup company for APS. We believe APS
will get a higher speedup on specialized hardware. The speedup will also be
higher in the federated learning situation where the computation is done on
mobile devices and the communication is conducted over the internet.

Auto-Precision Scaling for Distributed Deep Learning 95

Fig. 11. Time cost per iteration (8 bits by APS is consistently faster).

5 CPD: Customized-Precision Deep Learning

Because of the limitations in QPyTorch, we built CPD to emulate the low-
precision training for our experiments. CPD has the following functions, which
are not supported by any previous systems: (1) arbitrary low-precision, with
number of exponent bits <= 8 and number of mantissa bits <= 23; (2) various
accumulation strategies (e.g. Kahan summation algorithm [13]); (3) using any
low-precision accumulator for GEMM and reduce/all-reduce function.

Accumulation is a common operation in Deep Learning (e.g. GEMM and all-
reduce). During accumulation, a number maybe added by a much larger number.
In this case, the smaller number may be truncated to zero and does not affect the
accumulation. To avoid losing the information of small values during accumula-
tion, we can use a higher precision to store the accumulator. Although higher
precision accumulators can maintain accuracy, they will cost more energy and
hurt the performance. So the precision of the accumulator is a key factor for
low precision computation. To the best of our knowledge, existing systems only
support using IEEE FP32 for the accumulator, while CPD allows users to apply
arbitrary low precision (≤32 bits) for the accumulator. This feature is signifi-
cantly helpful for hardware designers. An example of 3-bit accumulator is shown
in Fig. 12.

We can also use different accumulation strategies to maintain accuracy. CPD
supports not only default sequential summation, but also the Kahan summation
algorithm. It also allows users to implement their own strategies.

96 R. Han et al.

Fig. 12. 3-bit floating point (2-bit exp) for vector multiplication.

6 Conclusion

Auto Precision Scaling (APS) is a flexible low-precision technique that can reduce
the communication cost. It can train several state-of-the-art applications by
8 bits for gradient communication without losing accuracy. APS can save the
bandwidth and improve the accuracy for any given low-precision with almost
no cost. For low-precision formats in our experiments, APS can improve the
accuracy for all of them. Besides, we can train ResNet-50 by a hybrid precision
to get the same accuracy as the baseline with the same number of epochs on 256
nodes. We analyze the time of APS for gradient communication and find that
the saving in time is larger than the additional cost in compute. Furthermore, we
built the CPD system that allows users to simulate any arbitrary low-precision
format. We integrate CPD into PyTorch and make it open source to the public.

References

1. Davidnet. https://github.com/davidcpage/cifar10-fast
2. Mmsegmentation. https://github.com/open-mmlab/mmsegmentation
3. torchvision. https://github.com/pytorch/vision
4. Alistarh, D., Grubic, D., Li, J., Tomioka, R., Vojnovic, M.: QSGD: communication-

efficient SGD via gradient quantization and encoding. In: Advances in Neural Infor-
mation Processing Systems, pp. 1709–1720 (2017)

5. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understand-
ing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3213–3223 (2016)

6. Courbariaux, M., Bengio, Y., David, J.P.: Training deep neural networks with low
precision multiplications. arXiv preprint arXiv:1412.7024 (2014)

7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255. IEEE (2009)

8. Dryden, N., Moon, T., Jacobs, S.A., Van Essen, B.: Communication quantiza-
tion for data-parallel training of deep neural networks. In: 2016 2nd Workshop on
Machine Learning in HPC Environments (MLHPC), pp. 1–8. IEEE (2016)

9. Gibiansky, A.: Bringing HPC techniques to deep learning. Technical report, Baidu
Research (2017)

10. Goyal, P., et al.: Accurate, large minibatch SGD: training ImageNet in 1 hour.
arXiv preprint arXiv:1706.02677 (2017)

https://github.com/davidcpage/cifar10-fast
https://github.com/open-mmlab/mmsegmentation
https://github.com/pytorch/vision
http://arxiv.org/abs/1412.7024
http://arxiv.org/abs/1706.02677

Auto-Precision Scaling for Distributed Deep Learning 97

11. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on ImageNet classification. In: The IEEE International Confer-
ence on Computer Vision (ICCV), December 2015

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

13. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, vol. 80. SIAM
(2002)

14. Jia, X., et al.: Highly scalable deep learning training system with mixed-precision:
training ImageNet in four minutes. arXiv preprint arXiv:1807.11205 (2018)

15. Johnson, J.: Rethinking floating point for deep learning. arXiv preprint
arXiv:1811.01721 (2018)

16. Köster, U., et al.: Flexpoint: an adaptive numerical format for efficient training of
deep neural networks. In: Advances in Neural Information Processing Systems, pp.
1742–1752 (2017)

17. Lin, Y., Han, S., Mao, H., Wang, Y., Dally, W.J.: Deep gradient compression:
reducing the communication bandwidth for distributed training. arXiv preprint
arXiv:1712.01887 (2017)

18. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2015

19. Micikevicius, P., et al.: Mixed precision training. arXiv preprint arXiv:1710.03740
(2017)

20. Sun, P., Wen, Y., Han, R., Feng, W., Yan, S.: GradientFlow: optimizing network
performance for large-scale distributed DNN training. IEEE Trans. Big Data (2019)

21. Wang, N., Choi, J., Brand, D., Chen, C.Y., Gopalakrishnan, K.: Training deep neu-
ral networks with 8-bit floating point numbers. In: Advances in Neural Information
Processing Systems, pp. 7675–7684 (2018)

22. Wangni, J., Wang, J., Liu, J., Zhang, T.: Gradient sparsification for
communication-efficient distributed optimization. arXiv preprint arXiv:1710.09854
(2017)

23. Wen, W., Xu, C., Yan, F., Wu, C., Wang, Y., Chen, Y., Li, H.: TernGrad: ternary
gradients to reduce communication in distributed deep learning. In: Advances in
Neural Information Processing Systems, pp. 1509–1519 (2017)

24. Ying, C., Kumar, S., Chen, D., Wang, T., Cheng, Y.: Image classification at super-
computer scale. arXiv preprint arXiv:1811.06992 (2018)

25. You, Y., Gitman, I., Ginsburg, B.: Scaling SGD batch size to 32k for ImageNet
training. arXiv preprint arXiv:1708.03888, 6 2017

26. You, Y., Zhang, Z., Hsieh, C.J., Demmel, J., Keutzer, K.: ImageNet training in
minutes. In: Proceedings of the 47th International Conference on Parallel Process-
ing, p. 1. ACM (2018)

27. Zhang, T., Lin, Z., Yang, G., Sa, C.D.: QPyTorch: a low-precision arithmetic sim-
ulation framework (2019)

http://arxiv.org/abs/1807.11205
http://arxiv.org/abs/1811.01721
http://arxiv.org/abs/1712.01887
http://arxiv.org/abs/1710.03740
http://arxiv.org/abs/1710.09854
http://arxiv.org/abs/1811.06992
http://arxiv.org/abs/1708.03888

FPGA Acceleration of Number Theoretic
Transform

Tian Ye1(B), Yang Yang2, Sanmukh R. Kuppannagari2, Rajgopal Kannan3,
and Viktor K. Prasanna2

1 Department of Computer Science, University of Southern California,
Los Angeles, CA 90089, USA

tye69227@usc.edu
2 Ming Hsieh Department of Electrical and Computer Engineering,

University of Southern California, Los Angeles, CA 90089, USA
{yyang172,kuppanna,prasanna}@usc.edu

3 US Army Research Lab, Playa Vista, CA 90094, USA
rajgopal.kannan.civ@mail.mil

Abstract. Fully Homomorphic Encryption (FHE) is a technique that
enables arbitrary computations on encrypted data directly. Number The-
oretic Transform (NTT) is a fundamental component in FHE computa-
tions as it allows faster polynomial multiplication. However, it is com-
putationally intensive and requires acceleration for practical deployment
of FHE. The latency and throughput of existing NTT hardware designs
are limited by the complex data communication pattern between adja-
cent NTT stages and the modular arithmetic operations. In this paper,
we propose a parameterized architecture for NTT on FPGA. The archi-
tecture can be configured for a given polynomial degree, modulus and
target hardware in order to optimize the latency and/or throughput. We
develop a novel low latency fully pipelined modular arithmetic logic to
implement the NTT core, the key computational unit of NTT. Stream-
ing permutation network is used to reduce the data communication com-
plexity between NTT stages. We implement the proposed architecture for
various polynomial degrees, moduli, and data parallelism on state-of-the-
art FPGAs. Experimental results show that our architecture configured
to perform 4096 polynomial degree NTT achieves up to 1.29× and 4.32×
improvement in latency and throughput respectively over state-of-the-art
designs on FPGA.

Keywords: Number theoretic transform · Parallel computing · FPGA

1 Introduction

Fully Homomorphic Encryption (FHE) provides a solution to utilize cloud plat-
forms in a trusted and secure manner by directly performing computations on

T. Ye and Y. Yang—Equal contribution.

c© Springer Nature Switzerland AG 2021
B. L. Chamberlain et al. (Eds.): ISC High Performance 2021, LNCS 12728, pp. 98–117, 2021.
https://doi.org/10.1007/978-3-030-78713-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-78713-4_6

FPGA Acceleration of Number Theoretic Transform 99

encrypted data [17]. Polynomial multiplication is one of the most time-consuming
operations in FHE applications [28]. Naive implementation of polynomial mul-
tiplication results in O(N2) time complexity, where N is the degree of the poly-
nomial. Number Theoretic Transform (NTT) has been proposed to reduce the
complexity to O(N logN). Profiling results from [28] show that NTT is a primary
bottleneck in FHE based applications such as FHE-Convolutional Neural Net-
works accounting for 55.2% of the execution time. Therefore, high performance
implementation of NTT will have a critical impact of FHE based applications.

FPGAs have gained a lot of traction due to their immense flexibility and
high energy efficiency. They are being widely adopted in cloud platforms where
they are attached to the data center nodes to design highly customized, domain
specific accelerators [13,27]. The logic density and compute throughput of state-
of-the-art FPGAs have increased dramatically in recent years [18,35]. They also
provide fine-grained memory access to high bandwidth on-chip SRAMs and
external DRAMs. These features make them a logical choice for accelerating
compute intensive applications such as NTT.

However, it is non-trivial to efficiently utilize the abundant FPGA resources
for NTT to achieve low latency and high throughput. First, NTT requires com-
plex data communication between computation stages due to loop-dependent
permutation stride1 in the algorithm [14]. Previous FPGA implementations have
used all-to-all connections to facilitate communications [22,29,32]. The routing
complexity increases quadratically with the data processing rate per cycle [31].
The design in [24] fully unrolls all the computation stages and uses fixed-function
switch to reduce complexity. The wiring length as well as the interconnect area
doubles from stage i to stage i + 1. In addition, due to the high polynomial
degree in FHE applications [2], input coefficients often are not available concur-
rently. This adds an extra layer of complexity as the communication pattern also
changes for different input data beats in the same computation stage. Second,
designing low latency NTT cores to execute the key computation operation of
NTT is challenging due to high resource requirements of modular arithmetic.
Arbitrary modular arithmetic requires division operations that are expensive in
FPGAs. Although division avoiding reduction algorithms [6,23] for arbitrary
fixed modulus have been developed, they require additional multiplications,
thereby incurring high latency. Lastly, based on the application, we may seek to
minimize the resource consumption, maximize performance, or optimize some
weighted combination of these. Thus, a parameterized design is desirable.

In this paper, we design an FPGA-based fully pipelined high performance
NTT architecture. The architecture is parameterized and can be configured to
support a wide range of polynomial degrees, moduli, and data parallelism. We
use data parallelism, parallel input and output coefficients per cycle, to con-
trol the required I/O bandwidth for a given implementation. These parameters
can be chosen at design time to meet latency and throughput requirements as
well as the device resource constraints. To improve throughput, our design fully
unrolls all the NTT computation stages. We employ streaming permutation net-

1 Given a stride S, a permutation stride is defined as reordering an m-element data
vector such that elements with distance of S are shifted into adjacent locations.

100 T. Ye et al.

work (SPN) to reduce the routing complexity between NTT stages [10]. SPN
reduces routing complexity by trading expensive long wires and switches with
more pipeline stages. It can scale to large data parallelism with lower cost in
terms of wiring and interconnect area compared to other types of interconnect
such as crossbar. To obtain low latency NTT core with modular multiplication,
our design supports any prime modulus q that is produced by choosing posi-
tive integers i and j to satisfy the property 2j ≡ 2i − 1 (mod q) (henceforth
referred to as the modulus property). For such a modulus q, the modulo oper-
ation can be replaced by repeated additions, subtractions and shift operations
(Sect. 3.3). As a result, an NTT core with low latency and low resource require-
ments can be realized. Note that the algorithm proposed in [37] is designed only
for q = 214 − 212 + 1. In this work, we generalize the algorithm to support any
q that satisfies the modulus property.

The key contributions of this paper are:

– We design a parameterized NTT architecture on FPGA that can support a
wide-range of polynomial degrees, moduli, and data parallelism. Given the
polynomial degree and the hardware resource constraints, our architecture
can be configured to obtain high throughput and low latency.

– We utilize streaming permutation network to support various data parallelism
and to reduce the data communication complexity between NTT stages. This
technique enables our architecture to be fully unrolled and pipelined for all
the NTT stages, which leads to high throughput.

– To obtain low latency, we develop a compact NTT core that can perform
modular arithmetic operations without any multiplication. Our NTT core
design can be used to generate a collection of algorithms for different moduli
as required by the given application.

– We implement our architecture for various polynomial degrees, moduli and
data parallelism on state-of-the-art FPGAs. It can be configured to perform
512, 1024, 2048 and 4096 polynomial degree NTT in less than 0.57 µs, 0.76
µs, 1.03 µs and 1.99 µs respectively. By further increasing data parallelism,
throughput of 43.0, 20.6, 9.2 and 1.7 million transforms per second is achieved
for 512, 1024, 2048 and 4096 polynomial degree NTT respectively.

– Our design achieves superior throughput while also improving the latency
compared with state-of-the-art designs on the same hardware. We improve
the latency up to 1.29× and the throughput up to 4.32×.

2 Related Work

NTT Acceleration: Recent work [22,29,32] focus on optimizing memory layout
to enable parallel and conflict-free memory access between NTT stages. However,
in these designs require all-to-all connection between NTT cores and intermedi-
ate data memory, which limits the scalability. Throughput is also reduced due
to reusing the same set of NTT cores across all the stages. A systolic array app-
roach for NTT acceleration is presented in [25]. This architecture fully unrolls all

FPGA Acceleration of Number Theoretic Transform 101

the NTT stages. However, data parallelism in NTT is not explored and compu-
tation in each NTT stage is serialized. The NTT hardware proposed in [5,26] is
limited to a specific setting. Nejatollahi et al. use processing-in-memory technol-
ogy to accelerate NTT [24]. The design unrolls all the NTT computation stages
and all the input coefficients to improve parallelism, but latency and through-
put are affected by the long computation cycles in Processing In-Memory (PIM)
technology. [3,19,20,30] use CPU or GPU to accelerate NTT, but the optimiza-
tions in these designs cannot be applied due to the differences in the underlying
architecture. The work in [19] executes several NTTs concurrently to exploit
massive GPU parallelism. In such a design, reducing the batch size does not
lead to reduced latency. Thus, this design is not suitable for our scenario where
in addition to throughput, latency for a single NTT computation needs to be
minimized.

Modular Multiplication: This is one of the key operations of NTT and many
works have focused on its efficient implementation. In [21], the modulo algorithm
allows the output to be slightly greater than the modulus q. This optimization
avoids division operations, but still requires additional large-latency multiplica-
tions. [22] implemented an iterative modulo operation based on Montgomery
reduction [23]. This can be resource-consuming as each iteration has a mul-
tiplication. In [29], modular multiplication is based on Barrett reduction [6]. It
requires pre-computations depending on the twiddle factors. This consumes more
on-chip storage. Also, their algorithm requires two additional multiplications.
[37] designed an architecture for q = 214 − 212 + 1 that avoids any multiplica-
tion in the modular reduction. This results in low latency and reduced resource
requirements. However, many applications of NTT have large coefficients, and
thus need larger q. Therefore, our work extends this design for any prime q that
satisfies 2j ≡ 2i − 1 (mod q) for some positive integers i and j. Please Sects. 3.3
and 4.2 for details.

To the best of our knowledge, existing work on FPGAs does not account
for the performance impact of the interstage data. As a result, the scalability
and achievable performance are limited. In contrast, we use streaming permuta-
tion network to enable a fully unrolled and pipelined architecture with variable
data parallelism. We further develop low latency modular arithmetic unit that
supports arbitrary modulus q satisfying the modulus property.

3 Background

3.1 Fully Homomorphic Encryption (FHE)

Homomorphic encryption is a practical approach for privacy-preserving com-
putation using lattice-based cryptography [17]. It allows direct computations,
including addition, scaling and multiplication, on ciphertext without access to
the original data. There are a variety of encryption schemes, e.g., BGV [8],
BFV [16] and CKKS [12]. For all these encryption schemes, both the plaintext
and the ciphertext are high-degree polynomials, typically ranging from 210 to

102 T. Ye et al.

215 [2]. The security level is quantified by two parameters, the degree of polyno-
mials and the width of the selected modulus. Both are critical to the performance
of homomorphic computations. Typical parameters for different security levels
can be found in [2].

3.2 Number Theoretic Transform (NTT)

Polynomial multiplication is one of the most computationally expensive oper-
ation of homomorphic encrypted computations [28]. The complexity of multi-
plying two polynomials of degree N is O(N2). To reduce the complexity to
O(N logN), number-theoretic transform (NTT) is used [1].2 This simplifies the
polynomial multiplication into N coefficient-wise multiplications.

Algorithm 1: Number Theoretic Transform
Input: Coefficients A = (A[0], A[1], ..., A[n − 1]) and twiddle factors in

bit-reversed order φ = (φ[0], φ[1], ..., φ[n − 1])
Output: A ← NTT(A) in bit-reversed order

1 for (m ← n/2; m ≥ 1; m ← m/2) do
2 for (i ← 0; i < n

2m
; i ← i + 1) do

3 S ← φ[n
2m

+ i]
4 for (j ← 0; j < m; j ← j + 1) do
5 U ← A[2m · i + j]
6 V ← S · A[2m · i + j + m] mod q
7 A[2m · i + j] ← U + V mod q
8 A[2m · i + j + m] ← U − V mod q

9 end

10 end

11 end

In Algorithm 1, each iteration of the outer loop is called a stage. The algo-
rithm has logN sequential stages as the outer loop in Line 1, and each stage has
N/2 independent instances of Line 5–8 that can be computed in parallel. Each
instance of Line 5–8 takes two coefficients as input, performs modular arithmetic
and updates the two coefficients. Modular arithmetic includes modular multi-
plication, addition and subtraction. Note that the computational pattern of the
NTT algorithm is similar to that of the FFT algorithm. However, NTT performs
modular arithmetic on integer coefficients as opposed to FFT which performs
arithmetic on complex numbers. As performing modular arithmetic is compu-
tationally expensive, existing FFT implementations such as [11,36] cannot be
trivially extended to accelerate NTT.

3.3 Modular Reduction

As NTT limits the coefficients to be in a finite ring of integers, modular com-
putations are required in the algorithm. Modular addition and subtraction are
2 All logs in this paper are to base 2.

FPGA Acceleration of Number Theoretic Transform 103

trivial, which require only one more addition or subtraction. In contrast, it is
non-trivial to design an efficient modular multiplication, as division and mod-
ulo operations are expensive on FPGAs. Typical modular reduction algorithms,
e.g., Barrett reduction [6] and Montgomery reduction [23], replace the expen-
sive division operation with multiplication operation when the modulus is pre-
configured. A recent work [21] proposes a relaxation that allows the output to be
slightly longer than the modulus, which speeds up the reduction. However, they
still require resource-consuming multiplication operation. Instead, we utilize the
design proposed in [37] that has additions and subtractions only. We generalize
it from q = 12289 to any q that satisfies 2j ≡ 2i − 1 (mod q). Algorithm 2 is an
example of the reduction algorithm for q = 228 − 216 + 1 that avoids additional
multiplications. The algorithm is hardcoded for a specific value of q. We also
provide designs similar to Algorithm 2 for a collection of different q values. One
of them can be selected and embedded into NTT cores at design time.

Algorithm 2: Reduction for q = 228 − 216 + 1
Input: 56-bit integer z[55 : 0]
Output: y = z mod q

1 c ← z[55 : 52] + z[51 : 40] + z[39 : 28]
2 d ← z[55 : 52] + z[55 : 40] + z[55 : 28]
3 e ← c[13 : 12] + c[11 : 0]
4 f ← ((e[12] + e[11 : 0]) << 16) − (e[12] + c[13 : 12])
5 y ← f + z[27 : 0]
6 if y ≥ q then
7 y ← y − q
8 end
9 y ← y − d

10 if y < 0 then
11 y ← y + q
12 end

3.4 Challenges in Accelerating NTT

The two main challenges in NTT are the implementation of the NTT core and
the interstage connection network. The key component of the NTT core is mod-
ular multiplication which is usually resource-consuming and slow, as discussed in
Sect. 3.3. An efficient design for the NTT core, especially modular multiplication,
is necessary to reduce the latency and resource consumption. Our design of the
low-latency NTT core is described in Sect. 4.2. The interconnection between the
NTT stages is a butterfly network, which has high complexity in terms of wiring
length and area. For a näıve butterfly network, the wiring length and the inter-
connect area doubles from stage i to stage i+ 1 [33]. This is prohibitively large.
Existing works proposed several ways to address the challenge. The designs pro-
posed in [22,29] fold all the NTT stages and reuse the same set of NTT cores for
all the stages. They simplify the interconnection by data reading and writing in
the on-chip memory. However, this method results in low throughput due to the
folding of all the stages. In this paper, we support a fully unrolled and pipelined

104 T. Ye et al.

design. We use a streaming permutation network [10] as interconnection with a
low resource requirement.

4 Accelerator Design

4.1 Design Methodology

Key NTT parameters such as the degree of polynomial and the modulus width
are often chosen by considering not only the level of security, but also the latency,
throughput, and hardware resource constraints. As a result, these parameters can
differ considerably across homomorphic encrypted (HE) applications [3,4,15]. It
is desirable to design the hardware architecture such that it can be configured to
run NTT with different settings easily. In addition, due to the high polynomial
degree in HE-based applications [2], processing all the input coefficients concur-
rently requires high hardware resource and I/O bandwidth. Common loop tiling
technique is often used to fold input coefficients into smaller groups. Each group
is then processed in a streaming manner. This technique reduces I/O bandwidth
and hardware resources, but permuting streaming data is challenging as data
elements need to be moved across both spatial and temporal dimensions. The
design in [25] only processes two coefficients per cycle in each NTT computation.
This greatly simplifies the data permutation but leads to inefficient utilization of
the available bandwidth. Other NTT hardware implementations on FPGA use
carefully designed intermediate data layout in on-chip SRAM to reduce mem-
ory access conflicts [22,29]. Complex routing and arbitration logic are needed to
permute data in each NTT computation stage. As a result, the number of NTT
cores is limited in these designs, which impacts the NTT latency and throughput.

Our NTT hardware architecture is constructed by fully unrolling and pipelin-
ing all the NTT computations stages. NTT input and output are folded and
processed in a streaming fashion to satisfy I/O bandwidth constraint and to
reduce resource consumption. Key NTT algorithmic and architecture settings
are exposed as parameters, allowing hardware re-configuration to support vari-
ous NTT use cases. We define the following parameters that can be specified at
design time to customize our architecture:

– Polynomial Degree (N): Application parameter. It determines the polyno-
mial degree for number theoretic transform. Our architecture supports any
polynomial degree. For HE-based computation, N is typically a power-of-two
number and between 210 to 215 [2,12].

– Modulus (q): Application parameter. Modulus used in Algorithm 1. We sup-
port prime modulus q that is produced by choosing positive integers i and j
to satisfy the property 2j ≡ 2i − 1 (mod q). i and j determine the bit width
of the modulus and the polynomial coefficients.

– Data Parallelism (p): Architecture parameter. It determines the number
of coefficients being processed per cycle in each NTT computation stage
(2 ≤ p ≤ N). Higher data parallelism improves latency and throughput
but requires more I/O bandwidth and FPGA resources. To reduce design
complexity, p is restricted to be a power-of-two number.

FPGA Acceleration of Number Theoretic Transform 105

– Pipeline Parallelism: Architecture parameter. It determines the unrolled NTT
computation stages in the NTT hardware. In this paper, we fix this parameter
to logN .

The proposed architecture receives p input coefficients per cycle. After a fixed
delay, it starts to produce p output coefficients per cycle. Our design does not
have restriction on the location of the input and output data. They can be from
external DRAM or other IP blocks inside the FPGA. We utilize direction con-
nection permutation (when permutation stride is less than p) and streaming per-
mutation network (SPN) [10] (when permutation stride is greater than or equal
to p) to facilitate data communication between NTT stages (Sect. 4.3). Given
parameter N and p, our architecture instantiates logN computation stages, and
each stage contains p/2 NTT cores. Figure 1 and 2 present the top-level archi-
tecture of 16-point NTT with p = 4 and p = 8 respectively. There are 4 NTT
computation stages, and 3 permutation networks are needed in the design.

Fig. 1. Top level architecture of 16-point NTT with p = 4.

In contrast to prior work, SPN avoids the complex routing and arbitration
logic between NTT computation stages by trading expensive long wires and
switches with multi-stage parallel routing networks. The highly scalable and
extensible SPN can be configured to realize arbitrary stride permutation between
its input and output. To reduce the modular arithmetic latency, customized
NTT core is developed to replace costly multiplications in modulo operations
with additions, subtractions, and shift operations (Sect. 4.2). The utilization of
streaming permutation network and low latency NTT core allows us to fully
unroll and pipeline all the NTT computation stages to obtain low latency and
high throughput.

Fig. 2. Top level architecture of 16-point NTT with p = 8.

106 T. Ye et al.

The parameterized architecture opens up design space trade-offs concern-
ing latency, throughput, I/O bandwidth constraint, resource consumption, and
application requirement. Applications need to consider N and q accordingly in
order to achieve certain level of security [2,12]. For example, with N = 1024,
it is recommended to use 27-bit modulus q in order to achieve 128-bit secu-
rity [2]. Larger polynomial degree (N) needs more NTT computation stages,
thereby increasing the latency. Higher data parallelism (p) can speed up the
NTT latency and throughput, but it has implications on routing resources and
I/O bandwidth requirements. Given application parameters N and q, the largest
data parallelism (p) can be determined by considering the following constraints:

– I/O Bandwidth: Each input and output coefficient is of size �log q� bits. Given
available input and output bandwidth BW , p can be chosen such that 2 ×
p × �log q�× Fmax = BW , where Fmax is the FPGA design frequency and
a factor of 2 is to account for both input and output.

– FPGA Resources: The architecture is implemented under limited LUT,
BRAM and DSP resources. Each NTT core requires LUT and DSP resources.
Due to fully unrolling all the NTT stages, there are p/2 logN NTT cores. SPN
consumes LUT and BRAM resources, there are (logN − log p) stages using
SPN since those stages have permutation stride greater than or equal to p.

Our parameterized architecture provides users with the flexibility to configure
N , p, and q with a variety of options.

4.2 NTT Core

The NTT core is used to perform the inner loop body of the NTT algorithm
that receives two coefficients as inputs and generates two coefficients as outputs.
The key component of the NTT core is the module for modular multiplication.
To perform the modulo q operation efficiently, we use a design similar to the one
proposed in [37]. Moreover, we generalize it by providing designs for a collection
of prime q values. Those q are produced by choosing positive integers i and j
to satisfy the property 2j ≡ 2i − 1 (mod q). To illustrate the algorithm, we use
q = 228 − 216 + 1 as an example. In this example, all coefficients are 28 bits,
and thus the multiplication result is up to 56 bits. Denote the 56-bit number as
z[55 : 0], and it can be reduced in the following way for the first step:

z[55 : 0] = 228 · z[55 : 28] + z[27 : 0]

= (216 − 1) · z[55 : 28] + z[27 : 0]
(1)

Essentially, any occurrence of 228 is replaced by 216 − 1. The reduction can be
repeated until the result is less than 228. The entire algorithm is illustrated in
Algorithm 2. It only includes additions, subtractions and bit-wise operations
without multiplications, so the latency and resource consumption are low.

Although the algorithm is highly dependent on the value of q, different values
of q have similar algorithms. Specifically, the algorithms for other q still have

FPGA Acceleration of Number Theoretic Transform 107

the same kinds of operations as Algorithm 2, but they have different numbers
of inputs in Line 1–2 and bit widths of the inputs in Line 1–5. For a given q,
by customizing the number of inputs and bit widths, we can obtain low latency
NTT cores using Algorithm 2. The latency and resource utilization for various
q are evaluated in Sect. 5.4.

Note that only supporting q values with the modulus property does not
make the NTT design less applicable. From the perspective of polynomial mul-
tiplications, the modulus q only needs to be a prime greater than the maximum
coefficient of the input polynomial. There are many eligible prime q satisfying
the property. For example, it can be verified that there are over 100 such q rang-
ing from 14 bits to 60 bits. Therefore, for any given polynomial, we can easily
choose the smallest q greater than all the coefficients.

4.3 Permutation Network

Parallel input data is required to be permuted before being processed by the
subsequent NTT cores, since each computation stage has a different stride (S).
As described in Algorithm 1, S can be formulated as Si = 2logN−i−1, where i
is the computation stage and satisfies 0 ≤ i < logN . The last stage has stride
equal to 1, so no permutation is needed.

Fig. 3. Permutation network of the 16-point NTT with p = 8. (a) Direct connection
permutation with S = 2. (b) Streaming permutation network.

Due to the fully unrolled design, each stage has a fixed permutation pattern
and does not require dynamic re-configuration. Our architecture employs two
types of permutation modules, as shown in Fig. 3. With S < p, later stages of
the NTT computation, only spatial permutation is needed—shuffling data within
the p inputs in the same cycle. We use a direct connection permutation with fixed
wiring for these stages. This type of permutation module achieves low latency
but cannot permute data in the time dimension across different input beats. For
earlier stages, with S ≥ p, streaming permutation network in [10] is used to
re-arrange input data from different cycles in a streaming fashion. As shown in

108 T. Ye et al.

Fig. 3(b), the datapath consists of two p-to-p spatial permutation networks and
one temporal permutation network. Spatial permutation, reordering within the
p data inputs in the same cycle, is realized using the classic Benes network [7].
In the middle, temporal permutation uses on-chip SRAM to rearrange data
across different cycles. The control logic, which includes routing information and
memory read/write addresses, are generated statically at IP core configuration
time.

Fig. 4. Microarchitecture of the spatial and temporal permutation sub-network in
streaming permutation network. (a) Spatial permutation. (b) Temporal permutation.

Figure 4 shows the microarchitecture of the spatial and temporal sub-
networks. As shown in Fig. 4(a), spatial permutation network is implemented
using Benes network [7]. A Benes network is a multi-stage routing network, with
the first and last stage each has p/2 2 × 2 switches. In the middle, there are
two p/2 × p/2 sub-networks, and each can be decomposed into the three-stage
Benes network recursively. Compared to a naive crossbar interconnect, which
requires O(p2) connections, each spatial permutation network has (p/2) · log p 2
× 2 switches. Thus, streaming permutation network in our design asymptotically
has lower complexity. Moreover, wiring length in the network does not change
with permutation stride [9]. Each 2 × 2 switch has one control bit to route inputs
to the upper or lower sub-networks respectively.

Figure 4(b) illustrates the design of temporal permutation network. It has p
dual-port memory blocks and p address generation units (AGU). AGU produces
the control signals and addresses to the memory block it connects to. Each
AGU issues memory read and write addresses independently, thereby achieving
temporal permutation across data received in different cycles.

As N data points stream through the interconnect with p per cycle, they
are first permuted spatially by the first spatial permutation network, then the
data are written into the p memory blocks. Finally, p data points with stride Si

are read out per cycle and permuted again by the second spatial permutation
network. Since the architecture parameters – N and p – are fixed at run-time, the

FPGA Acceleration of Number Theoretic Transform 109

configurations for all the 2 × 2 switches and the AGUs can be determined offline
and remain valid as long as N and p don’t change. We store this information
in FPGA’s on-chip memory. More details about the routing algorithm can be
found in [10].

5 Experiments and Results

5.1 Experimental Setup

In this section, we present a detailed evaluation of the proposed NTT archi-
tecture. All the designs are implemented using SystemVerilog on Virtex-7
XC7VX690 and XC7VX980 FPGA. The XC7VX690 device has 433,200 LUTs,
866,400 Flip-Flops and 1,470 BRAMs; the XC7VX980 device has 612,000 LUTs,
1,224,000 Flip-Flops and 1,500 BRAMs. Both devices have 3,600 DSPs. We use
Xilinx Vivado 2020 to perform synthesis, place and route.

Our flexible and scalable architecture gives users a wide range of design
options based on the application requirement and resource availability. We eval-
uated the performance and resource utilization of our designs by varying the
polynomial degree (N) and data parallelism (p). We use 〈x, y〉 to denote a design
with N = x and p = y. Based on the widely used NTT parameters [2,3], we
conducted experiments with NTT polynomial degree N = 512, 1024, 2048. We
conducted a sweep over a range of available bandwidth to our designs by choos-
ing p from 32 to 128. The metrics for performance analysis are NTT latency in µs
and throughput in polynomials transformed per second. The performance met-
rics were measured by running post place and route simulations. The resource
utilization is reported in terms of usage of LUTs, Flip-flops, BRAMs, and DSPs.

5.2 Performance Evaluation

Table 1 shows the measured NTT performance for various polynomial degrees
(N) and data parallelism (p) on XC7VX980 FPGA. In this set of experiments,
we fixed the modulus and the polynomial coefficients to 28 bits, which is com-
monly used by prior work [3,22]. Note that our architecture can easily support
modulus with different bit width as described in Sect. 4.2. End-to-end latency
from receiving the first input data to producing the last output coefficient is in
the range of 0.57 µs to 1.29 µs. Higher polynomial degree incurs higher latency
due to the additional NTT computation stages and also due to increased I/O
time for a given p. Our architecture can achieve a high operating frequency
between 210 MHz and 220 MHz for p = 32 and p = 64 designs. For a given N ,
p = 128 design consumes the least number of clock cycles. Due to the increased
parallelism in each stage, majority of the NTT stages in p = 128 design uses
fixed direct connection instead of streaming permutation network (Sect. 4.3),
which reduces the latency in terms of clock cycles. However, p = 128 has many
more NTT cores than p = 32 and p = 64 designs. It increases the resource
consumption significantly and poses challenge during the place and route phase.

110 T. Ye et al.

Table 1. Measured performance and resource utilization of complete NTT designs on
XC7VX980 FPGA

Design Latency Throughput LUT FF BRAM DSP

〈512, 32〉 0.66 13,750,000 82,498 89,688 64 576

〈512, 64〉 0.57 26,625,000 161,703 171,472 96 1,152

〈512, 128〉 0.60 43,000,000 303,040 316,920 156 2,304

〈1024, 32〉 0.91 6,781,250 94,394 104,846 80 640

〈1024, 64〉 0.76 13,125,000 187,283 204,162 128 1,280

〈1024, 128〉 0.82 20,625,000 360,765 391,945 234 2,560

〈2048, 32〉 1.29 3,390,625 107,293 120,718 96 704

〈2048, 64〉 1.03 6,468,750 212,835 237,719 160 1408

〈2048, 128〉 1.18 9,250,000 418,214 468,230 312 2,816

As a result, we observe that the frequency drops to 150 MHz - 170 MHz, and the
overall latency for p = 128 is higher than p = 64 for the same value of N .

Sustained throughput in terms of polynomials transformed per second is also
shown in Table 1. Different from the latency results, p = 128 designs perform
the best from throughput perspective. Although frequency of the designs with
p = 128 drops almost 25% compared with the other designs, p = 128 has 2×
and 4× the processing rate compared to p = 64 and p = 32 respectively. The
processing rate increase helps offset the frequency drop in this case. In the best-
case scenario (N = 512), our architecture can transform more than 40 million
polynomials per second in a streaming fashion.

The results on latency and throughput verify the scalability and flexibility of
our architecture. Since our architecture is fully pipelined and can process p inputs
per cycle, different data parallelism (p) requires different bandwidth to stream
the input and the output coefficients. Table 2 shows the required I/O bandwidth
in order to fully utilize the hardware pipeline when performing N = 1024 NTT
on VX980 FPGA. p is the primary factor that influences the required bandwidth.
Since p also means the design generates p output coefficients per cycle, the same
amount of input bandwidth is needed on the output side. For p = 128, our
design requires a sustained total bandwidth of 170 GB/s. This bandwidth can
be made available if the polynomials are stored in on-chip SRAM (i.e., produced
by other IP cores within the FPGA) or in high bandwidth external memory such
as DDR4 or HBM. When adopting our architecture for different applications, p
is an important parameter for bandwidth allocation.

5.3 Resource Utilization

The resource utilization of our implementations is reported in Table 1. Since
each stage requires p/2 NTT cores, and there are logN stages in total, higher
data parallelism (p) demands more hardware resources. On the other hand, with
more parallel inputs per cycle, fewer stages need streaming permutation network

FPGA Acceleration of Number Theoretic Transform 111

Table 2. I/O bandwidth required to fully utilize the proposed NTT accelerator with
N = 1024, 28-bit input and output coefficients

Device Data parallelism
(p)

Input bandwidth
[GB/s]

Output bandwidth
[GB/s]

VX980 32 27.8 27.8

VX980 64 53.8 53.8

VX980 128 84.5 84.5

(Sect. 4.3), which helps reduce the resource consumption. We observe that the
reduction in streaming permutation network is less than the increase in the
resource demand with more NTT cores.

Overall, Table 1 shows that optimizing different metrics can lead to different
design configurations. Given a polynomial degree N , one may choose to use
p = 64 as the latency optimized design, p = 128 as the throughput optimized
design, and p = 32 as the design that requires the least hardware resources
(Sect. 5.2). An optimal design should be obtained by having a holistic view on
the system requirements in terms of latency, throughput, resource availability
and application requirements.

5.4 Evaluation of NTT Core and Streaming Permutation Network

NTT Core: As the modulus q affects the modulo algorithm in the NTT cores,
we evaluate how the resource utilization and achieved frequency for NTT cores
vary for various q. We performed experiments on a standalone NTT core for
�log q� = 16, 27, 28 and 32. The results are shown in Table 3.

Note that this experiment is performed on a single NTT core instead of the
entire architecture, so the frequency shown in Table 3 are higher than the ones in
the integrated experiments. Except for the 27-bit case, smaller q values consume
less resources in terms of LUTs and FFs and achieve higher frequency. Note that
q = 227 −221 +1 utilizes more resources than q = 228 −216 +1; this is because it
needs to sum up 5 inputs for the first two steps, in contrast to the 3 inputs for
the 28-bit case as shown in Line 1–2 of Algorithm 2. Due to the same reason, the
27-bit case has a lower frequency. However, the variance of the frequency for all
the cases is not significant. Also, all of them have the same latency of 5 cycles,
so the impact of q on the overall performance is minimal.

Streaming Permutation Network: We evaluate the latency and resource con-
sumption of the streaming permutation network by synthesis, place and route
each streaming permutation network in 〈1024, 32〉, 〈1024, 64〉, and 〈1024, 128〉
designs as a standalone module on VX980 FPGA. Input and output coefficients
are 28-bit wide. Each streaming permutation network has two spatial permuta-
tion sub-networks, which has log p stages, and one temporal permutation sub-
network. Figure 5 shows the resource utilization of streaming permutation net-
work for p = 32, 64, 128 with permutation stride S = 512. For a given p, the

112 T. Ye et al.

Table 3. FPGA resource utilization on VX690 for NTT core with various moduli

Modulus q LUT FF DSP Latency Frequency

16 bits (216 − 212 + 1) 246 206 1 5 cycles 281MHz

27 bits (227 − 221 + 1) 485 424 4 5 cycles 262MHz

28 bits (228 − 216 + 1) 458 376 4 5 cycles 274MHz

32 bits (232 − 220 + 1) 534 479 4 5 cycles 270MHz

resource consumption is very similar for different S, therefore we omit the details
for other strides in the interest of space. We observe close to linear increase in
resource consumption with the increase in data parallelism. The majority of
BRAM resources consumed by the streaming permutation network is due to the
temporal permutation network. It requires p independent memory blocks, each
of which is mapped to 1 BRAM18 resource configured as simple dual-port mode.
Each BRAM18 memory stores at most 1024/p data inputs. The BRAM resource
reported in the Fig. 5 is based on BRAM36 resource, each BRAM36 contains 2
BRAM18 blocks. As p increases to 128, BRAMs are also used to store the con-
figuration tables in the spatial permutation sub-networks. As a result, it requires
14 extra BRAMs. LUTs are mainly used by configuration tables and the AGUs.

Fig. 5. Resource utilization for streaming permutation network S = 512 in 〈1024, 32〉,
〈1024, 64〉, and 〈1024, 128〉 designs. 28-bit per input and output coefficients are used.

Figure 6 shows the latency in cycles and frequency in MHz for each stream-
ing permutation network, measured from the time the first input is received to
the time the first output is produced. Latency is between 15 cycles to 30 cycles,
depending on the values of p and S. The latency of spatial permutation subnet-
work only grows logarithmically, as there are log p stages in each spatial permu-
tation sub-network. For a given p, as S varies, the spatial permutation latency

FPGA Acceleration of Number Theoretic Transform 113

does not change. Temporal permutation latency increases with S because the
hardware needs to wait for more data inputs before it can generate the first
output. But temporal permutation resource consumption does not change much
with different S. Good scalability is also observed with regard to frequency, we
observe 340 MHz for p = 32,64 designs and 315 MHz for p = 128.

Fig. 6. Latency of streaming permutation network in 〈1024, 32〉 design. 28-bit per input
and output coefficients are used.

5.5 Comparison with Prior Work

We compare our design with existing implementations on FPGA [22,25,29] in
terms of the consumed resources, latency and throughput. Recall that the latency
is the duration between receiving of the first input at an input port and gen-
erating of the last output at an output port. The throughput is the number of
transformed polynomials per second. We use our performance results obtained
on XC7VX690 FPGA, which is the same device used in [22]. Table 4 shows the
comparison.

Both designs in [22,29] fold all the stages and reuse the same set of processing
elements for all the stages. Without unrolling all the stages, this leads to much
lower throughput than ours. Complex routing and arbitration logic is needed
between NTT cores and intermediate data buffer. For modulo arithmetic, their
designs offer more flexibility than ours by supporting all moduli with a general
modular multiplication design. However, this design choice requires more DSPs
per NTT core and has higher latency.

In [29], the authors only reported resources and performance for N = 4096
and �log q� = 52 with at most 32 NTT cores on Intel FPGAs. For a fair
comparison, we compute the utilization of Xilinx DSPs for their NTT core for
�log q� = 28. According to Algorithm 1 in [29], their NTT core includes three
30 × 30 partial multiplications, two of which only output lower 30 bits and one of
which outputs higher 30 bits. The former can be implemented by three 15 × 15
multiplications and the latter needs four 15 × 15 multiplications. Thus, the entire

114 T. Ye et al.

Table 4. Comparison with prior work

Design [22] [25] This paper

p = 32

This paper

p = 64

[29]a This paper

p = 32

Platform VX690 Zynq

UltraScale+

VX690 VX690 VX690 VX690

N 1024 1024 1024 1024 4096 4096

�log q� 28 16 28 28 28 28

LUT 132K 3K 94.4K 187.2K – 117.3K

FF 59K 3K 104.5K 205.5K – 135.2K

BRAM 96 29 80 128 – 189

DSP 448 58 640 1280 320 768

Freq. [MHz] 125 183 215 212 300 224

Energy [µJ] – 12.52 9.4 14 – 22.9

Latency [µs] 2 101.84 0.92 0.75 2.56 1.99

Throughput 500,000 98,193 6,718,750 13,250,000 390,625 1,687,500

Throughput

per DSP

1,116 1,693 10,498 10,352 1,220 2,197

Throughput

per LUT

3.78 32.7 71.17 70.77 – 14.38

a The performance and resource utilization of [29] are extrapolated.

NTT core includes ten 15 × 15 multiplications, which needs 10 DSPs according
to [34]. We also verified this by actually implementing their NTT core on Xilinx
VX690. We choose the largest design with 32 NTT cores from [29]. We assume
that their design can still achieve 300 MHz frequency as they reported, which is
an optimistic upper bound. The estimated latency, throughput and throughput
per DSP are shown in the last two columns of Table 4. Our design for N = 4096
with p = 32 achieves 4.32× improvement in throughput, 1.80× improvement
in throughput per DSP and 1.29× improvement in latency compared with the
design in [29].

The design in [22] has the same N and �log q� as our sample design, and they
also use VX690 FPGA as the target platform. Even though our architecture fully
unrolls all the NTT stages, our design with p = 32 still has similar hardware cost
compared with theirs. This is mainly due to the resource-efficient NTT cores in
our architecture. We can achieve superior performance due to increased FPGA
frequency and fully pipelined design. Our design with p = 32 achieves 2.17×
improvement in latency and 9.41× in throughput per DSP compared with the
design in [22].

The design in [25] fully unrolls and pipelines all the logN stages. We calculate
their throughput assuming their systolic array is fully pipelined. Note that this
gives an upper bound on their throughput. Different from our approach, data
communication complexity is greatly simplified in their design as each systolic
processing element only processes two coefficients per cycle in each NTT stage.
This can also lead to under-utilization of I/O bandwidth. Their design can be
mapped to our architecture by setting p = 2. The performance of their design is
reduced significantly as the amount of parallelism is small. However, their design

FPGA Acceleration of Number Theoretic Transform 115

consumes very small amount of resources, which is beneficial for devices with
limited resources or power constraints.

In addition to the prior work shown in Table 4, a ReRAM-based ASIC archi-
tecture is proposed in [24] to accelerate NTT. It performs fine-grained computa-
tions using the PIM technology. The architecture consumes very low energy [24].
The simulated design runs at 910 MHz. This requires a sustained I/O bandwidth
of 2.3 GB/s for N = 1024. However, the arithmetic operation in each stage
requires O(log2 q) cycles. In the VLSI model [33], the time complexity (latency)
is O(logN log2 q) and the area is O(N logN log q+N2). The second term of the
area is for the interconnection between stages. For N = 1024 and �log q� = 16,
the design simulation in [24] shows latency of 83.12 µs and throughput of 553
thousand transforms per second. Note that for N = 1024 and �log q� = 28,
our design with p = 32 has latency of 0.92 µs and throughput of 6.7 million
transforms per second.

6 Conclusion

In this paper, we designed an FPGA architecture for NTT with configurable
parameters including polynomial degree, modulus and data parallelism. We uti-
lized streaming permutation network as interconnection between each stage to
reduce complexity. We also developed a low-latency design for modulo opera-
tions. The experiments for polynomials of degree 4096 showed that our design
achieves 4.32× throughput compared with the state-of-the-art design on FPGA
while also improving the latency by 1.29×. Thus, our design can be used to imple-
ment both high throughput NTT intensive workloads as well as low latency NTT
inference workloads such as privacy preserving ML inference.

In the future, we will make our design more flexible by allowing reconfigura-
tion of polynomials with variable degrees and moduli at runtime. Also, we will
develop a design space exploration tool for trade-off analysis on performance,
resource consumption and application requirements.

Acknowledgement. This work has been sponsored by the U.S. National Science
Foundation under grant numbers OAC-1911229 and CNS-2009057. Equipment grant
by Xilinx is greatly appreciated.

References

1. Aho, A.V., Hopcroft, J.E.: The Design and Analysis of Computer Algorithms.
Pearson Education India (1974)

2. Albrecht, M., et al.: Homomorphic encryption security standard. Tech. rep. (2018)
3. Alkim, E., Barreto, P.S.L.M., Bindel, N., Kramer, J., Longa, P., Ricardini, J.E.:

The lattice-based digital signature scheme qTESLA. In: ACNS (2020)
4. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange:

a new hope. In: USENIX SEC (2016)
5. Banerjee, U., Ukyab, T.S., Chandrakasan, A.P.: Sapphire: a configurable crypto-

processor for post-quantum lattice-based protocols. In: TCHES (2019)

116 T. Ye et al.

6. Barrett, P.: Implementing the Rivest Shamir and Adleman public key encryption
algorithm on a standard digital signal processor. In: CRYPTO 1986 (1987)

7. Beneš, V.E.: Optimal rearrangeable multistage connecting networks. Bell Syst.
Tech. J. 43(4), 1641–1656 (1964)

8. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: ITCS (2012)

9. Chen, R., Park, N., Prasanna, V.K.: High throughput energy efficient parallel FFT
architecture on FPGAs. In: HPEC (2013)

10. Chen, R., Prasanna, V.K.: Automatic generation of high throughput energy effi-
cient streaming architectures for arbitrary fixed permutations. In: FPL (2015)

11. Chen, R., Le, H., Prasanna, V.K.: Energy efficient parameterized fft architecture.
In: 23rd International Conference on Field programmable Logic and Applications,
pp. 1–7. IEEE (2013)

12. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full RNS variant of approxi-
mate homomorphic encryption. In: Selected Areas in Cryptography - SAC (2018)

13. Chiou, D.: The microsoft catapult project. In: IISWC (2017)
14. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex

Fourier series. Math. Comput. 19, 297–301 (1965)
15. Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:

CryptoNets: applying neural networks to encrypted data with high throughput
and accuracy. Tech. Rep. MSR-TR-2016-3 (2016)

16. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012)

17. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC (2009)
18. Intel: Stratix 10 MX FPGAs. https://www.intel.com/content/www/us/en/

products/programmable/sip/stratix-10-mx.html
19. Kim, S., Jung, W., Park, J., Ahn, J.: Accelerating number theoretic transforma-

tions for bootstrappable homomorphic encryption on GPUS. In: IEEE Interna-
tional Symposium on Workload Characterization (IISWC), pp. 264–275. IEEE
Computer Society, Los Alamitos (2020)

20. Lee, W.K., Akleylek, S., Yap, W.S., Goi, B.M.: Accelerating number theoretic
transform in GPU platform for qTESLA scheme. In: ISPEC (2019)

21. Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster
ideal lattice-based cryptography. In: Cryptology and Network Security (2016)

22. Mert, A.C., Karabulut, E., Öztürk, E., Savaş, E., Becchi, M., Aysu, A.: A flexible
and scalable NTT hardware: applications from homomorphically encrypted deep
learning to post-quantum cryptography. In: DATE (2020)

23. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput.
44, 519–521 (1985)

24. Nejatollahi, H., Gupta, S., Imani, M., Rosing, T.S., Cammarota, R., Dutt, N.:
CryptoPIM: in-memory acceleration for lattice-based cryptographic hardware. In:
DAC (2020)

25. Nejatollahi, H., Shahhosseini, S., Cammarota, R., Dutt, N.: Exploring energy
efficient quantum-resistant signal processing using array processors. In: ICASSP
(2020)

26. Nguyen, D.T., Dang, V.B., Gaj, K.: A high-level synthesis approach to the soft-
ware/hardware codesign of NTT-based post-quantum cryptography algorithms. In:
ICFPT (2019)

27. Putnam, A., et al.: A reconfigurable fabric for accelerating large-scale datacenter
services. In: ISCA (2014)

https://www.intel.com/content/www/us/en/products/programmable/sip/stratix-10-mx.html
https://www.intel.com/content/www/us/en/products/programmable/sip/stratix-10-mx.html

FPGA Acceleration of Number Theoretic Transform 117

28. Reagen, B., et al.: Cheetah: optimizing and accelerating homomorphic encryp-
tion for private inference. In: IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pp. 26–39. IEEE (2020)

29. Riazi, M.S., Laine, K., Pelton, B., Dai, W.: HEAX: an architecture for computing
on encrypted data. In: ASPLOS (2020)

30. Seiler, G.: Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryp-
tography. report 2018/039 (2018)

31. Serpanos, D.N., Wolf, T.: Architecture of Network Systems (2011)
32. Sinha Roy, S., Turan, F., Jarvinen, K., Vercauteren, F., Verbauwhede, I.: Fpga-

based high-performance parallel architecture for homomorphic computing on
encrypted data. In: HPCA (2019)

33. Ullma, J.D.: Computational Aspects of VLSI (1984)
34. Xilinx: 7 Series FPGAs Data Sheet: Overview. https://www.xilinx.com/support/

documentation/data sheets/ds180 7Series Overview.pdf
35. Xilinx: Xilinx UltraScale+ HBM FPGAs. https://www.xilinx.com/products/

silicon-devices/fpga/virtex-ultrascale-plus-hbm.html
36. Yu, C.L., Kim, J.S., Deng, L., Kestur, S., Narayanan, V., Chakrabarti, C.: FPGA

architecture for 2D discrete fourier transform based on 2d decomposition for large-
sized data. J. Signal Process. Syst. 64(1), 109–122 (2011)

37. Zhang, N., Yang, B., Chen, C., Yin, S., Wei, S., Liu, L.: Highly efficient architecture
of NewHope-NIST on FPGA using low-complexity NTT/INTT. In: TCHES (2020)

https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus-hbm.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus-hbm.html

Designing a ROCm-Aware MPI Library
for AMD GPUs: Early Experiences

Kawthar Shafie Khorassani, Jahanzeb Hashmi(B), Ching-Hsiang Chu(B),
Chen-Chun Chen(B), Hari Subramoni(B), and Dhabaleswar K. Panda(B)

The Ohio State University, Columbus, OH 43210, USA
{shafiekhorassani.1,hashmi.29,chu.368,chen.10252}@osu.edu,

{subramon,panda}@cse.ohio-state.edu

Abstract. Due to the emergence of AMD GPUs and their adoption in
upcoming exascale systems (e.g. Frontier), it is pertinent to have sci-
entific applications and communication middlewares ported and opti-
mized for these systems. Radeon Open Compute (ROCm) platform is an
open-source suite of libraries tailored towards writing high-performance
software for AMD GPUs. GPU-aware MPI, has been the de-facto stan-
dard for accelerating HPC applications on GPU clusters. The state-of-
the-art GPU-aware MPI libraries have evolved over the years to sup-
port NVIDIA CUDA platforms. Due to the recent emergence of AMD
GPUs, it is equally important to add support for AMD ROCm plat-
forms. Existing MPI libraries do not have native support for ROCm-
aware communication. In this paper, we take up the challenge of design-
ing a ROCm-aware MPI runtime within the MVAPICH2-GDR library.
We design an abstract communication layer to interface with CUDA
and ROCm runtimes. We exploit hardware features such as PeerDirect,
ROCm IPC, and large-BAR mapped memory to orchestrate efficient
GPU-based communication. We further augment these mechanisms by
designing software-based schemes yielding optimized communication per-
formance. We evaluate the performance of MPI-level point-to-point and
collective operations with our proposed ROCm-aware MPI Library and
Open MPI with UCX on a cluster of AMD GPUs. We demonstrate 3–
6× and 2× higher bandwidth for intra- and inter-node communication,
respectively. With the rocHPCG application, we demonstrate approxi-
mately 2.2× higher GFLOPs/s. To the best of our knowledge, this is
the first research work that studies the tradeoffs involved in designing a
ROCm-aware MPI library for AMD GPUs.

Keywords: ROCm · AMD GPUs · MPI

1 Introduction

Modern High-Performance Computing (HPC) systems are equipped with
state-of-the-art accelerators including Graphics Processing Units (GPUs).

This research is supported in part by NSF grants #1818253, #1854828, #1931537,
#2007991, #2018627, and XRAC grant #NCR-130002.

c© Springer Nature Switzerland AG 2021
B. L. Chamberlain et al. (Eds.): ISC High Performance 2021, LNCS 12728, pp. 118–136, 2021.
https://doi.org/10.1007/978-3-030-78713-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-78713-4_7

Designing a ROCm-Aware MPI Library for AMD GPUs: Early Experiences 119

Such systems are currently fueling the next generation of Artificial Intelligence
(AI) and scientific applications. This trend is timely to avert the challenges
presented by the end of Moore’s law [15], which sustained performance growth
for the last several decades. The use of GPUs is prevalent in many modern
HPC and cloud systems for driving scientific applications and Machine Learning
workloads. However, it is important to innovate further by evolving and expand-
ing the support provided by GPUs to meet the ever-increasing computational
requirements of next-generation applications.

The landscape of accelerator-based computing is currently dominated by
NVIDIA GPUs. However, other alternatives like Radeon Instinct devices (GPUs)
from AMD and Xe GPU from Intel have recently started emerging. In particu-
lar, AMD GPUs offer a promising platform that has been adopted by upcoming
next-generation exascale systems such as Frontier [3] and El Capitan [6]. In addi-
tion to these up-and-coming systems, a current compute platform, the Corona
cluster at Lawrence Livermore National Laboratory [2], is also equipped with
291 nodes consisting of AMD Mi50 and AMD Mi60 GPUs. Of these nodes, 123
of them are equipped with AMD EPYC 7002 series CPU nodes, with each node
consisting of 8 AMD Radeon Instinct MI50 GPU accelerators.

Prior to the emergence of AMD GPUs, NVIDIA GPU platforms have been
the defacto standard for exploiting GPUs within applications for communication
and computation tasks. NVIDIA GPUs rely on NVIDIAs in-house toolkit called
Compute Unified Device Architecture (CUDA) to support GPU-accelerated
high-performance applications. In the past, applications wanting to use AMD
GPUs often had to rely on the OpenCL library, which made it difficult to port
applications while CUDA as a programming system was much more developed.
Recent efforts by AMD has resulted in Radeon Open Compute (ROCm) soft-
ware stacks that offer seamless support for high-performance libraries required
for efficient computation and communication on modern AMD GPU hardware.
ROCm is an open-source toolkit provided by AMD consisting of libraries, pro-
filers, and APIs used in the development of high-performance software for AMD
GPUs. An important feature offered by ROCm is HIP [14]—a C++ Runtime
API and kernel language that allows developers to create portable applications
for AMD and NVIDIA GPUs. In most cases, HIP offers one-to-one mappings of
API calls between CUDA and ROCm and provides tools for automatic trans-
lation from CUDA to HIP code. This source-to-source translation, also referred
to as hipification, has helped in seamlessly porting application codes to AMD
hardware.

The Message Passing Interface (MPI) standard, is considered a defacto API
for writing parallel programs on modern HPC systems. In order to accelerate
large-scale high-performance applications on GPU clusters, GPU-aware MPI has
been the widely adopted programming model in use. The state-of-the-art MPI
libraries have evolved over the years to incorporate GPU-aware communication
support at the MPI layer. This is also referred to as CUDA-aware MPI as it
entails support for NVIDIA CUDA platforms due to the dominance of NVIDIA
GPUs in the hardware configuration of GPU-enhanced clusters. The emergence

120 K. Shafie Khorassani et al.

of AMD GPUs and their adoption in upcoming exascale systems makes it impor-
tant to have support for AMD ROCm platforms in modern MPI libraries. Cur-
rent MPI implementations do not have native support for direct communication
between device resident data on AMD GPUs or ROCm-aware communication.
In order to accelerate scientific applications, Machine Learning workloads, and
to have parallel applications ready to scale on next-generation exascale systems
with AMD GPU hardware configurations, it is crucial to have the appropriate
support at the middleware level by designing a ROCm-aware MPI runtime.

In this paper, our goal is to design a ROCM-aware MPI runtime
which brings about the following challenges: 1) How can we design an
abstract and extensible communication layer for MPI libraries that interfaces
with both the CUDA and the ROCm run-times? 2) Can we appropriately make
use of the various features supported by ROCm including ROCm IPC, ROCm-
RDMA (PeerDirect), etc., and identify the ranges in which each of these fea-
tures is optimal for data transfer? 3) How can we utilize unified memory and
AMD’s Large Bar mapped memory feature to optimize the performance of MPI
operations?

1.1 Contributions

In this paper, we design a ROCm-aware implementation of MPI developed over
MVAPICH2-GDR by delving into the details and challenges of utilizing existing
hardware and software. The challenge here is to properly extend the native
support within the MPI library to run with ROCm on AMD GPUs. We design
a communication layer that is able to interface with both CUDA for NVIDIA
GPUs and ROCm for AMD GPUs and derive MPI operations seamlessly. We
evaluate the proposed ROCm-aware MPI implementation against Open MPI
with UCX as the ROCm-aware communication backed on the Corona Cluster
at the benchmark-level and with ROCm-enabled applications. In summary, the
paper incorporates the following contributions:

– Design an abstract and extensible communication layer in the MPI runtime
to interface with both CUDA and ROCm run-times to drive MPI communi-
cation.

– Identify challenges with utilizing existing hardware and software configura-
tions for enabling ROCm-aware MPI communication.

– Propose new designs in the MPI library to exploit AMD GPUs using ROCm
libraries and features e.g., ROCm PeerDirect, ROCm IPC, and unified mem-
ory.

– Incorporate tuning based selection of ROCm designs for MPI protocols (e.g.,
eager vs. rendezvous) for appropriate message ranges.

– Comprehensive evaluation of MPI point-to-point and collective operations for
GPU resident data and comparing our proposed ROCm-aware MPI imple-
mentation against state-of-the-art communication libraries (Open MPI +
UCX).

Designing a ROCm-Aware MPI Library for AMD GPUs: Early Experiences 121

– Evaluate the efficacy of our proposed ROCm-aware MPI using various appli-
cations such as a 3DStencil, and HPCG and compare the performance against
Open MPI + UCX on the LLNL Corona cluster.

To the best of our knowledge, this is the first research work that
studies and analyzes the tradeoffs involved in designing a ROCm-
aware MPI library for AMD GPUs.

2 Background

2.1 Radeon Open Compute (ROCm)

ROCm [5] is an open-source software platform tailored towards high-performance
computing and Machine Learning on AMD GPUs. It consists of tools for devel-
opment on GPUs, APIs, and drivers that support AMD GPUs. ROCm also has
support for various programming models such as OpenMP, OpenCL, and HIP.
It has recently been integrated with many scientific applications such as HPCG,
NAMD, GRID, and GROMACS and Machine Learning frameworks including
TensorFlow, Pytorch, RAJA, and Kokkos.

2.2 ROCm Remote Direct Memory Access (RDMA)

ROCm RDMA enables third-party devices such as the Mellanox Infiniband HCA
device to have a direct peer-to-peer data path with GPU memory. This removes
CPU intervention from communications between GPUs across the network, fur-
ther enhancing communication latency between GPU-GPU transfers.

2.3 Inter-Process Communication (IPC)

IPC is used to address overheads associated with data transfer between GPUs
within a node. The ROCm platform has support for the IPC interface allowing a
process to expose its GPU buffer to a remote process, optimizing the movement
of data between GPUs. This allows for directly implementing an MPI call over
GPU device memory. A remote process could directly call deviceMemCpy on the
exposed IPC handle from the sender process leading to optimized data transfer
between GPUs.

2.4 Message Passing Interface (MPI)

The Message Passing Interface (MPI) is a programming paradigm used to enable
communication amongst processes for parallel applications. There are multiple
communication primitives within MPI including one-sided, point-to-point, and
collective operations. One-sided communication, also referred to as remote mem-
ory access (RMA), involves one process communicating with another without
any intervention from the remote process. A process sends data to a receiv-
ing process without requiring synchronization, eliminating this step from the

122 K. Shafie Khorassani et al.

data transfer process. Point-to-point operations involve direct communication
between a sender process and a receiver process, and unlike the non-blocking
nature of one-sided communication, it requires some synchronization between
the two processes involved. Collective communication refers to multiple processes
communicating with one or many processes.

In this work, we focus on point-to-point and collective communication and
what factors to consider when making these operations ROCm-aware. Through
CUDA-aware MPI functionality in various MPI libraries such as MVAPICH2-
GDR [16] and Open MPI [11], these operations can be run on NVIDIA GPUs.
They utilize various schemes to optimize and enhance the GPU-based communi-
cation through GPUDirect RDMA and IPC. In order to extend these operations
to run on AMD GPUs, we require a ROCm-aware implementation of MPI. We
evaluate Open MPI + Unified Communication X (UCX) [7] against our proposed
development, where UCX is used as the ROCm-aware communication backend
to support AMD GPU runs since Open MPI is not a stand-alone ROCm-aware
MPI library.

2.5 Protocols for High-Performance Communication in MPI

Figures 1(b) and 1(b) depict how the eager and rendezvous protocol respectively
are typically implemented. The eager protocol consists of four steps—1) copying
the data from the application buffer to buffers internal to the MPI library, 2)
initiating the data transfer to the remote process, 3) detecting the reception of
data in buffers internal to the MPI library and, 4) copying the data back to the
application buffer. With most high-performance networks like InfiniBand, the
network itself takes care of the actual data transfer. Thus, initiating the data
transfer at the sender and detecting the reception of the data at the receiver
are low overhead tasks. So, apart from the time to transfer data over the net-
work, the main costs involved in an eager transfer are the memory copies at the
sender/receiver. Note that steps #1 and #2 happen inside the send function call
itself. With a rendezvous protocol on the other hand (Fig. 1(b)), MPI designers
take advantage of the RDMA feature that high-performance interconnects like
InfiniBand offers and transfers data directly from the source application buffer
to the target application buffer (with the appropriate exchange of control infor-
mation), thereby avoiding the extra large memory copies from the application
buffer to internal communication buffers within the library.

3 Designing and Implementation of ROCm-Aware MPI

3.1 Overview of Technologies Offered by NVIDIA and AMD for
GPU Based Communication

As discussed earlier, the state-of-the-art GPU-aware MPI libraries have sup-
ported NVIDIA GPUs and hence, the communication designs employed by these
MPI libraries were highly CUDA specific. For example, two popular GPU-aware

Designing a ROCm-Aware MPI Library for AMD GPUs: Early Experiences 123

Fig. 1. Point-to-point communication protocols in MPI

MPI libraries MVAPICH2-GDR and Open MPI supported NVIDIA’s GPUDi-
rect technology for communicating GPU resident data over RDMA networks.
However, with the newer AMD GPU and ROCm stacks offering similar tech-
nologies, the MPI libraries have to go through the same route by evaluating
various technologies offered by ROCm. We summarize the key communication
technologies offered by both the vendors and their similarities/differences in
Table 1 below:

Table 1. Similarities and differences between CUDA and ROCm communication fea-
tures used by GPU-aware MPI libraries

Technology Dependency

NVIDIA AMD NVIDIA AMD

RDMA Support GPUDirect
RDMA

ROCmRDMA
(PeerDirect)

nv peer mem

Kernel Module
ROCm Driver
(no kernel
module)

Peer-to-peer CUDA
IPC

ROCm IPC CUDA
Runtime

ROCr
Runtime

Mapped Copy GDRCopy
BAR1

Large BAR
Feature

GDRCopy
Kernel Module

ROCm Driver
(no kernel
module)

As demonstrated, most of the features provided by AMD are integrated into
the ROCm driver or the ROCr runtime while NVIDIA often requires separate
modules to enable features like GDRCopy and GPUDirect RDMA. The unified
package offered by AMD is advantageous since most HPC centric clusters often
do not install separate kernel modules due to security concerns.

124 K. Shafie Khorassani et al.

3.2 Designing Unified Device Abstraction Interface for
Accelerator-Aware MPI

In order to avoid the duplication of efforts when designing ROCm-aware MPI,
we propose a unified device abstraction interface (UDI) in the MPI runtime. The
purpose of this abstraction is to seamlessly interface with vendor-specific APIs
without requiring the change in the MPI level designs. There are mainly two
approaches used to interface with AMD GPUs; 1) low-level HSA APIs, and 2)
high-level HIP APIs. Due to the similarities and one-to-one mappings between
CUDA APIs and HIP APIs, we used HIP in our UDI layer to interface with AMD
GPUs. Figure 2 shows the high-level architecture of our GPU-aware MPI runtime
with UDI abstraction layer. We move all the protocol level advanced designs in
the UDI layer. For instance, one of the major designs employed by our MPI
library for peer-to-peer IPC transfers is to amortize the overheads of registering
handles by caching the registered handles for subsequent communications. By
moving this design to UDI, we avoid redundancy and the same designs are used
for both CUDA IPC as well as ROCm IPC. As later shown in Fig. 4 these
designs lead to significant performance improvement for both CUDA-aware and
ROCm-aware MPI communication.

Scientific and Deep Learning Applications

Point-to-point Collectives One-sided

Rendezvous ProtocolEager Protocol

Pipelined Staging CPU Mapped Copy

Unified Device Abstraction Interface (UDI)

NVIDIA GPUs AMD GPUs

Accelerator Hardware

MPI Runtime

GPU KernelsIB Reg. Cache

CUDA APIs ROCm APIs (HIP)

Peer-to-peer

IPC CachePointer Cache

RDMA

Fig. 2. A high-level overview of the proposed designs in accelerator-aware MPI. We
propose a Unified Device abstraction Interface (UDI) layer in MPI that abstracts the
common operations in a GPU-aware MPI runtime. The modular design makes it easy
to interface with vendor-specific backend implementations such as CUDA or ROCm
(HIP) APIs.

3.3 PeerDirect

Network adapters can directly access device-resident data through ROCm-
RDMA, enabling direct memory access for 3rd party PCIe devices. For AMD

Designing a ROCm-Aware MPI Library for AMD GPUs: Early Experiences 125

GPUs, ROCmRDMA, or PeerDirect support, is available through the ROCm
driver. AMD GPUs large-bar configuration allows for the entire GPU memory
to be exposed, enabling peer-to-peer DMA access. The ROCm-aware PeerDirect
approach in the proposed ROCm-aware MPI library works with the rendezvous
protocol for data transfer. The source process and the remote process exchange
the addresses of their buffers. An RDMA operation is then used to issue the data
transfer. A registration cache is used here to keep a record of the reused buffers
to reduce the overhead of repeated registration of GPU memory.

(a) Intra-Node Latency (b) Inter-Node Latency

Fig. 3. Utilizing PCI bar mapped memory for small message inter-node and intra-node
communication

3.4 CPU-Driven GPU Mapped Memory Copy Based Design

In order to enhance small message performance on NVIDIA GPUs, GDRCOPY,
a low-overhead CPU driven copy that allows for the CPU to map the GPU
memory, is used. It utilizes a specific API and the GDRCopy kernel module to
pin the device buffer using PCI BAR1 memory. The host CPU treats this mapped
memory just like any other host memory and derives the communication. On
AMD GPUs, no such kernel module is required, and instead, it offers support
for Large BAR (Base Address Register) feature that maps entire GPU memory
to host address space. We exploit large Bar features to provide similar small
message performance enhancements. In Fig. 3, we see the impact of utilizing the
mapped copy through the Large BAR feature of AMD GPUs by evaluating the
performance difference when it is enabled compared to when it is disabled. In the
small message range where these designs would have the most impact between
the range of 1B to 8 KB, we see up to 3× lower latency in utilizing the PCI Bar
Mapped Memory copy for intra-node point-to-point communication and up to
2× better performance for inter-node communication. We evaluate the impact of
the added PCI Bar Mapped Memory copy on intra-node and inter-node point-
to-point performance in Fig. 5(a) and Fig. 6(a), respectively.

126 K. Shafie Khorassani et al.

3.5 ROCm IPC Based Design

The simplest approach to designing a rendezvous based transfer for large message
sizes between GPUs on a node would be to implement a staging based design
where the data transfer involves staging to the host memory. The source would
copy data from the device to the shared host memory region between the two pro-
cesses, and the destination would then copy from the host to its device memory.
This would incur an added cost for large message sizes where the performance
would be impacted by the overhead of these additional copies. Inter-Process
Communication (IPC) provides a peer-to-peer mechanism that allows for direct
MPI calls over device memory, facilitating a copy between processes on different
GPUs within a node, while entirely bypassing the host memory. However, peer-
to-peer support is only available when two devices share the same PCIe switch in
the system topology (e.g., devices are the same socket). Earlier work presenting
the benefits of utilizing IPC on NVIDIA GPUs [17] shows enhanced performance
in allowing direct MPI calls over device memory for large message sizes. We apply
IPC-based data transfer mechanisms for ROCm-aware communication through
enabling direct access to the AMD GPU memory between processes on the same
node and sharing the same PCI root complex. The design is detailed as follows:
A process will use deviceIPCMemHandle (abstract call in UDI) to generate
an IPC handle on its device buffer and send this handle to the remote process.
This will expose its device buffer, allowing for it to be mapped by the remote
process into its own address space and then directly issue a deviceMemCpy call
on the addressable buffer. In utilizing ROCm IPC with the rendezvous protocol,
this exchange happens during the handshake between the source process and the
remote process. When the source is sending a Request to Send (RTS) message,
it will also exchange the IPC handle generated. The remote process will map
this handle and directly copy from the device memory of the source.

Historically, IPC usage has shown overhead due to generating and exchanging
IPC handles repeatedly. This added cost makes the performance gain, that would
be obtained through bypassing host memory, negligible. In order to eliminate this
added overhead and to demonstrate benefit from the IPCdesigns, we utilize an IPC
Cache in the proposedROCm-awareMPI.This implements caching of IPChandles
at the source and destination, allowing for direct data movement whenever a cache
hit is encountered on the handle. This IPC cache exists in the UDI layer where it is
utilized for the ROCm run-time in order to have the handles cached for subsequent
communication. Figure 4(a) demonstrates the difference in latency for large mes-
sage intra-node point-to-point communication between 128 KB and 4 MB with
IPC cache enabled compared to IPC cache disabled. We see 2–3× lower latency
when IPC cache is enabled and approximately 10× higher bandwidth (Fig. 4(b)).

We integrate the ROCm-IPC design into the proposed ROCm-aware MPI
library to improve intra-node performance for data transfer between GPUs on
the same node. We evaluate designs for large message ranges to determine the
appropriate range of use on AMD GPUs. We present intra-node latency, band-
width, and bi-directional bandwidth with ROCm-IPC being used for message
sizes > 8 KB in Fig. 5.

Designing a ROCm-Aware MPI Library for AMD GPUs: Early Experiences 127

(a) Intra-Node Latency (b) Intra-Node Bandwidth

Fig. 4. Utilizing IPC cache for large message intra-node communication

4 Performance Evaluation

In this section, we detail the hardware and software configurations of the com-
pute platform used for the evaluation. We also present a detailed evaluation of
the proposed ROCm-aware MPI implementation against Open MPI 4.1.0 + UCX
1.10.0 (details of the configuration provided in Table 2). We report a comparison
of latency, bandwidth, and bi-directional bandwidth for MPI point-to-point oper-
ations and MPI collective operations. We then delve into the application level
benchmarks by evaluating hipified versions of 3D Stencil, and HPCG (rocHPCG)
with ROCm support.

4.1 Experimental Setup

The evaluation was conducted on the Corona Cluster, deployed at Lawrence
Livermore National Laboratory [2]. It consists of 291 AMD EPYC 7002 series
CPU nodes: 82 nodes are equipped with 4 MI50 AMD GPUs per node, 82 nodes
have 4 MI60 AMD GPUs per node, and 123 nodes consisting of 8 MI50 AMD
GPUs per node. The MI50 AMD GPUs have 32 GB HBM, with single-precision
peak theoretical floating-point performance of up 13.3 teraFLOPS.

Each node is equipped with dual-socket Mellanox IB HDR-200, with AMD
EPYC 7402 24-Core Processor running Mellanox OFED 5.0, and ROCm version
4.1.0. In our evaluation, we utilized the nodes with 8 MI50 GPUs per node to
evaluate the performance of dense GPU nodes.

Peak Achievable Performance of Interconnects–To evaluate the perfor-
mance of the proposed ROCm-aware MPI and OpenMPI + UCX compared to
the peak achievable performance, we utilized the following tests:

– rocm bandwidth test: We utilized this test to evaluate the performance
between two GPUs on a node (displays the peak achievable bandwidth by
performing a uni/bi-directional copy involving the two devices [1]).

– Infiniband Perftest: We utilized the ib read bw and ib read lat provided by
the Infiniband Perftest package to measure the peak achievable bandwidth
and minimum achievable latency of communicating data across two nodes [4].

128 K. Shafie Khorassani et al.

Table 2. Experimental setup of OpenMPI 4.1.0 and UCX 1.10.0

Configure UCX –with-rocm=<path-to-rocm>–without-knem–without-
cuda–enable-optimizations

Configure OpenMPI –with-ucx=<path-to-ucx>–without-verbs

Run-time parameters -mca btl “ˆopenib” -mca pml ucx
ROCm UCX Parameters: rocm, rocm copy,
rocm ipc

4.2 Micro-Benchmark Evaluation

In order to develop a comprehensive evaluation of various point-to-point and
collective MPI operations, we utilized the OSU Micro-Benchmarks (OMB) suite
version 5.7 that has support for AMD GPUs via the HIP interface. These micro-
benchmarks are used in evaluating MPI operations across different MPI libraries
on the CPU and support for CUDA-aware operations on the GPU for point-to-
point, one-sided, and collective communication. The metrics reported represent
measures of latency, bandwidth, or bi-directional bandwidth. We utilize OMB
with added support for ROCm-aware MPI operations (through HIP) to evaluate
our proposed ROCm-aware MPI implementation against Open MPI + UCX.

Intra-Node Point-to-Point—We evaluate the most common configuration for
binding MPI processes to GPUs for an MPI+GPU run where one MPI process
utilizes a single GPU. We evaluate intra-node point-to-point communication with
two processes bound to two GPUs on the same node. Figure 5 depicts the results of
evaluating this on MI50 GPUs on the Corona system for latency, bandwidth, and
bi-directional bandwidth performance. Two GPUs on the same socket within the
node (i.e. GPU 0 and GPU 1) share the same PCIe switch and can have peer-to-
peer access enabled. The proposed ROCm-aware MPI demonstrates as low as 1.74
µs latency (Fig. 4(a)) for 8 Bytes. For small message intra-node communication,
we utilize the PCI Bar Mapped Memory approach proposed in Sect. 3.4 in order to
obtain the latency presented. As demonstrated in Fig. 3(a), within the range of 1 B
to 8 KB we see between 16–66% benefit based on message size by enabling PCI Bar
Mapped Memory for this range as opposed to disabling it. This PCI Bar Mapped
Memory approach improves the latency of the proposed ROCm-aware MPI from
∼6.54 µs to ∼1.80 µs within the range of 1 B to 16 Bytes. Within the range of
128 Bytes to 8 KB, we see a vast performance difference between the proposed
ROCm-aware MPI and Open MPI + UCX. This gap in performance between the
two MPI libraries can be attributed to the use of Loopback designs in conjunction
with the PCI Bar Mapped Memory in the proposed designs. The loopback design
utilizes ROCm RDMA and the PCI Bar Mapped Memory to avoid expensive copy
operations by relying on IB verbs to initiate the transfer between the host and
device [20]. In Fig. 5(c), we see that the bandwidth of the proposed ROCm-aware
MPI is about 3× higher than that of Open MPI + UCX and between 3–6× higher
for bi-directional bandwidth. In this range, the proposed ROCm-aware MPI uti-
lizes the ROCm-IPC cache proposed in Sect. 3.5 to deliver 23.8 GB/s bandwidth,

Designing a ROCm-Aware MPI Library for AMD GPUs: Early Experiences 129

(a) Latency (Small Messages) (b) Latency (Large Messages)

(c) Bandwidth (d) Bi-Directional Bandwidth

Fig. 5. Comparison of intra-node MPI point-to-point operations between proposed
ROCm-aware MPI Library and Open MPI + UCX on the Corona system

and 39.2 GB/s bi-directional bandwidth at 1 MB message transfer. As depicted in
Fig. 5(b), enabling the IPC cache designs improves the bandwidth by over 4X. We
see similar trends as Fig. 4(b) in this comparison between the proposed ROCm-
aware MPI library and OpenMPI + UCX, with the proposed designs performing
about 3× higher than Open MPI + UCX.

Inter-Node Point-to-Point—Device-resident data is typically sent over the
network in order to achieve higher scalability and enhanced performance for
HPC applications. We evaluated the performance of MPI communication of GPU
resident data across the InfiniBand network (IB HDR 200 Gbps) by using point-
to-point latency, bandwidth, and bi-directional bandwidth benchmarks. Figure 6
shows the result of inter-node device-to-device communication between two MPI
processes each bound to a GPU on different nodes.

We see similar trends in latency between the proposed ROCm-aware MPI
and OpenMPI + UCX, achieving 3.5 µs and 4.01 µs minimum latency, respec-
tively. This is in comparison to the minimum achievable latency of 2.8 µs for this
configuration of communication. The proposed ROCm-aware MPI utilizes the
PCI Bar Mapped memory for small message size communication demonstrated
in Fig. 3(b) to achieve low latency between the range of 1 B to 8 KB. In terms of
the figbandwidth evaluation, shown in Fig. 6(c), the peak achievable bandwidth
is 11.71 GB/s. The proposed ROCm-aware MPI is able to achieve close to peak
performance with 11.57 GB/s bandwidth compared to OpenMPI + UCX at 6.67

130 K. Shafie Khorassani et al.

(a) Latency (Small Messages) (b) Latency (Large Messages)

(c) Bandwidth (d) Bi-Directional Bandwidth

Fig. 6. Comparison of inter-node MPI point-to-point operations between proposed
ROCm-aware MPI Library and Open MPI + UCX on the Corona system

GB/s bandwidth. This communication across the nodes is critical for scalabil-
ity and important to analyze in order to understand how well the bandwidth
provided by the Infiniband networks is saturated by the MPI libraries.

MPI Collective Operations—We evaluate the performance of the proposed
ROCm-aware MPI and Open MPI + UCX on 128 GPUs (16 nodes, 8 GPUs per
node) on the Corona system for MPI Collective operations including broadcast,
reduce, gather, allgather, alltoall, and allreduce using ROCm-aware OMB. In
Fig. 7, we evaluate small message collective operations ranging from 4 B to 4
KB. For broadcast operations, the proposed ROCm-aware MPI shows 9.03 µs
compared to 18.04 µs for Open MPI + UCX. In Fig. 7(b), we see 3.13 µs com-
pared to 4.34 µs in the lower range at 4 B for reduce operations. We see 2.07 µs
compared to 4.81 us for our proposed ROCm-aware MPI and Open MPI + UCX,
respectively for gather operations in Fig. 7(c). In Figs. 7(d), 7(e), and 7(f), we
see a larger difference between the proposed ROCm-aware MPI and Open MPI
+ UCX for dense collectives, with the former having 2-5X lower latency in this
message range. In Fig. 8, we evaluate large message collective operations with
the message size ranging from 8 KB to 1 MB. Due to node failures with scaling
Open MPI + UCX to multiple nodes with 8 processes per node where the run
crashes after outputting results for 512 Bytes, Fig. 7(d) and Fig. 8(d) are missing
values for the Allgather comparison.

Designing a ROCm-Aware MPI Library for AMD GPUs: Early Experiences 131

The performance gain demonstrated in collective operations is reliant on opti-
mized point-to-point primitives detailed above when evaluating point-to-point
benchmarks and optimized collective algorithms within the MPI library. The
protocol level advanced designs in the UDI layer are utilized for point-to-point
and collective operations. In addition to the optimized protocol level designs in
the UDI layer, the library has been tuned on the system in order to adaptively
select optimized GPU-based collective algorithms for different message ranges.
The various collectives evaluated have been optimized for GPU-based commu-
nication to account for and utilize interconnects between GPUs, node density
(number of GPUs within a node), and scalability to yield enhanced performance.

4.3 Application-Level Evaluation

In this section, we evaluate the performance of the proposed ROCm-aware MPI
implementation against Open MPI + UCX using various application kernels
including ROCm-aware HPCG and 3D Stencil benchmark. Several applications
are in the early stages of adding support for ROCm to run on AMD GPUs with
experimental versions released to the public.

3D Stencil—3D Stencil is a communication kernel that mimics the commu-
nication pattern of stencils and halo-exchanges in scientific applications. The
kernel creates a 3D cartesian grid of MPI processes and runs the benchmark for
n iterations. In each iteration, a given MPI rank performs a 7-point stencil and
communicates k messages with each of its peers. We demonstrate the latency of
3D stencil for 16 (Fig. 9(a)), 32 (Fig. 9(b)), and 64 (Fig. 9(c)) GPUs. We encoun-
tered runtime failures when running the 3D Stencil kernel with Open MPI. We
found that Open MPI failed during MPI Cart create due to an implementation
bug. Due to this failure, we are not able to present a comparison with Open MPI
for this application.

RocHPCG—High-Performance Conjugate Gradients (HPCG) benchmark is
proposed to complement LINPACK (HPL) and used to rank modern HPC sys-
tems [10]. The computational and data-access patterns employed by the bench-
mark are representative of a variety of scientific codes. The numerical methods
contain different communication patterns involving MPI point-to-point and col-
lective operations. The rocHPCG is a ROCm-aware port of the HPCG bench-
mark intended for AMD GPUs. In Fig. 10(a) we evaluate the proposed ROCm-
aware MPI against Open MPI + UCX on 16 GPUs across 16 nodes on the
Corona cluster. We demonstrate the performance of each of the phases in rocH-
PCG: DDOT (dot products), WAXPBY (vector update phase), SpMV (sparse
matrix-vector multiplication), and MG (multi-grid). Likewise, we demonstrate
the performance of the proposed ROCm-aware MPI on 32 GPUs (Fig. 10(b) and
64 GPUs (Fig. 10(c)). We used per-process grid dimensions of (nx, ny, nz) =

(104, 104, 104). On 16 GPUs, we see a final 633.3 GFLOPs/s for all the phases
combined with our proposed ROCm-aware MPI compared to 585.9 GFLOPS/s
for Open MPI + UCX. On 32 GPUs, we see a vaster difference with 1056.9
GFLOPs/s compared to 565.5 GFLOPs, and on 64 GPUs we demonstrate 1673.4

132 K. Shafie Khorassani et al.

(a) BROADCAST (b) REDUCE

(c) GATHER (d) ALLGATHER

(e) ALLTOALL (f) ALLREDUCE

Fig. 7. Comparison of small message MPI collective operations between proposed
ROCm-aware MPI Library and Open MPI + UCX on 128 GPUs (16 nodes, 8 GPUs
per node) on the Corona system

GFLOPs/s compared to 740.4 GFLOPs/s with our proposed ROCm-aware MPI
and Open MPI + UCX, respectively.

5 Related Work

Over the last few years, GPU devices have been widely used on modern clus-
ters to provide higher computing power. Hence, communication between GPUs
has become a critical bottleneck. Wang et al. [23] proposed early research
using standard MPI libraries to transfer data between GPUs in InfiniBand
clusters. The communication excluded the involvement of the CPU, so it pre-
vented the CPU/GPU buffer management and data movement issues. Potluri et

Designing a ROCm-Aware MPI Library for AMD GPUs: Early Experiences 133

(a) BROADCAST (b) REDUCE

(c) GATHER (d) ALLGATHER

(e) ALLTOALL (f) ALLREDUCE

Fig. 8. Comparison of large message MPI Collective operations between proposed
ROCm-aware MPI Library and Open MPI + UCX on 128 GPUs (16 nodes, 8 GPUs
per node) on the Corona system

al. [18] aimed to deal with inter-node GPU-to-GPU MPI communication using
GPUDirect RDMA. They studied the limitations of the system architectures
and proposed a hybrid solution from the existing host-based pipeline and new
GPUDirect-based designs. Based on the previous work on GPU-Aware MPI
using GPUDirect RDMA, Shi et al. [20] further optimized the communications
for small message sizes between inter-node GPUs. It supported using the eager
protocol at not only sender but receiver sides as well. A new data path design
was also proposed that allowed low-latency data movements between host and
remote GPU memories. Recent works [9,12] identified and addressed the limi-
tations in efficient processing on MPI derived datatypes for GPU resident data.
They demonstrated significant performance improvements through novel CUDA

134 K. Shafie Khorassani et al.

(a) 16 GPUs (b) 32 GPUs (c) 64 GPUs

Fig. 9. Evaluation of 3D Stencil Code with the proposed ROCm-aware MPI Library
on the Corona system

(a) 16 GPUs (b) 32 GPUs (c) 64 GPUs

Fig. 10. Comparison of rocHPCG between proposed ROCm-aware MPI Library and
Open MPI + UCX on the Corona system [Per-process grid size (nx, ny, nz) = (104,
104, 104)]

kernel-based packing/unpacking and kernel fusion designs for non-contiguous
data transfer. Subramoni et al. [21] addressed the trade-off between communi-
cation protocols in point-to-point data transfer. They proposed designs to iden-
tify the communication characteristics of processes at runtime and dynamically
adapt to them. The fully in-band design allowed the transition from one eager-
threshold to another without sacrificing the throughput.

Sharkawi et al. [19] discussed the techniques used in Spectrum-MPI on mod-
ern clusters equipped with IBM POWER9 CPUs. Kawthar et al. [13] evaluated
the performance of existing CUDA-aware MPI libraries on OpenPOWER GPU-
enabled systems by comparing benchmark-level point-to-point performance of
Spectrum MPI, Open MPI+UCX, and MVAPICH2-GDR. Much of the work done
using GPU-resident data transfer and communication has been heavily focused on
NVIDIA GPUs due to the heavy deployment of NVIDIA GPUs across platforms.
In the context of AMD GPUs, Kuznetsov et al. [14] investigated the ROCm plat-
form and evaluated whether it is comparable to CUDA. They also focused on the
programmers’ experience of porting classical molecular dynamics algorithms from
CUDA to ROCm and the performance benchmarking with these modern archi-
tectures. In addition, Tsai et al. [22] discussed the experience of porting the func-
tionality in a CUDA-focused library to the HIP ecosystem. They demonstrated
the porting workflow of linear algebra kernels and some techniques from CUDA to
HIP in detail. Cai et al. [8] introduced the Synthesized Collective Communication

Designing a ROCm-Aware MPI Library for AMD GPUs: Early Experiences 135

Library (SCCL), which is a latency-optimal and bandwidth-optimal implementa-
tion of collective communication algorithms.

6 Conclusion

As next-generation HPC systems such as Frontier and El Capitan adopt AMD
GPUs, it is important to ensure that scientific applications and the communication
middleware such as MPI are supported and enhanced for these systems. In order
to add support for AMD GPUs, ROCm is used as the high-performance software
development platform on AMD GPUs. Over the years, the state-of-the-art GPU-
aware MPI libraries evolved with enhanced support for device resident data trans-
fer. These implementations heavily rely on the CUDA toolkit to exploit NVIDIA
GPUs. With the recent trend of AMD GPU usage, it is pertinent to have a ROCm-
aware MPI library with support and optimizations for AMD GPU-resident data
transfer. In this work, we took up the challenge of designing a ROCm-aware MPI
runtime through designing an abstract communication layer that interfaces with
the CUDA and the ROCm runtimes. We utilized the various features available
through ROCm such as PeerDirect, ROCm IPC, and large-BAR mapped mem-
ory to generate GPU-based communication for AMD GPUs. We evaluated the
performance of MPI-level point-to-point and collective operations with our pro-
posed ROCm-aware MPI Library built over MVAPICH2-GDR and Open MPI
with UCX as the ROCm-aware communication backend on the Corona cluster.
We demonstrated 3–6× higher bandwidth for intra-node communication and 2×
higher bandwidth for inter-node communication, respectively. With the rocH-
PCG application, we demonstrate approximately 2.2× higher GFLOPs/s with
MVAPICH2-GDR + our proposed ROCM-aware MPI compared to OpenMPI
with UCX. To the best of our knowledge, this is the first research work that studies
the tradeoffs involved in designing a ROCm-aware MPI library for AMD GPUs.

References

1. Bandwidth test for ROCm. https://github.com/RadeonOpenCompute/
2. Corona. https://hpc.llnl.gov/hardware/platforms/corona
3. Frontier: ORNL’s exascale supercomputer designed to deliver world-leading per-

formance in 2021. https://www.olcf.ornl.gov/frontier/. Accessed 25 May 2021
4. Infiniband Verbs Performance Tests. https://github.com/linux-rdma/perftest
5. Radeon Open Compute (ROCm) Platform. https://rocmdocs.amd.com
6. RLLNL and HPE to partner with AMD on El Capitan, projected as world’s fastest

supercomputer. https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-
projected-worlds-fastest-supercomputer. Accessed 25 May 2021

7. Unified Communication X. http://www.openucx.org/. Accessed 25 May 2021
8. Cai, Z., et al.: Synthesizing optimal collective algorithms (2020)
9. Chu, C.H., Khorassani, K.S., Zhou, Q., Subramoni, H., Panda, D.K.: Dynamic

kernel fusion for bulk non-contiguous data transfer on gpu clusters. In: 2020 IEEE
International Conference on Cluster Computing (CLUSTER), pp. 130–141 (2020).
https://doi.org/10.1109/CLUSTER49012.2020.00023

https://github.com/RadeonOpenCompute/
https://hpc.llnl.gov/hardware/platforms/corona
https://www.olcf.ornl.gov/frontier/
https://github.com/linux-rdma/perftest
https://rocmdocs.amd.com
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer
http://www.openucx.org/
https://doi.org/10.1109/CLUSTER49012.2020.00023

136 K. Shafie Khorassani et al.

10. Dongarra, J., Heroux, M.A., Luszczek, P.: High-performance conjugate-gradient
benchmark: a new metric for ranking high-performance computing systems. Int. J.
High Perform. Comput. Appl. 30(1), 3–10 (2016)

11. Gabriel, E., et al.: Open MPI: goals, concept, and design of a next generation
MPI implementation. In: Proceedings. 11th European PVM/MPI Users’ Group
Meeting, Budapest, Hungary, pp. 97–104, September 2004

12. Hashmi, J.M., Chu, C.H., Chakraborty, S., Bayatpour, M., Subramoni, H., Panda,
D.K.: FALCON-X: zero-copy MPI derived datatype processing on modern CPU
and GPU architectures. J. Parallel Distrib. Comput. 144, 1–13 (2020). https://doi.
org/10.1016/j.jpdc.2020.05.008. http://www.sciencedirect.com/science/article/
pii/S0743731520302872

13. Khorassani, K.S., Chu, C.H., Subramoni, H., Panda, D.K.: Performance evaluation
of MPI libraries on GPU-enabled OpenPOWER architectures: early experiences.
In: International Workshop on OpenPOWER for HPC (IWOPH 19) at the 2019
ISC High Performance Conference (2018)

14. Kuznetsov, E., Stegailov, V.: Porting CUDA-based molecular dynamics algo-
rithms to AMD ROCm platform using HIP framework: performance analysis. In:
Voevodin, V., Sobolev, S. (eds.) RuSCDays 2019. CCIS, vol. 1129, pp. 121–130.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36592-9 11

15. Leiserson, C.E., et al.: There’s plenty of room at the top: what will drive computer
performance after Moore’s law? Science 368(6495) (2020). https://doi.org/10.1126/
science.aam9744. https://science.sciencemag.org/content/368/6495/eaam9744

16. Panda, D.K., Subramoni, H., Chu, C.H., Bayatpour, M.: The MVAPICH project:
transforming research into high-performance MPI library for HPC community. J.
Comput. Sci. 101208 (2020). https://doi.org/10.1016/j.jocs.2020.101208. http://
www.sciencedirect.com/science/article/pii/S1877750320305093

17. Potluri, S., Wang, H., Bureddy, D., Singh, A.K., Rosales, C., Panda, D.K.: Opti-
mizing MPI communication on multi-GPU systems using CUDA inter-process com-
munication. In: 2012 IEEE 26th International Parallel and Distributed Processing
Symposium Workshops PhD Forum, pp. 1848–1857 (2012). https://doi.org/10.
1109/IPDPSW.2012.228

18. Potluri, S., Hamidouche, K., Venkatesh, A., Bureddy, D., Panda, D.K.: Efficient
inter-node MPI communication using GPUDirect RDMA for InfiniBand clusters
With NVIDIA GPUs. In: 2013 42nd International Conference on Parallel Process-
ing (ICPP), pp. 80–89. IEEE (2013)

19. Sharkawi, S.S., Chochia, G.A.: Communication protocol optimization for enhanced
GPU performance. IBM J. Res. Dev. 64(3/4), 9:1–9:9 (2020)

20. Shi, R., et al.: Designing efficient small message transfer mechanism for inter-
node MPI communication on InfiniBand GPU clusters. In: 2014 21st International
Conference on High Performance Computing (HiPC), pp. 1–10, December 2014

21. Subramoni, H., Chakraborty, S., Panda, D.K.: Designing dynamic and adaptive
MPI point-to-point communication protocols for efficient overlap of computation
and communication. In: Kunkel, J.M., Yokota, R., Balaji, P., Keyes, D. (eds.) ISC
2017. LNCS, vol. 10266, pp. 334–354. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-58667-0 18

22. Tsai, Y.M., Cojean, T., Ribizel, T., Anzt, H.: Preparing ginkgo for AMD GPUS -
a testimonial on porting CUDA code to HIP (2020)

23. Wang, H., Potluri, S., Bureddy, D., Rosales, C., Panda, D.K.: GPU-aware MPI
on RDMA-enabled clusters: design, implementation and evaluation. IEEE Trans.
Parallel Distrib. Syst. 25(10), 2595–2605 (2014). https://doi.org/10.1109/TPDS.
2013.222

https://doi.org/10.1016/j.jpdc.2020.05.008
https://doi.org/10.1016/j.jpdc.2020.05.008
http://www.sciencedirect.com/science/article/pii/S0743731520302872
http://www.sciencedirect.com/science/article/pii/S0743731520302872
https://doi.org/10.1007/978-3-030-36592-9_11
https://doi.org/10.1126/science.aam9744
https://doi.org/10.1126/science.aam9744
https://science.sciencemag.org/content/368/6495/eaam9744
https://doi.org/10.1016/j.jocs.2020.101208
http://www.sciencedirect.com/science/article/pii/S1877750320305093
http://www.sciencedirect.com/science/article/pii/S1877750320305093
https://doi.org/10.1109/IPDPSW.2012.228
https://doi.org/10.1109/IPDPSW.2012.228
https://doi.org/10.1007/978-3-319-58667-0_18
https://doi.org/10.1007/978-3-319-58667-0_18
https://doi.org/10.1109/TPDS.2013.222
https://doi.org/10.1109/TPDS.2013.222

A Tunable Implementation
of Quality-of-Service Classes

for HPC Networks

Kevin A. Brown1(B), Neil McGlohon2, Sudheer Chunduri1, Eric Borch3,
Robert B. Ross1, Christopher D. Carothers2, and Kevin Harms1

1 Argonne National Laboratory, Lemont, USA
kabrown@anl.gov

2 Rensselaer Polytechnic Institute, Troy, USA
3 Hewlett Packard Enterprise, Houston, USA

Abstract. High-performance computer (HPC) networks are often
shared by communication traffic from multiple applications with varying
communication characteristics and resource requirements. These applica-
tions contend for shared network buffers and channels, potentially result-
ing in significant performance variations and slowdown of critical com-
munication operations such as low-latency MPI collectives. In order to
ensure predictable communication performance, network resources must
be allocated relative to the communication requirements of applications.

Quality of Service (QoS) solutions can regulate the allocation of
resources by defining traffic classes with specified resource allocations
and assigning applications to these classes, thus improving application
performance predictability. However, it is difficult to accomplish facility-
level goals of ensuring efficient application communication when con-
strained to a limited number of classes.

We propose a practical QoS implementation for large-scale, low-
diameter networks, such as the dragonfly topology, using flexible band-
width shaping along with traffic prioritization to reduce the impact of
interference on communication performance. Our design gives facilities
more control over tuning QoS class to meet application- and site-specific
performance guarantees. The results show that our solution effectively
eliminates the slowdown of high-priority traffic due to interference with
lower-priority traffic, significantly reducing run-to-run variability. We
also demonstrate how port counters can be used to detect when a job-to-
class assignment is inappropriate for a given system and when a workload
is exceeding the bandwidth limits of its class.

Keywords: Interconnect network · 1D dragonfly topology · QoS ·
Traffic class

1 Introduction

Most high-performance computer (HPC) systems are shared by multiple appli-
cations with varying communication characteristics and bandwidth/latency
c© UChicago Argonne, LLC, Operator of Argonne National Laboratory 2021
B. L. Chamberlain et al. (Eds.): ISC High Performance 2021, LNCS 12728, pp. 137–156, 2021.
https://doi.org/10.1007/978-3-030-78713-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-78713-4_8

138 K. A. Brown et al.

requirements. The interconnection networks of large HPC systems use high-
speed switches to route application traffic across the system. These applications
compete for bandwidth and can oversubscribe the links when the available band-
width is less than the total required by the competing traffic flows.

Heavy traffic flows on low-diameter networks, such as fat tree and drag-
onlfy, have been shown to unfairly monopolize link bandwidth when each flow
is given equally unregulated access to the network channels [20]. Without access
constraints, network contention becomes an issue that can result in reduced or
delayed network access for different applications. This may severely harm the
performance of certain types of application traffic. For example, this situation
can lead to significant performance degradation for latency-sensitive communi-
cation traffic, such as small message MPI collectives, while potentially posing
negligible impact on more latency-tolerant patterns such as checkpointing [1].

HPC networks use a variety of techniques to deliver high system throughput
and good application performance. Adaptive routing can be employed to improve
communication performance by re-routing packets around high-traffic areas of
the network, balancing traffic load across network links [20]. Congestion man-
agement is aimed at diagnosing and treating network congestion by temporarily
reducing the rate at which packets are injected into the network, when necessary,
to reduce the total number of packets queued in network buffers [19]. However,
adaptive routing and congestion management techniques cannot allocate net-
work resources, such as buffers and channel bandwidth, to specific applications
or classes of traffic based on their respective performance targets. Quality-of-
service (QoS), on the other hand, can differentiate how resources are allocated
to different types of traffic to better manage resource contention and interference
on heavily loaded networks [6].

Numerous studies exist on QoS for wireless networks, data centers, and the
internet [15]. However, these solutions and supporting hardware are typically
designed to throttle injection at the source or to drop packets in transit when
the flow does not conform to QoS policies. Unfortunately, for HPC, throttling is
not ideal unless the overall network is congested and dropping packets increases
latency and reduces overall system throughput since dropped packets need to be
retransmitted.

QoS solutions for HPC differentiate between different types of traffic by plac-
ing them in different network-defined traffic classes. Each traffic class is allocated
separate network buffers and a guaranteed fraction of the channel bandwidth,
based on the performance requirements of the traffic assigned to the class [13]. A
small number of traffic classes are usually shared by multiple applications since it
is impractical to define a separate class for each of the myriad of traffic patterns.
The effectiveness of the QoS solutions therefore depends on how accurately the
classes can be tuned to consistently guarantee an appropriate fraction of the
resources to their assigned workload, even when the resource availability varies
rapidly as in typical production systems.

Tunable Implementation of QoS Classes 139

Studies up until now have mainly focused on priority-driven QoS or QoS
based mainly on simple, course-grained bandwidth allocations [16,18,22]. Such
solutions do not have the flexibility to effectively configure classes that account
for the variations in workloads, interference patterns, and site-specific priorities
in HPC facilities. There is need for a QoS solution that can simultaneously
balance the needs of multiple competing applications and reallocate bandwidth
in a controlled manner as requirements change. However, in addition to the lack
of appropriate solutions, there is also limited knowledge available on how to
precisely evaluate the suitability of class configurations for HPC workloads with
multiple distinct classes of traffic.

Our work aims to address these issues with the contributions as follows:

– We describe a practical method of implementing QoS classes on large-scale,
low-diameter networks to enable traffic differentiation, prioritization, and
shaping. Our solution allows for better control of bandwidth allocations when
traffic load varies by employing two rate limiters per QoS class: one that sets
an assured amount of bandwidth, and one that sets a maximum amount of
bandwidth at its priority level;

– We propose a scheme for configuring and deploying QoS classes in produc-
tion to match the varying application performance requirements of mixed
workloads on production HPC systems; and

– We evaluate the ability of our scheme to satisfy the relative performance goals
of multiple traffic flows sharing a large-scale 1D dragonfly network.

Our solution successfully regulates the traffic flows of dynamic communica-
tion workloads to more consistently meet the performance targets of the respec-
tive flows. The two rate limiters enable us to tune classes so as to better match
the performance targets of dynamic workloads compared to prior work with
single rate QoS solutions.

2 Background and Related Work

2.1 Communication Characteristics and Performance Targets

Communication operations can be characterized as being either latency-bound
or bandwidth-bound. Latency-bound transfers have low injection rates, or offered
loads, and the resulting communication time depends on individual packet laten-
cies. Small message MPI collectives, such as MPI Allreduce, are implemented
using algorithms that rely on structured communication to minimize message
count and data volume. However, long tail latencies can disrupt the structure
of the communication and thus severely degrading collective performance. On
the other hand, bandwidth-bound operations move relatively large amounts of
data through the network, and the overall communication time depends on the
throughput instead of individual packet latencies. Bulk data I/O transfers are
examples of bandwidth-bound operations.

To meet their respective performance targets, different types of traffic need
access to the network resource in different manners. Keeping packet latencies

140 K. A. Brown et al.

low in latency-bounded flows requires reducing the time spent queuing in the
network by providing higher priority to network channels. Bandwidth-bounded
flows, however, require high injection rates or longer access to the shared channels
in order to move a large amount of data through the network.

HPC facilities may further classify some traffic as having higher priority than
others based on site-specific goals. For example, facility administrators may deem
that certain latency-sensitive collective operations such as MPI Allreduce should
not be impeded and instead receive highest priority access to network resources,
regardless of the source application. In contrast, they may decide that other
types of traffic – such as network-monitoring data – can be delayed if the traffic
does not require any performance guarantees.

2.2 Managing Contention for Shared Channels on HPC Networks

Contention for shared resources such as channel bandwidth causes interference to
communication performance. Interference over the network significantly degrades
the performance of many HPC applications that are characterized by latency-
sensitive collective communication patterns [7,8]. The main cause of significant
slowdown due to interference is increased queuing delays resulting from head-
of-line (HoL) blocking, i.e. when fast-draining messages get stuck behind slow-
draining messages in shared buffers on congested ports [22].

Adaptive Routing and Congestion Management. Interconnect congestion
can be classified into two categories: intermediate and endpoint congestion [3].
Intermediate congestion occurs when multiple input ports on a router try to use
the same router output port, causing packets to get backed up in the buffers of
the router. Endpoint congestion occurs due to application incasts – traffic from
multiple source endpoints target the same destination endpoint, overwhelming
the endpoint’s ability to accept all the incoming traffic. Adaptive routing can
effectively address intermediate congestion by routing incoming packets to dif-
ferent fabric output ports to avoid oversubscribing any single output port. How-
ever, adaptive routing is ineffective against endpoint congestion because there
are no alternative paths to the endpoint at the destination switch. With end-
point congestion, as traffic backs up from the target endpoint, adaptive routing
will spread incoming traffic to less busy paths and potentially cause traffic to get
backed up on those paths across the network as well. Congestion management
schemes that appropriately abate the incast flows are essential for handling end-
point congestion. These solutions strive to curtail the injection volume at the
congestion-causing sources based on how many packets can be consumed at the
endpoints [19].

2.3 QoS Solutions for HPC

QoS mechanisms are not designed to address endpoint or intermediate conges-
tion. QoS is used to decide which packet to send based on priority and bandwidth

Tunable Implementation of QoS Classes 141

specifications. This is complementary to both adaptive routing, which determines
the path a packet should take, and congestion management, which determines
if a packet should be injected into the network based on the state of congestion
in the network.

Several QoS solutions have been proposed [13,16,18,22] for low-diameter
networks like dragonfly and fat-tree networks, which are very susceptible to inter-
application interference [20]. These solutions use separate buffers for each traffic
class in order to prevent HoL blocking across classes and reduce packet latencies.
Most of these vary the arbitration priority in some manner to reduce packet
latencies, or regulate the bandwidth allocation to different flows, or both. Savoie
et al. [18] proposed grouping application traffic flows into separate QoS classes
and used only priority as a constraint on the QoS classes. However, Jakanaovic
et al. [13] noted that this approach has the potential to degrade overall system
performance since a bandwidth-intensive workload in the high-priority class can
cause prolonged starvation of other workloads. The bandwidth consumption of
the high-priority class should be constrained to prevent unintended starvation.

Wilke and Kenny [22] proposed using four different traffic classes with 25%
of the bandwidth allocated to each class. Their solution includes two classes that
use minimal routing in order to reduce the number of required buffers – minimal
routing requires less buffers than adaptive routing [14]. This limits the flexibility
of their solution since two of the four classes cannot be re-purposed to carry
bandwidth-intensive traffic if the facility requires this.

Mubarak et al. [16] demonstrated that managing the bandwidth allocated
to traffic classes may guarantee that important applications can perform well
despite interference from lower-priority jobs. They proposed each class using a
single rate limiter that must be tuned relative to the other class in order to
assure a fraction of the bandwidth. That is, increasing the bandwidth allocated
to one class will reduce the bandwidth available to other classes. Unfortunately,
their allocations must be tuned to a fixed set of traffic loads while the load on
the network usually varies. It is non-trivial to define a static configuration for all
classes that consistently match the performance requirements of their assigned
workloads given the variability in available resource.

In deploying QoS classes on production systems, multiple studies [16,18,22]
have proposed grouping application traffic flows into a few QoS classes to reduce
the number of classes in required1. The different flows need to be grouped based
on performance requirements and characteristics, and their assigned classes must
now be tuned to match their collective requirements.

3 Design of a Tunable QoS Solution

An ideal QoS solution should be able to simultaneously (i) ensure low packet
latencies for latency-bound traffic, (ii) guarantee high bandwidth for bandwidth-
bound traffic, (iii) prevent unintended starvation, and (iv) provide these assur-
1 Switch hardware can only support a limited number of actives classes due to resource

limitations.

142 K. A. Brown et al.

Fig. 1. Illustration of our QoS solution design. Packets are assigned to classes at com-
pute node endpoints, placed in the appropriate class buffers on switches, and then are
colored and compete for access to output channels based on the QoS policy. (Color
figure online)

ances while network load varies. Since throughput and/or packet latencies affect
a traffic flow’s ability to meet its relative performance targets, QoS mechanisms
should allow for regulating resources that affect the resulting packet latency and
bandwidth available to traffic flows. Per-class buffers and priority-based arbi-
tration can be used to prevent HoL blocking and expedite packet forwarding,
thereby reducing packet latencies. Bandwidth guarantees (or assured injection
rates) can be defined on each class to ensure a fraction of channel bandwidth
is available to traffic using that class when channels are oversubscribed, thereby
preventing starvation. Importantly, QoS should also manage the reallocation of
bandwidth when traffic load changes such that more important flows get priority
access to bandwidth released by other flows. This provides more useful resource
partitioning for dynamic workloads.

3.1 Flexible Traffic Shaping Using Two Rate Limits

In a production system, network bandwidth usage varies dynamically as the
traffic load changes. However, most QoS solutions use only a single assured rate
limit to allocate bandwidth and cannot accommodate changing load require-
ments. When flows reduce their injection rates, their unused bandwidth is left
unregulated for other traffic to consume, regardless of their importance. Control-
ling how unused bandwidth gets reallocated to specific workloads can improve
the performance of important flows. By using an additional peak rate limit, we
can give priority access to a portion of the unused bandwidth.

We propose a QoS mechanism that can be more easily tuned to satisfy the
needs of HPC workloads and reallocate unused bandwidth more efficiently com-
pared to other solutions. This solution allows for configuring an arbitrary num-

Tunable Implementation of QoS Classes 143

ber of traffic classes2 with independent buffers and unique relative priorities to
enable traffic prioritization. To achieve bandwidth shaping, each class is config-
urable with two rate limits: an assured rate (AR) limit and a peak rate (PR)
limit, where AR ≤ PR ≤ 100%, based on the Two Rate Three Color Marking
design [21] for metering packet streams. The AR provides guaranteed bandwidth
allocations and

∑n
i=1 ARi ≤ 100%, where n is the number of classes. PR con-

trols how excess/unused bandwidth is reallocated for controlled traffic shaping
as the load changes. In our design, as illustrated in Fig. 1, packets at the front
of switch port buffers are marked as either green, yellow, or red, depending on
the current injection rate of its respective class. A packet is marked as red if
the class exceeds its PR (and hence AR); it is marked as yellow if only the AR
(but not PR) has been exceeded; or it is marked as green if its class does not
exceed its AR (thus not PR either). Marking is done at each injection cycle for
the purpose of output port arbitration, and stalled packets are re-marked based
on the new injection rate in subsequent cycles. The packet content is unchanged
and marking information is not communicated downstream.

Output port arbitration is priority-based within the constraints of the classes’
rate limits. That is, green packets are sent first from higher priority classes;
otherwise, yellow packets are sent in a similar priority order when there are
no green packets to send be sent. If neither green nor yellow packets can be
sent, a red packet will be chosen from any class by round-robin – priorities are
ignored and each class has an equal chance of getting access to the output port.
Note that flow control can stop any class from sending if downstream buffers are
unavailable, in which case a packet from another class is sent.

We use token buckets, to meter each of the two rate limits per class [21].
Tokens accumulate in each bucket at the rate of the limit it meters, i.e., the
assured rate bucket will accumulate tokens at the assured rate limit defined on
the class, etc. Whenever a green or yellow packet is sent from a class, a token
is removed from each of the two buckets with available tokens. No token can
be removed when a red packet is sent because the peak rate limit has been
exceeded, at which point both buckets are empty. Empty buckets means the
traffic has completely consumed the bandwidth allocated to the class.

3.2 Defining QoS Classes for HPC Traffic

QoS classes for HPC traffic should be configured based on the traffic flow they
are assigned. Additionally, systems should use the minimum number of classes
required for their workloads to prevent resource fragmentation. Classes have
strict priorities relative to each other, so we first consider the traffic flow’s pri-
ority relative to that of other flows when deciding traffic-to-class assignments.
When all other factors are equal, the priority will determine which flow progresses
first and achieves lower latency. Inline with industry standards and recommen-
dations [9,17], we argue that the following traffic classes and class assignments
2 The number of traffic classes that can be configured on a given switch will be limited

by how many class buffers and rate limiting counters are supported by that switch
hardware.

144 K. A. Brown et al.

are relevant for the majority of workloads on shared HPC systems and can be
efficiently supported by our solution:

Low-Latency Class: Guarantees low packet latencies. This class has the high-
est arbitration priority to reduce queuing delays and a low assured rate limit to
prevent starving other classes.

Suitable Traffic: important traffic that is primarily latency-bound and does not
require high throughput, such as small message collectives.

Bulk Data Class: Guarantees high communication throughput. This class is
typically allocated bandwidth commensurate with the I/O throughput of the
system and the importance of I/O performance to the system workloads.

Suitable Traffic: traffic that moves a lot of data at once, requires high throughput
and is not latency-sensitive, such as bulk I/O transfers to network file systems.

Scavenger Class: Guarantees minimal progression of traffic and minimal inter-
ference to other classes. This class has the lowest priority and a low assured rate
limit to prevent it from impacting the performance of traffic in other classes.

Suitable Traffic: traffic that can be temporarily ignored without significant
impact to overall productivity and user experience, such as scraping network
counters.

Best-Effort Class: Guarantees best-effort progress of traffic with mixed
latency-sensitivity and bandwidth requirements. This class is given a relatively
high priority and allocated sufficiently high injection rates based on the high
volume of data transferred by its combined expected workload.

Suitable Traffic: traffic that does not strongly map to any other class. Most
application traffic will use this class.

Our QoS solution supports these and other class definitions by tuning the
dual rate limits and relative arbitration priority on each class. For example, a
system may need to support streaming real-time data, in which case such streams
may require a high-priority class with the highest bandwidth allocation. One
main requirement of an effective traffic-class assignment is that traffic sharing the
same class are not adversarial to each other in terms of latency and bandwidth.

The following section demonstrates how traffic shaping with our dual-rate
solution provides more consistent communication performance with dynamic
workloads than other single-rate QoS solutions. We also show how QoS classes
with dual-rate limits can be more easily tuned to simultaneous satisfy multiple
performance targets and regulate diverse traffic loads.

4 Evaluation of QoS Solution

4.1 CODES Simulation Toolkit

To collect the data evaluated in this work, we use the CODES HPC interconnec-
tion network simulator [5] since HPC hardware does not yet support dual-rate

Tunable Implementation of QoS Classes 145

QoS. CODES is a Parallel Discrete Event Simulation (PDES) toolkit built on
top of the Rensselaer Optimistic Simulation System (ROSS) [2] PDES engine.
CODES allows for fine-grained, link-level simulations of packets moving across
high-performance networks. Additionally, these simulations allow for testing and
evaluation of different mechanisms such as adaptive routing algorithms, con-
gestion management, and, as demonstrated in this work, QoS techniques. We
implemented our QoS solution in CODES based on the design outlined in the
previous section.

4.2 Network Setup

We simulate a tapered 1D dragonfly network with 8320 node endpoints. The
network interconnect consists of 1040 routers with 16 routers per group. Each
router has eight terminal channels, 15 local channels, and four global channels.
The ratio of terminal channels to global channels results in a 2:1 taper of the
global network bandwidth, similar to systems such as Theta, Edison, Malbec,
and Shandy [10], which increases the potential for contention among competing
traffic flows. We use 25 GB/s injection bandwidth for all channels, 10 ns delay for
terminal and local channels, and 100 ns delay for global channels. The simulated
router delay is 300 ns and the network packet size is set to 160 bytes. These taper
and delay configurations are representative real-world dragonfly systems [10].
We use a progressive-adaptive routing algorithm for the network and a random
job-to-node allocation scheme. Studies show that this random node allocation
strategy improves job throughput for dragonfly systems [23] such as the ones
listed above.

4.3 Workload Setup

We use the uniform random traffic (UR) pattern to generate interference on
our network because other synthetic patterns, such as random-permutation, can
cause congestion hotspots [3] for which QoS is not the appropriate solution.
Additionally, unlike real application traffic, this synthetic traffic pattern (i) pro-
vides more precise control for managing when and how the traffic load changes
and (ii) is less sensitive to the topology, routing, and congestion management
capabilities of the systems. This allows us to succinctly capture the difference in
traffic shaping capabilities of the dual-rate scheme versus the single-rate scheme.

The UR jobs use 640 B messages and vary the injection load by varying the
delay between injecting successive messages, representative of loads recorded
on a production HPC system [11]. These small messages allow us to minimize
local incasts and evenly spread load across the system. We also use a Scal-
able Workload Model (SWM) [12] of MPI Allreduce – a common operation on
HPC systems [4] – to simulate latency-sensitive traffic. SWMs are skeletons of
applications and benchmarks that capture the communication patterns of the
workload that they model. Each allreduce SWM job performs at least 15 calls to

146 K. A. Brown et al.

Fig. 2. Partitioning a single port bandwidth between four classes using single-rate
and dual-rate QoS solutions. The injection rate in each class 100% of the bandwidth.
The peak rate limit on the dual-rate QoS classes ensure that unused bandwidth is
reallocated to the highest-priority class when the traffic load changes as the flow in
class 1 completes around 23 µs.

MPI Allreduce, reducing 8 bytes of data across all ranks of the job and requir-
ing very low bandwidth. Our early evaluation survey of different load levels and
message sizes produced similar results to experiments presented in this paper.

4.4 Bandwidth Shaping for Dynamic Workloads

The workloads on large production systems often exhibit variations in traffic load
as applications start and stop communication operations and vary the volume
or frequency sending traffic.

Reallocating Unused Bandwidth with Dual Rate Limits: When a QoS
class has an assured bandwidth allocation, it is guaranteed a fraction of the
bandwidth of all channels in the system. If traffic in this class does not use
all of its allocation on a channel, the unused portion of the allocation can be
consumed by flows from other classes. Controlling how the unused bandwidth
gets consumed can improve the performance of more important flows over less
important ones.

To demonstrate that our dual-rate solution allows for controlling the reallo-
cation of unused bandwidth, we simulate four traffic flows sharing the bandwidth
of a 16 B/ns channel. Each flow attempts to use 100% of the injection band-
width to stream 1000 packets over the shared channel. The port is configured
with four traffic classes (0, 1, 2, and 3), with one flow assigned to each class.
Classes are assured a fraction of the link bandwidth relative to a designated
minimum required rate of its assigned flow. The flow in class 3 is designated as
having little importance and should not interfere with the other flows; therefore,

Tunable Implementation of QoS Classes 147

Table 1. Configuration for workload with variations in traffic load. UR jobs inject
uniform random traffic.

Job Nodes QoS class Initial rate (%) New rate (%)

all reduce32 1 32 0 - low latency <0.08 –

all reduce32 2 32 0 - low latency <0.08 –

all reduce256 1 256 0 - low latency <0.08 –

all reduce256 2 256 0 - low latency <0.08 –

UR-LL 64 0 - low latency 3 –

UR-BE 4160 1 - best effort 50 85

UR-IO 1760 2 - bulk data 80 20

UR-S 1760 3 - scavenger 20 60

class 3 is assured none of the link bandwidth. We compare our QoS solution –
which uses two rate limits – to another design that uses a single-rate limit [16].

The class configurations and results for both QoS solutions are shown in
Fig. 2. For single-rate QoS, classes 0, 1, and 2 are able to share the port’s
bandwidth at their respective assured rates of 20%, 45%, and 35% from the
start of the run. Class 3 is starved and unable to send because it is not assured
a fraction of the bandwidth and the port is fully utilized by the other flows. As
traffic in classes 1 and 2 complete after 22 µs, the remaining active flows equally
share the unused bandwidth that becomes available. The flow in class 3 is able
to compete for – and consume – a fraction of the unused bandwidth, partially
blocking the higher-priority flow in class 0. However, dual-rate QoS uses peak
rate limits to regulate access to the used bandwidth based on class priority, up
until the class’s peak rate limit. Our dual-rate solution could also be tuned to
reallocate excess bandwidth to other classes besides class 0 by reducing the peak
rate limit of class 0.

Maintaining Performance Despite Changing Network Loads: Properly
tuned QoS classes should maintain the relative performance targets of their
assigned traffic flows regardless of changes in the network load. If a flow requires
more than its allocation and unused (or unallocated) bandwidth becomes avail-
able, the class should (i) be able to use the available bandwidth if it has suf-
ficiently high priority or (ii) be blocked by another class if the other class is
carrying more important traffic as done in the previous experiment.

To demonstrate the effects of system-wide network load variations on per-
formance predictability, we evaluate a workload comprised of eight jobs with
multiple changes in traffic load over time. Table 1 describes the jobs and their
class assignments. Four allreduce jobs of two different job sizes and a uniform
random (UR) job are placed in the low-latency class. The other classes are each
assigned one UR jobs with different injection load intensities. The class configu-
rations and UR job injection loads were selected to reflect their class’s expected

148 K. A. Brown et al.

Fig. 3. Change in class throughput over time as the injection rates vary at times T1,
T2, and T3, as indicated in the Injection Rate Variations table.

workloads that were discussed in Sect. 3. That is, the low-latency class will guar-
antee low packet latencies for traffic with a light injection load; the best-effort
class will carry most application traffic and should guarantee high throughput;
the bulk data class will carry I/O data and should have sufficiently high band-
width without interfering with the low latency and best effort classes; and the
scavenger class should ensure progress of its traffic while causing minimal inter-
ference to other flows. Details of the class configurations will be discussed in
the following subsection. We create these classes for both dual-rate and single-
rate QoS schemes to study each scheme’s ability to maintain performance pre-
dictability as the traffic load varies. Figure 3 shows the class configurations and
the resulting injection throughput during the run. The plots report the average
per-node throughput of traffic in each class for both QoS schemes. If traffic flows
from two classes that never share a channel, there will be no interference and
both flows can theoretically be injected at 100% of the peak node injection rate
simultaneously. However, on large systems, flows from multiple classes will con-
tend for shared channels and potentially reduce the throughput that each flow
can sustain. The QoS solutions manage this contention to improve workload
throughput.

The results in Fig. 3 show that dual-rate QoS classes guarantee consistently
high throughput for class 1 (best effort) traffic throughout the experiment. The
flow in class 1 maintains its initially desired 50% rate until its injection rate
is increased to 85% at 0.4 ms (T2 in the plot), exceeding the peak rate limit
of 80% for class 1. From that point, it could only sustain a 60% injection rate
due to the heavy load on the network causing the excess packets to be stalled
and reducing the effective available global bandwidth. The increased network
load and stalls caused ≈8% more packets to be routed non-minimally in class

Tunable Implementation of QoS Classes 149

Fig. 4. Distribution of MPI AllReduce operation latency across the ranks of each allre-
duce jobs. We achieve near baseline (Standalone) latencies when allreduce jobs use the
low latency class of the dual-rate and single-rate QoS configurations.

1 between 0.4 ms and 0.8 ms. Non-minimally routed packets take two global
hops on dragonfly networks, and the additional hop reduces the effective global
bandwidth [14]. With single-rate QoS, class 1 could sustain only a 40% injection
rate even though it desires 50% and it is assured 50% of the system bandwidth.
This flow is able to increase its throughput after the load from class 2 is reduced
at 0.2 ms (T1). The flow in class 2 has high throughput at start of the simulation
when class 1 was not very loaded. After its load is reduced to 20%, which is within
its assured rates for both solutions, it sustains this throughput for the rest of
the run.

At 0.6 ms (T3) when the load in class 3 increases to 60%, the dual-rate
solution is able to prevent traffic in class 3 from severely affecting the flow in
class 1. The peak rate for class 1 was set to 80%, allowing this class to claim
more of the unused bandwidth and reduce the interference from class 3: class 3 is
only able to use more than it’s assured rate after the other classes have exceeded
their peak rates. On the other hand, the single-rate solution assured 50% of the
bandwidth to class 1, which is now carrying 85% load, resulting in both class
1 and class 3 competing for the available bandwidth. Single-rate QoS shapes
traffic as required only when the load distribution among the classes matches the
class configurations, as shown between times T2 and T3 on the single-rate QoS
plot in the figure. Otherwise, network load and interference from lower-priority
classes can degrade performance. The dual-rate solution is able to provide more
consistent throughput for class 1 regardless of load changes from other workloads
in the network.

While maintaining high throughout for traffic in class 1 (best-effort), dual-
rate QoS is also able to meet the latency targets of the allreduce jobs in the
low-latency class. Figure 4 shows the MPI Allreduce performance when using
the dual-rate and single-rate QoS configurations, with both cases yielding near
Standalone performance – where each allreduce job is ran on an idle system
without background traffic. Performance is much worse in the no-QoS case when
allreduce jobs run concurrently with the UR jobs without using separate QoS
classes, i.e., traffic from all jobs share a single class. These results confirm that the
dual-rate solution can also facilitate performance repeatability for low-latency
traffic despite variations in network load.

150 K. A. Brown et al.

Fig. 5. Breakdown of system-wide QoS stalls per class as the traffic load changes. At
0.2 ms, load in class 2 is reduced; at 0.4 ms, load in class 1 is increased; at 0.6 ms, load
in class 3 is increased. Figure 3 show the injection load and class configuration details.

Monitoring QoS Stalls to Understand Class Configuration and Behav-
ior: Class configurations should be tuned to prevent some flows from being
unintentionally delayed while simultaneously ensuring other flows are appropri-
ately stalled. However, dynamic workloads present a challenge since they do not
have static injection rates to properly guide bandwidth allocations. With dual
rate limits per class, each class can be tuned to support a range of traffic loads.
Additionally, monitoring how packets get stalled by classes expose how traffic is
shaped and the appropriateness of the class configuration for the workloads.

As discussed in Sect. 3.2, traffic in a class is shaped by marking its packet
red if the class exceeds its peak rate, yellow if only the assured rate is exceeded,
or green if neither rate has been exceeded. Our solution reports three types of
stalls based on these colors to expose traffic shaping:

Green Stall: The class is blocked from injecting if it has a green packet and a
higher priority class also has a green packet ready to inject.

Yellow Stall: The class is blocked from injecting if has a yellow packet and
either (i) a higher-priority class has a yellow packet ready to inject or (ii) any
other class has a green packet ready to inject.

Red Stall: The class is blocked from injecting if has a red packet and either
(i) another class has a green or yellow packet ready to inject or (ii) it loses to
another class in round-robin arbitration.

Figure 5 reports the per-packet stall rates of each stall type over all switch-to-
switch channels for the traffic described in Fig. 3. A value of 1 QoS stall/packet
means that one packet was stalled for each injected packet, increasing packet
latency and potentially reducing class throughput. By analyzing the type of
stalls, we can determine which rate limit caused the stall and how its tuning
may affect traffic shaping.

Classes 0 and 1 experience overall low QoS stall rates, confirming that their
overalls flows were not being delayed. The assured rate limit of class 0 is slightly
above the low injection rate of its assigned traffic, guaranteeing sufficient band-
width to progress quickly, and the peak rate limit is high enough to accommodate
momentary bursts. Class 1 is mostly stalled after its injection rate exceeds its

Tunable Implementation of QoS Classes 151

Table 2. Configuration for workload with mission critical traffic along with traditional
HPC workload. UR jobs inject uniform random traffic.

Job Nodes Class Injection rate (%)

UR-MC 832 0 - mission critical 80

allreduce512 256 1 - low latency 0.8

allreduce512 256 1 - low latency 0.8

UR-LL 512 1 - low latency 4

UR-BE 4160 2 - best effort 80

UR-IO 1760 3 - bulk data 90

UR-S 512 4 - scavenger 5

peak rate at 0.4 ms. Stalled packets block minimal routing paths, causing the
increased use of non-minimal routing paths with extra global hops to reduce the
effective available global bandwidth as mentioned earlier.

The relatively high green and yellow stall rates for class 2 confirm that its
flow was regulated to limit its effect on class 1 or class 0, as intended. The yellow
stall rate of class 2 is reduced when its injection rate drops to match its assured
rate at 0.2 ms. The relatively low network load between 0.2 ms - 0.4 ms allowed
the throughout of class 3 to be increased, signalled by the eventual reduction in
its rate of yellow and red stalls. However, the initial spike in class 3 red stalls
from 0.2 ms - 0.3 ms is due to the previously blocked packets being streamed
into the network, causing the class to exceed its 20% peak bandwidth allocation.
Overall, class 3 has the highest stall rates because it has the lowest priority
and a low bandwidth allocation, and is prevented from unduly affecting more
important flows.

The changes in the stall rates indicate how traffic shaping is being triggered
by the composition of the network load. Having appropriately configured these
HPC-oriented QoS classes to control the reallocation of bandwidth to the higher-
priority flows, the stalls confirm that traffic is being shaped as intended.

4.5 Supporting Specially Defined QoS Classes

Workload configurations and requirements vary across HPC centers. While we
contend that the traffic class configurations defined in Sect. 3.2 should be appro-
priate for most HPC workloads, centers may also need to define other classes for
special workloads. When these special workloads run along the traditional HPC
workloads, the QoS mechanism must satisfy the relative performance targets of
both sets of workloads. We demonstrate how our QoS solution can support the
creation of a site-specific mission critical class to carry traffic that must never
be delayed by other HPC workloads. The mission critical class is assigned the
highest arbitration priority and assured 100% of the system bandwidth to min-
imize the delay from traffic in other classes. With dual-rate QoS, other classes
can be configured with peak rate limits to provide priority-ordered access to

152 K. A. Brown et al.

Fig. 6. Change in class throughput over time as mission critical traffic is transferred.
*The mission-critical job suspends sending traffic at 0.3 ms and resumes at 0.6 ms.
Workload and traffic-to-class assignments details are provided in Table 2. Traffic in
class 2 (best effort) is able to sustain higher throughput with the dual-rate solution,
even when the mission critical traffic is present.

unused bandwidth, respecting the relative importance of the different types of
HPC traffic. However, defining the mission critical class with single-rate QoS
does not allow for any regulation of HPC traffic.

We ran the workload setup in Table 2 using both single-rate and dual rate-
QoS. Figure 6 shows the class configurations and throughput results for both
QoS solutions. With the dual-rate solution, we ensure that class 2 has priority
access to 50% of the unused bandwidth, allowing it to sustain high throughput
despite heavy interference from traffic in class 3. For the single-rate QoS classes,
however, the traffic in class 3 is unregulated and reduces the throughput of the
higher priority class 2 traffic.

We allocate peak bandwidths to reduce the likelihood of a class being blocked
when the mission critical traffic is not occupying a channel. These rates could
be tuned differently depending on the goals of the system administrator. The
assured and peak rate limits in our dual-rate QoS solution can be tuned inde-
pendently to satisfy the performance requirements of traffic using the class while
respecting the performance targets of traffic in other classes.

While it is possible to create a single-rate QoS solution using peak rates
instead of assured rates, it would still be challenging to tune such a solution for
dynamic workloads, as highlighted with these results. Using only a peak rate,
the dual-rate QoS classes were unable to increase the allocation of bandwidth
available to class 2 when the mission critical job was not injecting. Furthermore,
the aggregate peak rate allocations can exceed the link bandwidth, meaning
allocations are not guaranteed and lower-priority classes can be starved.

Tunable Implementation of QoS Classes 153

5 Discussion

5.1 Tuning Class Configurations to Match Workload Requirements

Proper QoS tuning requires accurately matching class configurations to their
expected traffic load, which requires accurate knowledge of the system’s expected
workloads and performance targets. Our QoS solution regulates network resource
allocation under varying traffic load using dual rate limits. For the assured rate
limits, we recommend starting with the minimum required rate needed to attain
acceptable throughput and/or latency for traffic assigned to the class. Peak rate
limits can be set to the maximum expected traffic load while being mindful of
the requirements of other classes. These limits can then be tuned using the QoS
stall metrics as guides. Increases in yellow and red stall rates are indicators that
constraints rate limit constraints are being applied since these packets get stalled
only when the assured/peak rate has been exceeded. Additionally, green stall
rates are indicators of priority constraints being applied priority since packets are
marked green when the class has not exceeded its assured rate. The acceptable
stall rates for a configuration will depend on the workload and the desired traffic
shaping outcome. QoS stall rates can therefore be used to flag inappropriate
traffic-to-class assignment when unexpected shaping is observed. High stall rates
indicate that the traffic has exceeded its class’s expected load and will experience
increased packet latencies as well as potentially reducing the effective available
global bandwidth.

5.2 Production Deployment

Our QoS design can be deployed on any interconnect architecture that supports
network traffic classes with independent switch buffers and programmable output
port arbitration, as most modern architectures do. Hence, this solution can also
be used on other low-diameter topologies such as fat-tree, hyper-x, Slim Fly, and
megafly, similar to other solutions [16,22]. While comparison of the different
topologies is not the focus of this work, our solution will still provide more
flexible control of network resources than the other solutions across the different
topologies. Furthermore, being able to tune classes using stall counters will ease
the integration of QoS in HPC centers.

The network drivers will provide APIs for assigning different messages to
QoS classes. Communication libraries like MPI or parallel I/O libraries can be
extended to utilize these APIs and automatically assign messages to different
classes based on pre-defined message size/rate thresholds. Such an approach
would be transparent to system users while allowing administrators to define
system-wide configurations, preventing inappropriate traffic-to-class assignment.
Another approach is for the user to choose class assignments for the different
operations within their applications. Otherwise, a combination of the these two
approaches may also be used when rolling out the QoS solution.

154 K. A. Brown et al.

6 Conclusions

HPC networks often run multiple applications with differing communication pat-
terns that compete for network resources. Because different applications may be
running at any given time, network contention can result in large run-to-run
performance variations for communication-sensitive applications.

Our QoS proposal classifies application traffic into one of several QoS classes,
based on performance requirements, and effectively allocates resources among
these classes. Each class’s arbitration priority, assured bandwidth limit, and
peak bandwidth limit can be tuned to match the traffic load assigned to the
class. Using this solution, we can define a limited number of QoS classes –
Low-latency, Best-effort, Bulk data, and Scavenger – to effectively support the
diverse traffic loads on HPC systems. Our solution can ensure consistent, low-
latency performance for latency-sensitive traffic, achieving near-baseline perfor-
mance for MPI Allreduce operations. It also provides the ability to maintain the
high throughput required by a best-effort class, securing sufficient bandwidth for
applications in order to guarantee overall system throughput.

Our solution’s flexibility in provisioning multiple QoS classes with explicit,
tunable assured and peak rate limits allows individual HPC sites to tailor class
settings to their needs. The dual-rate limits support controlled bandwidth real-
location as traffic load changes, ensuring relative performance targets can be
more effectively met in dynamic environments. Furthermore, the use of QoS
stall metrics can isolate adversarial traffic-to-class assignments and help tune
the configuration, deployment, and management of QoS in production. Future
work will consider how to automatically assign and, and potentially reassign,
traffic to classes while the workload in running. We will also investigate the
interaction of our dual-rate QoS with different adaptive routing and congestion
management solutions.

Acknowledgement. This work was supported by the Argonne Leadership Comput-
ing Facility, which is a DOE Office of Science User Facility supported under Con-
tract DE-AC02-06CH11357, and by the Exascale Computing Project – learn more
at https://www.exascaleproject.org/. We also gratefully acknowledge the computing
resources provided and operated by the Joint Laboratory for System Evaluation (JLSE)
at Argonne National Laboratory.

References

1. Brown, K.A., Jain, N., Matsuoka, S., Schulz, M., Bhatele, A.: Interference between
I/O and MPI traffic on fat-tree networks. In: Proceedings of the 47th Interna-
tional Conference on Parallel Processing, ICPP 2018, pp. 1–10. Association for
Computing Machinery, New York, August 2018

2. Carothers, C.D., Bauer, D., Pearce, S.: ROSS: a high-performance, low memory,
modular time warp system. In: Proceedings Fourteenth Workshop on Parallel and
Distributed Simulation, pp. 53–60 (2000)

https://www.exascaleproject.org/

Tunable Implementation of QoS Classes 155

3. Chunduri, S., et al.: GPCNeT: designing a benchmark suite for inducing and mea-
suring contention in HPC networks. In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. SC 2019.
Association for Computing Machinery, New York (2019)

4. Chunduri, S., Parker, S., Balaji, P., Harms, K., Kumaran, K.: Characterization of
MPI usage on a production supercomputer. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and Analysis.
SC 2018. IEEE Press (2018)

5. Cope, J., Liu, N., Lang, S., Carns, P., Carothers, C., Ross, R.: CODES: enabling
co-design of multilayer exascale storage architectures (2011)

6. Dordal, P.L.: An Introduction to Computer Networks, August 2020
7. Grant, R.E., Pedretti, K.T., Gentile, A.: Overtime: a tool for analyzing perfor-

mance variation due to network interference. In: Proceedings of the 3rd Workshop
on Exascale MPI, ExaMPI 2015, pp. 1–10. Association for Computing Machinery,
New York, November 2015

8. Groves, T., Gu, Y., Wright, N.J.: Understanding performance variability on the
aries dragonfly network. In: 2017 IEEE International Conference on Cluster Com-
puting (CLUSTER), pp. 809–813, September 2017. iSSN 2168-9253

9. Hewlett Packard Enterprise: Shasta Software Workshop (2019). https://cug.
org/proceedings/cug2019 proceedings/includes/files/inv113s1-file1.pdf. Accessed
19 Oct 2020

10. Hewlett Packard Enterprise: Measuring Network Performance to Better Manage
IT. Technical White Paper a50002193ENW, August 2020

11. Jha, S., Brandt, J., Gentile, A., Kalbarczyk, Z., Iyer, R.: Characterizing super-
computer traffic networks through link-level analysis. In: 2018 IEEE International
Conference on Cluster Computing (CLUSTER), pp. 562–570, September 2018.
https://doi.org/10.1109/CLUSTER.2018.00072, iSSN: 2168-9253

12. John Thompson: Scalable Workload Models for System Simulations (2014).
https://hpc.pnl.gov//modsim/2014/Presentations/Thompson.pdf. Accessed 19
Oct 2020

13. Jokanovic, A., Sancho, J.C., Labarta, J., Rodriguez, G., Minkenberg, C.: Effective
quality-of-service policy for capacity high-performance computing systems. In: 2012
IEEE 14th International Conference on High Performance Computing and Com-
munication 2012 IEEE 9th International Conference on Embedded Software and
Systems, pp. 598–607, June 2012. https://doi.org/10.1109/HPCC.2012.86

14. Kim, J., Dally, W.J., Scott, S., Abts, D.: Technology-driven, highly-scalable drag-
onfly topology. In: Proceedings - International Symposium on Computer Architec-
ture, pp. 77–88 (2008)

15. Li, F., Niaki, A.A., Choffnes, D., Gill, P., Mislove, A.: A large-scale analysis of
deployed traffic differentiation practices. In: Proceedings of the ACM Special Inter-
est Group on Data Communication, Beijing China, pp. 130–144. ACM, August
2019

16. Mubarak, M., et al.: Evaluating quality of service traffic classes on the Megafly net-
work. In: Weiland, M., Juckeland, G., Trinitis, C., Sadayappan, P. (eds.) ISC High
Performance 2019. LNCS, vol. 11501, pp. 3–20. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-20656-7 1

17. OFI Working Group: Libfabric Programmer’s manual (2020). https://ofiwg.github.
io/libfabric/master/man/fi endpoint.3.html. Accessed 19 Oct 2020

18. Savoie, L., Lowenthal, D.K., de Supinski, B.R., Mohror, K., Jain, N.: Mitigating
inter-job interference via process-level quality-of-service. In: 2019 IEEE Interna-
tional Conference on Cluster Computing (CLUSTER), pp. 1–5 (2019)

https://cug.org/proceedings/cug2019_proceedings/includes/files/inv113s1-file1.pdf
https://cug.org/proceedings/cug2019_proceedings/includes/files/inv113s1-file1.pdf
https://doi.org/10.1109/CLUSTER.2018.00072
https://hpc.pnl.gov//modsim/2014/Presentations/Thompson.pdf
https://doi.org/10.1109/HPCC.2012.86
https://doi.org/10.1007/978-3-030-20656-7_1
https://doi.org/10.1007/978-3-030-20656-7_1
https://ofiwg.github.io/libfabric/master/man/fi_endpoint.3.html
https://ofiwg.github.io/libfabric/master/man/fi_endpoint.3.html

156 K. A. Brown et al.

19. Sensi, D.D., Girolamo, S.D., McMahon, K.H., Roweth, D., Hoefler, T.: An in-
depth analysis of the slingshot interconnect. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC20), November 2020

20. Smith, S.A., et al.: Mitigating inter-job interference using adaptive flow-aware rout-
ing. In: SC18: International Conference for High Performance Computing, Net-
working, Storage and Analysis, pp. 346–360, November 2018

21. Society, T.I.: A Two Rate Three Color Marker (1999). https://tools.ietf.org/html/
rfc2698. Accessed 01 June 2020

22. Wilke, J., Kenny, J.: Opportunities and limitations of quality-of-service in message
passing applications on adaptively routed dragonfly and fat tree networks. In: 2020
IEEE International Conference on Cluster Computing (CLUSTER) (2020)

23. Zhang, Y., Tuncer, O., Kaplan, F., Olcoz, K., Leung, V.J., Coskun, A.K.: Level-
spread: a new job allocation policy for dragonfly networks. In: 2018 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS), pp. 1123–1132
(2018)

https://tools.ietf.org/html/rfc2698
https://tools.ietf.org/html/rfc2698

Scalability of Streaming Anomaly
Detection in an Unbounded Key Space

Using Migrating Threads

Brian A. Page(B) and Peter M. Kogge

University of Notre Dame, Notre Dame, IN 46556, USA
{bpage1,kogge}@nd.edu

Abstract. Applications where streams of data are passed through large
data structures are becoming of increasing importance. For instance net-
work intrusion detection and cyber security as a whole rely on real time
analysis of network traffic. Unfortunately, when implemented on conven-
tional architectures such applications become horribly inefficient, espe-
cially when attempts are made to scale up performance via some sort of
parallelism. An earlier paper discussed an implementation of the Firehose
streaming benchmark that assumed only a bounded number of keys and
datums. This paper discusses a significantly more complex (and more
realistic) variant that analyzes continuously streaming samples from an
unbounded range of keys. We utilize a novel migrating thread architec-
ture in which threads may migrate as needed through a single system
wide shared memory space, thereby avoiding conventional inefficiencies.
As with the earlier paper, results are promising, with both far better
scaling and increased performance over previously reported implementa-
tions, on a platform with considerably less intrinsic hardware computa-
tional resources.

Keywords: Streaming · Emerging architectures · Scalability ·
Communication overhead

1 Introduction

Applications where streams of data are passed through large data structures
are of increasing importance. Examples include cyber-security, social networks,
interactive messaging, and e-commerce.

Unfortunately, when implemented on conventional architectures such appli-
cations become horribly inefficient, especially when attempts are made to scale
up performance via some sort of parallelism. Quoting from the website for a
benchmark for one such application [1]: “Streaming data arrives continuously
and in volumes and rates that are ever increasing. Timely processing of stream-
ing data is computationally challenging due to limited resources. These include
limited CPU operations that can be performed on a datum before the next one

c© Springer Nature Switzerland AG 2021
B. L. Chamberlain et al. (Eds.): ISC High Performance 2021, LNCS 12728, pp. 157–175, 2021.
https://doi.org/10.1007/978-3-030-78713-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_9&domain=pdf
http://orcid.org/0000-0001-5563-9678
http://orcid.org/0000-0002-3329-547X
https://doi.org/10.1007/978-3-030-78713-4_9

158 B. A. Page and P. M. Kogge

arrives, limited memory for storing state information about the stream, lim-
ited disk storage for the data itself so that the datums may only be seen once,
and limited budgets for energy consumption or CPU/memory/disk resources.”
Particular areas with significant interest in streaming include graphs and big
data [2–4,10,11,15]. Studies of streaming in particular include [5,13], with a
small but growing suite of software support packages [7,17,18].

A benchmark with these characteristics for which at least some compara-
tive data is called Firehose [6,9,12]. The benchmark is notionally a stand-in for
streaming applications where information from different incoming internet pack-
ets (called “datums”) must be aggregated in some way so that different kinds of
“events” can be recognized, and potential “anomalies” be detected. The perfor-
mance metric is “datums/s:” how many such datums can be pushed through the
system per second without dropping things. Much of the data reported on the
Firehose website1 demonstrates a variety of issues with scaling it to use multiple
cores. The problem with today’s architectures is that very often the software
cost of handing off a piece of data to another core for the next step of processing
very often wildly exceeds the cost of performing the desired operations, espe-
cially when because of the size or structure of the data structures, that core is
in a different node.

An earlier study [16] investigated the scalability of streaming in a bounded
key space using the Lucata2 migrating thread architecture. In that study we
were able to achieve vastly superior throughput when analyzing datums as per
the Firehose benchmark specification, but with some caveats with regard to
implementation. Unfortunately variant 1 was only designed as a simple test of
anomaly detection and has little relevance to real world streaming applications.
Fortunately variant 2 of the Firehose streaming benchmark performs anomaly
detection on an unbounded key space and therefore has direct application to
many existing applications.

The main contributions of this paper are:

– An implementation of Firehose variant 2 on an early version of the Lucata
migrating thread architecture.

– An MPI based implementation using a producer/consumer model similar to
our Lucata implementation.

– An analysis and comparison between migrating threads and conventional
architectures for our conventional and migrating thread implementations as
well as previously reported results.

2 Background

2.1 Firehose Streaming Benchmark

Firehose resembles a cyber-security like streaming function where incoming IP
packets are to be monitored. When some number of packets with the same
1 https://firehose.sandia.gov.
2 Lucata formerly EMU Solutions Inc.

https://firehose.sandia.gov

Lucata Unbounded Anomaly Detection 159

Fig. 1. The firehose data flow.

IP address have been detected, the payload fields are examined for potential
anomalies, and if detected, a report issued. Figure 1 diagrams the notional flow.
The IP address in each incoming packet is used to probe a very large hash table,
and when a match is found, data from the packet’s payload is merged into the
entry, and a match count incremented. When 24 packets have been found, the
aggregated payload is analyzed. An “atypical” outcome results in the IP address
being flagged.

The benchmark has three versions. The first two assume incoming packets
have three fields formatted as ASCII strings. The first, the key, is an IP address
that when converted from ASCII represents a 64-bit unsigned integer. The sec-
ond, the payload, is a value of “1” or “0.” The third is a truth flag that indicates
if this packet is part of an “anomaly” sequence. This field is only used when
the implementation makes a call to verify if the call was correct. The datum
stream associated with a key may have two distributions of payload values. In
the normal case, the payload is chosen equally randomly from a “1” or a “0”. In
the anomalous case, the payload values are biased toward “0.”

For the first two versions, the key field is used to look for matches in a
giant hash table. At each match, a “match count” field is incremented in the
table entry. In addition if the payload is a “1,” a separate payload count is
incremented. When the match count reaches 24, the payload field is tested. If
it is 4 or less, an anomaly report is generated. No IP matches in the hash table
causes a new hash entry to be created.

The first benchmark variant is primarily for testing, and the data generator
ensures that there will never be more than 128K unique key values. The second
is similar in that at one time there will not be more than 128K unique keys,
but it has no constraint in the total number of unique keys over time. This
version is oriented towards demonstrating handling a never-ending stream of
data. Releasing the constraint of a fixed number of key values means that the
hash table must be capable of “aging out” entries that are “too old” when new
entries must be created and there is no space. The third version is a more complex
two-phase process described in the website.

Figure 2 diagrams scaling data extracted from various Firehose references,
with Table 1 summarizing the major characteristics of the microprocessors used
in them. The curves for small core counts represent scaling data for multi-
threaded implementations of both Variant 1 and 2 as taken from the Firehose
website. The system the Variant 1 data was measured on was a dual socket node
where each socket was an Intel X5690 six-core processor. This data shows rela-
tively poor scaling, with 7 cores providing 10 million datums per sec, less than

160 B. A. Page and P. M. Kogge

1

10

100

1000

10000

1 10 100 1000 10000

Da
tu

m
s/

se
c

(M
ill

io
ns

/s
ec

)

Cores

Variant 1 Perfect
Variant 1
Variant 2 Perfect
Mul -Thread V2
Cluster V2

Fig. 2. Reported scaling numbers (mostly from variant 2).

twice that of a single core (5.6 million datums/s). The discrepancy is most likely
due to a combination of coherency traffic and the need for expensive guaranteed
atomic memory operations when the hash table entries are to be updated.

The Variant 2 data has two parts: data from the same system as the Variant
1, and data from a multi-node dual 6-core socket Cray CS-300 using Intel E5-
2670 processors [6]. The former achieves 1.9 million datums/s on one core. The
latter curve shows good weak scaling, but at an equivalent performance level
per core of 0.6-0.1 million datums/s per core. This is up to 30× less than what
perfect scaling from one core would have brought. The reason for the huge loss
in efficiency per core is the software stack needed to handle the queuing and
streaming of data from one physical node to another.

Table 1. Processor characteristics.

Intel Xeon 5960 Intel E5-2670 AMD EPYC
7451

Lucata Chick
Node Card

Cores 6 8 24 8

Core clock 3.46 GHz 2.6 GHz 2.66 GHz 0.175 GHz

Memory channels 3 4 8 8

Per channel Bandwidth 10.7 GB/s 12.8 GB/s 21.33 GB/s 1.6 GB/s

Access rate 0.166 G/s 0.2 G/s 0.26 G/s 0.2 G/s

Total per module Bandwidth 32 GB/s 51.2 GB/s 170.6 GB/s 12.8 GB/s

Access rate 0.5 G/s 0.8 G/s 2.08 G/s 1.6 G/s

2.2 Migrating Thread Architecture

A migrating thread architecture [14] is one where the underlying hardware, not
software, moves the state of a thread as required during execution. Figure 3
diagrams such an architecture as implemented by Lucata Solutions [8]. The
basic unit, a nodelet, is a memory module, its controller and some number
of multi-threaded cores. All the memory in the collection of nodelets reside in

Lucata Unbounded Anomaly Detection 161

Memory
Channel

Memory

Memory
Front End

Core(s)

Memory

Memory
Front End

Core(s)

Memory

Memory
Front End

Core(s)

Memory

Memory
Front End

Core(s)

Memory

Memory
Front End

Core(s)

Memory

Memory
Front End

Core(s)

Network

Nodelet: New unit of parallelism

Threads execute here

Until they make a non-local reference
And then moved to correct nodelet

. . .

And they are free to spawn
independent children

All memory in single
global address space

Smart Memory
Controllers
that also do atomics Spawned threads include fixed function remote atomics

Fig. 3. The migrating thread architecture.

a common address space. A network connects all nodelets. A thread runs in
a multi-threaded “GC core” until it makes a memory reference that is not
contained in that nodelet’s memory. The hardware then puts the thread to sleep,
packages it, and moves it over the network to the correct nodelet, where it is
unpacked and restarted. A thread can spawn independent child threads. Also,
the memory controller contains hardware to implement atomic operations as
close to memory as possible. Finally, very lightweight threads can be spawned
to perform remote memory operations without moving the parent.

The current prototype used in this study is housed at Georgia Tech’s CRNCH
center3. It has up to 64 nodelets, each with 8 GB of memory and one 175 MHz
multi-threaded core. These nodelets are packaged 8 to a node board which sup-
ports a RapidIO-based network. A dual core POWER microprocessor (called an
SC) on each node board runs Linux, manages a local SSD, and launches migrat-
ing threads into the system. The nodelet logic on each board is implemented
in an FPGA. The last row of Table 1 summarizes the characteristics of a node
board. A larger system is in development.

In comparison to either of the two microprocessors used in the reference data,
the aggregate compute cycles (number cores times clock rate) of the nodelet
cores on a node card is 1/14’th of either the other two. The actual comparison is
probably lower than this as the nodelet cores are single issue and both the Intel
cores are multi-issue. The node board aggregate memory bandwidth is about
1/3 to 1/4’th the others, but, because of the memory channel design used in the
nodelets, the ability of a node board to handle different independent memory
accesses is between 2× to 3× higher that of either microprocessor.

The programming tool chain is based on Cilk, C with a prefix to function
calls to spawn new threads, a sync primitive to wait for a set of children to
complete, and a parallel forall to have a set of independent threads cooperate
on a loop. Supported intrinsics include a rich set of atomic operations.

3 https://crnch.gatech.edu/rogues-Lucata.

https://crnch.gatech.edu/rogues-Lucata

162 B. A. Page and P. M. Kogge

3 Firehose on Migrating Threads

The PHISH/C++ version of Firehose variant 2 benchmark utilizes a C++
std::unordered map to store key structures during analysis. Since the key range
in variant 2 is potentially infinite in practice (technically 264) the map size must
be constrained. This is done by removing keys from the map and inserting new
ones, all while the key structures are being recycled as to eliminate additional
memory allocations. This works well for multiple read access, however it is well
understood that C++ STL data structures including the std::unordered map are
known to lack native thread safety with regard to multiple simultaneous writes.
This means that when used in a multi-threaded environment such as migrating
threads disastrous effects are the norm, making such implementations unusable.

Our first attempt we attempted to utilize the ATOMIC CAS() function
as a method for obtaining mutexes in order to lock certain key structs
while updating them. However this is not possible as in order to acquire
any element in a map in a thread safe manner, requires at least two steps,
find(key) which returns an iterator to the map entry for key, and then finally
ATOMIC CAS(iterator.second −→ lock, 1, 0) to acquire the lock. Notionally it
may be possible to skip the step in which the iterator to the map node in question
is found by maintaining an iterator to it at all times via some other method,
however there are a number of functions performed on a map data structure
which can invalidate iterators points to the map’s nodes.

Lucata Unbounded Anomaly Detection 163

Since the Lucata migrating thread architecture is massively multithreaded
by design our version of Firehose variant 2 uses two thread pools producer
and consumer. Producers perform the ascii to integer conversion for datums
generated on their nodelet. Consumers perform analysis on the converted datums
after having been assigned them via a producer.

3.1 Datum Conversion and Assignment: Producers

Immediately after being spawned producer threads will begin to acquire and
convert datum strings containing the key, payload, and bias flag components into
64bit unsigned integers. In Algorithm 1 we can see that the team of P producer
threads iterate over the same shared set of datums which were generated locally
on the nodelet during the initialization phase. All producers iterate through the
while loop on Line 3 until all datums have been evaluated once.

After string conversion the producer determines which consumer to assign the
current datum to, as well as on which nodelet that consumer “lives”. Once the
destination nodelet and consumer id have been determined, the datum must be
placed into the remote (if applicable) consumers’ datum queue. However since
this system can have hundreds of producers pushing datums to any arbitrary
consumer the possibility of race conditions are possible if not handled correctly.
To rectify this on Line 7 we atomically increment the counter of assigned datums
belonging to the destination consumer thread by 1 and store the result. This is
done using the ATOMIC ADDM() instruction which allows for a single atomic
add operation to any address, triggering a thread migration if necessary to move
the calling thread to the nodelet governing the destination address, and return-
ing the result. This allows us to increment the assignment counter, while also
insuring that the value returned is unique. With this unique value, in dcDat, the
producer knows where it can safely place the key, payload, and bias flag values
for the datum it is currently working on. All three values are adjacent in memory
as can be seen in Lines 8–10.

After assignment has completed the producer must be able to alert the con-
sumer that it is now o.k. to proceed with consumption of the newly assigned
datum (Line 11). Lastly once all datums on the nodelet have been converted
and assigned to consumers, each producer will atomically increment the done
counter which is used by the consumers to know when they may exit their work
loop.

3.2 Anomaly Detection: Consumers

While consumers are spawned at the same time as producer threads, consumers
do not have any initial work allotment to analyze and must wait for datum
assignments from producers. Consumers have three major components, a datum
vector into which producers assign datums, a state table, and a list of recently
seen keys. Consumers use a private hash table for maintaining the state of datums
they have been assigned and are the only thread which is allowed to interact
with it. Eliminating simultaneous access to the hash table in this manner also

164 B. A. Page and P. M. Kogge

eliminates the thread safety issues discussed earlier. Each consumer hash table
is of the same size therefore giving each consumer the same probability of being
assigned any arbitrary key with the per consumer key coverage being equal to
1/C.

Lucata Unbounded Anomaly Detection 165

By segmenting the global key range for assignment to consumers we were able
to use the STL std::unordered map data structure. Unordered maps maintain
<key, value> pairs in which the keys must be unique and the value can be
any datatype. Aside from the datums’s key itself we must also keep track of
how many times the key has been seen. For this we utilize a Key struct which
maintains the key value itself, as well as the occurrence counter.

While we could instantiate and use Key structures as the value field for
elements within an std::unordered map it increases insertion and deletion costs
due to the various constructor and or destructor calls which much occur. These
operations mean many more instructions which do not directly relate to useful
computation. Instead we generate an array of Key structs during initialization
so that we do not have to allocate any new memory during datum evaluation.
When a datum’s key is inserted into the hashtable a pointer to an unused Key
struct is used as the value field in the <key, value> pair. After the initialization
phase no new Key structs will be created, just overwritten and reused, thereby
maintaining a constant memory footprint.

Algorithm 2 shows the computation procedure for an arbitrary consumer
thread. Every consumer thread enters the while loop checks to see if the datum
id it is attempting to analyze can be used during this iteration. This check is
necessary as we do not want to read a datum which is currently being written
by a producer thread.

If a consumer has been assigned datums which have not been analyzed yet
then the consumer will proceed with the next datum in its datum vector. It will
then check if the current datum’s key has exists in the hash map (Line 8). If the
key does not exist in its local table it is added and given initial payload and hit
counter values of 1. Additionally when a key is being evaluated for the first time
its key is added to the beginning of the lru list which will be used to remove
old keys once the hash table becomes full.

Should a key already be present in the hash map we enter the else block
on Line 18 in which we acquire the existing hash map entry for the current
key, update its payload and hit counter values, and move the key to the front
of lru list to signify it was recently seen. As a consumer updates existing keys
it now becomes possible that an anomaly has occurred. Line 22 checks the hit
counter for the current key to see if it is equal to some threshold which in the
case of the Firehose specification is 24 and If it is triggers an event. The event
evaluation process is identical to that of variant 1 in which the payload sum is
tested against a threshold value, 4 in the case of the benchmark spec, and subse-
quently is the bias flag is true of false. The use of the bias flag is also consistent
in that truth indicates that the event should have occurred, and false being that
the event should not have occurred. After the datum and any accompanying
anomaly detection has finished the consumer increments its curDatum counter
and store the result for use as the datum id to evaluate during the next loop
iteration.

While producers have a finite run-time, i.e. they iterate through all datums
and then stop, consumers do not. Datum assignment to a consumer occurs based

166 B. A. Page and P. M. Kogge

on the datums key value, meaning that the exact number of datums to be
assigned to any arbitrary consumer, the order in which they are to be assigned,
or when during program execution such assignment will occur are all unknown
at run-time. Therefore consumers must not only constantly check if they have
been assigned any new datums, but also if it no longer possible to be assigned
additional datums. The test on Line 30 performs this check and if true breaks
out of the while loop otherwise the consumer begins the next loop iteration until
all possible computation has been completed.

3.3 Maintaining Hash Map Size: LRU List

As discussed previously the potential key range for Firehose variant 2 is quite
large 264 and while these values may fit into memory on some systems, the
accompanying state table data used for anomaly detection will not. A Least
Recently Used or LRU list is used to indicate which keys are likely safe for
deletion. This works for streaming applications since a stream of packets are often
temporally related, meaning that after some arbitrary amount of time after a
packet or datum has been received, it is unlikely that another packet/datum with
the same key will be seen again. This behavior is also duplicated in the dataset
generator used by the Firehose streaming benchmark variations allowing us to
remove keys after this threshold with high confidence that its remove will not
affect anomaly detection accuracy.

For simplicity our LRU key list utilizes a doubly linked list data structure.
Each consumer maintains a private LRU list to use with datums it is assigned.
In order to maintain when a key was last seen in relation to the rest of the data
stream, Key structs have several additional fields. First we maintain a pointer
to the key’s hash map entry which allows for direct access for the purpose of
performing erase operations without needing to search the map for the given
key. Previous and Next Pointers for facilitating the doubly linked list structure.

The least recently used order is easy to maintain and update. When a key is
seen, the key is located or inserted into the hash map. The Key for that hash
map element has its counter updated. Pointers for the doubly linked list are
updated so that the current Key struct is placed at the tail end of the list. In
doing so we know that the head of the list is always the key which was seen the
longest time ago and is therefore the most valid for recycling out of the hash
map for use when inserting a newly observed key.

4 Conventional Implementation Using MPI

In addition to our Lucata implementation we developed an MPI based version
for comparison on conventional architectures. Our MPI version uses the pro-
ducer and consumer concept employed for the Lucata design, however rather
than having separate teams of threads existing within each process we chose to
have each process perform one of the two tasks. This was done primarily out
of simplicity as this format allows us to scale the number of processes across a

Lucata Unbounded Anomaly Detection 167

test system without worrying about the precise hardware characteristics of any
particular node.

Producer processes generate a set of datums from which they will decode
the address and payload values prior to sending the converted values to the
consumer process governing the appropriate range of address hashes for the
address. MPI Isend is used to perform datum assignment to a consumer in an
asynchronous fashion.

Consumer processes continually probe their message buffers for messages
containing assigned datums to work over. When a consumer receives a datum
from an arbitrary producer, it analyze the address and payload value in exactly
the same way as the Lucata implementation. This continues until all datums
have been converted, assigned, and analyzed by their respective processes.

We do acknowledge that increasing the number of MPI processes will increase
communication based overhead, however since we are using asynchronous writes
to the consumer processes via MPI Isend producers can assign datums to a
consumer without the consumer having to acknowledge their receipt. This is
the same behavior as in the Lucata version. Additionally since each process
will be allocated on its own dedicated core, unlike the Lucata system on which
8 producer threads and 16 consumer threads execute together on a single core
(nodelet), we expect to see little performance degradation from the lack of multi-
threading.

5 Communication Overhead

In practice both shared and distributed memory systems require communica-
tion, or the transfer of data between processing elements, in order to perform
useful work. Shared memory machines may rely on excessive cache invalidation
and update traffic to maintain valid memory state, while distributed systems
still overwhelmingly use some form of message passing such as MPI. The time
required to perform the cache coherency operations, or send and receive mes-
sages between processes is time that could have otherwise been spent performing
computation.

Communication overhead impact performance in vastly different ways
depending on the scaling method being employed. Weak scaling for instance
can cause an increase in the computational load of the entire application by
increasing problem size proportional to system size. This also simultaneously
increases communications requirements, but very often the increase in system
size provides the needed resources, especially if the communications per node
remains relatively fixed, as it does for many weak scaling problems.

Some applications are capable of overlapping computation and communica-
tion such that the impact of communication on performance is reduced. These
methods require sufficient computational requirements well in excess of all com-
munication needs to see optimal performance. Network interconnect or bus laten-
cies and bandwidth play enormous roles in the perceived cost of each message or
update being performed, as well as the total overall cost of all such operations.

168 B. A. Page and P. M. Kogge

As shown in Sect. 3 our migrating thread implementation of the Firehose vari-
ant 2 splits datum string conversion and datum analysis portions of the bench-
mark. Two disjoint thread pools perform the producer and consumer algorithms
simultaneously and there fore create an overlapped computation and commu-
nication pattern. While a consumer is processing datums against its local hash
table, producers throughout the entire system may be assigning it new datums
to work over. Therefore the communication associated with thread the thread
migrations and memory copies required to perform the communication inherent
to this design is overlapped and indistinguishable from the overall runtime as
long as enough datums are assigned to any arbitrary nodelet.

6 Experimental Setup

6.1 Program Execution

As described in Sect. 2.2 the Lucata migrating thread system we evaluated con-
sists of 8 node cards, each containing 8 nodelets and a dual-core SC capable of
performing higher level OS functions. It is possible to configure the system in
singlenode or multinode setups allowing the use of one or between 2 and 8 node
cards respectively. We utilize multinode setup for our strong scaling experiments.

Nodelets are designed to consist of several light weight cores capable of many
operations, yet are not as robust as the heavyweight cores used on the SC on each
node card. Because of this, there is no way for a programmer to directly interact
with a nodelet from the command line. Instead applications must be executed
by using the Lucata handler and loader command line utility which loads the
programs into memory of for all 8 nodelets. This enables threads executing on
the GC cores of a nodelet to continue program instruction execution without
having to rely on an SC to update its program counter or instruction queue.

When an application is run, a single thread is spawned on nodelet 0 which
begins instruction execution as per the program’s design. In order to use addi-
tional threads we must spawn them as needed via cilk spawn or the use of remote
atomic operations. In our case threads are spawned in the same way for both
Algorithms 1 and 2. Prior to evaluation of datums on any nodelet we spawn a
single thread on each nodelet. These threads then spawn any number of addi-
tional threads locally. At this point every nodelet has a local thread pool with
which to perform datum evaluation. The number of threads generated on each
nodelet does not need to be the same, however only 64 threads may execute
concurrently on any nodelet, with additional threads placed into an execution
queue.

Threads proceed to migrate throughout the system as described in Sect. 3
until all datums on a nodelet have been exhausted. Once all datums on a nodelet
have been evaluated they exit and return control back to the original calling
thread. In our case after evaluation has completed all threads execute and con-
trol return to the original thread spawned on n0, where statistical information
is gathered and output. This final migrating thread then signals the SC that
execution has completed.

Lucata Unbounded Anomaly Detection 169

6.2 Dataset Generation and Placement

In our previous study we opted to ignore the conversion of datums in their raw
ascii form and instead assumed a post-conversion state for testing. In this study
we perform analysis of the post-conversion datums and evaluate performance,
as well as performing tests in which ascii keys are stored after generation then
converted into usable values during the timed portion of the tests.

In the post-conversion case space is allocated for datumCount number of
datums on every nodelet utilized. Here we are performing weak scaling tests
and therefore hold the number of datums per nodelet constant for each series of
tests, starting at 210 packets per nodelet and ending at 216 packets per nodelet,
increasing by powers of 2. Packets consist of 26 individual datums, therefore the
range of datums per nodelet is 216 to 222.

Unlike the power law distribution used for key generation in variant 1, variant
2 utilizes an active set generator. In the active set generator, an “active” set of
128K possible keys is used to generate datums. While the active set is always
128K, the exact key values contained within that active set change over time.
This creates an “aging key” behavior in which keys may only be generated within
a certain window. We incorporated the Firehose benchmark active set generator
directly into our implementations to insure correctness.

During the initialization phase nodelet 0 spawns a thread remotely on each
remote nodelet. Each thread is then given a distinct seed value which is used to
generate randomized datum key values thereby ensuring that each thread does
not generate identical keys. By generating keys in this fashion we are simulating
the behavior of n number of generators, or 1 per nodelet, each with their own
active sets. Keys are stored locally on the nodelet they were generated on in
preparation for ascii conversion.

6.3 Scaling Tests

For our weak scaling tests we vary the number of nodelets from between 1 and
64 in powers of 2, as well as the number of threads spawned on each nodelet.
Since our implementation has 2 distinct thread pools, datum conversion and
datum analysis, we also vary the number of threads in each pool in order to
investigate the impact of variable on performance. For datum conversion as well
as datum processing we use thread counts between 1 and 32 in powers of 2. For
the reference case we utilize a single nodelet with a single thread in each thread
pool. The upper limit of our tests is 64 nodelets with 64 total threads each,
generating a total of 4096 concurrent threads.

Generation and placement of datums in their ascii form onto their associated
nodelet, occurs during the un-timed initialization phase. Run time measurements
are started before the recursive spawn which generates worker threads in each
team on each nodelet. A cilk sync prevents further program execution until all
nodelets have completed, upon which the stop time is measured and total run-
time determined. The time required by the asynchronous updates to statistic
counters is included, as discussed in the benchmark specification.

170 B. A. Page and P. M. Kogge

7 Evaluation

7.1 Throughput Scalability

Fig. 4. Throughput scalability on Lucata using a per nodelet hash table size of 218

maximum elements. Each line shows the throughput per millisecond observed for the
given datum per nodelet

We performed tests using a wide range of system configurations in which the
number of producers and consumers was varied. For all input sizes and nodelet
counts peak performance was obtained using 8 producers and 16 consumers.
Because of this, the remainder of this section will discuss performance results
for the use of 8 producers and 16 consumers per nodelet.

Figure 4 shows throughput, in datums per millisecond (ms) we observed in
our tests for each nodelet and datum per nodelet counts. We found that the
best throughput was achieved when each nodelet was assigned only 216 datums,
in which near perfect throughput scalability was achieved. This was to
be expected as the systems cores and memory channels are likely not close the
saturation at this point.

For comparison the reported results for Firehose on one Xeon X5690 core
delivered 1.9M datums/s. and a distributed memory implementation using and
7 cores of the same type delivered only 3.4M datums/s. This represents an unim-
pressive throughput gain of 1.8× for 7 cores. This is significant as the 7 core
PHISH/C++ 1/4/2 version which runs as a distributed memory parallel pro-
gram via MPI is similar to our migrating thread based implementation. The
Phish/C++ runs 7 processes as follows: One process reads packets, 4 processes

Lucata Unbounded Anomaly Detection 171

Fig. 5. Throughput scalability on Lucata using a per nodelet hash table size of 220

maximum elements.

re-bundle them by hashing the keys, and the remaining 2 processes perform the
analytic computation, each on a subset of the key space.

Additionally the MPI only version we implemented on the AMD Epyc based
cluster achieved throughput of up 1.36M datums/s with 1 producer and 0.65M
datums/s average with 64 producers, for a scaling factor of 0.6×. The initial
throughput of the conventional system is between 1 and 2 orders of magnitude
higher than the Lucata system. However as the system size is increased along
with the total number of datums to be analyzed we can see from Fig. 6 that the
conventional system begins to stagnate and decline as increased communication
overhead associated with a greater number of off node MPI messages takes its toll
on performance. This is if course something that may be rectified or lessened
by further development allowing for a more optimized hybrid MPI/OpenMP
implementation, which is something we will be taking a look at in the future.

In theory the time required to analyze any arbitrary datum should remain
constant. There are two reasons why this implementation may see variance here.
First the Lucata system is cacheless and insures that every read from main
memory performs an actual 8 byte read rather than hitting an closer and lower
latency cache as in conventional systems. Yet this does not mean that writes back
to main memory suffer the same penalties. In fact 64-bit writes back memory are
done by performing remote store operations directly in hardware and are very
efficient. This means that we can store results in memory in an asynchronous
manner which allows the executing thread to continue without having to wait
for an acknowledgement of write-back completion by the memory controller.

Secondly is a difference in execution time for a datum depending on whether
the hash table is full at the time of insertion. This is due to the use of the LRU

172 B. A. Page and P. M. Kogge

Fig. 6. Throughput comparison for conventional MPI implementation and Lucata
migrating threads. Hash table size is 218. Starting at 8 producers (to match Lucata
tests)

mechanism for maintaining a constant hash table size. Naturally the point at
which this key insertion cost becomes worst case will occur depends on the hash
table size chosen.

To illustrate this we increased hash table size assigned to each nodelet was set
to 220 elements. Figure 5 shows observed throughput for tests with an increased
hash table size of 220 elements per nodelet. As can be seen the overall behavior
remains the same with lower datum per nodelet counts achieving good scalability,
and larger datum counts flattening out quickly. Of particular interest is the
demarcation point between good and flattening scalability. With the smaller
hash table size all but three datum counts were tightly grouped at the bottom
of the chart and experienced the same stagnating behavior. This behavior was
expected however interestingly we saw that while even the largest datum counts
obtained improved throughput it was minuscule compared to the smaller hash
table tests.

7.2 Overlapped Datum Conversion and Analysis

Overlapping of communication and computation is a well known technique and
is capable of providing increased performance. In nearly every case the efficacy
of such overlapping requires the computational cost to exceed that of commu-
nication. The Lucata architecture is cacheless with no data cache to speak of
for improving performance on data accesses with good locality. In fact dur-
ing profiling we saw that the Lucata version requires nearly 2× the number of

Lucata Unbounded Anomaly Detection 173

memory access operations as the conventional implementation (if we ignore MPI
based buffer swaps per messages). Additionally a producer requires roughly 2800
instructions per datum conversion, while a consumer takes over 1.68 times as
many instructions (over 4700) to analyze a datum.

The processing cores on the Lucata system posses a 16 stage pipeline so
saturation without migration or stalling should occur around 16 threads per
nodelet. This indicates that the increased thread counts at which saturation
occurs due to an increase in an overlap of these “in-flight” threads which are
migrating and those currently in the pipeline. In short by increasing the thread
counts in both the producer and consumer pools we insure that the processing
elements are always performing useful work despite higher memory access counts.

The migration of a producer to a remote nodelet for assigning its datum con-
stitutes the communication overhead required by this algorithm. In contrast the
PHISH/C++ implementation which used MPI for inter-process communication
in Lucata thread migration overhead is overlapped with useful computation on
both the source and destination nodelets. Lastly our MPI implementation has
only one thread per process and therefore has a singular function. Despite this
good overlapping is gained by the conventional system since its producer do not
have a migrate and can utilize their core during nearly 100% of their execution
for converting datums.

In other words with our design the Lucata system suffers when too many
producers migrate to the same nodelet, as they may starve out the consumers
local to that nodelet until they have completed their assignment. The exact
performance impact is of course highly dependent on the keys being evaluated,
how threads are scheduled for execution, and the number of hardware threads
and memory channels present. Yet it is likely that given the right workload
partitioning the impact on performance should be kept to a minimum as we
have seen in our tests.

8 Conclusion

The results of this experiment seem to imply that the migrating thread archi-
tecture has much better scalability than the previous reported data. Addition-
ally it achieves good scalability despite the nodelet cores possessing much lower
computational power. Unfortunately it is difficult to draw direct comparisons
considering the dramatic difference in architectural design. The experimental
version of the Lucata cores run at just 0.175 GHz which is roughly 1/15 that of
the previously reported systems clock rate. If we take the single node through-
put of the Lucata system which was just 65,000 datums per second and adjust
proportionally for CR alone then the throughput increases to 0.99M datums/s.

Additionally modern conventional cores are designed to be dual or even quad
instruction issue wheres the Lucata Gossamer cores are single issue. This may
provide at least 2× improvement in throughput in future hardware iterations
bring it above that of the previously reported results. Lastly we attempted to
compare the systems on a per unit hardware basis by comparing the number of

174 B. A. Page and P. M. Kogge

datums per second per memory channel. Unfortunately however the raw timing
data for the original Firehose study is not available. We hope to perform larger
scale Firehose benchmark tests from which we can make more substantial com-
parisons. Another recent with compared Lucata to conventional systems for a
machine learning algorithm operating on sparse data sets reported non-zeros per
millisecond per memory channel values for the Lucata system up to 1.78× that
of the conventional AMD Epyc 7451 used in our Firehose variant 2 study.

Unlike our previous study on Firehose variant 1 this study performed the
ASCII key conversion as well as allowing threads to migrate throughout the
system in order to assign keys to remote nodelets. This lead to a much more
complete implementation of variant 2 of the Firehose streaming benchmark on
the migrating thread architecture. It is not hard to imagine that the performance
would be at least similar even with the ASCII keys if the nodelet cores were
replaced with ASIC versions running 10× or faster than the current FPGA.

In looking at the implementation the gains seem to come from a variety of
aspects of the migrating thread architecture. First is the lack of cache coherency
traffic and the need for complex routines to perform atomic updates to the hash
table, either locally or remotely. Second is the multi-threading that allows the
memory channels of each nodelet to be fully utilized, regardless of the non-
memory computations needed for each datum. Last but not least is the avoid-
ance of explicit messaging software needed to communicate between physically
separate nodes.

The next generation of the Lucata architecture is already in production and
boasts substantially higher core per node counts as well as a much richer set of
remote atomic operations with which greater thread migration and asynchronous
performance might arise. Near-term future work will focus on larger scale tests
on a system with greater than 8 nodes (64 nodelets) in order to see if scala-
bility observed here continues as expected. Additionally we intend to develop a
version of the code in which only a select number of nodelets perform ASCII
key conversion with all datum analysis occurring on a separate set of consumer
nodelets, such that producer threads do not interfere with consumer threads
during analysis.

References

1. Firehose benchmarks. http://firehose.sandia.gov/
2. Bader, D.A., et al.: STINGER: spatio-temporal interaction networks and graphs

(STING) extensible representation. Technical report, Georgia Institute of Technol-
ogy (2009)

3. Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algorithms,
with an application to counting triangles in graphs. In: Proceedings of the Thir-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2002, pp.
623–632. Society for Industrial and Applied Mathematics, Philadelphia (2002).
http://dl.acm.org/citation.cfm?id=545381.545464

http://firehose.sandia.gov/
http://dl.acm.org/citation.cfm?id=545381.545464

Lucata Unbounded Anomaly Detection 175

4. Becchetti, L., Boldi, P., Castillo, C., Gionis, A.: Efficient semi-streaming algorithms
for local triangle counting in massive graphs. In: Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD 2008, pp. 16–24. ACM, New York (2008). https://doi.org/10.1145/1401890.
1401898

5. Bernstein, P.A., Goodman, N.: Timestamp-based algorithms for concurrency con-
trol in distributed database systems. In: Proceedings of the Sixth International
Conference on Very Large Data Bases, VLDB 1980, vol. 6, pp. 285–300. VLDB
Endowment (1980). http://dl.acm.org/citation.cfm?id=1286887.1286918

6. Berry, J., Porter, A.: Stateful streaming in distributed memory supercomputers.
In: Chesapeake Large Scale Data Analytics Conference (2016)

7. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.:
Apache Flink: stream and batch processing in a single engine. In: Bulletin of the
Technical Committee on Data Engineering, December 2015

8. Dysart, T., et al.: Highly scalable near memory processing with migrating threads
on the emu system architecture, November 2016. https://doi.org/10.1109/IA3.
2016.7

9. Eaton, J.: FireHose, PageRank, and nvGRAPH: GPU accelerated analytics. In:
Chesapeake Large Scale Data Analytics Conference (2016)

10. Ediger, D., Jiang, K., Riedy, J., Bader, D.: Massive streaming data analytics: a
case study with clustering coefficients, pp. 1–8, May 2010. https://doi.org/10.1109/
IPDPSW.2010.5470687

11. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems
in a semi-streaming model. Theor. Comput. Sci. 348(2), 207–216 (2005). https://
doi.org/10.1016/j.tcs.2005.09.013

12. FIREHOUSE, S.B., with WATERSLIDE, E.: Karl Anderson. In: Chesapeake Large
Scale Data Analytics Conference (2016)

13. Kogge, P.M., Butcher, N., Page, B.: Introducing streaming into linear algebra-
based sparse graph algorithms, July 2019

14. Kogge, P.: Of piglets and threadlets: architectures for self-contained, mobile,
memory programming. In: Innovative Architecture for Future Generation High-
Performance Processors and Systems, pp. 130–138, January 2004. https://doi.org/
10.1109/IWIA.2004.10005

15. McGregor, A.: Graph stream algorithms: a survey. SIGMOD Rec. 43(1), 9–20
(2014). https://doi.org/10.1145/2627692.2627694

16. Page, B.A., Kogge, P.M.: Scalability of streaming on migrating threads. In: High
Performance Extreme Computing (HPEC), September 2020

17. Plimpton, S.J., Shead, T.: Streaming data analytics via message passing with appli-
cation to graph algorithms. J. Parallel Distrib. Comput. 74(8) (2014). https://doi.
org/10.1016/j.jpdc.2014.04.001

18. Riedy, J., Bader, D.: Stinger: multi-threaded graph streaming, May 2014

https://doi.org/10.1145/1401890.1401898
https://doi.org/10.1145/1401890.1401898
http://dl.acm.org/citation.cfm?id=1286887.1286918
https://doi.org/10.1109/IA3.2016.7
https://doi.org/10.1109/IA3.2016.7
https://doi.org/10.1109/IPDPSW.2010.5470687
https://doi.org/10.1109/IPDPSW.2010.5470687
https://doi.org/10.1016/j.tcs.2005.09.013
https://doi.org/10.1016/j.tcs.2005.09.013
https://doi.org/10.1109/IWIA.2004.10005
https://doi.org/10.1109/IWIA.2004.10005
https://doi.org/10.1145/2627692.2627694
https://doi.org/10.1016/j.jpdc.2014.04.001
https://doi.org/10.1016/j.jpdc.2014.04.001

HTA: A Scalable High-Throughput
Accelerator for Irregular HPC Workloads

Pouya Fotouhi(B) , Marjan Fariborz , Roberto Proietti ,
Jason Lowe-Power , Venkatesh Akella , and S. J. Ben Yoo

University of California Davis, Davis, CA 95616, USA
{pfotouhi,mfariborz,rproietti,jlowepower,akella,sbyoo}@ucdavis.edu

Abstract. We propose a new architecture called HTA for high through-
put irregular HPC applications with little data reuse. HTA reduces the
contention within the memory system with the help of a partitioned
memory controller that is amenable for 2.5D implementation using Sili-
con Photonics. In terms of scalability, HTA supports 4× higher number
of compute units compared to the state-of-the-art GPU systems. Our
simulation-based evaluation on a representative set of HPC benchmarks
shows that the proposed design reduces the queuing latency by 10% to
30%, and improves the variability in memory access latency by 10% to
60%. Our results show that the HTA improves the L1 miss penalty by
2.3× to 5× over GPUs. When compared to a multi-GPU system with
the same number of compute units, our simulation results show that the
HTA can provide up to 2× speedup.

1 Introduction

The advent of exponentially-growing data-intensive applications across several
domains has created a category of throughput-oriented workloads. This class of
irregular applications impose new challenges for computer architects as their
data sets are increasingly sparse and they exhibit poor locality in memory
accesses. Unlike traditional compute-intensive applications, computing solutions
designed for irregular applications should focus on reducing the latency and
energy overheads of inevitable data movements.

The computing community has been utilizing GPUs as data-parallel accel-
erators given their massive throughput offerings. Though GPUs have proved to
be effective as high throughput accelerators for many regular applications, we
explore specializing data-parallel accelerators for efficient execution of irregu-
lar data-parallel workloads. These applications exhibit random memory access
patterns, essentially making any shared component an architectural bottleneck
limiting the obtainable throughput. Our main insight in designing HTA is to
reduce the contention within the memory system and reduce the energy and
performance cost of data movement.

This work was supported in part by ARO award W911NF1910470.

c© Springer Nature Switzerland AG 2021
B. L. Chamberlain et al. (Eds.): ISC High Performance 2021, LNCS 12728, pp. 176–194, 2021.
https://doi.org/10.1007/978-3-030-78713-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_10&domain=pdf
http://orcid.org/0000-0002-5891-4003
http://orcid.org/0000-0002-1896-1489
http://orcid.org/0000-0001-6378-7005
http://orcid.org/0000-0002-8880-8703
http://orcid.org/0000-0003-3014-5326
http://orcid.org/0000-0002-7420-1871
https://doi.org/10.1007/978-3-030-78713-4_10

HTA: A Scalable High-Throughput Accelerator for Irregular HPC Workloads 177

On the scalability front, as we reach the end of transistor scaling, we cannot
simply rely on increasing the number of compute units on a single die to scale.
An alternative approach is to design processors utilizing multiple “chiplets” [13].
Chiplets assembled using advanced packaging technologies, such as multi-chip-
modules (MCMs), can offer a scalable design compared to one large monolithic
chip. However, the inter-chiplet communication and its energy efficiency are
known as the dominant factors towards performance and scalability due to signif-
icant power penalties brought by MCM designs [4]. We propose to address this
challenge by taking advantage of recent advances in 2.5D/3D packaging with
Silicon Photonics, which offers advantages of significantly lower energy per bit
and scalability to much larger interposers than what today’s reticle size limits
allow. For example, recently TSMC and Broadcom announced 1700 mm2 inter-
poser [36] which is twice the size of the maximum reticle size by proposing to
stitch together multiple interposers together.

In this paper, we present the design, evaluation, and 2.5D/3D packaging
solution of the high-throughput scalable accelerator architecture called HTA.
HTA’s memory architecture exploits a partitioned memory controller (PMC) and
all-to-all SiPh interconnects replacing conventional cross-bar based systems to
support nearly-contention-free, high-throughput, and scalable data movement
between the compute cores and the main memory. The partitioned memory
controller reduces the queuing latency by 10% to 30% which translate to 5%
to 26% reduction on overall memory access latency. In addition, addressing the
contention in the memory controller reduces the variations in access latency by
10% to 60% in terms of 95th percentile latency. Furthermore, HTA improves
the performance of the memory system and reduces L1 misses penalty by 2.3×
to 5×. Evaluating our design at scale shows 1.5× speedup on average for HTA
compared to a multi-GPU system for the same number of compute units.

The rest of the paper is organized as follows. Section 2 presents challenges
towards scaling the memory system in the state-of-the-art data-parallel accel-
erators. Section 2.1 describes the architecture of partitioned memory controller,
utilizing an interconnect fabric described in Sect. 2.2. Section 2.4 presents HTA
architecture which builds on top of the proposed memory system. Through simu-
lations with the methodology described in Sect. 3, the performance of partitioned
controller and the proposed HTA architecture are evaluated in Sect. 4. Section 5
presents he related work, followed by the conclusions in Sect. 6.

2 HTA - Background, Rationale, and Design

GPUs are the de facto choice for high throughput accelerators in the HPC
domain. The left side of Fig. 1 shows an overview of state-of-the-art GPUs. We
identify four key challenges to the architecture shown in Fig. 1 when it comes to
scaling irregular applications.

1) Crossbar Radix: Increasing the number of core clusters requires increas-
ing the radix of the electrical crossbar between the cores and the L2 caches as
current systems implement a mostly uniform L2 architecture. In addition to

178 P. Fotouhi et al.

Fig. 1. (left) Overview of baseline memory system where different core clusters (CCs)
share a crossbar, a single read/write queue per channel, and a last level cache. (right)
Proposed memory system addresses the contention by providing dedicated queues for
each core cluster to send memory request to every channel through an all-to-all inter-
connect.

the power and area overheads of the crossbar, it imposes a trade-off between
latency and bandwidth: to increase the bisection bandwidth there must be
more layers in the crossbar increasing both latency and area.
2) Overheads of Data Movement: Moving the data through multiple
levels of memory hierarchy adds to memory access latency and results in
increased energy consumption. This challenge becomes more important as
physical distance between different levels increases in multi-chip module sys-
tems. In fact, the performance and energy overheads of data movements are
known to be the main limiting factor towards scalability of multichip modules
systems [4].
3) Bandwidth to Memory: Scaling the number of compute units in the
system increases the demand for bandwidth to memory. Already limited by
the latency-bandwidth trade-off due to the crossbar design, the number of
available pins (between the compute dies and memory) add another constraint
on bandwidth, especially in chiplet-based designs.
4) Variability in Memory Latency: Memory requests from different pro-
cessing units share many deep queues including the crossbar, an L2 bank, the
memory controller queues, DRAM bus, and DRAM banks. The contention
from different compute units at these components increases the queuing delay
which leads to variations in access latency and adds to the complexity of the
scheduling for the memory controller and GPU cores.

Recent design trends from NVIDIA and AMD have taken steps to address these
challenges. These solutions are inspired by similar techniques used in CPUs, and
as a result, they do not address the underlying problem (i.e., contention) espe-
cially as we go towards scaling these systems. For instance, on a single GPU,
NVIDIA’s Ampere architecture [26] increases the number of compute units by
50% (from 84 in Volta to 128 in Ampere). To maintain a reasonable radix for
the crossbar, the crossbar in is partitioned into two pieces. However, this app-
roach introduces non-uniform latency and bandwidth to the memory, increasing
the programming complexity on these systems. AMD’s RDNA architecture [1]

HTA: A Scalable High-Throughput Accelerator for Irregular HPC Workloads 179

reduces the radix of the crossbar by adding a L1 cache which filters requests
from all Compute Units (CUs) within a core cluster. While this approach sim-
plifies the crossbar design, and reduces the pressure on the globally shared L2
cache, it adds to variability in memory access latency and only helps workloads
which have regular memory access patterns or temporal reuse. AMD’s CDNA
architecture [2] eliminates the L1 cache along with the fixed-functions logic ded-
icated for graphics application to free up area and power for adding more CUs.
However, the crossbar (and subsequently the L2 cache) is divided into two slices
to achieve a reasonable radix for the state-of-the-art electrical interconnect tech-
nologies. Similar to NVIDIA’s design, this approach increases the programming
complexity by introducing non-uniformity in both latency and bandwidth, and
further increases the variability in memory access latency.

The main idea underlying our proposal for HTA is to eliminate the contention
in the memory subsystem as much as possible. We focus on three sources of
contention: the on-chip crossbar, the globally shared L2 cache, and the memory
controller queues. Our proposal makes the following contributions towards
addressing the sources of contention in data-parallel accelerators.

(a) To reduce the contention at the request queues, we partition the memory
controller into two parts: core-side controller with dedicated queues per core
cluster (CC), and memory-side controller in charge of scheduling and issu-
ing DRAM commands. This reduces the contention on read/write queues by
offering dedicated queues for each core cluster and reduces queuing latency
by avoiding the head-of-line blocking in scheduling. We will discuss the archi-
tecture and scheduling of proposed memory controller in Sect. 2.1
(b) The contention at the crossconnect is reduced by providing direct point-
to-point links. However, implementing such a topology using electrical links
would be extremely challenging due to bandwidth, energy, and routing limita-
tions. To that end, and to reduce the overhead of data movements, we leverage
an efficient all-to-all passive optical fabric (called Arrayed Waveguide Grat-
ing Router or AWGR) enabled by silicon photonics by taking advantage of
2.5D packaging. Describing the key enabling technology for our architecture,
the details of proposed interconnect and packaging solutions are presented in
Sect. 2.2 and Sect. 2.3 respectively.
(c) We utilize the partitioned memory controller design, and propose HTA
in Sect. 2.4, which benefits from a scalable unified memory architecture and
avoid NUMA challenges.

2.1 Partitioned Memory Controller

In this section, we present the details of our proposed Partitioned Memory Con-
troller (PMC) which consists of two parts: the compute-side memory controller
(CMC) and the memory-side memory controller (MMC). For the discussions and
evaluations presented in this paper, we target HBM as the DRAM device, but
the core idea of our proposal is agnostic to DRAM micro-architecture and can
be applied to other DRAM technologies (e.g., GDDR, DDR, etc.) in a similar

180 P. Fotouhi et al.

(a) Baseline Memory Controller (b) Partitioned Memory Controller

(c) Scheduling timeline for the baseline (d) Scheduling timeline for PMC

Fig. 2. Working example of PMC, showing how the head-of-line blocking is addressed
compared to the baseline. The stalls are avoided by scheduling requests from different
core clusters, and is limited only to the conflicting requests within a core cluster.

fashion as we focus only on the memory controller design and require no changes
to DRAM core architecture (see Sect. 2.3 for details).

Figure 2b presents an overall view of the components within PMC. The key
idea is to eliminate the contention on request queues and improve bank uti-
lization by avoiding stalls due to bank conflicts between requests from different
core clusters. With dedicated set of queues per channel for each core cluster, the
variation in the memory access latency will be limited to unavoidable conflicting
patterns from a single core cluster.

While dedicated queues eliminate the contention, the memory controller still
needs to have a single scheduler per bank as point of reference for DRAM timings.
Thus, we partition the memory controller into two parts. We keep the front-end
(containing dedicated read/write queues) on the accelerator side, and move the
back-end (including scheduling logic, and command queues) to the memory side.

Our design requires an all-to-all interconnect between the front-end and the
back-end. Section 2.2 describes how a multi-wavelength routing device called
AWGR can be used to replace the long-latency electrical crossbar while offering
high-throughput contention-free communication.

Compute-Side Memory Controller (CMC). As Fig. 2b illustrates, we keep
read and write queues on the processor side, with dedicated read and write
queues for each channel. The idea is to limit the contention only to requests from
the CUs within a single core cluster, and not all core clusters within the system.
These queues are the result of breaking down the single shared read/write queue
in the baseline memory controller shown in Fig. 2a into per core cluster queues.

HTA: A Scalable High-Throughput Accelerator for Irregular HPC Workloads 181

Requests from L1 caches in each core cluster are routed to proper queues
according to the address mapping scheme, similar to how corresponding L2
banks are selected for each request in the baseline architecture. Each Compute-
side Memory Controller (CMC) has dedicated links to communicate with the
Memory-side Memory Controller (MMC) for a given channel.

Memory-Side Memory Controller (MMC). Figure 2b shows two chan-
nels of our proposed memory controller, and connectivity between MMC and
read/write queues from different CMCs. The scheduler looks at requests from
all core clusters regardless of their queue occupancy. Therefore, the scheduler
can continue servicing memory requests even when one requester has several
conflicting requests issued within a short period of time—a common case in
high-throughput accelerators illustrated in Fig. 2.

At each cycle, all CMCs send a copy of the request at the head of their queues.
Then, an MMC selects a request to serve, it broadcasts back the requester ID
(i.e., the winner) and the bank number to all CMCs. Thus, other requesters
with requests for the same bank at the head of their queues can wait until the
response is provided. Requests from different requesters (i.e., core clusters) are
serviced in a round-robin fashion with an FR-FCFS scheduling policy similar to
the baseline.

Figure 2 illustrates how the partitioned memory controller can address the
head-of-line blocking problem. One core cluster (CC0) is sending several conflict-
ing requests (going to the same bank) to the first channel (CH0). This results
in several stalls during the scheduling. However, these stalls can be avoided
by addressing non-conflicting requests from other CCs between the conflicting
requests. PMC achieves this by allowing the MMC to select from dedicated
queues for each channel within each CMC. Current systems use deep associative
queues to avoid these stalls by finding requests to different banks within the
queue. However, one CC can fill the queue with conflicting requests in a short
period of time. This leaves the scheduler with no other options to choose from,
even using the most sophisticated logic-intensive associative queues, and results
in unnecessary back pressure applied to the whole system.

We should note that the processor’s total queue size remains unchanged
for each core cluster. We are essentially breaking down a large shared queue
into n (i.e., number of channels) smaller dedicated queues. The overhead of
this is approach is limited to a small fraction to replicate the logic needed for
maintaining those queues. On the memory side, there will be a small overhead
for the added queues and we envision this logic to be implemented on the logic
layer in 3D staked memories.

2.2 Interconnect

To address the contention at the crossconnect, our design utilizes a point-to-point
connectivity between the core clusters and memory controllers. Besides address-
ing the contention, our proposed architecture requires an all-to-all connectivity
between CMCs and MMCs. This connectivity allows for our scheduling policy
to make local decisions at the MMC and updating CMCs through broadcasting.

182 P. Fotouhi et al.

As discuss earlier, designing a scalable high-throughput accelerator requires
addressing the cost of data movements. Disaggregating the monolithic chip into
multiple smaller chiplets allows for more input/output interfaces for each core
cluster. However, chiplet electrical interconnection suffers from high distance-
dependent signal loss and limited I/O bandwidth [5]. Therefore, interconnecting
many non-adjacent chiplets require multi-hop networks with repeaters, incurring
large latency and energy overheads. These challenges can be overcome by silicon
photonic technology: reducing latency with almost distance-independent commu-
nication energy and providing high pin bandwidth density through wavelength-
division multiplexing (WDM) [25]. In the following sections, we present a sum-
mary on the principle of operation for optical links used in our design, and discuss
the details about our proposed interconnect fabric and packaging solution.

Silicon Photonics. Integrated optical interconnects, enabled by silicon pho-
tonics, offer properties that can be exploited to address the performance and
energy overheads of data movements in high-throughput accelerators.

An external WDM laser (in form of an optical frequency comb source or indi-
vidual lasers) generates the optical signal at the required wavelengths, which are
then coupled from a fiber into on-chip waveguides. On-chip modulators encode
bits onto wavelengths (one modulator for each wavelength). Then, the modu-
lated wavelengths traverse the waveguides and are filtered out and converted
back into the electrical domain by on-chip photodetectors. In terms of latency,
electrical-to-optical (EO) and optical-to-electrical (OE) signal conversions are
done at one cycle and incur no additional latency to the transmission line.

Arrayed Waveguide Grating Router. One interesting property of WDM
technology (aside from its bandwidth benefits), is that it allows connecting a
single node to multiple receiver nodes by leveraging wavelength-selective routing
devices. This method allows implementing an all-to-all network without a large
number of point-to-point ports.

Among different SiPh wavelength routing devices that have been demon-
strated [5], we utilize the Arrayed Waveguide Grating Router (AWGR) with a
footprint of ∼1 mm2 [31] to provide contention-less point-to-point connectivity
between all chiplets. AWGR is a passive SiPh fabric which provides all-to-all
connectivity between any input and any output port. Several studies explored
AWGRs as a uniquely compact solution for all-to-all interconnection with lower
loss and crosstalk compared with other SiPh devices providing similar connec-
tivity [14,17,40]. The reader can refer to the following articles for what concerns
the physics, design principle, and scalability of AWGRs [15,29,41].

2.3 Packaging

Figure 3 presents an overview of the packaging approach we use in our
design. We adopt a previously proposed technique for intra-package commu-
nication [9,14,38] which can be applied to our memory controller design.

HTA: A Scalable High-Throughput Accelerator for Irregular HPC Workloads 183

(a) Top-view. (b) Side view.

Fig. 3. Example of proposed packaging solution, where compute and memory dies are
optically-interconnected through an AWGR using SiPh transceivers with transceiver-
chiplets and Si bridges on an organic substrate.

This approach considers developing dedicated SiPh transceiver chiplets con-
nected to their respective (compute or memory) dies.

The advantage of this design decision is that it can be leveraged to provide
support for off-the-shelf memory devices (e.g., HBM, GDDR, etc.) by choosing
the proper command scheduler in MMCs. By integrating the MMC and SiPh
TRx (on the memory side) on the same die, no extra logic is required on memory
dies, and MMCs can be designed to work with existing PHY interfaces - with
minimal distance for data movements on electrical wires.

The dedicated SiPh transceiver chiplets connected to their respective dies
on one side through Si bridges and to AWGR (the fabric providing all-to-all
connectivity) through polymer waveguides (PWGs). These polymer waveguides
are integrated on top of the organic package substrate and provide inter-chiplet
optical connectivity. The reader can refer to the work of Dangel et al. [11,12] for
the details on the overall integration process for polymer waveguides.

Combining SiPh and Si bridges, our proposal utilizes each interconnection
technology where it is the most efficient: SiPh for long-distance cross-package
interconnect between chiplets and Si bridges for short-distance electrical inter-
connect between the TRXs and the memory controller.

SiPh manufacturing processes exploits well established CMOS processes, and
photonic integrated circuit design kits (PDKs) have seen significant growth in
the past ten years, resulting in cost-effective SiPh integration [39]. The reader
can refer to [14,20] for more detailed cost analyses and roadmap.

2.4 HTA Architecture

We discussed the challenges in scaling the memory architecture for today’s high-
throughput accelerator and how our proposed memory architecture addresses
them. In this section we build on top of the proposed memory system, and
introduce a high-throughput accelerator (HTA) architecture which takes the

184 P. Fotouhi et al.

advantage of low-latency all-to-all optical fabric and allows elimination of the
shared last level cache.

Elimination of last-level caches provide significant advantages in terms of
dedicating more area for compute, reducing access latency, and improving pre-
dictability in memory access time. The photonic interconnect used in our pro-
posal provides us higher bandwidth at a lower energy per bit cost to make the
underlying design tradeoffs such as eliminating the last level caches feasible,
especially for irregular workloads with poor locality.

Implications on Core Architecture. Memory accesses in GPUs takes hun-
dreds of cycles to be serviced, and this latency can drastically change during the
application execution as different compute units compete for receiving their data
through shared memory channels. GPU architects have addressed this issue by
increasing the number of contexts executed simultaneously on GPUs. However,
this design choice comes with several challenges:

Context Scheduler: Allowing execution of multiple contexts at the same time
requires dedicated logic to maintain, track, the state for each of them. Moreover,
based on the state of contexts, additional logic is required to perform scheduling
with proper arbitration and decoding units involved.

Physical Register Files: GPUs rely on large register files to store data required
for computation. Providing support for tens of contexts to be executed simulta-
neously translates in larger register files, scaling almost linearly with the number
of contexts supported.

Both area and power dedicated to the operations discussed above are obsta-
cles towards achieving scalability for high-throughput accelerators. Our proposed
memory architecture mitigates these overheads by lowering the access latency
and improving the predictability in memory access. The evaluation of these
opportunities for micro architectural improvements requires substantial work in
terms of modeling, and we leave them for the future work.

Scalability of HTA. One of the main benefits of SiPh interconnects is their
distance-independent energy consumption and performance. Combining this
with the benefits of packaging solution discussed in Sect. 2.3 allows HTA to
scale.

Considering the area saving from eliminating L2 cache (occupying ∼50% of
chip area), a single package instance of HTA can support 4× more compute units.
Moreover, multiple packages can be utilized to scale further, and realize a scalable
high-throughput accelerator with a unified address space without considerable
energy and performance overheads.

The major component in HTA that needs to scale with the system is the
AWGR. In this paper, we study HTA with 64 and 256 CUs which can be realized
using 16 × 16 and 64 × 64 AWGR respectively. Scaling above 256 CUs requires
AWGR with more than 64 ports. While 512 × 512 AWGR has been demon-
strated [8], the main challenge for implementing AWGRs with high port counts

HTA: A Scalable High-Throughput Accelerator for Irregular HPC Workloads 185

(i.e., >64) is the optical crosstalk. However, the new Thin-CLOS architecture
successfully demonstrated by Proietti et al. [29] can utilize multiples of smaller
AWGRs (lower port count) in parallel to provide the same functionality of a
larger AWGR at lower crosstalk. While these solutions have larger footprints,
the area overhead might be negligible in large accelerators with more than 256
CUs.

The bandwidth between any input-output pair in AWGR is limited to the
information that can be carried out by a single modulated wavelength. If the
bandwidth requirements exceed what a single wavelength offers, there are two
alternative options. The first one is to leverage multiple free spectral ranges
(FSRs) of an AWGR [16,17], and virtually create a parallel channel of com-
munication. The second one is to use spatial-division multiplexing (SDM), i.e.,
integrating and transmitting data through parallel AWGRs (either planar or 3D-
stacked [32]). Multi-FSR strategy requires a broader laser spectrum and higher
laser power to compensate for higher crosstalk inside the AWGR and to guaran-
tee the required minimum optical power at the receiver. The SDM approach has
similar laser power requirements but does not need a broader laser spectrum.
However, it needs a larger die area or more SiPh layers, as well as more optical
IO pins.

3 Methodology

3.1 System Comparisons

To evaluate our proposed HTA architecture, we compare it against a system sim-
ilar to AMD’s RDNA architecture with details of the memory hierarchy shown
in Fig. 1. CUs within a core cluster have private caches (“L0”) and share the L1
cache, which centralizes all caching functions within each cluster [1]. L1 caches
are connected to a globally shared L2 cache through a long-latency crossbar
interconnect, resulting in ∼100 cycles hit latency for L2 [21]. Therefore, for our
simulations, we modelled the electrical crossbar with a latency of 50 cycles in
each direction.

Within the memory controller of a given channel, all requests from different
CUs share a read and a write queue. In each cycle, the scheduler performs an
associative search and issues commands for requests in a First-Ready First-
Come-First-Served (FR-FCFS [30]) fashion. For our evaluations, we refer to this
design as the baseline memory controller. While we use AMD’s RDNA memory
hierarchy as our baseline, the challenges in scaling the memory hierarchy of
GPUs are common in NVIDIA’s systems and our proposal can be applied there
similarly.

One example of HTA can host 64 CUs by utilizing a 16 × 16 AWGR to
interconnect eight compute chiplets (each with four CUs) to four stacks of
HBM2 memory. SiPh links use WDM with 16 wavelengths and perform mod-
ulation/demodulation at 32 Gbps. On the compute side, each compute chiplet
uses one SiPh WDM TRX with 64 GB/s bandwidth in each direction, making a

186 P. Fotouhi et al.

Table 1. Simulation parameters

Compute cluster

Number of CUs 64 CUs per CC 4

Memory hierarchy

L0 V$ 16 kB (per CU) L0 I$ 32 kB (per CC)

L0 K$ 16 kB (per CC) L1 $ 64 kB (per CC)

L2 $ 2 MB (8 banks) DRAM 4GB HBM2 [22]

total of 16 SiPh TRXs for CMCs. On the memory side, four SiPh WDM TRXs
can match the 256 GB/s bandwidth of a single stack of HBM2 which results in
a total of 16 SiPh TRXs for MMCs.

3.2 Simulations

Performance. To model our target systems we use MGPUSim [34] which mod-
els the Graphics Core Next 3 (GCN3) ISA. We extended the simulator to model
a three level cache hierarchy. We integrated the timing model from DRAM-
Sim3 [22] after extending it to model our proposed partitioned memory controller
design discussed in Sect. 2. We utilize MGPUSim for collecting the traces on the
memory system, and piped those traces on detailed timing model on DRAMSim.

For the performance of the interconnect technologies used in this paper, we
used latency reporting in the previous work [14,21]. The details of the modeled
system in the simulator for different components are listed in Table 1. It should
be noted that the trace-based evaluation approach limits our reporting to the
performance of the memory system, and does not allow us to obtain execution
times for the two systems under comparison. However, since a significant portion
of the pipeline stalls are due to memory accesses, the performance of the memory
system would be a reasonable candidate for our evaluation. To this end, we will
look at the penalty of L1 misses when comparing the baseline with PMC in
Sect. 4.

For evaluating our proposal we used benchmarks from AMD’s Accelerated
Parallel Processing (APP) Software Development Kit (SDK), Hetero-Mark suite
[33], and Scalable Heterogeneous Computing (SHOC) suite [10].

Among those supported by MGPUSim, we chose different benchmarks with
different memory behaviours to evaluate our proposal under different scenarios.
Breadth-first Search bfs and Page Rank pr represent applications with irregular
memory access patterns (i.e., poor locality). AES-256 Encryption (aes), Fast
Fourier Transform (fft), and FIR Filter (fir) represent typical compute intense
HPC applications with considerable amount of data reuse (i.e., medium locality).
Simple Convolution (conv) implementation used for this work divides the image
into sub-images to maximize data reuse (i.e., high locality).

HTA: A Scalable High-Throughput Accelerator for Irregular HPC Workloads 187

4 Evaluation

In this section, we present the evaluation results on three aspects of our proposal.
First, we look at the performance of the proposed memory controller design

compared to the baseline memory controller discussed in Sect. 2. This analysis
is done under the same cache hierarchy. In these experiments, we look at the
average DRAM access latency in both designs, as well as 95th percentile latency
as a measure of divergence in the access latency. Second, we evaluate HTA design
against the baseline GPU architecture. In this set of analyses, we evaluate our
memory controller design combined with a new cache hierarchy, and model a
system like the one shown on right in Fig. 1. We report the average miss penalty
for L1 caches in the form of Average Memory Access Time (AMAT) for L1
misses. Third, we evaluate our proposal at scale by comparing the performance
of HTA with 256 CUs against a multi-GPU system with 4× 64CU GPUs.

4.1 Evaluation of Partitioned Memory Controller

As our first step in evaluating our proposed architecture, we compare the perfor-
mance of the partitioned memory controller against the baseline memory con-
troller, both using the same cache organization. To emphasize on the importance
of the enabling technology used in our design, an implementation of PMC using
electrical links (PMC-E) is evaluated.

PMC design reduces access latency divergence by avoiding head-of-line block-
ing in scheduling. In the baseline design where all requesters share a single queue,
if one requester sends a stream of requests over a short window (a common case
in data-parallel accelerators), requests from other requesters are blocked until
DRAM manages to return pending requests. PMC avoids this by having ded-
icated queues for each requester and directly applies the back-pressure to the
original requester and not the whole system. Figure 4b shows the 95th percentile
in access latency, indicating a significant reduction in memory latency variation
for PMC over the baseline memory controller. Depending on the access pat-
tern in each workload, the 95th percentile in access latency is improved by 10%
to 60%. The benefits gained through scheduling are strong enough to result in
improved tail latency even for the electrical implementation of the PMC which
suffers from high-latency links.

Besides improving the predictability in access latency, PMC improves the
access latency by increasing parallelism in bank accesses within the DRAM.
Figure 4a depicts the average memory latency for the baseline memory controller
and the proposed PMC. PMC achieves a lower average access latency by avoiding
a portion of bank conflicts in the memory requests. If one requester sends several
conflicting requests, those would limit bank activations in the baseline design,
while in PMC, the scheduler can schedule requests from other requesters. There-
fore, the queuing portion of memory access is reduced by 10% to 30% depending
on the access pattern exhibited by each workload.

Both PMC-E and PMC take advantage of the scheduling scheme offered by
PMC and avoid head-of-line blocking which translates to improvements in tail

188 P. Fotouhi et al.

(a) Average DRAM access latency

(b) 95th percentile latency for DRAM access

Fig. 4. DRAM performance for the baseline memory controller (base) compared to a
system utilizing partitioned memory controller with implemented with electrical and
SiPh links (PMC-E and PMC, respectively). (a) In terms of access latency, PMC
improves the queuing latency by 10% to 30% resulting in 5% to 26% reduction on overall
access latency compared to the baseline memory controller. (b) The 95th percentile
latency for DRAM access is improved by 10% to 60% by reducing contention at read
and write queues within the memory controller.

latency. This is purely due to the scheduling scheme in PMC, and it is indepen-
dent of the technology used to implement the point-to-point fabric. However, as
described in Sect. 2.1, the PMC design makes the crossbar latency part of the
memory access. Therefore, the latency overhead imposed by the interconnect
used in PMC is a critical part of this design. While the PMC design improves
the average access latency by 10%–30% (i.e., 5–20 ns), these improvements can
be masked when using a long-latency crossbar (e.g., 50 ns). As illustrated in
Fig. 4b, the implementation of PMC using electrical links (PMC-E) improves
the tail latency. However, as shown in Fig. 4a, the average access latency is
significantly increased as the result of long-latency electrical links used in this
design. This analysis shows the importance of interconnect technology used for
our proposal, making SiPh and AWGR the key enablers for this design.

4.2 Evaluation of HTA

As the next step, we investigate the performance of proposed HTA system which
allows for elimination of the last level cache against the baseline GPU described
in Sect. 3, along with a GPU with 40 MB of last level cache. In order to anal-
yse different architectural differences between HTA and the baseline, we present
evaluate two middle point between the two systems. First, we modeled a system

HTA: A Scalable High-Throughput Accelerator for Irregular HPC Workloads 189

Fig. 5. Average Memory Access Time (AMAT) for L1 misses. The baseline (GPU)
is compared to a GPU with 40 MB of last level cache (GPU-LC), a similar system
using PMC (HTA-L2), an implementation of HTA using electrical links (HTA-E), and
ultimately the proposed HTA. HTA improves the average L1 miss penalty by 2.3×
to 5× compared to the baseline GPU architecture by avoiding data transfers over a
high-latency crossbar.

similar to the baseline which utilizes the PMC under the same cache organiza-
tion (labeled HTA-L2). Moreover, we modeled HTA implemented using electri-
cal interconnects to separate the architectural changes from the benefits gained
purely from SiPh technology (labeled HTA-E).

As we discussed earlier in Sect. 3, our trace-based evaluation does not allow
us to report runtime numbers. Thus, we choose to report the overall performance
of the memory system. Figure 5 presents the L1 miss penalty, as a measure of
performance of the memory system for both architectures under investigation.
Average miss penalty for L1 caches is calculated in the form of AMAT for L1
misses.

As the third bar (HTA-L2) in Fig. 5 shows, DRAM access latency improve-
ments gained from PMC result in 10–15% reduction in L1 miss penalty. However,
the latency-intensive (50 cycles) consult with the last level cache is hiding most
of the benefits achieved. With L2 caches eliminated in HTA, all L1 misses are
directly added to the CMCs, where requests are transferred over the all-to-all
fabric to the MMCs.

Even the HTA system using electrical links (with 50 cycles of latency between
CMCs and MMCs) significantly reduces the L1 miss penalty. Taking advantage
of low-latency (3 cycles) interconnect fabric enabled by SiPh, HTA reduces the
latency cost of L1 misses by 2.3× to 5×.

Reductions on the average miss penalty for L1 caches are mostly obtained
through improvements on the 95th percentile in access latency, emphasizing the
importance of variations in memory access latency in the overall performance of
the memory system for high-throughput accelerators.

The second bar (GPU-LC) represents a GPU with a large (i.e., 40 MB) last-
level cache, similar to the architectural approach taken by NVIDIA [26], lowering
the AMAT by reducing the traffic to DRAM. This approach benefits workloads
with high locality. However, as can be seen in Fig. 5, it will only achieve a small
fraction of improvements offered by HTA for irregular HPC workloads with
sparse data accesses.

190 P. Fotouhi et al.

Fig. 6. The speedup of HTA with 256 CUs compared to a multi-GPU system with 4
GPUs each with 64 CUs. The overhead of data movements in multi-GPU setup result
in a speedup of up to 2× for HTA.

4.3 Comparison with Multi-GPU Systems

A key motivation for our HTA design is to achieve scalability. Utilizing a 64×64
AWGR, HTA can deliver an accelerator with 256 CUs. The state-of-the-art GPU
systems can achieve this scale only by combining multiple GPUs.

For the last part in evaluating HTA, we compared its performance against a
multi-GPU system with the same number of compute units (256 CUs). It should
be noted that not all the benchmarks provided support for multi-GPU execution,
and we only had a few options to run this experiment. Also, we should note that
the speedups reported in Fig. 6 are mainly a lower-bound for what the HTA can
achieve. As of today, MGPUSim lacks a memory controller with timing details,
and DRAM responses are satisfied at a flat latency. That is the main limiting
factor for us to evaluate PMC in terms of execution time. However, to show the
potential benefits of a scalable system enabled by HTA, we modeled a system
with the average DRAM access latency measured in DRAMSim for the baseline
controller and PMC. This approach does not take into account the benefits of
lower variations in memory access achieved by PMC, and does not reveal the
full performance potential of HTA.

According to the evaluation results shown in Fig. 6, HTA can achieve 1.5×
speedup on average compared to a multi-GPU system. This improvement is
mainly achieved in HTA by avoiding the cross-GPU communication and schedul-
ing overheads in a multi-GPU system.

One interesting observation here is the overhead of a multi-GPU system for
different workloads. As can be seen in Fig. 6, applications like aes or conv with
smaller data sharing between their kernels experience less overhead (∼10%) in
the multi-GPU system. On the other hand, applications with more inter-kernel
data dependencies such as Page Rank (pr), fft, and Floyd Warshal (fw) require
more data movements between kernels (running on different GPUs), and result
in larger slowdowns (up to 2×) in a multi-GPU setup. These variations depend
on both architecture and workload, and impose several barriers in utilizing multi-
GPU systems. HTA allows the programmers to migrate their applications to a
scalable platform, and avoids considerable performance overheads especially for
applications with significant data sharing across different compute units.

HTA: A Scalable High-Throughput Accelerator for Irregular HPC Workloads 191

5 Related Work

Several studies have looked at the scalability of GPUs. Vijayaraghavan et al.
illustrated the roadmap for exascale computing, and suggested aggressive use
of chiplet technologies and die-stacking to meet a scalable system design [37].
MCM-GPU [3] argues that GPU scalability can be achieved by partitioning the
GPU dies into GPU modules and reducing the cross GPU traffic. Pal et al. took
a different approach, and looked at the design space of wafer-scale GPUs [28],
where pre-manufactured GPU dies are directly bonded on to a silicon wafer
which includes the interconnection fabric on it. Arunkumar et al. [4] created a
framework for quantifying the scaling efficiency in terms of both performance
and energy which, based on their analysis, lack of inter GPU module band-
width increases the GPU idle time which increases the energy consumption in
the system. As Arunkumar et al. pointed out, the performance and energy over-
heads of data movements are the main limiting factor towards scalability in
GPUs. Many researchers looked at this problem from different viewpoints. Milic
et al. [24] proposed a NUMA-aware multi-socket GPU architecture that reduces
the traffic on the interconnects. They minimized the NUMA effects by dynam-
ically optimizing the interconnect and the cache management policy in each
phase of the application. In MGPUSIM [34] a new memory management pol-
icy is introduced in multi-GPU systems which can improve the data placement
dynamically with the goal of reducing inter-node communications. We believe
that the performance and energy overheads of data movements in GPUs should
fundamentally be addressed. Considering how the memory system is designed
for the state-of-the-art accelerators, this goal can only be achieved through co-
designing the memory system and interconnect fabric. Another limiting factors
in high-throughput accelerators is the memory access latency, both in terms of
the absolute value and its variations. Lowering the memory access latency would
decrease the idle time, improving performance and energy efficiency. Chatterjee
et al. improved the performance of the memory systems in GPUs by proposing
a new memory controller that can reduce the DRAM latency divergence within
the warps [7]. Bojnordi et al. proposed a programmable memory controller along
with added instructions to the ISA to improve request scheduling and bank uti-
lization on DDR memories [6]. Hashemi et al. aimed to reduce the pressure on
the memory system and proposed adding more logic to the memory controller to
execute cache inefficient instructions near DRAM by dynamically identify such
instructions at the processor [18]. Liu et al. improved the memory access map-
ping by using the window-based entropy mapping [23]. This technique reduces
the virtual to physical address mapping overhead by quantifying the entropy of
each address bit across all memory requests. Hussain et al. looked at the access
pattern within irregular memory access, and reduced the DRAM latency by
caching different patterns and scheduling memory accesses accordingly [19]. Oh
et al. [27] improved the bandwidth utilization in HBM by load balancing across
all channels, and decreased the stall time by effectively increasing the request
queue. Tian et al. proposed an adaptive technique for bypassing caches [35] which
can improve performance and energy efficiency in GPUs, especially for workloads

192 P. Fotouhi et al.

with poor cache utilization. We found all of the aforementioned related work on
the memory controller design applicable to our design, providing several valuable
pointers for the future directions.

6 Conclusion

In this paper, we proposed a novel partitioned memory controller (PMC) to
reduce the contention in memory system of high-throughput accelerators. Uti-
lizing the PMC design along with a scalable all-to-all optical fabric, we proposed
a new high-throughput accelerator. Our simulation results show improvements
for PMC on DRAM access latency and memory access divergence, and reduced
miss penalty in L1 caches. Our chiplet-based design combines our novel PMC
design and SiPh technology to support 4× more compute units.

Given the lack of publicly available area/power models of state-of-the-art
GPUs, it is difficult to do a fair and accurate comparison of HTA with GPUs in
terms of power and area. However, we can present a qualitative analysis. In terms
of power consumption, SiPh links used in this work require 1.65–0.66 pJ/bit
depending on the technology node used ranging from 65 nm to 14 nm. In terms
of area overheads, PMC design does not add any logic for queuing as dedicated
queues are result of breaking down the single shared queue in the baseline con-
troller. Moreover, the SiPh components used in our design (the AWGR, and
SiPh TRXs) have small footprints compared to size of the processor dies (less
than 0.01% for typical compute dies [15]).

In this work we have assumed that the compute units in the HTA are sim-
ilar to that of a GPU. However the proposed HTA architecture can apply to
many different types of processors and accelerators. The combination of the sig-
nificantly lower memory latency and more deterministic memory access time
enables unexplored areas for micro-architecture design of advanced computing
units and accelerators. This will form our future work.

References

1. AMD: Introducing RDNA architecture (2019). https://www.amd.com/system/
files/documents/rdna-whitepaper.pdf. Accessed 10 Dec 2020

2. AMD: Introducing AMD CDNA architecture (2020). https://www.amd.com/
system/files/documents/amd-cdna-whitepaper.pdf. Accessed 12 Dec 2020

3. Arunkumar, A., et al.: MCM-GPU: multi-chip-module GPUs for continued perfor-
mance scalability. ACM SIGARCH Comput. Archit. News 45(2), 320–332 (2017)

4. Arunkumar, A., et al.: Understanding the future of energy efficiency in multi-
module GPUs. In: 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pp. 519–532. IEEE (2019)

5. Bergman, K., et al.: Photonic Network-on-Chip Design. Springer, New York (2014).
https://doi.org/10.1007/978-1-4419-9335-9

6. Bojnordi, M.N., Ipek, E.: PARDIS: a programmable memory controller for the
DDRx interfacing standards. In: 2012 39th Annual International Symposium on
Computer Architecture (ISCA), pp. 13–24 (2012)

https://www.amd.com/system/files/documents/rdna-whitepaper.pdf
https://www.amd.com/system/files/documents/rdna-whitepaper.pdf
https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
https://doi.org/10.1007/978-1-4419-9335-9

HTA: A Scalable High-Throughput Accelerator for Irregular HPC Workloads 193

7. Chatterjee, N., et al.: Managing DRAM latency divergence in irregular GPGPU
applications. In: SC 2014: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 128–139. IEEE
(2014)

8. Cheung, S., et al.: Ultra-compact silicon photonic 512 × 512 25 GHZ arrayed
waveguide grating router. IEEE J. Sel. Top. Quantum Electron. 20(4), 310–316
(2013)

9. Cutress, I.: Intel launches stratix-10-TX leveraging EMIB with 58G
transceivers. https://www.anandtech.com/show/12477/intel-launches-stratix-
10-tx-leveraging-emib-with-58g-transceivers-. Accessed 28 Nov 2020

10. Danalis, A., et al.: The scalable heterogeneous computing (SHOC) benchmark
suite. In: Proceedings of the 3rd Workshop on General-Purpose Computation on
Graphics Processing Units, pp. 63–74 (2010)

11. Dangel, R., et al.: Polymer waveguides for electro-optical integration in data centers
and high-performance computers. Opt. Express 23(4), 4736–4750 (2015)

12. Dangel, R., et al.: Polymer waveguides enabling scalable low-loss adiabatic optical
coupling for silicon photonics. IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11
(2018)

13. Das, S.: It’s time for disaggregated silicon! (2018). https://www.netronome.com/
blog/its-time-disaggregated-silicon/. Accessed 28 Nov 2020

14. Fotouhi, P., et al.: Enabling scalable chiplet-based uniform memory architectures
with silicon photonics. In: Proceedings of the International Symposium on Memory
Systems, pp. 222–334 (2019)

15. Fotouhi, P., et al.: Enabling scalable disintegrated computing systems with AWGR-
based 2.5 D interconnection networks. IEEE/OSA J. Opt. Commun. Netw. 11(7),
333–346 (2019)

16. Grani, P., et al.: Bit-parallel all-to-all and flexible AWGR-based optical intercon-
nects. In: Optical Fiber Communication Conference, pp. M3K-4. Optical Society
of America (2017)

17. Grani, P., et al.: Design and evaluation of AWGR-based photonic NoC architec-
tures for 2.5 D integrated high performance computing systems. In: 2017 IEEE
International Symposium on High Performance Computer Architecture (HPCA),
pp. 289–300. IEEE (2017)

18. Hashemi, M., et al.: Accelerating dependent cache misses with an enhanced mem-
ory controller. In: 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), pp. 444–455 (2016)

19. Hussain, T., et al.: Advanced pattern based memory controller for FPGA based
HPC applications. In: 2014 International Conference on High Performance Com-
puting Simulation (HPCS), pp. 287–294 (2014)

20. Jeppix: Cost roadmap. https://www.jeppix.eu/wp-content/uploads/2020/04/
JePPIXRoadmap2012.pdf. Accessed 28 Nov 2020

21. Jia, Z., et al.: Dissecting the NVIDIA volta GPU architecture via microbenchmark-
ing. arXiv preprint arXiv:1804.06826 (2018)

22. Li, S., et al.: DRAMsim3: a cycle-accurate, thermal-capable DRAM simulator.
IEEE Comput. Archit. Lett. 19(2), 106–109 (2020)

23. Liu, Y., et al.: Get out of the valley: power-efficient address mapping for GPUs.
In: 2018 ACM/IEEE 45th Annual International Symposium on Computer Archi-
tecture (ISCA), pp. 166–179. IEEE (2018)

24. Milic, U., et al.: Beyond the socket: NUMA-aware GPUs. In: Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 123–
135 (2017)

https://www.anandtech.com/show/12477/intel-launches-stratix-10-tx-leveraging-emib-with-58g-transceivers-
https://www.anandtech.com/show/12477/intel-launches-stratix-10-tx-leveraging-emib-with-58g-transceivers-
https://www.netronome.com/blog/its-time-disaggregated-silicon/
https://www.netronome.com/blog/its-time-disaggregated-silicon/
https://www.jeppix.eu/wp-content/uploads/2020/04/JePPIXRoadmap2012.pdf
https://www.jeppix.eu/wp-content/uploads/2020/04/JePPIXRoadmap2012.pdf
http://arxiv.org/abs/1804.06826

194 P. Fotouhi et al.

25. Miller, D.A.: Device requirements for optical interconnects to silicon chips. Proc.
IEEE 97(7), 1166–1185 (2009)

26. NVIDIA: A100 tensor core GPU architecture. https://www.nvidia.com/content/
dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf.
Accessed 31 Nov 2020

27. Oh, B., et al.: A load balancing technique for memory channels. In: Proceedings
of the International Symposium on Memory Systems, pp. 55–66 (2018)

28. Pal, S., et al.: Architecting waferscale processors - a GPU case study. In: 2019 IEEE
International Symposium on High Performance Computer Architecture (HPCA),
pp. 250–263 (2019)

29. Proietti, R., et al.: Experimental demonstration of a 64-port wavelength routing
thin-CLOS system for data center switching architectures. J. Opt. Commun. Netw.
10(7), B49–B57 (2018)

30. Rixner, S., et al.: Memory access scheduling. ACM SIGARCH Comput. Archit.
News 28(2), 128–138 (2000)

31. Shang, K., et al.: Low-loss compact silicon nitride arrayed waveguide gratings for
photonic integrated circuits. IEEE Photonics J. 9(5), 1–5 (2017)

32. Su, T., et al.: Interferometric imaging using Si3N4 photonic integrated circuits for
a SPIDER imager. Opt. Express 26(10), 12801–12812 (2018)

33. Sun, Y., et al.: Hetero-mark, a benchmark suite for CPU-GPU collaborative com-
puting. In: 2016 IEEE International Symposium on Workload Characterization
(IISWC), pp. 1–10. IEEE (2016)

34. Sun, Y., et al.: MGPUsim: enabling multi-GPU performance modeling and opti-
mization. In: Proceedings of the 46th International Symposium on Computer
Architecture, pp. 197–209 (2019)

35. Tian, Y., et al.: Adaptive GPU cache bypassing. In: Proceedings of the 8th Work-
shop on General Purpose Processing Using GPUS, pp. 25–35 (2015)

36. TSMC: Enhancing the CoWoS platform (2020). https://pr.tsmc.com/english/
news/2026. Accessed 14 Dec 2020

37. Vijayaraghavan, T., et al.: Design and analysis of an APU for exascale computing.
In: 2017 IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA), pp. 85–96 (2017)

38. Wade, M., et al.: TeraPHY: a chiplet technology for low-power, high-bandwidth
in-package optical I/O. IEEE Micro 40(2), 63–71 (2020)

39. Wang, J., Long, Y.: On-chip silicon photonic signaling and processing: a review.
Sci. Bull. 63(19), 1267–1310 (2018)

40. Werner, S., et al.: Towards energy-efficient high-throughput photonic NoCs for 2.5
D integrated systems: a case for AWGRs. In: 2018 Twelfth IEEE/ACM Interna-
tional Symposium on Networks-on-Chip (NOCS), pp. 1–8. IEEE (2018)

41. Zhang, Y., et al.: Foundry-enabled scalable all-to-all optical interconnects using sil-
icon nitride arrayed waveguide router interposers and silicon photonic transceivers.
IEEE J. Sel. Top. Quantum Electron. 25(5), 1–9 (2019)

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://pr.tsmc.com/english/news/2026
https://pr.tsmc.com/english/news/2026

Proctor: A Semi-Supervised Performance
Anomaly Diagnosis Framework
for Production HPC Systems

Burak Aksar1(B) , Yijia Zhang1, Emre Ates1, Benjamin Schwaller2,
Omar Aaziz2, Vitus J. Leung2, Jim Brandt2, Manuel Egele1,

and Ayse K. Coskun1

1 Boston University, Boston, MA 02215, USA
{baksar,zhangyj,ates,megele,acoskun}@bu.edu

2 Sandia National Laboratories, Albuquerque, NM 87123, USA
{bschwal,oaaziz,vjleung,brandt}@sandia.gov

Abstract. Performance variation diagnosis in High-Performance Com-
puting (HPC) systems is a challenging problem due to the size and com-
plexity of the systems. Application performance variation leads to pre-
mature termination of jobs, decreased energy efficiency, or wasted com-
puting resources. Manual root-cause analysis of performance variation
based on system telemetry has become an increasingly time-intensive
process as it relies on human experts and the size of telemetry data
has grown. Recent methods use supervised machine learning models to
automatically diagnose previously encountered performance anomalies
in compute nodes. However, supervised machine learning models require
large labeled data sets for training. This labeled data requirement is
restrictive for many real-world application domains, including HPC sys-
tems, because collecting labeled data is challenging and time-consuming,
especially considering anomalies that sparsely occur.

This paper proposes a novel semi-supervised framework that diag-
noses previously encountered performance anomalies in HPC systems
using a limited number of labeled data points, which is more suitable for
production system deployment. Our framework first learns performance
anomalies’ characteristics by using historical telemetry data in an unsu-
pervised fashion. In the following process, we leverage supervised classi-
fiers to identify anomaly types. While most semi-supervised approaches
do not typically use anomalous samples, our framework takes advantage
of a few labeled anomalous samples to classify anomaly types. We eval-
uate our framework on a production HPC system and on a testbed HPC
cluster. We show that our proposed framework achieves 60% F1-score on
average, outperforming state-of-the-art supervised methods by 11%, and
maintains an average 0.06% anomaly miss rate.

Keywords: Anomaly diagnosis · Semi-supervised learning · High
performance computing

c© Springer Nature Switzerland AG 2021
B. L. Chamberlain et al. (Eds.): ISC High Performance 2021, LNCS 12728, pp. 195–214, 2021.
https://doi.org/10.1007/978-3-030-78713-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_11&domain=pdf
http://orcid.org/0000-0003-3627-7311
https://doi.org/10.1007/978-3-030-78713-4_11

196 B. Aksar et al.

1 Introduction

Modern High-Performance Computing (HPC) systems are massive systems that
perform many complex operations concurrently and they are critical for many
science and engineering applications. Considering these systems’ user demands
and complexity, applications even with the same input deck are subject to
substantial performance variations, such as running time changes of 100% or
higher [12,30]. Hidden hardware problems, shared resource contention [12,18],
fluctuating CPU frequency [39], orphan processes [16], and memory-related prob-
lems (e.g., memory leak) [2] are some common anomalies that cause performance
variations. Some of the anomalies even force executing programs to terminate
prematurely [16]. These performance variations may trigger sub-optimal schedul-
ing and waste computing power, resulting in degraded overall computing effi-
ciency and user dissatisfaction.

System administrators typically assess system health and identify the root
causes of performance variations by gathering and inspecting telemetry data.
Considering billions of telemetry data points are generated daily [1], manual
analysis of system logs or resource usage data is not feasible due to being highly
error-prone and time-consuming. Automated analytics, especially in the diag-
nosis of anomalies, are promising because they can reduce the mitigation time
of problems, leading to the prevention of wasted computing power. Although
various statistical and machine learning-based techniques have been proposed
to detect anomalies in HPC systems (e.g., [13,14,27,45]), one main drawback is
that they require a human operator to understand the root causes (i.e., diagnose
anomalies) and label anomalous data. Tuncer et al.’s recent method performs
automated anomaly diagnosis using supervised machine learning successfully
when labeled healthy and anomalous data is available [43]. A common disadvan-
tage of such fully supervised approaches is that they require a large set of labeled
data that corresponds to the normal/anomalous state of a compute node.

Borghesi et al.’s recent method is semi-supervised and focuses on detecting
anomalous runs, but without the ability to diagnose root causes for performance
anomalies since they only use normal data samples in training [14,15]. Especially
in production HPC systems, a large amount of telemetry data is available, but
data labels are scarce. Thus, frameworks that are able to work with a limited
amount of labeled data while identifying the root cause of performance anomalies
would significantly improve the performance of production HPC systems.

In this paper, we propose Proctor , a semi-supervised performance anomaly
diagnosis framework, which detects and identifies performance anomalies in com-
pute nodes using a significantly smaller amount of labeled data compared to
supervised baselines; hence, Proctor is more suitable for HPC production deploy-
ment. Proctor utilizes resource usage characteristics of applications collected by
monitoring frameworks to train machine learning models. We evaluate the effec-
tiveness of Proctor on a production HPC system and on an HPC testbed using
multiple real applications and benchmark suites with synthetic anomalies. Our
specific contributions are as follows:

Proctor 197

– A novel semi-supervised framework that, once trained, automatically detects
and diagnoses known anomalies that contribute to performance variations.
We argue that our proposed framework is more suitable for deployment into
production HPC systems than previous works as it requires substantially less
labeled data.1

– Demonstration of the efficacy of our framework on a production HPC system
and a testbed HPC cluster. We show that Proctor achieves 60% F1-score
on average and outperforms supervised baselines by 11% in F1-score while
maintaining an average 0.06% anomaly miss rate.

The rest of the paper starts with an overview of the related work. Section 3
describes the technical details of the proposed framework, Sect. 4 explains our
experimental methodology, Sect. 5 presents our results, and we conclude in
Sect. 6.

2 Related Work and Background

Detection of anomalies in high-dimensional data is a fundamental research topic
with numerous applications in the real world. Some example application fields
include, but are not limited to, medical anomaly detection [37,44], HPC teleme-
try data analysis [13,14,43], and sensor networks anomaly detection [32].

2.1 Anomaly Detection and Autoencoders

Machine learning is widely used in anomaly detection, with a variety of super-
vised, semi-supervised, or unsupervised approaches. Supervised models require
normal and anomalous samples to classify anomaly types. In contrast to super-
vised methods, semi-supervised anomaly detection (SSAD) methods use labeled
normal samples to identify anomalies. A common SSAD technique is to use
autoencoders trained with normal data [33,40]. An autoencoder is an artificial
neural network (ANN) composed of three main sequential layers: the input layer,
the code layer, and the output (or reconstruction) layer. Autoencoders do not
require class/label information since all layers are operating in an unsupervised
paradigm [25]. An autoencoder with more than one hidden layer is known as a
deep autoencoder and is shown in Fig. 1. A deep autoencoder learns to recon-
struct the input data through a pair of encoder and decoder mappings, which
are composed of hidden layers, as follows:

X = D(E(X)), (1)

where X is the input data, E is an encoder mapping from the input data to
the code layer, D is a decoder mapping from the code layer to the output layer,
and X is the reconstructed version of the input data. During the training stage,
the model learns to reconstruct input data by minimizing the reconstruction

1 Our implementation is available at: https://github.com/peaclab/Proctor.

https://github.com/peaclab/Proctor

198 B. Aksar et al.

R
ec

on
st

ru
ct

ed
In

pu
t

Encoder
Hidden Layer 1

Decoder
Hidden Layer 2

Decoder
Hidden Layer 1

Encoder
Hidden Layer 2

Code
Layer

In
pu

t

Fig. 1. A generic representation of an autoencoder with multiple hidden layers. The
autoencoder learns to reconstruct the input data by learning the weights in the hidden
layers.

error, which is one way of measuring how well an autoencoder learned. During
the testing stage, an autoencoder classifies a sample as anomalous if the sam-
ple’s reconstruction error is higher than the predetermined threshold. Stacked
autoencoders integrate multiple autoencoders together, where the code layer of
one autoencoder serves as the input of the other autoencoder. Deep architectures
and stacked autoencoders have been shown to produce more abstract represen-
tations, improving the classification accuracy [11,17,24]. To perform classifica-
tion with autoencoders, researchers use encoded features as inputs to supervised
machine learning models such as support vector machines (SVM), logistic regres-
sion (LR), or neural networks [28,31].

In this work, we use autoencoders as unsupervised feature extractors,
along with supervised classifiers to diagnose performance variations in HPC
systems.

2.2 Machine Learning for HPC Monitoring Analytics

Due to the complexity of HPC systems and the size of the telemetry data (e.g.,
billions of data points per day), HPC centers have been investing in research
on machine-learning-based approaches to automate performance anomaly anal-
ysis [26,39]. Ates et al. design a random forest (RF) based framework for appli-
cation classification on compute nodes [6]. Klinkenberg et al. define a supervised
learning system that extracts statistical features and uses an RF classifier to
detect important node failures before they occur [27]. Baseman et al. apply a
technique named classifier-adjusted density estimation to HPC sensor data [9].
Using density estimation, they learn to generate synthetic samples. Then, both
real and synthetically generated data is used to train an RF classifier and assign
an “anomalousness” score to each data point to detect performance anomalies.

Proctor 199

Data Collection

App 1

App 1

App 2

App 2

O
ffl

in
e

Tr
ai

ni
ng

R
un

tim
e

A
na

ly
si

s

Monitoring
Computing Nodes

Unsupervised Pretraining

Diagnosis Results

Node ID Diagnosis

345 Normal

346 Normal

347 memlak

599 membw

Statistical
Feature

Extraction

Tr
ai

ni
ng

 D
at

a

C
on

st
ru

ct
ed

 D
at

a

Supervised Training

Tr
ai

ni
ng

 D
at

a

Detection & Diagnosis

Anomaly

Normal

Anomaly 1

Anomaly 2

Anomaly 3

Anomaly 4

Statistical
Feature

Extraction Te
st

 D
at

a Anomaly

Normal

Anomaly 1

Anomaly 2

Anomaly 3

Anomaly 4

App 1

App 4

App 3

App 5

Autoencoder Proctor

Proctor

Fig. 2. The high-level architecture of Proctor . We collect telemetry data from normal
and anomalous application runs and apply statistical feature extraction to convert raw
time series into a suitable format for our autoencoder-based framework. We train an
autoencoder with unlabeled normal and anomalous samples during the unsupervised
pretraining stage to learn high-level characteristics. Then, we train classifiers with a
few labeled samples to diagnose anomalies. At runtime, we feed the trained model with
telemetry data and classify anomalies on compute nodes.

Borghesi et al. use a simple autoencoder structure trained on only normal data
instances and perform reconstruction-error-based anomaly detection in compute
nodes [15]. For anomaly diagnosis, which is classifying different types of perfor-
mance anomalies as opposed to solely detecting anomalies, the most relevant
work is Tuncer et al.’s method, where they apply statistical feature extraction
along with a feature selection process to diagnose different anomaly types such
as memory leak, CPU contention, and others [43].

Existing methods either detect anomalies in a fully supervised way [43] or
they use semi-/unsupervised methods but only detect anomalies [9,14] without
diagnosing/classifying their root cause. Our work is distinct from related work
because our proposed framework is the first to detect and diagnose performance
anomalies in a semi-supervised way using substantially less labeled data com-
pared to supervised approaches.

3 Our Proposed Framework: PROCTOR

Our main objective is to detect whether a compute node in a system exhibits
anomalous behavior (i.e., causing performance variability), and if it does, we
aim to classify the type of anomaly (e.g., memory leak or contention in a specific

200 B. Aksar et al.

subsystem) in an application-agnostic fashion. We focus on anomalies that
cause performance variability, where applications execute without terminat-
ing/crashing. Such anomalies are often more challenging to detect and diagnose
compared to faults that lead to errors in programs or premature termination.

We propose a semi-supervised anomaly diagnosis framework called Proctor
based on an autoencoder, followed by a classification layer that diagnoses perfor-
mance variations on compute nodes. Figure 2 shows an overview of our frame-
work. We collect telemetry data from compute nodes while running applications
with and without anomalies. Note that our framework is independent of the
underlying monitoring framework. After that, we extract the raw time series’
statistical features and train an autoencoder to learn a representation (encod-
ing) of normal and anomalous samples in an unsupervised manner. In Proctor ,
a sample refers to the entire set of telemetry data collected during an appli-
cation run on a compute node. Based on the autoencoder’s encoder mapping
output and using some labeled normal and anomalous samples, we train super-
vised classifiers that are able to diagnose anomalies. At runtime, Proctor then
applies the trained model on collected telemetry samples to detect and diagnose
performance anomalies. We next explain these steps in detail.

3.1 Feature Extraction

We implement Tuncer et al.’s easy-to-compute statistical features [42] to convert
multivariate time series data into a suitable format for Proctor . Some features
are simple order statistics (e.g., 25th, 75th, and 90th percentiles, and standard
deviation), and some of them are useful for time series clustering such as skew-
ness and kurtosis. This step reduces the overhead that would be caused by using
raw time series metrics generated from thousands of compute nodes. The statis-
tical feature extraction methodology is independent of the monitoring framework
and can be used across different HPC monitoring tools such as Lightweight Dis-
tributed Metric Service (LDMS) [1], Ganglia [20] or Examon [10].

3.2 Unsupervised Pretraining

We implement two different autoencoder topologies, deep autoencoders and
stacked autoencoders [31], and compare their efficacy to make a selection. Deep
autoencoders and stacked autoencoders serve as effective pretraining methods
due to their unsupervised nature for classification tasks when many unlabeled
samples are available [3,21].

In the autoencoder, our training objective is to learn the weights for the
encoder and decoder layers so that the reconstructed input is as close to the
original input as possible. In other words, the goal is to minimize the difference
between X and X by performing the following optimization [46]:

min
D,E

||X −D(E(X))||. (2)

Proctor 201

We train the autoencoder via backpropagation, which is a way of updating the
weights and biases of the layers to perform the optimization in Eq. (2).

We use deep autoencoders in the rest of this paper as they provide higher
prediction accuracy in our results compared to stacked autoencoders.

3.3 Supervised Training

For anomaly diagnosis, we implement two different supervised training methods
that differentiate anomaly types and choose the best performing one in the
evaluation. The first one is fine-tuning. We freeze the pre-trained autoencoder’s
weights and add another fully-connected neural network layer after the encoder
part. After that, we retrain the new network to classify the anomaly types as
shown in the supervised training part of Fig. 2.

The second method uses the encoded features directly as input to tradi-
tional supervised machine-learning models such as LR, RF, and SVM. In our
experiments, the second method provides higher accuracy so we only train the
supervised models with the encoded data in the rest of the paper.

3.4 Detection and Diagnosis at Runtime

At runtime, Proctor collects telemetry data from compute nodes using a mon-
itoring framework and applies statistical feature extraction. Then, we use the
model trained on these features for diagnosis. As described earlier, Proctor has
a two-level classification process. In the first level, Proctor decides whether a
sample is normal or anomalous. If it is anomalous, we feed the sample to the
diagnosis layer to identify the anomaly type.

4 Experimental Methodology

We run controlled experiments on two different HPC systems by running syn-
thetic anomalies with a set of HPC applications. We also describe the implemen-
tation details of two baseline methods for anomaly detection and diagnosis, and
compare Proctor against these baselines. This section describes the monitoring
framework that collects system telemetry data, data sets for anomaly diagnosis,
HPC applications, and performance anomalies we use to evaluate our proposed
Proctor framework.

4.1 HPC Systems and Applications

We conduct experiments on a testbed system, Volta, and on a production HPC
system, Eclipse. We run both benchmarks and real applications to evaluate the
performance of Proctor against baselines.

202 B. Aksar et al.

Volta is a Cray XC30m testbed supercomputer located at Sandia National Lab-
oratories. Volta consists of 52 compute nodes, organized in 13 fully connected
switches with four nodes per switch. Each node has 64 GB of memory and two
sockets, each with an Intel Xeon E5-2695 v2 CPU with 12 2-way hyper-threaded
cores. To cover a representative set of HPC applications in Volta, we use NAS
Parallel Benchmarks (NPB) [8] and Mantevo Benchmark Suite [23]. The Man-
tevo Suite was developed by Sandia National Laboratories for performance and
scaling experiments. In addition, we use the Kripke application, which is a proxy
application that simulates particle transportation [29]. We list all applications
used in our experiments in Table 1. We run each application across 4 or 32
compute nodes for 10–15 min using different application input decks.

Eclipse is a production HPC system located at Sandia National Laboratories.
Eclipse consists of 1488 compute nodes, and it is capable of 1.8 petaflops. Each
node has 128 GB memory and two sockets, each with 18 E5-2695 v4 CPU cores.
In the experiments on Eclipse, we use six applications, LAMMPS, HACC, sw4,
ExaMiniMD, SWFFT, and sw4lite. Among them, there are three real appli-
cations: LAMMPS, a molecular dynamics simulation with a focus on materials
modeling [36]; HACC, an extreme-scale cosmological simulation [22]; sw4, a pop-
ular 3D seismic model [35]. The other three, ExaMiniMD, SWFFT, and sw4lite,
are proxy applications from the ECP Proxy Apps Suite [19]. We list all appli-
cations used in our experiments in Table 2. We run each application on 4 nodes
for 20–45 min.

Table 1. Applications we run on Volta for data collection.

Benchmark Application Description

NAS bt Block tri-diagonal solver

cg Conjugate gradient

ft 3D Fast Fourier Transform

lu Gauss-Seidel solver

mg Multi-grid on meshes

sp Scalar penta-diagonal solver

Mantevo miniMD Molecular dynamics

CoMD Molecular dynamics

miniGhost Partial differential equations

miniAMR Stencil calculation

Other Kripke Particle transport

4.2 Monitoring Framework

We use LDMS to collect telemetry data from different subsystems. LDMS is
a low overhead monitoring framework for HPC systems with a high sampling

Proctor 203

rate. LDMS collects data simultaneously for each subsystem component (e.g.,
memory-related metrics, network counters, etc.) across the whole system [38].
At every second, LDMS collects hundreds of metrics per node in the categories
as described below:

– Memory (e.g., currently free, active, inactive memory)
– CPU (e.g., per-core and overall idle time, I/O wait time)
– Network (e.g., received/transmitted packets, average packet size, link status)
– Shared File System (e.g., open, read, write counts)
– Cray performance counters (e.g., power consumption, write-back counters)
– Virtual Memory (e.g., free, active and inactive pages).

LDMS is deployed on both systems and it constantly monitors the health of the
systems [1,38]. We collect 806 metrics and 721 metrics from Eclipse and Volta,
respectively. We fill out any missing metric values using linear interpolation and
calculate the difference of cumulative counter values since we are interested in the
change. We also exclude the first and last 60 s of the collected time series for each
application to avoid any fluctuations during the initialization and termination
phases.

Table 2. Applications we run on Eclipse for data collection.

Benchmark Application Description

Real Applications LAMMPS Molecular dynamics

HACC Cosmological simulation

sw4 Seismic modeling

ECP Proxy Suite ExaMiniMD Molecular dynamics

SWFFT 3D Fast Fourier Transform

sw4lite Numerical kernel optimizations

4.3 Synthetic Anomalies

To learn individual anomaly signatures and detect them at runtime, Proctor
needs a few labeled samples that exhibit anomalous characteristics. To system-
atically train and test our framework, we use synthetic anomalies from the
HPC Performance Anomaly Suite (HPAS) [7] to mimic anomalous behavior
during an application run. HPAS is an open-source performance anomaly suite
to reproduce performance variations. Synthetic anomalies in HPAS, target five
major subsystems: CPU, cache, memory, network, and shared storage. We inject
anomalies with multiple configurations to mimic different performance variation
levels, as listed in Table 3. While running a multi-node application, we run a
synthetic anomaly on a single node in Volta, and we run a synthetic anomaly
on every node that the application uses in Eclipse. Each compute node data is
labeled with an anomaly type if an anomaly is injected, otherwise labeled as
normal.

204 B. Aksar et al.

Table 3. A list of the HPAS anomalies used in our experiments.

Anomaly type Anomaly behavior Configuration

CPU intensive process Arithmetic operations −u 100%, 80%

Cache contention Cache read & Write −c L1, L2/−m 1, 2

Memory bandwidth contention Uncached memory write −s 4K, 8K, 32K

Memory leakage Increasingly allocate & Fill memory −s 1,3,10 M/−p 0.2,0.4,1

4.4 Baselines

We implement two baseline methods to compare against Proctor . The first one is
the framework proposed by Tuncer et al. [43] (referred to as RF-Tuncer), which
uses statistical feature extraction and a fully supervised RF classifier. The second
one is the autoencoder-based anomaly detection approach proposed by Borghesi
et al. [14] (referred to as AE-Borghesi).

RF-Tuncer [43] uses statistical feature extraction and feature selection strate-
gies and combines them with an RF classifier to diagnose anomaly types [43].
They use LDMS to collect different metrics (e.g., memory metrics, CPU metrics)
while applications run with and without anomalies at every second. They label
each node with the injected anomaly type during the application run. Appli-
cation runs without injected anomalies are labeled “normal”. During an offline
training phase, they train supervised models and test the saved models at run-
time after statistical feature extraction and feature selection are applied.

AE-Borghesi [15] trains an autoencoder with only normal samples and detects
anomalies according to a statistically determined threshold. It is important to
note that their method is limited to anomaly detection instead of classifying
anomaly types. Proctor can also detect anomalies by slightly modifying the
network in the supervised training stage. Borghesi et al. use the Examon [4] data
collection infrastructure to monitor the D.A.V.I.D.E [10] HPC system which
has 45 compute nodes. Examon collects up to 170 metrics with 5s and 10s
granularity for Intelligent Platform Management Interface (IPMI) and Open-
POWER POWER8 on-chip controller (OCC) metrics, respectively. They use
coarse-grained aggregated telemetry data with a 5-min aggregation time window.
To mimic their data collection schema, we apply the same aggregation technique.
The authors inject three anomalous policies that change CPU frequency, clock
speed, and power consumption to mimic anomalous behavior (e.g., powersave
sets the CPU frequency to the lowest available). They train an autoencoder
with only normal data (i.e., intervals without anomaly injection) and select a
threshold to detect anomalies. To select this threshold, they vary the percentiles
of the reconstruction error observed in the training data and select the value
that gives the best F1-score in the validation data. At runtime, if a sample has
a higher reconstruction error than the threshold, it is labeled as anomalous.

Proctor 205

4.5 Implementation Details

Proctor: We implement our framework in Tensorflow. We create a hyperpa-
rameter space using the following values and search the space to find the best
values for the autoencoder:

1. Batch size: 32, 64, 128, and 256
2. Number of neurons in hidden a layer: 200, 500, 1000, 2000
3. Number of hidden layers: 1, 2, 3, 5
4. Number of epochs: 50, 100, 300, 500, 1000, 5000
5. Optimizer: Adam, Adadelta, SGD
6. Dropout: 0, 0.1, 0.2, 0.3.

After finding the best parameters for the autoencoder, we stack them to exper-
iment with stacked autoencoders. For the supervised training stage, we exper-
iment with a neural network, an SVM, and an LR. All classifiers are trained
using the one-versus-rest strategy, which creates an individual classifier for each
class. For the neural networks, we use Adam optimizer and minimize Categorical
Cross-Entropy loss.

The final structure of Proctor includes a deep autoencoder with 2000 neu-
rons in the code layer and uses SVM and LR for the supervised training part.
Stacked autoencoders perform similarly to deep autoencoders, but we choose
deep autoencoders because of their lower false alarm rate. We use the Adadelta
optimizer, which enforces a monotonically decreasing learning rate and mini-
mizes Mean Squared Error during the training with a 20% validation split. We
also set EarlyStopping callback, which stops when the chosen performance mea-
sure stops improving.

AE-Borghesi: We adopted the following network topology according to the
descriptions of Borghesi et al. [15]:

1. An input layer,
2. A dense code layer with a number of neurons ten times larger than input

neurons with Rectified Linear Units [34] activation and an L1 norm [5] reg-
ularizer,

3. An output layer with a number of neurons equal to input features with Linear
activations.

We train the AE-Borghesi model with the Adam optimizer, which finds individ-
ual learning rates for each parameter by minimizing the Mean Absolute Error
for 100 epochs with a batch size of 32. We conduct a hyparameter search for the
number of neurons in the code layer so as not to put AE-Borghesi at a disadvan-
tage. We also implement their approach with Dropout [41] layers as the authors
suggested [14]. However, our implementation with dropout layers gives slightly
worse results than the original topology, so we only present the best results.

206 B. Aksar et al.

RF-Tuncer: We implement feature extraction and feature selection using scipy-
stats module. We choose the best performing classifier, RF, and set the number
of decision trees to 100 after hyperparameter search. For RF, we use scikit-learn
implementation.

5 Evaluation

In this section, we first explain the metrics and data sets we use in our eval-
uation. Then, we compare the anomaly detection and diagnosis results of our
framework against the baselines. We also evaluate the performance in cases when
a previously unseen anomaly type exists in the test data.

5.1 Performance Metrics

We report our evaluation results with 5-fold stratified cross-validation for each
experimental scenario and observe the F1-score, anomaly miss rate (i.e., false
negative rate), and false alarm rate (i.e., false positive rate) for different per-
centages of labeled data. F1-score is the harmonic mean of precision and recall
and it is widely used in multiclass classification problems. We calculate the macro
average F1-score, which does not take label imbalance into account, hence treat-
ing all classes equally. Note that this is important in imbalanced data sets where
the number of normal data points is in the overwhelming majority compared
to anomalous data points. To assess anomaly detection performance (i.e., dis-
tinguishing between normal versus anomalous) of the models, we use the false
alarm rate which indicates the percentage of normal runs identified as one of
the anomaly types, and the anomaly miss rate, which indicates the percentage
of anomalous runs (any anomaly) identified as normal. To improve confidence
in our results, we run each classifier ten times and average the results.

False Alarm Rate =
False Positives

False Positives + True Negatives
(3)

Anomaly Miss Rate =
False Negatives

False Negatives + True Positives
(4)

5.2 Data Set Preparation

We devise three experimental scenarios to evaluate the performance of Proctor ,
AE-Borghesi, and RF-Tuncer. While preparing data sets for the proposed exper-
imental scenarios, we use 5-fold stratified cross-validation, and we ensure that
any training or testing data set contains every application and anomaly type.
The Eclipse data set has 1526 normal samples and 2304 anomalous samples,
where each anomaly type is equally represented among the anomalous samples.
We use 611 normal samples and 68–70 anomalous samples in training, represent-
ing an anomaly ratio of 10% (i.e., anomaly ratio is the number of anomalous runs
divided by all runs). This anomaly ratio mimics a production system scenario

Proctor 207

where anomalous runs are rare compared to normal runs. The Volta data set
has 18980 normal samples and 1932 anomalous samples. We use 5694 normal
samples and 618–620 anomalous samples in training, representing an anomaly
ratio of 10%. In both data sets, samples that are not used during training are
placed in the testing data set. We fit a MinMax scaler to the training data set,
where each feature value is scaled between 0 and 1, and then use the same scaler
in the testing data set.

For the supervised training part (only for Proctor and RF-Tuncer), we mimic
a case where labeled data are accumulating over time, i.e., we start from having
only a few labeled data (e.g., 1–2 labeled example per class) and increase the
number of labeled data gradually. Chosen labeled data percentages are the fol-
lowing: 2%, 3%, 4%, 5%, 6%, 8%, 10% for Eclipse, and 0.1%, 0.15%, 0.2%, 0.25%,
0.30%, 0.35% for Volta data sets. Chosen labeled data percentages are different
due to the size of the data sets. In the Eclipse data set, when the labeled data
percentage is 10%, it corresponds to approximately 65 labeled samples in total;
in the Volta data set, when the labeled data percentage is 0.35%, it corresponds
to approximately 25 labeled samples in total.

5.3 Anomaly Detection Results

The main goal in anomaly detection is to compare Proctor ’s performance with
AE-Borghesi and RF-Tuncer for anomaly detection across different labeled data
percentages. For the anomaly detection task, all anomalies are labeled with the
same label (i.e., without diagnosing the type of anomaly) regardless of their
types. In the unsupervised pretraining part, Proctor uses the whole training
data set without any supervision (i.e., data are unlabeled). In the supervised
training part, we train RF-Tuncer and Proctor with the selected labeled data
and evaluate their performance in the same testing data set. Then, we repeat
the same procedure for each predetermined labeled percentage value.

We train AE-Borghesi by using normal data in the training data set. It is
important to note that AE-Borghesi does not have a supervised training part
like Proctor and RF-Tuncer. We choose the 63th percentile of the mean absolute
reconstruction error as a threshold since it achieves the best F1-score in the
validation data in our experiments. This threshold is used to classify whether a
run is anomalous or not.

As shown in Fig. 3, Proctor outperforms the baselines in F1-score and
anomaly miss rate for most cases even with very few labeled data points. Both
Proctor and RF-Tuncer perform similarly in terms of the false alarm rate. Proc-
tor outperforms RF-Tuncer by 50% on average in the anomaly miss rate.

Due to the simple thresholding used in AE-Borghesi, as well as the exis-
tence of multiple anomaly types in our data sets, AE-Borghesi performs poorly
compared to others. In addition, AE-Borghesi needs to be trained with only nor-
mal data points, so a system administrator or subject matter expert needs to
ensure that system health status is normal to train AE-Borghesi. On the other
hand, Proctor can be directly deployed and continuously trained with available
telemetry data regardless of the system’s health status. After training Proctor

208 B. Aksar et al.

with unlabeled telemetry data, when a subject matter expert labels some anoma-
lous events, these labeled data can be used in the supervised training part of
Proctor .

5.4 Anomaly Diagnosis Results

The main goal in anomaly diagnosis analysis is to compare Proctor ’s classifica-
tion F1-score with RF-Tuncer for anomaly diagnosis across different percentages
of available labeled data. In the unsupervised pretraining part, Proctor uses the
whole training data without any supervision. In the supervised training part, we
train RF-Tuncer and Proctor using a percentage of the labeled data and evaluate
their performance in a constant testing data set. We repeat the process for each
labeled data percentage value.

Fig. 3. Comparison of the anomaly detection performance of Proctor with AE-Borghesi
and RF-Tuncer using the Eclipse data set. Proctor performs better than the baselines
in F1-score and anomaly miss rate, while maintaining a similar false alarm rate with
RF-Tuncer.

Fig. 4. Comparison of the anomaly diagnosis performance of Proctor with RF-Tuncer
using the Eclipse data set. Proctor performs better in F1-score and false alarm rate
while maintaining a stable anomaly miss rate.

Proctor 209

Figure 4 shows the macro average F1-scores for our method and RF-Tuncer
for the Eclipse data set. Proctor outperforms RF-Tuncer by 4.5% on average
(and up to 11%) while maintaining a low false alarm rate and anomaly miss
rate. RF-Tuncer performs slightly better in terms of anomaly miss rate when
the labeled data percentage is less than 5%. However, the anomaly miss rate of
RF-Tuncer increases when the labeled data percentage increases, whereas the
anomaly miss rate of Proctor is stable and keeps below 2.5%.

Figure 5 shows the macro average F1-scores for Proctor and RF-Tuncer for
the Volta data set. In terms of the F1-score, Proctor outperforms RF-Tuncer by
25% on average (and up to 50%) and maintains similar alarm and miss rates
to RF-Tuncer. Proctor outperforms RF-Tuncer for most of the cases in terms
of all categories until we have approximately 20 labeled data samples in total.
After this point, the fully supervised RF-Tuncer method has sufficient labeled
anomalous data for training to achieve accurate predictions. RF-Tuncer achieves
a similar F1-score to Proctor faster in the Volta data set compared to the Eclipse
data set. The main reason behind this is less complex application characteristics
in the Volta data set.

Fig. 5. Comparison of the anomaly diagnosis performance of Proctor with RF-Tuncer
using the Volta data set. Proctor outperforms RF-Tuncer for most of the cases across
all categories.

Fig. 6. Choosing a threshold that gives the highest F1-score by sweeping confidence
thresholds.

210 B. Aksar et al.

5.5 Impact of Previously Unseen Anomalies

Our primary goal in this scenario is to evaluate the performance of Proctor and
RF-Tuncer when there are unknown (i.e., previously unseen) anomalies in the
testing data set. Since a variety of performance anomalies exists in the production
environment, it is common to observe anomalies other than those used during
training. We follow the same unsupervised pretraining and supervised training
approaches described above, except for one difference: we remove a selected
unknown anomaly type from the training set during the supervised training
stage and keep the other anomalies. After training, we first test the model on
the same training data, this time including the removed anomaly, to determine
a confidence threshold. We vary the threshold and choose a threshold value that
provides the highest F1-score, and then, evaluate the trained model on a testing
data set that consists of all anomalies. We label the sample as unknown if the
model’s highest confidence score for normal and anomalous classes is lower than
the selected threshold. RF-Tuncer uses a multiclass RF, and it requires all classes
to exist in the training data set; thus, not to put RF-Tuncer at a disadvantage,
we apply a one-versus-rest strategy to their RF classifier as well.

We experiment on Eclipse data with all labeled data percentages in Sect. 5.2
and report F1-scores, anomaly miss rates, and false alarm rates for selected
labeled data percentages. Figure 6 shows the F1-score across different confi-
dence thresholds. We choose 0.45 as a threshold and compare both methods’
anomaly diagnosis performance in Fig.7. Here, Proctor outperforms the baseline
by 10% on average in terms of the F1-score while maintaining a 66% lower false
alarm rate on average. RF-Tuncer’s anomaly miss rate is better than Proctor’s,
however, both rates are very close to zero.

Fig. 7. When there are unknown anomaly types in the testing data set, Proctor per-
forms better than RF-Tuncer in terms of F1-score and false alarm rate.

6 Conclusion

Performance variation in HPC systems degrades user satisfaction, reduces the
efficiency of resource utilization, and wastes computing power. Considering the

Proctor 211

growing size and complexity of HPC systems, automated performance anomaly
diagnosis has become increasingly crucial for robust and efficient service. How-
ever, existing automated methods rely on large labeled data sets for training.
This paper proposed Proctor , a semi-supervised performance anomaly detection
and diagnosis framework for limited labeled data scenarios in production sys-
tems. We evaluated our framework using data collected from two different HPC
systems, including a production HPC system. We demonstrated that our app-
roach is superior to state-of-the-art approaches in terms of F1-score, anomaly
miss rate, and false alarm rate when only a limited set of labeled data is avail-
able. We also showed that Proctor is robust in presence of previously unseen
anomalies and it successfully labeled them as “unknown” in our experiments.

As a next step, we will focus on deploying our framework into a production
HPC machine and integrating a user/system administrator feedback system that
allows us to label suspicious application runs for continuous model improvement.
Furthermore, we will focus on generative machine learning models to syntheti-
cally generate anomalous application runs to achieve a higher diagnosis perfor-
mance with our proposed framework.

Acknowledgment. This work has been partially funded by Sandia National Lab-
oratories. Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under Contract DE-NA0003525. This paper
describes objective technical results and analysis. Any subjective views or opinions
that might be expressed in the paper do not necessarily represent the views of the U.S.
Department of Energy or the United States Government.

References

1. Agelastos, A., Allan, B., Brandt, J., et al.: The lightweight distributed metric
service: a scalable infrastructure for continuous monitoring of large scale computing
systems and applications. In: SC 2014: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, pp. 154–165
(2014)

2. Agelastos, A., Allan, B., Brandt, J., et al.: Toward rapid understanding of produc-
tion HPC applications and systems. In: IEEE International Conference on Cluster
Computing, pp. 464–473 (2015)

3. Agrawal, P., Girshick, R., Malik, J.: Analyzing the performance of multilayer neural
networks for object recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T.
(eds.) ECCV 2014. LNCS, vol. 8695, pp. 329–344. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10584-0 22

4. Ahmad, W.A., Bartolini, A., Beneventi, F., et al.: Design of an energy aware
petaflops class high performance cluster based on power architecture. In: IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pp. 964–973 (2017)

5. Alain, G., Bengio, Y.: What regularized auto-encoders learn from the data-
generating distribution. J. Mach. Learn. Res. 15(1), 3563–3593 (2014)

https://doi.org/10.1007/978-3-319-10584-0_22
https://doi.org/10.1007/978-3-319-10584-0_22

212 B. Aksar et al.

6. Ates, E., et al.: Taxonomist: application detection through rich monitoring data. In:
Aldinucci, M., Padovani, L., Torquati, M. (eds.) Euro-Par 2018. LNCS, vol. 11014,
pp. 92–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96983-1 7

7. Ates, E., Zhang, Y., Aksar, B., et al.: HPAS: an HPC performance anomaly suite
for reproducing performance variations. In: ACM Proceedings of the 48th Interna-
tional Conference on Parallel Processing, pp. 1–10, August 2019

8. Bailey, D.H., Barszcz, E., Barton, J.T., et al.: The NAS parallel benchmarks sum-
mary and preliminary results. In: Supercomputing 1991: Proceedings of the 1991
ACM/IEEE Conference on Supercomputing, pp. 158–165 (1991)

9. Baseman, E., Blanchard, S., DeBardeleben, N., Bonnie, A., Morrow, A.: Inter-
pretable anomaly detection for monitoring of high performance computing sys-
tems. In: Outlier Definition, Detection, and Description on Demand Workshop at
ACM SIGKDD, San Francisco, August 2016 (2016)

10. Beneventi, F., Bartolini, A., Cavazzoni, C., Benini, L.: Continuous learning of HPC
infrastructure models using big data analytics and in-memory processing tools. In:
Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1038–1043
(2017)

11. Bengio, Y.: Learning Deep Architectures for AI. Now Publishers Inc., New York
(2009)

12. Bhatele, A., Mohror, K., Langer, S.H., Isaacs, K.E.: There goes the neighborhood:
performance degradation due to nearby jobs. In: SC 2013: IEEE Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis, pp. 1–12 (2013)

13. Bodik, P., Goldszmidt, M., Fox, A., Woodard, D.B., Andersen, H.: Fingerprinting
the datacenter: automated classification of performance crises. In: Proceedings of
the 5th European Conference on Computer Systems, pp. 111–124 (2010)

14. Borghesi, A., Bartolini, A., Lombardi, M., Milano, M., Benini, L.: A semisupervised
autoencoder-based approach for anomaly detection in high performance computing
systems. Eng. Appl. Artif. Intell. 85, 634–644 (2019)

15. Borghesi, A., Bartolini, A., Lombardi, M., et al.: Anomaly detection using
autoencoders in high performance computing systems. In: Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, pp. 9428–9433, July 2019.
arXiv: 1811.05269

16. Brandt, J., Chen, F., et al.: Quantifying effectiveness of failure prediction and
response in HPC systems: methodology and example. In: IEEE International Con-
ference on Dependable Systems and Networks Workshops (DSN-W), pp. 2–7 (2010)

17. Ciregan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for
image classification. In: IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 3642–3649 (2012)

18. Dorier, M., Antoniu, G., Ross, R., et al.: CALCioM: mitigating I/O interference in
HPC systems through cross-application coordination. In: IEEE 28th International
Parallel and Distributed Processing Symposium, pp. 155–164 (2014)

19. Exascale proxy applications. https://proxyapps.exascaleproject.org/
20. Ganglia monitoring system. http://ganglia.info/
21. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-

rate object detection and semantic segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

22. Habib, S., Morozov, V., Frontiere, N., Finkel, H., Pope, A., Heitmann, K.: HACC:
extreme scaling and performance across diverse architectures. In: SC 2013: Pro-
ceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis, pp. 1–10. IEEE (2013)

https://doi.org/10.1007/978-3-319-96983-1_7
http://arxiv.org/abs/1811.05269
https://proxyapps.exascaleproject.org/
http://ganglia.info/

Proctor 213

23. Heroux, M.A., et al.: Improving performance via mini-applications. Sandia
National Laboratories, Technical report, SAND2009-5574 3 (2009)

24. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief
nets. Neural Comput. 18(7), 1527–1554 (2006)

25. Hinton, G.E., Zemel, R.S.: Autoencoders, minimum description length and
Helmholtz free energy. In: Proceedings of the 6th International Conference on
Neural Information Processing Systems. NIPS 1993, pp. 3–10. Morgan Kaufmann
Publishers Inc., San Francisco (1993)

26. Ibidunmoye, O., Hernández-Rodriguez, F., Elmroth, E.: Performance anomaly
detection and bottleneck identification. ACM Comput. Surv. (CSUR) 48(1), 1–
35 (2015)

27. Klinkenberg, J., Terboven, C., Lankes, S., Müller, M.S.: Data mining-based analysis
of HPC center operations. In: IEEE International Conference on Cluster Comput-
ing, pp. 766–773 (2017)

28. Kunang, Y.N., Nurmaini, S., Stiawan, D., Zarkasi, A., Jasmir, F.: Automatic fea-
tures extraction using autoencoder in intrusion detection system. In: IEEE Inter-
national Conference on Electrical Engineering and Computer Science (ICECOS),
pp. 219–224 (2018)

29. Kunen, A.J., Bailey, T.S., Brown, P.N.: KRIPKE-a massively parallel transport
mini-app. Technical report, Lawrence Livermore National Lab. (LLNL), Livermore,
CA (United States) (2015)

30. Leung, V.J., Bender, M.A., Bunde, D.P., Phillips, C.A.: Algorithmic support for
commodity-based parallel computing systems. Technical report, Sandia National
Laboratories (2003)

31. Liu, G., Bao, H., Han, B.: A stacked autoencoder-based deep neural network for
achieving gearbox fault diagnosis. Math. Probl. Eng. (2018)

32. Luo, T., Nagarajan, S.G.: Distributed anomaly detection using autoencoder neural
networks in WSN for IoT. In: IEEE International Conference on Communications
(ICC), pp. 1–6 (2018)

33. Minhas, M.S., Zelek, J.: Semi-supervised anomaly detection using autoencoders.
arXiv:2001.03674 [cs, eess, stat], January 2020. http://arxiv.org/abs/2001.03674

34. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann
machines. In: ICML (2010)

35. Petersson, N., Sjögreen, B.: Sw4 v1.1 [software] (2014). https://doi.org/http://doi.
org/10.5281/zenodo.571844

36. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Com-
put. Phys. 117(1), 1–19 (1995)

37. Sato, D., Hanaoka, S., Nomura, Y., et al.: A primitive study on unsupervised
anomaly detection with an autoencoder in emergency head CT volumes. In: Med-
ical Imaging: Computer-Aided Diagnosis, vol. 10575, p. 105751P. International
Society for Optics and Photonics (2018)

38. Schwaller, B., Tucker, N., Tucker, T., Allan, B., Brandt, J.: HPC system data
pipeline to enable meaningful insights through analysis-driven visualizations. In:
IEEE International Conference on Cluster Computing, pp. 433–441, September
2020

39. Snir, M., Carlson, B., et al.: Addressing failures in exascale computing. Int. J. High
Perf. Comput. Appl. 28(2), 129–173 (2014)

40. Song, H., Jiang, Z., et al.: A hybrid semi-supervised anomaly detection model for
high-dimensional data. Comput. Intell. Neurosci. (2017)

http://arxiv.org/abs/2001.03674
http://arxiv.org/abs/2001.03674
https://doi.org/http://doi.org/10.5281/zenodo.571844
https://doi.org/http://doi.org/10.5281/zenodo.571844

214 B. Aksar et al.

41. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

42. Tuncer, O., et al.: Diagnosing performance variations in HPC applications using
machine learning. In: Kunkel, J.M., Yokota, R., Balaji, P., Keyes, D. (eds.) ISC
2017. LNCS, vol. 10266, pp. 355–373. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-58667-0 19

43. Tuncer, O., Ates, E., Zhang, Y., et al.: Online diagnosis of performance variation
in HPC systems using machine learning. IEEE Trans. Parallel Distrib. Syst. 30(4),
883–896 (2018)

44. Wang, K., et al.: Research on healthy anomaly detection model based on deep
learning from multiple time-series physiological signals. Sci. Program. (2016)

45. Yu, L., Lan, Z.: A scalable, non-parametric method for detecting performance
anomaly in large scale computing. IEEE Trans. Parallel Distrib. Syst. 27(7), 1902–
1914 (2015)

46. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In:
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 665–674 (2017)

https://doi.org/10.1007/978-3-319-58667-0_19
https://doi.org/10.1007/978-3-319-58667-0_19

HPC Algorithms and Applications

COSTA: Communication-Optimal Shuffle
and Transpose Algorithm with Process

Relabeling

Marko Kabić1,2(B), Simon Pintarelli1,2, Anton Kozhevnikov1,2,
and Joost VandeVondele1,2

1 ETH Zürich, Zurich, Switzerland
2 Swiss National Supercomputing Centre (CSCS), Lugano, Switzerland

marko.kabic@cscs.ch

Abstract. Communication-avoiding algorithms for Linear Algebra have
become increasingly popular, in particular for distributed memory archi-
tectures. In practice, these algorithms assume that the data is already
distributed in a specific way, thus making data reshuffling a key to
use them. For performance reasons, a straightforward all-to-all exchange
must be avoided.

Here, we show that process relabeling (i.e. permuting processes in the
final layout) can be used to obtain communication optimality for data
reshuffling, and that it can be efficiently found by solving a Linear Assign-
ment Problem (Maximum Weight Bipartite Perfect Matching). Based on
this, we have developed a Communication-Optimal Shuffle and Trans-
pose Algorithm (COSTA): this highly-optimised algorithm implements
A = α ·op(B)+β ·A, op ∈ {transpose, conjugate-transpose, identity} on
distributed systems, where A, B are matrices with potentially different
(distributed) layouts and α, β are scalars. COSTA can take advantage
of the communication-optimal process relabeling even for heterogeneous
network topologies, where latency and bandwidth differ among nodes.
Moreover, our algorithm can be easily generalized to even more generic
problems, making it suitable for distributed Machine Learning appli-
cations. The implementation not only outperforms the best available
ScaLAPACK redistribute and transpose routines multiple times, but is
also able to deal with more general matrix layouts, in particular it is
not limited to block-cyclic layouts. Finally, we use COSTA to integrate a
communication-optimal matrix multiplication algorithm into the CP2K
quantum chemistry simulation package. This way, we show that COSTA
can be used to unlock the full potential of recent Linear Algebra algo-
rithms in applications by facilitating interoperability between algorithms
with a wide range of data layouts, in addition to bringing significant
redistribution speedups.

Keywords: COSTA · Communication-optimal · Redistribution ·
Transpose · Perfect matching · Linear assignment · Random-phase
approximation (RPA) · CP2K · Linear algebra

c© Springer Nature Switzerland AG 2021
B. L. Chamberlain et al. (Eds.): ISC High Performance 2021, LNCS 12728, pp. 217–236, 2021.
https://doi.org/10.1007/978-3-030-78713-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-78713-4_12

218 M. Kabić et al.

1 Introduction

Communication-avoiding algorithms for Linear Algebra have become increas-
ingly popular recently, in particular for distributed memory architectures. In
practice, these algorithms usually assume the data is already distributed in a spe-
cific way. For example, COSMA [16], a communication-optimal matrix multipli-
cation algorithm, natively uses a specialised blocked data layout which depends
on matrix shapes and the available resources. Similarly, CARMA [7] is a recur-
sive communication-avoiding algorithm which requires a block-recursive data
layout also depending on matrix shapes and the available resources. On the other
hand, most of the software packages for scientific applications like CP2K [15] use
ScaLAPACK API [4] which assumes a block-cyclic matrix layout. Hence, the
data redistribution (i.e. reshuffling) becomes necessary in order to integrate and
use these efficient algorithms within the well-established software packages. Per-
forming an all-to-all communication would violate the communication-optimality
of these algorithms and must be avoided for performance reasons.

Another example where the data reshuffling is needed is to achieve the opti-
mal performance of existing ScaLAPACK routines. It is known that the per-
formance of ScaLAPACK highly depends on the block size which determines
the matrix layout. The optimal block size depends on the target machine and
the computational kernel being used [8]. Therefore, the data reshuffling might
be needed to achieve the optimal block size on a specific system. ScaLAPACK
provides the routine pxgemr2d for data reshuffling [19], but it is limited to block-
cyclic layouts.

Here we present COSTA: an algorithm that resolves all these problems: 1)
it minimizes the communication-cost of data reshuffling by process relabeling in
the target layout 2) it can handle arbitrary grid-like matrix layouts which are
not necessarily block-cyclic. Moreover, both row-major and col-major ordering of
blocks is supported; 3) it can also transform the data while reshuffling (e.g. trans-
pose or multiply by a scalar). 4) efficiently utilizes the overlap of communica-
tion and computation (i.e. the transformation); 5) provides the batched version,
which can transform multiple layouts at once, while significantly reducing the
latency. COSTA stands for Communication-Optimal (Re-)Shuffle and Transpose
Algorithm and refers to the matrix operation that the algorithm implements:
A ← α · op(B) + β · A, where op ∈ {transpose, conjugate-transpose, identity},
A,B are distributed matrices and α, β scalars.

The idea of relabeling processes in order to reduce the communication-cost
has already been studied in [10]. However, their model has the following limi-
tations: 1) it implicitly assumes all data pieces (i.e. items) are of the same size;
2) each data piece is assumed to belong to a single process; 3) data transfor-
mation (e.g. transpose, or multiplication by a scalar) during reshuffling is not
considered; 4) the model does not take into account the data locality, e.g. how
the local data is stored in the memory; 5) the latency and the bandwidth of all
processes is assumed to be the same.

In this paper, our contribution is twofold. First, we develop a generalization
of the model presented in [10] for finding the Communication-Optimal Process

COSTA: Comm-Optimal Shuffle and Transpose Alg. with Process Relabeling 219

Relabeling that resolves the above-mentioned limitations and is not limited to
Linear-Algebra applications. Then, using this model we develop the COSTA
algorithm that resolves the limitations of ScaLAPACK pxgemr2d and pxtran
routines and outperforms them even when no process relabeling is used.

2 Preliminaries and Notation

For an arbitrary set s = {b0, b1, . . . , bn−1}, |s| = n denotes its size. For a Carte-
sian product between two sets s1 and s2 we write s1 × s2. We define the range
as [n] := {0, 1, . . . , n − 1}. A square matrix X of dimension n is denoted by
X = [[xij]]i,j∈[n] or equivalently X = [[xij]]0≤i,j<n. We might treat a matrix as
a set of its entries, in particular, we might write xij ∈ X for i, j ∈ [n].

A graph G = (V,E) has vertices V and edges E ⊆ (V × V). A weighted
graph is a graph in which each edge is assigned some weight. A bipartite graph
with partitions U and V is a graph G = (U ∪ V,E) where E ⊆ U × V . If
V = {v0, v1, . . . vn−1} and V ′, V ′′ are two identical copies of V , e.g. V ′ =
{v′

0, v
′
1, . . . , v

′
n−1} and V ′′ = {v′′

0 , v′′
1 , . . . , v′′

n−1}, then we abuse the notation and
write G = (V, V,E) to denote the bipartite graph G = (V ′, V ′′, E). Moreover,
for an edge in this graph, we write (vi, vj) instead of (v′

i, v
′′
j). In a bipartite graph

G = (U, V,E), we define the set of all left neighbors of some vertex v ∈ V as
N L

G (v) := {u ∈ U : (u, v) ∈ E} and similarly the set of all right neighbors of
some vertex u ∈ U as N R

G (u) := {v ∈ V : (u, v) ∈ E}. Two edges are adjacent
if they have a common vertex. A matching M ⊆ E is a subset of non-adjacent
edges. The weight of the matching is the sum of weights of its edges. A perfect
matching of G is a matching that covers every vertex of G.

Machine Model. We assume a distributed memory setting with multiple
processes, each having its own private memory. Our model best corresponds to
the MPI parallel computing model, where our term process corresponds to an
MPI rank. We use the term process instead of processor to avoid the confusion
arising when MPI is run on many-core architectures with different process affinity
bindings. Local data of some process, is the data residing in its private memory,
whereas global data is the union of local data across all processes. All data, that
is not local to some rank is called remote. We say that each process owns its
local data.

Data Package, Block and Volume. Let pi and pj be two arbitrary pro-
cesses and let s =

{
b0, b1, . . . , b|s|

}
be a set of all data pieces that should be sent

from pi to pj . Each data piece b might contain the information about its memory
layout (e.g. if it is stored as a 2D block), data locality (e.g. stride, padding, align-
ment), memory ordering (e.g. row- or column-major) and similar. Each b ∈ s is
called a block and s a package. A block volume V (b) is the size of block b in bytes
and similarly, a package volume V (s) is the sum of all block volumes it contains:
V (s) =

∑
b∈s V (b).

220 M. Kabić et al.

3 Communication Cost Function

The communication cost w(pi, pj , s) represents the cost of sending the pack-
age s = {b0, b1, . . . , b|s|} from process pi to process pj . Formally, if P =
{p0, p1, . . . , pn−1} is the set of all processes and S the set of all packages that are
to be exchanged, then the communication cost function is defined as a function
w : P × P × S �→ R. Specifically, w(pi, pj , ∅) = 0 for any pi, pj ∈ P .

For an arbitrary pi, pj ∈ P and s ∈ S, in its simplest form, w can be defined
as follows:

w(pi, pj , s) =

{
V (s), pi �= pj

0, otherwise
(1)

This cost function considers all local communication free, whereas a remote com-
munication cost is equal to the data volume. We will refer to this communication
cost as locally-free-volume-based cost.
Alternatively, the cost function can also include the following factors:

– Network Topology: w can take into account the physical topology e.g.
using some of the bandwidth-latency models [12]. If L(pi, pj) is the latency
cost between pi and pj , and B(pi, pj) be the bandwidth cost per data unit,
w could be defined as w(pi, pj , s) = L(pi, pj) + B(pi, pj) · V (s).

– Transformation cost: if the data also needs to be transformed on-the-fly,
while being sent, e.g. the data should be transposed or multiplied by a scalar,
then the cost of this transformation can also be included. For example, w
can be defined as w(pi, pj , s) = c · ∑b∈s IT (b) · |b|, where IT (·) is an indicator
function if the piece of data b should be transformed (e.g. multiplied by a
scalar or transposed) while being sent from pi to pj and c is a constant that
determines the complexity of the transformation to be applied to b.

– Data Locality: the way how each piece of data b ∈ s is stored in the memory
can also be taken into account. For example, if b is a 2D block, then w can
take into account its stride, padding, alignment and similar.

3.1 Communication Graph

A communication graph describes the communication pattern, i.e., which data
the processes are going to exchange.

Let P = {p0, p1, . . . , pn−1} be the set of all processes and S = [[Sij]]0≤i,j<n

be the set of all packages that are to be exchanged, where Sij corresponds to
the package to be sent from pi to pj .

We can represent this communication pattern with an undirected, bipartite
graph (P, P,E) with two identical partitions P and the set of edges E, defined
as follows:

E = {(pi, pj) : (pi, pj) ∈ (P × P) ∧ Sij �= ∅}
We now formally define a communication graph as an ordered tuple:

G = (P,E, S) (2)

COSTA: Comm-Optimal Shuffle and Transpose Alg. with Process Relabeling 221

If w : P × P × S is a communication-cost function, then under w, each edge
(pi, pj) ∈ E has weight w(pi, pj , Sij). In the same manner, the total communica-
tion cost of graph G, denoted by W (G), is defined as the sum of the weights of
all edges:

W (G) =
∑

(pi,pj)∈E

w(pi, pj , Sij). (3)

4 Communication-Optimal Process Relabeling (COPR)

In this section, we first formally define the COPR and then show that it can
be formulated as a well-known Linear Assignment Problem (LAP). Then, we
discuss the current state-of-the-art algorithms to solve the LAP that can also be
used to find the COPR.

4.1 The Formal Definition

Let G = (P,E, S) be a communication graph (see Eq. (2)) on processes P , with
edges E and data set S = [[Sij]]0≤i,j<n.

In order to reduce the total communication cost W (G), as defined in Equa-
tion (3), we want to relabel the processes. Relabeling pj to pi makes their commu-
nication become local, hence potentially reducing the communication cost. We
will first formally define these terms and then aim to find the process relabeling
that minimizes the total communication cost.

Definition 1 (Process Relabeling). Let P = {p0, p1, . . . , pn−1} be a set of pro-
cesses. A process relabeling σ is a permutation of indices [n], implicitly mapping
each pi to pσ(i).

Applying a process relabeling σ to graph G under communication-cost func-
tion w yields the relabeled communication graph Gσ which we define as follows.

Definition 2 (Relabeled Graph). Let G = (P,E, S) be a communication graph
and σ be a process relabeling of P . The relabeled graph Gσ is a communication
graph Gσ = (P,E′, S′), where:

E′ =
{
(pi, pσ(j)) : (pi, pj) ∈ E

}

S′
i,σ(j) = Sij , for each (pi, pj) ∈ E.

Remark 1. Observe that the initial graph G is isomorphic to Gid where id(·) is
the identity permutation id(i) = i for all i ∈ [n].

We say that graph Gσ is induced by σ relabeling. Note that after relabelling
j → σ(j), the processes pi still has to send Sij to pσ(j), as before relabelling.
If the communication between pi and pσ(j) is faster than between i and j, this
relabeling might reduce the communication cost.

Finally, we define the communication-optimal process relabeling (COPR) as
the relabeling which yields the graph Gσ with minimal cost.

222 M. Kabić et al.

Definition 3 (COPR). Let G = (P,E, S) be a communication graph and w :
P × P × S �→ R be a communication cost function. A communication-optimal
process relabeling σopt w.r.t. the cost function w is defined as:

σopt = arg min
σ

W (Gσ)

4.2 COPR as Linear Assignment Problem

In this section we show how finding the communication-optimal process relabel-
ing (COPR) from Definition 3 can be reduced to solving the Linear Assignment
Problem (LAP) [3]. The LAP consists of finding the assignment, i.e. a bijection
φ : A �→ B between two equally-sized sets A and B (|A| = |B|) that optimizes
the objective function of the form:

∑

a∈A

c(a, φ(a)) (4)

A minimization LAP can be easily turned into the maximization version: it
suffices to either change the sign of the objective function or subtract all the
costs from the maximum cost. The latter technique is often used in practice,
since some implementations of LAP algorithms assume all costs are non-negative.
We refer the reader to [3,9] for more details on LAP. Observe that finding the
COPR directly by Definition 3 includes finding the process relabeling σ that
induces the relabeled graph Gσ with minimal cost W (Gσ). This is not directly
an instance of LAP because the graph structure depends on σ. However, we will
show that it can be reduced to LAP by first defining the relabeling gain, then
proving that maximizing the relabeling gain yields the COPR and finally using
this relabeling gain to formulate the problem of finding the COPR as a Linear
Program corresponding to LAP.

Definition 4 (Relabeling Gain). Let G = (P,E, S) be a communication graph,
w a communication cost function, σ an arbitrary process relabeling and let Gσ

be the relabeled graph induced by σ. The relabeling gain δ : P × P �→ R for some
px, py ∈ P describes the gain of relabeling px

σ−→ py and is defined as:

δ(px, py) =
∑

pi∈NL
G (px)

(w(pi, px, Si,x)
︸ ︷︷ ︸
before relabeling

−w(pi, py, Si,x)
︸ ︷︷ ︸
after relabeling

) (5)

The total relabeling gain is defined as the sum of relabeling gains for each process:

Δσ =
∑

pj∈P

δ(pj , pσ(j))

COSTA: Comm-Optimal Shuffle and Transpose Alg. with Process Relabeling 223

Remark 2. If w is the locally-free-volume-based cost function defined in Eq. (1),
then it is easy to see that:

δ(px, py) = V (Sy,x) − V (Sx,x),

which intuitively means that by relabeling px
σ−→ py, we gained Sy,x as it became

a local exchange (which costs 0 under w) but we lost Sx,x which after relabeling
requires a remote communication.

In the following Lemma we prove that the total relabeling gain is equal to
the total weight difference between G and Gσ, i.e. before and after the process
relabeling.

Lemma 1. Let G = (P,E, S) a communication graph, w a communication cost
function and σ an arbitrary process relabeling. If Gσ = (P,E′, S′) is the relabeled
graph induced by σ and Δσ the total relabeling gain, then the following holds:

Δσ = W (G) − W (Gσ)

Proof. By Eq. (3) and Definition 2, for W (Gσ) we have:

W (Gσ) =
∑

(pi,pj)∈E′
w(pi, pj , S

′
ij) =

∑

(pi,pj)∈E

w(pi, pσ(j), Sij)

=
∑

pj∈P

∑

pi∈NL
G (pj)

w(pi, pσ(j), Sij) (6)

Similarly, for W (G), we have:

W (G) =
∑

pj∈P

∑

pi∈NL
G (pj)

w(pi, pj , Sij) (7)

Subtracting Eqs. (7) and (6), by Definition 4, we get:

W (G) − W (Gσ) =
∑

pj∈P

∑

pi∈NL
G (pj)

(w(pi, pj , Sij) − w(pi, pσ(j), Sij))

︸ ︷︷ ︸
=δ(pj ,σ(pj))

= Δσ.

Next, we show that the COPR can also be obtained by maximizing the total
relabeling gain.

Lemma 2. Let G = (P,E, S) be a communication graph and w : P ×P ×S �→ R

a communication cost function. A communication-optimal process relabeling σopt

with respect to the communication function w is given by:

σopt = arg max
σ

Δσ

224 M. Kabić et al.

Proof. By Lemma 1, we have:

arg max
σ

Δσ = arg max
σ

(W (G) − W (Gσ)).

Observe that W (G) does not depend on σ and is therefore constant with respect
to σ. Hence, we can write:

arg max
σ

(W (G) − W (Gσ)) = arg max
σ

(−W (Gσ)) = arg min
σ

W (Gσ) = σopt,

where the last equality follows from Definition 3.

Finally, we prove that finding the COPR can be reduced to the following Linear
Program (LP) that corresponds to the Linear Assignment Problem (LAP).

Theorem 1. Let P = {p0, . . . , pn−1} be a set of processes, G = (P,E, S) a
communication graph, w : P × P × S �→ R a communication cost function and
δ : P ×P �→ R a relabeling gain. Let x∗

ij (i, j = 0, 1, . . . n) be the optimal solution
to the following Linear Program:

maximize
∑

(pi,pj)∈P×P

δ(pi, pj)xij (8)

subject to:
∑

pi∈P

xij = 1 j = 0, . . . , n − 1 (9)

∑

pj∈P

xij = 1 i = 0, . . . , n − 1 (10)

xij ≥ 0 i, j = 0, . . . , n − 1. (11)

The communication-optimal process relabeling (COPR) σopt is given by:

σopt(i) = j ⇔ x∗
ij = 1 for all i, j = 0, . . . , n − 1

Proof. This LP corresponds to the Linear Assignment Problem [3]. Due to
Birkhoff [2] (also reformulated as Theorem 1.1 in [9]), we can assume xij ∈ {0, 1},
as this condition can be relaxed to xij ≥ 0 in this case. The conditions (9) and
(10) ensure the induced process relabeling is a bijection. Therefore, each feasible
solution of this LP is a matrix representation of the permutation it induces.

The stated LP is always feasible, because xij = 1 ⇔ i = j for all i, j ∈ [n],
corresponding to the identity permutation, is always a feasible solution. Let x′

ij

be an arbitrary feasible solution of the LP and let σ be the permutation induced
by x′

ij . Since x′
ij ∈ {0, 1} and x′

ij = 1 ⇔ σ(i) = j, the objective function
becomes: ∑

(pi,pj)∈P×P

δ(pi, pj)x′
ij =

∑

pi∈P

δ(pi, pσ(i)) = Δσ (12)

By Lemma 2, maximizing the total relabeling gain Δσ yields the communi-
cation optimal process relabeling σopt which finalizes the proof.

COSTA: Comm-Optimal Shuffle and Transpose Alg. with Process Relabeling 225

Since the Linear Assignment Problem can also be formulated in terms of
Graph Matchings [9], we also provide the equivalent reformulation of Theorem 1
in terms of the Maximum Weight Bipartite Perfect Matching problem.

Theorem 2. Let P = {p0, . . . , pn−1} be a set of processes, G = (P,E, S) a
communication graph, w : P × P × S �→ R a communication cost function and
δ : P × P �→ R a relabeling gain. Let Gδ = (P, P,Eδ) be a complete bipartite
graph with edges Eδ = P × P , where each edge (pi, pj) ∈ Eδ is assigned weight
δ(pi, pj). If M ∈ Eδ is a Maximum Weight Perfect Matching of graph Gδ, the
communication-optimal process relabeling (COPR) σopt of G is given by:

σopt(i) = j ⇔ (pi, pj) ∈ M (13)

Proof. This is just a reformulation of Theorem 1 where each feasible solution
x′

ij , i, j ∈ [n] of the LP from Theorem 1 can also be viewed as a matching of
Gδ. The relation between x′

ij(i, j ∈ [n]), the corresponding relabeling σ and the
corresponding matching M is given by:

x′
ij = 1 ⇔ σ(i) = j ⇔ (pi, pj) ∈ M.

Remark 3. The graph Gδ admits a Perfect Matching because M = {(pi, pi) :
pi ∈ P} is always a valid Perfect Matching.

4.3 COPR Algorithm

In Theorem 1 it is shown how finding the COPR can be reduced to the Linear
Program that corresponds to the Linear Assignment Problem (LAP). A refor-
mulation of this LAP in terms of Maximum Weight Bipartite Perfect Matching
(MWBPM) yields Theorem 2. In addition, the LAP can also be formulated in
terms of Network Flows, in which case it is reduced to the Maximum Flow of
Optimal Cost problem [9].

An example of the matching-based algorithm for finding the COPR that fol-
lows from Theorem 2 is shown in Algorithm 1. The complexity of this algorithm
depends on the complexity of 1) computing the weights, i.e. costs 2) solving a
LAP (Line 6). Let |P | = n be the number of processes.

The weights are computed in Lines 3–5. If all data volumes V (Sij), i, j ∈ [n]
are precomputed, then the for-loop computing all δ(pi, pj) by Eq. (5) serially
takes O(n3). On distributed architectures, this reduces to O(n2). Furthermore,
for simpler cost functions like locally-free-volume-based cost from Eq. (1), com-
puting δ(pi, pj) is constant (see Remark 2), which further reduces the total com-
plexity down to O(n). The complexity is therefore dominated by the complexity
of solving the LAP.

The LAP solver is invoked in Line 6. One of the most famous LAP algo-
rithms is the Hungarian (KuhnMunkres) Algorithm [14,18] with complexity
O(n3), which is optimal for dense graphs that we are dealing with (note that the

226 M. Kabić et al.

graph Gδ from Theorem 2 is a complete bipartite graph). This algorithm has also
been GPU-accelerated [17] and there is also a distributed version with a multi-
gpu support [5]. Other interesting LAP algorithms include a fast matching-based
randomized algorithm [20] and a recently developed, distributed, approximation
algorithm [1] that achieves great speedups while finding near-optimal solutions.

Algorithm 1. Finding the COPR
Require:

Process Set: P = {p0, p1, . . . , pn−1}
Data Set: S = [[Sij]]0≤i,j<n � Sij := package to be sent pi �→ pj

Communication-cost function: w � w(pi, pj , Sij) := cost of sending pi

Sij−−→ pj

Ensure:
Comm-Optimal Process Relabeling (COPR): σopt : [n] �→ [n] � pi → pσopt(i)

1: procedure FindCOPR(P, S, w) → σopt

2: σopt = 0n � COPR as an array of size n
3: weights = 0n×n � adjacency matrix of Gδ from Theorem 2
4: for (pi, pj) ∈ P × P do � Gδ is a complete bipartite graph
5: weights[i][j] = δ(pi, pj) � δ(·, ·) defined in Eq. (5)

6: M = MWBPM(n, weights) � Max Weight Bipartite Perfect Matching(Gδ)
7: for (i, j) ∈ M do
8: σopt[i] = j � M �→ σopt as in Eq. (13)

9: return σopt

5 COSTA: Comm-Optimal Shuffle and Transpose Alg.

COSTA uses the communication-optimal process relabeling (COPR) to imple-
ment the routine:

A = α · op(B) + β · A, op ∈ {transpose, conjugate-transpose, identity} (14)

on distributed systems, where A,B are matrices with potentially different layouts
and α, β are scalars. Since this routine, in a distributed setting, includes the data
reshuffling (i.e. redistribution) across processes while potentially transposing the
data, we call this routine: Shuffle and Transpose. It encapsulates the functionality
of two ScaLAPACK routines: pxtran(u) for matrix transpose and pxgemr2d for
data redistribution.

Matrix Layout: describes how the matrix is distributed among processes.
The way how a matrix A is partitioned is given by two sorted arrays: row-
splits RA and column-splits CA where block bij contains the rows in range
[RA(i), RA(i + 1)) and the columns in range [CA(j), CA(j + 1)). The row-splits
and columns-splits together define the grid GridA = (RA, CA). The owner of
a block b from this grid is given by OwnersA(b) ∈ P , where P is the set

COSTA: Comm-Optimal Shuffle and Transpose Alg. with Process Relabeling 227

of processes holding A. The layout of a matrix A is hence an ordered tuple
L(A) = (GridA, P,OwnersA).

Grid Overlay: given two grids GridA = (RA, CA) and GridB = (RB , CB)
we define the Grid Overlay GridA,B = (RA ∪RB, CA ∪CB) as the grid obtained
by overlaying both grids. It is easy to see that each block bA,B ∈ GridA,B is
covered by one and only one block bA ∈ GridA and one and only one block
bB ∈ GridB . We therefore define coverA(bA,B) = bA and coverB(bA,B) = bB .

Data Reshuffling: given matrices A and B with same dimensions, but
different layouts L(A) and L(B) on processes P = {p0, p1, . . . , p|P |}, we want to
copy the values of B into the layout of A. In a distributed setting, this includes
communication of matrix pieces. In order to be able to use Algorithm 1 for
obtaining the communication-optimal process relabeling (COPR) σopt for this
problem, we have to construct the set of packages S = [[Sij]0≤i,j<|P | where Sij

contains all blocks that should be sent from process pi to pj . We show how to
obtain the COPR for this problem in Algorithm 2.

Algorithm 2. COPR for (Matrix) Data Reshuffling
Require:

Matrix Layout L(A) = (GridA, P, OwnersA)
Matrix Layout L(B) = (GridB , P, OwnersB)
Communication-Cost Function w

Ensure:
Set of data packages: S = [[Sij]]0≤i,j<|P | � package Sij to be sent from pi to pj

COPR: σopt for copying B into the layout of A � σopt relabeling: pi → pσopt(i)

1: procedure FindCOPRforMatrices(L(A), L(B), w) → (S, σopt)
2: S = [[Sij]]0≤i,j<|P | = ∅|P |×|P | � set of data packages: initialize all Sij = ∅

3: for b ∈ GridA,B do � iterate over the Grid Overlay
4: pi = OwnersA(coverA(b)) � owner of the block which covers b in L(A)
5: pj = OwnersB(coverB(b)) � owner of the block which covers b in L(B)
6: Sij = Sij ∪ {b} � add block b to the right package

7: σopt = FindCOPR(P, S, w) � Algorithm 1
8: return (S, σopt)

Scale and Transpose/Conjugate: observe that the routine from Eq. (14)
includes the possibility to scale the matrices (multiply by a scalar), trans-
pose/conjugate or take a submatrix. Let L(A) and L(B) be two different matrix
layouts. In the previous paragraph we discussed the case when matrix B should
be copied to the layout of matrix A without any transformation. Here, we discuss
the cases when B should also be transformed. If only a submatrix of B should be
taken, then we can first truncate the corresponding row-splits and column-splits
in GridB and then apply the Algorithm 2 to obtain the COPR. If B should also
be transposed/conjugated or scaled before being copied to A, then the cost of
this transformation can be taken into account in the communication-cost func-
tion w (see Sect. 3). Practically, the transformation can be performed in one of
the following ways:

228 M. Kabić et al.

– transform before sending: each process can first transform the data locally in
temporary send buffers, and then send it.

– transform after receiving: each process can transform the data upon receipt
in temporary receive buffers. This approach is better in asynchronous settings
because the data transformation can be overlapped with communication of
other packages.

We chose to transform upon receipt, since we are using asynchronous
communication.

Communication-Cost Function: the communication cost function can be
arbitrary. In practice, we use the simple locally-free-volume-based cost function
defined in Eq. (1).

Finally, taking into account these insights, we present COSTA in Algorithm 3.

Algorithm 3. COSTA: Comm-Optimal Shuffle and Transpose Algorithm
Require:

Matrix A with Layout L(A) = (GridA, P, OwnersA)
Matrix B with Layout L(B) = (GridB , P, OwnersB)
Scalars α, β
Operator op ∈ {transpose, conjugate-transpose, identity}
Comm-Cost Function (optional) w � by default, defined by Eq. (1)
Process id: pid ∈ P

Ensure:
Performs A = α · op(B) + β · A

1: procedure COSTA(A, L(A), B, L(B), α, β, op)
2: (S, σopt) = FindCOPRforMatrices(L(A), L(B), w) � Algorithm 2
3: for pj ∈ P do
4: send asynchronously Sid,j to pσ(j) � send local data to relabeled processes

5: for package ∈ {0, 1, . . . , |P |} do
6: receive from any pi ∈ P in a temp. recv buffer
7: scale, transpose or conjugate the received package Si,id if needed

6 Implementation Details

COSTA (Algorithm 3) is implemented using the hybrid MPI+OpenMP paral-
lelization model. The code is publicly available under the BSD-3 Clause Licence
at [11]. It has the following features: 1) provides the ScaLAPACK wrappers for
pxgemr2d and pxtran; 2) supports arbitrary grid-like matrix layouts (not limited
to block-cyclic). It also support both row- and col-major ordering of matrices,
unlike ScaLAPACK; 3) can use the COPR to minimize the communication;
4) supports batched transformation, i.e., multiple pairs of matrix layouts can be
transformed in the same communication round; 5) supports arbitrary data types
using C++ templates.

COSTA: Comm-Optimal Shuffle and Transpose Alg. with Process Relabeling 229

Fig. 1. COSTA Matrix Descriptor: a global view contains a grid (defined by row-splits
and col-splits) and the owners matrix mapping blocks to processes. A local view is a
list of blocks, each containing a pointer, a stride, dimensions and the ordering type
(row- or col-major).

Matrix Layout Descriptor. Following the theoretical definition of a matrix
layout from Sect. 5, in practice we use a more detailed matrix descriptor depicted
in Fig. 1, that also takes into account block strides and whether the blocks are
stored in row- or col-major order. This makes the COSTA layout descriptor more
general than the block-cyclic descriptor used by ScaLAPACK.

Implementation. After S = [[Sij]] is computed in Line 2, each process has
a list of blocks it should send and a list of blocks it should receive. Each process
first copies all blocks into a temporary send buffer using OpenMP, such that all
blocks to be sent to the same target are packed together into a single, contiguous
package in the send buffer. These packages are then sent using the non-blocking
MPI Isend such that only a single package (containing multiple blocks) is sent
to each receiving process, which significantly reduces the latency costs.

Overlap of Communication and Computation. Upon receipt of a pack-
age with MPI Waitany, blocks within this package are unpacked and the trans-
formation (transpose, conjugate-transpose or multiplication by a scalar) is per-
formed using OpenMP, while other packages are still being communicated in
the background, thus enabling the overlap of communication and computation.
A cache-friendly, multi-threaded kernel for matrix transposition is provided.
Moreover, the blocks that are local in both the initial and the final layouts
are not copied to temporary send/receive buffers, but are handled separately
with OpenMP, to avoid unnecessary data copies to and from temporary buffers
and potentially additional copies that MPI might perform. The handling of these
blocks is also overlapped with MPI communication.

Batched Transformation. If multiple pairs of layouts are to be transformed
together, then the procedure is the same, except that now a package contains
blocks that might belong to different layouts. Still, all the blocks to be sent to
the same process are packed together and sent within a single message, thus
reducing the latency costs even further.

230 M. Kabić et al.

Max Weight Bipartite Perfect Matching. In Line 6 in Algorithm 1 we
are free to choose how we want to solve the matching problem. In practice, we
use a simple greedy algorithm, which is a 2-approximation.

7 Performance Results

We evaluate the performance of COSTA in three groups of benchmarks: first,
since COSTA implements pxgemr2d (data-reshuffling, i.e. distributed copy)
and pxtran (transpose) routines, we compare the performance of COSTA vs.
available ScaLAPACK implementations (Intel MKL, Cray LibSci) in isolation
(Sect. 7.1). This comparison is done without using the Process Relabeling, as
ScaLAPACK API does not support it. In the second part (Sect. 7.2), we mea-
sure how much communication-volume can be reduced by using the process rela-
beling. In the final benchmark (Sect. 7.3), we run COSTA within a real-world
application and analyse its performance, as well as the communication-volume
reduction.

Hardware Details: all the experiments are performed on Piz Daint Super-
computer of Swiss National Supercomputing Centre (CSCS) which consists of
two partitions: the CPU partition with 1813 nodes (Cray XC40 compute nodes,
Intel Xeon E5, 2 × 18 cores, 64-128 GB RAM) and the GPU partition with
5704 nodes (Cray XC50 compute nodes, Intel Xeon E5, 12 cores, 64 GB RAM
+ NVIDIA P100 16 GB GPU).

Software Details: in the benchmarks, we used Cray-MPICH v7.7, Intel
MKL v19.1, Cray LibSci and Cray LibSci-Acc v20.06, CP2K v7.1, COSMA v2.3
and COSTA v1.0. All the libraries were compiled with a GCC v10.1 compiler
available on the Piz Daint Supercomputer.

7.1 COSTA vs. ScaLAPACK

We compare the performance of COSTA, Intel MKL and Cray LibSci for the fol-
lowing routines: pdgemr2d (distributed copy, i.e. reshuffling) and pdtran (trans-
pose). To this end, we use the ScaLAPACK wrappers that COSTA provides (see
Sect. 6).

It is known that ScaLAPACK performance often varies drastically for dif-
ferent block sizes which determine the matrix distributions (i.e. layouts) and
the optimal block size depends on the target machine [8]. Scientific applications
usually have a default block size (e.g. in [13], it is 32 × 32) and reaching the
optimal block size (which is 128×128, for our applications) requires data reshuf-
fling and potentially a transpose operation. Inspired by this example, we run the
following benchmark: we vary the matrix size from 100–200 (square-case) and
for each size we transform the matrix from 32×32 to 128×128 block size, using
the pdgemr2d routine and the same for the pdtran (transpose) routine.

We also include the batched version of COSTA for comparison. The batched
version amortizes the latency costs since multiple layouts are transformed within
the same communication round. This is often useful for operations like matrix

COSTA: Comm-Optimal Shuffle and Transpose Alg. with Process Relabeling 231

multiplication which involves 3 matrices and each of them might potentially need
to be transformed, as is the case in the COSMA algorithm [16]. To account for
this scenario, we also ran the batched version of COSTA on each test-case from
this benchmark with one difference: instead of transforming a single instance of
each test case, we let the batched version transform 3 identical instances of each
test-case and report the amortized cost per test-case instance.

This benchmark is run on 128 dual-socket CPU nodes (2 × 18 cores) of Piz
Daint Supercomputer using 2 MPI ranks per node, 18 threads per rank and
16 × 16 process grid. Each experiment was repeated 5 times and the best time
is reported in Fig. 2. We observed similar performance with other matrix shapes
(including rectangular matrices) and other process grids, so here we present just
the square-matrices case.

Fig. 2. The performance comparison of ScaLAPACK routines for data reshuffling (left)
and matrix transpose (right) by different algorithms (see Sect. 7.1). Reported times for
COSTA (batched) are amortized over 3 identical instances of a test-case.

7.2 Process Relabeling

We measured how much communication-volume is reduced when redistributing
(reshuffling) a matrix between two block-cyclic layouts. The matrix size was
105 × 105 and the process grid was 10 × 10. The process grid was row-major
for the initial layout and column-major for the final layout. The target layout
had block size fixed at 104. The block size of the initial layout was varied from
1 up to 104 and for each block size the communication-volume was computed
before and after relabeling. Based on this we computed the communication-
volume reduction (in percent) due to process relabeling, that is shown in Fig. 3.
When both layouts have the same block size (= 104), then they only differ in
the block assignment to processes, in which case the process relabeling is able
to completely eliminate the communication.

232 M. Kabić et al.

Fig. 3. The initial layout of the matrix (i.e. the block size) was varied, whereas the
final layout was fixed with a block size of 104. The process grid was fixed to 10 × 10
in both layouts. When the initial and target layouts have the same blocks (and hence
the same grids), process relabeling makes all communication local, thus eliminating the
need for remote communication (the red dot). (Color figure online)

7.3 Real-World Application: RPA Simulations

In Random Phase Approximation (RPA) [6] simulations, a major part of com-
putation consists of many large tall-and-skinny matrix multiplications with
matrix transposition. For a system size N (the number of atoms), the matri-
ces to be multiplied are of size O(N2) × O(N), where O(N2) is proportional
to (occupied orbitals · virtual orbitals) and O(N) is proportional to the number
of auxiliary basis functions. Concretely, for simulating 128 water molecules, the
matrix sizes are depicted in Fig. 5. This multiplication is repeated many times
and takes ≈80% of the total simulation time on 128 dual-socket CPU nodes
of Piz Daint. Therefore, an efficient matrix-multiplication routine is essential
for this benchmark. Recently, a communication-optimal matrix-multiplication
algorithm COSMA [16] has been developed which offers significant speedups for
all matrix shapes. However, COSMA natively uses a specialized blocked matrix
layout which depends on matrix dimensions and the number of available proces-
sors. Moreover, as shown in Fig. 5, one of the matrices (matrix A) also has to be
transposed during the reshuffling. On the other hand, the CP2K [15] software
package, which implements the RPA method, assumes a block-cyclic (ScaLA-
PACK) layout. Since COSMA layout is not block-cyclic, existing ScaLAPACK
routines for reshuffling and transpose cannnot be used.

We used COSTA with Process Relabeling to integrate COSMA into CP2K
and compare its performance to Intel MKL, Cray LibSci (CPU) and Cray Lib-
Sci (GPU). We simulate 128 water molecules with the RPA method on 128,
256, 512 and 1024 GPU nodes of Piz Daint Supercomputer. The total matrix-
multiplication time as well as the total simulation time are reported in Fig. 4.

COSTA: Comm-Optimal Shuffle and Transpose Alg. with Process Relabeling 233

Fig. 4. The RPA simulation of 128 water molecules using different matrix-multiplication
backends. We used COSTA with Process Relabeling to redistribute and transpose matri-
ces between ScaLAPACK (block-cyclic) and the native COSMA layout in each matrix-
multiplication call. COSMA + COSTA outperform alternative libraries on both CPU
and GPU. COSTA accounts for roughly 10% of the total runtime of COSMA+COSTA
in these cases.

Fig. 5. The computationally dominant
matrix multiplication in the RPA sim-
ulation that is performed many times
throughout the simulation. The exact
size of A and B is 3, 473, 408 × 17, 408.

Fig. 6. The communication volume
reduction due to process relabeling in
COSTA during the transformation of
matrices (left) between the ScaLA-
PACK (block-cyclic) and the native
COSMA layouts.

234 M. Kabić et al.

For the dominant matrix multiplication in the RPA simulation (Fig. 5), we
computed the total communication volume for transforming matrices between
ScaLAPACK (block-cyclic) and the native COSMA layout using COSTA. The
total communication volume with and without process relabeling is measured
and the percentual volume reduction is shown in Fig. 6. In this case, ScaLAPACK
is always using the same block sizes (and same layouts) for A and B, whereas
matrix C is distributed only on a subset of processes (the ones in the upper part
of the rectangular process grid). COSMA on the other hand uses different blocks
and layouts for each matrix and all matrices are distributed on all the processes.
This makes it hard to predict how this interplay of different layouts is behaving
as the number of nodes increases.

8 Conclusion

We have shown how the communication-optimal process relabeling (COPR) can
efficiently be found in a very general setting where the network topology, data-
locality, data transformation cost (e.g. transposing the data) and other param-
eters can all be taken into account through a cost-function. The theoretical
contribution of this paper is not limited to matrix redistribution or transposi-
tion, but can also be used in general, e.g. for tensors. Besides transposition, any
other operation can be performed on the local data – it suffices to include the
operation cost into the cost function of the COPR algorithm (Algorithm 1).

We developed COSTA: a highly-efficient algorithm with process relabeling
for performing matrix shuffle and transpose routine (Eq. (14)). The experiments
have shown that COSTA outperforms ScaLAPACK multiple times even when no
process relabeling is used. COSTA provides ScaLAPACK wrappers for pxgemr2d
and pxtran routines making the integration into scientific libraries straightfor-
ward. In addition, COSTA can also deal with arbitrary grid-like matrix layouts
and is not limited to block-cyclic layouts and supports both row- and column-
major storage of blocks and efficiently overlaps communication and computation.
Moreover, a batched version is also provided, which can transform multiple pairs
of layouts, while significantly reducing the latency.

Furthermore, we have shown that the process relabeling can reduce the com-
munication volume for data reshuffling even by 100%, e.g. when the initial and
final layouts differ up to a process permutation. We used COSTA to integrate the
highly-optimized COSMA algorithm into the CP2K software package and have
shown that COSTA can enable the interoperability between different existing
scientific libraries and the novel efficient algorithms with very little overhead. In
practice, we have shown that COSTA is able to significantly reduce the commu-
nication cost also in real world applications where initial and final layouts are
both changing in different ways.

COSTA: Comm-Optimal Shuffle and Transpose Alg. with Process Relabeling 235

References

1. Azad, A., Buluç, A., Li, X.S., Wang, X., Langguth, J.: A distributed-memory
algorithm for computing a heavy-weight perfect matching on bipartite graphs.
SIAM J. Sci. Comput. 42(4), C143–C168 (2020)

2. Birkhoff, G.: Tres observaciones sabre el algebra lineal. Univ. Nac. Tucumán Rev.
Ser. A 5, 147–151 (1946)

3. Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems: Revised Reprint.
SIAM (2012)

4. Choi, J., Dongarra, J.J., Pozo, R., Walker, D.W.: Scalapack: a scalable linear alge-
bra library for distributed memory concurrent computers. In: The Fourth Sym-
posium on the Frontiers of Massively Parallel Computation, pp. 120–121. IEEE
Computer Society (1992)

5. Date, K., Nagi, R.: GPU-accelerated Hungarian algorithms for the linear assign-
ment problem. Parallel Comput. 57, 52–72 (2016). https://doi.org/10.1016/j.
parco.2016.05.012, http://www.sciencedirect.com/science/article/pii/S016781911
630045X

6. Del Ben, M., Schütt, O., Wentz, T., Messmer, P., Hutter, J., VandeVondele, J.:
Enabling simulation at the fifth rung of DFT: large scale RPA calculations with
excellent time to solution. Comput. Phys. Commun. 187, 120–129 (2015). https://
doi.org/10.1016/j.cpc.2014.10.021, http://www.sciencedirect.com/science/article/
pii/S0010465514003671

7. Demmel, J., et al.: Communication-optimal parallel recursive rectangular matrix
multiplication. In: 2013 IEEE 27th International Symposium on Parallel and Dis-
tributed Processing, pp. 261–272. IEEE (2013)

8. Dongarra, J.J., Walker, D.W.: Software libraries for linear algebra computations
on high performance computers. SIAM Rev. 37(2), 151–180 (1995). https://doi.
org/10.1137/1037042

9. Du, D., Pardalos, P.M.: Handbook of Combinatorial Optimization, vol. 4. Springer
Science & Business Media, Boston (1998). https://doi.org/10.1007/978-1-4613-
0303-9

10. Herrmann, J., Bosilca, G., Hérault, T., Marchal, L., Robert, Y., Dongarra, J.:
Assessing the cost of redistribution followed by a computational kernel: complexity
and performance results. Parallel Comput. 52, 22–41 (2016)

11. Kabic, M., Pintarelli, S., Kozhevnikov, A., VandeVondele, J.: COSTA:
communication-optimal shuffle and transpose algorithm (2020). https://github.
com/eth-cscs/COSTA

12. Kielmann, T., Gorlatch, S.: Bandwidth-Latency models (BSP, LogP). In: Paduda,
D. (ed.) Encyclopedia of Parallel Computing, pp. 107–112. Springer, Boston (2011).
https://doi.org/10.1007/978-0-387-09766-4 189

13. Kozhevnikov, A., Schulthess, T.: Sirius library for electronic structure (2013).
https://github.com/electronic-structure/SIRIUS

14. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logis-
tics Q. 2(1–2), 83–97 (1955)

15. Kühne, T.D., et al.: Cp2k: an electronic structure and molecular dynamics software
package-quickstep: efficient and accurate electronic structure calculations. J. Chem.
Phys. 152(19), 194103 (2020)

https://doi.org/10.1016/j.parco.2016.05.012
https://doi.org/10.1016/j.parco.2016.05.012
http://www.sciencedirect.com/science/article/pii/S016781911630045X
http://www.sciencedirect.com/science/article/pii/S016781911630045X
https://doi.org/10.1016/j.cpc.2014.10.021
https://doi.org/10.1016/j.cpc.2014.10.021
http://www.sciencedirect.com/science/article/pii/S0010465514003671
http://www.sciencedirect.com/science/article/pii/S0010465514003671
https://doi.org/10.1137/1037042
https://doi.org/10.1137/1037042
https://doi.org/10.1007/978-1-4613-0303-9
https://doi.org/10.1007/978-1-4613-0303-9
https://github.com/eth-cscs/COSTA
https://github.com/eth-cscs/COSTA
https://doi.org/10.1007/978-0-387-09766-4_189
https://github.com/electronic-structure/SIRIUS

236 M. Kabić et al.

16. Kwasniewski, G., Kabić, M., Besta, M., VandeVondele, J., Solcà, R., Hoefler, T.:
Red-blue pebbling revisited: near optimal parallel matrix-matrix multiplication.
In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, New York. SC 2019. Association for Computing
Machinery (2019). https://doi.org/10.1145/3295500.3356181

17. Lopes, P.A., Yadav, S.S., Ilic, A., Patra, S.K.: Fast block distributed CUDA imple-
mentation of the Hungarian algorithm. J. Parallel Distrib. Comput. 130, 50–
62 (2019). https://doi.org/10.1016/j.jpdc.2019.03.014, http://www.sciencedirect.
com/science/article/pii/S0743731519302254

18. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc.
Ind. Appl. Math. 5(1), 32–38 (1957)

19. Prylli, L., Tourancheau, B.: Efficient block cyclic data redistribution. In: Bougé, L.,
Fraigniaud, P., Mignotte, A., Robert, Y. (eds.) Euro-Par 1996. LNCS, vol. 1123,
pp. 155–164. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61626-
8 20

20. Schwartz, J., Steger, A., Weißl, A.: Fast algorithms for weighted bipartite matching.
In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 476–487. Springer,
Heidelberg (2005). https://doi.org/10.1007/11427186 41

https://doi.org/10.1145/3295500.3356181
https://doi.org/10.1016/j.jpdc.2019.03.014
http://www.sciencedirect.com/science/article/pii/S0743731519302254
http://www.sciencedirect.com/science/article/pii/S0743731519302254
https://doi.org/10.1007/3-540-61626-8_20
https://doi.org/10.1007/3-540-61626-8_20
https://doi.org/10.1007/11427186_41

Enabling AI-Accelerated Multiscale Modeling
of Thrombogenesis at Millisecond

and Molecular Resolutions on Supercomputers

Yicong Zhu1, Peng Zhang1, Changnian Han1, Guojing Cong2, and Yuefan Deng1(B)

1 Department of Applied Mathematics and Statistics,
Stony Brook University, Stony Brook, NY, USA

{yicong.zhu,peng.zhang,changnian.han,yuefan.deng}@stonybrook.edu
2 Oak Ridge National Laboratory, Oak Ridge, TN, USA

congg@ornl.gov

Abstract. We report the first congruent integration of HPC, AI, and multiscale
modeling (MSM) for solving a mainstream biomechanical problem of thrombo-
genesis involving 6million particles at recordmolecular-scale resolutions in space
and at simulation rates of milliseconds per day. The two supercomputers, the IBM
Summit-like AiMOS and our University’s SeaWulf, are used for scalability anal-
ysis of, and production runs with, the LAMMPS with our customization and AI
augmentation and they attained optimal simulation speeds of 3,077 μs/day and
266 μs/day respectively. The long-time and large scales simulations enable the
first study of the integrated platelet flowing, flipping, aggregating dynamics in
one dynamically-coupled production run. The platelets’ angular and translational
speeds, membrane particles’ speeds, and the membrane stress distributions are
presented for the analysis of platelets’ aggregations.

Keywords: Multiscale modeling · AI · High-performance computing · Platelet
aggregation

1 Introduction

Multiscale modelling (MSM), a powerful tool to mitigate over- or under-modeling of the
multi spatial-temporal scales problems occurred in multi-component systems, generates
massive data at many varying resolutions [1]. The MSM itself and the massive data thus
generated require integrated analysis by the latest development ofmachine learning (ML)
methodologies. These simulation and analysis of the integrated MSM and ML require
so much computing resources that only the fastest supercomputers can handle [2]. Our
work focuses on the challenges of understanding one main cause of cardiovascular
diseases or stroke, i.e., the thrombogenesis. With two supercomputers of fairly different
architectures, our modeling has reached an unprecedented temporal and spatial scales
and resolutions: reaching milliseconds in simulated time and molecular resolutions in
structure details.

© Springer Nature Switzerland AG 2021
B. L. Chamberlain et al. (Eds.): ISC High Performance 2021, LNCS 12728, pp. 237–254, 2021.
https://doi.org/10.1007/978-3-030-78713-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-78713-4_13

238 Y. Zhu et al.

Cardiovascular diseases (CVDs) were confirmed as the number one cause of death
worldwide by WHO, which accounted for nearly 17.8 million deaths globally in 2017,
an increase of 21% compared to 2007. Thrombosis formation is the most dominant
cause of the related death, including stroke, atherosclerosis and infarction [3]. Due to
the stenotic flowpatterns occurring in implanted devices, the elevated shear stress exacer-
bates the platelet activation and thrombosis formation [4]. During the recent COVID-19
pandemic, platelet-rich thrombi was discovered in the pulmonary, hepatic, renal, and
cardiac microvasculature, resulting in multiple organs dysfunction and deaths [5, 6].
Thrombosis formation is a complex physiological process, ranging over multiple spa-
tial and temporal scales involving several important modules, such as fluid mechanics,
coagulation cascade, cell mechanics, platelet adhesion, activation and aggregation, and
receptor-ligand binding [7].

To understand the mechanism at such multiple spatiotemporal scales and multi-
component biochemical system, we developed a novel MSM framework to exploit its
multiscale nature and the efficient algorithms for utilizing available computing resources.
The MSM framework simulates the high-resolution details of the blood clotting and
thrombosis generation through platelet-platelet interactions and mechanotransduction
induced by blood flow [8]. TheMSM simulator embedded in our customized LAMMPS
package was also enhanced by anAI-guidedmultiple time stepping algorithm (AI-MTS)
weproposed recently [9].Byovercoming the potential computing resourceswaste caused
by the conventional standard time stepping algorithms, the AI-MTS intelligently selects
the timestep sizes by adapting to the real-time biophysical states of the underlying
simulations.

Integrating the MSM with the AI-MTS algorithms and implementing them in the
multi-CPU and multi-GPU supercomputers with diverse architectures, we boost the
simulation performance and enable the large time scale simulation of thermogenesis in
molecular resolution. During these simulations, the mechanics and dynamics character-
istics of platelets were collected and analyzed. We present rotational and translational
speed of platelets, velocity magnitude mapping of platelet membrane, and shear flow
conditions around platelets. Furthermore, the localized stress mapping on the platelet
surface membrane and subcellular mechanotransduction between platelet membranes
will also be analyzed.

In summary, the main contributions are as follows.

(1) The first congruent integration ofHPC,AI, andmultiscalemodeling to help advance
understanding of a critical application in biomedicine: thrombogenesis.

(2) Significant reduction in simulation time from 1 week to 14 h resulting from
our implementation of the integrated framework in the heterogeneous hardware
architectures.

(3) Achievement of a record simulated time scales (milliseconds) and spatial reso-
lutions (molecular level) for a complex application by methodically meshing a
high sophisticated software framework on the supercomputers and demonstrated
that such real-world simulations are, for the first time, feasibility with currently
available HPC resources.

Enabling AI-Accelerated Multiscale Modeling of Thrombogenesis 239

(4) Potential insights for antiplatelet drugdesign and therapy, resulting fromour in silico
data of the molecular features such as binding and flow-induced stress response to
fluid-platelet interface.

The remainder of the paper is organized as follows. In Sect. 2, we review recent
molecular dynamics simulationwork and thrombosis related simulation study. In Sect. 3,
we describe the MSM framework and AI-MTS algorithm and the two supercomputers
with which, also, the two in silico experiments we conducted. Sects. 4, 5, and 6 present
the relevant physiological results, the analysis of scalabilities on the supercomputers,
and the discussions, respectively.

2 Related Work

The all-atommolecular dynamics (MD) simulation, as a techniquewidely used in numer-
ical simulation, can simulate and describe the behavior of molecules at atomic level. As
an important track in numeric simulation, the implementation of MD could help reveal
the biomolecular phenomenon at microscopic scale which is hard to obtain from in vitro
or in vivo experiments in biology, chemistry or medicine fields [10]. However, restricted
by the computation costs, such MD simulations could be challenging tasks to build at
long timescales, i.e., millisecond scale.

Many efforts have been made in recent years to further extend the simulation
timescales with high speed by designing specialized hardware or developing new MD
packages/algorithms. Shaw et al. [11] designed Anton machine, a special-purpose par-
allel supercomputer for MD simulation with 512 processing cores, achieves simulation
speed of several microseconds per day for 10,000 to 500,000 atom chemical systems.
Furthermore, the second-generation Anton machine, Anton 2 [12], which was devoted
to efficient fine-grained operation, improved its performance at a rate of 85 μs/day for
23,558-atom system. Yang et al. [13] designed the first full-scale FPGA-based simula-
tion engine, which has the state-of-arts simulation rate at 630 ns/day on a 23.5K DFHR
dataset. Zhang et al. [14] redesign GROMACS, a popular MD application, on SW26010
to further utilize the Sunway TaihuLight, the 4th ranked supercomputers worldwide. The
SW_GROMACS achieved more than 60 times speedup for the calculation of the short-
range interaction. In SC’20, Jia et al. [15] reported a ML-based simulation protocol,
DeePMD, which could be easily accelerated with GPU on Summit supercomputer. The
new scheme made the performance record of simulating ab initio molecular dynamics
for 127 million atoms at more than 1 ns per day.

In thrombosis growth computational study, complex components including blood
flow, blood cells, receptors and ligands are interfaced interactively at multiple scales
[16]. Long simulation is needed in order to observe meaningful dynamic progress at
molecular details. However, applications mentioned above are hard to be extended to
such a complex system. These applications are designed for homogeneous systems and
a single scale is too expensive to capture multiscale dynamics of thrombosis formation.

Many related computational studies on thrombosis were introduced in recent
decades. They could be categorized as four methods: (1) Immersed boundary (IB)
methods [17]; (2) discrete particle-based methods, such as DPD or SCEs [18–20] (3)

240 Y. Zhu et al.

continuumMSM [21, 22]; (4) molecular dynamics models [23]. However, in these stud-
ies, the continuum MSM failed to capture the binding phenomenon in molecular level,
while all-atom molecular simulation focused on the local phenomenon in nanoscale.
The computation capability of such MD is hard to capture the whole platelet interac-
tions and aggregation process in millisecond scales. For instance, Shiozaki et al. studied
the equilibrated states for 1 ns.

We developedMSM that integrates theDPD-CGMDmethods tomodel the dynamics
of platelets in shear blood flow compared to the traditional CFD and MD scheme [8,
24, 25]. The MSM framework together with the AI-MTS algorithm enable simulating
thrombogenesis for longer timescales to study their properties at molecular scales.

3 The Methods

3.1 The Multiscale Model

Given the multiscale nature of the bio-medical system, we employ our previous studies
on multiscale model to simulate the dynamics and mechanics of platelets in blood flow.
Platelet, in quiescent state, is of discoid shape with diameter 2–4 μm and it consists
of three main zones: the peripheral, structural and organelle. In order to depict the
resting model at cellular scale and simulate its characteristic under shear stress, we
developed aCGMDnano-to-micromodel of humanplatelets as a discoid shaped spheroid
with dimensions 4 × 4 × 1 μm3. Each platelet consists of 140,303 particles [24]. The
dissipative particle dynamics (DPD) method is applied to simulate the hydrodynamics
of blood plasma in vessels. A hybrid force field is introduced to describe the spatial
interface between platelet membrane and flow system [8].

An aggregation force field is developed and validated by Gupta et al. [25] to simulate
the αIIbβ3-fibrinogen binding, including a harmonic term to mimic the short range
binding between receptors and ligands and a Morse term to mimic the long-medium
range effect of aggregation.

Utotal = Ubonded + Unonbonded (1)

Ubonded =
∑

bonds

f A

2r0
(r − r0)

2 (2)

Unonbonded =
∑

neighbors

D0

(
e−2α(r−r0) − 2e−α(r−r0)

)
(3)

where r is the distance between two particles and r0 is the equilibrium bond length, D0
is the well depth, α is the scaling factor, rij = ri − rj, rij = |rij|, eij = rij/rij, f A is the
force coefficient. Differentiating the potential, we obtain the hybrid force field as below,

Fij =
(
2αD0

(
e−2α(rij−r0) − e−α(rij−r0)

)
+ f A

(
1 − rij

r0

))
eij (4)

The equilibrium bond length of αIIbβ3-fibrinogen binding r0 is 67.5 nm. The parameters
D0, α, f A are determined by validating the aggregation force field with the in vitro
experiments, where D0 is 10.0, α is 1.0 and f A is 10.0 in DPD units.

Enabling AI-Accelerated Multiscale Modeling of Thrombogenesis 241

3.2 AI-MTS

When simulating the thrombogenesis involving multi components with temporal scales
from picosecond to millisecond and spatial scales from nanometer to millimeter, we
must reform the conventional standard time stepping algorithms (STS) to treat these
vastly different scales without waste of computing resources for redundant computa-
tions [26]. Recently, A novel data-driven AI-MTS algorithm is introduced to overcome
such problem by adjusting �t accommodating with underlying biophysical dynamics.
An optimal �t will be predicted by the AI inference pipeline and carried back to the
MSM simulator. It has accelerated the mainstream STS algorithm by 4000 times while
preserving accuracy to above 97%, when measuring the velocities and kinetic energies
of the platelets during their rotation and translation [9, 27].

Time stepping algorithm is based on the scheme of the velocity Verlet integrator,
using the time discretization to integrate the governing equations with a timestep �t,

v
(
t + �t

2

)
= v(t) + �t

2m
· F[x(t)],

x(t + �t) = x(t) + v
(
t + �t

2

)
,

v(t + �t) = v
(
t + �t

2

)
+ �t

2m
· F[x(t + �t)]. (5)

Specifically, in theAI-MTSmechanism, thewhole simulation system is decomposed
into subsystems according to the different scales of biology components. Small (large)
�t’s are applied for subsystems at bottom (top) levels. In our thrombogenesis simulation,
two subsystems, the fluid subsystem at the mesoscopic scale and the platelet subsystem
at microscopic scale are introduced. AI-MTS learns the platelets’ states by analyzing
the time series of states, extracted from the MSM simulator, such as angular velocity,
kinetic energies, and the surrounding flow speed. We predict the adaptive timestep sizes
and number of jumps by a deep learning framework consisting of (a) a 2-stage denoising
by moving average and wavelet transform filters to cleanse high-frequency noise in raw
data and (b) two RNN-based AEs to extract latent features. The MSM uses three sets
of timesteps: two static timesteps for the fluid and fluid-platelet interface, and variable
�t’s for platelets, determined by AI-MTS on-the-fly.

The 3-level integration procedure (Table 1) in AI-MTS involves communication,
force computation, and AI-interface. For each, we summarized the level of integra-
tion for different components, as well as its implementation on the heterogeneous
supercomputers with CPU and GPU complexes.

3.3 Numerical Experiments

We applied MSM to simulate the multiple platelets recruitment through αIIbβ3-
fibrinogen binding near the vessel wall. Figure 1 summarizes the setup of the two
numerical experiments we conducted: (1) Exp(3+3), (2) Exp(3+4). Exp(3+3)
are in a microchannel of length 39.1 μm, width 16 μm, and height 16 μm, consists of

242 Y. Zhu et al.

Table 1. Overview of the AI-MTS algorithm for MSM.

AI-MTS Algorithm Component CPUa GPUb AIc

Repeat:
Integration of half-step v Fluid
Neighbor list construction and communication

Integration of half-step v Fluid-Platelet
Integration of half-step v Platelet
Integration of full-step x All Particles
Communication
Compute non-bonded pair forces Platelet
Compute bonded forces Platelet
Communication
Integration of half-step v Platelet

Compute non-bonded pair forces Fluid-Platelet
Communication
Integration of half-step v Fluid-Platelet

Compute non-bonded pair forces Fluid
Communication
Integration of half-step v Fluid
AI inference for platelet timestep sizes regulation
Integration parameters update

Until simulation ends
a Computation & communication carried on CPU. b Computation carried on GPU in hybrid CPU-GPU architecture. c AI inference.

six platelets: 3 flowing platelets driven by flow are rotating and translocating towards
the 3-platelet aggregates (blood clot) on the wall. We assume the bottom two adhered
platelets are captured by thewall viaGPIba-vWFbinding andhave nomovement. The top
platelet is aggregated by the two bottom platelets via αIIbβ3-Fg binding. Another exper-
iment, Exp(3+4), consists of seven platelets in the same simulation box. Compared
with Exp(3+3), we increase the volume of blood clots by putting one more platelet on
top of the blood clot. Each platelet has 67,004 αIIbβ3 receptors, while the receptor den-
sity on the platelet membrane is 2,342 particles/μm2. The simulation results of platelets
and flow conditions will be further compared and discussed in Sect. 4. Figure 1 shows
details of our models, including single platelet structure, platelet-platelet interaction and
experiments’ settings. Both models use the same parameter set as presented in Table 2.

Periodic boundary conditions are employed in x and z dimensions. A x-direction
force gx = 0.006 is added on all fluid particles in the two experiments to produce typical
viscous flow, Poiseuille shear flow, in our micro simulation box. The number density
for fluid particles is 3.0, while the fluid density of blood plasma is 1060 kg/m3. The no
slip boundary condition on the wall in y dimension is performed. The αIIbβ3 receptors
on the platelet membrane associated with Fibrinogen in the shear flow will initial the
platelet aggregation. We continue running the simulation system and collect the platelet
properties, fluid profiles in molecular resolution for milliseconds.

We customized LAMMPS with corresponding algorithms for DPD-CGMD hybrid
potential [8] and platelet aggregation force potential [25]. The AI-enhanced MTS algo-
rithm, learning the optimal�t during platelet-fluid interaction simulation by adapting to

Enabling AI-Accelerated Multiscale Modeling of Thrombogenesis 243

the multiple scales of physics, further accelerates our simulations. The simulation per-
formance is to be analyzed in terms of the five components defined in Table 3 for future
discussions. For force calculations, Pair indicates the non-bonded force calculation
while Bond indicates the bonded force calculation. In parallel computing, LAMMPS
partitions the global simulation domain into small 3d subdomains, which requires neigh-
bor list construction during simulation. This related work is assigned to Neigh. Specif-
ically, the non-bonded force calculation Pair and neighbor list construction Neigh
could be carried on GPUs to further improve the simulation speed on hybrid CPU-GPU
architectures. In addition, Comm represents inter-processor communication of particles
and their properties, and Modify means integration computations.

Fig. 1. Schematic model representation and MSM framework.

Table 2. Reference units and parameters of the simulation system.

Terms Symbol,
formula

Model values SI values SI units

Length σ 1 1.778 × 10–7 m

Time t 1 2.083 × 10–6 s

Mass m 1 1.985 × 10–18 kg

Force mσ/t2 1 8.151 × 10–14 N

Energy mσ 2/t2 1 1.446 × 10–20 J

Velocity σ/t 1 8.533 × 10–2 m/s

3.4 The Measures

In order to quantify and interpret themassive data of platelets and fluid particles obtained
in our long timescale simulations, we first introduce measures including the stress tensor

244 Y. Zhu et al.

Table 3. Definitions of components used in implementation.

Components Definitions

Pair Non-bonded force computations

Bond Bonded force computations: bonds, angles, dihedrals, impropers

Neigh Neighbor list construction

Comm Inter-processor communication of particles and their properties

Modify Time integration computations

and velocity vector of particles on the platelet membrane. The instantaneous stress and
velocity of platelet membrane particles only reflect the instantaneous fluctuation during
the simulation process and are not applicable for direct use. Therefore, we need to apply
temporal and spatial averaging of these files and obtain more meaningful magnitude and
trend. Specifically, we use three steps to calculate the magnitude of stress distribution on
platelets membrane from stress tensor: 1) Convert tensor into scalar value; 2) Temporal
averaging; 3) Spatial averaging. The window size for temporal averaging is for 25,000
timesteps (10 μs), the cutoff threshold for spatial averaging is 1.2. For a membrane
particle p at time t, we compute the magnitude of stress

τ
∧

(p, t) = 1√
3

√
τ 2xx + τ 2yy + τ 2zz − τxxτyy − τxxτzz − τyyτzz + 3

(
τ 2xy + τ 2yz + τ 2xz

)
(6)

3.5 The Supercomputers

The multiscale fluid-platelet experiments are implemented on the two supercomputers:
the AiMOS and SeaWulf.

AiMOS, ranking 29th on the November 2020 TOP500 list, consists of 252 compute
nodes each containing 2 IBM POWER 9 processors at 3.15 GHz. Each POWER 9
processor has 256 GB DDR4 memory of 135 GB/s peak bandwidth and has 20 cores
with 4 hardware threads per core. Combined, the two POWER 9 CPUs on an AiMOS
node can perform 0.97 TFLOP/s in double precision. The CPU to GPU ratio is 1:3 in
one socket, so each node also has one 6x NVIDIA Tesla V100 GPUs with 32 GB of
memory via a 900 GB/s bus, providing 7.5 TFLOP/s per GPU in double precision. The
nodes are interconnected with the Mellanox EDR InfiniBand [28].

Enabling AI-Accelerated Multiscale Modeling of Thrombogenesis 245

SeaWulf is a cluster consisting of 164 compute nodes. One compute node has two
Intel Xeon E5-2683v3 processors of 14 cores each. Each node has 128 GB DDR4
memory of 133 GB/s combined memory bandwidth, and operates at 0.89 TFLOP/s. The
nodes are interconnected via the Connect-IB FDR InfiniBand.

4 The in Silico Experiment Results

After the flow system warm-up for approximately 600 μs, the velocity profile was
fully developed as a parabolic Poiseuille flow with the mean velocity 6 cm/s and the
platelet dynamics and mechanics became measurable. The MSM framework and AI-
MTS algorithm enabled us to observe the continuous platelet phenomenon in molecular
resolution for a large system consisting of more than 6 million particles that interact at
different scales. We observed the platelets’ flowing, flipping, and aggregations, and each
platelet trajectory, for milliseconds.

4.1 Platelet Dynamics

Fig. 2. The motion details of three platelets: P1(blue), P2(yellow), P3(green). (A) Translational
speed. (B) Angular speed. (C) Rotation of Platelet 1. (D) Translocation of Platelet 3. Times of
highlighted observations: T1 = 250 μs, T2 = 500 μs, T3 = 750 μs, T4 = 1000 μs, T5 = 1250 μs.
(Color figure online)

Translational and Angular Speed. Platelets are numbered in setup for tracking
(Fig. 2E). Driven by blood flow, three flowing platelets start rotation and translocation
towards the 3-platelet aggregates which were located on the right side of the simulation

246 Y. Zhu et al.

box. We document their translocating and angular speed every 1 μs and notice each
platelet as a rigid body has its own unique trajectory. After time averaging, we present
each platelet continuous movement of Exp(3+3) for more than 1250 μs, as shown
in Fig. 2. Initially, all three flowing platelets start to accelerate pushed by the blood
flow in the first 250 μs (Fig. 2A). In the meantime, due to shear stress induced by flow,
all three platelets start rotation (Fig. 2B). Each platelet maintains its regular movement,
translocation plus rotation, until approaching the adhered 3-platelet aggregates. The flow
conditions around the aggregates is quite different from its normal state. At T2 = 500 μs
when platelet 3 gets close to the aggregates, “stack up” pattern (Fig. 2D) forms. At T4
= 1000 μs when platelet 1 finishes its “climbing” and sliding down rapidly under the
downward flow (Fig. 2C).

Platelet Membrane Jiggling. By tracking for milliseconds, we noticed that the
platelets’ motions, individually and collectively, are highly dependent on their surround-
ing flow conditions, epitomizing the lasting argument that large-scale simulation is able
to, and is needed to, better understand the platelet dynamics in the process of aggregation
and thrombosis formations.Wecalculated the averagevelocitymagnitudeof eachplatelet
membrane particle as a function of time and, in Fig. 3, We select 5 special timesteps
from our two setup experiments to analyze their motions. Combined with Fig. 2, the
three stages, “regular” – “climb up” – “slide down” are clearly shown in Exp(3+3).
It takes around 500 μs for flowing platelets to approach the adhered aggregates. After
another 500 μs, flowing platelets “climb up” and “slide down” over the clots. However,
Exp(3+4) shows different phenomena compared to the previous setup. When platelets
approach the bigger aggregates, they experience the larger deceleration (see blue area
on Platelet 3 in Fig. 3). Instead of “climbing up” the aggregates, the Platelets 3 & 2 “roll
around” the aggregates.

Fig. 3. Speed distributions on platelet membrane for the two experiments at T1 = 250 μs, T2 =
500 μs, T3 = 750 μs, T4 = 1000 μs, T5 = 1250 μs.

Enabling AI-Accelerated Multiscale Modeling of Thrombogenesis 247

Platelet Membrane Stress. Our millisecond simulation helps better understand how
platelets are dynamically influenced by blood flow through mechanotransduction during
thrombogenesis. We render the stress tensor of each platelet particle we collected into a
stress scalar. After temporal and spatial averaging, we described in Sect. 3.4, the stress
distributionmap on platelets’ membranes are presented in Fig. 4.We observe all platelets
have high stress spots on the periphery of their membrane compared to their center part.
This is the evidence that how platelet membranes respond to hemodynamics stresses,
and this phenomenon may be the trigger of platelet activation. Researchers observed the
platelet pseudopodia grow from the periphery of platelets [29].

Fig. 4. Average stress on platelet membrane for T2 = 500 μs. DPD fluids velocity were shown
at the simulation slice box with z from −1 to 1. Space average cutoff for stress spatial averaging
is 1.2.

4.2 Blood Flow

Like the platelet particles, the more than 5 million fluid particles are also updated at
every time step to allow us to simulate the fluid-platelet interface details at molecular
level. Specifically, we present the snapshot of our simulation experiment Exp(3+3),

248 Y. Zhu et al.

and discuss how blood flow leads to platelet distinguish behavior and how it adapted to
forming blood clot.

For fluid particles within a slice of our simulation box, we collect their velocity
vectors. After calculating the speed of each particle, we perform spatial average to obtain
the velocity vector field as shown in Fig. 4, from which we noticed expected velocity
patterns at various regions, of the simulation box, including the upper side without the
platelet-aggregates and the bottom side with the adhered aggregates. The red spots at
the periphery of the platelet membrane indicate the high stress induced by the viscous
linear shear stress flow.

5 Performance Analysis

Using affordable computational costs within reasonable simulating time, we could
observe and analyze the molecular level mechanics and dynamic details of the whole
thrombogenesis process, including platelet flipping, flowing and aggregating as dis-
cussed in Sect. 4. We tested the performance of two supercomputers of our big bench-
mark simulation experiment, Exp(3+3), and the results are shown in Figs. 5, 6, 7, 8
and Table 4.

We performed strong scalability tests of the same problem size, scaling from 4 to 192
nodes. We conducted two CPU-only systems on AiMOS-C (POWER9) and SeaWulf
(Xeon E5), using 36 and 28 MPI tasks per node, respectively. We also conducted a
hybrid CPU-GPU system with mixed precision for GPUs on AiMOS-G (POWER9 +
6x V100) using 36 MPI tasks and 6 GPUs per node, where mixed precision stands
for computing pair forces in single precision (32 bits) then accumulating them into
double-precision force vectors (64 bits). Mixed-precision is a technique commonly used
in various software including LAMMPS. Compared with simulations in the platelet
dynamics in double, the mixed-precision simulations preserve 90–95% accuracy while
improving the simulation speed by 30%–50%.

Space domain decomposition is applied to our simulation experiments. It requires
each node to communicate with its six closest neighbors. With increasing the nodes, the
per-node communication load decreases and so does the communication time.

Figure 5 presents the simulation speed in μs/day for SeaWulf, AiMOS-C, AiMOS-
G, respectively. Figure 6 shows the trends of simulation time percentage in terms of
five components: Pair (non-bonded force computations), Bond (bonded force com-
putations), Neigh (neigh list construction), Comm (inter-processor communication),
Modify (integration computations). Figure 7 shows the communication and compu-
tation time reduction while increasing nodes. Figure 8 summarizes the feasibility and
efficiency of our MSM framework plus AI-MTS algorithm, which achieve a reduction
in simulating time from 1 week to 14 h for the 1.75-ms simulation. Based on the per-
formance results of our simulation on two heterogeneous supercomputers, we have five
main conclusions.

(1) Figure 5 shows the computing speed in μs/day for three tested systems. A common
practice to benchmark large scale simulations, following the Golden Bell wining
report Anton-2 [12], is μs/day. Both AiMOS-C and AiMOS-G show scalability,
and significantly faster than SeaWulf that exhibits linear scalability.

Enabling AI-Accelerated Multiscale Modeling of Thrombogenesis 249

(2) GPUs play a key role in accelerating the computations, resulting in a speedup of
2.7–12.2 over CPU-only implementation (Fig. 5). In order to improve simulation
performance, the non-bonded pair force computations are carried on the GPUs.
Since the neighbor list construction occupies a large amount of computing time on
CPUs, we port it toGPUs to further accelerate the simulation. GPUusesmultithread
to construct the neighbor list in parallel. The workload percentage in terms of five
components on AiMOS-C and AiMOS-G are compared in Fig. 6. We could find
out how the workload weighted and scaled on varying architectures with different
numbers of nodes. For the CPU-only system, Modify and Neigh cost 98% simu-
lating time on CPUs. For the hybrid system, Modify still dominates the simulating
time. Pair measures the GPU operating time under the hybrid system, including
neighbor list construction and non-bonded pair force computations. As a result,
Pair and Modify together consumes over 90% simulating time.

Fig. 5. Simulation speeds on two supercomputers with varying architectures.

(3) With increasing nodes, computation and communication time decreased. We sum
up the Pair, Bond, Modify as computation time, and sum up Neigh and Comm
as communication time. As shown in Fig. 7, the decreasing trend of AiMOS-C
differs from the AiMOS-G. The computation load and communication load are
proportional to the volume and the surface area of a single subdomain, respectively.
The increasing number of nodes will reduce the size of the subdomain, resulting in
the decrease of computation and communication time. For AiMOS-G, since we use
GPU to build up the neighbor list, the communication time is significantly saved.

(4) Parallel efficiency is influenced by the load imbalance for tightly coupled MSM.
The load imbalance is caused by the computational complexity of multi-physics

250 Y. Zhu et al.

Fig. 6. Profiling of MSM on AiMOS with and without GPUs.

governing functions, multiple timestep sizes, domain decompositions, and hard-
ware architectures. Using AiMOS as an example, when applying the space domain
decomposition method from 4 nodes to 192 nodes, the increasing number of subdo-
mains reduces the maximum particle count per processor. However, the imbalance
factor, which is defined as the ratio of the maximum per processor particle count
among all processors to the averaged value, keeps increasing all the time (Table 4).

(5) Weenabled the large-scale platelet-mediated thrombogenesis simulation onAiMOS
and SeaWulf, by usingMSM framework to improvemodeling efficiency and apply-
ing AI-MTS algorithm to improve simulating efficiency. At SeaWulf, we achieved
the best performance as 266μs/day with 64 compute nodes. Moreover, with mixed-
precision GPUs, we further reduced the simulating time from 1 week (SeaWulf)
to 14 h (AiMOS-G). The best performance of AiMOS is 3,077 μs/day with 192
compute nodes.

Fig. 7. Ratios of computation to communication for AiMOS.

Enabling AI-Accelerated Multiscale Modeling of Thrombogenesis 251

Fig. 8. Comparison of simulation efficiencies of SeaWulf and AiMOS.

Table 4. Details of the space domain decomposition.

Node MPI processors Decomposition (x ×
y × z)

Max count Avg count Imbalance factor

4 144 9 × 4 × 4 168,796 43,854 3.8

8 288 12 × 6 × 4 115,224 21,927 5.3

16 576 16 × 6 × 6 84,544 10,964 7.7

32 1,152 18 × 8 × 8 58,465 5,482 10.7

64 2,304 24 × 12 × 8 33,592 2,741 12.3

128 4,608 32 × 12 × 12 21,720 1,370 15.8

192 6,912 36 × 16 × 12 16,921 914 18.5

6 Discussions and Future Work

We completed in silico experiments on two supercomputers to quantitatively understand
the thrombogenesis through αIIbβ3-fibrinogen bonds between multiple platelets under
linear viscous shear flow using a multiscale model at millisecond scale. This study
has (1) expanded the simulated system size from the published studies and enabled a
more integrated experiment of multiple platelets in blood vessel with 6M particles; (2)
augmented our previous studies to consider more biomechanically realistic phenomena
for capturing, for the first time, the integrated platelet flowing, flipping, aggregating
dynamics in one dynamically-coupled production run; and (3) extended the simulated
time enabled by our new framework to observe more meaningful and clinically relevant
dynamics. All of these molecular level results are observed separately and validated
with in vitro experiments in our previous simulation study [8, 24, 25], demonstrating the
accuracy of this study. In addition, related antiplatelet drug therapy needs those detailed
results and analysis of shear-induced platelet aggregation phenomena [30].

Supercomputers enable larger-scale MSM for biology applications. However, to
start simulating such a complex biology event with multiple spatial and temporal
scales, a tremendous amount of computation resources is needed. Compared to pre-
vious approaches, we proposed the MSM framework and developed the AI-MTS algo-
rithm to efficiently use the powerful and invaluable computing resources provided by

252 Y. Zhu et al.

top supercomputers. We achieved (1) record performance for such a complex multi-
component system of 3,077 μs/day using 192 nodes of AiMOS (252 cores) (Figs. 5–7);
(2) reduced simulating time from 1 week (SeaWulf) to 14 h (AiMOS-G); (3) obtained
strong scalability to 76% of computing nodes in AiMOS.

Further studies to improve simulation speed and scalability will be focused on load
balancing by adaptive domain decomposition for MSM simulation by exploiting the
system-level architectures and CPU-multithreading. (1) Load imbalance is caused by the
intrinsic nature of our application where particles, the main object of our calculations,
distribute irregularly in space and time with fairly short time scales. Specifically, the
particle densities for the two major components of the simulated system, the platelet
itself and the surrounding fluid, can differ by 30 times. Therefore, as discussed in Sect. 5,
the space domain decomposition is a natural cause of huge load imbalance. New particle
decomposition with which each computing unit is allotted equal number of particles
can alleviate a substantial amount of load imbalance and thus boost overall simulation
performance. This new approach, quite cumbersome to implement, has its own flaws.
A need to dynamically redistribute the particles to adapt to the model dynamics of
platelet flowing, flipping and aggregating posts new challenges. Our next tasks are to
and adiabatically adjust the particle assignment by learning the underlying dynamics. In
addition, the computational complexity of different force fields in MSM and the varied
calculation needs of multiple timestep sizes introduced by AI-MTS are needed to be
considered as well. (2) Multithreading will be fused into the customized LAMMPS
package to optimize the intra-node communication and accelerate the integrations on
CPUs.

Our simulation may lead to applications in thrombosis, cardiovascular diseases and
COVID-19 study. For instance, to better understand how platelet aggregation as a mul-
tistep adhesion will be influenced by different blood flow conditions, we could adjust
the shear rate of fluid systems driven by the pressure. Many receptor-ligand bonds play
important roles during hemostasis and thrombosis generation processes. Adding GPIba-
vWF binding to our current study, together with αIIbβ3-Fg bonds we used, will better
describe the whole progress of platelet margination, adhesion and aggregation in throm-
bosis formation. Compared to the current rigid-body plateletmodel, deformable platelets
induced by lower shear stress have bigger contact area and higher rate of bond formation
[25]. If we release the rigid constraint, a more realistic representation of platelet-platelet
interactions could be obtained. Nevertheless, to study large sizes of thrombosis forma-
tion located in human blood, which consists of hundreds of or thousands of platelets,
requires more computing resources and much more efficient algorithms in the future.

Acknowledgement. The project is supported by the SUNY-IBM Consortium Award, IPDyna:
Intelligent Platelet Dynamics, FP00004096 (PI: Y. Deng, Co-PI: P. Zhang). The simulations were
conducted on the AiMOS at Rensselaer Polytechnic Institute and the SeaWulf at Stony Brook
University.

Enabling AI-Accelerated Multiscale Modeling of Thrombogenesis 253

References

1. Hodak, H.: The nobel prize in chemistry 2013 for the development of multiscale models of
complex chemical systems: a tribute to Martin Karplus, Michael Levitt and Arieh Warshel. J.
Mol. Biol. 426(1), 1–3 (2014). https://doi.org/10.1016/j.jmb.2013.10.037. ISSN 0022-2836

2. Alber, M., et al.: Integrating machine learning and multiscale modeling—perspectives, chal-
lenges, and opportunities in the biological, biomedical, and behavioral sciences. NPJ. Digit.
Med. 2, 1–11 (2019)

3. Virani, S.S., et al.: Heart disease and stroke statistics—2020 update: a report from the
American Heart Association. Circulation E139-E596 (2020)

4. Bluestein, D., Yin, W., Affeld, K., Jesty, J.: Flow-induced platelet activation in a mechanical
heart valve. J. Heart Valve Dis. 13, 501–508 (2004)

5. Poor, H.D., et al.: COVID-19 critical illness pathophysiology driven by diffuse pulmonary
thrombi and pulmonary endothelial dysfunction responsive to thrombolysis. Clin. Transl.
Med. 10, e44 (2020)

6. Rapkiewicz, A.V., et al.: Megakaryocytes and platelet-fibrin thrombi characterize multi-organ
thrombosis at autopsy in COVID-19: a case series. EClinicalMedicine 24, 100434 (2020)

7. Wang, W., King, M.R.: Multiscale modeling of platelet adhesion and thrombus growth. Ann.
Biomed. Eng. 40, 2345–2354 (2012)

8. Zhang, P., Gao, C., Zhang, N., Slepian, M.J., Deng, Y., Bluestein, D.: Multiscale particle-
based modeling of flowing platelets in blood plasma using dissipative particle dynamics and
coarse grained molecular dynamics. Cell. Mol. Bioeng. 7, 552–574 (2014)

9. Han, C., Zhang, P., Bluestein, D., Cong, G., Deng, Y.: Artificial intelligence for accelerating
time integrations in multiscale modeling. J. Comput. Phys. 427, 110053 (2021)

10. Dror, R.O., Dirks, R.M., Grossman, J., Xu, H., Shaw, D.E.: Biomolecular simulation: a
computational microscope for molecular biology. Annu. Rev. Biophys. 41, 429–452 (2012)

11. Shaw, D.E., et al.: Anton, a special-purpose machine for molecular dynamics simulation.
Commun. ACM 51, 91–97 (2008)

12. Shaw, D.E., et al.: Anton 2: raising the bar for performance and programmability in a special-
purpose molecular dynamics supercomputer. In: SC 2014: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, pp. 41–53
(2014)

13. Yang, C., et al.: Fully integrated FPGA molecular dynamics simulations. In: Proceedings
of the International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–31 (2019)

14. Zhang, T.: SW_GROMACS: accelerate GROMACS on sunway TaihuLight. In: Proceedings
of the International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–14 (2019)

15. Jia, W., et al.: Pushing the limit of molecular dynamics with ab initio accuracy to 100 mil-
lion atoms with machine learning. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 1–14 (2020)

16. Jackson, S.P.: The growing complexity of platelet aggregation. Blood 109, 5087–5095 (2007)
17. Fogelson, A.L., Guy, R.D.: Immersed-boundary-type models of intravascular platelet aggre-

gation. Comput. Methods Appl. Mech. Eng. 197, 2087–2104 (2008)
18. Sweet, C.R., Chatterjee, S., Xu, Z., Bisordi, K., Rosen, E.D., Alber, M.: Modelling platelet–

blood flow interaction using the subcellular element Langevin method. J. R. Soc. Interface 8,
1760–1771 (2011)

19. Grinberg, L., et al.: A new computational paradigm in multiscale simulations: application to
brain blood flow. In: Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–5 (2011)

https://doi.org/10.1016/j.jmb.2013.10.037

254 Y. Zhu et al.

20. Wu, Z., Xu, Z., Kim, O., Alber, M.: Three-dimensional multi-scale model of deformable
platelets adhesion to vessel wall in blood flow. Philos. Trans. Royal Soc. A Math. Phys. Eng.
Sci. 372, 20130380 (2014)

21. Mody, N.A., King, M.R.: Platelet adhesive dynamics. Part I: characterization of platelet
hydrodynamic collisions and wall effects. Biophys. J. 95, 2539–2555 (2008)

22. Mody, N.A., King, M.R.: Platelet adhesive dynamics. Part II: high shear-induced transient
aggregation via GPIbα-vWF-GPIbα bridging. Biophys. J. 95, 2556–2574 (2008)

23. Shiozaki, S., Takagi, S., Goto, S.: Prediction of molecular interaction between platelet glyco-
protein Ibα and von Willebrand factor using molecular dynamics simulations. J. Atheroscl.
Thrombosis 32458 (2015)

24. Zhang, P., Zhang, L., Slepian, M.J., Deng, Y., Bluestein, D.: A multiscale biomechanical
model of platelets: Correlating with in-vitro results. J. Biomech. 50, 26–33 (2017)

25. Gupta, P., Zhang, P., Sheriff, J., Bluestein, D., Deng, Y.: A multiscale model for recruitment
aggregation of platelets by correlating with in vitro results. Cell. Mol. Bioeng. 12, 327–343
(2019)

26. Zhang, P., Zhang, N., Deng, Y., Bluestein, D.: Amultiple time stepping algorithm for efficient
multiscale modeling of platelets flowing in blood plasma. J. Comput. Phys. 284, 668–686
(2015)

27. Han, C., Zhang, P., Deng, Y.: AI-guided adaptive multiscale modeling of platelet dynamics.
In: ACM Student Research Competition Poster of the International Conference for High
Performance Computing, Networking, Storage and Analysis (2020)

28. Hanson, W.A.: The CORAL supercomputer systems. IBM J. Res. Dev. 64, 1:1–1:10 (2019)
29. Sheriff, J., Bluestein, D.: Platelet dynamics in blood flow. In: Dynamics of Blood Cell

Suspensions in Microflows, pp. 215–256. CRC Press (2019)
30. Slepian, M.J., et al.: Shear-mediated platelet activation in the free flow: perspectives on the

emerging spectrum of cell mechanobiological mechanisms mediating cardiovascular implant
thrombosis. J. Biomech. 50, 20–25 (2017)

Evaluation of the NEC Vector Engine for Legacy
CFD Codes

Keith Obenschain1(B), Yu Yu Khine1, Raghunandan Mathur2, Gopal Patnaik3,
and Robert Rosenberg1

1 U.S. Naval Research Laboratory, Washington DC 20375, USA
keith.obenschain@nrl.navy.mil

2 NEC Corporation India (US Branch), Santa Clara, CA 95054, USA
3 Syntek Technologies, Fairfax, VA 22031, USA

Abstract. Many codes that are still in production use trace their origins to code
developed during the vector supercomputing era from the 1970’s to 1990’s. The
recently released NEC Vector Engine (VE) provides an opportunity to exploit this
vector heritage. The VE can provide state-of-the-art performance without a com-
plete rewrite of a well-validated codebase. Programs do not require an additional
level of abstraction to use the capabilities of the VE. Given the time and cost
required to port or rewrite codes, this is an attractive solution. Further tuning as
described in this paper can realize maximum performance.

The goal was to assess how the NEC VE’s performance and ease of use com-
parewith that of existing CPU architectures (e.g. AMD, Intel) using a legacy Com-
putational FluidDynamics (CFD) solver, FDL3DIwritten in Fortran. FDL3DIwas
originally vectorized and optimized for efficient operation on vector processing
machines. The NEC VE’s architecture, high memory bandwidth and ability to
compile Fortran was the primary motivation for this evaluation.

Through profiling and modifying the key compute kernels using typical vec-
tor and NEC VE specific optimizations, the code was successfully able to utilize
the vector engine hardware with minimal modification of the code. Scalar code
developed later in FDL3DI’s lifetime was substituted with vector friendly imple-
mentations. With optimizations, this vector architecture was found to be 3× faster
for main-memory bound problems with the CPU architectures competitive for
smaller problem sizes. This performance using standard well-known techniques
is considered to be a key benefit of this architecture.

Keywords: Vectorization · CFD · Optimization

1 Introduction

Many codes that are still in production use trace their origins to code developed during
the vector supercomputing era from the 1970’s to 1990’s. Many of those codes are still
in use with vector friendly constructs in their codebase. The recently released NEC

Distribution A: Approved for public release; Distribution unlimited.

© Springer Nature Switzerland AG 2021
B. L. Chamberlain et al. (Eds.): ISC High Performance 2021, LNCS 12728, pp. 255–271, 2021.
https://doi.org/10.1007/978-3-030-78713-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-78713-4_14

256 K. Obenschain et al.

Vector Engine (VE) provides an opportunity to exploit this vector heritage. The VE can
potentially provide state of the art performance without a complete rewrite of a well-
validated codebase. Given the time and cost required to port or rewrite codes, this is an
attractive solution.

For this project, the goal was to assess how the NEC Vector Engine’s performance
and ease of use compare with that of existing CPU architectures (e.g. AMD, Intel)
using a legacy Computational Fluid Dynamics (CFD) solver, FDL3DI written in For-
tran. FDL3DI was originally vectorized and optimized for efficient operation on vector
processing machines. The NEC Vector Engine’s architecture, high memory bandwidth
and ability to compile Fortran was the primary motivation for this evaluation.

1.1 NEC Vector Architecture

NEC has been a major provider in the supercomputing domain for over 37 years and
starting from the early 1980s, NEC has developed a product line of vector computers.
Among the earliest HPC systems developed by NEC in 1983 was the SX-2, a prominent
machine of its time that used high-performance vector pipelines for computing multi-
ple data over a single instruction in parallel. NEC’s SX-6, better known as The Earth
Simulator, later secured the top position on the Top500 list of super-computers from
the year 2002 to 2004. Over evolving computing trends from specialized to commodity
hardware, and from large-memory symmetric multiprocessor systems to massively par-
allel distributed systems, NEC has evolved to implement the same vector processors on
a PCI-e card known as NEC Vector Engine [1].

NECVector Engine is a PCIe card implementation of NEC’s traditional vector archi-
tecture with a large HBM2 memory on chip with 48 GB capacity and a high memory
bandwidth of 1.22 TB/s connected to 8 large vector processor cores as shown in Fig. 1(a).
In Fig. 1(b) each processor core has 64 specialized vector registers that can store vectors
as large as 512 single-precision elements long that can deliver up to 2.15 Teraflops of per-
formance for double precision elements (4.30 Teraflops for single precision elements).
An arbitrary vector up to 256 double-precision elements in length can thus be sched-
uled through a single vector instruction. It is ideal to process 256 elements since a fully
utilized vector register provides better scheduling per instruction and allows the Vector
Processing Unit to keep the vector pipeline filled. As the vector processor processes an
instruction, the vector processed elements are available for other instructions to begin
work.

The VE PCIe card is hosted on an x86-based host machine named Vector Host (VH),
where the VH and VE can together provide a scalar-vector hybrid framework for deliv-
ering the best performance by selecting the right architecture for the right workload.
Figure 2 shows the default offload mechanism, where the load module is launched on
the VH, but the entire application is offloaded on to the VE with no PCIe communica-
tion required during the entire execution of the application. The benchmarks and codes
examined in this study were run with this default offload mechanism.

The Linux based Vector Host system (VH) runs VEOS [2], a software that controls
the VE and provides OS functionality for programs that run on VE. This program con-
trols VE program loading, system call handling, VE process management, VE memory
management, signal handling, OS commands such as gdb, ps, free, top, sar, etc.

Evaluation of the NEC Vector Engine for Legacy CFD Codes 257

Fig. 1. Architecture of NEC Vector Engine

Fig. 2. Vector Host-Vector Engine hybrid model

The native compilers and toolkits support standard C/C++ and Fortran programming
paradigms thereby eliminating the need to refactor the code to make it run on the VE.
For ease of the user, the NEC compilers automatically find relevant loops and array
operations that can be vectorized and generate corresponding vector instructions that
help execute that operation on the vector processor. It can also apply automatic loop
transformations and subtle tweaks in the code for best performance. The programming
environment is diverse where frameworks such as MPI and OpenMP can co-exist in the
same program which the compiler further vectorizes to provide an ideal parallel pro-
cessing environment. The available NECNumeric Library Collection [3] allows users to
create advanced scientific computation programs without requiring awareness of com-
plex numerical algorithms, greatly improving the productivity of numerical simulation

258 K. Obenschain et al.

program development. The provided programming environment will be familiar to most
HPC developers.

1.2 Comparison with Reference Architectures

We compare the NEC Vector Engine Type 10B (VE) to two other platforms using CPUs
typically deployed in HPC environments - Intel Xeon Platinum 8260 (Intel Xeon) and
the AMD EPYC 7702 (AMD EPYC). The Intel Xeon and AMD EPYC processors
selected are representative of processors FDL3DI would use for production runs. Based
on purely peak computational performance, the NEC Vector Engine should provide the
best performance. In order to calculate the theoretical peak performance, we need to
know the processor frequency, the number of floating-point operations per cycle and
the number of cores per CPU. Table 1 displays this information along with the peak
performance in GFLOPS.

Table 1. Architectures evaluated [1, 4–6].

Intel Xeon Platinum
8260

AMD EPYC 7702 NEC Vector Engine
Type 10B

Cores per device 24 64 8

Device per node 2 2 2

Memory per device 512 GB 128 GB 48 GB

Memory technology DDR4-2933 DDR4-3200 HBM2

Memory channels 6 channels 8 channels 6 modules

Memory bandwidth 141 GB/s 204.8 GB/s 1.2 TB/s

LLC cache per device 35.75 MB 256 MB 16 MB

Process technology 14 nm Intel 7 nm TSMC 16 nm TSMC

Theoretical
double-precision
GFLOPS per device

1766 GFLOPS 2048 GFLOPS 2150 GFLOPS

Clock frequency 2.3 GHz 2.0 GHz 1.4 GHz

Note: Device refers to a processor on AMD EPYC and Intel Xeon architectures

Each Intel Xeon core implements the AVX512 instruction set (ISA) that can pack
eight double precision (DP) floating-point values into one 512-bit register.When execut-
ing AVX512 instructions, the Intel Xeon core’s two AVX512-FMA units can produce a
total of 32 double-precision (DP) floating point operations per cycle. The AMD EPYC
core uses the AVX2 ISA that can pack four DP floating-point values into one 256-bit reg-
ister. The AMD EPYC core’s two AVX2-FMA units yield 16 DP FLOPS per cycle. The
NEC Vector Engine Vector Pipeline Unit (VPU) has 32 pipes each capable of 6 FLOPS
for a total of 192 FLOPS per cycle. The core counts for the architectures vary, with the
NEC only having 8 cores versus 64 for the AMD EPYC. The end result is the theoretical

Evaluation of the NEC Vector Engine for Legacy CFD Codes 259

double-precision performance is fairly close. For memory bandwidth, there are two fea-
tures that stand out. The VE is one of the first platforms to employ HBM2 and as we see
below, it is the VE’s memory bandwidth which distinguishes its overall performance.
The other is the AMD EPYC that has a significantly larger last level cache than the VE
and Intel Xeon.

1.3 Benchmark Studies

NEC demonstrated that the STREAM and DGEMM benchmark [1] results on the VE
show the significant advantage of the HBM2memory system over the Intel and NVIDIA
systems. We corroborated the results of these benchmarks on our local systems and also
employed two other simple benchmarks. These benchmarks, where the computation is
expressed in a few memory-bound computational loops, also reflect the advantages of
the VE memory system. The Intel compiler was used throughout for both the AMD and
Intel platforms with the appropriate compiler optimization flags.

In Fig. 3, we display the results for one of these benchmarks, HEATX, which solves
the 3D heat equation on a cubic domain [7]. The code’s main loop consists of averaging
a point in the cube with its six face neighbors. Like many CFD codes, it is memory
bandwidth limited. In the plot, we can see the Intel Xeon and AMD EPYC systems
perform better for smaller problems, but as the vector length of problem grows beyond
256 elements and the available memory caches, the VE has the better performance.

Fig. 3. HEATX benchmark on Intel, AMD, and NEC systems

In Fig. 4, we display the results for the second of these benchmarks, FAST3D, a
typical CFD code which uses the Flux Corrected Transport (FCT) algorithm to solve a
bursting diaphragmproblem in 3D [8]. The code scans the domain volume, line by line, in
each direction, segmenting each line by boundary conditions, gathering the elements into
a 1D array and then applying the FCT algorithm to that array in a multiple vectorizable
loops. Here again, we see a cross over in performance for vector lengths greater than
256.

260 K. Obenschain et al.

Fig. 4. FAST3D benchmark on Intel, AMD, and NEC systems

2 FDL3DI

FDL3DI is an extensively validated high-order Navier-Stokes solver utilizing curvilinear
grids and was developed at United States Air Force Research Laboratory in the 1990’s
[9, 10]. Some applications of FDL3DI include wing-vortex aerodynamics, flow control
for laminar flow airfoils, and shock/boundary layer interaction in front of canonical
shapes. The solver can work with multiblock overset meshes with high-order interpo-
lation methods. The solver provides an implicit Large Eddy Simulation mode with the
effect of sub-grid scale stresses modeled via spatial filtering to remove the energy at the
unresolved scales. Discriminating, high-order, low-pass spatial filters are implemented
that regularize the procedurewithout excessive dissipation. A high-order, compact finite-
difference approach is employed for spatial discretization and timemarching is achieved
through an iterative, implicit approximately-factored integrationmethod [11]. At bound-
ary points, higher-order one sided formulas are utilized that retain the tridiagonal form
of the scheme.

The solver was first implemented with MPI and then with OpenMP resulting in a
hybrid code and offers linear scaling up to thousands of processors. FDL3DI has been
optimized to run on various architectures including SGI, Cray, HP, Intel and AMD
processors. For example, FDL3DI has undergone optimization for the Intel Xeon Phi to
specifically supportAVX-512 instructions. The compiler options used in this comparison
for Intel and AMDwere selected to enable AVX-512 and AVX2, respectively. However,
there is no GPU implementation for FDL3DI. Recent updates include Fortran 90 with
MPI I/O, robust hole-cutting and scheme adaption for overset grid, and algorithmic
enhancements via filter compact delta formulation.

Evaluation of the NEC Vector Engine for Legacy CFD Codes 261

2.1 Problem Description

We considered a classical flow past a cylinder test case with freestream Mach number
of 6 with zero angle of attack. The DUCROS type sensor described in [12] is activated
in the simulations to capture sharp discontinuities such as shocks. Figure 5 shows the
Mach number at one second after impulsive start. The flow, from left to right, comes to
a halt at cylinder surface and travels around the cylinder with maximum Mach number
of 10 in the downstream region.

Fig. 5. Mach number representation of the test case

We studied three problem sizes as described in Table 2 below.

Table 2. Problem sizes for FDL3DI studies.

Problem size Block size Maximum vector length

1283 64 68

2563 128 132

4803 240 244

We ran the cases using 8 MPI ranks with 2 OpenMP threads on NEC Vector Engine.
Each MPI rank is assigned a single domain. A choice of domain decomposition is
possible in FDL3DI. The size of the domains is determined by the complexity of the
geometry and to match the hardware capabilities of the processors. The choice of 2
OpenMP threads per rank gave the best performance. For 8 MPI ranks, each problem
dimension is divided by two so the maximum vector length is one-half of the problem
dimension plus additional guard cells. In our cases, the small and large cases have the
maximum vector length of 68 and 244, respectively. The reason behind choosing the

262 K. Obenschain et al.

4803 case is that the maximum vector length for this problem is 244 elements, which
almost completely fills the VE’s 256 double precision vector register allowing the VPU
to efficiently schedule work. For a problem size of 5123, the vector length is 260, which
is slightly larger than the VE’s vector register. This results in a situation where the first
256 elements fully utilize a vector register, but the remainder (4 elements) only uses a
fraction of a vector register, resulting in an overall inefficient scheduling of a VPU.

2.2 Initial Performance Observation

The original FDL3DI code was compiled without modifications on the NEC Vector
Engine, Intel Xeon, and AMD EPYC systems. The performance of the unmodified
FDL3DI code can be seen in Fig. 6. The performance results are normalized by the 1283

case on Intel Xeon system. Timings were taken for steps 101–150 for these performance
studies. The results were obtained on the Intel Xeon systemwithAVX-512 optimizations
while the AMD EPYC was run with AVX2 optimizations.

With this original version of the code, the large cache on the AMD EPYC processor
makes it very competitive for smaller problem sizes. As the problem size increases, the
faster HBM2 memory on the NEC starts to come into play. This initial performance
analysis prompted a closer look at performance bottlenecks on the VE and initiated
several months of optimization.

Fig. 6. Performance of original FDL3DI on Intel, AMD and NEC systems

2.3 Optimization Process for FDL3DI

Figure 7 depicts the optimization process for FDL3DI. First, the most time-consuming
routines in the code were identified by profiling of the code. Once they were determined,
reproducers were generated that represent portions of the parent code without any pro-
prietary information so that the reproducers could be distributed if necessary. Next, the

Evaluation of the NEC Vector Engine for Legacy CFD Codes 263

reproducers were optimized in consultation with NEC to improve their performance
on the NEC Vector Engine. Once the performance of the reproducer was improved the
modifications were incorporated into the FDL3DI code. The optimized version of code
was verified to ensure that the results were not affected by themodifications. The process
was repeated for each of the most time-consuming routines in FDL3DI.

Fig. 7. Workflow of optimization process for FDL3DI

2.4 Performance Analysis Using the NEC Toolchain

Compiler Listing. Figure 8 shows several examples of the optimization diagnostics
from the NEC compilers. The NEC compilers provide annotated listings with the source
lines for each procedure together with information on the vector and parallel status of
loops and array expressions, the status of inline expansion, etc.

Fig. 8. Examples of NEC’s compiler listings with annotations

NEC Profiler – FTRACE. A user can obtain performance information for the overall
program, each function as well as user specified regions with the NEC profiler FTRACE
[13]. FTRACE is used to obtain information such as the CPU usage and vectorization
aspects. The user just needs to compile and link a program with –ftrace to an exe-
cutable file for performance measurement. At the end of execution, one or more analysis
information files are generated in the working directory where the program is executed.
In case of non-MPI programs, a single analysis information file is created, while in the
case of MPI programs, analysis information files are created for each MPI process. The
FRACE utility can combine these files into a single report.

FTRACE profiler outputs analysis lists from hardware performance counters on the
VE at the runtime up to the granularity of a subroutine. The user can control the use of

264 K. Obenschain et al.

sets of performance counters by several environment variables to suit the requirement.
Figure 9 shows an FTRACE report that provides performance information for each sub-
routine. The report can show performance for user defined regions within a subroutine
by manually defining the region of interest. Parameters like vector operation ratio, aver-
age vector length, cache hits and misses, bytes-per-flops, etc. provide a strong base to
estimate the program’s performance and howwell it can utilize the underlying hardware.

Fig. 9. Sample FTRACE analysis tool report

2.5 Optimization Techniques

Vectorization of Computationally Intensive Kernels. The computational perfor-
mance of the NECVector Engine arises from its vector processing capability. Therefore,
it is critical that all computationally intensive kernels in the code are vectorized and any
scalar portions be extremely limited. FDL3DI was first developed in the era of the early
vector computers and has still retained its vector-friendly structure and the vast majority
of the inner loops vectorize.

The FTRACE utility, however, identified two routines in the top ten that showed very
little vector usage. This was determined by comparing the vector time to the exclusive
time as given by the FTRACE output (see Fig. 9 above for an example). The two routines
in question had essentially no vector time and sowere investigated further. The annotated
listing of these routines confirmed that loops therein were not vectorized. In one routine,
an OpenMP directive was used to collapse all three levels of a triply-nested loop, which
prevented vectorization of the innermost loop (this is a feature/limitation of the NEC

Evaluation of the NEC Vector Engine for Legacy CFD Codes 265

Fortran compiler). So, with a minor change, this loop was vectorized. With some other
rearrangements, the remaining loops in this routine also were vectorized.

The other routinemade use ofdo–while loop structures. This style of loop structure
does not vectorize, but still works well on the scalar processors on the Intel Xeon and
AMD EPYC, but not on the relatively weak scalar processor of the NEC Vector Engine.
The do–while loop structure had to be replaced with a canonical do loop which does
vectorize. This did involve some restructuring and the introduction of some additional
computations. However, the increase in performance of the vectorized version outweighs
the cost of the additional computations.

MemoryOptimizationwithVectorRegisters. TheNECcompilers identify statements
that can be vectorized, and the participating arrays are automatically assigned to vector
registers. For computation, the arrays are loaded from and stored to these vector registers
in each iteration of the loop. However, the compilers provide additional support for
manual assignment of vector registers to specific arrays within the scope of a subroutine
by using the compiler directive:

The compiler directive vreg [14] declares that arrays in a list are allocated to vector
registers instead of memory (similar to register qualifier from old C standards).
The compiler translates all references of vreg assigned arrays within a subroutine to
reference of vector register instead of load/store from memory. During code generation,
the compiler prioritizes the assignment of a vector register to the specified array. If a
vector register is not available for use, the vectorized data would spill-out to the memory
but the compiler prepares instruction sequences such that this spill-out is minimized.
The advantage of using vreg is that it avoids the vector store instruction which is the
compiler’s default method of automatically storing the same array. There are 64 vector
registers available per core and vreg directive can utilize up to 57.

In the FDL3DI program, most loops are automatically optimized and vectorized by
the compiler. Figure 10 shows one such code snippet with an automatically tuned loop
structure. Compiler listings provide helpful indicators that inform which loops have
been automatically optimized and vectorized. There is however a significant amount
of memory reuse in between each iteration and these memory-bound loops involve
additional memory latency due to several loads and stores. A fine-tuning approach for
such loops is to reduce the memory latency by using the vreg compiler directive.

Figure 10 shows the modifications performed on the code snippet for optimization.
The program is modified to prepare participating arrays that are the same size as one
vector register. The vreg directive is used to assign these arrays to dedicated vector
registers. The outer loop is blocked at 256 elements such that the fetches within each
iteration comply with the size of a vector register for the functionality to work. The
key here is to retain the vreg arrays on the vector registers between iterations of the
outer loop, and that is managed by modifying the source. The same computation from
the original loop block now works faster with dedicated vector registers while avoiding
redundant load-store latencies. The indicators from compiler listings help identify each
statement that utilizes these dedicated registers.

266 K. Obenschain et al.

Fig. 10. Code optimization using vreg directive

Long Vectors Through Loop Collapse. The last technique is loop collapsing. If the
inner loop has a length that is less than the vector register length 256, then it may be
possible to combine the inner and outer loops for a vector length significantly longer than
256. We could change the arrays throughout the entire code to arrays with the first two
dimensions combined, but it is simpler to use one-dimensional pointers to the original
arrays for just the current subroutine.

In Fig. 11, we create a one-dimensional pointer to the original multiple dimensioned
array. Normally, a pointer and its target array must have the same rank, but Fortran
2008 allows this if the contiguous specifier is added. Thus, if we convert the original
allocatable array to a pointer with the contiguous specifier, the pointer association
will be permitted. It is possible to mask off elements that should not be stored and still
retain the vectorization status of the loop [15].

3 FDL3DI Performance with Optimization

The result of the current optimizations is depicted in Fig. 12. For all problem sizes there
were significant increases in the performance of the NEC Vector Engine. For the 4803

problem size, the performance on the VE was approximately a factor of three faster
after optimization. For smaller problem sizes, the use of vreg, loop unrolling, and the
vectorization of time-consuming scalar loops made the VE competitive against archi-
tectures with a large amount of cache due to better use of available memory bandwidth
and better utilization of the VPU. The code optimized for the VE was also run on the

Evaluation of the NEC Vector Engine for Legacy CFD Codes 267

Fig. 11. Code optimization using loop collapse

AMD EPYC and Intel Xeon. The performance on these two architectures was roughly
the same compared to the original codebase.

Fig. 12. Performance improvement after optimizations of FDL3DI on NEC system

268 K. Obenschain et al.

3.1 Roofline Analysis of FDL3DI

The rooflinemodel [16] is an effectiveway to quickly visualize performancewith respect
to key system bottlenecks, i.e., processor performance and off-chipmemory traffic and to
determine potential benefit and prioritization of optimizations. The model ties together
floating-point performance, arithmetic intensity (FLOP/byte), andmemory performance
in a two-dimensional graph. The roofline sets an upper bound on performance of a routine
depending on the routine’s arithmetic intensity. Peak floating- point performance and
memory bandwidth can be found experimentally or using hardware specifications (as
presented here) to determine the performance limits, or roofline, as denoted by the dashed
line in Fig. 13.Measured performance in GFLOPS and the arithmetic intensity are easily
obtained for each routine in FDL3DI using the FTRACE profiling utility.

In the roofline model, a procedure is considered bandwidth-bound if it is under the
sloped portion of the roofline (left of the solid vertical line) and compute-bound when
under the flat portion of the roofline (to the right of the solid vertical line). The circle
and square symbols represent the top 15 time-consuming routines for the 1283 and 4803

cases, respectively. For FDL3DI the arithmetic intensity is low, and all its procedures
are bandwidth bound. Low arithmetic intensity is typical of the majority of CFD codes
in use today, especially those based on finite volumes or finite elements. Discontinuous
Galerkin techniques coming into use have higher arithmetic intensity and aremore suited
to the machine balance of modern hardware.

Fig. 13. Roofline analysis of the performance of 15 most time-consuming routines

The large 4803 problem performs near the peak bandwidth line, so it is efficiently
using the vector engine and is limited only by the available memory bandwidth. To
further improve performance, one would have to change the algorithms employed to

Evaluation of the NEC Vector Engine for Legacy CFD Codes 269

have higher arithmetic intensity or find ways to raise the effective memory bandwidth,
e.g., increase the use of vector registers. For the smaller 1283 problem, the vector units
are only partially filled in routines without loop collapse, resulting in lower performance
for those routines.

This roofline analysis helps instruct optimization of the FDL3DI code. From this
analysis, the NEC Vector Engine has more than adequate floating-point capability for
the algorithms in FDL3DI. As the code is memory bound, efforts must be focused
on reducing memory traffic to the HBM memory. To improve performance of larger
problem sizes,memory bandwidth is the key, but for smaller sizes, the number ofmemory
references also plays a role. Techniques such as the use of vreg and loop collapse are
critical in improving memory utilization.

4 Conclusions/Future Work

We were able to compile and run FDL3DI without modification on the NEC Vector
Engine and begin optimization immediately. Typically, the introduction of a novel archi-
tecture requires a complete refactoring of a code. With optimization, FDL3DI runs effi-
ciently on the NEC Vector Engine and for larger problems sizes it outperforms the other
architectures evaluated. FDL3DI has targeted different architectures throughout its life-
time. Some newer portions of the code written for scalar architectures needed to be
vectorized for performance on the VE. The techniques and methodologies we employed
are well known and understood. This should be considered to be a benefit given the
novelty of the hardware. The optimization introduces some additional complexity; the
good news for the optimization effort is that the current developers of FDL3DI can still
comprehend the VE optimized code. In general, optimization is required to take full
advantage of the architecture.

The NECVector Engine achieves its best performance when a vector register is fully
utilized. The VE’s 256-element double precision vector register is longer than equivalent
registers on other vector architectures, so even previously vector friendly codes need to
be examined/profiled with tools such as FTRACE to identify any performance issues.

From our evaluation, the NEC Vector Engine is suited for CFD codes with low
arithmetic intensity, where the primary bottleneck is main-memory bandwidth. The
optimization techniques in this paper can make the VE more competitive for codes that
are cache friendly or have relatively short vectors.

Our work will continue with scaling efforts past two NEC Vector Engines. The scal-
ing tests will be run with at least eight VEs to understand how bottlenecks change with
larger problems. In addition, we will be looking at a development version of FDL3DI.
The improvements to FDL3DI’s algorithms and implementation could change the per-
formance characteristics and from an initial evaluation appear to be promising. We need
to examine how performance changes with different numbers of OpenMP threads and
if any optimizations to improve the hybrid MPI/OpenMP implementation are required.

Aside from FDL3DI, we will be evaluating the NEC Vector Engine’s performance
for other codes such as public-domain mini-apps [17] and for machine learning applica-
tions. We made significant progress using the FTRACE profiler, but there are limitations
compared to profilers available on other architectures. We are anxious to determine if

270 K. Obenschain et al.

profilers such as Tau [18] that have initial support for the NEC Vector Engine give us
additional insight into FDL3DI.

Acknowledgements. This project is co-sponsored by the U.S. Department of Defense Foreign
Comparative Testing Program within the Office of the Undersecretary of Defense for Research &
Engineering, the DoD High Performance Computing Modernization Program, and by the Office
of Naval Research through the Naval Research Laboratory 6.1 Materials Science Task Area. The
collaboration with NEC was conducted via the NRL CRADA-20-716. The authors would like to
thank the NEC consultants and supporting hardware and software teamswho helped us understand
and address any issues with the platform. Finally, we would like to thank Dr. D. Garmann at the
U.S. Air Force Research Laboratory for his guidance on the FDL3DI code.

References

1. Komatsu,K., et al.: Performance evaluation of a vector supercomputer SX-AuroraTSUBASA.
In: IEEE Conference Proceedings, USA, pp. 685–696 (2018)

2. VEOS high level design. https://veos-sxarr-nec.github.io/doc/VEOS_high_level_design.pdf
3. NEC Numeric Library Collection User’s Guide. https://www.hpc.nec/documents/sdk/SDK_

NLC/UsersGuide/main/en/index.html
4. AMD 7702 Datasheet, April 2020. https://www.amd.com/system/files/documents/AMD-

EPYC-7002-Series-Datasheet.pdf
5. Intel 8160 Datasheet. https://ark.intel.com/content/www/us/en/ark/products/192474/intel-

xeon-platinum-8260-processor-35-75m-cache-2-40-ghz.html
6. Second Generation Intel® Xeon® Scalable Processors Specification Update, Octo-

ber 2020. https://www.intel.com/content/dam/www/public/us/en/documents/specification-
updates/xeon-scalable-spec-update.pdf

7. Quinn, M.J.: Parallel Programming in C with MPI and OpenMP. McGraw-Hill Education
(2004)

8. Boris, J.P., Landsberg, A.M., Oran, E.S., Gardner, J.H.: LCPFCT - a flux-corrected transport
algorithm for solving generalized continuity equations. NRL Memorandum Report 93-7192
(1993)

9. Gaitonde, D., Visbal, M.: High-order schemes for Navier-Stokes equations: algorithm and
implementation into FDL3DI. Technical report AFRL-VA-WP-TR-1998-3060, Air Force
Research Laboratory, Wright-Patterson AFB (1998)

10. Garmann, D.J., Visbal, M.R.: AFRL contributions to the third international workshop on
high-order CFD methods. In: Third International Workshop on High-Order CFD Methods
(2015)

11. Gordnier, R.E., Visbal, M.R.: Numerical simulation of delta-wing roll. Aerosp. Sci. Technol.
6, 347–357 (1998)

12. Ducros, F., et al.: Large-eddy simulation of the shock/turbulence interaction. J. Comput. Phys.
152, 517–549 (1999)

13. PROGINF/FTRACE User’s Guide. https://www.hpc.nec/documents/sdk/pdfs/g2at03e-PRO
GINF_FTRACE_User_Guide_en.pdf

14. Fortran Compiler User’s Guide. https://www.hpc.nec/documents/sdk/pdfs/g2af02e-Fortra
nUsersGuide-020.pdf

15. SX-Aurora TSUBASA Performance Tuning Guide. https://www.hpc.nec/documents/guide/
pdfs/AuroraVE_TuningGuide.pdf

https://veos-sxarr-nec.github.io/doc/VEOS_high_level_design.pdf
https://www.hpc.nec/documents/sdk/SDK_NLC/UsersGuide/main/en/index.html
https://www.amd.com/system/files/documents/AMD-EPYC-7002-Series-Datasheet.pdf
https://ark.intel.com/content/www/us/en/ark/products/192474/intel-xeon-platinum-8260-processor-35-75m-cache-2-40-ghz.html
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-scalable-spec-update.pdf
https://www.hpc.nec/documents/sdk/pdfs/g2at03e-PROGINF_FTRACE_User_Guide_en.pdf
https://www.hpc.nec/documents/sdk/pdfs/g2af02e-FortranUsersGuide-020.pdf
https://www.hpc.nec/documents/guide/pdfs/AuroraVE_TuningGuide.pdf

Evaluation of the NEC Vector Engine for Legacy CFD Codes 271

16. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual performance model
for multicore architectures. Commun. ACM. 52(4), 65–76 (2009). https://doi.org/10.1145/
1498765.1498785.ISSN0001-0782

17. Mantevo Project, Mantevo Organization (2020). https://mantevo.github.io/
18. Department of Computer and Information Science, University of Oregon Advanced Comput-

ing Laboratory, LANL, NM Research Centre Julich, ZAM, Germany, 24 July 2020. https://
www.cs.uoregon.edu/research/tau/tau-referenceguide.pdf

https://doi.org/10.1145/1498765.1498785.ISSN0001-0782
https://mantevo.github.io/
https://www.cs.uoregon.edu/research/tau/tau-referenceguide.pdf

Distributed Sparse Block Grids on GPUs

Pietro Incardona1,2,3, Tommaso Bianucci2,3 ,
and Ivo F. Sbalzarini1,2,3,4,5(B)

1 Technische Universität Dresden, Faculty of Computer Science, Dresden, Germany
2 Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany

{incardon,bianucci,ivos}@mpi-cbg.de
3 Center for Systems Biology Dresden, Dresden, Germany

4 Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
5 Center for Scalable Data Analytics and Artificial Intelligence, Dresden, Germany

Abstract. We present a design and implementation of distributed
sparse block grids that transparently scale from a single CPU to multi-
GPU clusters. We support dynamic sparse grids as, e.g., occur in
computer graphics with complex deforming geometries and in multi-
resolution numerical simulations. We present the data structures and
algorithms of our approach, focusing on the optimizations required to
render them computationally efficient on CPUs and GPUs alike. We
provide a scalable implementation in the OpenFPM software library for
HPC. We benchmark our implementation on up to 16 Nvidia GTX 1080
GPUs and up to 64 Nvidia A100 GPUs showing state-of-the-art scal-
ability (68% to 96% parallel efficiency) on three benchmark problems.
On a single GPU, our implementation is 14 to 140-fold faster than on a
multi-core CPU.

Keywords: Sparse grid · Block grid · CUDA · GPU · Distributed data

1 Introduction

Sparse volumetric data structures are frequently used in scientific computing
and computer graphics for problems involving complex or time-varying geome-
tries. Examples include hierarchical data structures for implicit geometry repre-
sentation [7,9,10,14,15], multi-resolution methods [3,4], wavelet-adaptive meth-
ods [5], and narrow-band formulations of level-set methods [1,6]. Designing and
implementing efficient dynamic sparse volumetric data structures, however, is
challenging on massively parallel architectures, as race conditions occur when
thousands of threads independently access the data. These challenges amplify
for implementations of sparse volumetric data structures on distributed-memory
parallel computer clusters, on Graphics Processing Units (GPUs), and on clus-
ters of multiple GPUs. Consequently, it remains unclear how to best implement
scalable, dynamic, sparse volume data structures on clusters of multiple GPUs.

Here, we provide reusable containers for sparse block grids distributed over
multiple CPUs or GPUs. We provide both CPU and GPU implementations of
c© Springer Nature Switzerland AG 2021
B. L. Chamberlain et al. (Eds.): ISC High Performance 2021, LNCS 12728, pp. 272–290, 2021.
https://doi.org/10.1007/978-3-030-78713-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_15&domain=pdf
http://orcid.org/0000-0002-7423-207X
http://orcid.org/0000-0003-4414-4340
https://doi.org/10.1007/978-3-030-78713-4_15

Distributed Sparse Block Grids on GPUs 273

scalable, runtime-adaptive distributed sparse grids in C++ and CUDA. We ana-
lyze the design choices and their performance consequences when implementing
such volumetric data structures on distributed GPU clusters. Based on this,
we provide suggestions for a memory- and compute-efficient design, describing
both its external interface and its internal architecture. The interface is designed
to transparently abstract the internal implementation, providing flexibility for
future improvements and portability.

We also provide a scalable software implementation of the proposed sparse
block grid data structures. Our implementation is integrated into the open-source
parallel computing framework OpenFPM [11], providing a fully templated C++
implementation that relies on the OpenFPM infrastructure for memory manage-
ment, memory layout abstraction, CUDA kernels, and interconnect communica-
tion. We use this implementation to benchmark the performance and scalability
of the proposed design.

2 Single-GPU Sparse Block Grids

We first describe a design of sparse block grids for a single GPU. The descrip-
tion is independent of the specifics of particular hardware or a particular pro-
gramming language. It is based on fundamental primitives commonly used for
dynamic algorithms on GPUs. These primitives can be found in many accel-
erator libraries and GPU languages, rendering our design reasonably portable.
Here, we use the primitives provided by a combination of the two libraries CUB
[13] and moderngpu [2]. The following primitives constitute the basic building
blocks for our sparse block grid design:

– scan: Given a vector, the scan operation produces a vector of all partial
cumulative sums; for example, scan([1,6,9,10]) = [0,1,7,16,26].

– merge: Two sorted vectors are merged into one sorted vector with duplicate
entries appearing twice; for example, merge([1,6,7,10,26], [0,3,7]) =
[0,1,6,7,7,10,26].

– sort: A vector is sorted in ascending order; for example, sort([1,10,2,6])
= [1,2,6,10].

Sparse grids are grid data structures where points/nodes can be dynamically
inserted and removed at runtime. A simplified view is to see a sparse grid as
a hash map, where the key is the grid index (i.e., the discrete position in the
grid) and the value is the data stored at that grid point. An empty sparse grid
does not allocate any memory for the grid data, but only for the access and
bookkeeping data structures. This is in contrast to a dense grid, or array, where
all memory is allocated when the grid is instantiated. The usual get function is
present in both sparse and dense grids to access an (allocated) grid point. Sparse
grids have an additional insert function to newly allocate grid nodes.

Another important difference between dense and sparse grids is how they
are traversed or iterated over. In dense grids all nodes are always allocated,
and iterators usually proceed to neighboring nodes until all nodes have been

274 P. Incardona et al.

visited. In sparse grids, iterators can visit all allocated nodes, or any subset of
allocated and unallocated nodes. Apart from specific limitations of a numerical
method, this interface allows for easy conversion of dense-grid codes to spare-
grid codes, which is useful for comparative benchmarking. The changes required
are: (1) inserting all existing nodes at the start and (2) changing the iterator to
an all-node sparse-grid iterator.

Fig. 1. Data structures of a sparse block grid illustrated in 2D for a grid of size 32× 32
subdivided into chunks of size 4× 4 (top left). Red points are in use, black points are
empty. A chunk is allocated as soon as at least one point is inserted within that chunk.
Only chunks containing at least one inserted point are explicitly shown in the figure.
All allocated chunks are stored in a vector of aggregates (top right). In the example,
each chunk contains 4 × 4 = 16 grid points each storing a scalar double and a 2-array
double[2], hence each chunk is an aggregate<double[16],double[16][2]>. For each
chunk, the headers (bottom right) store its Cartesian and linear position in the grid
(according to the selected grid ordering) and a bit mask (here 16 bits) indicating which
points in the chunk are allocated/inserted (points within a chunk are ordered bottom-
left to top-right). The map (bottom left) converts linear position in the grid of chunks
(grid of square blocks) to chunk ID (Color figure online).

In most applications, the inserted nodes are not randomly scattered in a
sparse grid, but concentrate in dense sub-regions. Sparse block grids exploit
this to reduce neighborhood access time. Instead of storing each inserted node
individually, they store a list of blocks of nodes. A common approach is to divide
the grid into regular blocks of equal size, set at compile time, and to allocate
a whole block as soon as at least one node is inserted within it. These grid
blocks are called chunks to differentiate from GPU thread blocks. Each chunk of
a sparse block grid is identified by a globally unique chunk ID. This requires a
few bookkeeping data structures as illustrated in Fig. 1:

Distributed Sparse Block Grids on GPUs 275

– chunks: A vector that stores the chunks’ data. The chunks are stored in
aggregates or tuples representing the different data types stored on the grid.
The chunks vector can potentially retain empty chunks for anticipated reuse.

– headers: An array storing for each chunk in the chunks array its position in
the grid (both in Cartesian coordinates and as a linear stride) and a mask
indicating which nodes in the chunk are allocated/inserted.

– map: A map converting the linear stride position of a chunk to its chunk ID.

The map can be implemented using different data structures (unordered map,
tree, sorted array, hash map). In this paper, we use sorted arrays on GPUs and
hash maps on CPUs, because hash maps are not performant on GPUs while
optimized GPU primitives for sorted arrays exist. The position of each chunk in
the grid is converted from the Cartesian grid coordinate to a linear stride using
a particular grid ordering. Space-filling curves, like the Morton Z-curve, are
popular choices for cache efficiency. In our C++ implementation in OpenFPM,
the specific grid ordering to be used is specified as a template parameter. This
linearizes the position of each chunk to a single integer. For the benchmarks
presented here, we always use Z-Morton ordering.

A key challenge on GPUs is to dynamically insert points. In our design, we
use a three-phase strategy: First, we collect, in parallel, all chunks to be inserted.
This leads to a list that potentially contains duplicates. Second, we create cor-
respondence groups between new and existing chunks. A correspondence group
is a set of chunks that are either duplicated in the insert list, or already exist.
Third, correspondence groups are merged in parallel.

In the first phase, we collect all changes. This requires two buffers, one for the
IDs of the chunks to be added, and one for their grid data. Rather than keeping
a memory reservation for each thread, we reserve space for a block of threads
together. This reduces memory allocation overhead as well as the total amount
of memory required for the insert buffers. The insert buffers are allocated before
running the GPU kernel that executes the insertions.

Merging based on correspondence groups is done by a flush operation, as
shown in Algorithm 1. An step-by-step example of this algorithm is provided in
in Fig. 2. The algorithm requires a merge operator to be specified. Consider the
example that two insertions with values 3 and 4 target the same existing grid
point already containing the value 5. The merge operator specifies how the data
is reduced. Common choices are: max (result in the example is 5), min (result 3),
or sum (result 12). The specific choice is provided as a parameter, as it depends
on the computational problem to be solved using the sparse block grid. Data
reduction and copying of the result is done at the very end, since moving chunks
is expensive. Until that point, the flush algorithm only works on index maps of
required data transfers, executing them jointly only in the end.

3 Multi-GPU Distributed Sparse Block Grids

In order to distribute a sparse block grid over multiple GPUs connected by a
communication network, we decompose the grid into rectangular (cuboidal in

276 P. Incardona et al.

Fig. 2. Step-by-step example of the flush operation from Algorithm 1. Yellow boxes
show positions of the chunks in the original array. Red boxes are the corresponding
chunk IDs with “X” marking nonexistent chunks for alignment. Curly braces indicate
how chunks are grouped in GPU thread blocks (here five chunks per thread block) for
parallel execution. Green boxes are the positions of existing data in the pre-existing
chunks. Purple boxes indicate chunk IDs that require data merging. Boxes labeled Di
represent the data contained in the chunk with ID i. The example in the penultimate
row shows how D5 is merged using the sum operator, creating a new chunk DSUM
containing the element-wise sums of the data from the two input chunks. Black numbers
indicate unused grid points containing invalid data, while magenta numbers indicate
valid data on allocated/inserted points. The green and yellow arrays are used to track
how to merge the data in the final step. These temporary maps avoid moving data
chunks when determining correspondence groups (Color figure online).

Distributed Sparse Block Grids on GPUs 277

Algorithm 1. The flush operation
Input: IDs of chunks to be inserted and their data; merge oprator

1: Prune unallocated chunks from the list (i.e., make the list of chunks contiguous).
2: Sort the insert chunk IDs.
3: From the sorted IDs, construct the set of unique IDs (because they are sorted,

duplicates are neighbors). Construct a list of all segments that need to be merged
and keep track of the merged IDs.

4: Merge the list of existing chunk IDs with the list of unique IDs to be inserted.
5: From this merged list, construct the set of unique IDs. This is the list of sorted

chunk IDs for the updated grid.
6: Merge the insert data buffer into the sparse block grid using the merged list to

construct the final data buffer with the data merged using the merge operator.

3D) patches that are then distributed across the different GPUs. Each patch
contains exactly one sparse grid container. We do not require or assume patch
boundaries to align with chunk boundaries. This allows for patches to be deter-
mined using any cuboidal domain decomposition method for grids, independent
of the chunks. Our benchmarks show that runtimes with aligned patch-chunk
boundaries are similar than with non-aligned boundaries, since the map-flush
kernel is not a bottleneck. We therefore choose to implement the general case.

To allow for data exchange between patches, each individual patch is
extended by a ghost layer of user-defined width (typically 1 to 3 grid points,
depending on the numerical method to be used on the grid). Ghost layers
exist only between immediately adjacent neighbors in the domain decomposi-
tion. Each overlap intersection between a ghost layer and a neighboring patch
defines a ghost box. Allocated chunks and grid points covered by these ghost
boxes are to be communicated between the involved processes.

The communication is divided into three phases: In the first phase, we identify
overlaps between ghost layers and neighboring patches, hence defining the ghost
boxes, and we serialize the data contained in the ghost boxes into a send buffer.
In the second phase, we perform the actual network communication between the
different processes or GPUs. In the third phase, we unpack the data from the
received buffers into the destination sparse grid blocks.

3.1 Packing and Serialization

Data packing and serialization consists of two parts: (1) the size and structure
of the buffer required to pack the grid data is determined; (2) the data are
packed into that send buffer. To determine the size and structure of the send
buffer, our design uses a queue paradigm where pack requests are first queued,
then the queue is consolidated, and finally the buffer size is determined. This
requires three functions: packReset, packRequest, and packCalculate. The
first function clears the queue, starting a new serialization. The second function
queues a request to pack data, accepting a ghost box as input argument. The
third function consolidates the queue and determines the required send buffer in
the form of the following buffer skeleton:

278 P. Incardona et al.

1 The number of chunks to pack;
2 The starting point and size in the send buffer for each ghost box to be packed;
3 A vector containing the chunk ID of each chunk to be packed;
4 A vector containing the number of points to be packed for each chunk;
5 An array of properties (data types of the grid data) to be packed for each

point using an SoA memory layout;
6 An array of offsets (short int) for each grid point in each chunk to be packed;
7 An array of char with a mask for each point.

The mask (point 7) is used to indicate additional flag properties. In our current
implementation, bit 0 indicates whether a point in the chunk is inserted/allo-
cated. Bit 1 indicates whether a point is a border point, i.e., has at least one
unallocated point in its neighborhood. The remaining six bits of the mask are
unused at the time of writing.

After determining the send buffer and allocating it in each process, we pack
the grid data for inter-process communication. This step involves the two func-
tions pack and packFinalize. The pack function constructs a queue of requests
to serialize grid data into the send buffer according to the information in the
seven data structures listed above. It does not actually copy any data yet. This
is done by packFinalize after all offsets and chunk pointers have been deter-
mined. Packing is never done twice, and only one CUDA kernel is launched for
each patch of the domain decomposition.

Figure 3 illustrates an example of this process. In the example, one patch
(dashed blue box) overlaps with six chunks with IDs given in the green-shaded
boxes. As illustrated, the patch boundary does not (have to) align with chunk
boundaries. The send buffer for the red ghost box is shown on the right, illus-
trating how the data are serialized in memory. This is independently done for
each ghost box in parallel. Before sending, the information is compressed to only
contain the data elements selected by the user via template parameters, and only
for the inserted/allocated grid nodes.

Phase two is straightforward. Once the send buffers have been constructed on
each process or GPU, they are communicated over the interconnect. This is done
using asynchronous MPI communication with CUDA support to transparently
and asynchronously perform the point-to-point communications of the packed
send buffers between pairs of processes or GPUs.

3.2 Unpacking and Deserialization

In phase three, the receiving processes unpack the buffers. Similar to packing,
unpacking also uses a queue paradigm. This means that all unpacking requests
are first queued, then merged, and finally executed jointly. This requires addi-
tional care, since the chunk boundaries of the sending and receiving sides are not
required to align. An example of this is illustrated in Fig. 4A in 2D for the blue
patch from Fig. 3 overlapping with a yellow patch from a neighboring process in
an unaligned way. The corresponding ghost boxes are shown as shaded areas for

Distributed Sparse Block Grids on GPUs 279

Fig. 3. Example illustrating the send buffer contents for a ghost box. A single patch
(dashed blue box) overlapping with six chunks (black squares, chunk IDs in green-
shaded boxes) is shown. The red rectangle is the ghost box to be packed. The memory
layout and corresponding contents of the buffer for this ghost box are shown on the
right with memory address increasing from top to bottom. (Color figure online)

a ghost layer width of one grid point. The yellow shaded area corresponds to the
ghost box used as an example in Fig. 3.

An incoming chunk can overlap with up to four (in 2D) or eight (in 3D)
chunks of the destination grid upon unpacking. We therefore construct per-patch
maps to translate between the two sparse block grids. Each map is of the same
size as one chunk and is valid for all incoming chunks from the same patch.
It stores for each point in a chunk a number from 0 to 3 (2D) or from 0 to 7
(3D), indicating the overlapping chunks of the destination grid that point maps
to. In addition, the map also stores for each point its offset in the destination
chunk. This is illustrated in Fig. 4B, where the square in the center (left panel)
is an incoming chunk, and color in the right panel indicates the four areas of
overlap with the different chunks of the destination grid. The corresponding
offsets of the points in the destination grid are given by the numbers of the same
color. These maps enable on-the-fly conversion of the packed information in the
received buffer of each chunk to the chunk layout of the destination grid.

Using these maps, we construct for each incoming chunk a list of destination
chunks it overlaps with. In 2D, the lists are ordered {bottom-left, bottom-right,
top-left, top-right}, similarly in 3D. Therefore, chunk 56 in Fig. 4A will have the
list (X, X, X, 0), where X indicates no overlap. Similarly, incoming chunk 72
intersects (X, 0, X, 30), and chunk 88 intersects (X, 30, X, 60). This is done in
parallel for each incoming chunk. Each thread takes a chunk ID based on where
the information should be unpacked, and map conversion is performed in the

280 P. Incardona et al.

GPU kernel. Nonexistent overlaps (X in the lists) are skipped, but remain in the
lists for better memory alignment.

A B

Fig. 4. A: Example of two patches (blue and yellow dashed boxes) from neighbor-
ing processes/GPUs with unaligned grid chunks (chunk IDs in the colored boxes).
The two patches do not overlap. Their respective ghost boxes with the other patch
are shown as shaded regions of same color for a ghost layer width of one grid point.
B: Example of a chunk map between two grids. The incoming chunk (square in the
center with grid points shown as dots) overlaps with four chunks of the destination grid
(empty squares). Each chunk contains 8 × 8 grid points indexed from 0 (bottom-left)
to 63 (top-right). The map is visualized in the right panel. Each point in the map stores
the “color” (a number from 0 to 3) of the destination chunk as shown by the shaded
areas. In addition, the offset of each incoming point in the respective destination chunk
is stored as shown by the numbers of the same color. (Color figure online)

Once map conversion is done, the grid data are unpacked into the receiving
patches using the pre-computed maps. For the yellow patch from Fig. 4A, the
unpack operation is illustrated in Fig. 5. We use the flush operation from Algo-
rithm 1 to construct the “merged index buffer” and the “unique merged sorted
list” from Fig. 2. Using the chunk maps (purple boxes in Fig. 5) and a map
between the destination chunk IDs and the position in the merged index buffer
(“unique merged sorted list” in the flush algorithm), a GPU kernel is launched
that merges the correct part of the incoming data buffer into the destination
grid. Merge conflicts cannot occur for ghost get.

The index and chunk maps are only recomputed if grid points have been
added or removed between two communications. Otherwise the maps are reused,
thus accelerating communication. Therefore, each process keeps track of its maps
and stores them. Any external call to the flush operation (Algorithm 1) invali-
dates the maps, as it indicates a potential change to the grid structure. Invalid
maps are recomputed upon the next pack/unpack operation.

4 Implementation in OpenFPM

We implement the design, algorithms, and data structures described so far in
the open-source OpenFPM parallel computing library [11]. The open frame-

Distributed Sparse Block Grids on GPUs 281

Fig. 5. Illustration of the unpack operation for the example from Fig. 4. Green boxes
contain the IDs of the incoming chunks in the received buffer. The grid point offsets
of the incoming chunks are given as black numbers below. The corresponding mapped
grid point indices in the destination grid are given in the gray boxes. They have been
converted using the map illustrated in Fig. 4B. The colors of the numbers and boxes
below indicate the different destination chunks (bottom-left: red, bottom-right: green,
top-left: blue, top-right: yellow). In 2D, each incoming chunk has up to 4 destination
chunks. The corresponding destination chunk IDs are given in the red boxes below
with the yellow boxes just above them a running index. An X indicates a nonexistent
overlap (see main text). The merged index buffer is then constructed using the flush

operation from Algorithm 1. Finally, the final map (purple array at the bottom) is
constructed by running a GPU kernel on the merged index buffer. In the example, the
first three Xs map to positions 12, 13, and 14 in the merged index buffer. The next 0
maps to position 0 in the merged index buffer, the (X, 0, X, 30) maps to positions (15,
1, 16, 8) in the merged index buffer, and so on. (Color figure online)

work for particles and meshes (OpenFPM) is a fully templated C++ library
that facilitates implementation of scalable parallel codes on CPUs and GPUs.
OpenFPM uses template meta programming (TMP) to generate data-type and
hardware specific implementations at compile time and to abstract memory lay-
out and communication of data structures. OpenFPM consists of multiple layers
of abstraction: based on memory allocators and memory-layouting abstractions,
OpenFPM implements single-core data structures. Using data-decomposition
and network communication abstractions, these are then composited into multi-
core and distributed-memory data structures. Finally, a library of frequently
used numerical solvers is implemented using these data structures. Transparent
in-situ visualization of simulation results [8] completes the framework.

282 P. Incardona et al.

For the present implementation of sparse block grids on CPUs and GPUs, we
use openfpm::vector to implement dynamically resizable data structures as pre-
sented above. An openfpm::vector is a C++ structure similar to std::vector,
but with additional features to adjust the internal layout (from structure of
arrays (SoA) to array of structures (AoS)), to transparently migrate memory
from host (CPU) to device (GPU), and to expose an interface compatible with
CUDA kernels. These features are key to the implementation presented below.

Using these data structures, a sparse block grid on a single process/GPU
is implemented as an OpenFPM container. Sparse block grids distributed
over multiple processes or GPUs are then derived as OpenFPM distributed
containers [11]. OpenFPM distributed containers transparently transform any
non-distributed container into its distributed counterpart, by simply specify-
ing the original non-distributed container as a template parameter. Selecting a
dense grid container, for example, results in a distributed dense grid container;
selecting a sparse grid container results in a distributed sparse grid container.
Simply specifying a container as sparse takes care of the sparse data insertions
and the iterators. Data distribution is transparently done using the OpenFPM
domain decomposition primitives [11]. Network communication within a dis-
tributed container is abstracted by the OpenFPM communication primitive
ghost get, which can send and receive arbitrary Byte strings and is data-type
agnostic [11]. This matches well with the present serialization/deserialization
approach to inter-process communication for arbitrary grid data types.

4.1 Optimizing CPU Performance

We optimize the CPU performance of our OpenFPM implementation so that
it can be used as a fair baseline to compare performance on GPUs. Given the
type of benchmarks we consider here, we optimize for performance of discrete
convolution operations on the CPU. On the CPU, we use an SoA memory layout
for openfpm::vector, implement all maps as hash maps, and use Z-Morton lin-
earization for the chunk locations. We also perform explicit in-core vectorization
using the Vc library [12].

The Z-Morton chunk ordering is chosen because led to the highest L3 cache
hit rate. Using a profiler, we measured that this linearization improves the L3
cache hit rate by 30% and reduces the overall runtime by 15% compared to
the standard row-major ordering. Profiling also revealed that pre-fetching the
data into temporary blocks, as we do on the GPU, is not optimal on the CPU.
Assuming the temporary block is small enough to fit into L1 cache, the data
would travel memory→register→L1 for loading the block, L1→register→L1 for
computation, and L1→register→memory to store the block. Omitting the tem-
porary block and directly transferring memory→register→memory turns out to
be significantly faster on the CPU, and we thus do this. This is because it needs
far fewer assembly-level instructions and avoids the latency of L1 cache access.

We also take special care of chunk boundaries, where a single vectorized
load is not possible because the data are not contiguous in memory. These load
operations are therefore transparently split into two distinct vectorized loads on

Distributed Sparse Block Grids on GPUs 283

the CPU. As this would be cumbersome to program manually, we provide an
interface where the computation can be specified with a C++ lambda function.

5 Benchmark Results

We benchmark the performance of the presented design as transparently imple-
mented in the OpenFPM library [11]. We compare GPU performance against
the optimized CPU implementation (see Sect. 4.1) in OpenFPM and against
the state-of-the-art sparse volumetric code OpenVDB [14]. We first show bench-
marks on a single GPU before moving to clusters of multiple GPUs of two
different architectures.

5.1 Single-GPU Performance

We first benchmark our OpenFPM C++/CUDA implementation of the present
distributed sparse block grid design on a single GPU and on a single CPU.
This allows comparing CPU and GPU performance, quantifying the overhead
introduced by the bookkeeping data structures and by partially occupied chunks,
and comparing with the performance of the state-of-the-art sparse block grid
implementation in OpenVDB [14].

To quantify the bookkeeping overhead, we compare with a plain-array imple-
mentation for a case where the grid is actually dense. For this, we implement a
finite-difference solver for the Gray-Scott reaction-diffusion system on a regular
Cartesian grid in 3D with periodic boundaries in all directions, as previously con-
sidered [11]. The regular Cartesian grid is fully occupied with float two-vectors.
We implement both a version with plain C++ arrays and a version using the
present sparse grid implementation. Analyzing the machine code the compiler
produced, we ensured that SIMD instruction were generated in both cases. Com-
paring the runtimes of the two code variants on an Intel i7-8700 CPU with clock
frequency locked at 3.2 GHz, we measure that the plain-array implementation is
32% faster than the sparse-grid variant (see Table 1). In order to assess which
part of this is due to the mask required in the sparse grid (i.e., due to keeping
track of which grid nodes are inserted), we also measure a version of the sparse
grid code with all mask handling removed (“NM”). The code is then 22% slower
than the plain-array implementation, indicating that mask handling accounts for
about one third of the overhead. The rest of the overhead stems from increased
code complexity, chunk layouting, and from the operations required to construct
the index maps.

We also benchmark the same code on multiple cores of the Intel i7-8700
CPU (see Table 2). Comparing with times for computation only (i.e., without
any communication), the slowdown beyond 4 cores can be attributed to memory
contention, as expected from the dual-channel architecture of the benchmark
machine (measured memory bandwidth counting all access: 21.6 GB/s (1 core)
to 59.6 GB/s (6 cores)).

284 P. Incardona et al.

Table 1. Runtime in seconds required to compute one time step of the Gray-Scott
simulation on a regular Cartesian 2563 grid of float. We compare plain-array and
sparse block grid implementations on a single CPU/GPU. Removing the mask handling
in the sparse block grid code (“NM”) quantifies its overhead. On the GPU, the sparse
block grid code is between 14 and 146 times faster than on the CPU (∗Extrapolated).

Plain array Sparse block grid

CPU CPU CPU NM GTX 1080 A100

0.063 0.083 0.077 0.0024 0.00058∗

Table 2. Runtime in seconds required to compute one time step (averaged over 200
time steps) of the Gray-Scott benchmark on a regular Cartesian 5123 grid of float

using the present sparse block grid implementation on multiple CPU cores. We compare
the full code with the time spent in computation, i.e., without communication.

Number of CPU cores 1 2 4 6

Complete code 0.910 0.575 0.360 0.380

Computation only 0.800 0.490 0.300 0.290

When running the sparse block grid code on a single Nvidia GTX 1080 GPU,
the runtime reduces by a factor of about 35 compared to the single-thread CPU
implementation on the 3.2 GHz Intel i7-8700 (see Table 1) and by a factor of
about 14 compared to using 4 CPU cores, which is the optimal performance of
the CPU (see Table 2). On a single Nvidia A100 GPU, runtime is about 4.16×
less (extrapolated from the multi-GPU benchmarks below) than on a single GTX
1080 and thus between 56 (for 4 CPU cores) and 146 (for 1 CPU core) times
faster than on the CPU. Since the grid in this benchmark is dense, all chunks
of the sparse block grid are fully occupied, leading to the best thread efficiency
on the GPU. We define the density of a sparse block grid as the average (over
all allocated chunks) occupancy of the chunks, i.e., the average fraction of grid
points in each existing chunk that are allocated/inserted. The lower the density,
the lower we expect the thread efficiency of our GPU implementation to be. This
is confirmed in the measurements reported in Table 3 for a 5123 grid of float
values on a single GTX 1080. The thread efficiency is normalized at density 1.0
and from there, reduces approximately linearly with the density. This is expected
because in our implementation the density of a chunk directly determines the
fraction of busy versus idle threads in each GPU thread block (cf. Fig. 2).

We further compare our implementation with the widely used OpenVDB [14]
library for sparse volumetric data structures. In this comparison, we measure the
time to insert and fill all 5123 grid points of an initially empty sparse grid. The
points are inserted sequentially from (0, 0, 0) to (511, 511, 511). On the GPU the
entire procedure described in Sect. 2 is measured, consisting of: (1) resetting and
creating the insert queue, (2) collecting the insertions, and (3) flushing them. To
test for retention of internal data structures and memory-allocation overhead, we

Distributed Sparse Block Grids on GPUs 285

Table 3. Thread efficiency (ratio between GPU threads that do work vs. the total
number of GPU threads) on one GTX 1080 GPU for inserting new grid points and for
evaluating a 3D 7-point finite-difference stencil at different grid densities. The grid den-
sity is the average (over all chunks) fraction of grid points that are allocated/inserted.
Efficiencies are computed relative to density 1, where all chunks are fully occupied.
Measurements were done on a 5123 grid of float.

Density 1.00 0.50 0.25 0.10

Insert 100% 59% 36% 15%

Stencil 100% 62% 45% 24%

Table 4. Runtime in seconds for inserting 5123 points of a sparse block grid in sequen-
tial order. We compare the present OpenFPM implementation on the CPU and on two
different GPUs with the CPU implementation in OpenVDB [14] over multiple cycles
of insertions. Inserting points in OpenVDB is done using the function setValue.

Insertion cycle 1st 2nd 3rd+

OpenFPM CPU 0.803 0.295 0.295

OpenFPM GPU (GTX 1080) 0.34 0.17 0.012

OpenFPM GPU (GTX 1650) 0.30 0.19 0.037

OpenVDB (setValue) 0.86 0.68 0.68

repeat multiple cycles of inserting all points, removing all points again, inserting
them again, etc. The results are given in Table 4 for the first, second, and all
subsequent cycles. As expected, the first cycle is always the slowest, because all
queues and buffers are initially allocated. This overhead is independent of the
speed of the GPU used, as can be seen by comparing the Nvidia GTX 1080
with the lower-tier GTX 1650 Ti. The higher speed of the GTX 1080 only shows
after three or more cycles. The table also shows that two cycles are required on
either GPU to retain all buffers, whereas on the CPU they are retained after the
first cycle. Once all buffers are allocated, the OpenFPM implementation of the
present sparse block grid design is about a factor of two faster than OpenVDB
on the same CPU. We attribute this to the fact that OpenVDB traverses a tree
when it accesses a node, whereas our code converts linear coordinates to block
IDs using a hash map.

5.2 Multi-GPU Performance

We benchmark the distributed performance and scalability of the present sparse
block grid implementation on two HPC systems with multiple GPUs. Bench-
marks using Nvidia GTX 1080 GPUs were run on the furiosa computer of
the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG),
which has 20 nodes each containing two Nvidia GTX 1080 GPUs and two Intel
Xeon E5-2698 v4 CPUs at 2.2 GHz. Nodes are connected by 40 Gb/s Infiniband.

286 P. Incardona et al.

Table 5. Runtime in seconds for 5000 time steps of the sparse block grid Gray-Scott
simulation on dense Cartesian grids of different grid sizes and floating-point precisions
as indicated, run on different numbers and types of GPUs as both strong and weak
scaling. Parallel efficiencies are given in parentheses.

#GPUs GTX 1080 (strong) A100 (weak, float)

float 5123 double 3843 7683 . . . 30723

1 99.14 (1.00) 78.92 (1.00) 72.50 (1.00)

2 60.20 (0.82) 50.02 (0.79) -

4 41.40 (0.60) 35.70 (0.55) -

8 27.16 (0.46) 25.50 (0.39) 76.60 (0.95)

16 33.44 (0.19) 31.85 (0.15) 196.0 (0.37)

32 - - 238.6 (0.30)

64 - - 240.0 (0.30)

We measured the bandwidth between a GPU and a CPU in the same node
and across nodes to both be around 5.5 GB/s (measured using osu bibw from
MVAPICH OSU micro-benchmarks). Benchmarks using the Nvidia A100 GPUs
were run on the taurus computer of TU Dresden, which has 32 nodes with 8
Nvidia A100-SXM4 GPUs each and two AMD EPYC 7352 CPUs at 2.3 GHz.
Within each node of this cluster, the GPUs are connected by NVLink (mea-
sured bandwidth 986 GB/s) and across nodes by 200 Gb/s Infiniband (measured
18.2 GB/s). At the time of writing, the system was being installed with 8 nodes
operational.

For all benchmarks, we gave MPI direct GPU memory buffer space. We used
OpenMPI 4.0.4 CUDA-aware with UCX, no other MPI implementation. For
the GTX 1080, the gdr plugin was not installed, but it was for the A100. In
both cases, nv peer mem for GPU-direct RDMA was disabled because it was not
supported by the combination of Nvidia and Mellanox drivers on the machines.

In the first benchmark, we measure the performance of the sparse block
grid Gray-Scott simulation on different numbers of GPUs for dense Cartesian
grids with periodic boundary conditions in all dimensions, so communication
is representative of larger setups. Each simulation performs 5000 time steps
with ghost layer (width 1) communication as detailed in Sect. 3 after each time
step. A simulation result is visualized in Fig. 6A. The results on 1 to 64 GPUs
are given in Table 5. All GPUs in a cluster node are used before expanding to
the next node. Using single-precision arithmetics on 16 GPUs for a 5123 grid,
network communication accounts for 72% of the total runtime. We confirm this
by profiling the time spent in the different communication operations of our
implementation. The results in Table 6 quantify the increasing communication
overhead for the strong scaling. We also measure the sustained bandwidth on
the interconnect of the GTX 1080 cluster. Using 2 GPUs in the same node, we
measure 7.2 GB/s. This reduces to 4.4 GB/s when using 4 GPUs in two nodes,

Distributed Sparse Block Grids on GPUs 287

Table 6. Time in seconds spent in communication operations for 5000 time steps of
the Gray-Scott simulation for a 5123 Cartesian grid of float on GTX 1080 GPUs.

Number of GPUs 1 2 4 8 16

Packing 0.01 1.93 1.38 0.90 0.73

Send-Receive 0.03 8.05 13.3 13.1 24.8

Unpacking 0.007 2.31 1.68 1.26 1.16

Table 7. Runtime in seconds for 5000 time steps of the Gray-Scott simulation in a
complex-shaped domain represented on sparse block grids of different sizes and preci-
sions on different numbers and types of GPUs. Parallel efficiencies are in parentheses.

#GPUs GTX 1080 (strong) A100 (weak, float)

double 9683 10243 . . . 40963

1 200.2 (1.00) 26.32 (1.00)

2 105.3 (0.95) –

4 59.21 (0.85) –

8 36.81 (0.68) 27.60 (0.96)

16 – 33.92 (0.78)

32 – 36.72 (0.72)

64 – 38.60 (0.68)

3.4 GB/s on 8 GPUs, and 1.2 GB/s on 16 GPUs. This reduction is due to the
number of MPI messages increasing with the size of each message decreasing.

In the second benchmark, we use our OpenFPM implementation to simulate
the Gray-Scott system in a complex-shaped domain represented by a sparse block
grid with density 0.854. A visualization is shown in Fig. 6B. On the boundary of
the complex-shaped domain we impose no-flux Neumann boundary conditions
using the method of images. Because there are no periodic boundaries, and the
domain decomposition cuts perpendicular to the thin cylinders connecting the
spheres, less communication is required. On 8 GTX 1080 GPUs, the communi-
cation overhead is now 30%, whereas it was 48% in the Cartesian case. Together
with the increased computational intensity of the stencil kernel (because of the
method of images), this results in the improved scalability shown in Table 7.

In the third benchmark, we simulate a dynamic, time-varying geometry. The
simulation considers a spherical shell in a cubic domain of edge length 2.5 as
shown in Fig. 6C. The cube is discretized by a 5123 grid. As simulated time
progresses, the shell expands from initially an internal radius of 0.2 and an
external radius of 0.4 to a final internal radius of 0.82 and external radius of
1.02. In each of the 100 simulation time steps, i.e., after each expansion of the
shell, the sparse block grid is re-adapted to the evolving geometry, followed by a
flush operation. The measured runtimes for the complete simulation are given
in Table 8 for different numbers of GPUs. We (unnecessarily) perform two ghost

288 P. Incardona et al.

Table 8. Runtime in seconds for all
100 simulation steps of the expand-
ing spherical shell simulation on a 5123

float sparse grid on different numbers
of GTX 1080 GPUs (strong scaling).

#GPUs 1 2 4 8

2.8 4.0 3.9 3.8

Table 9. Time in milliseconds to complete
each communication function once for thee
dynamic grid case from Table 8.

#GPUs 1 2 4 8

ghost get 1 0.0 11.7 13.8 13.4

ghost get 2 0.0 1.2 3.0 3.4

flush 14 7.5 4.2 2.7

A B C

Fig. 6. Visualizations of the simulations used in the three benchmarks. A: Gray-Scott
reaction-diffusion simulation at time t = 3000 on a dense Cartesian grid computed
with second-order central finite differences in space and explicit Euler time-stepping.
B: The same simulation in a complex-shaped domain at time t = 10 000. C: Growing
spherical shell with final outer radius shown. For visualization, the sphere is culled by
its mid-plane.

layer communications in each simulation step in order to show the performance
difference between the first one that determines all maps and the second one that
reuses them (see Table 9). Times are given for the last simulation step, when the
spherical shell is the largest, as this has the maximum communication overhead.
Because in this benchmark there is no computation on the grid, performance
is entirely limited by communication. While the flush operation scales well,
the first ghost get is the bottleneck, as expected. The second ghost get has a
much smaller runtime than the first one, because it reuses the maps (see Sect. 3).
As expected for a strong scaling, the communication overhead increases when
distributing the constant grid size over an increasing number of GPUs.

6 Related Work

Libraries that implement sparse volumetric grids include the Academy Soft-
ware Foundations’s OpenVDB [14], Nvidia’s GVDB [9], and AMReX [16]. These
libraries have been very successful in applications ranging from computer graph-
ics to numerical simulations. OpenVDB provides efficient CPU implementations

Distributed Sparse Block Grids on GPUs 289

with SIMD support in C++ and CUDA-based GPU acceleration in the recent
(August 2020) NanoVDB extension contributed by Nvidia. GVDB offers native
GPU acceleration, but is limited to a single GPU. Moreover, the volumetric data
in GVDB is always constructed or geometrically modified on the CPU, incurring
a high host-device data transfer overhead. Ghost layers in GVDB are present
at the chunk level, which is not the case in our implementation where they are
only at the patch level. AMReX provides block-structured adaptive meshes with
MPI parallelism and CUDA GPU support for some parts.

7 Conclusions

We have presented a generic sparse block grid design for distributed-memory
CPU and multi-GPU environments. While the algorithms and data structures
presented here are independent of a specific implementation, we provided a con-
crete C++/CUDA implementation in the OpenFPM parallel computing mid-
dleware [11], which allowed us to empirically measure performance.

The performance measurements have shown from 14-fold to about 140-fold
speedups when using an Nvidia GTX 1080 or A100 GPU instead of all cores of
an Intel i7 CPU. They also showed that the overhead introduced by the sparse
block grid data structures when used on an actually dense grid is about 32%
(over plan arrays) with approximately one third accounted for by the sparsity
mask handling. Benchmarks on computer clusters with multiple Nvidia GTX
1080 or A100 GPUs have shown scalability up to 64 GPUs with parallel efficien-
cies ranging from 68% to 96% for sparse problems, depending on problem size,
floating-point precision, and the GPU model used.

Despite these encouraging results, the current software implementation in
OpenFPM has a number of limitations. The most important one is that it only
supports Nvidia GPUs at the moment. The algorithms and data structures,
however, are generic, and an implementation for AMD GPUs using HIP-clang is
currently underway. Another limitation is that the flush operation is currently
implemented using double-buffering. This requires twice the memory, effectively
halving the usable VRAM. This could be addressed in the future by exploiting
the new capability added in CUDA 10.2 to remap physical device memory into
a different virtual address space. This could be used to remap the old buffer into
the new buffer without creating a new one. The potentially required reordering
of chunk IDs could be handled with an additional, smaller map. Finally, our
current implementation does not use advanced GPU features like multi-DMA
and RDMA over Infiniband. Ideally, the MPI library would leverage such exten-
sions internally. Of these, RDMA seems particularly promising. Multi-DMA is
probably not too useful for our implementation, since we stay on the device to
minimize host-device transfers.

Notwithstanding these limitations, our implementation in OpenFPM is fully
usable, flexible to use advanced GPU features in the future, and provides tem-
plated distributed C++ containers with an intuitive programming interface. The
implementation runs on both CPU and GPU clusters and transparently encap-
sulates much of the complexity of distributed sparse block grids.

290 P. Incardona et al.

Our implementation is available as open source from http://openfpm.mpi-
cbg.de and from https://github.com/mosaic-group.

Acknowledgments. The authors are grateful to the Centre for Information Services
and High Performance Computing (ZIH) of TU Dresden and to the Scientific Comput-
ing Facility of MPI-CBG for providing their facilities for the benchmarks. This work was
supported by the Federal Ministry of Education and Research (Bundesministerium für
Bildung und Forschung, BMBF) under funding codes 01/S18026A-F (competence cen-
ter for Big Data and AI “ScaDS.AI Dresden/Leipzig”) and 031L0160 (project “SPlaT-
DM – computer simulation platform for topology-driven morphogenesis”).

References

1. Adalsteinsson, D., Sethian, J.A.: The fast construction of extension velocities in
level set methods. J. Comput. Phys. 148, 2–22 (1999)

2. Sean Baxter. moderngpu 2.0 (2016)
3. Bayati, B., Chatelain, P., Koumoutsakos, P.: Adaptive mesh refinement for stochas-

tic reaction-diffusion processes. J. Chem. Phys. 230(1), 13–26 (2011)
4. Bergdorf, M., Cottet, G.-H., Koumoutsakos, P.: Multilevel adaptive particle meth-

ods for convection-diffusion equations. Multiscale Model. Simul. 4(1), 328–357
(2005)

5. Bergdorf, M., Koumoutsakos, P.: A Lagrangian particle-wavelet method. Multiscale
Model. Simul. 5(3), 980–995 (2006)

6. Bergdorf, M., Sbalzarini, I.F., Koumoutsakos, P.: A Lagrangian particle method
for reaction-diffusion systems on deforming surfaces. J. Math. Biol. 61, 649–663
(2010)

7. Brun, E., Guittet, A., Gibou, F.: A local level-set method using a hash table data
structure. J. Comput. Phys. 231(6), 2528–2536 (2012)

8. Gupta, A., Incardona, P., Aydin, A.D., Gumhold, S., Gunther, U., Sbalzarini, I
F.: An architecture for interactive in situ visualization and its transparent imple-
mentation in OpenFPM. In: In Situ Infrastructures for Enabling Extreme-Scale
Analysis and Visualization (ISAV’20), pp. 20–26. ACM, New York (2020)

9. Hoetzlein. R.K.: GVDB: raytracing sparse voxel database structures on the GPU.
In: Eurographics/ACM SIGGRAPH Symposium on High Performance Graphics
(2016)

10. Houston, B., Nielsen, M.B., Batty, C., Nilsson, O., Museth, K.: Hierarchical RLE
level set: a compact and versatile deformable surface representation. ACM Trans.
Graph. 25(1), 151–175 (2006)

11. Incardona, P., Leo, A., Zaluzhnyi, Y., Ramaswamy, R., Sbalzarini, I.F.: OpenFPM:
a scalable open framework for particle and particle-mesh codes on parallel com-
puters. Comput. Phys. Commun. 241, 155–177 (2019)

12. Kretz, M., Lindenstruth, V.: Vc: A C++ library for explicit vectorization. Softw.
Pract. Exper. 42(11), 1409–1430 (2012)

13. Merrill, D.: CUDA UnBound (CUB) library (2015)
14. Museth, K.: VDB: high-resolution sparse volumes with dynamic topology. ACM

Trans. Graph. 32(3), 27 (2013)
15. Setaluri, R., Aanjaneya, M., Bauer, S., Sifakis. E.: SPGrid: a sparse paged grid

structure applied to adaptive smoke simulation. ACM Trans. Graph. 33(6), 205
(2014)

16. Zhang, W., et al.: AMReX: a framework for block-structured adaptive mesh refine-
ment. J. Open Source Softw. 4(37), 1370–1370 (2019)

http://openfpm.mpi-cbg.de
http://openfpm.mpi-cbg.de
https://github.com/mosaic-group

iPUG: Accelerating Breadth-First
Graph Traversals Using Manycore

Graphcore IPUs

Luk Burchard1,3(B) , Johannes Moe1,2 , Daniel Thilo Schroeder3,4 ,
Konstantin Pogorelov1 , and Johannes Langguth1,5

1 Simula Research Laboratory, Fornebu, Norway
{konstantin,langguth}@simula.no
2 University of Oslo, Oslo, Norway

johanom@ifi.uio.no
3 Technical University Berlin, Berlin, Germany

l.burchard@campus.tu-berlin.de
4 Simula Metropolitan Center for Digital Engineering, Oslo, Norway

daniels@simula.no
5 BI Norwegian Business School, Oslo, Norway

Abstract. The Graphcore Intelligence Processing Unit (IPU) is a newly
developed processor type whose architecture does not rely on the tradi-
tional caching hierarchies. Developed to meet the need for more and
more data-centric applications, such as machine learning, IPUs combine
a dedicated portion of SRAM with each of its numerous cores, resulting
in high memory bandwidth at the price of capacity. The proximity of
processor cores and memory makes the IPU a promising field of exper-
imentation for graph algorithms since it is the unpredictable, irregular
memory accesses that lead to performance losses in traditional proces-
sors with pre-caching.

This paper aims to test the IPU’s suitability for algorithms with
hard-to-predict memory accesses by implementing a breadth-first search
(BFS) that complies with the Graph500 specifications. Precisely because
of its apparent simplicity, BFS is an established benchmark that is not
only subroutine for a variety of more complex graph algorithms, but also
allows comparability across a wide range of architectures.

We benchmark our IPU code on a wide range of instances and com-
pare its performance to state-of-the-art CPU and GPU codes. The results
indicate that the IPU delivers speedups of up to 4× over the fastest com-
peting result on an NVIDIA V100 GPU, with typical speedups of about
1.5× on most test instances.

Keywords: IPU · Graph500 · BFS · Performance optimization

1 Introduction

In their Turing lecture 2018, John Hennessy and David Patterson announced
a “new golden age for computer architecture” [18]. They based the statement
c© Springer Nature Switzerland AG 2021
B. L. Chamberlain et al. (Eds.): ISC High Performance 2021, LNCS 12728, pp. 291–309, 2021.
https://doi.org/10.1007/978-3-030-78713-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_16&domain=pdf
http://orcid.org/0000-0002-8019-7047
http://orcid.org/0000-0001-7664-9517
http://orcid.org/0000-0003-0125-5243
http://orcid.org/0000-0002-7993-1769
http://orcid.org/0000-0003-4200-511X
https://doi.org/10.1007/978-3-030-78713-4_16

292 L. Burchard et al.

on the fact that due to the slower performance gains made by general purpose
processors today, domain-specific architectures becomes more and more viable.
Indeed, a large number of startups that develop specialized processors, usually
for AI applications, have appeared in the recent years.

One of these companies is Graphcore, who presented their first processor,
called the Colossus GC2, in 2018. It is targeted at machine intelligence applica-
tions and referred to as an intelligence processing unit (IPU). Similar to GPUs,
the IPU offers a high number of low precision FLOPS that come from a large
number of compute cores. However, unlike the GPU, which focuses on sin-
gle instruction multiple data (SIMD) processing, the IPU offers true multiple
instruction multiple data (MIMD). Furthermore, instead of DRAM with a cache
hierarchy, it uses SRAM as its main memory. In theory, this design makes the
IPU uniquely suited for highly irregular workloads such as graph algorithms.
The goal of this paper is to test whether these architectural advantages result
in measurable performance benefits.

To this end, we implement an IPU-based breadth-first search (BFS), following
the specifications of the Graph500 [28] benchmark. Introduced in 2010, Graph500
collects BFS performance results for a wide range of hardware platforms and
instance sizes making it by far the most studied parallel graph problem, which
gives us a wide range of meaningful comparison points. The Graph500 uses
a Kronecker graphs generator similar to R-MAT [11]. Results are denoted in
traversed edges per second (TEPS). In addition, we use a test set of Yang et al.
[32], which consists of matrices from the SuiteSparse [22] matrix collection.

We consider our work primarily as a building block for multi-IPU BFS and
other, more sophisticated graph algorithms that use BFS repeatedly. These
include graph centralities and other algorithms used in the analysis of social
networks, graph matchings, and similar algorithms.

While the IPU’s large number of independent compute cores, fast intercon-
nect between these cores, and fast SRAM memory make it a very attractive plat-
form for graph algorithms, we face two major challenges when using the IPU in
this manner. First, the device was designed for machine intelligence applications,
and the provided data structures and architecture design reflect that. While the
cores are MIMD capable, there is no special support for irregular data structures
such as graphs. Furthermore, all communication between the IPU cores must be
declared at compile time. Naturally, this is a major challenge for computations
such as BFS or other graph algorithms that determine communication patterns
based on decisions done at run-time. Second, since the main IPU memory is
SRAM, it is very limited, which puts a strict limit on the size of the graphs that
can be processed by a single IPU.

To tackle the former limitation, the code creates its own mapping of the graph
to the compute cores. We also control memory alignment explicitly, as well as the
spawning of worker threads on the compute cores. Via temporal multithreading,
the memory access latency can be hidden such that the individual threads do
not experience latency. Naturally, the latter cannot be overcome via software.
Thus, our paper makes the following contributions:

iPUG: Accelerating BFS using Manycore Graphcore IPUs 293

1. We present the first implementation of a graph algorithm on the new Graph-
core IPU architecture whose features promise outstanding performance for
such problems.

2. We give a detailed discussion of the challenges that need to be overcome to
run efficient graph algorithms on the IPU. We expect that these techniques
are applicable to a wide range of other graph algorithms as well.

3. We present performance comparison experiments using state-of-the-art CPU
and GPU codes and hardware. The results show that our IPU implementation
(which we refer to as iPUG) compares favorably to all tested alternatives.

The remainder of the paper is organized as follows: we introduce the IPU
in Sect. 2 and discuss related BFS work on other architectures in Sect. 3. We
present our IPU implementation in Sect. 4 and our experiments in Sects. 5 and 6.
In Sects. 7 and 8 we discuss the implications of these results and conclude the
paper.

2 IPU Hardware

2.1 Architecture

The Colossus GC2 IPU has 1216 tiles, each tile having a compute core and its
own local memory of 256 KiB. Thus, the IPU has a total of 304 MiB of memory.
The tile layout is illustrated in Fig. 1. The memory of the tiles is implemented in
SRAM and is thus part of the chip. Naturally, this offers a far higher bandwidth
(45 TB/s, aggregate) and lower latency (6 clock cycles) than DRAM. The tiles
themselves are organized into islands consisting of four tiles, and the islands are
grouped into columns of 19 islands each. The GC2 IPU has 16 such columns.
The cores run at a default frequency of 1.6 GHz, but they can be clocked down to
1.3 GHz for thermal or electrical reasons, such as the PCIe slot not being able to
provide the required power. A single GC2 IPU has 150W TDP. The PCIe version
hosts two IPUs per card for a total of 300W TDP, which requires additional
cables, similar to powerful GPUs. A rack-mounted IPU-POD with four socketed
GC2 IPUs is also available. In this version all IPUs run at 1.6 GHz. For an
in-depth discussion of the architectural details including microbenchmarks, we
refer the reader to Jia et al. [20]. In 2020, Graphcore presented an GC200 IPU
with more tiles and more memory per tile, but the device was not available for
development at the time of this writing.

2.2 Programming Model

IPU programming follows the classical dataflow model. Programs are assembled
by composing a logical execution graph at compile time. It consists of alternating
layers of state and computation vertices. The state is exclusively organized in
multidimensional arrays called tensors, which are symbolically represented at
compile time and have pre-determined dimensions. Such a structure makes it
ideally suited for Tensorflow [1] applications.

294 L. Burchard et al.

Fig. 1. Tile layout on the IPU processor. Source: Graphcore.

Each computation vertex is associated with a codelet, i.e. a piece of code that
prescribes the computation to occur in the vertex. Multiple codelets at the same
layer of the graph can be executed in parallel as long as they do not write to
the same part of a tensor, and all codelets must be executed before progressing
to the next layer of the computation graph. At the end of such a compute step,
data is exchanged among the cores to ensure a consistent state, thereby creating
a bulk-synchronous parallel (BSP) [30] superstep structure. The rationale for
this structure is that due to bandwidth contention, overlapping memory-bound
computation and communication is difficult and sometimes impossible [25]. Fur-
thermore, it provides a clear computation structure and obviates the need for
message buffers and thus additional memory on the chip, making communica-
tion very efficient. On the other hand, this brings about that all communication
must be planned at compile time. This poses a challenge when communicating
sparse data, which is necessary in graph algorithms such as BFS.

3 Background

3.1 Related Work

BFS and DFS are the most fundamental ways of traversing graphs. For sequential
execution, the BFS algorithm is essentially defined by the data structure used
to store the graph, as its fundamental operation is to iterate over the edges
of a given vertex. However, parallel implementation of BFS, particularly on
distributed memory systems, is far more complicated. Consequently, there are
far more possibilities for algorithm design and performance optimization.

While parallel BFS has been studied earlier [15], the topic gained widespread
interest in the previous decade on distributed memory computers [16,34], on
shared memory [5,23], and on GPU systems [17]. The establishment of the

iPUG: Accelerating BFS using Manycore Graphcore IPUs 295

Graph500 benchmark [28] in 2010 marks a turning point, since it encouraged
direct comparability of results. This increased activity on the topic further,
resulting in a large number of publications on that topic [10,12,13,19,33]. Fur-
thermore, BFS implementations for GPUs have also received considerable atten-
tion in the recent years [14,27,31,32]. In addition to the parallel implementa-
tion, algorithmic improvements have been presented in the last decade. Possibly
the most important among those was the introduction of direction optimizing
searches [7]. At the same time, efficient parallel algorithms for BFS and DFS
were also developed in the context of other graph problems, such as parallel
matching algorithms [4,24,26].

3.2 Graph Algorithms in the Language of Linear Algebra

Among the approaches developed for parallel graph processing, we focus on the
linear algebra based formulation [9] of BFS. This is a natural fit since the IPU
is designed for machine learning applications, and is thus geared towards linear
algebra.

A graph G = (V,E), |V | = n, |E| = m can be represented as an adjacency
matrix A ∈ Rn×n with aij = 1 if (i, j) ∈ E and 0 if (i, j) /∈ E. Each row in
the adjacency matrix encodes the outgoing edges of a vertex. In practice the
input graphs are always sparse. We can use the sparsity, and only store the non-
zero values of the matrix in a compressed format. For our implementation, we
choose the CSC format where the number of values non-zero and their positions
are stored for each column. This encoding allows for fast iteration through the
column but prohibits quick Aij lookups as we may need to scan through a whole
column.

We can formulate a BFS search step by performing a multiplication of an
adjacency matrix A with a vector x. We initialize the frontier vector x with the
index of the source node s with x(s) = 1. We can perform a step ATx1 = x2

which yields the next frontier. Further we can union all previous frontiers into
an array to mark the already visited nodes vk = x1 + . . . + xk, where vk(i) �= 0
if node i was visited during step k. We can choose A and a further x to be
represented by an efficient sparse data structure.

The advantage of this representation is that it allows the use of highly opti-
mized sparse linear algebra primitives to accelerate graph algorithms. It pro-
vides a high level view for understanding and comparing communication pat-
terns. It is important to note that most applications in scientific computing and
machine learning exhibit sparse matrix dense vector (SpMV) communication,
which means that the same communication pattern repeats over multiple rounds.
On the other hand, graph algorithms such as BFS exhibit sparse matrix sparse
vector (SpMSpV) communication where only some of the vertices or matrix
rows/columns are active in each round, thus creating a new communication pat-
tern each time.

296 L. Burchard et al.

4 BFS Implementation on IPU

The distributed memory model of the Graphcore IPU forces us to partition our
input problem beforehand; to do so, we divide the input graph and assign one
part to each tile. During the following BFS steps, new tile memory needs to be
allocated in order to store the previous step’s output. Thus, the decomposition
of the graphs for the IPU is similar to BFS implementations for distributed
memory systems rather than GPUs. The graph decomposition remains static
during the algorithm and no additional data is loaded during the entire BFS
kernel.

4.1 Parallel BFS

Splitting a subset of vertices with their outgoing edges is called 1D partitioning
because of the row-wise split in the adjacency matrix. Since input, output, and
vertex data must be stored in the tile memory, load-balancing becomes challeng-
ing, especially in the case of graphs with vertices of high degree. Furthermore,
1D partitioning requires allocating O(n) bytes for input and output on each tile,
making it an inappropriate partitioning strategy, even for small graphs.

In contrast to 1D, the 2D decomposition splits the adjacency matrix into a
chessboard-like px×py pattern. Thus, an adjacency matrix A is decomposed into
p square partitions A1,1 . . . Ax,y. Each such partition is mapped to an individual
physical tile on the IPU. In this scenario, each partition is only responsible for a
subset of the outgoing edges of each vertex. Therefore, no single partition has the
global state of their vertices and thus the partitions that own a vertex need to
communicate their partial results to arrive at a single global state. Our 2D data
decomposition is very similar to that used for distributed memory systems [8,34],
and we also permute the vertices randomly. Unlike the 1D partitioning, in 2D
we need to allocate only O(n/

√
p) bytes for communication with other tiles.

4.2 Parallel Top-Down

Algorithm 1 shows the parallel top-down, 2D, bulk synchronous parallel (BSP)
algorithm. As writing IPU does not require explicit declaration of communication
between the tiles, we describe it as a mapping of input and output tensor data
regions. In the current implementation all partitions are square, and thus the
notation vc represents an n/px sized vector with starting offset px ∗ (1 − c). A
processor Pi,j receives inputs from the frontier queue Qj and produces the new
partial outputs represented by a bitmap matrix SAi,j working on the partition
Ai,j . SA is called the intermediate status array. In order to process one BFS
level, our algorithm requires two separate communication steps, each of which
requires a synchronization barrier before proceeding to the next step.

1. Local Expansion: Each processor Pi,j receives a Qj part of the frontier queue
and uses it to create a new intermediate status array SAi,j .

iPUG: Accelerating BFS using Manycore Graphcore IPUs 297

Algorithm 1: Topdown BFS algorithms, adopted from [8] and the linear
algebraic version [10]
input : A 2D partitioned adjacency sparse matrix A, a source vertex s, vertex

count n, partition count p
output: A vector b containing the parent for each explored i as b(i).
px = py ← √

p
Q ← {s}, SA(:, :) ← 0, b(:) ← 0
for all processors Pi,j in parallel do

while Q �= ∅ do
frontier ← Qi � Done through mapping and exchange

for vertex ∈ frontier do
for neighbour ∈ adj(Ai,j , vertex) do

SA(i : neighbour) ← true
end

end
Global BSP Barrier � End ComputeSet

Q ← ∅
activations ← SA(i ∗ py + j : i ∗ py + j + 1, :) � Like AllGather

for v ∈ b do
if v �= visited then

for incoming ∈ activations(row, :) do
if any(incoming) then

b(row) ← visited
Q ← Q ∪ {row}

end

end

end

end
Global BSP Barrier � End ComputeSet

end

end

2. Intermediate Status Array Reduction: A reduction that uses the parent array
(i.e., Algorithm 1) to check all partial results of a vertex to determine if a
new parent was found. This step uses all partitions along the row j of size
n/p to reduce into the new frontier queue Qj .

All communication during the local expansion happens column-wise, where
the input frontier Q is sent to all rows in their respective parts, as shown in
Fig. 2. During the reduction phase all communication happens row-wise as all
data comes from the partial results of the row to be reduced. In general, the
communication before the local discovery is simpler, since we have a one-to-
many communication in contrast to the reduction phase where a many-to-many
communication pattern is required.

298 L. Burchard et al.

Fig. 2. Layout of the 2D decomposition. We map each partition to a physical processor
tile. Each tile also receives a copy of the sparse input frontier, along the first dimension,
indicated with colored balls as activated vertices normalized to local offsets on each
tile. In the reduction phase processor tiles receive the output status array of the local
expansion and merge these into a new sparse frontier vector of the next BFS level.

4.3 Mapping Data and Compute

Mapping and allocating data is an important part of the implementation as
the compiler does not automate or abstract data and operation placement away
from the developer. Thus it is necessary to specify a complete mapping of each
tensor partition to each target tile. The same applies when placing vertices of the
compute graph on the IPU: each vertex is assigned to a tile. If the necessary data
is already present on a tile, then no additional overhead is introduced. However,
due to the fast communication between the tiles, this overhead is relatively small
when mapping data and compute on a single IPU. Moreover, any unnecessary
communication leads to additional allocations of landing zones for data that is
transferred between the tiles. This is crucial due to the limited memory on the
IPU, which means that suboptimal allocations can cause a computation to fail
due to lack of memory.

4.4 Challenges of IPU Graph Implementations

Memory Alignment. Traditionally memory alignment is done by the com-
piler via padding. Such padding can align the values on cache line boundaries,
which ensures that they can be accessed or written efficiently. However, when
working with Poplar compute graphs, aligning data is not trivial and needs to
be done explicitly through the size and splits of a data section. Without manual
data alignment, the popc IPU compiler allocates rearrangement buffers on the
tiles, which costs additional memory. When working with large tensors, the rear-
rangement buffers tend to grow quickly, thus rendering feasible graph instances
infeasible.

iPUG: Accelerating BFS using Manycore Graphcore IPUs 299

Memory Management. Each compute-and-data section of the compute graph
is statically mapped to a tile during compile time. It is not possible to change
the location of a data regions to a different tile during runtime and the compute
graph does not allow for recursion. Thus, memory space and offsets needed to
receive, transfer, and compute vertices can be determined during compilation.
Therefore, allocating more memory than available on a single tile leads to an
out of memory error during compile time. With 256 KB of addressable space the
per-tile memory is very small compared to traditional memory systems, making
memory management a primary concern.

Like traditional compilers, Graphcore’s popc compiler has dead code elimina-
tion [3]. Hence, we call tensors that will not be eliminated Always Live variables.
These variables need to be allocated during the whole lifetime of the program.
Variables that are not Always live may get optimized away at some point in the
program. For our program, the lifetime of variables connected to the expansion
phase is related to the reduction phase and vice versa. Table 1 gives an overview
over the variables allocated by our algorithm. The factor of two for the input
data is due to the fact that we also need to store the input of the previous round.

Table 1. Per tile memory allocated by the BFS algorithm. nzmax represents the largest
number of nonzeroes among all partitions. If a variable is always live it can not be
optimized away by the compiler and is always present in an allocation.

Use Type Size Always live

Expansion input int16 2n/px False

Expansion output int32 n/py False

Matrix int16 (n/p + 1) + nzmax True

Backpointers int32 n/p True

Reduction input int32 2n/px False

Reduction output int16 n/py False

4.5 Optimizations

Removal of Isolated Vertices. The Kronecker graph generator used to gen-
erate the graphs for the Graph500 benchmark produces isolated vertices. The
greater the generated graph’s scale, the larger the ratio of isolated vertices in
the generated graph. For our input sizes, we observe 26% isolated vertices at
scale 15, which increase to 36% at scale 19. Other papers report a ratio of up to
74% [29] for scale 42 graphs.

For BFS, as well as many other graph algorithms, isolate vertices are com-
pletely irrelevant. By filtering these vertices while reading the graph we can
reduce the dimension of the generated matrix by 1.6× in linear time, accessing
every vertex exactly once. This makes it almost possible to run a scale 20 Kro-
necker graph on the IPU and further reduces the space needed to store the CSC

300 L. Burchard et al.

matrix. By reducing the dimension of the matrix the status array and frontier
are also reduced by an additional factor of 2×, thus saving communication and
computation time.

First Reduction Optimization. Our algorithm is required to iterate over
all partitions in a row to find an activation if the parent for this row has not
been found at the current level. The number of these iterations gets smaller the
more vertices have already been flagged as found. Thus, when processing the
first BFS level, this number is highest. For a single GC2 IPU we are required to
check 34 partition outputs. However, in the first pass, we know that no vertices
have been flagged as visited yet and that all possible activations can only come
from partitions that get the frontier input section containing the single source
vertex. Therefore, we can replace the first reduction with an algorithm saving
O((px−1)/px) time which is equivalent to skipping 97% of the instructions at the
first level. Thus, instead of first checking the visited array and iterating over all
incoming partitions we directly iterate over the incoming intermediate frontier
from the partition responsible for handling the source vertex. If an activation
was found we can simply insert it without the possibility of overwriting any
information as we are in the first reduction phase.

Utilizing Threads. Similar to GPUs, the IPU allows scheduling multiple
threads per core on a tile to hide latencies and fill the processor’s pipeline more
efficiently. Unlike modern CPUs, which use simultaneous multithreading, the IPU
architecture leverages a barrel processor design with temporal multithreading of
up to six hardware threads. A feature of barrel processors is that each execution
context has a constant instruction scheduling time as it alternates between active
threads in a round-robin fashion. When six threads are executed in this manner,
the memory access latency of six cycles can be hidden effectively. The Poplar
SDK allows us to spawn a compute vertex into a supervisor mode, which is a
restricted administrative context thought to be the entry point for starting and
orchestrating the six worker contexts. The supervisor can further synchronize
context flows into a single sequential point.

Our algorithm utilizes a sparse frontier vector generated in the reduction
phase. We cannot write an interleaved value into the frontier immediately after
finding it during the reduction, as no atomic instructions are available. To syn-
chronize an unknown amount of value insertions we leverage a prefix sum often
found in parallel algorithms on GPUs. Instead of computing and immediately
inserting vertices into the output frontier queue, we split the algorithm into
three parts: parallel flagging of frontier vertices in a temporary bitmap vector,
synchronized prefix-sum calculation for the worker contexts, and parallel writes
from the bitmap into the output queue vector adhering to worker regions using
the prefix-sum.

iPUG: Accelerating BFS using Manycore Graphcore IPUs 301

5 Experimental Setup

We have implemented iPUG in under 2000 lines of code, including the code
required to read and process Matrix Market files. We compile our project with
the Poplar 1.3.6 SDK and popc running on a single GC2 IPU.

Based on the guidelines of the Graph 500 benchmark, we split our measure-
ments into two kernels: (1) the reading, preparing, and loading of the graph onto
the device, and (2) the BFS graph traversal itself. Since our goal is to evaluate
BFS performance on the IPU architecture, we concentrate on the second kernel.
We begin measuring time of the second kernel t when the search key is loaded
onto the device. We stop measuring when the final BFS round terminates.

Following the codes we aim to compare our results with [27,32], we count
TEPS from both sides for undirected edges. As per Graph 500 specification, we
ignore isolated search keys. Thus, since all our test instances are connected with
the exception of isolated vertices, we always report TEPS := m/t where m is the
number of non-zero entries in the adjacency matrix that connect visited edges.
Due to limitations in some of the codes, we report the arithmetic rather than
the harmonic or geometric mean over the prescribed 64 searches.

We do not perform any special operations in the first kernel such as sorting
vertices or finding vertices with special properties. However, we are filtering self-
loops and vertices of degree zero from the graph while converting it into the CSC
format required by our 2D decomposition algorithm. In the 2D decomposition
algorithm we are splitting the matrix into square n/px by n/py sized parts. We
always use a square processor grid, i.e. px = py. Since the number of cores on the
GC2 IPU is 1216, the largest smaller square number is 1156, and thus px = py
= 34. The remaining 60 cores do not take part in the computation.

To measure the runtime of the second kernel executed on the IPU, we measure
the start and end cycle counter of the IPU and divide the difference by the tile
frequency returned by the Poplar SDK. We run our experiments on an IPU-
POD system. It does not have the power limitations of the PCIe version and is
thus running at the full 1.6 GHz. As most runs only take microseconds, thermal
throttling is no concern either. For each run we randomly generate 64 keys that
have at least one edge connected to it in the input graph. We run the second
kernel with all given keys and take the mean.

Test Instances. We use both Graph500 instances as well as graphs derived
from SuiteSparse [22] matrices. The matrices were selected to match a published
test set [32] after removing all instances that are too large to run on the IPU.
Table 2 lists all the instances along with their size and diameter. The sources of
the graph come from the following groups:

– kron (n) (e) are Kronecker graphs with 2n vertices and edge factors e. The
edge factor is the average number of edges per vertex. Graphs with larger
values of e typically show higher TEPS as work is being amortized over
a larger number of edges. Graphs generated by the Graph500 benchmark
specification have e = 16 and can be used to compare implementations to

302 L. Burchard et al.

other published Graph500 results. All graphs were generated with R-MAT
parameters A = 0.57, B = 0.19, C = 0.19, and D = 0.05. Note that we filter
isolated vertices. Thus, the number of vertices in the BFS is always lower
than 2n.

– kron g500-logn(n) are Kronecker graphs from the 10th DIMACS implemen-
tation challenge. Despite the SuiteSparse name these graphs are not conform
to the Graph500 benchmark, as they have an edge factor of 48, but they use
the same R-MAT parameters as the Graph500 instances.

– G43 represents a 1% sparse uniformly random matrix.
– coAuthorsDBLP and coPapersDBLP are academic research interaction

and cooperation networks.
– Journals represent co-readerships in magazines.
– delaunay (n) are planar graphs from the 10th DIMACS implementation

challenge. They are generated by the triangulation of points in a flat area,
with size 2n.

– loc-Gowalla represents friendships of a social network based on location data
retrieved from the SNAP suite.

– ship 003 represents a 3D mesh of a structural problem by the DNVS group.

Comparison Platforms. As the Graphcore IPU is a completely new architec-
ture, it is crucial to assess its performance in comparison to established proces-
sors. For comparison with the GPU we use two state of the art codes: Enterprise
created by Hang Liu and H. Howie Huang [27] and Gunrock by Yangzihao Wang
et al. [13,31]. The Gunrock1 and Enterprise2 code were both run on an NVIDIA
Tesla V100-SXM3 with 32 GB of memory compiled with nvcc 10.1 and clang
11.0.0. Like the IPU, the V100 runs at 1.6 GHz.

As the performance benefits of the GPU over the CPU are well established,
we consider this the primary point of comparison. However, we also study CPU
performance. For that purpose, we use the Graph 500 BFS reference (Ref) imple-
mentation [28] which relies on MPI, a sophisticated MPI/OpenMP implementa-
tion provided by Yasui et al. [33] from Tokyo Institute of Technology (TITech),
and the BFS implementation from the GAP benchmark suite [6]. The latter
has the advantage that it reads the Matrix Market format. We thus use it for
comparison on SuiteSparse matrices outside of the Graph 500.

We run all three codes on two dual-socket CPU platforms, an AMD Epyc 7601
with 64 total cores and an Intel Xeon Gold 6130 with 32 total cores. Since the
CPUs are not the focus of this paper, we refer the reader to online resources3,4

or the manufacturer’s documentation for more information about their technical
specifications. The codes are compiled with gcc 6.1.2 and run with MPICH 3.3.

1 Git commit: 5ee3df5, Online: https://github.com/gunrock/gunrock.
2 Git commit: 426846f, Online: https://github.com/iHeartGraph/Enterprise.
3 https://en.wikichip.org/wiki/amd/epyc/7302p.
4 https://en.wikichip.org/wiki/intel/xeon gold/6130.

https://github.com/gunrock/gunrock
https://github.com/iHeartGraph/Enterprise
https://en.wikichip.org/wiki/amd/epyc/7302p
https://en.wikichip.org/wiki/intel/xeon_gold/6130

iPUG: Accelerating BFS using Manycore Graphcore IPUs 303

Table 2. Overview of the test instances. All graphs are undirected. Thus their adja-
cency lists contain twice as many entries as the number of edges. The diameter repre-
sents the longest path found during the BFS runs. Datasets marked with (†) conform
to the Graph500 benchmark specification.

SuiteSparse Generated

Name Diam Vertices Edges Name Diam Vertices Edges

G43 4 1K 10K kron19 16† 8 356K 8M

coAuthorsDBLP 24 300K 978K kron19 16.2† 8 356K 8M

Journals 2 124 6K kron19 16.3† 7 356K 8M

coPapersDBLP 23 540K 15M kron18 16† 8 197K 4M

loc-Gowalla 16 197K 950K kron17 16† 7 118K 2M

ship 003 58 122K 4M kron16 16† 8 66K 1M

delaunay n12 36 4K 12K kron15 16† 6 33K 524K

delaunay n13 49 8K 25K kron19 48 7 432K 25M

delaunay n14 65 16K 49K kron19 32 8 393K 16M

delaunay n15 87 33K 98K kron18 128 6 236K 34M

delaunay n16 119 66K 197K kron18 96 6 236K 25M

delaunay n17 167 131K 393K kron18 64 7 236K 17M

delaunay n18 228 262K 786K kron18 32 7 236K 8M

kron g500-logn16 6 66K 2M kron16 32 7 66K 2M

kron g500-logn17 6 118K 5M kron15 32 6 33K 1M

kron g500-logn18 6 236K 11M kron17 32 7 118K 4M

kron g500-logn19 7 432K 22M

6 Experimental Results

6.1 Performance Comparison Experiment

Our experimental results are collected in Figs. 3 and 4. They show the per-
formance of iPUG on the IPU compared to the GPU codes on the V100 and
GAP on the Intel Xeon, along with the speedup of the IPU compared to the
fastest alternative. iPUG shows the highest speedups for very small instances.
This is understandable since the CPU and GPU codes are not designed for such
instances. However, on the largest and thus most relevant Kronecker instances
that fit in IPU memory, we still observe a speedup of about 1.5×.

For the Suitesparse graphs, we observe 3× speedups for smaller and 1.5×
speedups for the larger DBLP instances over Gunrock, which is the best alter-
native here. An exception are the larger and thus higher diameter delaunay
graphs which exhibit little parallelism. On average there are far fewer vertices
in the frontier each round than the IPU has threads, thus making the wide par-
allelism inefficient. As a result, the CPU performs better than both IPU and
GPU, although the difference between CPU and IPU is small. The only instance

304 L. Burchard et al.

Fig. 3. Performance of iPUG compared to CPU and GPU for the Kronecker graphs.

Fig. 4. Performance of iPUG compared to CPU and GPU for the Suiteparse instances.

where the GPU exceeds IPU performance is the very small and dense Journals,
and even there the difference is very small.

6.2 Graph 500 Scaling Experiment

In an additional experiment, we show the performance of the IPU in context
of the scaling behaviour of other BFS implementations. Results are shown in
Fig. 5. We observe that the CPU type has little influence for all three codes. On
the other hand, the TiTech code is almost an order of magnitude faster than

iPUG: Accelerating BFS using Manycore Graphcore IPUs 305

Fig. 5. Performance of Graph500 Kron-N -16 graphs by scale on all tested codes and
architectures.

GAP and the reference code, reaching almost 10 GTEPS. The CPU codes seem
to reach maximum performance at Scale 22.

The GPU implementations are consistently faster, with Gunrock reaching
almost 100 GTEPS at Scale 24. It also maintains a consistent and substantial
lead over Enterprise. Furthermore, while iPUG starts with a large advantage at
Scale 15, the gap closes to 1.5× at Scale 19. Thus, due to the limitations in IPU
memory, it is not possible to say at which scale maximum IPU performance will
be attained, and whether it would be faster than Gunrock on the V100. Since
the larger instances have a higher fraction of isolated vertices, and removing such
vertices has a substantial effect on IPU performance, it is possible that the IPU
would maintain its lead if it had more memory.

An important insight from these results is that implementations may affect
performance more than the hardware platform. This effect is certainly visible for
the CPUs. Furthermore, GPUs were initially not widely considered a suitable
architecture for BFS, but steady algorithmic advances have made GPUs highly
competitive for the specific problem of BFS on Kronecker graphs.

In addition to direction optimization [7], sophisticated GPU codes explicitly
cache the status of high degree vertices in shared memory during the backwards
search phase, as suggested for the Enterprise BFS code [27]. This obviates the
need for about 80% of all status queries, thereby improving performance dra-
matically. However, the technique is far less effective for other types of graphs.
Furthermore, it creates a point of performance which depends on the size of the
programmer-controlled shared memory. For both GPU codes, performance seems
to decrease when going towards Scale 25. Naturally, the IPU cannot replicate
this technique since it lacks a memory hierarchy in which such caching could
take place.

306 L. Burchard et al.

7 Discussion

We have tested our BFS code on the IPU and achieved speedups between 0.96×
and 4× over the fastest GPU code, with a typical speedup of 1.5× for the
largest feasible Kronecker graphs. The GPU results could certainly be improved
by running on an NVIDIA Ampere A100 or AMD Instinct MI100 GPU, while
the IPU results will benefit from the larger memory and increased core count of
the M2000 IPU once it becomes widely available. However, the M2000 IPU does
not provide a large increase in memory bandwidth or clock frequency, which
means that the latest hardware generation could close the current gap between
GPU and IPU to some extent. Even so, we expect that the IPU will maintain a
lead for most instances.

Furthermore, based on the memory bandwidth of the IPU, it is conceiv-
able that a far higher performance is possible. During the first few years after
its inception, the Graph500 [28] performance results increased massively, but
improvements have slowed down substantially thereafter. While we have con-
sidered several optimizations on the IPU, we are far from having exhausted its
possibilities. We were not able to show performance improvements via direction
optimizing search, although in principle such algorithmic improvements can be
applied on the IPU. Thus, it is likely that faster Graph500 results will appear
in the future.

Naturally, the small memory of the IPU limits its application to real-world
problems. Furthermore, it is debatable whether it is fair to compare an SRAM
based device to a DRAM based processor since the IPU is essentially running out
of what would be cache on a CPU. However, our results indicate that the CPU
does not experience a similar speedup when running on the smallest instances
which certainly fit inside the L3 cache of the Intel Xeon or AMD Epyc. This is
consistent with an observation from the 2018 Turing lecture [18], which points
out that programmer controlled scratchpad memory offers significant perfor-
mance advantages compared to transparent general-purpose caches. In case of
the IPU, no additional programming complexity is incurred by this, since the
memory hierarchy only has a single level.

8 Conclusion

We have implemented the first BFS code on the Graphcore IPU and thus pre-
sented the first benchmark results of a graph algorithm on that platform. The
results typically show 1.5× speedups over the fastest competing GPU and CPU
codes, thus demonstrating the potential of this new architecture for graph algo-
rithms. The main limitation to its usefulness is the small memory of the IPU.
This means that it is more suited to algorithms with higher time complexi-
ties such as matching, betweenness centrality, or even NP-hard optimization
problems. Furthermore, kernelization techniques [2,21] will become even more
valuable if they allow shrinking problems to the point of fitting into IPU mem-
ory. However, the main challenge in future work will be to scale graph problems

iPUG: Accelerating BFS using Manycore Graphcore IPUs 307

to multiple IPUs in order to overcome the memory limitations. While the IPU
programming model extends transparently to multiple IPUs, it is likely that sub-
stantial optimizations will be needed to scale up its performance. Consequently,
future work will focus on scaling BFS to multiple IPUs, as well as use the current
code as a basis to implement more sophisticated graph algorithms.

References

1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
2016), pp. 265–283 (2016)

2. Abu-Khzam, F.N., Collins, R.L., Fellows, M.R., Langston, M.A., Suters, W.H.,
Symons, C.T.: Kernelization algorithms for the vertex cover problem (2017)

3. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers, Principles, Techniques, and Tools.
Addison-Wesley Pub. Co., Boston (1986)

4. Azad, A., Buluç, A.: Distributed-memory algorithms for maximum cardinality
matching in bipartite graphs. In: 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 32–42. IEEE (2016)

5. Bader, D.A., Madduri, K.: Designing multithreaded algorithms for breadth-first
search and ST-connectivity on the cray MTA-2. In: 2006 International Conference
on Parallel Processing (ICPP 2006), pp. 523–530. IEEE (2006)

6. Beamer, S., Asanović, K., Patterson, D.: The gap benchmark suite. arXiv preprint
arXiv:1508.03619 (2015)

7. Beamer, S., Asanovic, K., Patterson, D., Beamer, S., Patterson, D.: Searching for
a parent instead of fighting over children: a fast breadth-first search implementa-
tion for graph500. EECS Department, University of California, Berkeley, Technical
report UCB/EECS-2011-117 (2011)

8. Buluç, A., Beamer, S., Madduri, K., Asanovic, K., Patterson, D.: Distributed-
memory breadth-first search on massive graphs. arXiv preprint arXiv:1705.04590
(2017)

9. Buluç, A., Gilbert, J.R.: The combinatorial BLAS: design, implementation, and
applications. Int. J. High Perf. Comput. Appl. 25(4), 496–509 (2011)

10. Buluç, A., Madduri, K.: Parallel breadth-first search on distributed memory sys-
tems. In: Proceedings of 2011 International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pp. 1–12 (2011)

11. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model for graph min-
ing. In: Proceedings of the 2004 SIAM International Conference on Data Mining,
pp. 442–446. SIAM (2004)

12. Checconi, F., Petrini, F.: Traversing trillions of edges in real time: graph explo-
ration on large-scale parallel machines. In: 2014 IEEE 28th International Parallel
and Distributed Processing Symposium, pp. 425–434. IEEE (2014)

13. Chenglong, Z., Huawei, C., Guobo, W., Qinfen, H., Yang, Z., Xiaochun, Y., Don-
grui, F.: Efficient optimization of graph computing on high-throughput computer.
J. Comput. Res. Dev. 57(6), 1152 (2020)

14. Gaihre, A., Wu, Z., Yao, F., Liu, H.: XBFS: exploring runtime optimizations for
breadth-first search on GPUs. In: Proceedings of the 28th International Symposium
on High-Performance Parallel and Distributed Computing, pp. 121–131 (2019)

http://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1705.04590

308 L. Burchard et al.

15. Ghosh, R.K., Bhattacharjee, G.: Parallel breadth-first search algorithms for trees
and graphs. Int. J. Comput. Math. 15(1–4), 255–268 (1984)

16. Gregor, D., Lumsdaine, A.: Lifting sequential graph algorithms for distributed-
memory parallel computation. ACM SIGPLAN Not. 40(10), 423–437 (2005)

17. Harish, P., Narayanan, P.J.: Accelerating large graph algorithms on the GPU using
CUDA. In: Aluru, S., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC
2007. LNCS, vol. 4873, pp. 197–208. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-77220-0 21

18. Hennessy, J.L., Patterson, D.A.: A new golden age for computer architecture. Com-
mun. ACM 62(2), 48–60 (2019)

19. Hong, S., Oguntebi, T., Olukotun, K.: Efficient parallel graph exploration on multi-
core CPU and GPU. In: 2011 International Conference on Parallel Architectures
and Compilation Techniques, pp. 78–88. IEEE (2011)

20. Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the graphcore ipu
architecture via microbenchmarking. arXiv preprint arXiv:1912.03413 (2019)

21. Kaya, K., Langguth, J., Panagiotas, I., Uçar, B.: Karp-Sipser based kernels for
bipartite graph matching. In: 2020 Proceedings of the Twenty-Second Workshop
on Algorithm Engineering and Experiments (ALENEX), pp. 134–145. SIAM (2020)

22. Kolodziej, S.P., et al.: The suitesparse matrix collection website interface. J. Open
Source Softw. 4(35), 1244 (2019)

23. Korf, R.E., Schultze, P.: Large-scale parallel breadth-first search. In: AAAI, vol. 5,
pp. 1380–1385 (2005)

24. Langguth, J., Azad, A., Halappanavar, M., Manne, F.: On parallel push-relabel
based algorithms for bipartite maximum matching. Parallel Comput. 40(7), 289–
308 (2014)

25. Langguth, J., Cai, X., Sourouri, M.: Memory bandwidth contention: communi-
cation vs computation tradeoffs in supercomputers with multicore architectures.
In: 2018 IEEE 24th International Conference on Parallel and Distributed Systems
(ICPADS), pp. 497–506. IEEE (2018)

26. Langguth, J., Patwary, M.M.A., Manne, F.: Parallel algorithms for bipartite match-
ing problems on distributed memory computers. Parallel Comput. 37(12), 820–845
(2011)

27. Liu, H., Huang, H.H.: Enterprise: breadth-first graph traversal on GPUs. In: Pro-
ceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, pp. 1–12 (2015)

28. Murphy, R.C., Wheeler, K.B., Barrett, B.W., Ang, J.A.: Introducing the graph
500. Cray Users Group (CUG) 19, 45–74 (2010)

29. Seshadhri, C., Pinar, A., Kolda, T.G.: An in-depth analysis of stochastic Kronecker
graphs. J. ACM (JACM) 60(2), 1–32 (2013)

30. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990)

31. Wang, Y., Davidson, A., Pan, Y., Wu, Y., Riffel, A., Owens, J.D.: Gunrock: a
high-performance graph processing library on the GPU. In: Proceedings of the 21st
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pp. 1–12 (2016)

32. Yang, C., Buluc, A., Owens, J.D.: GraphBLAST: a high-performance linear
algebra-based graph framework on the GPU (2020)

https://doi.org/10.1007/978-3-540-77220-0_21
https://doi.org/10.1007/978-3-540-77220-0_21
http://arxiv.org/abs/1912.03413

iPUG: Accelerating BFS using Manycore Graphcore IPUs 309

33. Yasui, Y., Fujisawa, K., Goto, K.: NUMA-optimized parallel breadth-first search
on multicore single-node system. In: 2013 IEEE International Conference on Big
Data, pp. 394–402. IEEE (2013)

34. Yoo, A., Chow, E., Henderson, K., McLendon, W., Hendrickson, B., Catalyurek,
U.: A scalable distributed parallel breadth-first search algorithm on BlueGene/L.
In: SC 2005: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing,
p. 25. IEEE, November 2005. https://doi.org/10.1109/SC.2005.4

https://doi.org/10.1109/SC.2005.4

Performance Modeling, Evaluation,
and Analysis

Optimizing GPU-Enhanced HPC System
and Cloud Procurements for Scientific

Workloads

Richard Todd Evans(B) , Matthew Cawood, Stephen Lien Harrell ,
Lei Huang, Si Liu , Chun-Yaung Lu, Amit Ruhela , Yinzhi Wang ,

and Zhao Zhang

Texas Advanced Computing Center, University of Texas at Austin,
Austin, TX 78727, USA

rtevans@tacc.utexas.edu

Abstract. Modern GPUs are capable of sustaining floating point oper-
ation rates and memory bandwidths that exceed those of most currently
available CPUs, making them attractive options for the acceleration of
scientific and machine learning (ML) workloads. However, many appli-
cations are either not GPU-enabled or only partially GPU-enabled. In
addition, some applications leverage the additional GPU flops and mem-
ory bandwidth more effectively than others, and derive greater perfor-
mance benefits from GPU acceleration. Combining these performance
considerations with the significant hardware cost of GPU-enhancement,
it is possible to derive an estimate for the optimal ratio of CPU and GPU
architectures to use when designing a system procurement to support a
given workload.

We describe a methodology to calculate this optimal ratio and demon-
strate it using a proxy workload comprised of benchmarks from nine
GPU-enabled applications. The scaling behavior of each application on
each platform is combined with relative costs of hardware to minimize a
cost-per-run and compute the most cost-effective architecture and scale
on which this application should be run. This information is then used
to estimate the optimal ratio of architectures for the procurement. We
perform this evaluation considering three different computational plat-
forms: NVIDIA’s DGX A100 server with 8 A100s, IBM’s AC922 servers
with 4 V100s, and Dell’s PowerEdge servers with Intel 8280 Xeon Cas-
cade Lake-SP processors. We intend for the methodology described here
to aid in HPC system design for computing service providers and assist
in optimizing HPC cloud procurements.

Keywords: Accelerators · Cloud · Benchmarking

1 Introduction

In this work, we describe a model that quantifies the cost versus benefits of
adopting various architectures such as GPUs in a HPC procurement and how it
c© Springer Nature Switzerland AG 2021
B. L. Chamberlain et al. (Eds.): ISC High Performance 2021, LNCS 12728, pp. 313–331, 2021.
https://doi.org/10.1007/978-3-030-78713-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_17&domain=pdf
http://orcid.org/0000-0002-7304-6056
http://orcid.org/0000-0001-5327-525X
http://orcid.org/0000-0003-0171-9124
http://orcid.org/0000-0001-6547-714X
http://orcid.org/0000-0001-8505-0223
http://orcid.org/0000-0001-5921-0035
https://doi.org/10.1007/978-3-030-78713-4_17

314 R. T. Evans et al.

can be used to optimize the ratio of architectures supporting a given workload.
When designing a HPC system, the cost can be quantified in terms of hardware
procurement and depreciation along with operations and maintenance require-
ments, while in a cloud procurement the cost is dictated by the vendor. With our
cost model, the cost differences of running on various architectures can be quan-
tified, allowing the determination of the optimal architecture on which to run
an application. The costs of deviations from the optimum can also be explored.
An additional output of this model is the calculation of the most cost-effective
CPU or GPU device count used to run a particular component of the workload.
This model is architecture agnostic and readily applicable to comparing different
CPU-only and network architectures in addition to the GPU-focused analysis of
this work.

The momentum to leverage GPU devices for compute capacity is based on
the trend for many modern GPUs to provide higher floating point operation
rates (FLOPS) and sustained memory bandwidths (MBW) than most CPUs.
GPUs achieve this higher capability through a combination of highly parallel
execution units and High Bandwidth Memory (HBM). The additional FLOPS
and MBW can translate into additional performance for an application that
has been suitably modified, or ported, to take advantage of a particular GPU
architecture. While GPUs are an added cost, they provide the opportunity to
accelerate performance. However, it is ambiguous for many workloads whether
this added cost is worthwhile: the ability to harness the GPUs’ compute capacity
depends on an application’s implementation and scale at which it is run.

To address this ambiguity, we construct a model that represents the cost
of an application run (or unit of simulation time). The model can incorporate
whatever costs are relevant to a system designer or cloud procurer, although we
anticipate hardware procurement and depreciation, porting to new architectures,
and operations and maintenance to make up the bulk of the cost. Operations
and maintenance costs include a variety of factors such as power consumption,
software and hardware maintenance, and labor costs. Of course in the case of a
cloud provider, some of these costs are already incorporated into their prices.

We will demonstrate our cost model on a proxy workload of eight scientific
application benchmarks and one machine learning benchmark. We will run these
9 application benchmarks on three different architectural platforms at multiple
scales. This data will be used to determine the optimal architecture and device
count at which to run those benchmarks and be used to design a hypothetical
HPC system or cloud procurement.

2 Cost Model Based HPC Procurement

Our goal is to build a model that allows us to determine the most cost-effective
ratio of CPU and GPU architectures that will compose a hypothetical system,
whether that system is an on-site HPC system or cloud procurement. In this
approach the CPU and GPU architectures are chosen from a fixed set of pre-
existing architectures to support a pre-defined workload. We will show that to

Optimizing HPC Procurements 315

accomplish this goal, an optimal architecture can be found for each component of
the workload by combining scaling behavior and time-to-solution data with costs
of hardware, operations and maintenance or offered cloud provider rates. The
diversity of many modern HPC workloads suggests a large number of workload
components would have to be considered. In practice though, it is often the case
that a proxy workload, composed of a small number of application benchmarks
chosen to be representative of the intended workload, is used when designing a
procurement. Additional application benchmarks can always be included until
the proxy workload is realistic enough to satisfy service providers or funding
agencies requirements. Multiple, well-defined scientific application benchmarks
will be used as the proxy workload for our approach in the following.

2.1 Methodology

Our approach to optimizing the ratio of architectures from which to design
an HPC procurement begins with determining the fraction of the cost of the
procurement, ωa, that is to support each component of the intended workload.
a is a superscript indexing each component of the proxy workload (application
benchmark in our case) and

∑
a ωa = 1. The optimal architecture i, out of a

fixed set of architectures we are considering, should then be chosen for each
application, and the fraction of the cost of the system devoted to that workload
assigned that architecture. Here the overall cost of the system is fixed - only the
proportion of its cost devoted to each architecture is permitted to change.

We then construct a model for the cost of a unit of simulation time (e.g. an
iteration, nanoseconds-per-day, time-to-solution), which we henceforth refer to as
a run. This cost model should account for the cost of compute-time and research-
time. The definition of compute-time cost will differ for every service provider,
but we anticipate it to be estimated from a combination of power, labor, mainte-
nance contracts, network, storage, and architecture costs - hardware, operations
and maintenance. Certain funding bodies, such as the National Science Founda-
tion (NSF), often provide fixed awards separately for the hardware procurement
and the operations and maintenance of a system, enabling straightforward esti-
mates for compute-time costs. In the case of cloud providers, they offer specific
rates for compute-time, making this estimation trivial. The cost of research-time
is less concrete, although value is clearly generated from research otherwise it
wouldn’t be performed. We discuss the cost of research-time later in this section.

We can combine these considerations into a cost-per-run model for each appli-
cation a on architecture i as

cai (n) = αa
i n

a
i t

a
i (n) + βa

i tai (n) = αa
i (n

a
i t

a
s,i + tp,i) + βa

i (tas,i + tap,i/na
i), (1)

where a and i index the application and architecture used for the run respectively.
na
i is the number of devices used for the run and tai (n) is the runtime at that

device count. In Eq. 1 we have used a form of Amdahl’s law to express tai (n) as
a function of devices used

tai (n) = tas,i +
tap,i
na
i

, (2)

316 R. T. Evans et al.

where the model is based on strong scaling behavior. tas,i and tap,i in Eq. 2 are
the portions of time taken up by work that is strictly serial and parallelizable
respectively when running in a serial fashion. The first term in Eq. 1 is the cost
in compute-time of a run and the second term is the cost in research-time of
a run. The first coefficient, αa

i , has units of dollars (or some other definition of
value) per device per unit time and as previously stated can be straightforwardly
estimated. We parameterize αa

i as αa
i = κa

i /T , where T is the overall service time
of the system. κa

i will generally differ across architectures and may differ across
applications because certain applications consume more power or require more
software maintenance than others on different architectures.

βa
i is more difficult to estimate, although it should have units of dollars per

unit time and we can parameterize it as βa
i = γa

i /τ , where γa
i that is the total

research value produced by application a on architecture i over time period τ .
From the perspective of an agency funding both the system and the research,
γa
i could be estimated from the amount of funding of the research project run-

ning application a that is related to computation (making it independent of the
architecture). In any case, demanding that γa

i ≥ κa
i , i.e. research output per unit

time is at least as valuable as compute-time consumed, ensures the investment
in the computational resource is worthwhile.

Finding the minimum cost-per-run in terms of device count (dcai
dna

i
= 0) then

results in

na
i =

√
γa
i Ttap,i

κa
i τtas,i

(3)

Assuming τ is the lifetime of the procurement τ = T , since we are optimizing
for a constant workload, we have an optimal device count per run of

na
i =

√
γa
i tap,i

κitas,i
=

√
γa
i pai

κa
i (1 − pai)

. (4)

Here pai is the fraction of work in a run that can be parallelized. This equation
indicates that for fixed pai , increasing the value placed on research-time leads
to a higher optimal device usage, while increasing the cost per compute-time
(higher hardware costs, higher power costs etc.) results in lower optimal device
usage. Simultaneously, a higher fraction of the work capable of running in parallel
results in higher device counts preferred and vice versa for a higher fraction of
serial work. Of course, na

i ≥ 1 and na
i < Ni, where Ni is the number of devices

of architecture i that a HPC procurement will have. Note that na
i is independent

of the overall time required to complete a run.
We can now determine the cost-per-run for each architecture at the optimal

device count for architecture i and application a to be

cai =
1
T

(√
γa
i tas,i +

√
κa
i t

a
p,i

)2

. (5)

tas,i and tap,i, measured from scaling data, will in general differ across architec-
tures and applications. If we insist that the research-time is as important as the
compute-time in Eq. 1 then γa

i = κa
i and we have

Optimizing HPC Procurements 317

cai =
κa
i

T

(√
tas,i +

√
tap,i

)2

. (6)

This is a plausible value for γa
i in many circumstances - otherwise we would be

left with the conclusion that the value of the research we extract from the sys-
tem is less than or more than the value we put in. If the value is less than what
we extract than we shouldn’t procure the system at all, while if it is more than
we should be able to use the proceeds to add more devices which would pro-
duce more proceeds and so on. This argument ignores the obvious impracticality
in an academic setting of converting research proceeds to hardware, but in a
commercial setting this approach would be common sense up to the scale where
other costs or supply and demand effects start to dominate. We use this estimate
for γa

i and therefore Eq. 6 throughout the rest of this paper. Service providers
that value the research-time of some components of the workload more than
others, or value research-time more than compute-time due to funding arrange-
ments and priorities, may choose different estimates for γa

i customized to their
requirements.

The derivation of Eq. 6 assumes Amdahl’s law governs the strong scaling
behavior at the device counts where we made our performance measurements and
where we make our recommendations. Amdahl’s law is an idealized approxima-
tion of behavior which may not be reasonably accurate at all device counts, as it
assumes synchronization and communication overheads are constant with device
count. Measurements made at device counts where it is not approximately appli-
cable should be discarded. Recommendations made for device counts beyond
where we have data should be verified by collecting additional data at or above
those device counts and ensuring Amdahl’s law is still approximately valid. We
leave the estimation of errors due to the approximations made in Amdahl’s law
to future work, addressing the two extremes where it breaks down - superlinear
speedup and slowdown - below.

If measurements were made at device counts where superlinear speedup was
in effect then na

i t
a
i (n) and tai (n) are decreasing with increasing device count and

therefore the cost in Eq. 2 is decreasing with device count - we are not at a cost
minimum. Superlinear scaling will subside at some device count (if not, then
the most cost-effective device count to run at will be the maximum possible),
where a new reference device count for speed-up should be chosen. For device
counts after this reference point, Amdahl’s law should govern speedup and hence
Eq. 6 should be applicable. If measurements were made at device counts where
increasing device count causes a slowdown, then na

i t
a
i (n) and tai (n) are increasing

with increasing device count and we are not at a cost minimum. Data at these
device counts and higher can be discarded from the model because their range
will not contain a cost minimum. Naturally, if speedup declines for device counts
greater than one then using one device is the most cost-effective.

Finally we note that weak-scaling is not relevant to our cost model. The model
is intended to minimize the costs for fixed problem sizes from a predetermined set
of benchmark applications. Non-trivial weak scaling solves a different benchmark
problem at each device count. Even if the same physical problem is being solved,

318 R. T. Evans et al.

the resolution or fidelity must be increased to maintain a constant amount of
work per device. The requirements for simulation fidelity are governed by the
science or use case requirements, and thus would be input into the model.

Using our estimate of γa
i = κa

i , all of the terms in Eq. 6 are either measured
in scaling studies or known from system requirements and costs. The length
of service time, T , for the system is important for the overall cost of a run
but not for choosing the optimal architecture. At this point we compute cai for
each architecture under consideration and choose the lowest cost one that will
support application a. Once we have chosen the optimal architecture for each
application we can determine the number of devices of that architecture the
system procurement should have to support that application

Na
i =

waC

κa
i

, (7)

where C is to total budget for the procurement. As stated at the start of this
section, wa is the fraction of the cost of the system we devote to supporting appli-
cation a. The exact value of cai is not critical for the determination of an optimal
architecture, only the relative values across architectures and applications. We
note an outcome of our model is that we are able to recommend optimal device
counts at which to run applications. We are also able to quantitatively explore
the cost effects of deviations from the optimal procurement configuration.

Equation 7 assumes the flexibility to choose arbitrary fractions of architec-
tures from our set under consideration. Hence a heterogeneous setup of possi-
bly independent systems could be the recommendation. This may or may not
be reasonable depending on the architectures being compared, the size of the
procurement, the man-power available to maintain possibly disparate software
stacks (which should be accounted for in the cost κa

i), and whether the procure-
ment is of hardware or from the cloud. If the architectures under consideration
have similar software stacks and maintenance requirements (e.g. different models
of the same processor family) then it may be straightforward to use Eq. 7 in a
procurement. If the procurement and HPC center are large enough to justify
multiple, possibly independent systems, then Eq. 7 may be reasonable, assuming
additional costs due to heterogeneity such as system setup, infrastructure and
operations are accounted for in κa

i . Finally, if it is a cloud procurement then
Eq. 7 is likely reasonable, again assuming costs for the various software setup
and maintenance required have been accounted for in κa

i .
If there are factors that require the procurement to have a homogeneous archi-

tecture (small procurement, labor restrictions, vendor requirements etc.) then we
can use the model to choose the most cost-effective architecture to support the
workload. This will require us to compute the relative costs of the architectures
under consideration. We begin by computing the normalized cost-per-run for
each application a on architecture i, ĉai , at the optimal node count, Eq. 6, by
dividing the cost-per-run by the sum of the cost-per-run of each architecture
under consideration

Optimizing HPC Procurements 319

ĉai =
cai∑
j caj

. (8)

Using the normalized cost allows us to compare the relative cost of different
applications by removing any dependence on how we defined a run. We can then
compute the total normalized cost Ci for each architecture i as:

Ĉi =
∑

a

waĉai (9)

The architecture i with the lowest normalized cost computed in Eq. 9 should be
chosen for procurement. This approach assumes that we value the relative cost of
each application across architectures equally. Indeed, we have already accounted
for how much the cost of each application is to be weighted when we determined
the fraction of the cost of the procurement to devoted to the each application, wa.

2.2 Demonstration on a Proxy Scientific Workload

We will demonstrate the methodology described in Sect. 2.1 on a hypotheti-
cal workload composed of eight widely used scientific applications and one ML
framework. The application and software versions used to compile and run each
benchmark are summarized in Table 1. Descriptions of each application and
benchmark case will be detailed in Sect. 4. We use the benchmark case for each
application as a proxy for the various execution modes of that application. We
note that while some execution modes of an application may be GPU-enabled
and others may not, it is up to the service provider or funding agency to define
applications and execution modes of those applications that are a sufficiently
representative proxy workload for a prospective system procurement.

We ran the benchmark problems on the three architectures shown in Table 2
at multiple device counts. We measured values for tas,i and tap,i by fitting these
scaling results to Amdahl’s Law, excluding device counts where Amdahl’s Law
was not applicable (e.g. super-linear scaling regimes where cache containment
effects are evident). Here we define scaling in terms of the number of servers in
the case of CPU-only architectures (labeled clx), and the number of GPUs in the
case of GPU-enabled architectures (labeled v100 and a100). While the GPUs
may be collocated on the same server, they are considered separate devices for
purposes of scaling. We note that many definitions of a device are possible - core,
socket, server, GPU. So long as they are properly reflected in the values assigned
to the κa

i and scale according to Amdahl’s law the exact definition should not
be critical.

In Table 2, The DGX A100 platform, labeled as a100, is a single server with
two AMD EPYC 7742 64-core processors and eight NVIDIA A100 GPUs con-
nected via NVLINK. The AC922 platform, labeled as v100, consists of up to two
of IBM AC922 (8335-GTH) servers with two 40-core Power9’s and four V100’s
per server connected via NVLINK. The two servers are connected via Infiniband
EDR. The Dell C6420 PowerEdge platform, labeled clx, has multiple servers

320 R. T. Evans et al.

Table 1. Application versions [V] and compilers [C] used for each application and
platform (architecture), and benchmark cases.

Application PowerEdge (clx) AC922 (v100) DGX A100 (a100) Benchmark case

MILC [V] 7.8.1 [C] Intel

19.1.1, Intel MPI

19.0.7

[V] 7.8.1 [C] GCC

9.1.0, CUDA 10.2,

MVAPICH2 GDR

2.3.4

[V] 7.8.1 [C] GCC

9.1.0, CUDA 10.1,

Intel MPI 19.0.7

APEX

36 × 36 × 36 × 72

NAMD [V] 2.14 [C] Intel

19.1.1, Intel MPI

19.0.7

[V] 2.14 [C] xl16.1.1,

CUDA 10.2, Spectrum

MPI 10.3.0

[V] 2.14 [C] GCC

9.1.0, CUDA 10.1,

Intel MPI 19.0.7

Tobacco Mosaic

Virus, 1.2M

atoms, 2 fs, 30000

timesteps

AMBER [V] A20u6, AT20u10

[C] Intel 19.0.5, Intel

MPI 19.0.5

[V] A20u6, AT20u10

[C] GCC 7.3.0, CUDA

10.2, MVAPICH2

GDR 2.3.4

[V] A20u6, AT20u10

[C] GCC 9.1.0,

CUDA 11.0,

MVAPICH2-X 2.3

STMV NPT 4 fs

SPECFEM3D

GLOB

[V] 7.0.2 [C] Intel

19.1.1, Intel MPI

19.0.7

[V] 7.0.2 [C] xl16.1.1,

CUDA 10.2, Spectrum

MPI 10.3.0

[V] 7.0.2 [C]

Intel19.1.1, Cuda

11.0,

MVAPICH2-x/2.3

Regional forward

simulation,

s362ani model,

1 × 224 × 256

spectral elements

PyTorch [V] [C] [V] [C] GCC 7.3.0,

CUDA 10.2,

NCCL-2.5.6

[V] [C] CUDA 11,

NCCL-2.7.8

ResNet-50

VPIC [V] 2.0 beta [C] Intel

19.1.1, Intel MPI

19.0.7, Kokkos 3.2.0

[V] 2.0 beta [C] GCC

7.3, MVAPICH2-gdr

2.3.4, CUDA 10.2,

Kokkos 3.2.0

[V] 2.0 beta [C] GCC

9.1.0, MVAPICH2-x

2.3, CUDA 11.0,

Kokkos 3.2.0

lpi head single new

diag for Bird-GC

Dim 1 × 56 × 3584

PPC: 448

WRF [V] 3.8.1 [C] Intel

19.1.1, Intel MPI

19.0.7

NA Precompiled

AceCASTv1.1

conus 3 km:

1500 × 1500 × 50

GROMACS [V] 2020.4 [C] Intel

19.1.1, Intel MPI

19.0.7, FFTW3 3.3.8

[V] 2020.4 [C] GCC

7.3.0, built-in

thread-MPI, CUDA

10.2

[V] 2020.4 [C] GCC

9.1.0, built-in

thread-MPI, CUDA

11.0

benchPEP: 12M

atoms

LAMMPS [V] stable 29Oct2020

[C] GCC 9.1.0, Intel

MPI 19.0.7

[V] stable 29Oct2020

[c] GCC 7.3.0,

OpenMPI 3.1.2,

CUDA 10.2

[V] stable 29Oct2020

[C] GCC 9.1.0,

MVAPICH2-x/2.3,

CUDA 11.0

InP.snap: 50 ×
50 × 50, 1M atoms

each containing two Intel Xeon 8280 Cascade Lake-SP 56-core processors. These
CPU-only servers are connected by Infiniband HDR-100.

The estimates we use for κa
i are also shown in Table 2. κa

i is meant to be an
estimate for the holistic cost per device, where we reiterate a device is defined
to be an entire server in the case of clx and an individual GPU in the case of
the a100 and v100 architectures. The holistic cost should include the infras-
tructure that supports the device such as the host server and fabric. To avoid
any ambiguity regarding pricing and vendor concerns, here we simply estimate
κa
i to be one dollar per GFLOP of peak performance of the device. We also

add the appropriate fraction of the host server CPUs’ GFLOPS to the a100
and v100 κa

i estimates (1/8 and 1/4 respectively). These price estimates are for
demonstration purposes only and for a real-world analysis these estimates should
be substituted with the actual negotiated vendor rates. Numerous other costs
should also be carefully included for the most accurate estimate for κa

i ; however,
we ignore those as they doesn’t hinder the demonstration of the model. We leave

Optimizing HPC Procurements 321

Table 2. Architectures considered in this evaluation.

Label Platform Interconnect CPU GPU κi

a100 NVIDIA DGX A100 NVLINK 2 AMD 7742 8 A100 10400

v100 IBM AC922 (8335-GTH) NVLINK/IB EDR 2 IBM Power9 4 V100 7700

clx Dell C6420 PowerEdge IB HDR 2 Intel 8280 NA 4800

the careful inclusion of those considerations for future work. Note that κa
i → κi

is the same for every application with our approximations.
Once we have estimates for κi and our measurements for tas,i and tap,i we

can compute the most cost-effective device counts and the cost-per-run for each
application on each architecture. We then assign the lowest cost architecture as
the one that will be used to support an application, and determine the fraction
of nodes on the prospective system that should be made up of that architecture.

3 Prior Work

There is a vast body of work comparing application and benchmark performance
on various architectures of which we only provide a sampling. The majority of
published benchmarking work is focused upon either one specific algorithm [1],
one specific architecture [2,3] or both [4]. While these approaches are crucial for
optimizing scientific codes and the acceptance of HPC systems, they add little to
determining a cost-optimized mix of architectures for a variety of applications.

Performance measurements of applications are the standard approach to eval-
uate architectures’ effectiveness. Performance comparisons between architectures
are often used in Service Providers’ proposals to justify system designs and are
also published by vendors to distinguish their products from their competitors’.
Additionally, metrics have been devised to account for performance portability
or the ability to run efficiently on multiple platforms [5]. While this metric may
be an analog for cost between multiple architectures for a single code base, it
excludes the application heterogeneity that one might see on an HPC batch
system. These evaluations do not, in general, systematically account for hard-
ware cost differences and cost-effectiveness of disparate applications, with unique
runtime characteristics, running on disparate architectures.

When benchmark performance comparisons across architectures are
restricted to a discrete set of device counts, it can be straightforward to eval-
uate the relative cost-effectiveness of the architectures. For example, NVIDIA
presents the performances of a number of applications on multiple architectures
on the NVIDIA HPC Application Performance website [6]. NVIDIA uses a Node
Replacement Factor (NRF) metric to measure how many CPU-only servers it
takes to equal the performance of a certain number of GPU’s for a particu-
lar application benchmark. While this type of study could be straightforwardly
extended to include a cost-effective comparison, it is not presented on their site.
They also make no attempt to capture the value of time-to-solution differences

322 R. T. Evans et al.

across architectures and scales. Due to the different scaling behavior of each
application benchmark on each architecture, an architecture that is most cost-
effective at one time-to-solution (and device count) may no longer be at another
time-to-solution (and device count).

One of the closest works to what we present in this paper for GPU usage is
demonstrated for GROMACS [7]. In this research, the authors attempt to find
the GPU architecture that provides the greatest MD trajectory (ns/day) within
a fixed budget for the GROMACS application [8]. They evaluate a wide variety of
architectures and runtime configurations in order to find the most cost-effective
architecture. They do not, however, perform the necessary scaling studies or
have a cost model to determine optimal device counts to run the application.

We conclude from the lack of prior work that the model presented in this
paper is a novel approach to analyzing cost-effectiveness of applications and
hardware. The recommendations our model produce have no doubt been arrived
at countless times through practical experience; however, it provides a systematic
approach to exploring and optimizing the cost versus benefit of using various
architectures to support scientific applications.

4 Demonstration and Results

In this section we demonstrate our methodology on a proxy workload made
up of commonly used scientific applications. We describe the applications and
benchmark cases in detail. We then present performance and scaling results for
each application on the three architectures shown in Table 2, with comments
on observed performance behavior and noting where particular benchmark runs
were treated uniquely. In general, we aimed to run each benchmark on 1, 2,
4, and 8 devices but deviated from this where necessary. Finally, we apply the
cost-model described in Sect. 2.1 to this proxy workload and compute the optimal
ratio of architectures for our hypothetical HPC procurement.

4.1 Description of Proxy Workload

Amber. Amber is a collection of packages to perform and analyze Molecular
Dynamics (MD) simulations [9]. The Satellite Tobacco Mosaic Virus (STMV)
NPT Ensemble dataset containing 1,067,095 atoms was used for this investi-
gation. The skin permit feature was used to implement the ‘leaky pair lists’
optimization. One MPI rank per core was used for CPU runs, while one rank
per card was used for GPU runs. Amber is known to be well optimized but scale
inefficiently on GPUs. Therefore we only include scaling data up to two GPUs.
Performance is reported in ns/day.

GROMACS. GROMACS is a publicly available parallel MD package that is
extensively used for studying biological functions at the atomic level [7]. In this
benchmark, we simulate an aqueous peptide system comprising over 12 million
atoms that was previously used to study peptide aggregation [10]. The input file

Optimizing HPC Procurements 323

was obtained from the Max Planck Institute for Biophysical Chemistry website
[11]. The CPU benchmark runs used 56 MPI tasks per node, whereas in the GPU
runs, combinations of settings (GPU = 1, 2, 4, 8 per node, MPI tasks = 1, 2, 4, 8
per node, OpenMP threads = 8, 16 per MPI task) were used to find out the best
performance scenario. The Verlet cut-off scheme is used and the value of the
parameter nstlist was tuned to optimize the performance for each case (CPU:
80, GPU: 300–500). For GPU runs, the computations of long-range non-bonded
interactions, short-range non-bonded interactions, and bonded interactions were
offloaded to GPUs. Performance is reported in ns/day.

LAMMPS. LAMMPS is an open-source classical MD code developed at San-
dia National Laboratories [12]. In this work, the LAMMPS Kokkos package
[13], built with CUDA support, is used to run MD simulations across multiple
GPUs. Here we use the SNAP potential, a new generation of machine-learned
interatomic potential which has demonstrated ab initio level of accuracy in MD
simulations [14]. We evaluated the performance under various CPU/GPU config-
urations using the SNAP example, InP [15], shipped with the LAMMPS package.
The dimensions of the system were set to 50 × 50 × 50 (1,000,000 atoms). The
CPU runs used 56 MPI ranks per node and the scaling data were obtained from
the simulations (100 MD steps with timestep = 0.5 fs) ran on 1, 2, 4, and 8 nodes.
The GPU runs used 1, 2, 4, and 8 MPI ranks with 1 GPU per MPI rank and
with the command options newton on and neigh half. The default domain
decomposition setting was applied for all the CPU and GPU cases. Performance
is reported in ns/day.

MILC. MILC is an open-source application for performing Lattice Quantum
Chromodynamics (QCD) calculations [16]. MILC is GPU-enabled through the
CUDA-based QUDA library [17]. The benchmark used here is the 36 × 36 ×
36 × 72 APEX case [18] and evolves the lattice gauge field through 2 trajectories
using a hybrid Monte-Carlo method. Scaling fits to the runs were performed on
18, 27, 54 and 81 servers for the clx architecture in order to avoid the super-
linear scaling regime. Scaling fits to v100 architecture were similarly performed
on 4 and 8 GPUs to avoid the super-linear scaling regime. Fits to the a100
architecture results were done on 1, 2, 4 and 8 devices as no super-linear scaling
was observed. Performance is reported in overall runtime.

NAMD. NAMD is a parallel MD code for high performance simulation of
large molecular systems used by many research teams around the world and the
2002 Gordon Bell Prize winner [19]. This study uses the STMV (2 fs timestep,
12A cutoff + PME every 3 steps) NAMD benchmark with modified input. The
STMV benchmark is a 1,066,628-atom molecular dynamics simulation of Satel-
lite Tobacco Mosaic Virus. Performance is reported in ns/day.

324 R. T. Evans et al.

PyTorch. PyTorch is a popular machine learning framework. We used its imple-
mentation of the ResNet-50 deep learning application with the ImageNet dataset
for our benchmark case. The benchmark case uses stochastic gradient descent
(SGD) or its variants such as momentum SGD and LAMB [20]. ResNet-50 is an
image classification neural network that composes 49 convolutional layers in five
convolution groups [21] with 23 million trainable parameters. The ResNet-50
network was trained with the ImageNet dataset for 90 epochs. We use the open
source implementation as it converges to the 75.9% MLPerf baseline [22,23].
Performance is reported in images/s.

SPECFEM3D GLOBE. SPECFEM3D GLOBE is an open-source package
that simulates three-dimensional global and regional seismic wave propagation
using the spectral element method [24]. Here, we use a small-scale regional simu-
lation from the benchmark data set published by NVIDIA as our benchmark [25].
The internal mesher of SPECFEM3D GLOBE breaks the globe into 6 chunks
with a cubed-sphere mapping, and each chunk is further subdivided into slices
along the two sides of a chunk. Our regional simulation is done on one chunk
only. To accommodate the factor of 7 in the core count on the clx architecture,
we define the number of slices to be 224 × 256. Certain numbers of domains
defined by the slices were then assigned to each MPI rank. The GPU runs were
done with one MPI rank per GPU. The CPU runs were done with one MPI rank
per core. We measure the performance with the average time per step of the last
300 steps of the simulation and simply refer to this as the runtime.

VPIC. The Vector Particle-in-Cell (VPIC) application is a first principles
particle-in-cell plasma physics model that tracks particles and electromagnetic
fields in a structured grid [26,27]. Traditionally, VPIC has been hand-optimized
using CPU intrinsics to achieve high performance. This application is known to
scale well on many CPU platforms - up to 2 million MPI ranks with 7 trillion
particles [28]. In this paper we will use a VPIC 2.0 beta which is based on the
Kokkos [13] performance portability framework [29] in order to compare per-
formance across CPUs and GPUs. The Kokkos OpenMP and CUDA backends
are used to perform the benchmarking runs. This version of the VPIC 2.0 beta
release has not undergone any targeted optimization efforts or platform specific
tuning, although optimized versions are forthcoming. In this study a 2D dataset
is used that has been created as a baseline to exercise all of the features of VPIC
on CPUs and GPUs. The dataset was designed to run within one 16 GB GPU
and contains 3.7 million particles. Performance is reported as overall runtime.

WRF. The Weather Research Forecasting (WRF) model is a mesoscale model
designed for operational forecasts and atmospheric research [30]. The WRF
model serves a wide range of meteorological applications with different scales.
AceCAST-WRF/WRFg is a proprietary GPU-enabled version of WRF devel-
oped by TempoQuest, Inc. (TQI), which supports 23 physics options and some

Optimizing HPC Procurements 325

nesting functionality [31]. The benchmark case comes from NCAR’s NWSC-3
North America benchmark [32]. The mesh grid is 1500 × 1500 with 50 vertical
levels. The benchmark run is configured with the following physical parameteri-
zation: mp physics = 8, cu physics = 0, ra lw physics = 4, ra sw physics
= 4. The simulation is implemented with a 10 s time step for an hour. This WRF
case is implemented with the WRF 3.8.1 distributed-memory version on the clx
architecture and AceCAST 1.1 on the a100 architecture. We have not been able
to run the AceCAST 1.1 version on the v100 architecture due to the availability
of the required binaries. Performance is reported as overall runtime.

4.2 Scaling and Cost Optimization of Proxy Workload

Fig. 1. The scaling curves on all three architectures for each application are shown.
The clx results are shown in blue, the a100 results in green, and the v100 results in
yellow. Measured data is displayed as dots and the fits to that data as curves. There
was no v100 data available for WRF. (Color figure online)

Scaling. The scaling behavior on all three architectures for each application is
shown in Fig. 1. The device count used for a run is shown on the x-axis, and
the performance on the y-axis. For Amber, GROMACS, LAMMPS, and NAMD
we report seconds per nanosecond of simulation time (s/ns) and for PyTorch
seconds per image processed (s/image), as these applications’ performances are
traditionally reported in terms of these units. We report runtime for the MILC,
SPECFEM, VPIC, and WRF benchmarks.

326 R. T. Evans et al.

While the runs on the clx architecture may demonstrate better scaling behav-
ior for many benchmarks, the absolute performance is generally superior on the
GPUs, with VPIC as the notable exception. In fact, the scaling behavior of the
VPIC beta on the CPUs and GPUs is remarkably similar. Upon further exam-
ination, due to the fact that the initialization is not yet optimized for GPUs,
approximately 30% of the total runtime is spent in this stage on GPUs and less
than 1% of time on CPUs which results in this scaling outcome. The CPU-only
and GPU code paths are nearly identical at the code-base level. We expect the
upcoming optimization of GPU initialization to improve the runtime of VPIC.

The speedup when using GPUs is 2–3× at most device counts for most
of the application benchmarks, with the a100 results always faster than the
v100 results (except for VPIC). Amber appears to display the greatest benefits
from GPU-acceleration, with speedups of up to 27×. In all cases, the absolute
performance disparity between the CPU-only and GPU-enhanced architectures
decreases with increasing device count. It is because of this, combined with the
cost differences of the different architectures that it is not clear which architec-
ture provides the greatest performance for cost.

Cost. The cost to run each application on each architecture across device counts
is shown in Fig. 2. Our measurements for tas,i and tap,i, determined from the scaling
studies, and estimates for κa

i and γa
i = κa

i from Table 2 are used here. The service
period T of the system used in these plots is for 1 year. The exact value used
for T does not change the most cost-effective architecture because it is the same
for all architectures. For Amber, GROMACS, LAMMPS, and NAMD we show
the cost in units of dollars per nanosecond of simulation time ($/ns) and for
PyTorch show dollars per image ($/image). For MILC, SPECFEM, VPIC, and
WRF we show cost in dollars per run ($). The distinction in units used is purely
for convenience and does not affect the outcome of the methodology - we are
comparing the cost of the same unit of simulation time across architectures for
each application.

The optimal architecture and device count on which each application should
be run is shown in Table 3. We rounded to the nearest optimal device count,
as the methodology treats device counts continuously. We note that non-integer
device counts may be informative if the granularity of resources able to be allo-
cated to an application is less than used in the scaling study. The cost difference
from rounding to the nearest integer values of device is in any case easily deter-
mined from the cost curves in Fig. 2.

For our benchmarks and cost estimates, the v100 architecture is optimal for
five of the applications: GROMACS, LAMMPS, MILC, NAMD, and PyTorch.
The a100 is optimal for Amber, SPECFEM, and WRF (WRF was not run on
the v100 architecture though). VPIC is the only application which is optimal
to run on clx. A benefit of the model shown in Fig. 2 is the ability to judge how
far off from optimal a particular device configuration may be for an application
benchmark. For instance, although v100 is optimal for MILC, it is only 6%
cheaper than using a100 when comparing costs at optimal device counts. In two

Optimizing HPC Procurements 327

Fig. 2. The estimated cost to run on all three architectures for each application are
shown. The clx results are shown in blue, the a100 results in green, and the v100 results
in yellow. Measured data is displayed as dots and the fits to that data as curves of the
same color. There was no v100 data available for WRF. The optimal device count
(minimum cost) at which to run each application on each architecture is indicated by
an × of the corresponding architecture’s color. (Color figure online)

Table 3. Optimal architecture and device count to use for each application benchmark.

Application Architecture Device #

Amber a100 1

GROMACS v100 2

LAMMPS v100 16

MILC v100 3

NAMD v100 1

PyTorch v100 9

SPECFEM a100 8

VPIC clx 7

WRF a100 4

other instances, using four v100 s to run PyTorch is only 6% more expensive than
using the optimal device count of nine, and using eight GPUs to run LAMMPS
instead of the optimal count is only 2% more expensive. Differences of this
magnitude are unlikely to manifest in significant cost distinctions in practical
settings. This consideration is particularly relevant to our demonstration, where

328 R. T. Evans et al.

the recommended device counts to run PyTorch and LAMMPS are beyond where
we have data. If Amdahl’s law failed to approximate the scaling behavior out to
those device counts, we could still confidently state that our cost estimates may
be off by 6% or 2% for PyTorch and LAMMPS respectively.

It is interesting to consider the effect of adjusting γa
i independently of κi. As

we’ve stated previously, this adjusts the value placed on the research-time (or
time-to-solution). From Eqs. 4 and 5 we know that increasing γa

i increases the
optimal device count and overall cost. This can have the effect of transitioning the
minimum cost-per-run to a new architecture. In the case of NAMD for instance,
placing a fixed value on the simulation time of 10× the a100 κi ($104,000),
the clx architecture becomes optimal. This scenario is shown in Fig. 3. Here, as
time-to-solution becomes more valuable, the lower cost per clx server combined
with its superior scaling behavior overcomes the initial cost advantage of the
v100 and a100 architectures.

Fig. 3. The estimated cost to run on all three architectures for NAMD are shown. Here
γa
i has been fixed to 10× the a100 κi cost, driving the optimal device count higher

and transitioning the optimal architecture to clx.

Finally, for completeness, we compute the number of devices an optimal
system procurement should have when each application is equally supported,
i.e. wa = 1

9 , ∀a. The fraction of the cost devoted to each architecture in an
optimal procurement is: 25% a100, 57% v100, and 18% clx. If we assume a 10
million dollar budget for the procurement, the device count for each architecture
should be: 240 a100, 740 v100, and 375 clx devices or 30 DGX A100, 185 IBM
AC922, and 375 PowerEdge servers. We note that in a practical procurement,
the costs of maintaining heterogeneous architectures should be incorporated into
the compute-time cost κa

i from the start of the analysis. These may be significant
costs, as in this demonstration where three different vendors and several differ-
ent software stacks are part of the recommended procurement. For example, if
additional staff must be assigned or hired to support an architecture the site
is not familiar with, or port codes to a new architecture, those costs should be
included in κa

i . If the architecture choices consisted instead of a single vendor
with a software stack familiar to a site, offering different processor families, then
the additional costs would probably be minimal.

Optimizing HPC Procurements 329

If the system must have a homogeneous architecture than we would compute
the normalized costs for each application and use Eq. 9 to evaluate the most
cost-effective architecture option. In our demonstration the normalized costs for
supporting our proxy workload on each architecture are: Cclx = 4.6, Cv100 = 2.3,
and Ca100 = 2.6. Thus, a system composed of 1299 v100 s would be optimal
for our demonstration. Again, the percentage cost of choosing an architecture
different from the optimal can be evaluated.

5 Conclusion

We have presented a methodology for optimizing the ratio of architectures that
make up a system procurement to support a specified workload. Our approach
is based on optimizing a cost model for individual runs of applications, where
the cost has a compute-time and a research-time component. Using measured
scaling data, an optimal device count on which to run and cost-per-run is com-
puted for each architecture and application. The lowest cost architecture for
each application is then chosen to support it. The HPC system procurement is
finally constructed using these optimal architectures along with the fraction of
procurement cost devoted to each application and overall procurement budget.
The methodology allows for integrating additional information regarding cost,
such as power consumption or labor, in a systematic manner. Effects of cost
assumptions or modifications can be quantitatively explored using the model.
The approach is hardware agnostic, and could readily be applied to comparing
CPU-only and network architectures.

We demonstrated this methodology on a proxy scientific workload of eight
scientific application benchmarks and one machine learning benchmark, compar-
ing three different architectures. Various approximations for cost were used, with
their effects noted. The cost model enabled a quantitative examination of the
effects of deviating from the optimal system configurations. Finally, we report
the optimal ratio of architectures from which to compose a hypothetical HPC
system procurement to support the proxy workload.

This work should enable a more systematic approach to HPC system
and cloud procurements than the empirically-based approach that is typically
employed by service providers. A need for such an approach has grown with the
rise of expensive but computationally capable GPU-enabled servers and cloud
services. This need will be even further accentuated with the arrival of ML-
focused co-processors and more exotic architectures. We hope this work can
assist HPC service and cloud providers design more cost-effective HPC system
procurements and better support their stakeholders.

References

1. Stegailov, V.V., Orekhov, N.D., Smirnov, G.S.: HPC hardware efficiency for quan-
tum and classical molecular dynamics. In: Malyshkin, V. (ed.) PaCT 2015. LNCS,
vol. 9251, pp. 469–473. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21909-7 45

https://doi.org/10.1007/978-3-319-21909-7_45
https://doi.org/10.1007/978-3-319-21909-7_45

330 R. T. Evans et al.

2. Bauer, G., Hoefler, T., Kramer, W., Fiedler, B.: Analyses and modeling of applica-
tions used to demonstrate sustained petascale performance on Blue Waters. Cray
User Group, May 2012

3. Evans, R.T.: Application performance in the frontera acceptance process. In: 2020
ACM SIGHPC SYSPROS Workshop (2020)

4. Tsai, Y.M., Cojean, T., Anzt, H.: Evaluating the performance of NVIDIA’s a100
Ampere GPU for sparse linear algebra computations (2020)

5. Pennycook, S., Sewall, J., Lee, V.: Implications of a metric for performance porta-
bility. Future Gener. Comput. Syst. 92, 947–958 (2019)

6. NVIDIA: NVIDIA HPC application performance. https://developer.nvidia.com/
hpc-application-performance. Accessed 17 May 2021

7. GROMACS (2020). http://www.gromacs.org. Accessed 17 May 2021
8. Kutzner, C., Páll, S., Fechner, M., Esztermann, A., de Groot, B.L., Grubmüller,

H.: More bang for your buck: improved use of GPU nodes for GROMACS 2018
(2019)

9. Case, D.A.: AMBER 2020. University of California, San Francisco (2020)
10. Matthes, D., Gapsys, V., de Groot, B.L.: Driving forces and structural determi-

nants of steric zipper peptide oligomer formation elucidated by atomistic simula-
tions. J. Mol. Biol. 421(2–3), 390–416 (2012)

11. Kutzner, C.: A free GROMACS benchmark set. https://www.mpibpc.mpg.de/
grubmueller/bench. Accessed 17 May 2021

12. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Com-
put. Phys. 117(1), 1–19 (1995). http://www.sciencedirect.com/science/article/pii/
S002199918571039X

13. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore perfor-
mance portability through polymorphic memory access patterns. J. Parallel Dis-
trib. Comput. 74(12), 3202–3216 (2014)

14. Thompson, A., Swiler, L., Trott, C., Foiles, S., Tucker, G.: Spectral neighbor anal-
ysis method for automated generation of quantum-accurate interatomic potentials.
J. Comput. Phys. 285, 316–330 (2015)

15. Cusentino, M.A., Wood, M.A., Thompson, A.P.: Explicit multielement extension
of the spectral neighbor analysis potential for chemically complex systems. J. Phys.
Chem. A 124(26), 5456–5464 (2020)

16. The MIMD Lattice Computation (MILC) Collaboration (2020). http://www.
physics.utah.edu/detar/milc. Accessed 17 May 2021

17. Clark, M., Babich, R., Barros, K., Brower, R., Rebbi, C.: Solving lattice QCD sys-
tems of equations using mixed precision solvers on GPUs. Comput. Phys. Commun.
181(9), 1517–1528 (2010)

18. NERSC (2020). https://github.com/lattice/quda/wiki/Running-the-NERSC-
MILC-Benchmarks. Accessed 17 May 2021

19. Phillips, J.C., et al.: Scalable molecular dynamics with NAMD. J. Comput. Chem.
26(16), 1781–1802 (2005)

20. You, Y., Hseu, J., Ying, C., Demmel, J., Keutzer, K., Hsieh, C.J.: Large-batch
training for LSTM and beyond. In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, SC 2019.
Association for Computing Machinery, New York (2019)

21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778
(2016)

https://developer.nvidia.com/hpc-application-performance
https://developer.nvidia.com/hpc-application-performance
http://www.gromacs.org
https://www.mpibpc.mpg.de/grubmueller/bench
https://www.mpibpc.mpg.de/grubmueller/bench
http://www.sciencedirect.com/science/article/pii/S002199918571039X
http://www.sciencedirect.com/science/article/pii/S002199918571039X
http://www.physics.utah.edu/detar/milc
http://www.physics.utah.edu/detar/milc
https://github.com/lattice/quda/wiki/Running-the-NERSC-MILC-Benchmarks
https://github.com/lattice/quda/wiki/Running-the-NERSC-MILC-Benchmarks

Optimizing HPC Procurements 331

22. Pauloski, J.G., Zhang, Z., Huang, L., Xu, W., Foster, I.T.: Convolutional neural
network training with distributed K-FAC. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
pp. 1–14 (2020)

23. MLCommons. https://www.mlperf.org. Accessed 17 May 2021
24. Komatitsch, D., Tromp, J.: Introduction to the spectral element method for three-

dimensional seismic wave propagation. Geophys. J. Int. 139(3), 806–822 (1999)
25. NVIDIA: SPECFEM3d globe GPU & software configurations from NVIDIA data

center. https://www.nvidia.com/en-sg/data-center/gpu-accelerated-applications/
specfem3d-globe/. Accessed 17 May 2021

26. Bowers, K.J., Albright, B.J., Yin, L., Bergen, B., Kwan, T.J.T.: Ultrahigh per-
formance three-dimensional electromagnetic relativistic kinetic plasma simulation.
Phys. Plasmas 15(5), 055703 (2008)

27. Bowers, K.J., et al.: Advances in petascale kinetic plasma simulation with VPIC
and Roadrunner. In: Journal of Physics: Conference Series, vol. 180, p. 012055,
July 2009

28. Byna, S., Sisneros, R., Chadalavada, K., Koziol, Q.: Tuning parallel I/O on blue
waters for writing 10 trillion particles. In: Cray User Group (CUG) 2015. Citeseer,
April 2015

29. Harrell, S.L., et al.: Effective performance portability. In: 2018 IEEE/ACM Interna-
tional Workshop on Performance, Portability and Productivity in HPC (P3HPC),
pp. 24–36 (2018)

30. Skamarock, W., et al.: A description of the advanced research WRF. NCAR Tech-
nical Notes (2018). https://opensky.ucar.edu/islandora/object/technotes:500

31. TQI: WRFg - GPU Accelerated WRF. https://wrfg.net/. Accessed 17 May 2021
32. The National Center for Atmospheric Research: CISL High-Performance Comput-

ing (HPC) Benchmarks (2010). https://www2.cisl.ucar.edu/hpc benchmarking

https://www.mlperf.org
https://www.nvidia.com/en-sg/data-center/gpu-accelerated-applications/specfem3d-globe/
https://www.nvidia.com/en-sg/data-center/gpu-accelerated-applications/specfem3d-globe/
https://opensky.ucar.edu/islandora/object/technotes:500
https://wrfg.net/
https://www2.cisl.ucar.edu/hpc_benchmarking

A Performance Analysis of Modern
Parallel Programming Models Using

a Compute-Bound Application

Andrei Poenaru(B) , Wei-Chen Lin, and Simon McIntosh-Smith(B)

Department of Computer Science, University of Bristol, Bristol, UK
{andrei.poenaru,cssnmis}@bristol.ac.uk

Abstract. Performance portability is becoming more-and-more impor-
tant as next-generation high performance computing systems grow
increasingly diverse and heterogeneous. Several new approaches to par-
allel programming, such as SYCL and Kokkos, have been developed in
recent years to tackle this challenge. While several studies have been
published evaluating these new programming models, they have tended
to focus on memory-bandwidth bound applications. In this paper we
analyse the performance of what appear to be the most promising mod-
ern parallel programming models, on a diverse range of contemporary
high-performance hardware, using a compute-bound molecular docking
mini-app.

We present miniBUDE, a mini-app for BUDE, the Bristol University
Docking Engine, a real application routinely used for drug discovery. We
benchmark miniBUDE on real-world inputs for the full-scale applica-
tion in order to follow its performance profile closely in the mini-app.
We implement the mini-app in different programming models targeting
both CPUs and GPUs, including SYCL and Kokkos, two of the more
promising and widely used modern parallel programming models. We
then present an analysis of the performance of each implementation,
which we compare to highly optimised baselines set using established
programming models such as OpenMP, OpenCL, and CUDA. Our study
includes a wide variety of modern hardware platforms covering CPUs
based on ×86 and Arm architectures, as well as GPUs.

We found that, with the emerging parallel programming models, we
could achieve performance comparable to that of the established models,
and that a higher-level framework such as SYCL can achieve OpenMP
levels of performance while aiding productivity. We identify a set of key
challenges and pitfalls to take into account when adopting these emerging
programming models, some of which are implementation-specific effects
and not fundamental design errors that would prevent further adoption.
Finally, we discuss our findings in the wider context of performance-
portable compute-bound workloads.

Keywords: Programming models · Performance portability ·
Performance analysis · Compute-bound benchmark

c© Springer Nature Switzerland AG 2021
B. L. Chamberlain et al. (Eds.): ISC High Performance 2021, LNCS 12728, pp. 332–350, 2021.
https://doi.org/10.1007/978-3-030-78713-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_18&domain=pdf
http://orcid.org/0000-0002-8748-0400
http://orcid.org/0000-0002-5312-0378
https://doi.org/10.1007/978-3-030-78713-4_18

A Performance Analysis of Modern Parallel Programming Models 333

1 Introduction

In High-Performance Computing (HPC), the majority of programs utilise estab-
lished, long-running parallel programming frameworks. OpenMP and MPI are
widely adopted [1], generally on top of the C and Fortran programming lan-
guages, and other frameworks are sometimes used in more specific situations,
such as task-based parallelism libraries, C++-native applications, or program-
ming models that can target GPUs [2].

Recent developments in parallel programming frameworks—be it frameworks
developed from scratch, such as Kokkos, or additions and improvements to exist-
ing ones, such as tasking and offload support in OpenMP 4.5 and later—have
all shared a number of common goals: performant support for a wide range
of hardware platforms, interoperability with modern versions of the C++ lan-
guage, and a focus on programmers’ productivity. These goals have organically
arisen as a result of the shortcomings in established programming models, and
together contribute to the wider endeavour in the field of HPC towards achieving
performance portability [3].

In order to support both GPU and CPU platforms, high-level programming
frameworks manage underlying data structures automatically: the programmer
expresses what data needs to be computed on, and the framework arranges it
in a format suitable for the target hardware. Because this process is desirable
but not always optimal, it is one of the key focuses of previous analyses of high-
level parallel programming models [4]. However, the portability and productivity
advantages alone brought by these frameworks may be enough to also justify
their usage on applications that are not memory-bandwidth-bound, provided
that they can deliver performance comparable to established frameworks.

One suitable application for such heterogeneous frameworks is the Bristol
University Docking Engine (BUDE), a molecular docking code that is heavily
compute-bound [5]. BUDE is routinely used for in silico drug discovery, and
out of a need to support both CPUs and GPUs, it is comprised of two parallel
implementations: an OpenMP version for CPUs and an OpenCL version for
GPUs. In this paper, we used a mini-app created from the core computation
kernel for BUDE to analyse the performance of emerging parallel programming
models compared to that of traditional models.

This paper makes the following contributions:

– Highly optimised implementations of the miniBUDE mini-app in six paral-
lel programming models: OpenMP (for CPU and offload), OpenCL, CUDA,
OpenACC, Kokkos, and SYCL;

– An analysis of the performance of each implementation on contemporary high-
performance processors from Intel, AMD, Fujitsu, Marvell, and NVIDIA;

– A discussion of the lessons learned from developing the miniBUDE bench-
mark, and their implications for other compute-bound workloads and the
wider HPC field.

334 A. Poenaru et al.

2 Background

2.1 High-Performance Molecular Docking

BUDE is an application for in silico molecular docking, a computational tech-
nique for predicting the structure of a complex formed between two molecules
and estimating the strength of their interaction [5]. Docking is computationally
challenging because of the many different ways in which two molecules may be
arranged together to form a complex (three translational and three rotational
degrees of freedom). Indeed, interacting all patches of the surface of one protein
molecule with all patches of a second molecule requires on the order of 107 trials,
each one of which is a computationally expensive operation [6].

The application includes several modes of operation, of which the most com-
monly used—and the most computationally intensive—is virtual screening. In
this mode, molecules of drug candidates, known as ligands, are generated using
a genetic algorithm and are bonded to a target protein molecule. BUDE uses a
tuned empirical free-energy forcefield to predict the binding energy of the lig-
and with the target. There are many ways in which this bonding could occur,
so a variety of positions and rotations of the ligand relative to the protein are
attempted; these are known as poses. For each pose, the energy, i. e. the strength,
of the bond is evaluated.

2.2 Modern Parallel Programming Models

In the previous decade, low-level programming models that offered the program-
mer great control over the hardware saw a rise in their usage. Their appeal of low
overhead and extensive tuning options made them popular with Graphics Pro-
cessing Units (GPU) programmers [7], but over the years the HPC community
has learned the cost these frameworks incur: they require extensive knowledge
of the hardware, and they steer towards over-optimisations for one target, up to
the point where a significant fraction of the code needs to be rewritten when
moving to a new system [8–10]. The latter observation is particularly relevant
in the context of the upcoming exascale systems Frontier, El Capitan, Aurora,
and Perlmutter, which together utilise combinations of CPUs from two vendors
and GPUs from three vendors [11,12]. It is, thus, not feasible to use platform-
or vendor-specific programming models, and a portable approach is needed.

In moving to new programming models, the C++ language has particular
appeal: it can achieve the same zero-overhead performance compared to C and
Fortran, but it also offers modern features to write more expressive and safer
code. Programmers writing parallel C++ hope to outweigh any lost performance
with time gained through easier-to-write and easier-to-debug code. This is the
core selling point of modern parallel programming frameworks [13].

Two modern, single-source frameworks with a focus on performance, porta-
bility, and productivity have emerged: Kokkos [14] and SYCL [15]. Kokkos is
a new framework developed natively for C++, while SYCL builds on previous
OpenCL toolchains and integrates them with modern C++ code. Both of these

A Performance Analysis of Modern Parallel Programming Models 335

frameworks can generate machine code for both CPUs and GPUs without any
change to the high-level source code.

These frameworks solve the same problem in different ways. Kokkos is dis-
tributed as source code that needs to be integrated into the application’s build
process. This means that every application using Kokkos needs to build Kokkos
itself—a relatively quick process—but it also avoids the pitfalls of system-wide
libraries; a C++ compiler is all that is needed to compile a Kokkos application.

In contrast, SYCL applications rely on a SYCL compiler. At the time of writ-
ing, there are three major SYCL compilers: Data-Parallel C++ (DPC++) [16],
ComputeCpp [17], and hipSYCL [18]. Each implementation can use different
backends: DPC++ can use OpenCL, CUDA, or Intel’s Level Zero; ComputeCpp
relies on OpenCL; and hipSYCL supports OpenMP to target CPUs, CUDA to
target NVIDIA GPUs, and ROCm to target AMD GPUs.

2.3 Performance Portability

In recent years, the HPC community has made efforts to understand how to
quantify performance portability. Although some formal metrics have been devel-
oped and are commonly applied in portability studies [19], the results are not
always trivial to interpret correctly [20]. One attempt to solve this challenge
relies on carefully designed visualisations [21].

Portability is a common concern for developers—and users—of modern pro-
gramming models. These make it more feasible to target several kinds of com-
pute devices simultaneously, which has led to a diverse landscape of architectures
being investigated in contemporary HPC research. As such, significant attention
to portability and programmer productivity is also given in recent studies that
evaluate the applicability of novel parallel frameworks [22,23].

3 Evaluation Methodology

3.1 A BUDE Mini-App

We have implemented a mini-app for BUDE virtual-screening runs, with ker-
nels written in a range of widely used parallel programming models. The base-
line implementation is written in OpenCL and is virtually identical to the core
kernel of the full-scale BUDE application. There is a CUDA port with mini-
mal changes, a CPU OpenMP version that restructures the computation in the
OpenCL kernel to make it easier for compilers to vectorise, and similar imple-
mentations for GPUs using OpenACC and OpenMP target offload. We chose
SYCL and Kokkos for implementations in novel programming models because
of their relative popularity and compatibility with a wide range of platforms,
covering both CPUs and GPU.

The focus of the mini-app is on the core computation, and so most of the plumb-
ing around it, such as flexible I/O and custom file formats, has been removed.
Instead of using a genetic algorithm to generate ligands, a procedure which
takes negligible time in a full-scale BUDE run, the mini-app uses pre-generated

336 A. Poenaru et al.

Table 1. Hardware platforms used for evaluation.

Platform Abbrev. Type Cores Clock speed Peak SP performance

Intel Skylake 8176 SKL CPU 2 × 28 2.1GHz 5,734 GFLOP/s

Intel Cascade Lake 6230 CXL CPU 2 × 20 2.1GHz 4,096 GFLOP/s

AMD Rome 7742 Rome CPU 2 × 64 2.25GHz 9,216 GFLOP/s

Marvell ThunderX2 TX2 CPU 2 × 32 2.5GHz 2,560 GFLOP/s

Fujitsu A64FX A64FX CPU 48 1.8GHz 5,530 GFLOP/s

NVIDIA V100 — GPU 80 1.13GHz 15,700 GFLOP/s

AMD Radeon VII — GPU 60 1.4GHz 13,800 GFLOP/s

Intel Iris Pro 580 — GPU 72 0.95GHz 1,094 GFLOP/s

molecules obtained from the full BUDE application. The main advantages of this
approach are that it simplifies the mini-app logic, it makes the results easier to
reproduce, and it allows for a built-in validation procedure by comparing mini-
app output against reference output from the full application. Thus, the mini-app
simply reads in a protein and a ligand, computes the bonding energies over a user-
defined number of poses, and compares them against a reference set. To enable
custom-length benchmarks, the mini-app can run several iterations of the same
ligand–protein combination instead of requiring a new ligand each time. The result
is a benchmark consisting of a few hundred lines of code for each implementation,
which is easy to understand, feasible to profile and analyse, has built-in validation,
requires no external libraries, and with a performance profile that maintains the
same important characteristics of the full application.

3.2 Performance Analysis

We analysed the performance of our mini-app on a range of modern HPC plat-
forms; Table 1 shows the systems used and their specifications. Where several
compilers could be used for the same programming model, we tested all the
options and picked the best-performing one in each case. We used aggressive
compiler optimisation flags to the level of -march=native -Ofast. Table 2 lists
the compilers used, the parallel programming frameworks supported by each,
and any platform targetting restrictions they have.

We collected performance data using industry-standard tools. On CPU plat-
forms, we accessed hardware counters through the built-in Linux perf tool, and
collected application-level profiles with Cray Perftools; on GPUs, we used the
NVIDIA CUDA profiler and the OpenCL Intercept Layer. We obtained peak
memory bandwidth figures using BabelStream [24] and the University of Bris-
tol’s HPC Group’s cache-bandwidth measurement tool [25].

We used two input decks to benchmark the application: a small input set,
consisting of 26 ligands, and a large set, with 2672 ligands. The former takes
around 0.5 s to run on a contemporary dual-socket-CPU HPC system, while the
latter takes around 1.5 min. In both cases, we ran 8 iterations of the algorithm
and we computed 216 poses per iteration. We utilised all the available cores on

A Performance Analysis of Modern Parallel Programming Models 337

Table 2. Compilers used and their programming model and target platform support.

Compiler CPUs GPUs Frameworks

skmX3.2CCOA
mM0.11PMOA

Arm Compiler 21.0 R m k s
ComputeCpp 2.1.1 X I m k s
Cray Compiler 10.0 R X N a1 m k s
Fujitsu Compiler 4.3 R m k s
GCC 10.3 R X M N a l m k s
Intel ICX 2019 X m k2 s
Intel DPC++ 2021.1 X N m k s
LLVM 11.0 R X N m k s
NVCC 10.2 N c
PGI 19.10 N a

CPUs: ARM, X86; GPUs: AMD, NVIDIA, INTEL
Frameworks: cuda, openacc, opencl, openmp, kokkos, sycl

1 Version 9.0 only; 2 With the experimental INTEL GEN backend.

each platform, using a single thread per core on all the CPU platforms; where
available, using more than a single thread per core did not improve performance.
A warm-up iteration was always run before the timers were started.

There was very little run time variability in miniBUDE. Even on the small
input set, when individual iterations take less than 100 ms, variance was only
fractions of a percent. This was true for both CPU and GPU implementations, as
long as care is taken to bind threads correctly, especially when two interacting
systems are present, e. g. OpenMP’s OMP PROC BIND and Cray’s aprun. There
was one exception to this observation, which we addressed in Sect. 5.

4 Results and Performance Analysis

4.1 CPUs

OpenMP. The OpenMP implementation was written in plain C, without any
higher-level framework, and was optimised for CPU platforms. We expected
thisversion to incur the least overhead and thus perform fastest on the CPU. As

338 A. Poenaru et al.

we will see in this section, OpenMP did offer the best performance on CPUs in
most cases, but higher-level implementations were sometimes able to match it.

Parallelism is exposed through OpenMP at two levels: poses are distributed
between threads, and the calculations for each pose take advantage of each
thread’s SIMD lanes. Thread-level parallelism is achieved by dividing the poses
into groups and then distributing the groups over threads; this creates an exe-
cution model similar to OpenCL workgroups, where each thread iterates over
its assigned poses. The size of the group of poses is specified as a compile-time
parameter.

We found that the group size had significant impact on the performance of
the OpenMP implementation of miniBUDE. On each platform, this parameter
should be at least as large as the native vector length, such that all the SIMD
lanes are utilised for computation, but we found that most platforms achieved
the best performance at group sizes several times larger than the native vector
length. This happened because compilers were able to fully unroll the inner
thread loops. As such, the group size is not only a vectorisation factor, but also
an unroll factor, and higher values allowed platforms to fully exploit their out-of-
order resources by interleaving several (unrolled) loop iterations. Furthermore,
a small part of the arithmetic can be factored out and computed only once per
work group, resulting in additional computation time savings. Figure 1 shows
the impact of the group size parameter on performance for each platform.

The other defining factor for the performance of the OpenMP implementa-
tion is vectorisation. In order to maintain portability, no architecture-specific
intrinsics are used; we rely on compiler auto-vectorisation. The code is struc-
tured such that vectorisation is required at the innermost level, which allowed
all compilers tested to vectorise the main computation. The Cray and Intel com-
pilers successfully vectorised all the loops in the code, while GCC and the Arm
compiler did not understand the structure of one do-while loop and so did not
vectorise it. This last loop, however, is not critical for performance.

The compilers further differed in their instruction choice and scheduling. On
the Intel platforms, only the Cray compiler generated 512-bit vector code by
default. Because this code is compute-heavy, long vectors greatly benefit perfor-
mance, and forcing the Intel and GNU compilers to generate 512-bit operations—
instead of their 256-bit default—significantly reduced the run time. In addition,
the Intel and Cray compilers automatically interleaved the loop bodies, thus
overlapping arithmetic and memory operations from different iterations.

On the other hand, GCC only unrolled the loops, without interleaving, and
so instructions for each iteration were scheduled sequentially. This lowered the
achieved performance on the platforms with fewer out-of-order resources, such
as the A64FX, which performed slower than a ThunderX2, even though the
former has 4× the vector width of the latter. The Fujitsu compiler, which has a
good cost model of the A64FX and performs aggressive software pipelining and
division optimisation, generates the fastest code in this case. Figure 2 shows the
performance of the OpenMP implementation on the CPU platforms across the
compilers tested.

A Performance Analysis of Modern Parallel Programming Models 339

Fig. 1. Performance of the OpenMP implementation at different group sizes, nor-
malised to the best result on each platform. Platforms are labelled using the abbre-
viations in Table 1 and the number of cores. Higher numbers, shown here in brighter
colours, correspond to higher performance.

Figure 3 shows a roofline chart of the Cascade Lake platform. The OpenMP
implementation of miniBUDE has an operational intensity of 0.3 and achieved a
performance of 2301 GFLOP/s, which represents 56.2% of the platform’s peak.
The application sits directly below the arithmetic roof and above the memory
bandwidth bound, confirming the code is compute-bound. For the purposes of
the roofline model, FLOPs and memory traffic (assuming caching as per the
cache-aware roofline model) were manually counted in the application’s source
code and corroborated using hardware counters.

Kokkos. The Kokkos implementation is a direct port of the OpenMP version,
with parallelism expressed via the idiomatic Kokkos::parallel for function.
We retained the group size parameter to investigate the effects of unrolling,
and we found that it had the same effect as in the case of OpenMP, and the
same values were optimal on each platform. Like the OpenMP version, Kokkos
does not offer built-in types for vectors and functions to use with them. From
a productivity standpoint, it may be preferable for the framework and runtime
to provide optimised versions of common math types and functions, so that
compilers can better optimise code with the correct constraints. This is especially
important for parallel frameworks that can target different backends—as Kokkos

340 A. Poenaru et al.

Fig. 2. Performance of the OpenMP implementation across systems and compilers.
Higher numbers represent faster execution.

does—where each platform can have its own unique requirements, e. g. alignment
on specific boundaries.

Kokkos was able to provide complete platform support in our study by virtue
of being able to utilise many different programming frameworks as backends.
Because a C++ compiler is the only requirement to build a Kokkos application,
and because Kokkos itself is built as part of the same process, we can compare
the relative performance on the platforms studied when using different compil-
ers. Figure 4 shows a performance comparison on each CPU platform, where
Kokkos uses the OpenMP backend, normalised to the fastest result. The results
shows a strong correlation compared to the OpenMP implementation results
described in Sect. 4.1, which shows Kokkos is using OpenMP efficiently on all
the architectures.

SYCL. The SYCL implementation was written in idiomatic SYCL 1.2.1. The
kernel is a direct port of the OpenCL version, utilising workgroup-based par-
allelism (sycl::nd range) with few changes required. We retained the existing
GPU-friendly optimisations from the OpenCL kernel where data is first copied
to local memory via OpenCL’s async work group copy. Due to SYCL’s roots
in OpenCL, the APIs used for implementing these operations are identical both
in name and semantics. We were even able to retain the use of 3d vector types
which corresponds to the cl vec3 in OpenCL.

A Performance Analysis of Modern Parallel Programming Models 341

Fig. 3. Cache-aware roofline for the Cascade Lake platform showing the achieved per-
formance for miniBUDE.

For comparison, we also implemented a separate kernel that is closer to the
OpenMP implementation, where parallelism is achieved with flat parallel for
calls based on sycl::range. Although in theory plain range may be easier to
map onto the hardware than nd range, we found the performance difference
between the two implementations to be negligible (below 2%).

Figure 5 shows the performance of all SYCL implementations on the plat-
forms tested where at least two implementations were supported. On each plat-
form, performance is normalised to the fastest implementation. For hipSYCL
on the x86-based platforms, we tried all the compilers available and picked the
one that produced the fastest binary, which was Cray on both Cascade Lake
and Rome. The Skylake platform is missing from these results because an incor-
rect interaction between the Intel OpenCL driver installed on the system and
the Cray aprun launcher resulted in all threads being pinned to a single core,
effectively invalidating the results obtained with the two implementations that
reply on OpenCL, OneAPI and ComputeCpp. On the V100 and the Radeon VII,
hipSYCL is the only usable SYCL implementation.

342 A. Poenaru et al.

Fig. 4. Performance of Kokkos with the OpenMP backend on the test platforms. Higher
numbers represent faster execution.

4.2 GPUs

Low-Level: OpenCL and CUDA. The OpenCL implementation is a close
representation of the main kernel in the full-scale application, with the modifi-
cations presented in Sect. 3.1; the CUDA implementation is a direct port of the
OpenCL version. The two versions performed similarly on the NVIDIA V100
GPU: the CUDA implementation was 18% faster than the OpenCL code, on
both the small and the large input decks. The performance difference was evenly
spread across the execution of the program: all the kernels were slightly slower
when using OpenCL. Memory transfers are not timed for the purposes of the
benchmark, and they take negligible time (<1% of the total run time). All of the
benchmarks were run on CUDA Toolkit 10.2 running on NVIDIA driver version
440.64, so the difference likely came from more optimisation on the CUDA side
of the NVIDIA library.

Both versions also ran on the AMD Radeon VII, converting the CUDA ver-
sion through HIP, but OpenCL was 1.6× faster on this platform. Since the kernel
code for both implementations was very similar, we attributed the performance
difference to inefficiencies in AMD’s HIP compiler. CUDA and HIP cannot be
used on the Intel GPU.

Directives-Based: OpenMP Offload and OpenACC. The directive-based
GPU implementations run the same kernel code in the OpenCL implementation,
but expressed in the same C file as the host application and without any of
the explicit OpenCL platform set-up and clean-up code. This is a significant
advantage for productivity: given host code, only three pragma directives are

A Performance Analysis of Modern Parallel Programming Models 343

Fig. 5. Relative performance of SYCL implementations, on the platforms where more
than one was available. Higher numbers represent faster execution.

used to transfer the data to the GPU and generate GPU kernel code. The main
difference from the OpenCL version is that the global and local sizes aren’t set
by the programmer, but are controlled by the runtime. To control the amount
of computation per workgroup, the directives-based implementations include a
macro to control loop unrolling, similarly to the CPU OpenMP implementation.

The implementations achieved virtually identical performance on the V100.
This was expected, because the same CUDA-based backend is used to generate
code for both frameworks. Compiler support, however, differs between the two:
the OpenMP code can use the latest versions of the Cray and GNU compilers,
but the OpenACC version could only be compiled with an older version of the
Cray compiler (9.0). The GNU and PGI compilers produced non-working code
for OpenACC, and newer versions of CCE have dropped support for it.

On the V100, the directives-based approach showed about 0.4× the perfor-
mance of the optimised CUDA code. This is the combined result of inefficiencies
we identified in two places: 1) high register usage in the kernels generated by the
compiler limits the maximum achievable GPU occupancy; 2) lower performance
of library functions. This difference is higher than what has been observed in
previous studies [4], and is likely exacerbated by the heavily compute-bound
nature of miniBUDE.

On the Radeon, OpenACC can be compiled with GNU, but the resulting code
was two orders of magnitude slower than OpenMP, which in turn only reached
0.3× the performance of the fastest model, OpenCL. The low-level nature of
OpenCL allowed the code to map very well onto the target hardware, a perfor-
mance which the GNU offload maths libraries could not match.

344 A. Poenaru et al.

On the Intel GPU, OpenMP target reached only 0.2−0.3× the performance
of the fastest model, which in this case was SYCL. Although SYCL uses the
same drivers as OpenCL on this platform, in this case the OneAPI compiler
was better able to extract performance from the hardware when starting from
higher-level, more expressive programming model. The OpenCL implementation
was developed with HPC GPUs in mind, and while with code changes specific to
the Intel GPU architecture it should be possible to reach the same performance
with a low-level OpenCL implementation, this result highlights the productivity
benefit of the higher-level programming model when targetting several platforms
simultaneously, as long as the model is well-supported on all the targets.

High-Level: Kokkos and SYCL. Kokkos and SYCL both run on all the GPUs
studied, but only one implementation, hipSYCL, runs on AMD and NVIDIA.
The code run on the GPU platforms was unchanged from the version run on
CPUs, not even to define different parallelism, as was the case when moving
from CPU OpenMP to OpenMP target offload.

Figure 6 shows the results on the GPU platforms for all programming models
studied. The three GPUs each target different segments: the V100 is a top-end
HPC GPU, the Radeon VII is a high-end consumer GPU, and the Iris Pro is
a mobile chip designed for a very constrained power and transistor budget. A
direct performance comparison between such different platforms is not useful;
instead, we present programming model performance normalised to the fastest
result on each platform. In absolute figures, the best result on the V100 (CUDA)
was twice as fast than the best on the Radeon VII (OpenCL) and 14× faster
than the best Iris Pro 580 result (OneAPI SYCL).

5 Towards Portable High-Performance Code

Section 4 has analysed the performance of the miniBUDE implementations on
the platforms studied, but the implications of these results are further-reaching.
Figure 7 aggregates the performance results over all the platforms and program-
ming models and highlights that no programming model can currently achieve
optimal performance on all platforms.

This effect is more pronounced on GPUs: each of the three platforms studied
achieved the highest performance using a different programming model, and
they relied on parameter tuning to do so. This immediately imposes a penalty
when moving to a new platform, at which point at the very least tuning needs
to be redone. In the worse case, low-level frameworks can trap users into code so
specific to one platform that a major rewrite is needed when changing targets.
However, OpenCL was the fastest model on the Radeon VII and a close second
on the other two GPUs studied, suggesting that is may still be the best choice
for good performance portability.

A Performance Analysis of Modern Parallel Programming Models 345

Fig. 6. Performance of the GPU implementations, normalized to the fastest result on
each platform. The fastest model on each platform is labelled explicitly.

Higher-level programming models avoid this issue of over-specialisation of the
code, instead relying on being able to translate the high-level code to efficient
machine code as part of the framework. Kokkos is a good example of this: on
the CPU platforms it achieves performance close to that of OpenMP, and both
frameworks require similarly small amounts of framework-specific code, which
consists mostly of loop annotations. The same Kokkos code is able to run on both
CPUs and GPUs, and on the platforms studied it again achieved performance
similar to that of OpenMP, but without any source changes; with OpenMP,
a different version of the code was written for GPUs. Kokkos was the only
framework that was able to support all CPU and GPU platforms in one package.

The SYCL landscape is rapidly evolving, and indeed the new SYCL 2020
standard—which is already being adopted by the three main implementations—
brings much-needed productivity improvements such as built-in reduction sup-
port and alignment with the newer C++17 standard [26]. However, at the time
of writing there are still rough edges to the current SYCL compilers, mainly
around platform support fragmentation. First, support for non-GPU or non-x86
platforms is experimental, or even missing from some implementations. Even for
GPUs, there is no single implementation that works across all the hardware from
the major vendors.

346 A. Poenaru et al.

Fig. 7. Achieved performance across all programming models, normalised to the fastest
result on each platform. Lighter colours correspond to higher relative performance;
blank cells are impossible results.

The open-source hipSYCL implementation is the most portable of the set,
being able to run on CPUs, as well as on NVIDIA and AMD GPUs. Both
ComputeCpp and OneAPI provide experimental NVIDIA GPU support, but
there are still blocking issues such as missing built-in function implementations,
which prevent miniBUDE from compiling. Finally, running SYCL on Intel GPUs
requires Intel’s OpenCL-based ComputeRuntime, but only ComputeCpp and
OneAPI support this mode of operation.

The situation on CPUs is similarly complicated. For x86-based platforms,
both ComputeCpp and OneAPI run on top of the Intel OpenCL runtime, simi-
lar to the situation on Intel GPUs. The OpenCL runtime achieves parallelism via
Intel’s OneAPI Threading Building Blocks (OneTBB), which provides an opti-
mised abstraction for managing logical threads. Such runtime approaches limit
the extent of SYCL implementations to what the underlying runtime supports,
from platform coverage to features it can provide; this currently prevents the
use of ComputeCpp or OneAPI on Arm-based platforms.

On the other hand, hipSYCL translates SYCL abstractions to OpenMP code,
which can then take advantage of existing compiler optimisations natively. This
approach results in wide platform support for hipSYCL, but it also means, in
principle, that parallelism abstractions are mapped to straightforward OpenMP
equivalents. In practice, we found that performance was lower with hipSYCL
compared to Kokkos or plain OpenMP, and code changes such as using different

A Performance Analysis of Modern Parallel Programming Models 347

parallelism abstractions made little difference for miniBUDE. On platforms not
explicitly supported by hipSYCL, as was the case of the A64FX at the time
of writing, the additional layer of abstraction also prevented optimal code from
being generated, despite having used the correct C++ compiler target flag.

Portability between CPUs and GPUs remains a concern, as SYCL has inher-
ited the same set of problems seen when running OpenCL on the CPU: it is
problematic to map workgroup-based parallelism onto a CPU intuitively and
efficiently, and it suffers from unexpected setup costs compared to the OpenMP
implementation. To work around potentially inefficient mapping, we imple-
mented a compile-time tuning parameter to adjust the amount of work per-
formed by each workgroup, though we found no common setting that provided
the best performance on all platforms. On platforms that use Intel’s OpenCL
runtime, i. e. ComputeCpp and OneAPI, we found the kernel runtime to have
large variations, and no functionality was provided to address or mitigate this. In
particular, investigations revealed that initialisation of the SYCL context—the
queue—took upwards of 800 ms in certain cases, even for a simple benchmark
that itself ran in half that time.

We also discovered that when running several iterations of a benchmark
back-to-back, the first run was usually up to 2× slower than subsequent runs.
It was essential to implement a “warm-up” run, which is completely discarded,
before starting the timer on the benchmark. Once the warm-up run was com-
pleted, the remaining iterations showed consistent run times, as with the other
programming models. Both ComputeCpp and OneAPI compile SYCL kernels
ahead-of-time, and neither give any indication why initialisation imposes such a
large overhead; it is most likely an interaction with the underlying driver. Imple-
mentations that do not use the Intel OpenCL runtime, e. g. hipSYCL, did not
incur this performance penalty.

6 Future Work

This study opens the path to additional work on the full-scale BUDE appli-
cation. Instead of maintaining separate implementations in OpenCL for GPUs
and OpenMP for CPUs, the code could incorporate a framework like SYCL or
Kokkos to reduce divergence. Of course, embracing a new programming model
for a scientific application is bound to encounter additional challenges, but in
solving those the boundary of performance portability will be pushed further.
A higher-level language undoubtedly benefits the ease of maintaining an appli-
cation, but the higher the price that needs to be paid in terms of performance,
the less eager developers are be to adopt it. A targeted investigation using the
full application, one with more focus on productivity and software development
practices, could reveal if this trade-off would be beneficial for BUDE.

In addition, Kokkos is constantly expanding its support for existing program-
ming models as parallelism backends, thus further increasing its reach on plat-
forms: a SYCL backend is being added, while the existing—but experimental—
OpenMP target and HIP backends begin to mature. A future study could revisit

348 A. Poenaru et al.

the performance of hand-tuned, low-level kernels versus implementations using
future Kokkos versions.

7 Reproducibility

The source code for all the miniBUDE implementations used in this study, as
well as build and run instructions and benchmark input cases, can be found
online1. A set of scripts is also provided to build and run the benchmark on the
platforms used in this study2.

8 Conclusion

In this paper we have explored performance portability through the lens of
a simple, yet realistic, compute-bound benchmark. We have implemented the
benchmark in several programming models, including low- and high-level, both
well-established and up-and-coming. We have shown that modern programming
models can perform on-par with traditional ones, and with constant work done
to improve them, their platform support continues to grow.

On the other hand, we have seen that true performance portability is still out
of reach: no single version of the code achieved the best performance—or a high
fraction of it—on all the platforms studied. Even for a small kernel, platform-
specific optimisations and empirical tuning of parameters accounted for more
than 30% of the performance and that was enough to differentiate the best-
performing implementation from the rest. On GPUs, low-level APIs continue to
provide the highest possible performance, and on CPUs, the still-immature driver
and implementation ecosystem around SYCL presents an obstacle to the wide
adoption of this programming model as a true cross-platform, cross-architecture
framework. Of the frameworks studied, Kokkos emerged as a reliable choice, with
its lightweight, optimised implementation, and OpenMP remains in a strong
position due to it widespread support, although different code paths are still
needed for optimal CPU and GPU implementations at the time of writing.

Acknowledgement. The authors would like to thank Si Hammond at Sandia
National Laboratories for providing short-notice results for the A64FX platform. Thank
you to James Price and Matt Martineau for their original contributions towards opti-
mised OpenMP, OpenCL, and CUDA implementations of the BUDE kernel. This study
would not have been possible without previous work by the developers of the Bristol
University Docking Engine: Richard Sessions, Deborah Shoemark, and Amaurys Avila
Ibarra.

This work used the Isambard UK National Tier-2 HPC Service (https://gw4.ac.
uk/isambard/) operated by GW4 and the UK Met Office, and funded by EPSRC
(EP/T022078/1). Access to the Cray XC50 supercomputer Swan was kindly provided

1 https://github.com/UoB-HPC/miniBUDE.
2 https://github.com/UoB-HPC/performance-portability/tree/2021-benchmarking/

benchmarking/2021/bude.

https://gw4.ac.uk/isambard/
https://gw4.ac.uk/isambard/
https://github.com/UoB-HPC/miniBUDE
https://github.com/UoB-HPC/performance-portability/tree/2021-benchmarking/benchmarking/2021/bude
https://github.com/UoB-HPC/performance-portability/tree/2021-benchmarking/benchmarking/2021/bude

A Performance Analysis of Modern Parallel Programming Models 349

through the Cray Marketing Partner Network. Work in this study was carried out using
the HPC Zoo, a research cluster run by the University of Bristol HPC Group (https://
uob-hpc.github.io/zoo/).

References

1. Laguna, I., et al.: A large-scale study of MPI usage in open-source HPC appli-
cations. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2019. Association for Com-
puting Machinery, Denver (2019). https://doi.org/10.1145/3295500.3356176. ISBN
9781450362290

2. Bernholdt, D.E., et al.: A survey of MPI usage in the US exascale computing
project. Concurr. Comput. Pract. Exp. 32(3), e4851 (2020)

3. Deakin, T., et al.: Performance portability across diverse computer architectures.
In: 2019 IEEE/ACM International Workshop on Performance, Portability and Pro-
ductivity in HPC (P3HPC). IEEE, Denver, pp. 1–13, November 2019. https://doi.
org/10.1109/P3HPC49587.2019.00006. ISBN 978-1-72816-003-0

4. Deakin, T., et al.: Tracking performance portability on the yellow brick road to
exascale. In: 2020 IEEE/ACM International Workshop on Performance, Portability
and Productivity in HPC (P3HPC), Atlanta, GA, USA, p. 13. In press

5. McIntosh-Smith, S., et al.: High performance in silico virtual drug screening on
many-core processors. Int. J. High Perf. Comput. Appl. 29(2), 119–134 (2015).
https://doi.org/10.1177/1094342014528252

6. Cherfils, J., Janin, J.: Protein docking algorithms: simulating molecular recogni-
tion. Current Opinion Struct. Biol. 3(2), 265–269 (1993). https://doi.org/10.1016/
S0959-440X(05)80162-9. ISSN 0959–440X

7. Fuchs, A., Wentzla, D.: The accelerator wall: limits of chip specialization. In:
2019 IEEE International Symposium on High Performance Computer Architec-
ture (HPCA), pp. 1–14 (2019). https://doi.org/10.1109/HPCA.2019.00023

8. Price, J., McIntosh-Smith, S.: Exploiting auto-tuning to analyze and improve per-
formance portability on many-core architectures. In: Kunkel, J.M., Yokota, R.,
Taufer, M., Shalf, J. (eds.) ISC High Performance 2017. LNCS, vol. 10524, pp.
538–556. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67630-2 38

9. Katz, M.P., et al.: Preparing nuclear astrophysics for exascale. In: The International
Conference for High Performance Computing, Networking, Storage, and Analysis
(SC 2020), Atlanta, GA, USA, November 2020, in press

10. Siegel, A.: ECP: lessons learned in porting complex applications to accelerator-
based systems. Presentation, Atlanta, GA, USA (2020)

11. Heroux, M.A., et al.: ECP software technology capability assessment report-public.
Technical report, NNSA, p. 200 (2020)

12. Lambert, J., et al.: CCAMP: an integrated translation and optimization frame-
work for OpenACC and OpenMP. In: The International Conference for High Per-
formance Computing, Networking, Storage, and Analysis (SC 2020), Atlanta, GA,
USA, November 2020, in press

13. Mills, R.T., et al.: Toward performance-portable PETSc for GPU-based exascale
systems. In: arXiv preprint arXiv:2011.00715 (2020)

14. Carter Edwards, H., Trott, C.R.: Kokkos: enabling performance portability across
manycore architectures. In: Extreme Scaling Workshop (XSW 2013). IEEE, pp.
18–24 (2013)

https://uob-hpc.github.io/zoo/
https://uob-hpc.github.io/zoo/
https://doi.org/10.1145/3295500.3356176
https://doi.org/10.1109/P3HPC49587.2019.00006
https://doi.org/10.1109/P3HPC49587.2019.00006
https://doi.org/10.1177/1094342014528252
https://doi.org/10.1016/S0959-440X(05)80162-9
https://doi.org/10.1016/S0959-440X(05)80162-9
https://doi.org/10.1109/HPCA.2019.00023
https://doi.org/10.1007/978-3-319-67630-2_38
http://arxiv.org/abs/2011.00715

350 A. Poenaru et al.

15. Hammond, J.R., Kinsner, M., Brodman, J.: A comparative analysis of Kokkos and
SYCL as heterogeneous, parallel programming models for C++ applications. In:
Proceedings of the International Workshop on OpenCL, IWOCL 2019. Associa-
tion for Computing Machinery, Boston (2019). https://doi.org/10.1145/3318170.
3318193. ISBN 9781450362306

16. Intel: Intel R© oneAPI: A Unied X-Architecture Programming Model (2020).
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html.
Accessed 16 Dec 2020

17. Codeplay Software: ComputeCPP. https://developer.codeplay.com/products/
computecpp/ce/home. Accessed 16 Dec 2020

18. Alpay, A., Heuveline, V.: SYCL beyond OpenCL: the architecture, current state
and future direction of HipSYCL. In: Proceedings of the International Workshop
on OpenCL. Association for Computing Machinery, Munich (2020). https://doi.
org/10.1145/3388333.3388658. ISBN 9781450375313

19. Harrell, S.L., et al.: Effective performance portability. In: 2018 IEEE/ACM Interna-
tional Workshop on Performance, Portability and Productivity in HPC (P3HPC),
pp. 24–36 (2018). https://doi.org/10.1109/P3HPC.2018.00006

20. Pennycook, S.J., Sewall, J.D., Lee, V.W.: Implications of a metric for performance
portability. Future Gener. Comput. Syst. 92, 947–958 (2019). https://doi.org/10.
1016/j.future.2017.08.007. ISSN 0167–739X

21. Sewall, J., et al.: Interpreting and visualizing performance portability metrics. In:
2020 IEEE/ACM International Workshop on Performance, Portability and Pro-
ductivity in HPC (P3HPC), Atlanta, GA, USA (2020, in Press)

22. Deakin, T., McIntosh-Smith, S.: Evaluating the performance of HPCStyle SYCL
applications. In: Proceedings of the International Workshop on OpenCL, IWOCL
2020. Association for Computing Machinery, Munich (2020). https://doi.org/10.
1145/3388333.3388643. ISBN 9781450375313

23. Lin, W.-C., Deakin, T., McIntosh-Smith, S.: On measuring the maturity of SYCL
implementations by tracking historical performance improvements. In: Proceed-
ings of the International Workshop on OpenCL, IWOCL 2020. Association for
Computing Machinery (2021, in Press)

24. Deakin, T., Price, J., Martineau, M., McIntosh-Smith, S.: GPU-STREAM v2.0:
benchmarking the achievable memory bandwidth of many-core processors across
diverse parallel programming models. In: Taufer, M., Mohr, B., Kunkel, J.M. (eds.)
ISC High Performance 2016. LNCS, vol. 9945, pp. 489–507. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46079-6 34

25. Martineau, M., Atkinson, P., McIntosh-Smith, S.: Benchmarking the NVIDIA V100
GPU and tensor cores. In: Mencagli, G., et al. (eds.) Euro-Par 2018. LNCS, vol.
11339, pp. 444–455. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
10549-5 35

26. Reyes, R., et al.: SYCL 2020: more than meets the eye. In: Proceedings of
the International Workshop on OpenCL, IWOCL 2020. Association for Comput-
ing Machinery, Munich (2020). https://doi.org/10.1145/3388333.3388649. ISBN
9781450375313

https://doi.org/10.1145/3318170.3318193
https://doi.org/10.1145/3318170.3318193
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html
https://developer.codeplay.com/products/computecpp/ce/home
https://developer.codeplay.com/products/computecpp/ce/home
https://doi.org/10.1145/3388333.3388658
https://doi.org/10.1145/3388333.3388658
https://doi.org/10.1109/P3HPC.2018.00006
https://doi.org/10.1016/j.future.2017.08.007
https://doi.org/10.1016/j.future.2017.08.007
https://doi.org/10.1145/3388333.3388643
https://doi.org/10.1145/3388333.3388643
https://doi.org/10.1007/978-3-319-46079-6_34
https://doi.org/10.1007/978-3-030-10549-5_35
https://doi.org/10.1007/978-3-030-10549-5_35
https://doi.org/10.1145/3388333.3388649

Analytic Modeling of Idle Waves
in Parallel Programs: Communication,
Cluster Topology, and Noise Impact

Ayesha Afzal1,2(B), Georg Hager1, and Gerhard Wellein1,2

1 Erlangen National High Performance Computing Center, 91058 Erlangen, Germany
{ayesha.afzal,georg.hager,gerhard.wellein}@fau.de

2 Department of Computer Science, University of Erlangen-Nürnberg,
91058 Erlangen, Germany

Abstract. Most distributed-memory bulk-synchronous parallel pro-
grams in HPC assume that compute resources are available continuously
and homogeneously across the allocated set of compute nodes. How-
ever, long one-off delays on individual processes can cause global distur-
bances, so-called idle waves, by rippling through the system. This pro-
cess is mainly governed by the communication topology of the underlying
parallel code. This paper makes significant contributions to the under-
standing of idle wave dynamics. We study the propagation mechanisms
of idle waves across the processes of MPI-parallel programs. We present
a validated analytic model for their propagation velocity with respect
to communication parameters and topology, with a special emphasis on
sparse communication patterns. We study the interaction of idle waves
with MPI collectives and show that, depending on the implementation, a
collective may be permeable to the wave. Finally we analyze two mecha-
nisms of idle wave decay: topological decay, which is rooted in differences
in communication characteristics among parts of the system, and noise-
induced decay, which is caused by system or application noise. We show
that noise-induced decay is largely independent of noise characteristics
but depends only on the overall noise power. An analytic expression for
idle wave decay rate with respect to noise power is derived. For model
validation we use microbenchmarks and stencil algorithms on three dif-
ferent supercomputing platforms.

1 Introduction

1.1 Idle Waves in Barrier-Free Bulk-Synchronous Parallel Programs

Parallel programs with alternating computation and communication phases and
without explicit synchronization are ubiquitous in high performance comput-
ing. In theory, when running on a clean, undisturbed system and lacking any
load imbalance or other irregularities, such applications should exhibit a regular
lockstep pattern. In practice, however, a variety of perturbations prevent this:
system and network noise, application imbalance, and delays caused by one-off
events such as administrative jobs, message re-transmits, I/O, etc. Among all
c© Springer Nature Switzerland AG 2021
B. L. Chamberlain et al. (Eds.): ISC High Performance 2021, LNCS 12728, pp. 351–371, 2021.
https://doi.org/10.1007/978-3-030-78713-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_19&domain=pdf
https://doi.org/10.1007/978-3-030-78713-4_19

352 A. Afzal et al.

of these, long one-off events have the most immediate impact on the regular
compute-communicate pattern. They cause periods of idleness in the process
where they originated, but via inter-process dependencies they “ripple” through
the system and can thus impact all other processes as well. In massively parallel
programs, delays can occur anytime, impeding the performance of the applica-
tion. On the other hand, idle waves may also initiate desynchronization among
processes, which is not necessarily disadvantageous since it can lead to automatic
communication overlap [3].

The speed and overall characteristics of idle wave propagation have been the
subject of some scrutiny [3,4,12], but a thorough analytical understanding of
their dynamics with respect to the communication topology of the underlying
parallel code is still lacking. There is also no investigation so far of the interaction
of idle waves with global operations such as reductions, and how the system’s
hardware topology and the particular characteristics of system noise impact
the decay of idle waves. These topics will be covered by the present work. We
restrict ourselves to process-scalable scenarios, i.e., where multiple MPI processes
running on a hardware contention domain (such as a memory interface or a
shared out-level cache) do not feel scalability loss due to hardware bottlenecks.

1.2 Related Work

Noise has been studied for almost two decades. A large part of the work focuses
on sources of noise outside of the control of the application and explores the
influence of noise on collective operations [6,9,13]. However, it lacks coverage of
pair-wise communication and the interaction of noise with idle periods, which
are common in distributed-memory parallel codes. Gamell et al. [7] noted the
emergence of idle periods in the context of failure recovery and failure masking
of stencil codes. Markidis et al. [12] used a LogGOPS simulator [9] to study idle
waves and postulated a linear wave equation to describe wave propagation.

Afzal et al. [1–4] were the first to investigate the dynamics of idle waves,
(de)synchronization processes, and computational wavefront formation in paral-
lel programs with core-bound and memory-bound code, showing that nonlinear
processes dominate there. Our work builds on theirs to significantly extend it for
analytic modeling with further influence factors, such as communication topol-
ogy, communication concurrency, system topology and noise structure.

Significant prior work exists on the characterization of noise and the influence
of noise characteristics on performance of systems. Ferreira et al. [6] noted that
HPC applications with collectives can often absorb substantial amounts of high-
frequency noise, but tend to be affected by low-frequency noise. Agarwal et al. [5]
found noise properties to matter for the scalability of collectives, comparing dif-
ferent distributions (exponential, heavy tail, Bernoulli). Hoefler et al. [10] used
their LogGOPS-based simulator and studied both point-to-point (P2P) and col-
lective operations. They found that application scalability is mostly determined
by the noise pattern and not the noise intensity. In the context of idle wave
propagation and decay, the present work finds that the noise intensity is the
main influence factor rather that its detailed statistics.

Analytic Modeling of Idle Waves in Parallel Programs 353

Table 1. Key hardware and software specifications of systems.

Systems Emmya SuperMUC-NG Hawk

Processor Intel Xeon Ivy Bridge EP Intel Xeon Skylake SP AMD EPYC Rome

Processor Model E5-2660 v2 Platinum 8174 7742

Base clock speed 2.2 GHz 3.10 GHz (2.3 GHz used∗) 2.25 GHz

Physical cores per node 20 48 128

Numa domains per node 2 2 8

LLC size 25 MB 33MB 256 MB = 16 × 16 MB / CCX (4C)

M
ic

ro
-a

rc
h
it

ec
tu

re

Memory per node (type) 64GB (DDR3) 96GB (DDR4) 4 TB =16 × 256 GB (DDR4)

Node interconnect QDR InfiniBand Omni-Path HDR InfiniBand

Interconnect topology Fat-tree Fat-tree Enhanced 9D-Hypercube

N
et

w
o
rk

Raw bandwidth p. lnk n. dir 40 Gbits−1 100Gbits−1 200 Gbits−1

Compiler Intel C++ v2019.5.281 Intel C++ v2019.4.243 Intel C++ v2020.0.166

Optimization flags -O3 -xHost -O3 -qopt-zmm-usage=high -O3 -xHost

SIMD -xCORE-AVX2 -xCORE-AVX512 -mavx2

Message passing library Intel MPI v2019u5 Intel MPI v2019u4 Intel MPI v2019u6S
o
ft

w
a
re

Operating system CentOS Linux v7.7.1908 SUSE Linux ENT. Server 12 SP3 CentOS Linux 8.1.1911

Tool ITAC v2019u4 v2019 v2020

ahttps://anleitungen.rrze.fau.de/hpc/emmy-cluster.
∗A power cap is applied on SuperMUC-NG, i.e., the CPUs run by default on a lower than
maximum clock speed (2.3 GHz instead of 3.10 GHz).

1.3 Contribution

This work makes the following novel contributions:

– We analytically predict the propagation velocity of idle waves in scalable code
with respect to (i) communication topology, i.e., the distance and number of
neighbors in point-to-point communication, and (ii) communication concur-
rency, i.e., how many point-to-point communications are grouped and subject
to completion via MPI Waitall.

– The analytical model is validated with measurements on real systems and
applied to microbenchmarks with synthetic communication topologies and a
realistic scenario from the context of stencil codes with Cartesian domain
decomposition.

– We show that not all MPI collective routines eliminate a traveling idle wave;
some may even be almost permeable to it, depending on their implementation.

– We show that idle wave decay can also be initiated by the system topology
via heterogeneities in point-to-point communication characteristics between
MPI processes.

– We show analytically that the decay rate (and thus the survival time until
running out) of an idle wave under the influence of noise is largely independent
of the particular noise characteristics and depends only on the overall noise
power. This prediction is validated with experiments.

Overview. This paper is organized as follows: Sect. 2 provides details about
our experimental environment and methodology. In Sect. 3, we first introduce
some important terms to categorize execution and communication in distributed-
memory parallel programs and then develop and validate an analytical model of

https://anleitungen.rrze.fau.de/hpc/emmy-cluster

354 A. Afzal et al.

delay propagation. Section 4 covers the interaction of idle waves with collective
primitives. An analysis of idle wave decay with respect to noise and system
topology is conducted in Sect. 5. Finally, Sect. 6 concludes the paper and gives
an outlook to future work.

2 Test Bed and Experimental Methods

The three clusters listed in Table 1 were used to conduct various experiments
and validate our analytical models.

Process-core affinity was enforced using the I MPI PIN PROCESSOR LIST envi-
ronment variable. We ignored the simultaneous multithreading (SMT) feature
and used only physical cores. The clock frequency was always fixed to the base
value of the respective CPUs (or to 2.3 GHZ in case of SuperMUC-NG because of
the power capping mechanism). On Emmy, experiments with up to 120 nodes were
conducted on a set of nodes connected to seven 36-port leaf switches in order to
achieve homogeneous communication characteristics. A similar strategy was not
possible on the other systems. Open-chain boundary conditions were employed
unless specified otherwise. Communication delays for non-blocking calls were
measured by the time spent in the MPI Wait or MPI Waitall function. We used
Intel Trace Analyzer and Collector (ITAC)1 for timeline visualization and the
C++ high-resolution Chrono clock for timing measurements. For tuning of the
Intel MPI collectives implementations, we used the Intel MPI autotuner2; the
configuration space is defined by I MPI ADJUST <opname>3.

We run barrier-free bulk-synchronous MPI-parallel micro-benchmarks with
configurable latency-bound communication and compute-bound workload. This
results in process scalability, i.e., there is no contention on memory interfaces,
shared caches, or network interfaces. The code loops over back-to-back divide
instructions (vdivpd), which have low but constant throughput. The message
size was set to 1024 B, which is well within the default eager limit of the MPI
implementation. For more realistic workloads we chose a 3D Jacobi stencil and
sparse matrix-vector multiplication (SpMV) with the High Performance Con-
jugate Gradient (HPCG)4 matrix. Further characterization will be addressed
in Sect. 3. One-off idle periods were generated by massively extending one com-
putational phase via doing extra work on one arbitrary MPI process, usually
rank 5. Since we use only MPI COMM WORLD communicator, so “rank” is a unique
identifier for a process.

All experiments described in this paper were conducted on all three bench-
mark systems. However, we show the results for all of them only if there are
relevant differences.

1 https://software.intel.com/en-us/trace-analyzer.
2 http://tiny.cc/intel-autotuning.
3 http://tiny.cc/intel-i-mpi-adjust-family.
4 https://www.hpcg-benchmark.org/.

https://software.intel.com/en-us/trace-analyzer
http://tiny.cc/intel-autotuning
http://tiny.cc/intel-i-mpi-adjust-family
https://www.hpcg-benchmark.org/

Analytic Modeling of Idle Waves in Parallel Programs 355

3 Idle Wave Propagation Velocity for Scalable Code

In this section we first categorize the execution and communication character-
istics of parallel applications. Later, we investigate how they influence the idle
wave velocity and construct an analytic model for the latter.

3.1 Execution Characteristics

HPC workloads have a wide spectrum of requirements regarding code execution
towards resources of the parallel computing platform. The most straightforward
categorization is whether the workload is sensitive to certain resource bottle-
necks, such as memory bandwidth. Since we restrict ourselves to scalable code
here, we run the traditionally memory-bound algorithms such as stencil updates
or SpMV with one MPI process per contention domain (typically a ccNUMA
node). This is not a problem for the microbenchmarks since we deliberately
choose an in-core workload there.

Fig. 1. Compact and non-compact communication topologies with bidirectional open
chain characteristics. Pi sends (receives) data to (from) Pi±1 (a) to Pi±2 (b) to Pi±6

(c) to Pi±12, (d) and Pi±6 (e) and Pi±12.

3.2 Categorization of Communication Characteristics

Here we briefly describe the different communication characteristics under inves-
tigation. We start by assuming a “P2P-homogeneous” situation where all pro-
cesses (except boundary processes in case of open boundary conditions) have the
same communication partners and characteristics. We will later lift this restric-
tion and cover more general patterns.

356 A. Afzal et al.

Communication Topology. Communication topology is a consequence of the
physical problem underlying the numerical method and of the algorithm (dis-
cretization, geometry). It boils down to the question “which other processes does
rank i communicate with?” and is characterized by a topology matrix (see Fig. 1
for examples of compact and noncompact topologies).

In a compact topology, each process communicates with a dense, continu-
ous array of neighbors with distances d = ±1,±2, ...,±j. The topology matrix
comprises a dense band around the main diagonal. In a noncompact topology,
each process communicates with processes that are not arranged as a continuous
block, e.g., d = ±1,±j. In both variants, the topology matrix can be symmetric
or asymmetric.

For example, sparse matrices emerging from numerical algorithms with high
locality lead to compact communication structures, while stencil-like discretiza-
tions on Cartesian grids lead to noncompact structures with far-outlying sub-
diagonals. Figures 1(a)–(c) depict symmetric cases with 4, 12, and 24 neighbors,
respectively (2, 6 and 12 distinct processes per direction) for every process, while
there are always four neighbors (two distinct processes per direction) for both
noncompact cases in Figs. 1(d)–(e).

Table 2. Selected algorithms for communication concurrency in our MPI microbench-
marks. Arrows of the same color correspond to a single MPI Waitall call. “One dis-
tance” means that one MPI Waitall is responsible only for the send/recv pair of one
particular communication distance, while “all distances” means that it encompasses
all distances in one dimension.

Multi-wait, single-dimension
(MWSDim)
1: while d ≤ dims do
2: while dir ≤ bi do
3: MPI_Isend ‡
4: MPI_Irecv §
5: end while
6: MPI_Waitall
7: end while

one distance

Multi-wait, multi-dimension
(MWMDim)
1: while dir ≤ bi do
2: while d ≤ dims do
3: MPI_Isend ‡
4: MPI_Irecv §
5: end while
6: MPI_Waitall
7: end while

all distances

Single-wait, multi-dimension
(SWMDim)
1: while d ≤ dims do
2: while dir ≤ bi do
3: MPI_Isend ‡
4: MPI_Irecv §
5: end while
6: end while
7: MPI_Waitall

all distances

Multi-wait, single-direction
(MWSDir)
1: while d ≤ dims do
2: while dir ≤ bi do
3: MPI_Isend ‡
4: MPI_Irecv §
5: MPI_Waitall
6: end while
7: end while

one distance

‡ Pi send to Pi+dir d ; § Pi receive from Pi dir d

Communication Concurrency. When a process communicates with others, it
is often a deliberate choice of the developer which communications are grouped
together and later finished using MPI Waitall (“split-waits”). However, since
interprocess dependencies have an impact on idle wave propagation, such details
are relevant. Of course, beyond user-defined communication concurrency, there
could still be nonconcurrency “under the hood,” depending on the internals of
the MPI implementation.

Analytic Modeling of Idle Waves in Parallel Programs 357

Here we restrict ourselves to a manageable subset of options that never-
theless cover a substantial range of patterns. We assume that all P2P com-
munication is nonblocking. Table 2 shows the four variants covered here in a
2D Cartesian setting according to the number of split-waits: multi-wait, single-
dimension (MWSDim), multi-wait, multi-dimension (MWMDim), single-wait,
multi-dimension (SWMDim), and multi-wait, single-direction (MWSDir). The
iteration space of loops in Table 2 is defined as the outer (d) loop goes over the
Cartesian dimensions (i.e., x and y here) and the inner (dir) loop goes over
the two directions per dimension (i.e., positive and negative). For each direc-
tion (e.g., positive x), the communication is effectively a linear shift pattern; the
pairing of send and receive operations per MPI Waitall ensures that no dead-
locks will occur. The third and fourth option are corner cases with minimum
and maximum number of MPI Waitalls.

More Complex Patterns. Beyond the simple patterns described above, we
will also cover more general P2P heterogeneous communication scenarios, where
subsets of processes have different communication properties, such as in stencil
codes or sparse-matrix algorithms. Figure 4 shows an example with compact
long-range and short-range communication, which could emerge from a sparse-
matrix problem with “fat” and “skinny” regions of the matrix. Finally, we will
discuss implementation alternatives of collective communication primitives.

3.3 Analytical Model of Idle Wave Propagation

The propagation speed of an idle wave is the speed, in ranks per second, with
which it ripples through the system. Previous studies of idle wave mechanisms
on silent systems [3,4] characterized the influence of execution time, commu-
nication time, communication characteristics (e.g., uni- vs. bidirectional com-
munication patterns and eager vs. rendezvous protocols), and the number of
active multi-threaded or single-threaded MPI processes on a contended or non-
contended domain. However, the scope of that work was restricted to a fixed
P2P communication pattern (fourth column in Table 2 – MWSDir). Here we
extend the analysis to more general patterns, which show a much richer phe-
nomenology. We restrict ourselves to open boundary conditions across the MPI
processes. This is not a severe limitation since it only affects the survival time
and not the propagation speed of the wave.

Corner Cases. Minimum. idle wave speed, vmin
silent, (and thus maximum survival

time) is observed with simple direct next-neighbor communication (d = 1). If
Texec and Tcomm are execution and communication times of one iteration of the
bulk-synchronous program, then the idle wave speed is

vmin
silent = 1

[
ranks
iter

]
× 1

Texec + Tcomm

[
iter
s

]
. (1)

In this case, the wave survives until it runs into system boundaries [4], i.e., for at
most as many time steps as there are MPI processes. Barrier-like, i.e., long-distance

358 A. Afzal et al.

synchronizing communication leads to maximum wave speed, vmax
silent, and the wave

dying out quickly in a minimum of one time step. Thus, in this case,

vmax
silent = α

[
ranks
iter

]
× 1

Texec + Tcomm

[
iter
s

]
, (2)

where square brackets denote the dimensions of the quantities written to the

left of them. For instance, “
ranks
iter

” means the number of processes traversed by
iteration of the code, which is the dimension of alpha in Eq. 2. Also, α depends
on the rank rinject where the idle wave originated and the total number of MPI
processes sizecomm:

α = max (sizecomm − rinject − 1, rinject − 1) . (3)

Multi-neighbor Communication. Away from the extreme cases, we have to
distinguish between compact and noncompact multi-neighbor communication
patterns, but the basic mechanisms are the same. The propagation speed of the
idle wave can be analytically modeled as

vsilent = κ · vmin
silent

[
ranks

s

]
, (4)

Where dimensionless κ is the distance in processes traveled by the wave in one
time step and depends on communication concurrency and topology:

κ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

j∑
k=1

k =
j(j + 1)

2
if compact MWSDim/MWSDir/blocking

∑
k=1,j

k = j + 1 if non-compact MWSDim/MWSDir/blocking

j if MWMDim/SWMDim

. (5)

Here, j is the longest-distance communication partner of a process. Summation
bounds are 1, 2, 3, . . . , j in the first case and two terms only (1 and j) in the
second case. Modifications to these expressions may apply for complex commu-
nication topologies; we will discuss them in the validation section.

3.4 Experimental Validation

In this section, we first validate the analytical model via measurements using
synthetic benchmarks on a real system. Thereafter, we apply the model to a
3D a stencil code with Cartesian domain decomposition. Since stencil codes are
commonly memory-bound, we run a single thread per ccNUMA domain only in
order to maintain resource scalability. Since the phenomenology matches across
all three clusters (Table 1), we show results only for the Emmy system.

Analytic Modeling of Idle Waves in Parallel Programs 359

Microbenchmarks. Figures 2 and 3 (top row) show traces of the propagation of
injected one-off idle phases (extra work at rank 5, dark blue) and its dependency
on communication concurrency and communication topology, using the variants
shown in Table 2. In these experiments, we used an execution phase of Texec =
13 ms (light blue) and a data volume of 1 KiB per message. The insets show close-
ups of parts of the wave. In the second row, a quantitative timeline of the number
of MPI processes executing MPI library code (i.e., waiting or communicating) is
displayed. In these settings, the natural system noise is weak enough to not cause
decay of the idle wave until it runs into the system boundary. The experimental
values of κ can be inferred from the timescales on the x-axis of rank-time graphs
or from the zoomed-in insets to ease the interpretation.

Compact Communication. In Fig. 2, the observed propagation speed of the
idle waves is independent of the number of split-waits, as expected. Higher speeds
are observed when (i) the overall communication distance goes up, i.e., with
growing number of communication partners, and (ii) the number of dimensions
spanned within each MPI Waitall (communication concurrency). In Fig. 2(a),
where Pi � (Pi±1, Pi±2), higher speed results in (a1) with κ =

∑2
k=1 k = 3

due to the MWSDim concurrency pattern, while in (a2) we have κ = j = 2
for the other patterns. The data confirms the model in (4) and (5). In addition
to zoom-in inserts, the κ values can also be inferred from the gradient of the
idle time visible in the timelines, i.e., the higher speed in (a1) via the idle wave
ending soon at 2.2 s compared to 2.4 s in (a2).

In Fig. 2(b) and (c), the number of communication partners per direction is
increased to six and twelve, respectively, with expected consequences: In (b1) we

Fig. 2. Top row: idle wave propagation for 60 iterations in a core-bound microbench-
mark for an injected delay at rank 5 (see text for details) and compact communication
patterns with different numbers of communication partners: (a) two, (b) six, and (c)
twelve partners per direction. The quantitative NAMASS timelines in the second row of
panels show the fraction of MPI processes executing MPI library code (orange) versus
the number of processes in user code (blue). (Color figure online)

360 A. Afzal et al.

have κ =
∑6

k=1 k = 21, and in (b2) κ = j = 6. In (c1), we getκ =
∑12

k=1 k = 78,
confirming intuitively our prediction that survival time in the high-speed limit
is equal to Texec + Tcomm. Finally, in (c2) we get κ = j = 12.

The second row in Fig. 2 shows that slower wave propagation causes a more
even spread of waiting times and thus resource utilization across processes.
A rising/constant/falling slope indicates an oncoming/traveling/leaving wave.
Although our particular scenarios have been designed to show no resource bot-
tlenecks, these utilization shapes will be significant in case of memory-bound
execution or bandwidth-contended communication [3]. An exploration of these
mechanisms is left for future work.

Noncompact Communication. Topology matrices with noncompact charac-
teristics (Figs. 1(d)–(e)) entail a more complex phenomenology of idle wave prop-
agation. The presence of “gaps” leads to multiple waves propagating at different
speeds, with the added complication that each “hop” of a faster wave sparks
local idle waves wherever it hits (see Fig. 3). These secondary waves propagate
and annihilate each other eventually (more specifically, after j/2 hops), and what
remains is the fast wave emerging from the longest-distance communication. The
speed of this residual wave is faster with (i) a larger number of split-waits, (ii)
a smaller number of communication dimensions spanned by each MPI Waitall,
and evidently (iii) a larger longest communication distance j. The interpretation
of timelines provides a visual aid for verification, e.g., the idle wave ends sooner
on the x-axis for the same number of split-waits in (a1) and (a2) compared to
the larger numbers of split-waits in (a3).

With respect to communication concurrency, there is a fundamental differ-
ence between multiple split-waits and one wait-for-all in non-compact commu-
nication. The “zig-zag” pattern emerging from the two different propagation
speeds prevails in case of SWMDim (one wait-for-all) but dies out for MWSDim
and MWMDim after a couple of iterations. This decay is entirely a consequence

Fig. 3. Idle wave propagation in a core-bound microbenchmark for an injected delay
at rank 5 (see text for details) and noncompact communication patterns with two com-
munication partners per direction at different distances on Emmy: (a) Pi � (Pi±1, Pi±6)
for 60 iterations and (b) Pi � (Pi±1, Pi±12) for 20 iterations. (Color figure online)

Analytic Modeling of Idle Waves in Parallel Programs 361

of the communication concurrency and has nothing to do with the other mech-
anisms of idle wave decay, such as noise and communication inhomogeneity (see
Sect. 5). The propagation of the “envelope wave” is untouched by this effect.

This phenomenon is shown in Fig. 3 (a1, b1, a2, b2), where the zig-zag pattern
dissolves eventually, and the residual wave exhibits (a1) κ =

∑
k=1,6 k = 7, (a2)

κ = j = 6, (b1) κ =
∑

k=1,6 k = 13, and (b2) κ = j = 12. The number of time
steps required for the zig-zag to even out depends on the propagation speed.
In case of a single MPI Waitall, however (a3, b3), the pattern prevails. The
envelope travels with (a3) κ = j = 6 and (b3) κ = j = 12.

The results from these microbenchmarks show that our model is able to
describe the basic phenomenology of idle wave propagation on a silent system in
the parameter space under consideration. In the following we cover some more
general patterns.

Heterogeneous Communication. From the basic propagation model and its
validation on simple communication patterns we can now advance to more com-
plex scenarios. In Fig. 4, we use a compact topology matrix that is “fatter” for
the middle 40 processes, mimicking an heterogeneous situation that may, e.g.,
emerge with some sparse matrix problems (Fig. 4(a)). Since the idle wave speed
emerges from local properties of the topology matrix, we expect a “refraction
effect,” where the wave travels faster within the fat region of the matrix. Indeed,
this is exactly what is observed (see Fig. 4(b)), and the quantitative model of
propagation speed holds for the different regions: We have κ = 12 in the middle
and κ = 3 elsewhere.

Blocking Communication and Eager vs. Rendezvous Mode. Instead of
grouped nonblocking point-to-point calls, a popular choice is MPI Sendrecv
for a pair of in- and outgoing messages along the same direction. This is

Fig. 4. Idle wave propagation with heterogeneous compact communication character-
sitics (60 iterations) on Emmy. (a) Topology matrix: Pi sends (receives) 1 KiB to (from)
Pi±1,. . . ,Pi±3 for processes near boundaries and to (from) Pi±1,. . . ,Pi±12 for 40 inner
processes. (b) Idle wave propagation for SWMDim concurrency.

362 A. Afzal et al.

identical to the MWSDir case in Table 2, so the phenomenology shown in
Figs. 2 (a1, b1, c1) and Figs. 3 (a1,b1) applies. Similarly one can employ a
MPI Irecv/MPI Send/MPI Wait sequence within the innermost loop. In all these
cases, the wave propagation speed doubles in rendezvous mode, where synchro-
nization between sender and receiver is implied. However, the difference between
eager and rendezvous mode does not impact the other variants beyond MWSDir.

Stencil Smoother with Halo Exchange. Figure 5 shows an idle wave
experiment with a double-precision Jacobi smoother using Cartesian domain
decomposition and two different process grids (4 × 5 × 6 vs. 2 × 6 ×
10; inner dimension goes first). Here we used MWSDir concurrency via
MPI Irecv/MPI Send/MPI Wait per direction. The message sizes are such that
the rendezvous mode applies. As expected from the model, the longest-distance
communication determines the overall wave speed, i.e., it is lower in case (b)
where the topology matrix is narrower.

The communication topology is more intricate here than in the microbench-
mark studies covered so far. It turns out that all connections apart from the
longest-distance one can be summarized by averaging over their respective dis-

Fig. 5. Idle wave propagation within a double-precision 3D Jacobi algorithm with
Cartesian domain decomposition and bidirectional halo exchange (15 iterations) at a
problem size of 12003 and two different process grids (120 processes on Emmy) with open
boundary conditions. Top row: topology matrices color-coded with communication vol-
ume. Bottom row: timelines of idle wave progression. Orange color shows idleness in
MPI Wait, while pink color indicates waiting time in MPI Send. See text for communica-
tion grouping. Single-message communication volumes are (a) 576 kB, 480 kB, 384 kB
and (b) 960 kB, 576 kB, 192 kB per dimension. (Color figure online)

Analytic Modeling of Idle Waves in Parallel Programs 363

tances and taking the largest smaller integer (floor function) when calculating
the κ factor. For the case in Fig. 5(a), this leads to κ = 2 + 20 = 22, so the
propagation speed is 22× 2 = 44 times larger than vmin

silent. For Fig. 5(b), we have
κ = 0 + 12 = 12 and thus 24 times vmin

silent. Both predictions are confirmed by the
data after the initial slow, short-distance waves have died out.

SpMV with Halo Exchange. The High Performance Conjugate Gradient
(HPCG) benchmark is popular for ranking supercomputers beyond the ubiqui-
tous LINPACK. Here we choose to discuss idle wave propagation during multi-
ple back-to-back sparse matrix-vector multiplications using the HPCG matrix,
which emerges from a sparse linear system using a 27-point stencil in 3D. Com-
munication is largely symmetric, except for boundaries. The number of com-
munication partners varies between 7 (corners) and 26 (interior processes), and
MWSDir concurrency applies just like in the stencil example. The per-process
problem size is small enough for eager mode, but communication time is a rele-
vant contribution to the overall runtime.

Figure 6 shows idle wave propagation through three different process grids
with 2 × 4 × 5 = 40, 4 × 3 × 5 = 60, and 4 × 5 × 5 = 100 processes, respectively
(inner dimension goes first). The decomposition is indicated in the captions of
Figs. 6(a)–(c). In case (a) we get κ = 8, for (b) we get κ = 12, and for (c) we get
κ = 24.

4 Idle Waves Interacting with MPI Collectives

Few MPI programs use point-to-point communications only. Concerning idle
wave propagation, the question arises which collective routines may be permeable
to a traveling wave. In practice, the elimination or the survival of the wave may
be desirable depending on the context; for instance, it was shown that idle waves
can lead to automatic communication-computation overlap in desynchronized
bottleneck-bound programs [3].

The effects we discuss here for collective communications are certainly heavily
dependent on the details of the MPI implementation, the communication buffer
size, and possibly other parameters, so it is impossible to give a comprehensive
overview. We thus restrict ourselves to Intel MPI on one of the three benchmark
systems (Emmy). The results are summarized in Fig. 7 and discussed below.

Globally Synchronizing Primitives. Examples of necessarily synchronizing
collectives are MPI Allreduce, MPI Alltoall, MPI Allgather, MPI Barrier,
etc. These destroy propagating idle waves completely (see Figure 7(a)). The
default Intel implementations of MPI Scatter and MPI Bcast are also synchro-
nizing. If the autotuner mode is enabled by setting I MPI TUNING AUTO SYNC=1
(disabled by default), an internal barrier is called on every tuning iteration. This,
of course, completely eradicates an idle wave on any collective call.

Global Non-synchronizing Primitives. Figure 7(b) shows an idle wave col-
liding with the default Intel implementation of MPI Reduce. Reductions are not

364 A. Afzal et al.

Fig. 6. Idle wave propagation in sparse matrix-vector multiplication (SpMV) using the
HPCG matrix with a problem size of 163 per process and bidirectional halo exchange
(15 iterations) on Emmy and three different process grids (a)–(c). Top row: topology
matrices with color-coded communication volumes. Bottom row: Timelines of idle wave
progression. Message sizes are 8B, 128 B, and 2.05 kB per dimension (symmetry across
main diagonals).

necessarily synchronizing, and indeed the idle wave can pass the collective, which
appears like a global, compact communication block through which the wave
travels with maximum speed (see the discussion of inhomogeneous communica-
tion above).

If the survival of idle waves is desirable, one option is to avoid synchronizing
collectives if the performance implications are noncritical. In Fig. 7(c), we show
that the default MPI Gather implementation is completely permeable to the
wave.

Implementation Variants. MPI implementations usually provide tuning
knobs to optimize the internal implementation of collectives in order to better
adapt it to the application. The process of finding the optimal parameter settings
can also be automated [11,14]. With Intel MPI, the I MPI ADJUST <opname>
environment variable can be set to a value that selects a particular implementa-
tion variant for the <opname> collective. Eleven documented settings are avail-
able in case of MPI Reduce. Figure 7(c), although it depicts a gather operation,
is also applicable to MPI Reduce with I MPI ADJUST REDUCE set to 2 or a value
between 4 and 7. Finally, Fig. 7(d) illustrates how the interaction of the idle
wave with MPI Reduce changes for I MPI ADJUST REDUCE set to 3 (topology-
aware Shumilin’s algorithm).

Analytic Modeling of Idle Waves in Parallel Programs 365

Fig. 7. Transparency of collective routines for idle waves on Emmy. (a) Default Intel MPI
implementation of MPI Allreduce/MPI Alltoall/MPI Allgather/MPI Scatter/MPI
Bcast/MPI Barrier/I MPI ADJUST REDUCE=1/any collective with I MPI TUNING AUTO

SYNC=1, (b) default MPI Reduce or with I MPI ADJUST REDUCE=8-11, (c) default
MPI Gather/MPI Reduce with I MPI ADJUST REDUCE=2,4-7, (d) MPI Reduce with
I MPI ADJUST REDUCE=3. Collective calls are injected at rank 5 in the 20th iteration and
the root (where applicable) is rank 0. The message size is 1024 B, and MPI SUM is used for
all operations. Green color indicates the time spent by MPI processes in the collective
routines. (Color figure online)

Another option is to override the default shared-memory node-level imple-
mentation of collectives and substitute it with a standard point-to-point variant.
For instance, setting I MPI COLL INTRANODE=pt2pt (insted of the default shm)
modifies the reduction behavior from Fig. 7(b) to Fig. 7(c).

In general, our results show that it is possible to implement collectives that
are permeable to idle waves. Thus, the existence of collectives in a program does
not make idle waves a non-issue and extends their relevance beyond collective-
free algorithms.

5 Idle Wave Decay

The decay of traveling idle waves is a well-known phenomenon [12], and
the underlying microscopic mechanism via interaction with short idle periods
(“noise”) is well understood [4]. There are, however, two questions that have
not been addressed so far: (i) Does the system topology lead to idle wave decay
also for resource-scalable parallel programs?, and (ii) Which characteristics of

366 A. Afzal et al.

Fig. 8. Topological idle wave decay on the benchmark systems running one process
per core (scalable workload) using nonblocking MPI distance-1 communication topol-
ogy (i.e., Pi � Pi±1) for 120 iterations. We chose Texec = 2.7 ms (white color) and
injected extra work of 58 ms (blue color) at rank 0. The message size was 1 MB. (a)
12 domains (sockets), 120 processes (b) 5 domains (sockets), 120 processes, (c) 30
domains (CCX), 120 processes. Topological boundaries exist at every 10, 24, and 4
cores on Emmy, SuperMUC-NG and Hawk, respectively. (Color figure online)

the system noise have an impact on the decay rate of the idle wave? Here we
answer both.

5.1 Topological Decay

It has been shown that the system topology, specifically a memory bandwidth
bottleneck, can cause idle wave decay without the presence of system noise [3].
For the resource-scalable codes considered here this mechanism does not apply,
but there is more to system topology than memory bottlenecks. The three bench-
mark systems we use here have quite different features in this respect, even
within a single node: Hawk has 16 cores (4 × 4 CCX) per ccNUMA domain, 4
ccNUMA domains per socket, and 2 sockets per node. SuperMUC-NG has 24 cores
per ccNUMA domain, 1 ccNUMA domain per socket, and 2 sockets per node.
Emmy has 10 cores per ccNUMA domain, 1 ccNUMA domain per socket, and 2
sockets per node. The inherent topological boundaries cause communication het-
erogeneities, which create structured noise as small variations in communication
time (intranode vs. internode) propagate and interact with the idle wave to cause
visible kinks. This is demonstrated in Fig. 8 for the three benchmark clusters,
running one MPI process per ccNUMA domain. The kinks at the topological

Analytic Modeling of Idle Waves in Parallel Programs 367

Fig. 9. Experiment comparing the average decay rate of an idle wave (initial duration
4850ms) for two different noise characteristics (top vs. bottom). In both cases, the
integrated noise power is 9.1% of the total area below the idle wave, i.e., 13 s of 142 s,
but the distribution of the fine-grained noise is different. However, the overall average
decay rate is the same (480 ms/rank), as is the wave survival time (34 s).

boundaries are best seen in the second row. The “large-scale effect” is seen in
the top row, where the idle wave takes a “hit” at every topological boundary
(white horizontal lines). For 120 iterations, we measured an average decay rate
of 149µs/rank on SuperMUC-NG, 203µs/rank on Hawk, and 346µs/rank on Emmy.
Although one might expect Hawk to show the strongest topology effects due to
its intricate node structure, it is not only the number of hierarchy levels but
also the actual communication inhomogeneity that determines the decay effect.
In Fig. 8, all 128 processes were run on a single node of Hawk, so the internode
boundary is missing there.

In order to substantiate the claim that this decay emerges from system
topology and communication heterogeneities, we repeated all experiments with
round-robin placement [8] of MPI processes across nodes. In this way, node-
level differences in communication characteristics are all but eliminated since all
interprocess boundaries are internode boundaries. Indeed, the decay observed
with standard placement (consecutive cores on a node map to consecutive MPI
processes, SMT ignored) vanishes under these conditions.

5.2 Noise-Induced Decay

For the purpose of this work, we define “noise” as any (per-process) deviation
from a fixed, repeatable, lockstep-type compute-communicate pattern. In this
sense, strong one-off delays are also noise, but in this section we specifically con-
sider noise that is considerably more fine grained. One of the unsolved questions
in previous work about idle wave decay, specifically with resource-scalable code,
is whether the detailed statistical properties of the fine-grained noise or just the
integrated noise power impact the rate of decay. In order to exert full control over

368 A. Afzal et al.

Fig. 10. Decay rate (min/max/median at sixteen cross-process transitions) of an idle
period in s/rank, comparing three different noise patterns (see [4]) on the InfiniBand
Emmy (18 processes, one per node, single leaf switch). The x-axis shows integrated noise
power with respect to overall integrated runtime of 142 s.

all noise characteristics, we conduct experiments with artificial noise injections
that are orders of magnitude stronger than natural noise. Due to the funda-
mental scale invariance of these mechanisms, the conclusions must also hold for
realistic scenarios.

How idle waves interact with each other in a nonlinear way has been analyzed
in previous work [4]; noise-induced decay is just a variant of this process. Noise
“eats away” at the trailing edge of the wave, so a small idle period (i.e., a part of
the noise) of duration Tnoise that collides with the idle wave shortens the latter
by an amount of exactly Tnoise. This process is cumulative, which leads to the
immediate conclusion that multiple interactions {T i

noise} diminish the idle wave
by η =

∑
i T

i
noise. Noise statistics is of minor importance for the average decay

rate. It will only impact the “smoothness” of the decay. Figure 9 illustrates this
fact by comparing the decay of the same idle wave under two widely different
noise characteristics with identical integrated “noise power” η. All non-labeled
orange boxes are noise. In the top figure, the noise “particles” are more evenly
distributed than in the bottom figure, which shows more like a “burst”-type
noise with longer duration for each “particle” and a higher frequency of particles.
Although the details of the decay are different, the survival time and hence the
average decay rate of the wave is the same in both cases. This holds as long as the
noise is fine-grained enough to not annihilate the idle wave in one fell swoop at
an early stage. Note that previous research [5,6,10] only studied the influence of
noise statistics on application and global operations scalability. Our observable
is idle wave decay rate, which is largely robust against noise statistics.

Experimental Validation. To better validate this hypothesis, we measured
the decay rate of an idle wave under three different noise characteristics with
the same noise power. That is, how much shorter the delay gets per “hop.”

Analytic Modeling of Idle Waves in Parallel Programs 369

Fig. 10 shows results for 18 processes (one per node) on one leaf switch of Emmy
to rule out topological effects. Apart from this detail, the setting is similar to
Fig. 9. The microscopic shape of the decay is influenced by the statistics: Shot
noise, i.e., random but strong, sparse noise injections of a single duration, lead to
discontinuous decay and strong variations in decay rate (diamonds in Fig. 10). On
the other hand, exponential (squares) and uniform (circles) noise characteristics,
where noise injections show a whole spectrum of durations, and the variation in
decay rates is much weaker. The shape of an idle wave is always roughly a wedge.
The variations come because of the way the decay is measured across hops: we
take individual data points by looking at different points along the edges of the
wedge. The min and max whiskers denote points where the decay – at a certain
point on the timeline – was particularly weak or strong. These variations are
stronger with shot noise than with fine-grained noise because the edge is more
“jagged” with shot noise. The median of measured decay rates, however, only
depends on the noise power.

6 Summary and Future Work

We have presented an analytical model of idle wave propagation speed based
on communication topology and concurrency characteristics of resource-scalable
MPI programs. The model was validated against simple microbenchmarks, a
3D stencil smoother, and sparse matrix-vector multiplication with the HPCG
matrix. We have also shown that MPI collective routines can be permeable to
idle waves depending on the type and implementation of the collective, which
extends the relevance of idle wave phenomena beyond bulk-synchronous algo-
rithms without collective communication. In light of the fact that the presence
of idle waves is not necessarily detrimental for performance, this result can be
quite relevant to the performance analysis of highly scalable codes. Furthermore,
we have uncovered the relevance of system topology for idle wave decay: The
presence of heterogeneous communication characteristics emerging from the hier-
archical structure of modern compute nodes leads to fine-grained noise even on
very silent systems that causes the decay of idle waves. Finally, we have shown
that it is the noise power, and not its detailed statistical properties, that govern
the noise-induced decay rate. All these findings contribute significantly to the
understanding of the idle wave phenomenon on multicore clusters.

Beyond their theoretical significance, our findings point to optimization
strategies a developer can apply to a parallel code that is subject to idle waves:
if a program can benefit from the idle wave via better resource utilization [3],
the slowest velocity may be best, otherwise the highest. This can be achieved by
a change in communication scheme, for instance, by bringing non-zeros closer to
the diagonal in spMV via some reordering techniques. While, in programs with
non-contended processes, slower idle waves can absorb some noise better with
non-linear interaction to reduce the runtime penalty on noisy systems [4].

Future work will include the extension of the analysis to programs that are
not resource scalable, i.e., that are limited by node-level or network-level bot-
tlenecks. There is also the open question which wave and noise phenomena can

370 A. Afzal et al.

be described by effective models that abstract away from the details of the clus-
ter hardware. Finally, we will develop a capable MPI simulation tool that can
take node-level characteristics into account and will allow for more extensive
experimental studies and architectural exploration.

Acknowledgments. This work was supported by KONWIHR, the Bavarian Compe-
tence Network for Scientific High Performance Computing in Bavaria, under project
name “OMI4papps,” and by the BMBF under projects “Metacca” and “SeASiTe.” We
are indebted to LRZ Garching and to HLRS Stuttgart for granting CPU hours on their
“SuperMUC-NG” and “Hawk” systems.

References

1. Afzal, A., et al.: An analytic performance model for overlapping execution of
memory-bound loop kernels on multicore CPUs. In arXiv (2020). arXiv:2011.00243
[cs.DC]. Submitted

2. Afzal, A., et al.: Delay flow mechanisms on clusters. Poster at EuroMPI 2019,
10–13 September 2019, Zurich, Switzerland. https://hpc.fau.de/files/2019/09/
EuroMPI2019 AHW-Poster.pdf

3. Afzal, A., Hager, G., Wellein, G.: Desynchronization and wave pattern formation
in mpi-parallel and hybrid memory-bound programs. In: Sadayappan, P., Cham-
berlain, B.L., Juckeland, G., Ltaief, H. (eds.) ISC High Performance 2020. LNCS,
vol. 12151, pp. 391–411. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-50743-5 20

4. Afzal, A., et al.: Propagation and decay of injected one-off delays on clusters: a case
study. In 2019 IEEE International Conference on Cluster Computing, CLUSTER
2019, Albuquerque, NM, USA, 23–26 September 2019, pp. 1–10 (2019). https://
doi.org/10.1109/CLUSTER.2019.8890995

5. Agarwal, S., Garg, R., Vishnoi, N.K.: The impact of noise on the scaling of collec-
tives: a theoretical approach. In: Bader, D.A., Parashar, M., Sridhar, V., Prasanna,
V.K. (eds.) HiPC 2005. LNCS, vol. 3769, pp. 280–289. Springer, Heidelberg (2005).
https://doi.org/10.1007/11602569 31

6. Ferreira, K.B., et al.: Characterizing application sensitivity to OS interference using
kernel-level noise injection. In: Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing, p. 19. IEEE Press (2008). https://doi.org/10.1109/SC.2008.
5219920

7. Gamell, M., et al.: Local recovery and failure masking for stencil-based applications
at extreme scales. In: SC 2015: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 1–12, November
2015. https://doi.org/10.1145/2807591.2807672

8. Hager, A.G., et al.: Introduction to High Performance Computing for Scientists
and Engineers. CRC Press (2010). ISBN: 978-1-4398-1192-4

9. Hoefler, T., et al.: LogGOPSim - simulating large-scale applications in the
log- GOPS model. In: Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing (2010). https://doi.org/10.1145/
1851476.1851564

10. Hoefler, T., et al.: Characterizing the influence of system noise on large-scale appli-
cations by simulation. In: Proceedings of the 2010 ACM/IEEE International Con-
ference for High Performance Computing, Networking, Storage and Analysis, pp.
1–11. IEEE Computer Society (2010). https://doi.org/10.1109/SC.2010.12

http://arxiv.org/abs/2011.00243
https://hpc.fau.de/ files/2019/09/EuroMPI2019_AHW-Poster.pdf
https://hpc.fau.de/ files/2019/09/EuroMPI2019_AHW-Poster.pdf
https://doi.org/10.1007/978-3-030-50743-5_20
https://doi.org/10.1007/978-3-030-50743-5_20
https://doi.org/10.1109/CLUSTER.2019.8890995
https://doi.org/10.1109/CLUSTER.2019.8890995
https://doi.org/10.1007/11602569_31
https://doi.org/10.1109/SC.2008.5219920
https://doi.org/10.1109/SC.2008.5219920
https://doi.org/10.1145/2807591.2807672
https://doi.org/10.1145/1851476.1851564
https://doi.org/10.1145/1851476.1851564
https://doi.org/10.1109/SC.2010.12

Analytic Modeling of Idle Waves in Parallel Programs 371

11. Hunold, S., et al.: Predicting MPI collective communication performance using
machine learning. In: 2020 IEEE International Conference on Cluster Computing
CLUSTER. IEEE (2020). https://doi.org/10.1109/CLUSTER49012.2020.00036

12. Markidis, S., et al.: Idle waves in high-performance computing. Phys. Rev. E 91(1)
(2015). https://doi.org/10.1103/PhysRevE.91.013306

13. Nataraj, A., et al.: The ghost in the machine: observing the effects of kernel opera-
tion on parallel application performance. In: Proceedings of the 2007 ACM/IEEE
Conference on Supercomputing (2007). https://doi.org/10.1145/1362622.1362662

14. Vadhiyar, S.S., et al.: Automatically tuned collective communications. In: SC 2000:
Proceedings of the 2000 ACM/IEEE Conference on Supercomputing, pp. 3–3.
IEEE (2000). https://doi.org/10.1109/SC.2000.10024

https://doi.org/10.1109/CLUSTER49012.2020.00036
https://doi.org/10.1103/PhysRevE.91.013306
https://doi.org/10.1145/1362622.1362662
https://doi.org/10.1109/SC.2000.10024

Performance of the Supercomputer
Fugaku for Breadth-First Search

in Graph500 Benchmark

Masahiro Nakao1(B) , Koji Ueno2, Katsuki Fujisawa3, Yuetsu Kodama1,
and Mitsuhisa Sato1

1 RIKEN Center for Computational Science, 7-1-26 Minatojima-minami-machi,
Chuo-ku, Kobe, Hyogo 650-0047, Japan

{masahiro.nakao,yuetsu.kodama,msato}@riken.jp
2 Fixstars Corporation, 1-11-1 Osaki, Shinagawa-ku, Tokyo 141-0032, Japan
3 Institute of Mathematics for Industry, Kyushu University, 744 Motooka,

Nishi-ku, Fukuoka 819-0395, Japan
fujisawa@imi.kyushu-u.ac.jp

https://www.r-ccs.riken.jp, https://www.fixstars.com,

https://www.imi.kyushu-u.ac.jp

Abstract. In this paper, we present the performance of the supercom-
puter Fugaku for breadth-first search (BFS) problem in the Graph500
benchmark, which is known as a ranking benchmark used to evaluate large-
scale graph processing performance on supercomputer systems. Fugaku
is a huge-scale Japanese exascale supercomputer that consists of 158,976
nodes connected by the Tofu interconnect D (TofuD). We have developed
a BFS implementation that can extract the performance of Fugaku. We
also optimize the number of processes per node, one-to-one communica-
tion, performance power ratio, and process mapping in the six-dimensional
mesh/torus topology of TofuD. We evaluate the BFS performance for a
large-scale graph consisting of about 2.2 trillion vertices and 35.2 trillion
edges using the whole Fugaku system, and achieve 102,955 giga-traversed
edges per second (GTEPS), resulting in the first position of Graph500 BFS
ranking in November 2020. This performance is 3.3 times higher than that
of Fugaku’s previous system, the K computer.

Keywords: Breadth-first search · Performance evaluation · Graph500

1 Introduction

There is an increasing demand for computer systems capable of converting large-
scale real-world data into a graph, which is a data structure representing relation-
ships between elements with vertices and edges, and processing it at high speed.
The graph processing is used in various fields for the analysis of connections
between social network users, the optimization of very large scale integration

The original version of this chapter was revised: an incorrect value was given for the
number of giga-traversed edges per second (GTEPS). The correction to this chapter is
available at https://doi.org/10.1007/978-3-030-78713-4 25

c© Springer Nature Switzerland AG 2021, corrected publication 2023

B. L. Chamberlain et al. (Eds.): ISC High Performance 2021, LNCS 12728, pp. 372–390, 2021.

https://doi.org/10.1007/978-3-030-78713-4 20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_20&domain=pdf
http://orcid.org/0000-0001-7848-1172
https://doi.org/10.1007/978-3-030-78713-4_25
https://doi.org/10.1007/978-3-030-78713-4_20

Performance of Fugaku for BFS in Graph500 373

Table 1. Specifications of the supercomputer Fugaku and the K computer

Name Supercomputer Fugaku The K computer

CPU A64FX, 48+2/4cores, 2.0/2.2GHz, SPARC64 VIIIfx, 8cores, 2.0GHz,

3,072/3,379GFlops (double precision) 128GFlops (double precision)

Memory HBM2, 32GB, 1,024GB/s DDR3 SDRAM, 16GB, 64GB/s

Network TofuD, 0.49 to 0.54µs (Latency) Tofu, 0.91 to 1.15µs (Latency)

6.8GB/s (Bandwidth) 5.0GB/s (Bandwidth)

Nodes 158,976 82,944

(VLSI) layouts and road networks, whole-brain simulation, Internet of Things
(IoT), search engines, drug discovery, gene analysis, and so on [7,11,16,17]. In
such cases, the number of vertices can exceed 1 trillion, and the number of edges
can be several tens of times the number of vertices.

Against this background, Graph500, a project for evaluating large-scale graph
processing performance, has been ongoing since 2010 and released new list-
ings of the top-performing systems twice-yearly (June and November) [1,12].
In Graph500, a scale-free graph called Kronecker graph [8] is used. The term
scale-free describes a property in which some vertices are connected to many
other vertices while numerous others are connected to only a few vertices. Social
network data are known to have a similar property. The Graph500 benchmark
consists of breadth-first search (BFS) and single-source shortest path (SSSP).
This paper focuses on BFS, which is a crucial algorithm used in the strongly
connected component decomposition and centrality analysis of graphs.

The K computer [6] was ranked first in Graph500 for nine consecutive terms
until June 2019, and it was removed from Graph500 following the decommis-
sioning of the K computer. And then, the supercomputer Fugaku (Fugaku) [10],
which is the successor of the K computer, has been ranked first since June 2020.
This paper describes the BFS algorithm used for the Graph500 submission and
the experimental evaluation results conducted on Fugaku.

The remainder of this paper is structured as follows. Section 2 provides an
overview of Fugaku. Section 3 describes the Hybrid-BFS algorithm commonly
used in Graph500. Section 4 introduces the BFS algorithm based on the Hybrid-
BFS. Section 5 describes how we tune the performance of BFS. Section 6 discusses
the evaluation of BFS on Fugaku. Section 7 summarizes this paper and discusses
our future work.

2 The Supercomputer Fugaku

Fugaku is a supercomputer installed at the RIKEN Center for Computational
Science in Japan, and is scheduled to commence operation in 2021. Table 1 shows
the specification of Fugaku. Each node has a single Fujitsu A64FX processor
(A64FX) [10]. Figure 1 shows the block diagram of A64FX. Fugaku consists of
“compute node” and “compute node with IO node”. While the “compute node”
performs calculations, the “compute node with IO node” performs both calcu-
lations and input/output processings. A64FX has 48 compute cores, while the

374 M. Nakao et al.

NoC

TNI1

TNI0

TNI3

TNI2

TNI5

TNI4

To
fu

D
 N

et
w

or
k

R
ou

te
r X+

X-
Y+
Y-
Z+
Z-
a
b+
b-
c

CMG1

HBM2

CMG0

HBM2

CMG3CMG2

HBM2HBM2

CMG
HBM2
NoC
TofuD
TNI

: Core Memory Group
: High Bandwidth Memory ver. 2
: Network on Chip
: Tofu Interconnect D
: Tofu Network Interface

Fig. 1. A64FX processor [20]

“compute node” and “compute node with IO node” use two and four assistant
cores, respectively. The assistant core deals with interruptions caused by OS,
communications, and so on. The clock frequency of the A64FX core can be set
to either 2.0 GHz or 2.2 GHz for each job depending on the user’s preferences.
The peak performance of double precision is 3,072 GFlops at 2.0 GHz and 3,379
GFlops at 2.2 GHz. A64FX consists of four Core Memory Groups (CMGs), each
of which has 12 compute cores, a single assistant core, and an 8 GB High Band-
width Memory ver. 2 (HBM2). The four CMGs are connected via a Network on
Chip (NoC). The Fugaku interconnect uses Tofu Interconnect D (TofuD) [20].
The topology of TofuD is a six-dimensional mesh/torus in which the node posi-
tion is specified by XY Zabc axes. Since the size of Fugaku is (X, Y , Z, a, b, c) =
(24, 23, 24, 2, 3, 2), the total number of nodes is 158,976. Also, A64FX has ten
ports for TofuD, each XY Zb axis uses two ports, and each ac axis uses one port
because ac axes consist of two nodes. The latency (8 bytes put communication)
of Fugaku is 0.49 to 0.54 µs [20]. A64FX has six Tofu Network Interfaces (TNIs)
and can communicate at 6.8 GB/s in six directions simultaneously. Thus, the
injection bandwidth of each node is 40.8 GB/s.

Table 1 also shows the specification of the K computer for comparison. The
peak performance of A64FX at 2.2 GHz is 26.4 times, the memory capacity is
twice, and the memory bandwidth is 16.0 times that of the K computer. The
network interconnect used in the K computer is Tofu Interconnect (Tofu) [19],
which is the predecessor of TofuD. While its topology is the same as TofuD, the
size of the K computer is (X, Y , Z, a, b, c) = (24, 18, 16, 2, 3, 2). Since the
total number of nodes is 82,944, the number of nodes in Fugaku is 1.9 times
that of the K computer. The latency of Fugaku is about half and the network
bandwidth of Fugaku is 1.4 times that of the K computer. Since the K computer
had four TNIs in each node, the injection bandwidth is 20.0 GB/s. Thus, the
injection bandwidth of Fugaku is 2.0 times that of the K computer.

3 Hybrid-BFS for Large-Scale System

3.1 Algorithm for Shared Memory System

Figure 2 shows an overview of Hybrid-BFS [13] where BFS is executed while
switching between the conventional search method called “top-down approach”

Performance of Fugaku for BFS in Graph500 375

Top-down approach

1

2

22

Bottom-up approach

1

2

22

Fig. 2. Overview of Hybrid-
BFS

1 hybrid-bfs(vertices, source, nbr)
2 frontier ← {source}
3 next ← {}
4 parents ← [-1,-1,...,-1]
5 while frontier = {} do
6 | if next-direction(...) = top-down then
7 | | top-down(vertices, frontier, next, parents, nbr)
8 | else
9 | | bottom-up(vertices, frontier, next, parents, nbr)

10 | frontier ← next
11 | next ← {}
12 return parents
13
14 top-down(vertices, frontier, next, parents, nbr)
15 for v ∈ frontier do
16 | for n ∈ nbr[v] do
17 | | if parents[n] = -1 then
18 | | | parents[n] ← v
19 | | | next ← next ∪ {n}
20
21 bottom-up(vertices, frontier, next, parents, nbr)
22 for v ∈ vertices do
23 | if parents[v] = -1 then
24 | | for n ∈ nbr[v] do
25 | | | if n ∈ frontier then
26 | | | | parents[v] ← n
27 | | | | next ← next ∪ {v}
28 | | | | break

Algorithm 1: Hybrid-BFS

and another search method called “bottom-up approach”. The current starting
points are 2©, looking for unsearched adjacencies. The issue with the top-down
approach is that current start points must check all adjacencies. Since most
adjacencies have been searched (the first start point 1© and current start points
2© have been searched), redundant checks occur frequently. Therefore, in the
bottom-up approach, the search is performed in the opposite direction to the
top-down approach, in which the current start points 2© are searched from the
unsearched vertices (© in the figure). The advantage of the bottom-up approach
is that if even one of the current start points 2© is found, the check can be
terminated, reducing redundant checks.

Algorithm 1 shows the pseudo-code of the Hybrid-BFS. In line 2, the first
starting point (source) is substituted for the visited points set (frontier). In line
3, the next visitation point set (next) is initialized as an empty set. In line 4,
BFS tree (parents) for the final output, is initialized. Note that the substitution
of “−1” for parents means that a vertex has not yet been visited.

The top-down approach in the function top-down() first checks whether
the vertices adjacent to frontier have been visited (lines 15–17). Note that nbr
(neighbors) is an adjacent set of vertices. If unvisited, the connection source of
an unvisited vertex is assigned to parents (line 18). Additionally, the unvisited
vertices are added to next without duplication (line 19). In the top-down app-
roach, vertices in frontier are used as the starting points in searches for unvisited

376 M. Nakao et al.

A1,1 A1,2 A1,C

A2,1 A2,2

AR,1 AR,2

A2,C

AR,C

Fig. 3. Distribution of adja-
cency matrix

1 parallel-top-down(...)
2 f ← {source}
3 n ← {}
4 π ← [-1,-1,...,-1]
5 for all processes P (i, j) in parallel do
6 | while f = {} do
7 | | transpose-vector(fi,j)
8 | | fi ← allgatherv(fi,j , P (:, j))
9 | | ti,j ← {}

10 | | for u ∈ fi do
11 | | | for v ∈ Ai,j(:, u) do
12 | | | | ti,j ← ti,j ∪ (u, v)
13 | | ti,j ← alltoallv(ti,j , P (i, :))
14 | | for (u, v) ∈ ti,j do
15 | | | if πi,j(v) = −1 then
16 | | | | πi,j(v) ← u
17 | | | | ni,j ← ni.j ∪ v
18 | | f ← n
19 | | n ←{}
20 return π

Algorithm 2: Parallel top-down approach

vertices adjacent to them. In contrast, in the bottom-up approach of the func-
tion bottom-up(), all unvisited vertices are used as the starting points and
the searches determine whether the vertices adjacent to them belong to frontier
(lines 22–25). When a vertex belonging to frontier is found, it is assigned to
parents and its starting point is added to next without duplication (lines 26–27).

The advantage of the bottom-up approach is that when one vertex belonging
to frontier is found, the search for that starting vertex can be terminated (line
28), thus reducing the redundant checks seen in the top-down approach. However,
since the bottom-up approach requires checking whether all vertices have been
visited, the top-down approach is faster when frontier is small. Therefore, the
Hybrid-BFS uses the top-down approach when frontier is small, and the bottom-
up approach when frontier is large. Although we have omitted the full details
here, the next-direction() function in line 6 dynamically decides whether to
switch between the top-down and bottom-up approaches.

3.2 Algorithm for Distributed Memory System

To handle large graphs, the parallel Hybrid-BFS has been proposed [14]. In the
parallel Hybrid-BFS, the adjacency matrix A is assigned to the processes divided
into two dimensions (R rows and C columns) as shown in Fig. 3. A process P (i, j)
has information on a partial adjacency matrix Ai,j . Algorithms 2 and 3 show the
pseudo-codes for the parallel top-down and bottom-up approaches, respectively.
The parallel Hybrid-BFS is executed by switching the approaches, as well as
the Hybrid-BFS in Algorithm 1. The f , n, and π correspond to frontier, next,
and parents, respectively. The t is a sparse vector for temporarily holding two

Performance of Fugaku for BFS in Graph500 377

1 parallel-bottom-up(...)
2 f ← {source}
3 c ← {source}
4 n ← {}
5 π ← [-1,-1,...,-1]
6 for all processes P (i, j) in parallel do
7 | while f = {} do
8 | | transpose-vector(fi,j)
9 | | fi ← allgatherv(fi,j , P (:, j))

10 | | for s in 0 .. C-1 do
11 | | | ti,j ← {}
12 | | | for u ∈ ci,j do
13 | | | | for v ∈ Ai,j(u, :) do
14 | | | | | if v ∈ fi then
15 | | | | | | ti,j ← ti,j ∪ (u, v)
16 | | | | | | ci,j ← 1
17 | | | | | | break
18 | | | ti,j ← sendrecv(ti,j , P (i, j+s), P (i, j-s))
19 | | | for (v, u) ∈ ti,j do
20 | | | | πi,j(v) ← u
21 | | | | ni,j ← ni.j ∪ v
22 | | | ci,j ← sendrecv(ci,j , P (i, j+1), P (i, j-1))
23 | | f ← n
24 | | n ←{}
25 return π

Algorithm 3: Parallel bottom-up approach

0 2 2 2 2 2 2 3 4
4 5 3 1

row-starts
dst

Compressed Sparse Row (CSR)

0 2 3 4
1 0 0 0 0 0 1 1
0 1 3
4 5 3 1

row-starts
bitmap
offset
dst

Bitmap-based CSR (BCSR)

Fig. 4. Compressed formats

adjacent vertices (u and v). The c is a bitmap of checked vertices, while the f and
n are sparse vectors for the top-down approach and bitmaps for the bottom-up
approach, respectively. The π is a dense vector in both approaches.

In Algorithm 2, in lines 7–8, the f is shared in the column process. In lines
9–13, information about the f and the adjacent vertices is exchanged in the row
process. In lines 14–17, the π and n are created. In Algorithm 3, lines 8–9 are
the same as lines 7–8 of Algorithm 2, except for the data structure of the f .
The for statement in lines 10–22 is divided into C sub-steps. The reason is to
reduce the number of vertices to be searched for in each process by periodically
updating c in the row process in line 22, thereby improving the overall speed. In
lines 10–18, the information on unvisited vertices adjacent to the f is exchanged
in the row process. In lines 19–21, the π and n are created.

4 Improvement to Hybrid-BFS

This section introduces the BFS algorithm for Fugaku, which is also adopted in
the K computer [9]. Since the algorithm is an improved version of the Hybrid-
BFS described in Sect. 3, this section describes only the changes.

378 M. Nakao et al.

Table 2. Memory consumption in CSR and BCSR

CSR BCSR

Order Actual Order Actual

row-starts n′C 2048 MB n′p 190 MB

bitmap – – n′C/64 32 MB

offset – – n′C/64 32 MB

dst n′d 1020 MB n′d 1020 MB

Total n′(C+d) 3068 MB n′(C
32

+p+d) 1274 MB

4.1 Bitmap-Based Representation for Adjacency Matrix

When using a conventional compressed sparse row (CSR) as a format for storing
an adjacency matrix, the array dst, which holds the output vertex number, and
the offset array row-starts of the edge vertex numbers are used. For efficient
edge information retrieval, the smaller row-starts size is desirable. However, the
size of row-starts is proportional to C in the case of a two-dimensional division
of R rows and C columns.

To resolve the issue, Bitmap-based CSR (BCSR) is proposed, which can
extract edge information more efficiently and with less memory than CSR. BCSR
provides the following features: (1) Compress the row-starts in CSR so that only
the edge start position of a vertex with one or more edges is retained. (2) Use the
bitmap, which is an array of bits per vertex that indicates whether each vertex
has at least one edge. (3) Use the array offset to efficiently calculate the vertex
number of an edge source. The position of row-starts at a vertex is the number
of bits standing from the beginning of the bitmap to the bit corresponding to
the vertex. To efficiently calculate the number of standing bits in bitmap, the
cumulative total of bits is stored at offset in advance, word by word.

Figure 4 shows examples of CSR and BCSR when the edge list is {(0, 4),
(0, 5), (6, 3), (7, 1)} where each word is assumed to be 4 bits for the sake of
explanation. The row-starts in CSR is represented in BCSR as three arrays:
row-starts, bitmap, and offset . Next, Table 2 shows a comparison of the amount
of memory where one word is set to 64 bits. Here, n′ is the number of vertices
per node, d is the degree, and p is the probability of having one or more edges
in a row from a partial adjacency matrix of a process. Table 2 also shows the
actual memory usage using a Kronecker graph used in Graph500 with 16 billion
vertices and 256 billion edges when the two-dimensional division of R × C = 64
× 32. This result indicates that BCSR is more memory-efficient than CSR.

4.2 Sorting of Vertex Number

Bit positions in the bitmap are generally in vertex number order. A Kronecker
graph has vertices with large and small degrees, and the vertices with larger
degrees are accessed more frequently. Thus, the memory locality can be improved

Performance of Fugaku for BFS in Graph500 379

A1,1 A1,2 A1,C

A2,1 A2,2

AR,1 AR,2

A2,C

AR,C

(1) (1) (1)

(1) (1) (1)

(1) (1) (1)

A1,1 A1,2 A1,C

AR,1 AR,2 AR,C

(2) (2) (2)

(C) (C) (C)

Fig. 5. Distribution of adjacency
matrix by Yoo [4]

1 top-down-sender-naive(fi, Ai,j)
2 for u ∈ fi in parallel do
3 | for v ∈ Ai,j(:, u) do
4 | | k ← owner(v)
5 | | ti,j,k ← ti,j,k ∪ (u, v)

Algorithm 4: Simple thread parallelization

1 top-down-sender-load-balanced(fi, Ai,j)
2 for u ∈ fi in parallel do
3 | for k ∈ P (i, :) do
4 | | (v0, v1) ← edge-range(Ai,j(:, u), k)
5 | | ri,j,k ← ri,j,k ∪ (u, v0, v1)
6 for k ∈ P (i, :) in parallel do
7 | for (u, v0, v1) ∈ ri,j,k do
8 | | for v ∈ Ai,j(v0:v1, u) do
9 | | | ti,j,k ← ti,j,k ∪ (u, v)

Algorithm 5: Proposed thread parallelization

by arranging the bit positions in degree order. In the algorithm, vertex numbers
are reassigned in degree order within the process. Note that parents is created
in degree order with the technique. Thus, it prepares a new array that holds the
original vertex numbers and is used for writing to parents.

4.3 Yoo’s Distribution of Adjacency Matrix

When applying the distribution shown in Fig. 3 to the adjacency matrix, com-
munication in transpose-vector() is required to transpose frontier shown in
line 7 of Algorithm 2 and line 8 of Algorithm 3. By applying the distribution
proposed by Yoo [4], the communications can be removed. Figure 5 shows the
distribution. The distribution in the rows is the same as Fig. 3, while the distri-
bution in the columns is R × C block-cyclic distribution.

4.4 Load Balancing in Top-Down Approach

Algorithm 4 shows a simple example of thread implementation in lines 10–12 of
Algorithm 2. In line 2, it is threaded by the input source vertices in frontier.
In line 3, Ai,j(:, u) is an edge list whose edge input source is u. In line 4, the
owner(v) function returns the process in charge of the output destination vertex
v. In line 5, the adjacent vertex information is stored. Although the technique
is simple, a large load imbalance between threads may occur because the degree
of a Kronecker graph differs significantly depending on the vertex.

To resolve this load imbalance, it is threaded by the output destination ver-
tices. Algorithm 5 shows the technique which uses two thread-parallelized for
statements. The first for statement stores the information of the output destina-
tion vertices for each process in charge, and the second for statement stores the
set of adjacent vertices. The function edge-range(Ai,j(:, u), k) in line 4 returns
the range of the edge list for which the process in charge is k.

380 M. Nakao et al.

1 parallel-bottom-up(...)
2 f ← {source}
3 c ← {source}
4 n ← {}
5 π ← [-1,-1,...,-1]
6 for all processes P (i, j) in parallel do
7 | while f = {} do
8 | | fi ← allgatherv(fi,j , P (:, j))
9 | | for s in 0 .. C-1 do

10 | | | ti,j ← {}
11 | | | for u ∈ ci,j do
12 | | | | for v ∈ Ai,j(u, :) do
13 | | | | | if v ∈ fi then
14 | | | | | | ti,j ← ti,j ∪ (u, v)
15 | | | | | | ci,j ← 1
16 | | | | | | break
17 | | | ci,j ← sendrecv(ci,j , P (i, j+1), P (i, j-1))
18 | | ti,j ← alltoallv(ti,j , P (i, :))
19 | | for (v, u) ∈ ti,j do
20 | | | πi,j(v) ← u
21 | | | ni,j ← ni.j ∪ v
22 | | f ← n
23 | | n ←{}
24 return π

Algorithm 6: Proposed bottom-up approach

Table 3. Communication costs

Approach Pattern Times Words

Top-down allgatherv O(1) nR

alltoallv O(1) 4m

Bottom-up allgatherv O(1) sbnR/64

sendrecv O(C) sbnC/64

alltoallv O(1) 2n

In Algorithm 4, an adjacent vertex is not stored in the communication buffer,
but in a temporary buffer in line 5. The reason is that the data need to be con-
tiguous for communication but the number of elements to be sent to each process
cannot be known in advance. In contrast, in Algorithm 5, the number of vertices
passed to each process in the first for statement can be counted. Therefore, in
line 9, the adjacent vertices are used for communication without the temporary
buffer. However, the disadvantage of the technique is that the amount of infor-
mation in r is larger than that in t. When searching for vertices whose degree
is relatively small compared to the number of destination processes, the amount
of data written to r is larger than that to t, which is inefficient. Accordingly,
the techniques in Algorithm 4 and Algorithm 5 are switched depending on the
degree of each vertex and the number of destination processes.

4.5 Communication in Bottom-Up Approach

Use of Collective Communication. In the sendrecv communication in line
18 of Algorithm 3, point-to-point communication is performed within the row
process group. As a result of preliminary experiments in a large-scale environ-
ment, it was found that the communication efficiency deteriorates when such
unscheduled communications occur frequently. Therefore, by using alltoallv
communication instead of the sendrecv communication, data are exchanged
collectively, as shown in line 18 of Algorithm 6. Additionally, as described in
Sect. 4.3, the transpose-vector() function is removed in Algorithm 6.

Performance of Fugaku for BFS in Graph500 381

P(i,1) P(i,2) P(i,3)

sub-step

P(i,1) P(i,2) P(i,3)

sub-step Processing
Done

Send

n = 1 n = 2

Fig. 6. Overlapping communication with computation

Switching Data Structure by Vertex Concentration. Table 3 shows the
communication costs of BFS. The third column shows the order of the com-
munications required to perform one approach. The fourth column shows the
communication size required to perform one BFS, assuming that the approach
is not switched. Here, one word is 64 bits, n is the number of vertices, R and C
are the sizes of each dimension of the process grid, m is the number of edges,
and sb is the number of times the bottom-up approach is performed. Addition-
ally, for the sake of formula simplification, (C − 1)/C ≈ 1 is set and one-word
communications are excluded. In the bottom-up approach, the one-step com-
munication sizes of allgatherv and sendrecv increase in proportion to R and
C, respectively. Note that allgatherv in the top-down approach uses a sparse
vector and is executed only when frontier is small, so there is no problem.

To reduce the communication size of the allgatherv and sendrecv in the
bottom-up approach, a technique is used to select a bitmap or sparse vector
according to the vertex concentration of the data automatically. When a sparse
vector is used for each communication, the communication size of allgatherv is
proportional to the number of vertices in frontier, and the communication size
of sendrecv is proportional to the number of the unvisited vertices. In other
words, when the number of vertices is smaller than n/64, the communication
size of each can be reduced by using the sparse vector.

Overlapping Communication with Calculation. To proceed with commu-
nication and calculation simultaneously in lines 9–17 of Algorithm 6, the sub-step
in line 9 increases from C to n×C. Our implementation uses n = 4. In addition,
to effectively use torus topology networks such as TofuD, the sendrecv com-
munication in line 17 is performed simultaneously in two directions. Figure 6
shows its concept when C = 3. In the case of n = 2, communication to the right
side, calculation process, and communication to the left side can be performed
simultaneously. Note that P (i, 1) and P (i, 3) are directly connected in a torus

382 M. Nakao et al.

topology. For reducing the communication waiting time, the processing order of
the receiving process is the receiving order, not the loop order.

5 Performance Optimization for Fugaku

This section reports how to optimize the BFS performance using up to 16,384
nodes, while the next Sect. 6 reports the final evaluation using more nodes. Note
that these sections evaluate the BFS performance on Fugaku, but the evaluation
results are not guaranteed to match the results at the start of sharing.

5.1 Graph500 Benchmark

The number of vertices in a graph used in Graph500 is a power of two and is
expressed as 2SCALE . The number of edges is 16 times the number of vertices.
The BFS performance unit is a traversed edges per second (TEPS) [1]. According
to the Graph500 regulation [1], 64 vertices are randomly selected as the start
points, after which BFS processing is performed on each. The harmonic mean of
all 64 BFS performance values is set as the evaluation performance value. Since
64 times is excessive for the performance optimization performed in this section,
the harmonic mean of 16 times in BFS is used as the performance value. In the
next Sect. 6, the harmonic mean value produce by 64 BFS repetitions is used.

5.2 Setting Parameters

In the evaluations, a graph size per node is set at SCALE = 24 and is measured
with weak scaling. In Fugaku, users can specify one- to three-dimensional logical
process layouts (job shapes). Since BFS uses the R×C two-dimensional process
grid, we specify the two-dimensional job shape. In this case, each process is
assigned to a node so that it has a physically two-dimensional torus topology.
Please note that due to Fugaku’s job scheduler, if the number of nodes used is
384 or less, it may not become the torus physically. Thus, in this experiment,
384 or more nodes will be used. Table 3 indicates that the communication size
becomes smaller when the values of R and C are close. Note that if R = C
cannot be set, R > C is desirable. Thus, if the number of processes is a square
number, R and C should be set to the same value. If not a square number, R
should be set to be larger and the difference between R and C should be set to
be as small as possible. For example, if the number of processes is 8, then (R,
C) = (4, 2).

5.3 Optimization of the Number of Processes per Node

This section examines the optimum number of processes assigned to one node.
The evaluation uses 1, 2, or 4 processes per node (denoted 1 ppn, 2 ppn, and
4 ppn, respectively) because A64FX has four CMGs shown in Fig. 1. The number
of threads in each process is 48, 24, or 12.

Performance of Fugaku for BFS in Graph500 383

Number of Nodes

Pe
rfo

rm
an

ce
 (G

TE
PS

)
20,000

16,000

12,000

8,000

4,000

0
2 9 210 211 212 213 214

4ppn
2ppn
1ppn

(a) Performance

Pe
rfo

rm
an

ce
 R

at
io 4ppn

2ppn

Number of Nodes
2 9 210 211 212 213 214

1.75

1.50

1.25

1.00

(b) Performance ratio with 1ppn

Fig. 7. Performance and performance ratio for each process with weak scaling

100

80

60

40

20

0

R
at

io
 o

f P
ro

ce
ss

in
g

(%
)

imbalance
sendrecv

alltoallv

allgatherv

calculation

29 210 211 212 213 214

Number of Nodes (1ppn)
29 210 211 212 213 214

Number of Nodes (4ppn)

100

80

60

40

20

0

Fig. 8. Processing time ratio of Fig. 7

Figure 7a shows the performance results for each number of processes per
node and Fig. 7b shows the relative performance of 2 ppn and 4 ppn when the
result of 1 ppn is 1.0. The result of 16,384 (=214) nodes for 2 ppn could not
be measured due to a system malfunction. The results of 16,384 nodes for 1 ppn
and 4 ppn are 17,560 GTEPS and 18,738 GTEPS, respectively. Figure 7 indicates
that the performance is higher in the order of 4 ppn, 2 ppn, and 1 ppn, but the
performance difference becomes smaller as the number of nodes increases. One
of the reasons for this performance difference is that at 1 ppn and 2 ppn, each
thread frequently gets data across the CMGs in the process. In addition, 4 ppn
has a smaller data size per process, so the cache hit rate is higher. According to
the profiler provided by Fugaku, the number of L2 misses in the case of 4 ppn
was about half that in the case of 1 ppn.

Figure 8 shows the time ratio of each BFS process for 1 ppn and 4 ppn. The
calculation is the local processing, while allgatherv, alltoallv, and sendrecv
are the communication times listed in Table 3. Additionally, imbalance is the
synchronization waiting time when barrier synchronization is performed at the
end of the approach. Figure 8 indicates that the communication time ratio for
1 ppn is smaller than that for 4 ppn. The reason is considered to be that the
number of communication partners of 1 ppn is less than that of 4 ppn.

384 M. Nakao et al.

Number of Nodes
210 212 214

0.5

0.4

0.3

0.2

0.1

0

El
ap

se
d

Ti
m

e
(s

ec
.)

21321129

Eager
Rendezvous

(a) Elapsed time of sendrecv

EagerRendezvous

4.0

3.0

2.0

1.0

0

El
ap

se
d

Ti
m

e
(s

ec
.)

imbalance
sendrecv

alltoallv

allgatherv

calculation

(b) Breakdown in 214 nodes

Fig. 9. Comparison of Rendezvous and Eager

Although we used up to 16,384 nodes in this section, we will report eval-
uations using more nodes in Sect. 6. From an examination of Fig. 8, it can be
predicted that the communication time ratio will be larger when a larger number
of nodes is used. Additionally, in general, as the number of processes increases,
the amount of memory consumed internally by the MPI library increases. Thus,
the subsequent evaluations will be performed for 1 ppn.

5.4 Use of Eager Method

In the point-to-point communication of most MPI implementations, the Eager
and Rendezvous methods are implemented. The Eager method sends a mes-
sage via a buffer regardless of the state of the receiving process. In contrast,
the Rendezvous method does not send a message until the receiving process is
ready. Since the Eager method is suitable for small message communication, most
MPI implementations switch the Eager and Rendezvous methods automatically
depending on message size.

As shown in Table 3 and Fig. 6, point-to-point communication is performed
in sendrecv. In the previous evaluation described in Sect. 5.3, we found that
the Rendezvous method was used for all sendrecv communications. Here, it
should be noted that the Fujitsu MPI library provided by Fugaku can change
the switching threshold between the Eager and Rendezvous methods by setting
a parameter in the “mpiexec” command. If the node on Fugaku has sufficient
memory, the Eager method usage rate can be increased using the parameter. In
this experiment, the threshold is set to 512,000 bytes.

This section evaluates the performance when the Eager method is used for all
sendrecv communications. Figure 9 shows the results. For comparison purposes,
Fig. 9 also shows the results for 1ppn in Sect. 5.3 as the “Rendezvous” item.
Figure 9a shows the communication time of sendrecv, and Fig. 9b shows the
breakdown when using 16,384 nodes. These results show that BFS performance
is improved by using the Eager method. The result of 16,384 nodes using the
Eager method is 17,964 GTEPS. In Fig. 9a, the reason for the staircase shape of
the measured value is its relationship to the value of C, shown in Table 3. For

Performance of Fugaku for BFS in Graph500 385

example, the values of (R, C) when using 212, 213, and 214 nodes are (64, 64),
(128, 64), and (128, 128), respectively.

In the subsequent evaluations, the switching threshold will be adjusted so
that all sendrecv communications will use the Eager method.

5.5 Power Management

As mentioned in Sect. 2, the clock frequency of the A64FX core can be specified
as either 2.0 or 2.2 GHz for each job. While the operation at 2.0 GHz is called
“Normal mode”, that at 2.2 GHz is called “Boost mode”. Of course, Boost mode
requires more power than Normal mode. To reduce power consumption, “Eco
mode” is also available on A64FX. In Eco mode, the two floating-point arith-
metic pipelines of A64FX are limited to one, and power control is performed
according to the maximum power used at that time. Since BFS does not per-
form floating-point arithmetic, Eco mode can be expected to reduce power con-
sumption without affecting performance. With that point in mind, this section
reports on the performance and power consumption of BFS when using Boost
mode and Eco mode. Since the modes are orthogonal settings, the evaluation is
performed using the following four combinations:

– Normal mode: 2.0 GHz and two floating-point arithmetic pipelines (this
mode was used in Sects. 5.3 and 5.4).

– Boost mode: 2.2 GHz and two floating-point arithmetic pipelines.
– Eco mode: 2.0 GHz and one floating-point arithmetic pipeline.
– Boost Eco mode: 2.2 GHz and one floating-point arithmetic pipeline.

There are two power measurement methods used in Fugaku. One is performed
by a user (called user method), the other is performed by the facility (called
facility method). The user method measures the power in a part of the user
program using dedicated APIs on a node-by-node basis, whereas the facility
method measures the entire job in rack units (384 nodes are stored in one rack),
which means that nodes executing BFS must occupy the rack. In this section,
power is measured using the user method. The difference is that the user method
measures the direct current (DC) supplied from the power supply unit (PSU),
while the facility method measures the 200 V alternating current (AC) supplied
to the PSU. In a preliminary evaluation of three racks (1,152 nodes) using Normal
mode, the power measured by the user method was found to be 117 kW, while the
facility method measurement was 126 kW. The difference between these values
is considered to be the AC/DC conversion loss plus the power of the control
device in the rack that is not included in the node power [18].

Figure 10a shows the performance ratio of the other modes to that of Normal
mode, and Fig. 10b shows the corresponding power efficiency (TEPS/W) ratios.
Thus, a value higher than 1.00 indicates performance or power efficiency better
than that of Normal mode. Figure 10a indicates that the performance is improved
by about 4 to 7 % by setting Boost mode or Boost Eco mode, whereas the
performance does not change when Eco mode is set. Figure 10b indicates that

386 M. Nakao et al.

29 210 211 212 213 214

1.08

1.06

1.04

1.02

1.00

0.98

Pe
rfo

rm
an

ce
 R

at
io

Number of Nodes

Eco
Boost Eco

Normal
Boost

(a) Performance comparison

Number of Nodes
29 210 211 212 213 214

Po
w

er
 E

ffi
ci

en
cy

 R
at

io

1.40

1.30

1.20

1.10

1.00

0.90

Eco
Boost Eco

Normal
Boost

(b) Power efficiency comparison

Fig. 10. Comparison between modes

the power efficiency is improved by 27 to 35 % by setting Eco mode or Boost
Eco mode. From the above results, it can be said that Boost Eco mode is most
suitable for BFS because it has both high performance and good power efficiency.
In Boost Eco mode, the result for 16,384 nodes is 18,607 GTEPS in performance,
1,408 kW in power consumption, and 13.22 MTEPS/W in power efficiency.

5.6 Six-Dimensional Process Mapping

As described in Sect. 5.2, it is desirable that R and C be close to each other.
However, since the maximum size of two-dimensional job shapes supported by
the Fugaku job scheduler is Y Zc × Xab, it is 1,104 × 144 for the whole system,
and the difference between R and C is 7.67 times. Therefore, we perform a pro-
cess mapping that can set any combination of axes of the TofuD six-dimensional
network to R and C. For example, in the case of the whole system, by assigning
R to the XY axes and C to the Zabc axes, 552 × 288 process grid is created.
The difference between R and C is 1.92 times.

In the process mapping for C, since the sendrecv communication shown
in Fig. 6 is suitable for adjacent communication, the mapping should ensure
that all the nodes are adjacent. If not, performance will be degraded due to
communication collisions. Figure 11 shows an example of assigning the abc axes
(2 × 3 × 2) to C. First, the assigned axis is expanded in two dimensions. The
horizontal is the first axis, and the vertical is the remaining axes. Then, all
processes are assigned so that they are adjacent to each other. To make the first
and last processes (0 and 11) adjacent to each other physically, the topology of
the last axis must be either a torus, or the a or c axis because the a and c axes
consist of two nodes. Regarding the process mapping for R, it is not necessary
to take the above measure because there is no adjacent communication.

Performance of Fugaku for BFS in Graph500 387

a

b
c

(a,b,c)

11

8

7

4

3

0

10

9

6

5

2

1
a

b,c

0,0,1

0,1,1

0,2,1

0,2,0

0,1,0

0,0,0

1,0,1

1,1,1

1,2,1

1,2,0

1,1,0

1,0,0

2 1 1 2

0 0 1 0

1 0 1 1

2 0 1 2

1 1 1 1

0 1 00,1

1

0

22

1

22

2

11

2

00

1

0

Fig. 11. Process mapping for C

138x72
(1/16)

552x288
(Full)

100

80

60

40

20

0

Number of Nodes

R
at

io
 o

f P
ro

ce
ss

in
g

(%
) imbalance

allgatherv

calculation

alltoallv

276x144
(1/4)

7.06.0
sendrecv

25.633.639.8
14.7

13.0
10.8

36.3 36.7
33.2

11.6
9.67.1 14.9

Fig. 12. Time ratio of processing

Pe
rfo

rm
an

ce
 (G

TE
PS

)

1.0E+6

1.0E+5

1.0E+4

1.0E+3

Number of Nodes
2 9 211 213 215 217

1.2

0.8

0.4

0

Parallel Efficiency

Fig. 13. Performance

Po
w

er
 c

on
su

m
pt

io
n

 (k
W

) 1.0E+5

1.0E+4

1.0E+3

1.0E+2

1.0E+1

Number of Nodes
2 9 211 213 215 217

1.2

0.9

0.6

0.3

0

R
elative pow

er per node

Fig. 14. Power consumption

6 Performance Evaluation on Fugaku

6.1 Performance on Whole Fugaku System

This section evaluates the BFS algorithm on the whole Fugaku system. As
described above, we set (R, C) to (552, 288) = 158,976 nodes, SCALE = 41 (a
graph with 241 vertices and 245 edges), and Boost Eco mode. For a comparison
purpose, we also conducted evaluations using 1/4 and 1/16 of Fugaku. We set (R,
C) to (276, 144) = 39,744 nodes and SCALE = 39 for 1/4 system, and (R, C) to
(138, 72) = 9,936 nodes and SCALE = 37 for 1/16 system. Figure 12 shows the
time ratio of each process in this evaluation. As the number of nodes increases,
the ratio of total communication (sendrecv + alltoallv + allgatherv) and
imbalance increase. The performance of each is 102,955 GTEPS for the whole
system, 38,749 GTEPS for 1/4 system, and 13,738 GTEPS for 1/16 system. In
addition, power consumption and power efficiency in the whole system measured
by the facility method are 14,961 kW and 6.88 MTEPS/W, respectively.

Figure 13 and Fig. 14 summarize the performance and power consumption
results so far; they also show the parallel efficiency and relative power per node
with the 29-node result set to 1. Note that for power consumption, all results are
measured with the user method. As the number of nodes increases, Fig. 13 shows
a sharp drop in parallel efficiency, whereas Fig. 14 shows a slight decrease in
relative power per node. The reason is considered to be that the communication
load becomes large.

388 M. Nakao et al.

Table 4. Graph500 list for June 2019 and November 2020

June 2019 November 2020

NAME SCALE GTEPS NAME SCALE GTEPS

1st K computer 40 31,302 Supercomputer Fugaku 41 102,955

2nd Sunway TaihuLight 40 23,756 Sunway TaihuLight 40 23,756

3rd Sequoia 41 23,751 TOKI-SORA 36 10,813

4th Mira 40 14,982 Summit 40 7,666

5th SuperMUC-NG 39 6,279 SuperMUC-NG 39 6,279

6.2 Comparison with Other Systems

Table 4 shows the first to fifth places of Graph500 in June 2019 and November
2020. In June 2019, the first place was the K computer; this was the last ranking
prior to its decommissioning. In November 2020, Fugaku was ranked first based
on the performance optimization described in this paper. The Fugaku perfor-
mance value was 3.3 times that of the K computer and 4.3 times that of Sunway
TaihuLight. Between June 2019 and November 2020, Sequoia [5] and Mira [15]
were removed from the ranking due to decommissioning, while TOKI-SORA
[2] and Summit [3] were newly ranked. TOKI-SORA consists of 5,760 nodes of
PRIMEHPC FX1000, which has almost the same specification as Fugaku shown
in Table 1, and our implementation is used for the evaluation.

Although omitted in Table 4, in June 2020, Fugaku achieved 70,980 GTEPS
in SCALE = 40 using 92,160 nodes (60% of Fugaku) and also won the first
place. Since this calculation scale is almost the same as the K computer, we will
try to compare the two systems. The per-node performance of the K computer
and Fugaku at 92,160 nodes is 377 MTEPS (31,302 GTEPS/82,944 nodes) and
770 MTEPS (70,980 GTEPS/92,160 nodes), respectively, so Fugaku has about
twice the performance. As shown in Fig. 12, most of the communication time is
occupied by collective communication (alltoallv and allgatherv), and the injec-
tion bandwidth is important for them. As described in Sect. 2, the difference in
injection bandwidth between Fugaku and the K computer is a factor of two.
Since the overall performance difference is also twice, we can assume that there
is also a 2x difference in local calculation performance, but it is not as great as
the specification. For example, the difference in bandwidth is 16.0 times. The
reason why Fugaku’s local performance is relatively low is that since the mea-
surement is performed with 48 threads per process, there is a lot of memory
access across CMGs. The performance modeling of BFS and the CMG-aware
locality optimization of A64FX are the future works.

Green Graph500 [1] is a ranking that evaluates the power efficiency perfor-
mance (TEPS/W) among the systems ranked in Graph500. Green Graph500 is
divided into two categories: the BIG DATA category deals with SCALE ≥ 30,
and the SMALL DATA category is for SCALE 29. Since SCALE = 30 is a
relatively small graph size, most top results in the BIG DATA category utilize

Performance of Fugaku for BFS in Graph500 389

only one node. Therefore, it can be said that the current Green Graph500 regu-
lations are not suitable for a large-scale system such as Fugaku. As described in
Sect. 6.1, BFS on Fugaku uses SCALE = 41 and Sequoia was the only machine
that ran at the same size in Table 4. Since the power efficiency of Sequoia was
3.72 MTEPS/W, that of Fugaku is 1.9 times better than that of Sequoia.

7 Conclusion and Future Work

This paper presents the performance optimization of BFS in the Graph500
benchmark and evaluations conducted on Fugaku. In the performance evalu-
ation using all Fugaku nodes for a large-scale graph consisting of about 2.2
trillion vertices and 35.2 trillion edges, we achieve 102,955 GTEPS and won the
award in Graph500 in November 2020. This performance is 3.3 times that of the
K computer, and 4.3 times that of Sunway TaihuLight which is the second place
in the Graph500.

Future work will focus on the following: (1) We will optimize our BFS
implementation to be aware of the four CMGs in A64FX. For this, NUMA
architecture-aware techniques for BFS will be useful [21]. (2) Detailed perfor-
mance modeling will be necessary to clarify the relationship between hardware
and BFS performance. (3) We will develop various graph processing codes includ-
ing SSSP in the Graph500 benchmark, and utilize Fugaku to perform graph
processing of real-world data. (4) From the experiments in this paper, it was
found that the communication time became dominant as the number of nodes
increased. Future supercomputers for higher performance of BFS will require
higher dimensional topologies than TofuD.

Acknowledgments. We would like to express our sincere thanks to Fujitsu engineers
of the supercomputer Fugaku for helping us execute the benchmark. We are also grate-
ful to Dr. Yutaka Ishikawa, the project leader of the Flagship 2020 Project. This work
is partially funded by the Ministry of Education, Culture, Sports, Science and Technol-
ogy (MEXT) program for the Development and Improvement for the Next Generation
Ultra-High-Speed Computer System, under its Subsidies for Operating the Specific
Advanced Large Research Facilities. This work is also partially funded by RIKEN
Incentive Research Projects.

References

1. Graph500 and Green Graph500. https://graph500.org
2. Overview of JSS3. https://www.jss.jaxa.jp/en/
3. Summit. https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
4. Yoo, A., et al.: A scalable distributed parallel breadth-first search algorithm on

BlueGene/L. In: SC 2005: Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing, pp. 25–25 (2005). https://doi.org/10.1109/SC.2005.4

5. Barnes Peter, D., et al.: Warp speed: executing time warp on 1,966,080 cores.
In: Proceedings of the 1st ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation, pp. 327–336 (2013)

https://graph500.org
https://www.jss.jaxa.jp/en/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://doi.org/10.1109/SC.2005.4

390 M. Nakao et al.

6. Miyazaki, H., et al.: Overview of the K computer. Fujitsu Sci. Tech. J. 48(3),
255–265 (2012)

7. Jakob, J., et al.: Extremely scalable spiking neuronal network simulation code:
from laptops to exascale computers. Front. Neuroinform. 12, 2 (2018)

8. Leskovec, J., et al.: Kronecker graphs: an approach to modeling networks. J. Mach.
Learn. Res. 11(33), 985–1042 (2010)

9. Ueno, K., et al.: Efficient breadth-first search on massively parallel and distributed-
memory machines. Data Sci. Eng. 2, 22–35 (2016)

10. Sato, M., et al.: Co-design for A64FX manycore processor and “Fugaku”. In: Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 651–665. IEEE Computer Society, Los Alamitos (2020)

11. Buhlmann, P., et al. (ed.): Handbook of Big Data. Chapman and Hall/CRC, Lon-
don (2016). https://doi.org/10.1201/b19567

12. Murphy, R.C., et al.: Introducing the graph 500. In: Cray User’s Group (2010)
13. Beamer, S., et al.: Direction-optimizing breadth-first search. In: Proceedings of

the International Conference on High Performance Computing, Networking, Stor-
age and Analysis, SC 2012, pp. 12:1–12:10. IEEE Computer Society Press, Los
Alamitos (2012)

14. Beamer, S., et al.: Distributed memory breadth-first search revisited: enabling
bottom-up search. In: IEEE International Symposium on Parallel Distributed Pro-
cessing, Workshops and Phd Forum, pp. 1618–1627 (2013)

15. Wallace, S., et al.: Measuring power consumption on IBM blue Gene/Q. In: 2013
IEEE International Symposium on Parallel Distributed Processing, Workshops and
Phd Forum, pp. 853–859 (2013)

16. Brohee, S., van Helden, J.: Evaluation of clustering algorithms for protein-protein
interaction networks. BMC Bioinform. (2006). https://doi.org/10.1186/1471-2105-
7-488

17. Da, Y.-F., Zhao, X.-M.: A survey on the computational approaches to identify drug
targets in the postgenomic era. BioMed Research International, pp. 1–9 (2015).
https://doi.org/10.1155/2015/239654

18. Kodama, Y., et al.: Evaluation of power controls on supercomputer Fugaku. In:
Energy Efficient HPC State of the Practice Workshop in conjunction with IEEE
Cluster 2020, pp. 484–493 (2020)

19. Ajima, Y., et al.: Tofu: a 6D Mesh/Torus interconnect for exascale computers.
Computer 42(11), 36–40 (2009). https://doi.org/10.1109/MC.2009.370

20. Ajima, Y., et al.: The Tofu interconnect D. In: IEEE International Conference on
Cluster Computing, pp. 646–654 (2018)

21. Yasui, Y., et al.: NUMA-optimized parallel breadth-first search on multicore single-
node system. In: 2013 IEEE International Conference on Big Data, pp. 394–402
(2013)

https://doi.org/10.1201/b19567
https://doi.org/10.1186/1471-2105-7-488
https://doi.org/10.1186/1471-2105-7-488
https://doi.org/10.1155/2015/239654
https://doi.org/10.1109/MC.2009.370

Under the Hood of SYCL – An Initial
Performance Analysis with An

Unstructured-Mesh CFD Application

Istvan Z. Reguly1,2(B), Andrew M. B. Owenson2, Archie Powell2, Stephen A. Jarvis3,
and Gihan R. Mudalige2

1 Faculty of Information Technology and Bionics, Pazmany Peter Catholic University,
Budapest, Hungary

reguly.istvan@itk.ppke.hu
2 University of Warwick, Coventry, UK

{a.m.b.owenson,a.powell.3,g.mudalige}@warwick.ac.uk
3 University of Birmingham, Birmingham, UK

s.a.jarvis@bham.ac.uk

Abstract. As the computing hardware landscape gets more diverse, and the com-
plexity of hardware grows, the need for a general purpose parallel programming
model capable of developing (performance) portable codes have become highly
attractive. Intel’s OneAPI suite, which is based on the SYCL standard aims to fill
this gap using a modern C++ API. In this paper, we use SYCL to parallelize MG-
CFD, an unstructured-mesh computational fluid dynamics (CFD) code, to explore
current performance of SYCL. The code is benchmarked on several modern pro-
cessor systems from Intel (including CPUs and the latest Xe LP GPU), AMD,
ARM and Nvidia, making use of a variety of current SYCL compilers, with a par-
ticular focus on OneAPI and how it maps to Intel’s CPU and GPU architectures.
We compare performance with other parallelizations available in OP2, including
SIMD, OpenMP, MPI and CUDA. The results are mixed; the performance of this
class of applications, when parallelized with SYCL, highly depends on the target
architecture and the compiler, but in many cases comes close to the performance
of currently prevalent parallel programming models. However, it still requires dif-
ferent parallelization strategies or code-paths be written for different hardware to
obtain the best performance.

1 Introduction

With the switch to multi-core processors in 2004, the underpinning expectation of com-
mercial hardware developers and vendors has been that performance improvements of
applications could be maintained at historical rates by exploiting the increasing levels
of parallelism in emerging devices. However, a key barrier that has become increas-
ingly significant is the difficulty in programming them. The hardware architectures have
become highly complex with massively-parallel and heterogeneous processors, deep
and multiple memory hierarchies and complex interconnects. Consequently, extensive
parallel programming knowledge is required to fully exploit the potential of these
devices.
c© Springer Nature Switzerland AG 2021

B. L. Chamberlain et al. (Eds.): ISC High Performance 2021, LNCS 12728, pp. 391–410, 2021.
https://doi.org/10.1007/978-3-030-78713-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_21&domain=pdf
https://doi.org/10.1007/978-3-030-78713-4_21

392 I. Z. Reguly et al.

A wide range of parallel programming models, extensions and standards have been
introduced to address this problem. Over the years these have included proprietary
extensions such as CUDA, TBB, Cilk and OpenACC as well as evolving open stan-
dards such as OpenMP, OpenCL, and MPI. However, as observed by David Patterson
in 2010 [17], industry, academia and stakeholders of HPC have still not been able to
provide an acceptable and agile software solution for exploiting the rapidly changing,
massively parallel diverse hardware landscape. On the one hand, open standards have
been slow to catch up with supporting new hardware, and for many real applications
have not provided the best performance achievable from these devices. On the other
hand, proprietary solutions have only targeted narrow vendor-specific devices resulting
in a proliferation of parallel programming models and technologies. As a result, we have
seen and continue to see a golden age of parallel programming software research. A pri-
mary target of most such research has been achieving performance portability, where
software techniques and methods are developed to enable an application to achieve effi-
cient execution across a wide range of HPC architectures without significant manual
modifications.

The most recent addition to the myriad array of parallel programming technologies
and software suites is Intel’s OneAPI. The need for a single application programming
interface (API) to program their divergent hardware products – the currently dominant
Xeon multi-core CPUs, recently announced Xe GPUs and Intel’s FPGA devices – is
driving this development. OneAPI is based on SYCL [2], a C++ abstraction layer for
programming parallel systems, initially based on OpenCL, but now decoupled from it
[20] to allow for different backends (e.g. CUDA, OpenMP). With the advent of OneAPI
and the emerging vendor support for SYCL, it has been touted as one possible open
standard for addressing the HPC performance portability problem. As such the objec-
tive of the research presented in this paper is to explore the performance of SYCL
with a view to evaluate its performance portability, contrasting achieved performance
to more established programming models on a range of modern multi-core and many-
core devices.

We carry out this work building on the OP2 Domain Specific Language (DSL) [14],
which already has wide-ranging capabilities to target modern architectures. OP2 uses
source-to-source translation and automatic code generation to produce multiple paral-
lellizations of an application written using the OP2 high-level API. It is currently able
to generate parallel code that use SIMD, OpenMP, CUDA and their combinations with
MPI together with different optimizations for each version to obtain the best perfor-
mance from different hardware. In this work we extend these capabilities to also rapidly
generate different variants of highly optimized SYCL code and apply it to a recently
developed, representative unstructured-mesh CFD application [16] that is written with
the OP2 API. We generate SYCL paralleizations for this application, and explore its
performance, allowing for a fair and direct comparison of performance, including com-
parisons with other parallelizations generated through OP2. The work aims to provide a
preliminary performance evaluation using current state-of-the-art SYCL. More specifi-
cally we make the following contributions:

Under the Hood of SYCL 393

• We explore how an implementation of the unstructured-mesh parallel motif can be
achieved using the SYCL programming model. The main aspect for efficient par-
allelization is on handling the race-conditions of indirect array increments/updates
which we do through coloring and atomics schemes implemented with SYCL.

• The SYCL parallelization is used to develop a new target source generator for OP2.
This is used to automatically generate optimized SYCL code for a representative
CFD application called MG-CFD. Performance of the SYCL-based MG-CFD par-
allelization is benchmarked on a range of single-node hardware platforms and com-
pared to the same application parallelized through OP2 using currently established
programming models, including SIMD, OpenMP, CUDA and their combinations
with MPI.

• Finally, we present a detailed performance analysis of all the parallelizations
explored above, contrasting the SYCL implementation with other parallelizations.

The use of an unstructured mesh application, which is characterized by their indirect
memory accesses leads to an interesting benchmarking study as such an irregular motif
is difficult to parallelize. This we believe will provide a more contrasting evaluation of
SYCL, complementing previous work [9] on regular parallel motifs such as structured-
mesh applications. Furthermore, the use of OP2’s source-to-source translator to auto-
matically produce SYCL parallelizations enables us to rapidly explore the design space
and various optimizations without needing to manually modify MG-CFD’s 25 loops.
We also show that the use of OP2 does not impact the best achievable performance
from SYCL for this application. Given the range of modern and emerging multi-core
and many-core architectures benchmarked, the different parallelizations explored for
each, together with the use of multiple SYCL compilers, makes this study, to our knowl-
edge, the most comprehensive performance investigation into a non-trivial, representa-
tive application developed with SYCL to-date.

Details of OP2’s performance and portability for existing parallelizations along with
the benefits and limitations of such a DSL-based approach have been extensively stud-
ied and presented in previous publications [11,15,18,19]. As such we focus on the
performance portability of SYCL. As this work uses OP2, we also do not draw con-
clusions with respect to the usability and maintainability of SYCL, as it is fully hidden
from the users of the OP2 library.

The rest of this paper is organized as follows: in Sect. 2 we present an introduc-
tion to unstructured mesh applications and the key challenges in parallelizing this class
of applications. Next, in Sect. 3 we briefly detail the OP2 API and the target SYCL
parallelizations developed for subsequent code-generation through OP2. In Sect. 4 we
present empirical performance results of our main benchmark application MG-CFD,
parallelized using SYCL, compared to other parallelizations generated with OP2. In
Sect. 5 we present a bottleneck analysis of the systems benchmarked and the achievable
performance of each parallelization. Finally, conclusions are presented in Sect. 6.

2 Parallelizing Unstructured-Mesh Applications

The key characteristic of the unstructured-mesh motif is the use of explicit connectivity
information between elements to specify the mesh topology and consequently to access

394 I. Z. Reguly et al.

data defined on neighboring elements [7]. This is in contrast to the use of stencils in
structured-mesh applications where the regular geometry of the mesh implicitly pro-
vides the connectivity information. As such, iterations over unstructured meshes lead
to highly irregular patterns of data accesses over the mesh, due to indirections. For
example, computations over the mesh involve iterating over elements of a set (e.g. cell
faces), performing the same computations (on different data), accessing/modifying data
on the set which they operate on (e.g. fluxes defined on the faces), or using indirections
accessing/modifying data defined on other sets (such as data on connected cells). These
indirect accesses are particularly difficult to parallelize. For example when parallelizing
a loop over mesh edges, then updating data on the two connected nodes will lead to con-
nected edges updating the same nodal data simultaneously, unless explicitly handled by
the programmer.

Several strategies exists for handling data races depending on the target hardware
and parallel programming model. SIMD vectorization on CPUs parallelize the iterative
loop over the mesh elements, stepping through it in strides of the SIMD vector length
of the processor. On a processor such as the current generation Intel Xeon – Skylake
or Cascade Lake processors, this will be a vector length of 8 with double precision
arithmetic. Thus the computation over edges will proceed by computing over 8 edges
simultaneously at a time, updating values on the two nodes connected to each edge.
One way to handle data races within each step is to implement explicit gather-scatter
operations to apply the indirect increments [15]. A gather will stage indirectly-accessed
data into a local SIMD-length sized array, then carrying out a computation as SIMD-
vector operations on this local data. Finally a scatter will serially apply the increments
to the indirectly-accessed data.

For multi-threading on CPUs, the parallelization should make sure that multi-
ple edges assigned to threads do not update the same node simultaneously. With an
OpenMP parallelization, one way to avoid data races is to color the edges such than no
two edges of the same color update the same node [14]. Coloring can be similarly used
for parallelizing on GPUs. Given the larger number of threads executable on GPUs,
and the availability of GPU shared memory, different variations of coloring can be
used [21]. For distributed-memory parallelizations, such as using MPI, explicitly par-
titioning the mesh and assigning them to different processors leads to a decomposition
of work that only have the potential to overlap at the boundaries of the partitions. An
owner-compute model with redundant computation can be used in this case to handle
data races [14]. Other strategies published for parallelizing unstructured-mesh applica-
tions have included the use of a large temporary array [1] and atomics [21]. Using a
large temporary array entails storing the indirect increments for the nodes in a staging
array, during the edge loop for example, and then a separate iteration over the nodes
to apply the increments from the temporary array on to the nodal data. Atomics on the
other hand simply allow for updates to be done one increment at a time with the use of
hardware-locks.

3 SYCL Parallelizations with OP2

The best performance we have observed with multi-threading on CPUs and SIMT on
GPUs has been through the use of coloring and atomics, respectively. As such, for the

Under the Hood of SYCL 395

Fig. 1. Specification of an OP2 parallel loop

OpenCL
MPI

Source-to-Source translator (Python / Clang-LLVM)

OP2/OPS Platform Specific
Optimized Backend libraries

Conventional Compiler (e.g. icc, nvcc, pgcc, clang, XL, Cray) +
compiler flags

Hardware

Link

OpenMP

Application OP2 Application (Fortran/C/C++ API)

Modified Platform Specific
OP2 Application

Platform Specific Optimized
Application Files

Mesh
(hdf5)

Platform Specific
Binary Executable

CUDA
Vectorized
Sequential

Fig. 2. Developing an application with OP2

SYCL implementation, we solely explore these strategies as appropriate to the target
hardware. To ease the development of multiple parallelizations with a range of different
optimizations, we use of the OP2 DSL [4,14].

OP2 allows to define the unstructured-mesh problem in four abstract components:
(1) sets (e.g. cells/nodes, faces/edges), (2) data on sets (e.g. node coordinates, edge
weights, cell fluxes), (3) explicit connectivity (or mapping) between the sets and (4)
operations over sets declared as kernels iterating over each element of the set, access-
ing indirectly via mappings. A simple example illustrating the OP2 API is presented
in Fig. 1. A loop over the set of edges, carrying out computation on each edge defined
by the function res, accessing edge data in p edge directly, and updating the data
held on the two adjacent cells, in p cell, indirectly via the mapping edge2cell. The

396 I. Z. Reguly et al.

Fig. 3. MG-CFD’s compute flux edge kernel loop

op arg dat specifies how an op dat’s data is accessed in the loop. Its first argument
is the op dat, followed by (i) its indirection index, (ii) op map used to access the data
indirectly, (iii) parity of the data in the op dat and (iv) the type of the data. The final
argument is the access mode of the data - read only, increment, and others (such as
read/write and write only, not shown here). The outer op par loop call contains all the
necessary information about the computational loop to perform the parallelization. Due
to the abstraction, the parallelization depends only on a handful of parameters such as
the existence of indirectly-accessed data or reductions in the loop, and the data access
modes that lends to optimizations.

Parsing a code written in the above API, OP2’s automatic code generator can
produce a wide range of parallelizations following the development flow illustrated
in Fig. 2. When generating a platform-specific parallel implementation of a loop speci-
fied by an op par loop, the code generator (essentially a source-to-source translator),
selects a base template (or skeleton) that has been hand-crafted by the OP2 developers.
Each of these skeletons utilizes the best optimizations and platform-specific config-
urations for the target hardware and programming models. For example, to produce
the CUDA implementation, the OP2 code generator simply populates the appropriate
CUDA skeleton with the declared parameters of the op par loop to produce the con-
crete implementation of the loop [6]. Given the different parallelization strategies and
optimizations that can be used even when using a single parallel programming model,
different skeletons are maintained and reused together with configuration flags for fur-
ther customizing what code they will generate. However, for a domain scientist devel-
oping an unstructured-mesh application, the process of generating a concrete parallel
implementation will be automatic.

In this work, we formulate the unstructured-mesh problem using OP2’s domain-
specific abstraction and then extend its automatic code generation tools to produce an
optimized SYCL parallelization. Given the range of hardware and SYCL compilers
available, multiple parallelization strategies were investigated to ascertain the best per-
formance. On CPUs, we found that a hierarchical coloring strategy (with 1 work item
per workgroup) to apply the indirect increments produced the best performance. On
the NVIDIA GPUs benchmarked, the best performance with SYCL was achieved with
atomics. However, a SYCL compiler exposing non-standard atomics (fp64) is required
to take advantage of the hardware support available on these many-core devices.

Under the Hood of SYCL 397

Fig. 4. Global coloring parallelization generated by OP2 for the compute flux edge kernel

loop in MG-CFD

3.1 Coloring

As noted before, coloring can be applied to avoid the data races in unstructured-mesh
computations. This parallelization strategy can be generally implemented on any shared
memory multi-threaded system, including CPUs and GPUs without any restrictions

398 I. Z. Reguly et al.

Fig. 5. Coloring strategies in OP2 – global (left) and hierarchical (right)

due to hardware capabilities. Different variations of coloring have been implemented
within OP2 as detailed in previous works [21]. Figure 4 details an excerpt of the SYCL
code generated by OP2 for the most time-consuming parallel loop compute flux edge
kernel in MG-CFD. The OP2 API declaration of this loop is listed in Fig. 3. This

loop iterates over the set of mesh edges, op edges, indirectly reading DP floating-point
data held in the node-indexed array vars, using the mapping from edges-to-nodes, en;
it also directly reads DP floating-point data held on edges from array edwgts. The
resulting flux contributions are indirectly incremented onto the output node-indexed
array fluxes, again via the edges-to-nodes mapping.

There are two fundamental coloring schemes and execution strategies, which are
illustrated in Fig. 5. The first drawing shows the simplest strategy, global coloring,
which performs a single level of greedy coloring of set elements (edges) based on a
mapping (edges-to-nodes), such that no two edges with the same color share a node.
During execution, edges with the same color can now be executed in parallel, with a
synchronization between colors. The second strategy, called hierarchical coloring, per-
forms two levels of coloring. First, the mesh is split into blocks of edges, and the blocks
colored such that no two blocks with the same color share any node. Second, edges
within the block are greedily colored. During execution, blocks of the same color can
be executed in parallel, and within blocks there is further parallelism, so edges of the
same color can be executed in parallel. This hierarchical scheme maps to architectures
with hierarchical parallelism, for example blocks map to OpenMP threads or CUDA
thread blocks, and intra-block parallelism maps to vector units or CUDA threads. We
map this hierarchical scheme to nd range parallel for loops in SYCL.

The SYCL parallelization with global coloring starts by extracting the SYCL typed
buffers from OP2’s data structures (Fig. 4, lines 1–5). The iteration set, in this case
the mesh edges, has been colored by OP2, with coloring information stored in internal
struct Plan. For SYCL execution, this coloring information is also stored in a SYCL
integer buffer. An outer loop over colors initiates parallel execution across edges of the
same color (line 9). Edge indices are held in the col reord array, with edges of the
same color stored consecutively. The current color determines the loop range start
to end, read from Plan->col offsets, determining which edges of col reord to
iterate through for that particular parallel execution.

Similar to the setup required for executing an OpenCL kernel, the arguments for the
execution kernel, the kernel itself and any global constants referenced by it are enqueued
(lines 15–30). The kernel itself is specified as a lambda function (lines 25–30). Next,

Under the Hood of SYCL 399

the SYCL kernel is set with flat parallelism, so that nthread*nblocks work items
are launched (lines 51–53). The indirections are resolved by using the edge index n to
access the indices held in the mapping table opDat0Map (lines 40–41). The elemental
kernel is called with these indices, together with the directly accessed data as arguments
(lines 44–47).

The advantage of global coloring is its simplicity – it can be easily expressed in any
parallel programming environment. The main disadvantage with global coloring is the
loss of data-reuse between edges that share a node, as these edges will necessarily have
different colors, so reducing temporal locality. A further disadvantage is reduced spatial
locality, as elements of the same color are distributed more sparsely in memory.

The hierarchical coloring scheme maps well to GPU architectures, and in principle
to CPU threads and vector units as well. However, the OpenMP-based implementations
(hipSYCL) have a mismatch between the abstraction and the implementation, leading
to poor performance; they need to launch one thread per work item when using two-
level parallelism (nd range), when one thread per work group would be best. Intel’s
OneAPI compilers can optimize and map this better to hardware, yet despite achieving
vectorization, as we show in Sect. 4, performance was poor. To address these issues,
we implemented a variation of the hierarchical execution scheme in SYCL where each
work group consists of a single work item, which then iterates through the edges in that
block sequentially. This proved to perform better on all CPU platforms with all compil-
ers. This implementation now matches the execution scheme used by OP2’s OpenMP
execution scheme. However, it prevents vectorization by construction.

All coloring-based executions add a one-time setup cost to the total runtime for
creating the colored execution scheme. For production applications that iterate over
many cycles, this setup cost becomes negligible or indeed could be pre-computed if the
mesh is known before runtime.

3.2 Atomics

In contrast to coloring, atomics-based parallelizations enable the indirect updates (i.e.
increments) to be applied sequentially using hardware atomic operations. The disad-
vantage is that not all hardware has fast DP implementations of atomics, and that the
SYCL 1.2.1 standard does not include them, however hipSYCL has support for them
on NVIDIA GPUs. Figure 6 details an excerpt of the SYCL code generated by OP2
for compute flux edge kernel loop using atomics targeting the hipSYCL compiler
(which has support for DP atomics). This code is similar to the global coloring scheme
for much of the setup. The start and end now points to the full iteration range over
the mesh edges. The key difference with atomics is the use of local arrays arg3 l and
arg4 l to hold the indirect increments and apply them using atomics (lines 44–53).
This results in an extra 10 floating-point operations per edge. In contrast to coloring
schemes, there is no setup cost for coloring plan construction when using atomics.

4 Performance

In this section, we generate SYCL parallelizations with OP2 for MG-CFD [16]. MG-
CFD is a 3D unstructured multigrid, finite-volume computational fluid dynamics (CFD)

400 I. Z. Reguly et al.

Fig. 6. Atomics-based paralelization generated by OP2 for compute flux edge kernel loop in
MG-CFD

Under the Hood of SYCL 401

mini-app for inviscid-flow. Developed by extending the CFD solver in the Rodinia
benchmark suite [5,8], it implements a three-dimensional finite-volume discretization
of the Euler equations for inviscid, compressible flow over an unstructured grid. It
performs a sweep over faces to accumulate fluxes, implemented as a loop over all
mesh edges. Multi-grid support is implemented by augmenting the construction of the
Euler solver presented in [8] with crude operators to transfer the state of the simula-
tion between the levels of the multi-grid. Initially written as a standalone CPU-only
implementation [16], MG-CFD has now been converted to use the OP2 API. It is avail-
able as open-source software at [3]. This repository also contains the concrete paral-
lel implementations generated through OP2 for SIMD, OpenMP, CUDA, OpenMP4.0,
OpenACC and their combinations with MPI. The branch feature/sycl contains the
generated SYCL versions of the application used in our performance investigation.

Our aim is to compare the performance of the SYCL implementations to that of
other parallel versions for MG-CFD and explore how similar execution strategies can
be expressed using SYCL. For benchmarking we use several systems based on currently
prevalent and emerging processor architectures. A summary of the key specifications of
these systems are detailed in Table 1 and Table 2.

Table 1. Benchmark systems specifications: GPUs

GPU NVIDIA V100 NVIDIA A100 AMD Radeon VII Intel Iris XE
MAX

Bus protocol PCI-e 3.0 SXM4 PCI-e 3.0 PCI-e 4.0

Cores 5120 6912 3840 768

Clock (MHz) 1245–1380 1410 1400–1750 300–1650

TFLOPS/s
compute

7 9.7 3.46 2.53 (single)

Bandwidth (GB/s) 900 1600 1024 68

Measured BW
(GB/s)

789 1269 668 53.5

Memory size
(GB)

16 40 16 4

TDP (W) 250 400 300 25

We use the NVIDIA V100 and AMD Radeon VII GPUs of our local cluster. The
A100 GPUs used were in AWS (Amazon Web Services) p4d.24xlarge instances,
and the Iris XE MAX (based on XE LP architecture) GPUs were accessed through
Intel’s DevCloud. To benchmark CPUs, we have evaluated three high-end machines
available through AWS instances. The c5d.24xlarge instance has a dual-socket Intel
Xeon Cascade Lake Platinum, each with 24 cores and 2 threads per core (SMT-2).
The c5a.24xlarge has a single-socket AMD EPYC Rome with 48 physical cores and
SMT-2. The c6g.16xlarge has a single-socket AWS Graviton2 ARM with 64 cores.
While all of these were virtual machines, these contain some of the latest hardware

402 I. Z. Reguly et al.

Table 2. Benchmark systems specifications: CPUs

System AWS c5d.24xlarge AWS c5a.24xlarge AWS c6g.16xlarge

Node Intel Xeon AMD EPYC (Rome) AWS Graviton2

Architecture Platinum 8275CL
3.00 GHz

7R32 3.20 GHz ARM v8.2 @ 2.5
GHz

(Cascade Lake) (custom SKU)

Procs × cores 2×24 (2 SMT/core) 1×48 (2 SMT/core) 1×64 (1 thread/core)

CPU Vector Length 512 bits 256 bits 128 bits

(ISA) (AVX-512) (AVX-2) (NEON)

Cache Hierarchy 32 KB L1D/core, 32 KB L1D/core 64 KB L1D/core

1 MB L2/core, 512 KB L2/core 1 MB L2/core

35.75 MB L3/socket 256 MB L3/socket 32 MB L3/socket

CPU Main Memory 192 GB 192 GB 128 GB

Measured BW (GB/s) 109.3 (per socket) 131.6 173.6

O/S Ubuntu 20.04 Ubuntu 20.04 Ubuntu 20.04

TDP per CPU ∼240 W ∼220W ∼100W

Table 3. Compilers and compiler flags

Compiler Version Compiler flags

Intel OneAPI Compilers Beta 9 -O3 -xHOST -inline-forceinline

icc, icpc, dpcpp Backend: OpenCL -restrict -qopenmp|-fsycl

nvcc CUDA 10.2 -O3 -restrict

V100 : -gencode
arch=compute 70,code=sm 70

A100 : -gencode
arch=compute 80,code=sm 80

HipSYCL Compiler Based on Clang 9 -O3

Backend: OpenMP All CPUs: --hipsycl-platform=cpu

syclcc-clang Backend: CUDA V100 : --hipsycl-gpu-arch=sm 70

Backend: CUDA A100 : --hipsycl-gpu-arch=sm 80

Backend: HIP Radeon VII :
--hipsycl-gpu-arch=gfx906

GNU
gcc,g++

9.3 AMD Rome, AWS Graviton2 -Ofast

-fopenmp

architectures available, and achieve the same fraction of peak performance as our inter-
nal, less powerful, Intel-based bare-metal systems.

Figures 7 and 8 present the runtime of the main time-marching loops of MG-CFD
on the above systems, solving a NASA Rotor 37 [10] benchmark mesh consisting of
8 million edges on the finest level. The time to solution of 25 multi-grid cycles are
reported here. The time for initial I/O (mesh loading and partitioning) are not included,
given that these are a one-off setup cost and depends on other libraries such as HDF5,
ParMETIS/PTScotch etc., that are not the subject of this paper. The figure presents

Under the Hood of SYCL 403

14.74 12.45
16.35 16.36

35.05

20.76

9.19 8.60
11.84 12.33

50.89

25.56

11.17
14.18 13.99 12.01

29.88

16.98

0

10

20

30

40

50

60

MPI SIMD OMP OMPxMPI SYCL(g) SYCL(h) MPI SIMD OMP OMPxMPI SYCL(g) SYCL(h) MPI SIMD OMP OMPxMPI SYCL(g) SYCL(h)

Ru
n

m
e

(s
ec

on
ds

)
INTEL CASCDE LAKE - SINGLE SOCKET ARM GRAVITON2 AMD EPYC ROME

Fig. 7. MG-CFD, Runtime (seconds) on single socket CPUs – 8M edges, 25 MG Cycles

Fig. 8. MG-CFD, Runtime (seconds) on a dual socket CPUs and GPUs - 8M edges, 25 MG Cycles

the runtime of the application without any coloring plan time construction overheads,
which was discussed in Sect. 3.1. Given these setup costs are one-off or indeed can be
computed a priori if the mesh is known before runtime, we believe the figure provides a
fairer comparison between the actual performance of each architecture and paralleliza-
tion model. Compilers and compiler flags used for each version of the parallelizations
are detailed in Table 3.

Reference performance numbers were collected using existing parallelizations in
OP2: plain MPI which does not auto-vectorize, an MPI+SIMD version which uses
explicit gathers and scatters to enable auto-vectorization, OpenMP that does not auto-
vectorize, hybrid MPI+OpenMP, and for NVIDIA GPUs using CUDA with atomics.

4.1 CPU Results

On the Intel Cascade Lake CPU, we used the OneAPI compilers to compile SYCL. The
global colouring variant (g) uses a flat parallel for loop, however due to poor memory
access patterns it performs the worst. To improve memory locality, we utilize the hier-
archical execution scheme (h) – mapping blocks to threads as done in case of OpenMP,
and optionally elements within blocks to vector lanes. The performance reported in
Fig. 7 (SYCL(h)) uses the same number of blocks as the OpenMP version and only
uses a single work item per workgroup, which mirrors the behavior of our OpenMP
execution scheme, and overall runtime is 26% slower. We also evaluated using 8 work
items (AVX512 with FP64) and utilized Intel’s subgroup extension to perform safe col-
ored updates, however performance further degraded. An examination of the generated

404 I. Z. Reguly et al.

assembly for the most expensive loop provides two key insights: (1) computations did
vectorize (when using more than 1 work item per workgroup), closely matching our
MPI+SIMD variant, although no fused multiply-add (FMA) instructions were gener-
ated, resulting in a 32% increase of floating point instructions, and (2) the number of
memory movement operations were significantly larger (approx. 2×).

On the ARM Graviton2 and AMD EPYC, we used the hipSYCL implementation,
which uses OpenMP underneath. For flat parallel loops, hipSYCL will map computa-
tions to a flat OpenMP parallel loop, however when using hierarchical parallelism it
will launch one thread per work item to guarantee that barriers can be handled cor-
rectly. The global coloring execution scheme clearly performs poorly, due to the lack of
memory locality. For the hierarchical execution scheme, we used a single work item per
workgroup, mirroring the OpenMP execution scheme. On the Graviton2, SYCL perfor-
mance is 2.16× worse than plain OpenMP – largely due to the relative immaturity of
ARM support in Clang (used by hipSYCL) versus GNU g++ (used with flat OpenMP).
On the AMD EPYC however, SYCL performs only 21% slower than plain OpenMP.

4.2 NVIDIA and AMD GPU Results

For the comparison with GPUs, we also ran on both sockets of the Intel Cascade
Lake CPU, and observed over 95% scaling efficiency for pure MPI and MPI+SIMD,
though only 80% for MPI+OpenMP. SYCL however did not improve when running
over both sockets due to NUMA issues – OP2 does not yet have an MPI+SYCL back-
end, which would address this. For both NVIDIA and AMD GPUs, we utilized the
automatic Array-of-Structs → Struct-of-Arrays data layout conversion feature of OP2.
On NVIDIA GPUs, we used the atomics versions and compiled with hipSYCL – this
showed a 60−64% slowdown compared to the atomics version of CUDA. These dif-
ferences are likely due to the immaturity of the hipSYCL compiler, resulting in higher
register pressure and lower occupancy. The AMD Radeon VII GPU does not have hard-
ware support for double precision atomics, and therefore we utilized the hierarchical
coloring execution scheme with 128 work items per workgroup. OP2 does not have
support for either HIP or OpenCL, therefore we could not compare this to a reference
implementation.

4.3 Intel Iris XE MAX Performance

To further explore OneAPI, we have evaluated the recently released Intel datacenter
GPU built on the XE LP (low-power) platform. As the specifications in Table 1 show,
this is a GPU in an entirely different class to the others tested. It has a 10−16× lower
TDP, and a similarly lower maximum bandwidth (53 GB/s measured), yet a relatively
high maximum computational throughput – though it has to be noted that the card does
not support double precision. This makes the platform have the highest ratio of FLOPS
to bandwidth among all the tested hardware.

We prepared a single precision version of MG-CFD to evaluate performance – with-
out considering the implications on accuracy and convergence at the moment. These

Under the Hood of SYCL 405

GPUs also do not support single precision atomics, therefore we compared the vari-
ous colored execution schemes. Intel’s GPUs also support the subgroups extension of
SYCL, and indeed are vital for good performance. We found the best performing combi-
nation is the hierarchical coloring execution scheme with 16 work items per workgroup,
and 16 work items per subgroup (i.e. one subgroup per workgroup), and relied on sub-
group barriers to perform the colored updates. The automatic AoS → SoA data layout
conversion did not improve performance on this GPU. The best runtime was 22.4 s –
for context, we compared performance to a single-socket Platinum 8256 CPU (4 cores,
51 GB/s STREAM bandwidth), which ran MPI+SIMD in 21.6 s and pure OpenMP in
42.4.

5 Bottleneck Analysis

To gather further insight into the performance profile of the application, we selected
the most time-consuming kernel (compute flux edge), responsible for over 50% of
total runtime, to carry out a bottleneck analysis. This kernel operates on edges, for each
performing about 150 floating-point instructions, reading 5 values from each node and
3 values from the edge, then indirectly incrementing 5 further values on each node. Due
to the indirect accesses it is not a trivially vectorizable kernel, and it is highly sensi-
tive to data reuse. For each platform we collected the relevant compute (GFLOPS/s)
and bandwidth (GB/s) measures onto the rooflines of each platform using the Berkeley
Empirical Roofline Tool [12] and the STREAM [13] benchmark.

Table 4. Floating point operations per edge with different compilers

Scalar SIMD CUDA

Intel ARM/AMD AVX 512 AVX ARM

FLOPs/edge 150 165 216 165 164 323

To calculate the floating-point operation counts (FLOPs) per edge, we inspected
the assembly generated for the computation of each edge for different implementa-
tions (see Table 4, which shows operations, not instructions). There are over 150 float-
ing point operations per edge (with minor variations between compilers), and 13 of
these are sqrt and div operations. It is important to note here that on CPUs there are
specific instructions for division and square root operations (though with much lower
throughput than multiply or add), whereas on NVIDIA GPUs these are mapped to a
sequence of multiplications and additions – hence the much higher FLOPS per edge
for CUDA. Furthermore, depending on the compiler and the instruction set architecture
(ISA) used (scalar, AVX or AVX512) we get different FLOP counts; AVX generates
precise divisions (single instruction), whereas AVX512 generates approximate recipro-
cals followed by additional multiply and add operations. With SIMD and hierarchical
execution schemes, the SIMD-calculated increments are staged in a local array, then
applied sequentially, adding a further 10 add operations per edge. Finally, as reported

406 I. Z. Reguly et al.

before, Intel’s SYCL version does not use FMA instructions, therefore even though
the number of floating point operations is the same, the number of instructions is 32%
higher.

The achieved computational throughput of compute flux is shown in Table 5, with
the highest fraction of peak achieved on the V100 GPU at 26%. While the maximum
throughput is not representative particularly on CPUs due to the long-latency sqrt and
division instructions, it is nevertheless clear that operational throughput – particularly
for vectorized and GPU versions - is not a bottleneck. On CPU architectures, it is
on the ARM platform, where the highest fraction of peak is achieved: 22% with the
MPI+SIMD variant.

Table 5. Achieved computational throughput (GFLOPS/sec) of compute flux

Intel CSX AMD
EPYC

ARM
Graviton2

NVIDIA
V100

NVIDIA
A100

AMD
Radeon
VII

Peak 1150 1420 845 6950 9540 3300

MPI 101 139 171

MPI+SIMD 215 104 190

OpenMP 98 117 138

SYCL 74 88 67 1140 1269 517

CUDA 1836 2480

Table 6. Amount of data moved (in GB) from/to off-chip RAM with various parallelizations

MPI OpenMP
hierarchi-
cal

SYCL
global

SYCL
hierarchi-
cal

CUDA
atomics

AMD
SYCL
hierarchi-
cal

448 778 2856 818 381 1190

To measure the amount of data moved, and to determine the extent to which
compute flux is bound by available memory bandwidth, we have created a
stripped-down version of the kernel with negligible compute operations, but the
same memory accesses, called unstructured stream. Then, we instrumented this
unstructured stream kernel using LIKWID [22], and used the MEM performance
counter group to determine the amount of data that is read from and written to off-
chip DRAM. For the GPU architectures, we used NVIDIA Nsight Compute tool and
ROCm’s rocprof tool to gather the same information. The collected results are shown
in Table 6, and it highlights a very important aspect of unstructured mesh computations:
the execution method used to avoid race conditions has enormous implications on the
amount of data moved, and consecutively performance.

Under the Hood of SYCL 407

1. MPI – with distributed memory parallelism, each process iterates sequentially over
the elements it owns, and the additional cost is in the explicit communications
between processes.

2. Hierarchical coloring – when we break the edges into blocks, color them, then exe-
cute blocks of the same color in parallel, then by construction there will be no data
reuse between blocks, but there will be reuse within blocks. On average 26 colors
are required. With OpenMP and SYCL running on the CPU, we use blocks of size
2048; when running on the AMD GPU, we use a block size of 128. Correspondingly,
these execution schemes move 1.73−2.65× the amount of data compared to MPI.

3. Global coloring – when edges are colored based on potential race conditions, and
all edges with the same color are executed in parallel, then there is no data reuse
between edges by construction. On average 22.8 colors are required. This approach
requires moving the most data; 6.25× the amount compared to MPI.

4. CUDA Atomics – flat parallelism is used, and there is no need for explicit com-
munication between the processes or thread as in the case of MPI. Therefore this
approach incurs the least overhead in terms of data movement.

Fig. 9. Fraction of STREAM bandwidth achieved by unstructured stream and compute flux

The performance of unstructured stream can then be directly contrasted with
STREAM; in Fig. 9, we show the fraction of peak STREAM bandwidth achieved by
both unstructured stream and compute flux. It is clear that on the Intel CPU, all
parallelizations are bandwidth bound – MPI+SIMD achieves a lower fraction of peak
than the others due to the overhead of explicitly packing and unpacking registers. On
the GPU platforms, performance is reported to be limited by L1/Texture cache through-
put as well as atomics on NVIDIA and block synchronization overhead (required for
colored updates) on AMD cards.

When comparing the achieved bandwidth of compute flux, the performance dif-
ferences of different parallelizations are seen from a different perspective; how much
performance is bottlenecked by data movement, and how much computations are
interleaved with data movement. The MPI and MPI+SIMD variants move the same
amount of data, VTune reports 99.7% vector capacity usage for the computational
body of the SIMD version, while the plain MPI version does not vectorize at all.
Despite good vectorization with SIMD, there is poor overlap between computations and

408 I. Z. Reguly et al.

data movement, reducing the achieved fraction of STREAM to 69%. When enabling
Hyper-threading (which is shown in the results), performance of compute flux is
improved by 17% compared to only using 1 thread per core (but makes no difference
for unstructured stream), which supports the conclusion of poor overlap. This is
even more obvious on the non-vectorized MPI version, where the cost of scalar com-
putations reduces the achieved fraction of STREAM of compute flux to 41%, and is
therefore just as much bound by the throughput of scalar operations.

The lack of vectorization is much less impactful on other parallelizations; even
though neither OpenMP nor hierarchical SYCL versions vectorize (SYCL’s vectorized
hierarchical version performs even worse as discussed above), they still achieve over
55% of peak bandwidth – due to having to move 1.7 − 1.8× more data. The lack of
overlap between compute and data movement is responsible for the rest of the gap to
STREAM. With global coloring, the SYCL implementation does vectorize, yet the cost
of data movement dwarfs that of computations.

On the GPUs, only 43–62% of peak bandwidth is achieved by unstructured
stream, but compute flux also achieves 39–44% of peak as well. Computations
and data movement is much better overlapped thanks to the massive parallelism, but
while unstructured stream achieves 100% occupancy, compute flux only has
35%, leading to slightly worse overlap.

6 Conclusion

The results shown indicate that the SYCL API brings comparable performance (within
a factor of 1.3-2.0×) overall for both CPUs and GPUs from different vendors in this
application. The SYCL ecosystem is rapidly closing the performance gap with other
parallel programming models. This is an essential quality of any new parallel API, so
the fact that SYCL already achieves this shows that it is a good foundation for Intel’s
OneAPI software suite. In addition, as the standard is further developed, performance
parity with other models is expected as software and hardware vendors optimize.

However, as with other portable parallelization approaches, there is still the need to
write different parallelizations within the code to achieve the best runtimes. In the case
of this unstructured mesh application, that entailed writing a coloring parallelization
for CPUs and Radeon GPUs, and an atomics version for NVIDIA GPUs. Thus, the idea
of SYCL abstracting away device-specific code may not be entirely representative of
real world use cases. This is especially true for irregular classes of applications, such as
unstructured-mesh, as opposed to the more commonly explored regular applications.

If this disparity continues, then it could lead to SYCL being seen as yet another
industry standard, being grouped together with existing compute frameworks which
offer similar levels of performance portability. For example, OpenMP is a far more
mature standard which can also be written for all devices that SYCL currently supports,
not to mention code-bases that do not use modern C++ (e.g. Fortran), which then cannot
use SYCL. The DSL-based code generator used in this work, OP2, has been able to keep
up with such changes by adding new code generators which can produce code based
on emerging standards and models. However, for applications which are not based on
frameworks and require a rewrite, developers could be hesitant to adopt SYCL for these
reasons.

Under the Hood of SYCL 409

Nevertheless, SYCL is a major step forward, in that it presents a modern, succinct
C++ API (in contrast to e.g. OpenCL), capable of targeting an impressively wide set of
parallel architectures (in contrast to vendor-specific extensions, e.g. CUDA), that allows
fine grained control over parallelism, and is reasonably capable of exposing low-level
features of various architectures. Given the improving performance of compilers, we do
recommend SYCL to application developers who want a unified parallel programming
framework.

As a continuation of this work, we are developing multi-device and distributed
memory support with MPI+SYCL in OP2, and we are evaluating performance with
a range of further applications already using OP2. We also intend to explore the support
for targeting FPGAs using SYCL.

Acknowledgment. This research is supported by Rolls-Royce plc., and by the UK Engineer-
ing and Physical Sciences Research Council (EPSRC): (EP/S005072/1 – Strategic Partner-
ship in Computational Science for Advanced Simulation and Modelling of Engineering Sys-
tems – ASiMoV). Gihan Mudalige was supported by the Royal Society Industry Fellowship
Scheme(INF/R1/1800 12). István Reguly was supported by National Research, Development and
Innovation Fund of Hungary, project PD 124905, financed under the PD 17 funding scheme.

References

1. Hydrodynamics Challenge Problem, Lawrence Livermore National Laboratory. Technical
Report LLNL-TR-490254

2. C++ Single-source Heterogeneous Programming for OpenCL (2019). https://www.khronos.
org/sycl/

3. MG-CFD-OP2 GitHub Repository (2019). https://github.com/warwick-hpsc/MG-CFD-app-
OP2

4. OP2 github repository (2019). https://github.com/OP-DSL/OP2-Common
5. Rodinia: Accelerating Compute-Intensive Applications with Accelerators (2019). https://

rodinia.cs.virginia.edu/
6. Balogh, G., Mudalige, G., Reguly, I., Antao, S., Bertolli, C.: OP2-Clang: a source-to-source

translator using Clang/LLVM LibTooling. In: 2018 IEEE/ACM 5th Workshop on the LLVM
Compiler Infrastructure in HPC (LLVM-HPC), pp. 59–70 (2018). https://doi.org/10.1109/
LLVM-HPC.2018.8639205

7. Colella, P.: Defining Software Requirements for Scientific Computing (2004). (Presentation)
8. Corrigan, A., Camelli, F., Löhner, R., Wallin, J.: Running unstructured grid CFD solvers on

modern graphics hardware. In: 19th AIAA Computational Fluid Dynamics Conference. No.
AIAA 2009–4001, June 2009

9. Deakin, T., McIntosh-Smith, S.: Evaluating the performance of HPC-Style SYCL applica-
tions. In: Proceedings of the International Workshop on OpenCL. IWOCL 2020, New York.
Association for Computing Machinery (2020). https://doi.org/10.1145/3388333.3388643

10. Denton, J.: Lessons from rotor 37. J. Thermal Sci. 6(1), 1–13 (1997)
11. Giles, M., Mudalige, G., Spencer, B., Bertolli, C., Reguly, I.: Designing OP2 for GPU archi-

tectures. J. Parallel Distrib. Comput. 73(11), 1451–1460 (2013). https://doi.org/10.1016/j.
jpdc.2012.07.008, https://www.sciencedirect.com/science/article/pii/S0743731512001694

12. Lo, Y.J., et al.: Roofline model toolkit: a practical tool for architectural and program analysis.
In: Jarvis, S.A., Wright, S.A., Hammond, S.D. (eds.) PMBS 2014. LNCS, vol. 8966, pp.
129–148. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17248-4 7

https://www.khronos.org/sycl/
https://www.khronos.org/sycl/
https://github.com/warwick-hpsc/MG-CFD-app-OP2
https://github.com/warwick-hpsc/MG-CFD-app-OP2
https://github.com/OP-DSL/OP2-Common
https://rodinia.cs.virginia.edu/
https://rodinia.cs.virginia.edu/
https://doi.org/10.1109/LLVM-HPC.2018.8639205
https://doi.org/10.1109/LLVM-HPC.2018.8639205
https://doi.org/10.1145/3388333.3388643
https://doi.org/10.1016/j.jpdc.2012.07.008
https://doi.org/10.1016/j.jpdc.2012.07.008
https://www.sciencedirect.com/science/article/pii/S0743731512001694
https://doi.org/10.1007/978-3-319-17248-4_7

410 I. Z. Reguly et al.

13. McCalpin, J.D.: Memory bandwidth and machine balance in current high performance com-
puters. In: IEEE Computer Society Technical Committee on Computer Architecture (TCCA)
Newsletter, pp. 19–25 (1995)

14. Mudalige, G., Giles, M., Reguly, I., Bertolli, C., Kelly, P.: OP2: An active library framework
for solving unstructured mesh-based applications on multi-core and many-core architectures.
In: 2012 Innovative Parallel Computing, InPar 2012 (2012). https://doi.org/10.1109/InPar.
2012.6339594

15. Mudalige, G., Reguly, I., Giles, M.: Auto-vectorizing a large-scale production unstructured-
mesh CFD application. In: Proceedings of the 3rd Workshop on Programming Models for
SIMD/Vector Processing, New York, pp. 5:1–5:8. WPMVP 2016. ACM (2016). https://doi.
org/10.1145/2870650.2870651

16. Owenson, A., Wright, S., Bunt, R., Ho, Y., Street, M., Jarvis, S.: An unstructured CFD
mini-application for the performance prediction of a production CFD code. Concur. Comput.
Pract. Exper. 32, e5443(2019). https://doi.org/10.1002/cpe.5443

17. Patterson, D.: The trouble with multi-core. IEEE Spectrum 47(7), 28–32 (2010). https://doi.
org/10.1109/MSPEC.2010.5491011

18. Reguly, I.Z., et al.: The VOLNA-OP2 tsunami code (version 1.5). Geoscientific Model
Dev. 11(11), 4621–4635 (2018). https://doi.org/10.5194/gmd-11-4621-2018, https://gmd.
copernicus.org/articles/11/4621/2018/

19. Reguly, I.Z., et al.: Acceleration of a full-scale industrial CFD application with OP2. IEEE
Trans. Parallel Distrib. Syst. 27(5), 1265–1278 (2016). https://doi.org/10.1109/TPDS.2015.
2453972

20. Reyes, R., Brown, G., Burns, R., Wong, M.: SYCL 2020: more than meets the eye. In: Pro-
ceedings of the International Workshop on OpenCL. IWOCL 2020, New York. Association
for Computing Machinery (2020). https://doi.org/10.1145/3388333.3388649, https://doi.org/
10.1145/3388333.3388649

21. Sulyok, A., Balogh, G., Reguly, I., Mudalige, G.: Locality optimized unstructured mesh algo-
rithms on GPUs. J. Parallel Distrib. Comput. 134, 50–64 (2019). https://doi.org/10.1016/j.
jpdc.2019.07.011

22. Treibig, J., Hager, G., Wellein, G.: LIKWID: a lightweight performance-oriented tool suite
for x86 multicore environments. In: 2010 39th International Conference on Parallel Process-
ing Workshops, pp. 207–216 (2010). https://doi.org/10.1109/ICPPW.2010.38

https://doi.org/10.1109/InPar.2012.6339594
https://doi.org/10.1109/InPar.2012.6339594
https://doi.org/10.1145/2870650.2870651
https://doi.org/10.1145/2870650.2870651
https://doi.org/10.1002/cpe.5443
https://doi.org/10.1109/MSPEC.2010.5491011
https://doi.org/10.1109/MSPEC.2010.5491011
https://doi.org/10.5194/gmd-11-4621-2018
https://gmd.copernicus.org/articles/11/4621/2018/
https://gmd.copernicus.org/articles/11/4621/2018/
https://doi.org/10.1109/TPDS.2015.2453972
https://doi.org/10.1109/TPDS.2015.2453972
https://doi.org/10.1145/3388333.3388649
https://doi.org/10.1145/3388333.3388649
https://doi.org/10.1145/3388333.3388649
https://doi.org/10.1016/j.jpdc.2019.07.011
https://doi.org/10.1016/j.jpdc.2019.07.011
https://doi.org/10.1109/ICPPW.2010.38

Characterizing Containerized HPC
Applications Performance at Petascale

on CPU and GPU Architectures

Amit Ruhela(B), Stephen Lien Harrell, Richard Todd Evans,
Gregory J. Zynda, John Fonner, Matt Vaughn, Tommy Minyard,

and John Cazes

Texas Advanced Computing Center, Austin, TX, USA
{aruhela,sharrell,rtevans,gzynda,

jfonner,vaughn,minyard,cazes}@tacc.utexas.edu

Abstract. Containerization technologies provide a mechanism to encap-
sulate applications and many of their dependencies, facilitating software
portability and reproducibility on HPC systems. However, in order to
access many of the architectural features that enable HPC system per-
formance, compatibility between certain components of the container
and host is required, resulting in a trade-off between portability and
performance. In this work, we discuss our experiences running three
state-of-the-art containerization technologies on five leading petascale
systems. We present how we build the containers to ensure performance
and security and their performance at scale. We ran microbenchmarks
at a scale of 6,144 nodes containing 0.35 M MPI processes and base-
line the performance of container technologies. We establish the near-
native performance and minimal memory overheads by the containerized
environments using MILC - a lattice quantum chromodynamics code at
139,968 processes and using VPIC - a 3d electromagnetic relativistic
Vector Particle-In-Cell code for modeling kinetic plasmas at 32,768 pro-
cesses. We demonstrate an on-par performance trend at a large scale on
Intel, AMD, and three NVIDIA architectures for both HPC applications.

Keywords: Petascale · HPC · Containerization · Cloud computing ·
Singularity · Charliecloud · Podman · MILC · VPIC

1 Introduction

Containerization is a powerful tool for scientific software development and porta-
bility across systems. It considerably reduces the time to build, test, and deploy
applications by encapsulating code and dependencies together, allowing them
to run on diverse platforms with minimal additional efforts. HPC infrastruc-
tures provide tremendous computing capabilities along with optimized message
communication actualized through advanced features like eager communication,
shared memory, and Remote Direct Memory Access making them ideal for inten-
sive scientific computation but challenging for software portability. Containers
c© Springer Nature Switzerland AG 2021
B. L. Chamberlain et al. (Eds.): ISC High Performance 2021, LNCS 12728, pp. 411–430, 2021.
https://doi.org/10.1007/978-3-030-78713-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_22&domain=pdf
https://doi.org/10.1007/978-3-030-78713-4_22

412 A. Ruhela et al.

provide a promising way to hide system-level complexities, allowing researchers
to focus on productive studies that include COVID-19 research, climate model-
ing, agriculture, healthcare, smart cities, e-commerce, deep learning, etc.

Containerization is a light-weight, low-overhead alternative to full machine
virtualization. With Docker’s [1] introduction in 2013, containerization gained
tremendous popularity. Since then, several containerization techniques have
been developed primarily based on chroot, control groups, and Linux names-
pace features. Table 1 compares four state-of-the-art containerization approaches
- Docker, Singularity, Charliecloud, and Podman. Docker is a user-friendly
industry-standard containerization approach designed to support stateful
microservices. This stateful approach creates security concerns on HPC sys-
tems due to its need for root privileges. The security issues combined with a
lack of MPI support and resulting scaling limitations make Docker unfit for an
HPC environment. Singularity and Charliecloud take different approaches and
are designed for HPC users. Once installed with root privileges, Singularity and
Charliecloud users can run respective containers without elevated permissions.

Several studies in the past have focused on the performance characterization
of containerized workloads [2–7]. These studies, conducted at small problem
sizes, indicate near-native performance by container-based techniques. However,
none of the prior studies have comprehensively shown the performance, usabil-
ity, and portability of state-of-the-art container approaches at medium and large
scale. This motivates us to study the following two questions: (1) Does the per-
formance of container-based solutions on HPC clusters match bare-
metal runs at varying problem scales? (2) What are the challenges and
possible directions to exploit the state-of-the-art container techniques
at a massive scale?

Table 1. Features of Containers

Attribute Namespaces Cgroups User
Esca-
lation

Default
Net-
work

Root
dae-
mon

Keep
changes
after
restart

Suitable
for
HPC

Docker ✓ ✓ ✓ Bridge ✓ ✗ ✗

Singularity ✓ ✓ ✗ Host ✗ ✓ ✓

Charliecloud ✓ ✗ ✗ Host ✗ ✓ ✓

Podman ✓ ✗ ✗ Host ✗ ✓ ✓

1.1 Contributions

To the best of our knowledge, this is the first study investigating the performance
of containers at HPC petascale. The main contributions of this paper are:

1. We present the challenges and possible approaches to build HPC clouds with
container-based approaches.

Containerized HPC Applications Performance at Petascale 413

2. We present the changes required to adapt containerization approaches to HPC
infrastructures.

3. We establish the usability and portability of three user-defined containeriza-
tion stacks (Singularity, Charliecloud, Podman) at various problem scales.

4. We compared the performance of state-of-the-art containers at a scale of 6,144
HPC nodes containing 344,064 processes with MPI microbenchmarks.

5. We compared the performance of native and container environments with two
HPC scientific applications at up to 138,968 processes on 2,592 nodes.

6. We establish the performance of three state-of-the-art containers on five
diverse HPC architectures: NVIDIA Quadro RTX 5000, V100, A100, Intel
Cascade Lake, and AMD Rome).

The rest of the paper is organized as follows: Sect. 2 presents the prior research
works and establishes the novelty and basis of research conducted in this paper.
Section 3 presents the background of the Singularity, Charliecloud, and Podman
container technologies and describes the benchmarks and applications experi-
mented in this paper. Section 4.1 presents the experimental setups and software
configurations. Section 4.2 and Sect. 4.3 provide detailed experimental evalua-
tions with microbenchmarks and HPC scientific applications. Section 5 presents
an in-depth discussion on containerization issues and provides recommendations
to the users. Finally, the conclusion are presented in Sect. 6.

2 Related Work

The technology landscape of containerization started with the chroot system call
in 1979 and was followed by FreeBSD Jails in 2000, the Linux VServer in 2001,
Solaris Containers in 2004, Open VZ in 2005, Process Containers in 2006, Linux
Containers(LXC) in 2008, Warden in 2011, and Google’s Let Me Contain That
For You (LMCTFY) in 2013. Containerization then became enormously popular
with Docker’s introduction in 2013. Since then, tremendous efforts have been
made by researchers and industry to develop performant, secure, and portable
container techniques for both Cloud and HPC environments.

In an early research paper by Xavier et al. [5] from 2013, the trade-offs
between performance and isolation in Linux VServer, OpenVZ, and LXC con-
tainers compared with traditional hypervisor-based Xen virtualization are pre-
sented. Later, Carlos et al. [4] in 2017 evaluated LXC, Docker, and Singularity’s
performance through a customized single node HPL-Benchmark and an MPI-
based application on a multi-node testbed. They also studied application-level
performance using a NAMD benchmark on a single GPU device attached with
an eight-core processor. In the same year, Younge et al. [2] compared Singular-
ity’s performance on a Cray XC-series supercomputer and Docker on Amazon’s
Elastic Compute Cloud (EC2) and reported significant overheads in the cloud
environment mainly due to the use of Ethernet rather than the Cray Aries inter-
connect.

In more recent studies, Hu et al. [8] investigated CPU, memory, and network
bandwidth of Singularity containers whereas Rudyy et al. [9] explored the scala-
bility and portability aspects of Docker, Singularity, and Shifter in the biological

414 A. Ruhela et al.

systems using Alya code at 256 nodes. At the benchmarks level on a medium
system scale, Torrez et al. [10] demonstrated minimal overheads by Charliecloud,
Shifter, and Singularity containers. In another interesting work, Cérin et al. in
Ref. [11] proposed a pervasive methodology for containerization of HPC jobs
schedulers that shows better management of system resources in an economical
way.

Apart from performance studies, Canon et al. in [12] reviewed the challenges
and gaps in existing containerized approaches for HPC applications. A survey by
Bachiega et al. [13] on recent research and challenges revealed a lack of thorough
studies involving containers and their performance in the HPC environment.
In light of this research and need, our focus in this paper is to bridge the gap
in prior research work to establish the performance, portability, and usability
of containers in the HPC environment using both microbenchmarks as well as
HPC applications with real workloads. We present rigorous and comprehensive
performance evaluations at petascale on five leading Intel, AMD and NVIDIA,
architectures.

3 Background

Containerization on HPC infrastructures is challenging due to access privileges
and security requirements. Further, batch processing of jobs along with container
overheads adds unique challenges to their usability. Portability of containers is
restricted by ABI compatibility between the container and host hardware driver
libraries along with instruction compatibility with the host architecture (high
speed interconnect drivers, GPU drivers, processor ISAs, processor specific com-
piler optimizations). For non-optimal performance, the container need not utilize
specialized drivers and hardware capabilities, and only ISA and ABI portability
is required.

3.1 Container Technologies

Out of the available container technologies, we evaluate Charliecloud [14], Sin-
gularity [15], and Podman [16] in this work. The goal is not to investigate them
comprehensively but to determine the simplicity, usefulness, and performance of
a few popular container types at petascale clusters.

Singularity. Singularity is a container platform specifically crafted for HPC
systems. Similar to other user space container systems, Singularity bind mounts
a container image and changes the apparent root (chroot) to the container. Sin-
gularity goes a step further to support the HPC ecosystem by mounting native
devices (e.g., GPU, network, IB) and configured filesystem paths while also pre-
serving Linux namespaces and user mapping inside the container. Singularity
does not run a daemon service, but must be installed by the root user for priv-
ilege escalation. After building images from their own development systems, or
on HPC if fakeroot is configured, users can pull images built with Singularity

Containerized HPC Applications Performance at Petascale 415

or Docker, and safely run them on shared HPC resources. While images can be
stored in the cloud, they exist as single files on a filesystem, allowing them to be
shared and managed like all other files.

Charliecloud. Charliecloud is a user defined software stack (UDSS) that
exploits user and mount namespaces of Linux to run containers without needing
privileged operations and/or daemons. Any packaging software capable of pro-
ducing a standard Linux filesystem can build container images that can be hosted
on private or public repositories (Dockerhub, Gitlab, NVIDIA NGC, etc.). Char-
liecloud is 800 lines of open source code that demands minimal system control
(sysctl) commands [14] to configure on computing facilities, which avoids most
security risks.

Podman. Podman is a new native container runtime. It builds and runs OCI-
standard containers, but adds several attractive capabilities. Notably, it can
run either individual containers or Kubernetes-style pods (orchestrated sets of
containers) and it does so more safely and securely than Docker. As opposed to
Docker’s client/server approach (which requires privileged access), Podman uses
a traditional fork/exec model. By leveraging user namespaces, root-level access
is not required to run containers, and additional isolation is enforced via UID
separation. Podman is an attractive emerging technology since its CLI and user
experience is nearly identical to Docker, which could make use of containers
on HPC more accessible to end users. However, full use of Podman’s rootless
capabilities requires advanced kernel features such as version 2 cgroups and user-
space FUSE, and is not yet compatible with network filesystems, which limited
the extent to which we were able to evaluate it on a production HPC system.

3.2 Microbenchmarks and Applications

We evaluate the performance of all the container technologies at the micro-
benchmark level with Intel MPI Benchmarks (IMB) and at the application-level
with two well-known HPC scientific applications - MILC and VPIC.

IMB: IMB [17] is a suite of MPI benchmarks that perform performance mea-
surements for point-to-point and global communication operations for a range
of message sizes. We use the standard MPI Bcast Latency benchmark, which
measures the one-way latency of the MPI broadcast operation. All experiments
are performed at least three times with one Processes per node (PPN) and a full
subscription for 10 to 1000 repetitions at various message sizes.

MILC: MIMD Lattice Computation (MILC) [18] is a Quantum Chromody-
namics (QCD) code that is used in the study of strong interactions of sub-
atomic physics to understand atomic nuclei, the evolution of the early universe,
and connections with condensed matter physics. QCD describes the interaction

416 A. Ruhela et al.

of fundamental matter particles called quarks and force carriers called gluons,
which bind to form the composite, hadronic particles, such as protons and neu-
trons. Lattice QCD (LQCD) is a numerical approach to QCD that approximates
space and time by a 4D lattice. Physical quantities are computed by evaluating
high-dimensional integrals using Molecular Dynamics and Markov-chain Monte
Carlo methods. It’s an open-source C89 code that utilizes the Highly-Improved
Staggered-Quark (HISQ) formulation of LQCD. All the core components can
be offloaded to GPUs through the QUDA library. On CPU architecture (Clus-
ter C), MILC is scaled to run with 72× 72× 72× 144 lattice at 17 K, 35 K,
70 K, and 140 K processes. On GPU architecture (Cluster A), MILC is run
with 36× 36× 64× 64 lattice on 32, 64, 128, and 256 V100 devices. Performance
numbers are reported for time to solve Conjugate gradient, entire computations
(Total Time), Linux reported time in seconds, and memory consumption.

VPIC: The Vector Particle-in-Cell (VPIC) model is a particle-in-cell, first prin-
ciples plasma physics application. It uses a structured grid and compute particles
and electromagnetic fields [19,20]. An unreleased VPIC 2.0 beta is used, which
has been ported to the Kokkos [21] performance portability framework [22]. The
Kokkos OpenMP and CUDA backends are used to perform the benchmarking
runs. The dataset used is 2D and uses all features of VPIC. The GPU experi-
ments use 31.1 million particles, and 88 million particles are used for the CPU
experiments. Performance is reported as overall runtime in seconds.

NAS BTIO Pseudo Application and HPC IOR Benchmark: NASA’s
BTIO [23] benchmark solves the Block-Tridiagonal (BT) problem on a three-
dimensional array across a square number of compute nodes and periodically
writes structured MPI datatypes to a file. Out of four available implementations
for writing files on disks, we use BTIO.mpi io full that leverage MPI-IO with
collective communications. IOR (Interleaved Or Random) [24] is a parameter-
ized parallel IO benchmark which is widely used to validate the performance of
parallel storage systems using various interfaces and access patterns.

4 Performance Evaluation

This section describes the experimental setup, provides the results of our experi-
ments and presents an in-depth analysis of performance results. Running experi-
ments on five different clusters ensure the generality of our performance analysis.

We use four distinct approaches to compare containerization overheads. In
Sect. 4.2, we start with baselining overheads at the MPI initialization level and
then investigate the overheads at the collective communication level using MPI
broadcast operation. We then compare the overheads at the container technology
level with MPI Alltoall collective operation. Following in Sect. 4.3 we investigate
the overheads at the application level with diverse hardware architectures on
petascale systems.

Containerized HPC Applications Performance at Petascale 417

4.1 Experimental Setup

Cluster Configurations

Cluster A: IBM OpenPOWER + InfiniBand + V100 [25]: Each node
on TACC’s Frontera Longhorn system contains dual socket Power-9 processors
with 20 physical cores on each socket operating at 2.4 GHz, and contains 256 GB
DDR4 and 900 GB of local temporary storage. The interconnect is Mellanox
EDR (100 Gb/s) InfiniBand with OFED version 4.5-2.2.9.0. The operating sys-
tem is RHEL v7.6 with kernel version Linux 4.14.0-115.10.1.el7a.ppc64le. Each
node contains four NVIDIA V100 GPUs, each having 16GB GDDR6 memory.

Cluster B: AMD Rome + InfiniBand [26]: Each node on the Purdue Bell
system contains dual socket AMD Rome processors with 64 physical cores on
each socket operating at 2.0 GHz and contains 256 GB physical memory. The
interconnect is Mellanox ConnectX-4 EDR 100 Gb/s InfiniBand (OFED version
5.0-2.1.8.0) and is configured in a fat-tree topology that is 3:1 oversubscribed.
The operating system is CentOS Linux v7.8.2003 (kernel version Linux 3.10.0-
1127.19.1.el7.x86 64).

Cluster C: Cascade Lake + InfiniBand [25]: Each node on TACC’s Fron-
tera primary compute system contains dual socket Intel Xeon Platinum 8280
processors having 28 cores per socket and cores operating at 2.70 GHz speed
and contains 192 GB of main memory. The interconnect is composed of Mel-
lanox HDR technology (OFED version 5.1-2.5.8) with full HDR (200 Gbps)
connectivity between the switches and HDR-100 (100 Gbps) connectivity to the
compute nodes. The computing network is configured in a fat-tree topology with
a small oversubscription factor of 11:9. The operating system is CentOS Linux
release 7.8.2003 (kernel version Linux 3.10.0-1127.19.1.el7.x86 64).

Cluster D: AMD EPYC + InfiniBand + A100 (DGX-2): AMD EPYC
+ InfiniBand box consists of 256 cores on dual-socket AMD EPYC 7742 pro-
cessors operating at 2.25 GHz and contains 8 NVIDIA A100 GPUs. Each node
contains 15 TB Gen4 NVME SSD memory, whereas each GPU contains 40 GB of
HBM2 memory. Eight single-port Mellanox ConnectX-6 200 Gb/s HDR Infini-
Band interconnects available onboard provide 3.2 Tb/s of peak bandwidth from
a single system. The operating system is RHEL 7.5 (kernel version Linux 3.10.0-
1127.13.1.el7.x86 64), and Mellanox OFED version is 5.0-2.1.8.

Cluster E: Broadwell + InfiniBand + Quadro RTX 5000 [25]: Each
node on TACC’s Frontera liquid submerged system contains dual socket Intel
Xeon E5-2620 v4 processors with 16 physical processors operating at 2.10 GHz
frequency and equipped with 192 GB DDR4 and 128 GB SSD memory. The
interconnect is Mellanox FDR 56 Gb/s InfiniBand with OFED version 5.0-2.1.8.

418 A. Ruhela et al.

The operating system is CentOS Linux v7.8.2003 with kernel version Linux
3.10.0-1127.13.1.el7.x86 64. Four NVIDIA Quadro RTX Turing 5000 GPUs hav-
ing 16 GB GDDR6 memory on each GPU are installed on each node.

Software Configurations: Containers used in this study come from various
sources, but very few of them ran without any modification. Sources include
repositories from dockerhub [27,28] and containers built for Cluster C. The soft-
ware configurations for benchmarks and both applications are listed in Tables 2,
3 and 4.

Table 2. Software configurations - MPI microbenchmarks

Cluster Compiler MPI CUDA Container platform(s)

Cluster A GCC 7.3.0 MVAPICH2
GDR 2.3.4

10.2 Singularity 3.5.3

Cluster C GCC 9.1.0 Intel MPI
19.0.7

- Charliecloud 0.21 pre

Cluster D GCC 9.1.0 Intel MPI
19.0.7

10.2 Charliecloud 0.21 pre,
Singularity 3.5.3

Table 3. Software configurations - MILC

Cluster Compiler MPI CUDA Container platform(s)

Cluster A GCC 7.3.0 MVAPICH2 GDR 2.3.4 10.2 Singularity 3.5.3

Cluster C GCC 9.1.0 Intel MPI 19.0.7 - Charliecloud 0.21 pre

Table 4. Software configurations - VPIC

Cluster Compiler MPI CUDA Container platform(s)

Cluster A GCC 7.3.0 MVAPICH2-GDR 2.3.4 10.2 Singularity 3.5.3

Cluster B Intel 19.0.5 Intel MPI 19.0.5 - Singularity 3.6.1

Cluster C Intel 19.1.1 Intel MPI 19.0.7 - Singularity 3.6.3

Cluster E GCC 8.3.0 MVAPICH2-GDR 2.3.4 10.1 Singularity 3.6.3

4.2 Micro-benchmark Evaluation

We used three MPI benchmarks - MPI Init, MPI Bcast and MPI Alltoall of
Intel MPI Benchmarks suite [17] to compare the performance of Singularity and
Charliecloud containers with bare metal runs. Each microbenchmark was run at
least five times on all the clusters to average out performance variations.

Containerized HPC Applications Performance at Petascale 419

Baseline Performance: We baseline the performance of containerization with
bare metal runs with OSU Init microbenchmark. Figure 1 plots the time to exe-
cute MPI Init operation at a system scale ranging from 3,584 processes (64
Nodes, 56 PPN) to 229,376 processes (4,096 Nodes, 56 PPN). We observe that
container setup and teardown overheads in Charliecloud range between 6% and
14% at various system scales.

Collective Communication Performance: We next establish the overheads
of containerization with MPI collective operations. Figure 2a plots the latency of
MPI Bcast operation on 6,144 nodes with 1 process per node (PPN) at Cluster
C. We observe on par communication performance by Charliecloud container
with bare metal runs at all message sizes. The performance numbers indicate that
containerization does not incur any performance overheads during runtime, even
at a large system scale. To discern setup and teardown overheads of containers
with communication collectives, we compare total time to run the MPI Broadcast
benchmark at 64, 128, 256, 512, 1 K, 2 K, 4 K, and 6 K nodes in Fig. 2b. We
observe overheads less than 5 s to instantiate containers on up to 6,144 nodes at
1 PPN.

Fig. 1. Baseline performances of containerized and bare metal runs with MPI Init
benchmark on Cluster C

Fig. 2. Performance comparison of Charliecloud containers against native runs with 1
PPN on Cluster C

420 A. Ruhela et al.

Since most of the applications in HPC intend to utilize the full potential
of computing cores, we, therefore, conducted our next level of evaluations at
the full subscription of the nodes. Figure 3a shows the performance of broadcast
collective algorithm on 4,096 nodes on Cluster C. Processes per node (PPN) was
set to 56 in these experiments which fully subscribe to the nodes on Cluster C.
For containerized runs, we instantiated 56 containers through MPI job launcher
on each node. We observe a similar trend in the performance of Charliecloud
container and bare metal runs at all the message sizes. Again, to expose the
containerization overheads in Charliecloud, we plot the total time to run the
complete benchmark at 64, 128, 256, 512, 1 K, 2 K, and 4 K nodes in Fig. 3b. We
observe an additional 66 s of overheads in instantiating the 229,376 containers
at 4K nodes. Given the scale at which containers are instantiated, the overheads
seem insignificant to run the collective benchmarks.

Fig. 3. Performance of Charliecloud container against native runs at full subscription
of 4,096 nodes on Cluster C

At the microbenchmark level, we further investigate the performances of
Charliecloud and Singularity on Cluster D containing NVIDIA A100 devices.
Figure 4a shows on par latency numbers for MPI Alltoall benchmark with bare
metal, Charliecloud, and Singularity. Figure 4b presents additional attributes of
all three runtimes. We observe that user time, CPU%, and Maximum Resident
Set Size (MaximumRSS) remain similar for all runtimes; however, Singularity
incurs 10% more overheads in container setup and teardown than Charliecloud.
From Table 4, we observe higher page faults, context switches, and file IO opera-
tions that constitute performance overheads in both Singularity and Charliecloud
(Table 5).

We also explored the feasibility of using native containers in an HPC context
by running the exact Docker containers from our large-scale studies on a test
cluster configured to resemble SkyLake + InfiniBand Cluster [29] (but with Linux
kernel 5.8.1) using Podman. All workloads ran correctly, albeit with minor (5–
10%) performance degradation. We hypothesize that the additional overhead is
due to Podman’s use of fuse-overlay fs and further inter-process isolation, which
may be resolvable with additional resource tuning. This experiment leaves us
optimistic about the future use of native containers on HPC.

Containerized HPC Applications Performance at Petascale 421

Fig. 4. Performance of singularity and Charliecloud containers against native runs at
256 processes on Cluster D

Table 5. Runtime statistics of alltoall benchmark on Cluster D

Attribute Bare metal Singularity CharlieCloud

Major IO page faults 0 1,031 38

Minor page faults 22,538,0957 232,077,485 230,106,890

Voluntary context switches 30,001 884,644 222,086

Involuntary context switches 107,709 147,361 110,452

File system inputs 0 975,798 8,664

File system outputs 0 0 4,096

4.3 Application Level Evaluation

MILC: MILC was run with Charliecloud on up to 140K processes at Cluster
C and Singularity on up to 256 NVIDIA V100 devices at Cluster A. We set the
number of trajectories to one and steps per trajectory to 30. Figure 5 plots the
time to solve Conjugate Gradient (CG Time) and Linux time (time command)
for native and Charliecloud runs. Charliecloud shows less than 10% overheads
at various system scales. Small performance differences are racked up by con-
tainer instantiation overheads, which is nearly 40 s for 0.14 million containers as
investigated at the microbenchmark level in Sect. 4.2. In practice, where MILC
is allowed to run for multiple trajectories and several steps per trajectory, the
instantiation overheads would become insignificant with long running time of
the application. Figure 5c plots the memory consumption reported by the MILC
application, which is nearly identical for bare metal and container runs.

On IBM Power 9 Cluster A, MILC was run with the QUDA library to offload
computation to NVIDIA V100 devices. From Fig. 6, we observe that Singularity
incurs less than 4% overheads against bare metal runs. No significant difference
in memory consumption was observed at any system size.

Apart from running time and memory usage attributes, we also compare the
CPU, device, InfiniBand, NUMA, DRAM, and Lustre parameters and observed

422 A. Ruhela et al.

Fig. 5. Performance of Charliecloud container against bare metal runs with MILC
application on up to 2,592 nodes containing 140K cores on Cluster C

Fig. 6. Performance of Singularity container with MILC application using up to 256
V100 GPUs on Cluster A

on par performance values for all three runtimes. The plots for these attributes
are enormous and can be made available on request to the interested researchers.

VPIC: The VPIC experiment includes four architectures; two CPU architec-
tures, scaled to 32,768 processes as seen in Fig. 8, and two GPU architectures
scaled to 256 GPUs as seen in Fig. 7. Each experiment is run five times, and
the average of the runs are shown in the respective figures. The software used
for each experiment is available in Table 4. At each scaling tier, all runs are
done within the same job and consequently use the same nodes, fabric location,
etc. This is done to reduce the variation associated with running on different
nodes and hence network topologies. The authors note this can create a signifi-
cant discrepancy between “cold” to “warm” cache runs, as the container image
and application software and libraries are loaded on a shared parallel filesystem.
Although these outliers show a slowdown in first test run within a job whether
the test case is bare metal or containerized, they do not show any change in over-
head. To combat this, the “cold cache” outliers are pruned from the averages.
Singularity is used as the container platform in order to analyze the overhead of
different architectures.

In this experiment, we see in Figs. 7 and 8 that architecture does impact the
containerization overhead. On average, the RTX platform discrepancy is .29 s,
while V100 is 2.46 at the same scale (Fig. 7). Similarly, on the CPU runs, Rome
shows a 3.3 s difference, and Cascade Lake shows the most considerable difference
between runs at 13.53 s (Fig. 8). Although this shows a 4× slowdown, even in

Containerized HPC Applications Performance at Petascale 423

the worst case, it is unlikely that the containerization overhead will be impactful
for any jobs except those at the largest scale or incredibly short run times.

Fig. 7. Performance of singularity containers against bare-metal runs with VPIC on
up to 256 GPUs on Cluster A and Cluster E respectively. (smaller is better)

Fig. 8. Performance of singularity containers against bare-metal runs with VPIC up to
32,768 cores on Cluster B and Cluster C respectively. (smaller is better)

4.4 IO Benchmark and Application

Figure 9 compares the read and write bandwidth performance for Charliecloud
containers against bare metal runs for the IOR benchmark on Cluster C and
Cluster B. Figure 10 compares the performance of Class C, Class D, and Class E
subtypes of NAS BT-IO pseudo application at a system size of up to 14 K pro-
cesses. In both IO testcases, containerized runs demonstrate on par performance
to bare metal runs.

4.5 Capacity Workload Performance

We next evaluate the performance of containerized applications for a typical job
arrival pattern in the supercomputing centers. Based on findings from priors

424 A. Ruhela et al.

Fig. 9. File read and write performance with IOR benchmark on Cluster C (Figure (a)
and (b)) and on Cluster B (Figure (c) and (d))

Fig. 10. Performance with NAS BT-IO benchmark (Class C: 56 - 112, Class D: 224 -
3K, Class E: > 7K Processes) on Cluster C

studies [30,31], we design five distinct capacity workloads having 10,000 single-
node jobs for a scale down 10-node cluster. The distribution for job duration is
set to exponential, having a mean value of one minute and a maximum value
of 15 min. Any higher value of job length and problem size favors containerized
runs due to fewer jobs executed per unit of time. Figure 11a shows the cumulative
distribution of job duration, and Fig. 11b indicate up to 4% overheads with all
containerized runs against all bare metal runs.

Containerized HPC Applications Performance at Petascale 425

Fig. 11. Performance of capability jobs on Cluster C with 5 workloads

4.6 Outcomes

Our experiments with microbenchmarks and applications indicate that container
solutions are an optimal choice for long-running applications. However, short-
lived applications only benefit from containers when their build process is com-
plicated or time-consuming or if computing platforms lack the required function-
alities to run the applications. For instance, in jobs at petascale with very short
run times, the setup and teardown of containers can be a large percentage of
runtime as seen in Sect. 4.2. We also see that architecture differences do impact
the overhead on containerization in 4.3.

We also find this claim on the Singularity FAQ [32]: “So far we have not iden-
tified any appreciable regressions of performance (even in parallel applications
running across nodes with InfiniBand). There is a small startup cost to create
and teardown the container, which has been measured to be anywhere from 10 -
20 thousandths of a second.” The authors find this not true at a large scale as
shown in Sect. 4.2 where we can see slowdowns on the order of 10s of seconds.

5 Discussion

5.1 Containerization in the Linux Kernel

All of the container technologies that are featured in this paper use Linux ker-
nel namespaces as their primary tool for creating a container that is fast and
efficient. Namespaces are used to partition what a specific process can read and
write to. The key to maintaining efficiency is that the kernel does not add a
layer of abstraction to implement the namespaces. From the kernel’s viewpoint,
each namespace process is running in the same way as every other process. The
namespace only serves to limit what the process can access. As an example, only
directories that are bind-mounted from the host to the container are available
to be seen. All other directories are not in a viewable namespace from the view
of the container. The root directory of this type of namespace comes from the
container itself, and all directories are bind-mounted on that virtual file-system.
Inter-process communication (IPC) also plays an important role in separating

426 A. Ruhela et al.

shared memory namespaces, so base libraries like GLIBC can be switched out
without affecting the host namespace. The eight namespaces are mnt, pid, net,
ipc, uts, user (in Linux kernel 3.8), cgroup (in 4.6), and time (in 5.6). Details
on what container types use the user and cgroup namespaces are available in
Table 1.

5.2 Container Portability

Containers are often said to increase the portability of applications and can offer
an easy way to share application-stacks. This is true in some cases, such as the
need to run on older Linux operating systems where the core user-space libraries,
i.e., GLIBC, are not compatible with newer software, or if applications require
specific versions of libraries that for technical or political reasons cannot be
installed. However, it is clear that container portability is a much murkier issue
when working with different MPI implementations, different CUDA versions,
and different architectures.

As per documentation [33], Singularity supports MPICH and OpenMPI
[34,35] by default. However, the applications that are shown in this paper
required MVAPICH2 [36], MVAPICH2-GDR, and Intel MPI [17]. This required
the experiments to be run with a unique container for each experiment. For
instance, on Cluster E, MVAPICH2-GDR was needed to use the GPUs effec-
tively. However, on Cluster B, MVAPICH2-GDR was not available, and Intel
MPI was the default. The complexity of the many containers was also com-
pounded by the binary-incompatibility of the x86 and Power 9 platform. This
required a completely different set of containers for the Cluster A experiments.

Additionally, while using CUDA on GPU clusters, Charliecloud contain-
ers require NVIDIA container runtimes, which was non-trivial to install with-
out privileged user accesses. GPU containers were then configured by injecting
NVIDIA libraries using Charliecloud “ch-fromhost” command. Although MPI
benchmarks and VPIC ran successfully on NVIDIA Quadro RTX GPUs on Clus-
ter E, the QUDA library used by the MILC application was not able to offload
computations on to the available GPU devices.

Another consideration with container portability is the software ecosystem of
the cluster to be run on. Containerization has a different set of security concerns
and connection points between user-space applications and the kernel than tra-
ditional HPC. This can create misunderstood requirements and misconfigured
installations. The authors of this paper encountered these problems during this
series of experiments and worked with HPC Systems Administrators to rectify
them in order to finish these experiments. From the view of a multi-cluster HPC
user, containerization is far from portable.

With the complexity put forth by an experiment like this, the authors con-
clude that while in some cases containers provide portability, in large-scale multi-
cluster situations, containerization does not simplify the work needed to com-
plete the tasks and adds an additional level of complexity to the existing scientific
applications.

Containerized HPC Applications Performance at Petascale 427

5.3 Recommendations

In this research work, we investigate containerization aspects that make them a
popular choice for Cloud and HPC environments. Some of these are portability,
usability, accessibility, packageability, software choice, and performance. While
most of them proved to be valid, there are fundamental challenges in specific use
cases as detailed in Sects. 5.1 and 5.2. No straightforward solutions exists as
some of these concerns are either caused by underlying kernel implementations
or purposefully held to preserve system security.

Based on our research work in this paper, we provide the following recom-
mendations to the HPC community on containerization.

1. If the full source code is available for all the libraries needed by an application
on the target system, developing portable containers is never an issue.

2. In cases where target libraries are available only in binary format,
tools/utilities from containerization technology developers, e.g. “–nv” envi-
ronment variable in Singularity, “ch-fromhost –nvidia” in Charliecloud, can
be leveraged to port applications on the target environment.

3. In all other cases, portability, and performance are not guaranteed from con-
tainerization, and application developers/users may have to build complete
applications on each target system.

4. There is a trade-off between performance and build complexity for short-lived
jobs running at a large scale. For mission-critical works, an additional layer
of containerization increases latency as well as uncertainty to the application
behavior.

5. For typical applications, containers usage is recommended to exploit mas-
sive tuning and optimizations realized within application containers by their
developers.

6. Memory consumption is hardly a concern on modern supercomputing plat-
forms as container instances are lightweight, and host resources are shared to
the containers. However, on embedded platforms or co-devices, containeriza-
tion could be avoided to use all available memory for logic and data storage
maximally.

6 Conclusion

Recent technological advancements in containerization runtimes have com-
menced a new trend of HPC software development, which effectively reduces
the build and deployment issues caused by complex software dependencies at a
small scale. In this work, we presented the challenges in leveraging containeriza-
tion within HPC systems and showcased the feasibility of three state-of-the-art
container technologies. We explored the performance, usability, and portability
of container workflows through experiments conducted at petascale on leading
HPC platforms across tens of thousands of processes. We conclude that devel-
opers, testers, and end-users can leverage containerization on HPC systems in

428 A. Ruhela et al.

a performant way, at a large scale, to reduce software development and mainte-
nance efforts except for specific usecases involving proprietary libraries or non-
compatible architectures and binary formats. The cost of performance at scale
is to build support for non-portable libraries into the containers. This addi-
tion, however, does not exclude their use in environments that only have generic
library support such as shared memory or TCP/IP in communication, CPU in
processing devices, and local or unmanaged memory in storage.

Acknowledgment. This work is supported by UT Austin-Portugal Program, a col-
laboration between the Portuguese Foundation of Science and Technology and the Uni-
versity of Texas at Austin, award UTA18-001217. Authors would also like to thanks
Melyssa Fratkin from TACC for providing valuable feedback, and Preston Smith and
Xiao Zhu from Purdue for providing an allocation and support for testing on Purdue’s
Bell cluster.

References

1. Merkel, D.: Docker: Lightweight linux containers for consistent development and
deployment. Linux J. 2014(239) (Mar 2014)

2. Younge, A.J., Pedretti, K., Grant, R.E., Brightwell, R.: A tale of two systems: using
containers to deploy HPC applications on supercomputers and clouds. In: IEEE
International Conference on Cloud Computing Technology and Science (2017)

3. Larsson, T.J., Hunold, S., Versaci, F. (eds.): Euro-Par 2015. LNCS, vol. 9233.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48096-0

4. Arango Gutierrez, C., Dernat, R., Sanabria, J.: Performance evaluation of
container-based virtualization for high performance computing environments.
Revista UIS Ingenieŕıas 18 (2017)

5. Xavier, M.G., Neves, M.V., Rossi, F.D., Ferreto, T.C., Lange, T., De Rose, C.A.F.:
Performance evaluation of container-based virtualization for high performance
computing environments. In: : 2013 21st Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing (PDP’21) (2013)

6. Brayford, D., Vallecorsa, S.: Deploying scientific al networks at petaflop scale on
secure large scale HPC production systems with containers. In: Proceedings of the
Platform for Advanced Scientific Computing Conference (2020)

7. Wang, Y., Evans, R.T., Huang, L.: Performant container support for HPC appli-
cations. In: Proceedings of the Practice and Experience in Advanced Research
Computing on Rise of the Machines (learning)(PEARC 2019) (2019). https://doi.
org/10.1145/3332186.3332226

8. Hu, G., Zhang, Y., Chen, W.: Exploring the performance of singularity for high
performance computing scenarios. In: 2019 IEEE 21st International Conference
on High Performance Computing and Communications; IEEE 17th International
Conference on Smart City; IEEE 5th International Conference on Data Science
and Systems (HPCC/SmartCity/DSS) (2019)

9. Rudyy, O., Garcia-Gasulla, M., Mantovani, F., Santiago, A., Sirvent, R., Vázquez,
M.: Containers in HPC: a scalability and portability study in production biolog-
ical simulations. In: 2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2019) (2019). https://doi.org/10.1109/IPDPS.2019.00066

https://doi.org/10.1007/978-3-662-48096-0
https://doi.org/10.1145/3332186.3332226
https://doi.org/10.1145/3332186.3332226
https://doi.org/10.1109/IPDPS.2019.00066

Containerized HPC Applications Performance at Petascale 429

10. Torrez, A., Randles, T., Priedhorsky, R.: HPC container runtimes have mini-
mal or no performance impact. In: 2019 IEEE/ACM International Workshop on
Containers and New Orchestration Paradigms for Isolated Environments in HPC
(CANOPIE-HPC) (2019)

11. Cérin, C., Greneche, N., Menouer, T.: Towards pervasive containerization of HPC
job schedulers. In: 2020 IEEE 32nd International Symposium on Computer Archi-
tecture and High Performance Computing (SBAC-PAD) (2020)

12. Canon, R.S., Younge, A.: A case for portability and reproducibility of HPC contain-
ers. In: 2019 IEEE/ACM International Workshop on Containers and New Orches-
tration Paradigms for Isolated Environments in HPC (CANOPIE-HPC) (2019)

13. Bachiega, N.G., Souza, P.S.L., Bruschi, S.M., de Souza, S.: Container-based perfor-
mance evaluation: a survey and challenges. In: 2018 IEEE International Conference
on Cloud Engineering (IC2E) (2018)

14. Charliecloud documentation. https://hpc.github.io/charliecloud/install.html
15. Kurtzer, G.M., Sochat, V., Bauer, M.W.: Singularity: Scientific containers for

mobility of compute. PLoS ONE 12(5), e0177459 (2017)
16. Podman. https://podman.io
17. Intel MPI benchmarks. https://github.com/intel/mpi-benchmarks
18. The MIMD Lattice Computation (MILC) Collaboration: http://www.physics.

utah.edu/∼detar/milc (2020). Accessed 26 May 2021
19. Bowers, K.J., Albright, B.J., Yin, L., Bergen, B., Kwan, T.J.T.: Ultrahigh per-

formance three-dimensional electromagnetic relativistic kinetic plasma simulation.
Phys. Plasmas 15(5), 2840133 (2008)

20. Bowers, K.J., et al.: Advances in petascale kinetic plasma simulation with VPIC
and roadrunner. J. Phys. Conf. Ser. 180, 012055 (2009)

21. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore perfor-
mance portability through polymorphic memory access patterns. J. Parallel Dis-
trib. Comput. 74(12), 3202–3216 (2014)

22. Harrell, S.L., et al.: Effective performance portability. In: 2018 IEEE/ACM Interna-
tional Workshop on Performance, Portability and Productivity in HPC (P3HPC),
pp. 24–36 (2018)

23. NAS Parallel Benchmarks: https://www.nas.nasa.gov/assets/pdf/techreports/
2003/nas-03-002.pdf (2021). Accessed 26 May 2021

24. IOR: https://github.com/hpc/ior (2021). Accessed 26 May 2021
25. Stanzione, D., West, J., Evans, R.T., Minyard, T., Ghattas, O., Panda, D.K.: Fron-

tera: the evolution of leadership computing at the National Science Foundation.
In: Practice and Experience in Advanced Research Computing (PEARC 2020), pp.
106–111. Association for Computing Machinery, New York, NY (2020). https://
doi.org/10.1145/3311790.3396656

26. McCartney, G., Hacker, T., Yang, B.: Empowering faculty: a campus cyberinfras-
tructure strategy for research communities. Educ. Rev. (2014)

27. ibmcom/powerai - docker hub. https://hub.docker.com/r/ibmcom/powerai/
28. centos–docker hub. https://hub.docker.com/ /centos
29. Stampede2: https://www.tacc.utexas.edu/systems/stampede2 (2021). Accessed 26

May 2021
30. Chen, X., Lu, C., Pattabiraman, K.: Predicting job completion times using system

logs in supercomputing clusters. In: 2013 43rd Annual IEEE/IFIP Conference on
Dependable Systems and Networks Workshop (DSN-W) (2013)

31. Amvrosiadis, G., Park, J., Ganger, G., Gibson, G.A., Baseman, E., DeBardeleben,
N.: Bigger, longer, fewer: what do cluster jobs look like outside google? Technical
Report CMU-PDL-17-104, Carnegie Mellon Univedrsity (2017)

https://hpc.github.io/charliecloud/install.html
https://podman.io
https://github.com/intel/mpi-benchmarks
http://www.physics.utah.edu/~detar/milc
http://www.physics.utah.edu/~detar/milc
https://www.nas.nasa.gov/assets/pdf/techreports/2003/nas-03-002.pdf
https://www.nas.nasa.gov/assets/pdf/techreports/2003/nas-03-002.pdf
https://github.com/hpc/ior
https://doi.org/10.1145/3311790.3396656
https://doi.org/10.1145/3311790.3396656
https://hub.docker.com/r/ibmcom/powerai/
https://hub.docker.com/_/centos
https://www.tacc.utexas.edu/systems/stampede2

430 A. Ruhela et al.

32. Frequently asked questions—singularity. https://singularity.lbl.gov/faq#misc
33. Singularity and MPI applications: https://sylabs.io/guides/3.3/user-guide/mpi.

html (2021). Accessed 26 May 2021
34. Gabriel, E.: Open MPI: goals, concept, and design of a next generation MPI imple-

mentation. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J. (eds.) EuroPVM/MPI
2004. LNCS, vol. 3241, pp. 97–104. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30218-6 19

35. Kurtzer, G.M.: Containers in HPC with singularity (2015)
36. Panda, D.K., Tomko, K., Schulz, K., Majumdar, A.: The MVAPICH project: evo-

lution and sustainability of an open source production quality MPI Library for
HPC. In: International Workshop on Sustainable Software for Science: Practice
and Experiences (2013)

https://singularity.lbl.gov/faq#misc
https://sylabs.io/guides/3.3/user-guide/mpi.html
https://sylabs.io/guides/3.3/user-guide/mpi.html
https://doi.org/10.1007/978-3-540-30218-6_19
https://doi.org/10.1007/978-3-540-30218-6_19

Ubiquitous Performance Analysis

David Boehme(B) , Pascal Aschwanden, Olga Pearce, Kenneth Weiss ,
and Matthew LeGendre

Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
boehme3@llnl.gov

Abstract. In an effort to guide optimizations and detect performance
regressions, developers of large HPC codes must regularly collect and
analyze application performance profiles across different hardware plat-
forms and in a variety of program configurations. However, traditional
performance profiling tools mostly focus on ad-hoc analysis of individ-
ual program runs. Ubiquitous performance analysis is a new approach
to automate and simplify the collection, management, and analysis of
large numbers of application performance profiles. In this regime, per-
formance profiling of large HPC codes transitions from a sporadic process
that often requires the help of experts into a routine activity in which
the entire development team can participate. We discuss the design and
implementation of an open source ubiquitous performance analysis soft-
ware stack with three major components: the Caliper instrumentation
library with a new API to control performance profiling programmat-
ically; Adiak, a library for automatic program metadata capture; and
SPOT, a web-based visualization interface for comparing large sets of
runs. A case study shows how ubiquitous performance analysis has helped
the developers of the Marbl simulation code for over a year with analyz-
ing performance and understanding regressions.

Keywords: Performance · Measurement · Instrumentation · Caliper

1 Introduction

Lawrence Livermore National Laboratory hosts several application teams who
develop and maintain large multi-physics simulation codes. These production
codes are under continuous development, run in a wide variety of configura-
tions, and on complex, heterogeneous HPC systems where frequent hardware
and software updates create a constantly evolving execution environment. To
guide optimizations and detect unexpected performance problems, developers
must proactively monitor the performance of their codes throughout the appli-
cation lifecycle, both during development and in production. To support this
need, we have developed and deployed software infrastructure to simplify and
automate application-level performance data collection, storage, and analysis.

Traditional HPC performance profiling tools typically focus on analyzing
individual program runs. They employ powerful mechanisms to collect detailed
c© Springer Nature Switzerland AG 2021
B. L. Chamberlain et al. (Eds.): ISC High Performance 2021, LNCS 12728, pp. 431–449, 2021.
https://doi.org/10.1007/978-3-030-78713-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_23&domain=pdf
http://orcid.org/0000-0002-4159-1519
http://orcid.org/0000-0001-6649-8022
https://doi.org/10.1007/978-3-030-78713-4_23

432 D. Boehme et al.

data for finding performance bottlenecks, but are often difficult to automate
or too intrusive to be used in production runs. With ubiquitous performance
analysis, we instead aim to collect application performance data whenever pos-
sible, and provide a central interface for developers to analyze the collected data.
We address several challenges to accomplish this. First, we want to avoid com-
plex measurement setup or postprocessing steps: performance profiling should
be available for any user, at any time, and for any run. We therefore integrate
a performance profiling library into applications and control measurements pro-
grammatically, for example through a command-line option. As we collect data
from many runs, the performance analysis focus shifts from analyzing individual
program runs to comparing data across runs or across HPC platforms. To facili-
tate this, we have developed a web interface with novel analysis and visualization
tools for analyzing large collections of runs. Finally, to effectively work with such
collections, we need descriptive metadata about the program and system config-
uration for each run. We collect this data automatically with code annotations
using a new metadata collection library.

To adopt ubiquitous performance analysis, application developers augment
their codes with instrumentation markers, metadata annotations, and initial-
ization code to configure and activate performance profiling. With performance
measurement capabilities built into applications, it is easy to enable profiling
in production runs or in automated workflows like nightly Continuous Integra-
tion (CI) tests. It also simplifies performance profiling for application end users,
who may not be familiar with traditional developer-oriented HPC profiling tools.
Performance analysts can thus observe real program usage in practice and iden-
tify problems due to misconfiguration. Central data storage and access through
our analysis web frontend simplifies sharing of performance data across a devel-
opment team and with other stakeholders. Developers are no longer limited to
infrequent ad-hoc profiling of individual runs, but can analyze a complete record
of program performance covering many different program configurations over
the entire lifespan of the code. Stated simply, ubiquitous performance analysis
represents a shift in how we view performance tracking within long-lived HPC
codes. It transitions performance analysis from a process that the team performs
sporadically, often only with the help of external experts, to a routine activity in
which the entire development team can easily, or even unknowingly, participate.

Contributions. Our ubiquitous performance analysis system builds upon the
Caliper instrumentation and profiling library [11], whose low runtime overhead
affords it to be compiled into HPC applications. In this paper, we introduce
additional frontend and backend components to implement a full ubiquitous
performance analysis software stack:

– ConfigManager, a profiling control API in Caliper to let applications control
performance measurements programmatically;

– Adiak, a library for collecting user-defined metadata; and
– SPOT, a web-based data analysis and visualization interface with novel visu-

alizations to explore large collections of runs.

Ubiquitous Performance Analysis 433

More importantly, we explain the motivation, key concepts, and design
behind the ubiquitous performance analysis approach, and discuss our expe-
riences implementing ubiquitous performance analysis in the LULESH proxy
app and the Marbl production code.

2 State of the Art

In this section, we compare our approach to the current state-of-the-art in tools
and methodologies for HPC performance analysis.

There is a wide range of community-driven and commercial HPC perfor-
mance analysis tools covering different measurement methodologies, systems,
and use cases. Frameworks like HPCToolkit [7], Score-P [22], TAU [30], and
OpenSpeedShop [32] collect detailed per-thread execution profiles or traces for
in-depth analyses, such as automatic bottleneck detection [14] or profile analy-
sis [15,24]. Vampir [12] and Paraver [27] visualize large-scale parallel execution
and communication traces. Many tools support the collection of CPU, GPU,
and on-core hardware counters via PAPI [26] or similar APIs, as well as analysis
of communication, multithreading, and GPU usage through the MPI profiling
interface, the OpenMP tools interface [13], and NVIDIA’s CUPTI API [4]. Gen-
erally, these tools are best characterized as performance debugging tools, designed
around interactive measure-analyze-refine debugging workflows and focused on
finding root causes of performance bottlenecks for individual program runs. Mea-
surement setup can be complex. Instrumentation-based tools like Score-P and
TAU require the target code to be re-compiled with instrumentation turned on,
while sampling-based tools like HPCToolkit require postprocessing steps to map
binary addresses to symbol names. The tools use custom profile and trace data
formats, and require tool-specific graphical applications for data analysis. Due
to the complex measurement setup, usage of performance debugging tools within
regular application development and production workflows is often limited, and
relegated to expert users with specific performance debugging needs.

Many HPC codes employ some form of built-in lightweight always-on profil-
ing to keep track of time spent in major application subsystems or kernels for
monitoring and benchmark purposes. Some codes use libraries like GPTL [29],
Caliper [11], or TiMemory [23] for this purpose, while others include custom time
measurement solutions, typically using small marker functions or macros placed
around code regions of interest. Our system can replace custom lightweight tim-
ing solutions, and offers rich measurement capabilities that can be activated by
the application without complex setup steps.

Performance data management tools such as PerfDMF [16] and Perf-
Track [18,19,21] provide the ability to analyze and compare performance data
collected from different runs of an application. PerfDMF provides robust, inter-
operable components for performance data management. PerfDMF is the SQL-
based storage backend for PerfExplorer2 [17], a data mining framework with
capabilities to correlate performance data and metadata, allowing many types
of analyses to compare performance data from multiple experiments (e.g., scal-
ing studies). The PerfTrack performance experiment management tool also uses

434 D. Boehme et al.

a SQL database to store profile data from multiple experiments. It includes
interfaces to the data store, a GUI for interactive analysis, and modules to auto-
matically collect experiment metadata. The IPM [31] performance monitoring
framework gathers MPI function profiles together with environment and applica-
tion information for cross-run performance comparisons such as scaling studies.
Ubiquitous performance analysis builds upon many of the elements developed
in these performance data managers. We provide an analysis and visualization
web frontend to access data without specialized GUI tools, and a library for
collecting user-defined program metadata automatically.

Some commercial cloud and data center operators have developed in-house
automatic performance analysis solutions for large-scale distributed applications.
Among the ones that are known are Alibaba’s P-Tracer [25] and Google’s Google-
Wide Profiling [28] (GWP). P-Tracer samples call-stack traces from applications,
while GWP continuously records performance data, including application-level
call-stack profiles, across Google data centers. Both P-Tracer and GWP provide
web-based query interfaces for data analysis. Unlike our system, P-Tracer and
GWP are proprietary, and lack the ability to compare performance based on
application-specific metadata (e.g., program configuration).

3 Ubiquitous Performance Analysis

Ubiquitous performance analysis aims to simplify application performance anal-
ysis for HPC software development teams, and integrate it better into their
software development workflows. This section discusses our approach in detail.

3.1 Overview

The major components of our system are the Caliper instrumentation and pro-
filing library [11], the Adiak metadata collection library [1], and the SPOT web
frontend [6]. Application developers integrate Caliper and Adiak into their codes
by marking major components (kernels, application phases) with Caliper’s anno-
tation macros and exporting program metadata with Adiak. Performance mea-
surements can then be enabled by the application through Caliper’s new Con-
figManager API. Caliper can perform lightweight always-on time profiling of the
annotated code regions, but also collect data for more sophisticated performance
analysis experiments. Performance data for an application run is initially written
to a file, which can be copied to a directory or imported into a SQL database.
Users then analyze the collected performance data in SPOT. Policies for instru-
mentation, performance measurement, and data collection are defined by the
application developers and can be tailored to each code. Performance analysts
work together with application developers to define appropriate strategies.

3.2 Code Instrumentation

We primarily rely on manual source-code instrumentation for application pro-
filing, where developers place annotation macros into the source code to mark

Ubiquitous Performance Analysis 435

code regions of interest. Many performance debugging tools use symbol transla-
tion or automatic instrumentation approaches which do not require source code
modifications for profiling. However, for our purposes, manual instrumentation
provides distinct advantages:

– Control. Manual instrumentation allows for precise control of measure-
ment granularity. Automatic instrumentation methods easily over- or under-
instrument programs, resulting in high measurement overheads or clutter.

– Interpretability. Manual annotations describe high-level logical program
abstractions such as kernels or phases that developers are familiar with. Auto-
mated approaches that rely on compiler-generated identifiers often produce
obscure associations, particularly with modern C++ template abstractions.

– Consistency. Much of our work involves performance comparisons between
different program versions. Identifiers like function names and source line
numbers change frequently during development, making comparisons based
on such associations difficult. In contrast, the logical program structure
expressed in manually instrumented regions typically remains much more sta-
ble, allowing for meaningful performance comparisons over long time spans.

– Reliability. Many traditional profiling tools rely on binary analysis and the
DWARF debugging information to correlate performance metrics to code.
This is a common source of complexity and fragility, as not all compilers
prioritize correct DWARF information or easily analyzable binary code. By
relying on manual instrumentation with tight application integration, we can
avoid the traditional attribution complexity and easily integrate our profiling
infrastructure with an application’s regular testing framework.

The placement of instrumentation annotations follows the logical subdivi-
sions of the code, such as computational kernels and communication or I/O
phases. While the one-time setup costs for adding instrumentation annotations
could be prohibitive for one-off performance debugging tasks, they are less of
a concern for implementing long-term, continuous monitoring strategies. The
annotations are not meant to pinpoint specific bottlenecks, but should allow
developers to monitor and study the performance evolution of the code. If devel-
opers find performance issues in an annotated code region and need more detailed
information, they can conduct follow-up experiments with Caliper’s comple-
mentary sampling-based measurement mechanisms or third-party performance
debugging tools to identify root causes.

The Caliper library provides high-level macros to mark functions, loops, or
arbitrary code regions in C, C++, and Fortran programs. In addition, many of
LLNL’s large, long-lived codes already have existing instrumentation for light-
weight timing functionality, which we can adapt to invoke Caliper calls instead.
Caliper preserves the nesting of stacked regions, and combines annotations from
independent components (e.g., libraries), providing complete context informa-
tion for the combined program across all layers of the software stack. Once in
place, the annotations can stay in the code permanently. New annotations can
be added incrementally as needed.

436 D. Boehme et al.

3.3 ConfigManager: A Measurement Control API in Caliper

Complementing the instrumentation API, Caliper includes a wide range of pro-
filing capabilities. Essentially, Caliper serves as a built-in profiling tool embedded
in the application codes.

We have enhanced Caliper with the ConfigManager API that lets applica-
tions control performance profiling activities programmatically. ConfigManager
accepts profiling commands in the form of short configuration strings. This con-
figuration string is typically provided by the user as an application configuration
file or as a command-line parameter. The configuration specifies an experiment,
which determines the kind of profiling to be performed, and options to cus-
tomize output or enable additional functionality. Some experiments print human-
readable output, while others write machine-readable files for post-mortem anal-
ysis in SPOT or other tools. For example, runtime-report prints a tree with
the time spent in the instrumented regions; hatchet-region-profile writes a
per-thread region time profile for processing with the Hatchet call-tree analysis
library [9]; event-trace records a timestamp trace of enter and leave events for
the instrumented regions; and spot writes a region time profile for analysis with
the SPOT web interface. In addition to basic runtime profiling, Caliper provides
advanced measurement functionality for specific analyses that can be enabled
via runtime options for the selected configuration. Available options include
time-series analysis for loops, MPI function profiling, memory high-water mark
analysis, I/O profiling, CUDA profiling, hardware-counter access, and top-down
analysis for Intel CPUs. Measurements are only enabled on demand, and we
take care to avoid interference with production runs or third-party profiling and
tracing tools.

The ability to enable complex profiling configurations through a simple appli-
cation switch greatly simplifies performance measurements, especially for appli-
cation end users. Some of Caliper’s built-in experiments support basic per-
formance debugging tasks: Examples include call-path sampling experiments
to capture application details beyond user-defined source code annotations.
Caliper also interoperates with other performance tools. For example, we pro-
vide adapters that forward Caliper annotations to third-party instrumentation
libraries, so that the Caliper-annotated regions are visible in tools like NVIDIA
NSight or Intel VTune - a tremendous benefit for developers who regularly use
these specialized tools on large codes. In turn, Caliper is available as a backend
for the ultra low-overhead TiMemory [23] instrumentation framework.

3.4 Adiak: A Library for Recording Program Metadata

Ubiquitous performance analysis lets users compare performance results from
many different application runs. To make meaningful analyses, we need descrip-
tive metadata to capture the provenance of each dataset: for example, it makes
little sense to compare the performance of a 1-dimensional test problem against
a 3-dimensional multi-physics problem. Metadata helps the user group or filter
out datasets when comparing runs. Useful metadata can include environment

Ubiquitous Performance Analysis 437

information such as the machine the program was running on, the launch date
and time, or the user running the program; program information such as program
version, build date, and compiler vendor and options; and job configuration such
as MPI job size and number of threads. In addition, developers often run perfor-
mance studies based on application-specific input and configuration parameters,
such as problem description, problem size or enabled features. We need a cus-
tomizable solution that can capture these application-specific parameters. We
also want to collect this data automatically and avoid manual data input for
each run. Therefore, similar to the region annotations for profiling, we record
metadata programmatically through an API. We created the Adiak [1] library
for this purpose. Adiak records user-defined metadata in the form of key/value
pairs. It also includes functionality to fetch common metadata like MPI job size
or launch date automatically. The recorded metadata values are stored in the
Caliper performance profile datasets.

3.5 SPOT: A Web Interface for Ubiquitous Performance Analysis

Web-based visualization tools are extremely convenient as they do not require
the installation of specialized visualization tools. SPOT, our data visualization
frontend, is a custom web interface for ubiquitous performance analysis. Com-
pared to traditional profiling tool GUIs, which deep-dive on the performance of
individual runs, SPOT analyzes and tracks the performance of many runs over
an application’s lifetime. At LLNL, SPOT is hosted locally by Livermore Com-
puting (LC) and is available to every LC account holder via LC’s web portal.
We also provide a containerized version [6] that can be deployed at other sites.
SPOT reads data directly from a user-provided directory on a shared filesystem
or a database link through a background data-fetching process, which runs as
the logged-in user. Thus, filesystem or SQL database permissions ensure that
users can only access performance data for which they have appropriate per-
missions. SPOT provides tools to filter, visualize, and compare performance
data, with novel visualizations specifically targeting the analysis of large collec-
tions of performance data. Users can create plots to display any of the collected
metadata values and performance metrics. They can also open SPOT datasets
in Jupyter [5] notebooks directly from the SPOT web page to create custom
analysis scripts and visualizations. We discuss specific visualization examples in
Sect. 4.4.

3.6 Ubiquitous Data Collection

Caliper provides the spot profiling configuration that produces datasets for anal-
ysis with the SPOT web interface. As a baseline, these datasets contain a sum-
mary time profile with the total, minimum, maximum, and average time spent
in each annotated region across MPI ranks, as well as all recorded metadata for
a program run. The datasets are usually quite small, in the order of kilobytes.

For comparisons studies in SPOT, all recorded datasets are copied to a shared
directory or a SQL database. Depending on the use case, developers and users

438 D. Boehme et al.

can manage these datasets manually, or set up automated workflows for long-
term, continuous data collection. They can define and implement data retention
or purge policies as needed, otherwise storage requirements grow linearly as
datasets are added. The SPOT web frontend has options for limiting the amount
of data to be imported, e.g. only the last N days, to maintain scalability.

4 Example: LULESH

In this section, we describe the practical implementation of ubiquitous perfor-
mance analysis in an HPC code using the Lulesh proxy application [3,20] as an
example. As a baseline, we use Lulesh 2.0 with MPI and OpenMP paralleliza-
tion. We show how the code is prepared for profiling and illustrate the analysis
capabilities of our web interface.

4.1 Region Instrumentation with Caliper

Lulesh contains 39 computational functions and 5 communication functions
in C++, as well as a number of data initialization and utility functions. In
Lulesh, function names and the logical subdivision of code semantics along func-
tion boundaries provide a good basis for meaningful performance analysis. We
instrumented 17 of its top-level computational functions, the 5 communication
functions, and the main loop with Caliper annotation macros. To keep clutter
and measurement overhead low, utility functions and very small functions were
not instrumented. The CALI CXX MARK FUNCTION macro in LagrangeLeapFrog
in Listing 1.1 demonstrates function annotations in Lulesh. Here, Caliper creates
a function region from the location of the macro to the function exit, with the
name taken from the compiler-provided FUNCTION macro.

4.2 Metadata Collection with Adiak

In addition to the function instrumentation, we added Adiak calls in Lulesh to
collect run metadata. As shown in Listing 1.1, Adiak provides two types of calls:
The first form accesses built-in functionality to collect common information, such
as the adiak::user() call to record the user name, while the second, generic
adiak::value() form lets developers provide custom metadata in the form of
key-value pairs. Adiak can record a variety of datatypes, including integer and
floating-point scalars, strings, tuples, and composite types such as lists.

In Lulesh, we record basic environment information like the user name,
machine, launchdate, and MPI job size. In addition, we record the Lulesh prob-
lem settings, such as the maximum number of iterations, problem size, number of
regions, region costs, and region balance. We also record the user-defined “figure
of merit” performance number computed by Lulesh at the end of the run. Note
that Listing 1.1 shows only a subset of the Adiak calls.

Ubiquitous Performance Analysis 439

Listing 1.1. Configuring Caliper and recording metadata in Lulesh

void LagrangeLeapFrog (Domain& domain) {

CALI_CXX_MARK_FUNCTION;

// (...)

}

int main(int argc , char* argv []) {

// (...)

cali:: ConfigManager mgr(opts.caliper_config);

mgr.start ();

adiak ::user();

adiak :: launchdate ();

adiak ::value("iterations", opts.its);

adiak ::value("problem_size", opts.nx);

// (...)

CALI_MARK_FUNCTION_BEGIN ;

// (...)

CALI_MARK_FUNCTION_END;

mgr.flush ();

}

4.3 Integrating the Caliper ConfigManager API

To enable and control performance measurements in Lulesh, we use the Caliper
ConfigManager API. Listing 1.1 shows the relevant steps: First, we create a
ConfigManager object and initialize it with a user-provided configuration string.
The ConfigManager class parses the configuration string and sets up Caliper’s
performance measurement and data recording components. Next, we invoke the
ConfigManager’s start() method to begin profiling based on the given perfor-
mance measurement configuration. At the end of the program, we invoke the
flush() method to stop profiling and write out the recorded performance data.

In Lulesh, users provide the Caliper configuration string via a command-
line parameter. As an example, we can enable the runtime-report experiment on
the command line to print out an aggregate time profile of the user-annotated
regions at the end of the execution. With the profile.mpi option, the experiment
also wraps and measures all MPI calls:

$./lulesh2.0 -P "runtime-report(profile.mpi)"

In our experience, controlling performance profiling through application-
specific means like configuration files or a command line parameter has proven
to be very convenient for users, and we encourage developers to provide this
capability when adopting Caliper.

440 D. Boehme et al.

4.4 Data Analysis and Visualization in SPOT

For demonstration purposes, we recorded 1,149 profile datasets with Lulesh using
different program configurations. For analysis, users load the SPOT website and
point it to a directory or SQL database with the recorded datasets. SPOT then
populates the landing page, where users can start their analysis.

Landing Page. The SPOT landing page serves as entry point for performance
studies, and lets users filter runs of interest out of potentially thousands of
profiling datasets. The landing page is populated with charts that show summary
histograms for selected metadata attributes, for example the runs performed by a
particular user or runs that invoked a particular physics package. The histogram
charts on the landing page are interactive and connected through a crossfilter
system [2]. Users can select subsets of data in one or more charts, causing the
remaining charts to adapt to include only the selected datasets. This is useful to
select specific subsets and to discover correlations between metadata variables.

For our Lulesh example, Fig. 1 shows the distribution of runs with a given
compiler, “figure of merit” (FOM), input problem size, and number of threads in
the 1,149 Lulesh runs. In Fig. 2, the user applied a crossfilter to select the runs
that had the highest figure of merit, which shows that those runs predominately
were done with binaries produced by the Intel compiler, input problem size 30,
and one thread. The original 1,149 datasets were reduced to 24 entries by the
“figure of merit” selection.

Comparison Page. The SPOT comparison page is a powerful tool for com-
paring performance profiles from multiple application runs. Users can select
datasets on the landing page using the crossfilter, and open the comparison
page to show the performance for all selected runs in a stacked line graph. Users
can also group data using additional metadata flags, for example to compare
performance between different compilers or MPI versions. A typical comparison
configuration for tracking nightly test performance might show a chart per group
of tests (where the tests in a group could be defined by metadata values), the
test date on the x-axis, and the sum of walltime performance for every test in
the group on the y-axis.

Figure 3 shows the runtime in different instrumented code regions for a set of
runs in our Lulesh datasets, ordered by the launchdate of the job and grouped
by compiler. The colors in the chart correspond to the different instrumented
code regions. Users can select the regions shown in the chart in the region hier-
archy overview in the lower left. The bottom part of the comparison page shows
detailed information for the dataset selected in the chart with the black bar.

Users can group and order datasets using any of the recorded metadata
attributes, providing a great deal of flexibility to conduct a wide variety of anal-
yses. Figure 4 shows an interesting example. Here, we ran additional experiments
with Lulesh with 343 MPI processes, using three different MPI implementations
(mvapich2 v2.3, OpenMPI 2, and OpenMPI 4) and different problem sizes, with

Ubiquitous Performance Analysis 441

Fig. 1. The SPOT landing page featuring four histogram charts for a set of Lulesh
runs. Charts show the numbers of runs with certain metadata values; here: compiler,
figure-of-merit (FOM), input problem size, and number of threads.

Fig. 2. The landing page charts from Fig. 1 with a crossfilter applied. Selecting runs
with highest FOM (top right) shows relationship to compiler (top left), problem size
(bottom left), and threads (bottom right).

442 D. Boehme et al.

Fig. 3. The SPOT comparison page, here showing runtime (y-axis) for a set of Lulesh
runs, ordered by job launch date (x-axis) and grouped by compiler (top and bot-
tom charts). Colors correspond to instrumented code regions. The bottom pane shows
details for the highlighted dataset (marked by the black bar in the upper chart).

Fig. 4. Users can order datasets in the SPOT comparison page by any recorded meta-
data attribute. Here, we compare the average total time in MPI Allreduce per rank
(y-axis, seconds) in Lulesh in different MPI implementations (x-axis), for two different
input problem sizes (30 and 50; left and right charts).

all other configuration parameters fixed. In the chart, we show average total
runtime spent in MPI Allreduce, ordered by MPI version on the x-axis, and
grouped by Lulesh problem size. We see that in our tests, OpenMPI outper-
formed mvapich, especially at large problem sizes.

Ubiquitous Performance Analysis 443

Fig. 5. A detailed performance profile view for a single Lulesh dataset in SPOT showing
code hierarchy plots for recorded performance metrics (here: average time in seconds
per MPI rank) within instrumented code regions.

Detail Views. From the landing page, users can open detail views for individual
datasets, such as a flame graph visualization showing the time spent in each
annotated regions. Figure 5 shows a flame graph visualization for the time spent
in the instrumented code regions for a single Lulesh dataset.

5 Overhead Evaluation

It is critical that measurement activities do not negatively impact program per-
formance. We quantify the measurement overheads in our Lulesh example when
recording SPOT data. We compare four different configurations: an uninstru-
mented executable (“No instrumentation”), the Caliper-instrumented version
with no measurements enabled (“No measurement”), recording a basic region
time profile for SPOT (“Spot”), and recording region profile for SPOT with
MPI function profiling enabled (“Spot+MPI”). Our experiments ran on Quartz,
a 2,634-node cluster system at LLNL with Intel OmniPath interconnect, dual
18-core Intel Xeon E5-2695 2.1 GHz processors, and 128 gigabytes of memory
per node. We use Caliper v2.3.0 and Adiak v0.1.1. Both Lulesh and Caliper
were built with gcc 4.9.3. Caliper was compiled with optimization level -O2,
Lulesh with -O3. We ran this experiment on a single allocated node using 8 MPI
processes and 4 OpenMP threads per process using the Lulesh default input
problem.

We ran each configuration 5 times and report the minimum, maximum,
and average runtime with each configuration. Figure 6 shows the results. The
runtime of the uninstrumented Lulesh executable was between 32.8 and 33 s,
with an average of 32.9 s. The average runtime of the instrumented program
is virtually unchanged with 33.0 s. When recording basic region time profiles
for SPOT, we see a 1.3% runtime overhead in the instrumented Lulesh. The
overhead increases slightly to 2% with MPI profiling turned on. Measurement
overhead depends heavily on the instrumentation granularity. For our typical
ubiquitous performance analysis use cases, we only instrument high-level pro-
gram regions; therefore, measurement overheads generally stay low in produc-

444 D. Boehme et al.

Fig. 6. Caliper instrumentation and measurement overhead in Lulesh with different
embedded performance measurement configurations enabled. The bars show the aver-
age wall-clock runtime and runtime variation over 5 runs for each configuration.

tion use. In absolute terms, results from the Caliper-provided cali-annotation-
perftest benchmark program on our test machine show average costs for a sin-
gle Caliper instrumentation event (i.e., enter or exit of an instrumented region)
of 0.65µs in the Spot runtime profiling configuration, and 0.12µs with no active
profiling configuration.

The data collection step producing the SPOT output file uses Caliper’s
flexible aggregation mechanism, which offers O(logN) scalability over N MPI
ranks [10]. Otherwise, Caliper performs no inter-process communication during
program execution. Because we record only aggregate information, the amount
of data stored on each process during execution remains constant, and only
depends on the number of instrumented code regions. The resulting profiling
datasets for individual program runs are quite small: in our Lulesh example, the
dataset size is 10 KiB per run for the basic region time profile and 14 KiB for
the time profile with MPI functions.

6 Case Study: Marbl

This section discusses our experience integrating ubiquitous performance analy-
sis into Marbl, a large multi-physics production code that simulates high energy
density and focused physics experiments driven by high-explosive magnetic or
laser based energy sources.

Integrating Caliper and Adiak into Marbl was relatively easy and took
approximately two man-weeks of developer effort, including coding, testing,
reviews, and integration. The details of the integration effort were largely sim-
ilar to the Lulesh example in Sect. 4. One notable addition is that Marbl also
exposes its annotations to users in the form of lua functions that can be added
at runtime:

Ubiquitous Performance Analysis 445

– annotation begin(name)

– annotation end(name)

– annotation metadata(key,value,category).

This allows users (and CI suites) to easily tag and compare the performance for
different configurations of a problem.

Unlike many other large LLNL applications, Marbl did not already have built-
in timers where we could hook in Caliper annotations. We used HPCToolkit [7]
to quickly identify approximately a dozen interesting regions of code that we then
annotated, which was enough for Marbl’s developers to start using SPOT. The
Marbl development team then iteratively refined and added code annotations as
they used the tool. A Caliper experiment that counted annotation executions
was useful for identifying annotations that were too low-level, such as when
an annotation was added in an inner loop and briefly caused a performance
regression (seen as a spike from December 20–30 in Fig. 7).

A motivating factor for integrating SPOT into Marbl was to track perfor-
mance regressions in nightly tests. Marbl’s nightly continuous integration (CI)
test scripts were modified to drop a Caliper performance file into a persistent
directory, which the SPOT web interface uses as a data source. This required only
minor changes to the existing CI scripts, specifically, enabling the spot Config-
Manager configuration for a subset of test instances designated for performance
testing. The nightly tests track performance on CPU and GPU architectures
over several different configurations of around ten benchmark problems. Each of
the ˜80 test runs generates a ˜30KiB dataset. Since there were too many tests for
a human to look at each test’s individual daily performance, we grouped tests by
their set of utilized physics packages using Adiak-collected metadata. SPOT’s
comparison view was set to show each test group’s (determined by tests that
utilized the same physics packages) aggregate performance over a time period.
If a test group shows a performance anomaly, a Marbl developer can then use
SPOT to view the performance of individual tests in the group, or the aggregate
performance of certain code regions in a test or test group. The SPOT configura-
tion that shows any particular view is reflected in the URL, so Marbl developers
can bookmark the test results page or send a particular view to a colleague.

The Marbl development team had other uses for SPOT. During development
of a new algorithm they wanted to measure the scaling performance and memory
overhead of a region of code. They ran before-and-after versions of the code at
various scales and collected the automatically-generated performance files into a
directory. By pointing SPOT at that directory and selecting a few options in the
comparison view, they were able to easily create before-and-after scaling graphs
of that code region. This effort generated a request for more complicated graph
types, which eventually led to a SPOT feature to automatically export perfor-
mance data for sets of runs into a Jupyter notebook, where Python’s powerful
data analytics tools and graphing infrastructure can be used to slice data into
highly-customizable visualizations and graphs (see Sect. 3.5).

Ubiquitous performance analysis has also been instrumental in helping the
Marbl development team track and understand the code’s performance as they

446 D. Boehme et al.

Fig. 7. SPOT performance tracking for Marbl’s Triple-Point-3D problem on a 4 GPU
compute node over the course of several months during its ongoing GPU port. Ubiq-
uitous performance analysis made it easy to detect a performance regression (in late
December 2019) and can seamlessly handle changing annotation labels, such as when
the “DGFieldRemap::Remap” annotation (pink) was renamed to “Remap” (brown)
around March 2020. (Color figure online)

port the codebase to new architectures, an ongoing effort which began in Fall
2019. Figure 7 shows the performance of a 3D Triple-Point hydrodynamics prob-
lem on a single IBM Power9 node with 4 NVIDIA Volta GPUs over about a six
month period. Automatic performance capture has also helped the team ensure
that there have not been performance regressions on other platforms during the
porting process. Similarly, ubiquitous performance analysis made it easy to set
up Node-to-Node performance scaling studies in Marbl to compare the code’s
performance across several HPC architectures including Intel- and ARM-based
CPU clusters as well as a GPU-based cluster [8]. The integrated Caliper anno-
tations enabled comparisons across different phases of the simulation, custom
metadata annotations enabled filtering by scaling study type (e.g. strong-scaling,
weak-scaling and throughput scaling) and the Jupyter integration streamlined
the process of analyzing and charting the data.

7 Conclusion

Ubiquitous performance analysis seamlessly integrates performance profiling into
HPC software development workflows. It facilitates continuous recording, anal-
ysis, and comparison of program performance data for long-lived HPC codes.
We have created and deployed new software infrastructure to accomplish this
goal: the ConfigManager API in Caliper to embed programmatically controlled,
always-on profiling capabilities into applications; the Adiak metadata collection
library; and the SPOT web interface with novel visualization and analysis tools
to explore large collections of performance datasets. Our entire ubiquitous perfor-
mance analysis stack is developed and released as open source packages [1,6,11].

Ubiquitous Performance Analysis 447

The Marbl case study shows how ubiquitous performance analysis enables auto-
mated performance regression testing and custom cross-platform studies, and
greatly simplifies collaborative performance optimization work in large develop-
ment teams.

At LLNL, we continue to integrate Caliper and SPOT into additional in-
house production codes. We also continue to develop new turnkey-style mea-
surement options in the ConfigManager interface with matching visualization
tools in SPOT for specific analyses. In that regard, we see the ubiquitous perfor-
mance analysis software stack as an ideal platform to deploy new performance
analysis methodologies. Finally, we recognize that a large amount of long-term
performance data can be obtained through automatic data collection, and we
expect that this data will enable a wealth of new automated performance anal-
ysis approaches based on data mining and machine learning.

Acknowledgment. This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under contract DEAC52-
07NA27344 and supported by the Office of Science, Office of Advanced Scientific Com-
puting Research as well as the Advanced Simulation and Computing (ASC) program.
The views and opinions of the authors do not necessarily reflect those of the U.S. gov-
ernment or Lawrence Livermore National Security, LLC neither of whom nor any of
their employees make any endorsements, express or implied warranties or representa-
tions or assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of the information contained herein. LLNL-CONF-808977.

References

1. Adiak: Standard interface for collecting HPC run metadata. https://github.com/
LLNL/Adiak. Accessed 16 Mar 2020

2. dc.js - dimensional charting javascript library. https://dc-js.github.io/dc.js/.
Accessed 7 Apr 2019

3. Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH).
http://computation.llnl.gov/casc/ShockHydro

4. NVIDIA CUDA Profiling Tools Interface. https://developer.nvidia.com/CUPTI-
CTK10 2. Accessed 8 Apr 2020

5. Project jupyter. https://jupyer.org/. Accessed 10 Apr 2019
6. SPOT Container. https://github.com/llnl/spot2 container. Accessed 31 Mar 2021
7. Adhianto, L., et al.: HPCToolkit: tools for performance analysis of optimized par-

allel programs. Concurrency Comput. Pract. Experience 22(6), 685–701 (2010)
8. Anderson, R., et al.: The Multiphysics on Advanced Platforms Project. Technical

Report LLNL-TR-815869, LLNL (2020). https://doi.org/10.2172/1724326
9. Bhatele, A., Brink, S., Gamblin, T.: Hatchet: Pruning the overgrowth in parallel

profiles. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, New York, SC 2019. Association
for Computing Machinery (2019). https://doi.org/10.1145/3295500.3356219

10. Böhme, D., Beckingsale, D., Schulz, M.: Flexible data aggregation for performance
profiling. In: 2017 IEEE International Conference on Cluster Computing (CLUS-
TER), pp. 419–428 (2017). https://doi.org/10.1109/CLUSTER.2017.34

https://github.com/LLNL/Adiak
https://github.com/LLNL/Adiak
https://dc-js.github.io/dc.js/
http://computation.llnl.gov/casc/ShockHydro
https://developer.nvidia.com/CUPTI-CTK10_2
https://developer.nvidia.com/CUPTI-CTK10_2
https://jupyer.org/
https://github.com/llnl/spot2_container
https://doi.org/10.2172/1724326
https://doi.org/10.1145/3295500.3356219
https://doi.org/10.1109/CLUSTER.2017.34

448 D. Boehme et al.

11. Böhme, D., et al.: Caliper: performance introspection for HPC software stacks. In:
Supercomputing 2016 (SC 2016). Salt Lake City (2016). lLNL-CONF-699263

12. Brunst, H., Hoppe, H.C., Nagel, W.E., Winkler, M.: Performance optimization for
large scale computing: the scalable VAMPIR approach. In: Proceedings of the 2001
International Conference on Computational Science (ICCS 2001), San Francisco,
pp. 751–760 (2001)

13. Eichenberger, A.E., et al.: OMPT: an OpenMP tools application programming
interface for performance analysis. In: Rendell, A.P., Chapman, B.M., Müller, M.S.
(eds.) IWOMP 2013. LNCS, vol. 8122, pp. 171–185. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40698-0 13

14. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The
Scalasca performance toolset architecture. Concurrency Comput. Pract. Expe-
rience 22(6), 702–719 (2010). https://doi.org/10.1002/cpe.1556, http://apps.fz-
juelich.de/jsc-pubsystem/pub-webpages/general/get attach.php?pubid=142

15. Huck, K.A., Malony, A.D.: PerfExplorer: A performance data mining framework for
large-scale parallel computing. In: Proceedings of the 2005 ACM/IEEE conference
on Supercomputing. SC 2005. IEEE Computer Society (2005)

16. Huck, K.A., Malony, A.D., Bell, R., Morris, A.: Design and implementation of a
parallel performance data management framework. In: 2005 International Confer-
ence on Parallel Processing (ICPP 2005), pp. 473–482. IEEE (2005)

17. Huck, K.A., Malony, A.D., Shende, S., Morris, A.: Knowledge support and automa-
tion for performance analysis with perfexplorer 2.0. Sci. Program. 16(2–3), 123–134
(2008)

18. Karavanic, K.L., et al.: Integrating database technology with comparison-based
parallel performance diagnosis: the perftrack performance experiment management
tool. In: Supercomputing 2005. Proceedings of the ACM/IEEE SC 2005 Confer-
ence, p. 39 (2005). https://doi.org/10.1109/SC.2005.36

19. Karavanic, K.L., Miller, B.P.: Experiment management support for performance
tuning. In: SC 1997: Proceedings of the 1997 ACM/IEEE Conference on Super-
computing, p. 8. IEEE (1997)

20. Karlin, I., et al.: LULESH programming model and performance ports overview.
Technical Report LLNL-TR-608824 (2012)

21. Knapp, R.L., et al.: PerfTrack: scalable application performance diagnosis for linux
clusters. In: 8th LCI International Conference on High-Performance Clustered
Computing, pp. 15–17. Citeseer (2007)

22. Knüpfer, T., et al.: Score-P: a joint performance measurement run-time infras-
tructure for Periscope, Scalasca, TAU, and Vampir. In: Brunst, H., Müller, M.S.,
Nagel, W.E., Resch, M.M. (eds.) Tools for High Performance Computing 2011, pp.
79–91. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-31476-6 7

23. Madsen, J.R., et al.: TiMemory: modular performance analysis for HPC. In:
Sadayappan, P., Chamberlain, B.L., Juckeland, G., Ltaief, H. (eds.) ISC High Per-
formance 2020. LNCS, vol. 12151, pp. 434–452. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-50743-5 22

24. Mellor-Crummey, J., Fowler, R., Marin, G.: HPCView: a tool for top-down analysis
of node performance. J. Supercomputing 23, 81–101 (2002)

25. Mi, H., Wang, H., Cai, H., Zhou, Y., Lyu, M.R., Chen, Z.: P-tracer: path-based
performance profiling in cloud computing systems. In: 2012 IEEE 36th Annual
Computer Software and Applications Conference, pp. 509–514 (2012)

26. Mucci, P.J., Browne, S., Deane, C., Ho, G.: PAPI: a portable interface to hardware
performance counters. In: Proceedings Department of Defense HPCMP User Group
Conference (1999)

https://doi.org/10.1007/978-3-642-40698-0_13
https://doi.org/10.1002/cpe.1556
http://apps.fz-juelich.de/jsc-pubsystem/pub-webpages/general/get_attach.php?pubid=142
http://apps.fz-juelich.de/jsc-pubsystem/pub-webpages/general/get_attach.php?pubid=142
https://doi.org/10.1109/SC.2005.36
https://doi.org/10.1007/978-3-642-31476-6_7
https://doi.org/10.1007/978-3-030-50743-5_22
https://doi.org/10.1007/978-3-030-50743-5_22

Ubiquitous Performance Analysis 449

27. Pillet, V., Labarta, J., Cortes, T., Girona, S.: PARAVER: a tool to visualize and
analyze parallel code. In: Proceedings of WoTUG-18: Transputer and Occam Devel-
opments, pp. 17–31 (1995)

28. Ren, G., Tune, E., Moseley, T., Shi, Y., Rus, S., Hundt, R.: Google-wide profiling:
a continuous profiling infrastructure for data centers. IEEE Micro 30(4), 65–79
(2010)

29. Rosinski, J.M.: GPTL-general purpose timing library (2016)
30. Shende, S., Malony, A.: The TAU parallel performance system. Int. J. High Per-

form. Comput. Appl. 20(2), 287–331 (2006)
31. Skinner, D.: Performance monitoring of parallel scientific applications (2005).

https://doi.org/10.2172/881368, https://www.osti.gov/biblio/881368
32. The Open|SpeedShop Team: Open|SpeedShop for Linux. http://www.

openspeedshop.org

https://doi.org/10.2172/881368
https://www.osti.gov/biblio/881368
http://www.openspeedshop.org
http://www.openspeedshop.org

Programming Environments
and Systems Software

Artemis: Automatic Runtime Tuning
of Parallel Execution Parameters

Using Machine Learning

Chad Wood1(B), Giorgis Georgakoudis2, David Beckingsale2, David Poliakoff3,
Alfredo Gimenez2, Kevin Huck1, Allen Malony1, and Todd Gamblin2

1 University of Oregon, Eugene, OR, USA
{cdw,khuck,malony}@cs.uoregon.edu

2 Lawrence Livermore National Laboratory, Livermore, CA, USA
{georgakoudis1,beckingsale1,giminez1,gamblin2}@llnl.gov

3 Sandia National Laboratory, Albequerque, NM, USA
dzpolia@sandia.gov

Abstract. Portable parallel programming models provide the potential
for high performance and productivity, however they come with a multi-
tude of runtime parameters that can have significant impact on execution
performance. Selecting the optimal set of those parameters is non-trivial,
so that HPC applications perform well in different system environments
and on different input data sets, without the need of time consuming
parameter exploration or major algorithmic adjustments.

We present Artemis, a method for online, feedback-driven, automatic
parameter tuning using machine learning that is generalizable and suit-
able for integration into high-performance codes. Artemis monitors exe-
cution at runtime and creates adaptive models for tuning execution
parameters, while being minimally invasive in application development
and runtime overhead. We demonstrate the effectiveness of Artemis by
optimizing the execution times of three HPC proxy applications: Clev-
erleaf, LULESH, and Kokkos Kernels SpMV. Evaluation shows that
Artemis selects the optimal execution policy with over 85% accuracy,
has modest monitoring overhead of less than 9%, and increases execu-
tion speed by up to 47% despite its runtime overhead.

Keywords: Artemis · HPC · Performance · In situ · Machine learning

1 Introduction

HPC software can contain tens to thousands of parallel code regions, each of
which may have independent performance tuning parameters. Optimal choices
for these tuning parameters can be specific to a target system architecture, the
set of input data to be processed, or the overall shared state of the machine during
a job’s execution. There are costs associated with discovering and maintaining
optimal choices, in a developer’s time to manually adjust settings and rebuild
c© National Technology & Engineering Solutions of Sandia, LLC 2021
B. L. Chamberlain et al. (Eds.): ISC High Performance 2021, LNCS 12728, pp. 453–472, 2021.
https://doi.org/10.1007/978-3-030-78713-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_24&domain=pdf
https://doi.org/10.1007/978-3-030-78713-4_24

454 C. Wood et al.

projects, or the compute time to explore the space of possible configurations to
find optimal settings automatically.

The goal of performance portability in HPC is for applications to operate
optimally across a range of current and future systems without the need for costly
code interventions in each new deployment. Given large job scales, increasing
software complexity, platform diversity, and hardware performance variability, a
performance portability is a challenging problem – with the same inputs, code
performance is observed to change between invocations on the same machine
and, worse, can be variable even during execution.

Recent work has turned to machine learning techniques to train classifica-
tion models on code and execution feature vectors that then can be used to make
dynamic tuning selection for each kernel of interest [3]. For instance, the Apollo [9]
work demonstrated the use of offline machine learning methods to optimize the
selection of RAJA [8] kernels at runtime. The RAJA programming methodology
provides abstractions that allow code regions to be implemented once but com-
piled for a variety of architectures, with several execution policies capable of being
selected at runtime. Apollo’s offline training approach built statistical classifiers
that directly selected values for tuning parameters. The classification model could
then be embedded in RAJA programs to provide a dynamic, low-overhead, data-
driven auto-tuning framework. The decision to do offline training was a trade-off
Apollo made to avoid costly online search for autotuning.

Offline machine learning methods are not sufficient for guiding online opti-
mizations that deliver general performance portability. There are several reasons
for this to be the case: 1. Without knowing what the user is actually doing, com-
binatorial exploration of all possible settings is difficult to exhaust, even with a
decent sampling strategy. A great many different models need to be represented
by whatever ends up being deployed, hopefully providing optimal recommenda-
tions for every unique combination of architectures, configurations, input decks,
and so on. 2. In order to cover all scenarios, the expense of training and re-training
will grow. The entire campaign of parameter testing would need to be done with
any new code deployment, significant modification, change in configuration, use
of new input deck, or increase in job scale. Certainly, moving to a new platform
or modification of an existing platform could trigger a new training study. Ide-
ally, the testing should happen at the full scale and duration that the job was
intended to be run at once its model was in use, but this is a costly proposition.
Ultimately, this suggests that offline training is unable to fully capture enough for
model fitness to be reliable over time. 3. Once trained offline, static models are
unable to adapt to changes between application invocations or simulation steps
in a workflow. Such changes can make even very good models go stale over time.
Furthermore, the potential dynamic variations in the execution environment can
expose gaps in the model due to the fact that they never occurred during training.

To further motivate the need for online methods, we note the paradigmatic
shift in HPC underway in the move to extreme scales and cloud-based computing.
Applications are increasingly being developed and deployed where it is accepted
as a given that there will be dynamism in their runtime environment. Even
within tightly-controlled on-site dedicated clusters, novel in situ resources and

Artemis: Automatic Runtime Tuning of Parallel Execution Parameters 455

services are being deployed in support of classic block-synchronous applications,
decreasing the emphasis on their synchronous behavior to maximally saturate
available computation and I/O resources.

Our current research is motivated by the need to address tuning challenges
presented by these performance complexities and realities of new in situ devel-
opment models: the scale of jobs, asynchronous data movement, and dynamic
performance characteristics of modern hardware. Instead of working against the
general nature of the problem, we propose to embrace it and investigate the pro-
ductive outcomes of adopting modern (online) training techniques. In the spirit
of prior work, we created the Artemis continuous tuning framework to analyze
code kernels online during application execution. Artemis trains new kernel per-
formance models in situ, deploying and evaluating them at runtime, observing
each model’s recommendations during execution to rate its ongoing fitness.

Our primary research contributions are:

– We present Artemis, an online framework that dynamically tunes the execu-
tion of parallel regions by training optimizing models.

– We provide an implementation of a RAJA parallel execution policy that uses
Artemis to optimize the execution of forall and collapse loop pattern.

– We extend Kokkos to use Artemis for tuning CUDA execution on GPUs.
– We evaluate Artemis using three HPC proxy applications: LULESH, Clev-

erleaf, and Kokkos Kernels SpMV. Results show that Artemis has overhead
of less than 9%, and model training and evaluation overhead is in the order
of hundreds of microseconds. Artemis selects the optimal policy 8̃5% of the
time, and can provide up to 47% speedup.

2 Background

Parallel programming frameworks have emerged to address the performance
portability challenge by providing a “write once, run anywhere” methodology
where alternate versions of a code section (called kernels) can be generated to tar-
get architectural tuning parameters. In this manner, the programming method-
ology decouples the specification of a kernel’s parallelism from the parameters
that govern policies for how to execute the work in different forms. The tuning
of the policy choices and execution variants can be done without changing the
high-level program.

Parallel frameworks such as RAJA [19] and Kokkos [13,14] use lightweight
syntax and standard C++ features for portability and ease of integration into
production applications. Related prior work on Apollo [9] focused on developing
an autotuning extension for RAJA for input-dependent parameters where the
best kernel execution policy depends on information known only at application
runtime. However, Apollo’s methodology required executions under all runtime
scenarios to create an offline static training database, leading to many of the
limitations discussed in the introduction. Thus, it is interesting to pursue a
new question: is it possible to train a classification model online and apply it
during application execution? Of course, this question immediately raises several

456 C. Wood et al.

concerns, mainly having to do with how training data is generated, the overhead
of measurement, and the complexity costs of machine learning algorithms.

3 Artemis: Design and Implementation

Artemis is at once a methodology for in situ, ML-based performance auto-tuning
and an architecture and operational framework for its implementation. The fol-
lowing captures these aspects as we describe how Artemis actually works. In a
nutshell, it is the observation of an application’s execution of its tunable parallel
code regions, extracting features and performance data with different execution
policies, coupled with the training of ML models online to select optimized exe-
cution policies per-region and feature set.

3.1 Design

Without loss of generality, Artemis thinks of applications being iterative where a
sequence of steps are conducted during which parallel regions are being executed.
At the end of those steps, the application ends.

If the a parallel region is to be tuned, it must be provide the different exe-
cution policy variants it can choose between, and then Artemis must be invoked
for that region. In the case of the reference implementations presented here, this
can be largely automated.

The user of Artemis need not be thought of as the ultimate end-user of an
application, but more likely the developer implementing a performance portabil-
ity framework such as RAJA or Kokkos within some application. By design, our
embedding of an Artemis interface into the portability framework layer enables
all parallel regions of an application to be automatically decorated with the nec-
essary Artemis API calls, and furnished with a set of common execution policies
that come pre-packaged, and may be integrated into any application making use
of that performance portability framework. Artemis is designed to be extensible
and programmable, so expert users are always going to be able to provide their
own execution policy variants, or make use of the Artemis API directly without
the benefits of a performance portability layer managing it.

In the common case where an application is making use of performance porta-
bility framework as described above, all an end-user will need to do to is to select
to enable Artemis functionality at build time, and then at run time they could
opt to enable the Artemis tuning capabilities for any given session, which would
then exploit the built-in policies that are bundled with the framework. Essen-
tially, this is the end of involvement for the Artemis user.

Within a step, each parallel region executed is done so for a particular pol-
icy as determined by the policy model. Artemis controls how the policy model
behaves. It could either be controlled to test out different policies during train-
ing, thereby allowing performance measurements to be obtained for analysis, or
it could select a particular policy determined by the auto-tuned model evalua-
tion. Each application step represents an opportunity for parallel region training

Artemis: Automatic Runtime Tuning of Parallel Execution Parameters 457

or re-training. Within a step, each encounter with an Artemis-guided parallel
region allows that region’s model to make an optimized policy selection based
on immediately-observed local features.

Artemis instruments parallel regions to collect data on their execution and
tune them. Marking the beginning of region execution, the user additionally
provides a set of features that characterize the execution and a set of execution
policies that are selectable for the execution of this region. After the call marking
the beginning of a region, the user calls the Artemis API function that returns
the policy to use when executing the region. The region proceeds to execute a
refactored variant of itself that corresponds to that policy selection. Finally, the
instrumented region calls the Artemis API to mark the end of its execution,
and Artemis makes note of the features and performance measurements. Region
execution time is the primary measurement of interest, but it is possible to
capture other performance data for analysis.

Artemis is implemented as a runtime library that merges with the applica-
tion to provide region performance/metadata measurement/analysis, ML model
training, and auto-tuning optimization. It presently targets parallel MPI pro-
grams that use RAJA or Kokkos for on-node parallelization.

3.2 Training and Optimization

The set of user-provided features and policies for each region are the input data
to Artemis for ML training and optimization. During training, Artemis explores
among the available policies and in particular measures their execution times,
which is the optimization target we selected for our experimental evaluation.
Artemis keeps per-region records of the feature set, policy, and measured execu-
tion time as tuples of (feature set, policy, execution time) to compile the training
data and create an optimizing policy selection model. Whenever a region is exe-
cuted multiple times per step, if different features are captured or policies are
explored, each unique combination will have executions times recorded for use
in model development.

By design, Artemis exposes an API call to the user to invoke optimization
on-demand. Artemis expects the user to invoke the optimization API function
after a sensible amount of computation has executed, permitting Artemis to
have collected a representative set of measurement records. This can be different
for different applications, and depends somewhat on the number of optimization
points to be explored when searching the space of available policies. If models are
initially trained from an inadequate set of measurements inputs, such that their
fitness is insufficient to make reasonably accurate predictions of the measures for
an iteration, Artemis will place the deviating regions into a training mode again
to gather data on additional policies, so that future models for that region, within
the run, will be more robustly informed. Programs with iterative algorithms
should typically invoke optimization every time step of execution. When the
user invokes the API, Artemis performs the following steps:

1. For every instrumented region it goes through the measurement records
and finds the policy with the fastest measured execution for each feature set

458 C. Wood et al.

to enunciate the optimal pairs of each unique (feature set, policy) combination
for this region; 2. In case of multi-process execution, Artemis communicates
per-process best policy data between all executing processes to build a unified
pool of these pairs and implement collective training, 3. From those feature set
and policy pairs, it creates the training data to feed to the classification ML
model, where the feature set is the feature input to the model and policy is
the response; 4. Artemis feeds those data to train the ML model and derive an
optimizing policy classifier for each region, that takes as input a feature set and
produces as output the optimized selection policy.

When later executions of the instrumented regions query Artemis for the
policy to execute, the trained model provides the optimizing policy index. Note
that even after training an optimized policy selection model, Artemis continues
to collect execution time data for optimized regions to monitor execution and
trigger re-training, which we discuss next.

3.3 Validation and Retraining

Artemis includes a regression model to trigger re-training, anticipating that
time-dependent or data-dependent behavior may change the execution profiles
of regions, thus rendering previous optimizing models sub-optimal. Specifically,
Artemis creates a regression model to predict execution time given the measure-
ment records. The input features to train this regression model are the features
set by instrumentation, including the policy selection, and the response outputs
are the measured execution times.

At every invocation of the optimization API call by the user, Artemis com-
pares the measured execution time per region, feature set, and policy to the
predicted execution time provided by the regression model. When the measured
time exceeds the predicted time over a threshold, Artemis discards the opti-
mizing model and reverts the region to a training regime, trying out different
execution policies on region execution to collect new data for training an opti-
mized model. On a later invocation of the optimization API call, Artemis creates
the new optimizing classification model and the new regression model for a new
cycle of optimization and monitoring.

3.4 Extending RAJA OpenMP Execution

The RAJA [8] programming model was extended to enable Artemis optimiza-
tion by defining an auto-tuned execution policy for parallel loop programming
patterns implemented with OpenMP. Interestingly, much of region instrumen-
tation is hidden by the end-user of RAJA since instrumentation happens inside
the RAJA header library. The only refactoring required for a RAJA program
is to make on-demand calls to the optimization API of Artemis and use the
Artemis-recommended execution policy when defining parallel kernels through
the RAJA templated API.

Specifically, we create an Artemis tuning policy for the forall program-
ming pattern, which defines a parallel loop region, and for the Collapse kernel

Artemis: Automatic Runtime Tuning of Parallel Execution Parameters 459

pattern, which collapses 2-level and 3-level nested to a single parallel loop, fus-
ing the nested iteration spaces. For this implementation, we choose the forall
and Collapse patterns since they are frequently used in applications. Artemis
can integrate with other parallel patterns of RAJA, such as scans, OpenMP
offloading, and CUDA, which is work-in-progress. The Artemis policy used in
our evaluation framework tunes execution by choosing between two policies:
either OpenMP or sequential. The choice for those two policies is motivated by
prior work [9] concluding that varying additional OpenMP parameters (number
of threads, loop scheduling policy) results in sub-optimal tuning. Nevertheless,
Artemis is general to tune for additional OpenMP parameters, which can be
abstracted as different execution policies to input to the Artemis API. Artemis
instrumentation is within the implementation of those patterns, in the RAJA
header library.

template <typename Iterable , typename Func >
RAJA_INLINE void forall_impl (artemis_exec &,

Iterable &&iter ,
Func && loop_body) {

static Artemis :: Region *region = nullptr;
if (region == nullptr)

region = Artemis :: create_region(num_policies =2);
region ->begin({ distance(begin(iter), end(iter)) });
int policy = region ->getPolicyIndex ();
switch(policy) {
case 0: {

#pragma omp parallel
{ RAJA_EXTRACT_BED_IT(iter);

#pragma omp for
for (decltype(distance_it) i = 0; i < distance_it; ++i)

loop_body(begin_it[i]);
} } break;

case 1: {
RAJA_EXTRACT_BED_IT(iter);
for (decltype(distance_it) i = 0; i < distance_it; ++i)

loop_body(begin_it[i]);
} break; };

region ->end();
}

Fig. 1. Using Artemis in the RAJA forall execution pattern.

Listing 1 shows a code excerpt for the instrumentation of the forall imple-
mentation with Artemis, redacting implementation details for RAJA closure pri-
vatization, for brevity of presentation. Note, the code for the Collapse kernel is
similar. The forall implementation instruments the region execution with a call
to region->begin() providing the number of iterations as the single feature in
the feature set. For the Collapse implementation, the feature set consists of the
iterations of all loop levels, creating a vector of features. Next, the implemen-
tation calls region->getPolicyIndex() which returns an index selecting the
execution policy variant; 0 indicates executing with OpenMP and 1 indicates
executing the region sequentially. This policy index is the input to the following
switch-case statement that selects the execution variant. Lasty, there is a call
to region->end() to marks the end of region execution.

460 C. Wood et al.

This pattern of API use is general, and serves as a model for other interfaces
and ports of Artemis, such as it’s integration with the tuning API of the Kokkos
portability framework.

3.5 Enhancing Kokkos CUDA Execution

Besides RAJA OpenMP execution, we integrate Artemis to tune CUDA kernel
execution within Kokkos [14]. Specifically, our experiment tuned parameters for
the execution of an SpMV kernel computation in CUDA, including the team size,
which is the outer level of parallelism of thread blocks, the vector size, which is
the inner level of parallelism of numbers of threads and the number of rows of
computation assigned to each thread.

3.6 Training Measurement

Initially, when Artemis first encounters an instrumented region, it deploys a
round-robin strategy to collect training data. This strategy cycles through the
set of provided policies, which contains the OpenMP execution policy and the
sequential policy in our RAJA implementation, or policies representing combi-
nations of the various kernel launch parameters in the Kokkos integration. When
searching, Artemis returns a policy index to explore a particular execution vari-
ant. In our implementation, round-robin advances the policy selection index for
each region and each set of unique features independently. While searching the
space of available policies, the Artemis runtime library records the unique feature
set and the measured execution time for each instrumented region.

When Artemis is being used in an MPI application, it is capable of collective
training, whereby training datasets across the processes are analyzed together.

At the end of an application step, every process issues a collective allgather
operation to share their training datasets and gather the training datasets of
every other process. Each process combines them to create a unified training
dataset per region, informed by the rank-offset parallel round-robin searches, to
find the best explored policy that minimizes execution time across both the local
and peer training data.

3.7 Training Model Analysis and Optimization

Artemis processes the metrics gathered during training to construct the matrix
of features to use in model construction. This includes the feature set, the
performance responses, and the optimal policies. A Random Forest Classifier
(RFC) model is trained per region, implemented using the OpenCV machine
learning library. Artemis evaluates this RFC model in later invocations of
region->getPolicyIndex() of a trained region, to return the optimized exe-
cution policy using as input the feature set provided in the arguments of the
region->begin(features) call. We choose RFC modeling because it has fast
evaluation times of O(m log n) complexity for m decision trees of n depth in the

Artemis: Automatic Runtime Tuning of Parallel Execution Parameters 461

forest. Fast evaluation is important for reducing the overhead during execution
since region->getPolicyIndex() is called with every region’s execution. For
experimentation, we set the depth to 2 levels and the forest size to 10 trees,
which has shown to be effective for optimization.

Artemis uses the same measurement data to train a per-region Random For-
est Regression (RFR) model that predicts expected execution time. Artemis uses
this regression model to detect time-dependent or data-dependent divergence in
the execution of a region that invalidates a previously trained RFC optimizing
model, indicating that re-training is needed. In the implementation, RFR mod-
els train with regression accuracy of 1e − 6, hence micro-second resolution for
predicting time, and implement a forest size of 50 trees. RFR evaluation is off
the critical path, hence affords the largest forest size, since it is called only on
invocations of Artemis::processMeasurements(). For time regression analysis,
Artemis compares the profiled execution time with the predicted one for all the
region’s feature sets. If the measured time for a feature set is greater than the
predicted one given a threshold, then the model is considered diverging. This
threshold limits re-trains due to transient perturbations when measuring execu-
tion time. We have experimentally found that this threshold value of 2× filters
out needless re-trains for the applications under test. Nonetheless, the threshold
value is configurable and also re-training can be turned completely off, through
environment variables. If the execution of an application region is pathological,
such that execution time continuously diverges with the same features, then this
region is ineligible for tuning and should be omitted or re-training should be
turned off. This is a challenging scenario to naively automate, and future work
involves exploring strategies to effectively manage regions that do not have stable
performance profiles even when features or loop inputs are held constant.

Artemis counts all diverging feature sets in a region. If they are found to be
more than a threshold, more than half feature sets in a region for our imple-
mentation, Artemis deems the RFC model invalid and sets up the round-robin
search strategy to re-train an optimized model for that region.

Artemis is generalized to support heterogeneous execution, where an appli-
cation deploys to a cluster of heterogeneous machines, or for cases where a het-
erogeneous workload is specified on the same regions. Differences in machine
architectures can be captured as a feature that describes the machine type, e.g.,
CPU or GPU micro-architecture. Differences in a heterogeneous workload, for
the same code region, can be captured as a feature describing the condition
causing it, e.g., the MPI rank or an application-designated parameter.

4 Experimentation Setup

The Artemis framework is intended to target environments where performance
portability is important. When evaluating Artemis we want to compare its ben-
efits to standard configurations of application and systems that they run on. On
the one hand, Artemis is optimizing an application’s execution on a machine
from some point of reference. If that starts with an already optimized version,

462 C. Wood et al.

there is little likely to be gained. Thus, choosing a “default” version of the appli-
cation with standard settings is more appropriate to gauge improvement. On the
other hand, Artemis is optimizing an application across machines, where differ-
ent architecture component (e.g., CPU, memory) could lead to different code
variants being selected. The application code needs to be developed in such a
way that making selection of those code variants is possible without completely
rewriting the application. This is the reason for working with RAJA and Kokkos
for the experiments discussed below.

4.1 Comparators

The applications used in our study are developed with either RAJA or Kokkos,
and we focus our attention on the parallel regions impacted by those portability
frameworks. We define the baseline in performance comparison to be, for OpenMP,
execution with the RAJA OpenMP execution policy using the same thread count
for all regions, or in the CUDA case, the expert-tuned and hard-coded settings
within the Kokkos Kernels suite. This is the default mode of executing these par-
allel applications. To quantify the instrumentation overhead of Artemis, we create
a version of Artemis with this baseline that always selects the fixed default policy
when guiding execution of a region, but does not perform any of the collection of
performance measurements or online training. We call this the Artemis-OpenMP
or Artemis-Expert Heuristic version. Lastly, we denote as Artemis the configura-
tion where Artemis dynamically optimizes execution, using online profiling and
machine learning for optimized policy selection and regression monitoring.

Table 1. Applications and their configurations

Application Inputs Nodes

LULESH –r 100 –c 1 or 2 or 4 or 8 –i 100 1

Cleverleaf Domain: (500, 500), triple point calculation, 1, 2, 4, 8

4 refinement levels, 25 timesteps,

max patch size: 100×100 or 200× 200,

400× 400 or –1×–1(no limit)

Kokkos Kernels SpMV Domain: 100 M to 600M non-zero values 1

team size: 1–1024, vector size: 1–32

rows per thread: 1–4096

4.2 Applications

We chose three HPC proxy-applications to perform our experiments: LULESH [1,
20] and Cleverleaf [6,10] for OpenMP, and Kokkos Kernels SpMV [24] for CUDA.

Table 1 shows details of the application inputs used and execution config-
urations. LULESH is configurable to create regions of different computational

Artemis: Automatic Runtime Tuning of Parallel Execution Parameters 463

(a) 1 node (b) 2 nodes

(c) 4 nodes (d) 8 nodes

Fig. 2. Cleverleaf, speedup of Artemis-OpenMP and Artemis over the baseline.

cost, to mimic multi-material calculation. Cleverleaf uses adaptive mesh refine-
ment to create a range of problem subdomains, called patches, with varying
computational cost. Thus, both data-dependent and input-dependent settings
can create regions of different computation. Kokkos Kernels SpMV computes a
sparse matrix vector product for very large matrices, allowing for a configurable
count of non-zero values.

In the OpenMP codes, Artemis dynamically optimizes each parallel region by
selecting OpenMP execution policies only when there is enough work to justify
the overhead of parallel execution, otherwise it will elect for sequential execu-
tion. LULESH inputs create heterogeneous computation by using a large count
of regions (100) that emulate different materials, changing the computational cost
of various region subsets by 1, 2, 4, or 8 times the base cost – LULESH adjusts the
cost of 45% of the regions to be this multiple and 5% of regions to be 10× this
multiple. For Cleverleaf, heterogeneous computation is created by changing the
maximum patch size permitted during refinement, ranging from from 100× 100,
200× 200, 400× 400, up to an unlimited maximum by selecting –1×–1. The RAJA
LULESH implementation does not support distributed execution with MPI, thus
our experiments are single node. Cleverleaf provides support for MPI execution, so
we performed experiments on multiple nodes to show Artemis’s response to Clever-
leaf’s strong scaling properties. Kokkos Kernels SpMV experiments used Artemis
to explore and select policies representing combinations of Kokkos settings and
CUDA kernel launch parameters, across a variety of problem sizes.

4.3 Hardware and Software Platforms

Experiments were run on nodes featuring dual-socket Intel Xeon E5-2695v4 pro-
cessors for 36 cores and 128 GB of RAM per node and the TOSS3 software stack.
We compiled applications and Artemis using GCC version 8.1.0 and MVAPICH2
version 2.3 for MPI support. Artemis used the OpenCV machine learning library
version 4.3.0. For Kokkos CUDA we targeted the NVIDIA V100 (Volta) on an
IBM Power9 architecture, using CUDA version 10.

464 C. Wood et al.

Fig. 3. LULESH, speedup over the baseline of RAJA-OpenMP execution.

4.4 Statistical Evaluation

For each OpenMP proxy application and configuration we performed 10 inde-
pendent measurements. Unless otherwise noted, measurement counts the total
application execution time end-to-end. Confidence intervals shown correspond
to a 95% confidence level, calculated using Bootstrapping to avoid assumptions
on the sampled population’s distribution.

5 Evaluation

Here we provide results and detailed analysis of tuning for OpenMP with RAJA,
as well as summary results from applying Artemis to tune Kokkos settings and
CUDA kernel launch parameters.

For evaluating the performance of Artemis with OpenMP, we compute
the speedup over the baseline of RAJA-OpenMP execution for both Artemis-
OpenMP, which always selects OpenMP execution, and the optimizing Artemis,
which dynamically chooses between OpenMP or sequential execution for a
region, using the machine learning methods we described. Artemis-OpenMP
exposes the instrumentation overhead of Artemis, hence the expected slowdown
compared to non-instrumented RAJA-OpenMP execution. Figure 2 shows results
for Cleverleaf, and Fig. 3 shows results for LULESH. Values on bars show the
mean speedup (or slowdown) compared to RAJA-OpenMP execution.

5.1 Instrumentation Overhead

Observing the slowdown of Artemis-OpenMP, the overhead of instrumentation is
modest, cumulatively less than 9% across both applications and tested configura-
tions of input and node numbers. This shows that Artemis does not overburden
execution and given tuning opportunities, it should recuperate the overhead and
provide speedup over non-instrumented RAJA-OpenMP execution.

5.2 Model Training and Evaluation Overhead

The average training time for LULESH is 310 ms, while for Cleverleaf is 150
ms, which is minimal contrasted with the timescale of execution of regions, as
we show in later measurements, so Artemis recovers this overhead, effectively

Artemis: Automatic Runtime Tuning of Parallel Execution Parameters 465

(a) Patch size 100× 100 (b) Patch size 200× 200

(c) Patch size 400× 400 (d) Patch size −1×−1

Fig. 4. Execution time per timestep for Cleverleaf on 8 nodes, varying the maximum
patch size. Regridding operation performed after every 10 steps.

tuning and speeding up execution. Moreover, model training (or re-training)
is infrequently done as trained models persist during execution. By contrast,
model evaluation happens at every execution of a tunable region. Its overhead
depends on the forest size and tree depth of the trees in the evaluated forest.
Given the limits in forest size (10) and tree depth (2) set in our implementation,
see Sect. 3, we measure the time overhead for evaluating the maximum possible
forest configuration to be less than 10 microseconds.

5.3 Speedup on Cleverleaf

For Cleverleaf, varying the maximum patch size changes the number and size
of computational regions. A smaller size means more regions, hence more paral-
lelism, but also finer-grain decomposition of the computation domain. So, there is
greater disparity between regions that lack enough work, hence sequential policy
is fastest, and regions with enough parallel work, for which OpenMP execution is
fastest. Note, the special value −1×−1 means there is no maximum set and Clev-
erleaf by default prioritizes decomposing in larger regions. Figure 2 shows results
for all node configurations, demonstrating that Artemis consistently speeds up
execution for the smaller patch sizes of 100×100 and 200×200, no less than 8%,
executing with one node, and up to 21%, executing on 8 nodes. For the larger
patch size of 400× 400, execution with Artemis is on par with RAJA-OpenMP,
successfully recuperating the overhead with marginal gains, within measurement
error. For the unlimited patch size of −1 × −1, Artemis results in a net slow-
down, also compared with Artemis-OpenMP, since there is lack of optimization
opportunity, and the training and monitoring overhead inflated execution time.

For further analysis, we show results comparing execution times per timestep
for different execution modes. Figure 4 shows results when executing with 8
nodes. Results for other node counts are similar, thus we omit them for brevity.

466 C. Wood et al.

(a) Cost 1 (b) Cost 2

(c) Cost 4 (d) Cost 8

Fig. 5. Execution time per timestep for LULESH, showing different execution modes
on one node, varying the cost of computational regions.

Note that Cleverleaf performs a re-gridding operation [7] every 10 timesteps that
re-shuffles domain decomposition to reduce computation error, thus the spikes
in execution time in the 10th and 20th timesteps.

Observing results, Artemis inflates execution time for the first timestep across
all patch sizes, since this step includes training for bootstrapping tunable regions.
For most of the rest of timesteps, Artemis reduces execution time, by as much
as 40% for the least patch size of 100 × 100, compared to the default execution
with RAJA-OpenMP. Artemis tuning potential lessens the larger the patch size,
since larger regions favor OpenMP execution. Nevertheless, observing Fig. 4d for
the largest patch size selection, Artemis correctly selects OpenMP execution and
any performance lost is due to the initial training overhead. Notably, Cleverleaf
execution with 8 nodes has second to sub-second timesteps, and Artemis is fast
enough to optimize execution even at this short time scale. Expectedly, Artemis-
OpenMP has slightly higher execution time per timestep compared to RAJA-
OpenMP, reflecting instrumentation overhead as seen by the speedup results.

5.4 Effectiveness of Cleverleaf Policy Selection

Cleverleaf instantiates a multitude of regions and each region executes with mul-
tiple different feature sets, corresponding to different patch sizes from decom-
posing the domain and load balancing. So, to highlight Artemis effectiveness we
fix the patch size to 100 × 100, which presents the most optimization potential,
and pick one region to plot the average execution time of each feature set for the
top-20 most frequently executed ones, contrasting OpenMP only execution vs.
sequential execution vs. Artemis execution with dynamic policy selection. The
region comprises of feature sets corresponding to 2d collapsed loops, so there are
two values describing (outer,inner) loop iterations. Depending on the feature set
size, OpenMP or sequential is the best. For example, feature set (3,201) executes
faster with OpenMP and feature set (55, 2) executes faster sequentially. Observ-
ing execution times measured for Artemis, policy recommendations converge to

Artemis: Automatic Runtime Tuning of Parallel Execution Parameters 467

the optimal policy for the majority of feature sets for which the performance
difference between the sequential and OpenMP policy selection is more than
20%. Artemis selects the optimal policy in 10 of the 15 such regions.

Further, we find positive results for the accuracy of Artemis in selecting
optimal policies. For the initial timestep, Artemis has low accuracy, ranging from
10% to 20%, due to training, without any discernible trend among different patch
sizes. However, accuracy significantly improves after this initial, training step to
a range of 85% to 95%, showing Artemis is effective in selecting the optimal
policy most of the time.

5.5 Strong Scaling with Different Node Counts

Figs. 2a–d show results for increasing node counts. Following the discussion on
smaller patch sizes that present optimization opportunities for Artemis, increas-
ing the number of nodes also boosts the speedup achieved by Artemis. Clever-
leaf distributes computational regions among different MPI ranks and executes
bulk-synchronous, advancing the simulation time step after all MPI ranks have
finished processing. Artemis dynamically optimizes execution per rank, thus it
reduces execution time on the critical path, with multiplicative effect on the
overall execution.

5.6 Speedup on LULESH

Figure 3 shows results for LULESH on a single node due to the limitation of
the RAJA version of LULESH supporting only single node execution. For this
experiment, the number of regions is kept constant (100) and the cost of com-
putation varies between 1× (default) and 8×, as explained in Sect. 4. Similarly
to Cleverleaf, the instrumentation overhead of Artemis, shown by observing the
slowdown of Artemis-OpenMP, is within 9% of non-instrumented execution of
RAJA-OpenMP.

Regarding speedup of Artemis, it is consistently faster than RAJA-OpenMP.
Artemis improves execution time even for the default setting of cost 1× by 16%.
Expectedly, increasing the cost creates more computational disparity between
LULESH computational regions, thus Artemis achieves higher speedup. For the
highest cost value we experiment with, a cost of 8×, Artemis achieves significant
speedup of 47% over the RAJA-OpenMP baseline.

For more detailed results, Fig. 5 shows execution time per timestep for all
execution modes varying the cost of computational regions. Observations are
similar to Cleverleaf, the first timestep under Artemis is slower due to train-
ing while the rest of the timesteps execute faster than RAJA-OpenMP. Artemis
speeds up the execution of timestep up to 50% compared to RAJA-OpenMP,
increasingly so as the cost input increases. Different than Cleverleaf, the reso-
lution of the execution time of LULESH is much more fine-grain, in the range
of hundreds of milliseconds. Nonetheless, Artemis effectively optimizes execu-
tion even at this time scale, showing that training effectively optimizes policy
selection and overcomes any instrumentation overhead.

468 C. Wood et al.

Fig. 6. Artemis improves performance of the Kokkos SpMV kernel up to 16.8% com-
pared to the hardcoded expert heuristic.

5.7 Speedup on Kokkos Kernels SpMV

Figure 6 shows the results of our integration with Kokkos, tuning the paral-
lel team size, vector size, and number of rows assigned to each thread. The
x-axis shows scaling the number of non-zero elements y-axis plots the average
execution time for 1500 SpMV kernel invocations. Expert Heuristic is the exist-
ing, hardcoded tuning strategy set by the expert kernel developer, setting those
parameters based on the input data and expert knowledge. This heuristic func-
tion settles on 1 row per thread, a vector length of 2, and a team size of 256 for
inputs shown. Artemis-Expert Heuristic exposes the instrumentation overhead
of Artemis, by foregoing tuning, instead executing with the same settings of the
expert heuristic. The performance of Artemis-Expert Heuristic is on par with
execution of Expert Heuristic without Artemis intervening, thus instrumentation
overhead is minimal. Artemis shows the performance improvement when tuning
is enabled. Kokkos provides a range of 664 selectable policies to Artemis for tun-
ing, with parameters team size ranging from 1–1024, vector size from 1–32, and
number of rows per thread from 1–4096. Results show that Artemis succesfully
navigates the tuning space, and provides increasingly faster performance as the
problem size increases, for a maximum of 16.8% performance improvement on
the largest input of 600 M non-zero elements.

6 Related Work

Existing tuning frameworks are either application-specific [5,28], programming-
model-specific [2,23], hardware-specific [4,15], or feature the need for offline
training [9,27], and thus have limited scope. By design, Artemis is a general
framework that gives an API to tune at any of those levels, and we show its
generality by integrating Artemis with the RAJA programming model, tuning
a variety of HPC proxy applications and kernels. The closest to our work is the

Artemis: Automatic Runtime Tuning of Parallel Execution Parameters 469

Apollo paper by Beckingsale et al. [9], with the important distinction that, rather
than exhaustive offline tuning, the Artemis framework performs the search space
exploration at runtime.

Empirical techniques directly measure all the possible variants and select
the fastest. Established projects like the ATLAS [4,29] and FFTW [15] libraries
apply this technique with great success, but it requires the up front cost of find-
ing the best code variant choices for each system. ATF [25,26]presents a generic
extensible framework for automated tuning, independent of programming lan-
guage or domain. Oski [28] performs runtime tuning, optimizing over sparse
linear algebra kernels. Orio [17] and OpenTuner [2] are able to facilitate general
purpose kernel tuning using empirical techniques to select the best performing
configurations for production. ActiveHarmony [18] uses parallel search strate-
gies to perform online tuning, though sweeping large parameter spaces can take
significant amounts of time.

Using some form of a model to predict the performance of the code, analytical
examples make tuning decisions based on model output. Similarly to Artemis,
AutoTuneTMP [23] makes use of C++ template metaprogramming to abstract-
away the tuning mechanisms of kernels and facilitate performance portability.
It constrains the search space for online training using parameterized kernel
definitions. Unlike Artemis’s use of RAJA policies that are compiled in alongside
the application, AutoTuneTMP uses JIT compilation and dynamic linking at
runtime to produce kernel variants, a mechanism which could impose non-trivial
overhead in a large large class of HPC codes in production settings. Mira [21] uses
static performance analysis to generate and explore performance models offline.
Mira’s abstract performance models allow it to avoid some of the limitations to
offline learning.

A statistical model is built by applying machine learning techniques, and this
model is used to make tuning decisions. Sreenivasan et al. [27] demonstrated
performance gains using an OpenMP autotuner framework that performs offline
tuning using a random forest statistical model of the reduced search space to
eliminate exhaustive tuning. HiPerBOt [22] presents an active learning frame-
work that uses Bayesian techniques to maintain optimal outcomes while collaps-
ing the required number of samples for learning.

Other work [11,12,16] has looked into auto-tuning the number of OpenMP
threads in multi-program execution. Those approaches look at architectural met-
rics, such as Instructions-Per-Cycle and memory stalls, to dynamically throttle
thread allocation when contention occurs.

7 Conclusion and Future Work

We have presented Artemis, a novel framework that optimizes performance by
tuning an application’s parallel computational regions online. Artemis provides
a powerful API to integrate online tuning in existing applications, by defin-
ing tunable regions and execution variants. Artemis automatically adapts to
data-dependent or time-dependent changes in execution using decision tree and

470 C. Wood et al.

regression models. We integrated Artemis with RAJA and Kokkos and evaluated
online tuning performance on HPC proxy applications: Cleverleaf and LULESH,
and a CUDA SpMV kernel. Results show that Artemis is up to 47% faster and
its operating overhead is minimal.

Future work includes: 1. using Artemis for tuning of additional GPU-offloaded
compute kernels with heterogeneous memory hierarchies. 2. tuning additional par-
allel execution parameters such as loop tiling and nesting. 3. expanding experi-
mentation to large applications by extending the Artemis codebase and integra-
tion with RAJA, Kokkos, and lower level parallel programming models, such as
OpenMP, CUDA, and HIP.

Acknowledgment. This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344 (LLNL-CONF-809192). Additional support was provided by a LLNL sub-
contract to the University of Oregon, No. B631536. This document was prepared as an
account of work sponsored by an agency of the United States government. Neither the
United States government nor Lawrence Livermore National Security, LLC, nor any of
their employees makes any warranty, expressed or implied, or assumes any legal liabil-
ity or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process,
or service by trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.

References

1. Hydrodynamics Challenge Problem, Lawrence Livermore National Laboratory.
Tech. Rep. LLNL-TR-490254, Lawrence Livermore National Laboratory

2. Ansel, J., et al.: Opentuner: an extensible framework for program autotuning. In:
Proceedings of the 23rd International Conference on Parallel Architectures and
Compilation, pp. 303–316 (2014)

3. Balaprakash, P., Dongarra, J., Gamblin, T., Hall, M., Hollingsworth, J.K., Nor-
ris, B., Vuduc, R.: Autotuning in high-performance computing applications. Proc.
IEEE 106(11), 2068–2083 (2018)

4. Baldeschwieler, J.E., Blumofe, R.D., Brewer, E.A.: Atlas: an infrastructure for
global computing. In: Proceedings of the 7th Workshop on ACM SIGOPS European
Workshop: Systems Support for Worldwide Applications, pp. 165–172 (1996)

5. Bari, M.A.S., Chaimov, N., Malik, A.M., Huck, K.A., Chapman, B., Malony, A.D.,
Sarood, O.: Arcs: adaptive runtime configuration selection for power-constrained
openmp applications. In: 2016 IEEE International Conference on Cluster Comput-
ing, pp. 461–470. IEEE (2016)

6. Beckingsale, D.A., Gaudin, W.P., Herdman, J.A., Jarvis, S.A.: Resident block-
structured adaptive mesh refinement on thousands of graphics processing units.
In: 44th International Conference on Parallel Processing, pp. 61–70 (2015)

Artemis: Automatic Runtime Tuning of Parallel Execution Parameters 471

7. Beckingsale, D., Gaudin, W., Herdman, A., Jarvis, S.: Resident block-structured
adaptive mesh refinement on thousands of graphics processing units. In: 2015 44th
International Conference on Parallel Processing, pp. 61–70. IEEE (2015)

8. Beckingsale, D.A., Hornung, R.D., Scogland, T.R.W., Vargas, A.: Performance
portable C++ programming with RAJA. In: Proceedings of the 24th Symposium
on Principles and Practice of Parallel Programming, pp. 455–456 (2019)

9. Beckingsale, D.A., Pearce, O., Laguna, I., Gamblin, T.: Apollo: reusable models for
fast, dynamic tuning of input-dependent code. In: 31st IEEE International Parallel
& Distributed Processing Symposium, pp. 307–316 (2017)

10. Beckingsale, D.A.: Towards scalable adaptive mesh refinement on future parallel
architectures. Ph.D. thesis, University of Warwick (2015)

11. Creech, T., Kotha, A., Barua, R.: Efficient multiprogramming for multicores with
scaf. In: 2013 46th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pp. 334–345 (2013)

12. Creech, T., Barua, R.: Transparently space sharing a multicore among multiple pro-
cesses. ACM Trans. Parallel Comput. 3(3) (Nov 2016). https://doi.org/10.1145/
3001910

13. Edwards, H.C., Trott, C.R.: Kokkos: Enabling performance portability across
manycore architectures. In: 2013 Extreme Scaling Workshop (xsw 2013), pp. 18–24.
IEEE (2013)

14. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore perfor-
mance portability through polymorphic memory access patterns. J. Parallel Dis-
trib. Comput. 74(12), 3202–3216 (2014)

15. Frigo, M., Johnson, S.G.: FFTW an adaptive software architecture for the FFT. In:
Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP 1998) (Cat. No. 98CH36181). vol. 3, pp. 1381–1384.
IEEE (1998)

16. Georgakoudis, G., Vandierendonck, H., Thoman, P., Supinski, B.R.D., Fahringer,
T., Nikolopoulos, D.S.: Scalo: scalability-aware parallelism orchestration for multi-
threaded workloads. ACM Trans. Archit. Code Optim. 14(4) (Dec 2017). https://
doi.org/10.1145/3158643

17. Hartono, A., Norris, B., Sadayappan, P.: Annotation-based empirical performance
tuning using orio. In: 2009 IEEE International Symposium on Parallel & Dis-
tributed Processing, pp. 1–11. IEEE (2009)

18. Hollingsworth, J., Tiwari, A.: End-to-end auto-tuning with active harmony. In: Per-
formance Tuning of Scientific Applications, pp. 217–238, CRC Press, Boca Raton
(2010)

19. Hornung, R.D., Keasler, J.A.: The RAJA Portability Layer: Overview and Status.
Tech. Rep, Lawrence Livermore National Lab (2014)

20. Karlin, I., Keasler, J.A., Neely, R.: Lulesh 2.0 updates and changes. Tech. Rep.
LLNL-TR-641973, Lawrence Livermore National Laboratory (August 2013)

21. Meng, K., Norris, B.: Mira: a framework for static performance analysis. In: 2017
IEEE International Conference on Cluster Computing (CLUSTER), pp. 103–113.
IEEE (2017)

22. Menon, H., Bhatele, A., Gamblin, T.: Auto-tuning parameter choices in HPC appli-
cations using Bayesian optimization. In: 2020 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS) (2020)

23. Pfander, D., Brunn, M., Pflüger, D.: AutoTuneTmp: auto-tuning in C++ with
runtime template metaprogramming. In: 2018 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pp. 1123–1132. IEEE
(2018)

https://doi.org/10.1145/3001910
https://doi.org/10.1145/3001910
https://doi.org/10.1145/3158643
https://doi.org/10.1145/3158643

472 C. Wood et al.

24. Rajamanickam, S.: Kokkos kernels: Performance portable kernels for sparse/dense
linear algebra graph and machine learning kernels. Tech. Rep., Sandia National
Lab. (SNL-NM), Albuquerque, NM (United States) (2020)

25. Rasch, A., Gorlatch, S.: ATW a generic directive-based auto-tuning framework.
Concurr. Comput. Prac. Exp. 31, e4423 (2019)

26. Rasch, A., Haidl, M., Gorlatch, S.: AFT: a generic auto-tuning framework. In:
2017 IEEE 19th International Conference on High Performance Computing and
Communications; IEEE 15th International Conference on Smart City; IEEE 3rd
International Conference on Data Science and Systems (HPCC/SmartCity/DSS),
pp. 64–71. IEEE (2017)

27. Sreenivasan, V., Javali, R., Hall, M., Balaprakash, P., Scogland, T.R.W., de Supin-
ski, B.R.: A framework for enabling openMP autotuning. In: Fan, X., de Supinski,
B.R., Sinnen, O., Giacaman, N. (eds.) IWOMP 2019. LNCS, vol. 11718, pp. 50–60.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28596-8 4

28. Vuduc, R., Demmel, J.W., Yelick, K.A.: OSKI: a library of automatically tuned
sparse matrix kernels. J. Phys. Conf. Ser. 16, 521 (2005)

29. Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated empirical optimizations of
software and the atlas project. Parallel Comput. 27(1–2), 3–35 (2001)

https://doi.org/10.1007/978-3-030-28596-8_4

Correction to: Performance
of the Supercomputer Fugaku for Breadth-

First Search in Graph500 Benchmark

Masahiro Nakao , Koji Ueno, Katsuki Fujisawa, Yuetsu Kodama,
and Mitsuhisa Sato

Correction to:
Chapter “Performance of the Supercomputer Fugaku
for Breadth-First Search in Graph500 Benchmark”
in: B. L. Chamberlain et al. (Eds.): High Performance
Computing, LNCS 12728,
https://doi.org/10.1007/978-3-030-78713-4_20

In an older version of this paper, instead of 102,955 giga-traversed edges per second
(GTEPS), the value given was 102,956. This has been corrected.

The updated original version of this chapter can be found at
https://doi.org/10.1007/978-3-030-78713-4_20

© Springer Nature Switzerland AG 2023
B. L. Chamberlain et al. (Eds.): ISC High Performance 2021, LNCS 12728, p. C1, 2023.
https://doi.org/10.1007/978-3-030-78713-4_25

http://orcid.org/0000-0001-7848-1172
https://doi.org/10.1007/978-3-030-78713-4_20
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78713-4_25&domain=pdf
https://doi.org/10.1007/978-3-030-78713-4_20
https://doi.org/10.1007/978-3-030-78713-4_25

Author Index

Aaziz, Omar 195
Afzal, Ayesha 351
Akella, Venkatesh 176
Aksar, Burak 195
Aschwanden, Pascal 431
Ates, Emre 195

Bayatpour, Mohammadreza 18
Beckingsale, David 453
Bianucci, Tommaso 272
Boehme, David 431
Borch, Eric 137
Brandt, Jim 195
Brown, Kevin A. 137
Burchard, Luk 291

Cao, Jijun 3
Carothers, Christopher D. 137
Cawood, Matthew 313
Cazes, John 411
Chakraborty, Dwaipayan 57
Chang, Junsheng 3
Chen, Chen-Chun 118
Chu, Ching-Hsiang 118
Chunduri, Sudheer 137
Cong, Guojing 237
Coskun, Ayse K. 195

Dai, Yi 3
Demmel, James 79
Deng, Yuefan 237

Egele, Manuel 195
Evans, Richard Todd 313, 411

Fariborz, Marjan 176
Fonner, John 411
Fotouhi, Pouya 176
Fujisawa, Katsuki 372

Gamblin, Todd 453
Georgakoudis, Giorgis 453
Gimenez, Alfredo 453

Hager, Georg 351
Han, Changnian 237
Han, Ruobing 79
Harms, Kevin 137
Harrell, Stephen Lien 313, 411
Hashmi, Jahanzeb 118
Huang, Lei 313
Huck, Kevin 453

Incardona, Pietro 272

Jarvis, Stephen A. 391

Kabić, Marko 217
Kannan, Rajgopal 98
Khine, Yu Yu 255
Kodama, Yuetsu 372
Kogge, Peter M. 157
Kozhevnikov, Anton 217
Kuppannagari, Sanmukh R. 98

Langguth, Johannes 291
LeGendre, Matthew 431
Leung, Vitus J. 195
Lin, Wei-Chen 332
Liu, Frank 57
Liu, Si 313
Lowe-Power, Jason 176
Lu, Chun-Yaung 313
Lu, Kai 3

Malony, Allen 453
Maqbool Hashmi, Jahanzeb 18
Mathur, Raghunandan 255
McGlohon, Neil 137
McIntosh-Smith, Simon 332
Miniskar, Narasinga Rao 57
Minyard, Tommy 411
Moe, Johannes 291
Mudalige, Gihan R. 391

Nakao, Masahiro 372

474 Author Index

Obenschain, Keith 255
Owenson, Andrew M. B. 391

Page, Brian A. 157
Panda, Dhabaleswar K. 18, 118
Patnaik, Gopal 255
Pearce, Olga 431
Petrini, Fabrizio 38
Pintarelli, Simon 217
Poenaru, Andrei 332
Pogorelov, Konstantin 291
Poliakoff, David 453
Powell, Archie 391
Prasanna, Viktor K. 98
Proietti, Roberto 176

Qi, Xingyun 3

Reguly, Istvan Z. 391
Richards, David F. 38
Rosenberg, Robert 255
Ross, Robert B. 137
Ruhela, Amit 313, 411

Sarkauskas, Nick 18
Sato, Mitsuhisa 372
Sbalzarini, Ivo F. 272
Schroeder, Daniel Thilo 291
Schwaller, Benjamin 195

Shafie Khorassani, Kawthar 118
Subramoni, Hari 18, 118

Tithi, Jesmin Jahan 38

Ueno, Koji 372

VandeVondele, Joost 217
Vaughn, Matt 411
Vetter, Jeffrey S. 57

Wang, Yinzhi 313
Weiss, Kenneth 431
Wellein, Gerhard 351
Wood, Chad 453

Yang, Yang 98
Ye, Tian 98
Yoo, S. J. Ben 176
You, Yang 79
Young, Aaron R. 57

Zhang, Jianmin 3
Zhang, Peng 237
Zhang, Yijia 195
Zhang, Zhao 313
Zhu, Yicong 237
Zynda, Gregory J. 411

	 Preface
	 Organization
	 Contents
	Architecture, Networks, and Storage
	Microarchitecture of a Configurable High-Radix Router for the Post-Moore Era
	1 Introduction
	2 Pisces Router Microarchitecture
	2.1 The Configurable Communication Stack with Enhanced Link Error Tolerance
	2.2 Multi-port Shared DAMQ with Data Prefetch
	2.3 The Internal Switch Based on Aggregated Tiles
	2.4 Packet Exception Process and Congestion Control

	3 Performance Evaluation
	4 Conclusion
	References

	BluesMPI: Efficient MPI Non-blocking Alltoall Offloading Designs on Modern BlueField Smart NICs
	1 Introduction
	1.1 Challenges
	1.2 Motivation and Characterization
	1.3 Contributions
	1.4 Overview of BlueField Smart NICs
	1.5 Experimental Setup

	2 BluesMPI Designs
	2.1 BluesMPI Non-blocking Alltoall Collective Offload Framework
	2.2 Proposed Nonblocking Alltoall Designs in BluesMPI

	3 Results
	3.1 Performance Characterization of BluesMPI Framework
	3.2 Performance of MPI Collective Operations
	3.3 Application Evaluations

	4 Related Work
	5 Conclusion and Future Work
	References

	Lessons Learned from Accelerating Quicksilver on Programmable Integrated Unified Memory Architecture (PIUMA) and How That's Different from CPU
	1 Introduction
	2 Background
	2.1 Mercury and Quicksilver
	2.2 PIUMA

	3 Quicksilver
	3.1 High-Level Algorithm
	3.2 A Deeper Analysis of cycle_tracking

	4 CPU Optimizations
	4.1 Engineering Optimizations
	4.2 Algorithmic Optimizations

	5 Quicksilver on PIUMA
	5.1 Initial Porting Effort
	5.2 Comparing PIUMA to Xeon
	5.3 PIUMA Optimized Version
	5.4 Exploring Memory Allocation Options on PIUMA
	5.5 A Closer Look at Strong Scaling
	5.6 Hitting the Scaling Limit on PIUMA

	6 Related Work
	7 Conclusion
	References

	A Hierarchical Task Scheduler for Heterogeneous Computing
	1 Introduction
	2 Background and Related Work
	3 RANGER Architecture and Implementation
	3.1 Baseline Accelerator Architecture
	3.2 RANGER Architecture and Memory-Mapped IO Interface
	3.3 Top-Level Scheduler
	3.4 Low-Level Scheduler
	3.5 Implementation Details of Accelerator Kernels

	4 Experimental Evaluation
	4.1 Application Benchmarks
	4.2 Scalability Study
	4.3 Overhead of the Local Schedulers

	5 Conclusion
	References

	Machine Learning, AI, and Emerging Technologies
	Auto-Precision Scaling for Distributed Deep Learning
	1 Introduction
	2 Related Work
	3 APS: Auto-Precision-Scaling
	3.1 The Limitation of the Loss Scaling Algorithm
	3.2 Layer-Wise Precision for Scaling the Gradients
	3.3 Technical Details for APS

	4 Experiments
	4.1 Training on Small-Scale Distributed Systems
	4.2 Training on Large-Scale Distributed Systems
	4.3 Performance Analysis

	5 CPD: Customized-Precision Deep Learning
	6 Conclusion
	References

	FPGA Acceleration of Number Theoretic Transform
	1 Introduction
	2 Related Work
	3 Background
	3.1 Fully Homomorphic Encryption (FHE)
	3.2 Number Theoretic Transform (NTT)
	3.3 Modular Reduction
	3.4 Challenges in Accelerating NTT

	4 Accelerator Design
	4.1 Design Methodology
	4.2 NTT Core
	4.3 Permutation Network

	5 Experiments and Results
	5.1 Experimental Setup
	5.2 Performance Evaluation
	5.3 Resource Utilization
	5.4 Evaluation of NTT Core and Streaming Permutation Network
	5.5 Comparison with Prior Work

	6 Conclusion
	References

	Designing a ROCm-Aware MPI Library for AMD GPUs: Early Experiences
	1 Introduction
	1.1 Contributions

	2 Background
	2.1 Radeon Open Compute (ROCm)
	2.2 ROCm Remote Direct Memory Access (RDMA)
	2.3 Inter-Process Communication (IPC)
	2.4 Message Passing Interface (MPI)
	2.5 Protocols for High-Performance Communication in MPI

	3 Designing and Implementation of ROCm-Aware MPI
	3.1 Overview of Technologies Offered by NVIDIA and AMD for GPU Based Communication
	3.2 Designing Unified Device Abstraction Interface for Accelerator-Aware MPI
	3.3 PeerDirect
	3.4 CPU-Driven GPU Mapped Memory Copy Based Design
	3.5 ROCm IPC Based Design

	4 Performance Evaluation
	4.1 Experimental Setup
	4.2 Micro-Benchmark Evaluation
	4.3 Application-Level Evaluation

	5 Related Work
	6 Conclusion
	References

	A Tunable Implementation of Quality-of-Service Classes for HPC Networks
	1 Introduction
	2 Background and Related Work
	2.1 Communication Characteristics and Performance Targets
	2.2 Managing Contention for Shared Channels on HPC Networks
	2.3 QoS Solutions for HPC

	3 Design of a Tunable QoS Solution
	3.1 Flexible Traffic Shaping Using Two Rate Limits
	3.2 Defining QoS Classes for HPC Traffic

	4 Evaluation of QoS Solution
	4.1 CODES Simulation Toolkit
	4.2 Network Setup
	4.3 Workload Setup
	4.4 Bandwidth Shaping for Dynamic Workloads
	4.5 Supporting Specially Defined QoS Classes

	5 Discussion
	5.1 Tuning Class Configurations to Match Workload Requirements
	5.2 Production Deployment

	6 Conclusions
	References

	Scalability of Streaming Anomaly Detection in an Unbounded Key Space Using Migrating Threads
	1 Introduction
	2 Background
	2.1 Firehose Streaming Benchmark
	2.2 Migrating Thread Architecture

	3 Firehose on Migrating Threads
	3.1 Datum Conversion and Assignment: Producers
	3.2 Anomaly Detection: Consumers
	3.3 Maintaining Hash Map Size: LRU List

	4 Conventional Implementation Using MPI
	5 Communication Overhead
	6 Experimental Setup
	6.1 Program Execution
	6.2 Dataset Generation and Placement
	6.3 Scaling Tests

	7 Evaluation
	7.1 Throughput Scalability
	7.2 Overlapped Datum Conversion and Analysis

	8 Conclusion
	References

	HTA: A Scalable High-Throughput Accelerator for Irregular HPC Workloads
	1 Introduction
	2 HTA - Background, Rationale, and Design
	2.1 Partitioned Memory Controller
	2.2 Interconnect
	2.3 Packaging
	2.4 HTA Architecture

	3 Methodology
	3.1 System Comparisons
	3.2 Simulations

	4 Evaluation
	4.1 Evaluation of Partitioned Memory Controller
	4.2 Evaluation of HTA
	4.3 Comparison with Multi-GPU Systems

	5 Related Work
	6 Conclusion
	References

	Proctor: A Semi-Supervised Performance Anomaly Diagnosis Framework for Production HPC Systems
	1 Introduction
	2 Related Work and Background
	2.1 Anomaly Detection and Autoencoders
	2.2 Machine Learning for HPC Monitoring Analytics

	3 Our Proposed Framework: PROCTOR
	3.1 Feature Extraction
	3.2 Unsupervised Pretraining
	3.3 Supervised Training
	3.4 Detection and Diagnosis at Runtime

	4 Experimental Methodology
	4.1 HPC Systems and Applications
	4.2 Monitoring Framework
	4.3 Synthetic Anomalies
	4.4 Baselines
	4.5 Implementation Details

	5 Evaluation
	5.1 Performance Metrics
	5.2 Data Set Preparation
	5.3 Anomaly Detection Results
	5.4 Anomaly Diagnosis Results
	5.5 Impact of Previously Unseen Anomalies

	6 Conclusion
	References

	HPC Algorithms and Applications
	COSTA: Communication-Optimal Shuffle and Transpose Algorithm with Process Relabeling
	1 Introduction
	2 Preliminaries and Notation
	3 Communication Cost Function
	3.1 Communication Graph

	4 Communication-Optimal Process Relabeling (COPR)
	4.1 The Formal Definition
	4.2 COPR as Linear Assignment Problem
	4.3 COPR Algorithm

	5 COSTA: Comm-Optimal Shuffle and Transpose Alg.
	6 Implementation Details
	7 Performance Results
	7.1 COSTA vs. ScaLAPACK
	7.2 Process Relabeling
	7.3 Real-World Application: RPA Simulations

	8 Conclusion
	References

	Enabling AI-Accelerated Multiscale Modeling of Thrombogenesis at Millisecond and Molecular Resolutions on Supercomputers
	1 Introduction
	2 Related Work
	3 The Methods
	3.1 The Multiscale Model
	3.2 AI-MTS
	3.3 Numerical Experiments
	3.4 The Measures
	3.5 The Supercomputers

	4 The in Silico Experiment Results
	4.1 Platelet Dynamics
	4.2 Blood Flow

	5 Performance Analysis
	6 Discussions and Future Work
	References

	Evaluation of the NEC Vector Engine for Legacy CFD Codes
	1 Introduction
	1.1 NEC Vector Architecture
	1.2 Comparison with Reference Architectures
	1.3 Benchmark Studies

	2 FDL3DI
	2.1 Problem Description
	2.2 Initial Performance Observation
	2.3 Optimization Process for FDL3DI
	2.4 Performance Analysis Using the NEC Toolchain
	2.5 Optimization Techniques

	3 FDL3DI Performance with Optimization
	3.1 Roofline Analysis of FDL3DI

	4 Conclusions/Future Work
	References

	Distributed Sparse Block Grids on GPUs
	1 Introduction
	2 Single-GPU Sparse Block Grids
	3 Multi-GPU Distributed Sparse Block Grids
	3.1 Packing and Serialization
	3.2 Unpacking and Deserialization

	4 Implementation in OpenFPM
	4.1 Optimizing CPU Performance

	5 Benchmark Results
	5.1 Single-GPU Performance
	5.2 Multi-GPU Performance

	6 Related Work
	7 Conclusions
	References

	iPUG: Accelerating Breadth-First Graph Traversals Using Manycore Graphcore IPUs
	1 Introduction
	2 IPU Hardware
	2.1 Architecture
	2.2 Programming Model

	3 Background
	3.1 Related Work
	3.2 Graph Algorithms in the Language of Linear Algebra

	4 BFS Implementation on IPU
	4.1 Parallel BFS
	4.2 Parallel Top-Down
	4.3 Mapping Data and Compute
	4.4 Challenges of IPU Graph Implementations
	4.5 Optimizations

	5 Experimental Setup
	6 Experimental Results
	6.1 Performance Comparison Experiment
	6.2 Graph 500 Scaling Experiment

	7 Discussion
	8 Conclusion
	References

	Performance Modeling, Evaluation, and Analysis
	Optimizing GPU-Enhanced HPC System and Cloud Procurements for Scientific Workloads
	1 Introduction
	2 Cost Model Based HPC Procurement
	2.1 Methodology
	2.2 Demonstration on a Proxy Scientific Workload

	3 Prior Work
	4 Demonstration and Results
	4.1 Description of Proxy Workload
	4.2 Scaling and Cost Optimization of Proxy Workload

	5 Conclusion
	References

	A Performance Analysis of Modern Parallel Programming Models Using a Compute-Bound Application
	1 Introduction
	2 Background
	2.1 High-Performance Molecular Docking
	2.2 Modern Parallel Programming Models
	2.3 Performance Portability

	3 Evaluation Methodology
	3.1 A BUDE Mini-App
	3.2 Performance Analysis

	4 Results and Performance Analysis
	4.1 CPUs
	4.2 GPUs

	5 Towards Portable High-Performance Code
	6 Future Work
	7 Reproducibility
	8 Conclusion
	References

	Analytic Modeling of Idle Waves in Parallel Programs: Communication, Cluster Topology, and Noise Impact
	1 Introduction
	1.1 Idle Waves in Barrier-Free Bulk-Synchronous Parallel Programs
	1.2 Related Work
	1.3 Contribution

	2 Test Bed and Experimental Methods
	3 Idle Wave Propagation Velocity for Scalable Code
	3.1 Execution Characteristics
	3.2 Categorization of Communication Characteristics
	3.3 Analytical Model of Idle Wave Propagation
	3.4 Experimental Validation

	4 Idle Waves Interacting with MPI Collectives
	5 Idle Wave Decay
	5.1 Topological Decay
	5.2 Noise-Induced Decay

	6 Summary and Future Work
	References

	Performance of the Supercomputer Fugaku for Breadth-First Search in Graph500 Benchmark
	1 Introduction
	2 The Supercomputer Fugaku
	3 Hybrid-BFS for Large-Scale System
	3.1 Algorithm for Shared Memory System
	3.2 Algorithm for Distributed Memory System

	4 Improvement to Hybrid-BFS
	4.1 Bitmap-Based Representation for Adjacency Matrix
	4.2 Sorting of Vertex Number
	4.3 Yoo's Distribution of Adjacency Matrix
	4.4 Load Balancing in Top-Down Approach
	4.5 Communication in Bottom-Up Approach

	5 Performance Optimization for Fugaku
	5.1 Graph500 Benchmark
	5.2 Setting Parameters
	5.3 Optimization of the Number of Processes per Node
	5.4 Use of Eager Method
	5.5 Power Management
	5.6 Six-Dimensional Process Mapping

	6 Performance Evaluation on Fugaku
	6.1 Performance on Whole Fugaku System
	6.2 Comparison with Other Systems

	7 Conclusion and Future Work
	References

	Under the Hood of SYCL – An Initial Performance Analysis with An Unstructured-Mesh CFD Application
	1 Introduction
	2 Parallelizing Unstructured-Mesh Applications
	3 SYCL Parallelizations with OP2
	3.1 Coloring
	3.2 Atomics

	4 Performance
	4.1 CPU Results
	4.2 NVIDIA and AMD GPU Results
	4.3 Intel Iris XE MAX Performance

	5 Bottleneck Analysis
	6 Conclusion
	References

	Characterizing Containerized HPC Applications Performance at Petascale on CPU and GPU Architectures
	1 Introduction
	1.1 Contributions

	2 Related Work
	3 Background
	3.1 Container Technologies
	3.2 Microbenchmarks and Applications

	4 Performance Evaluation
	4.1 Experimental Setup
	4.2 Micro-benchmark Evaluation
	4.3 Application Level Evaluation
	4.4 IO Benchmark and Application
	4.5 Capacity Workload Performance
	4.6 Outcomes

	5 Discussion
	5.1 Containerization in the Linux Kernel
	5.2 Container Portability
	5.3 Recommendations

	6 Conclusion
	References

	Ubiquitous Performance Analysis
	1 Introduction
	2 State of the Art
	3 Ubiquitous Performance Analysis
	3.1 Overview
	3.2 Code Instrumentation
	3.3 ConfigManager: A Measurement Control API in Caliper
	3.4 Adiak: A Library for Recording Program Metadata
	3.5 SPOT: A Web Interface for Ubiquitous Performance Analysis
	3.6 Ubiquitous Data Collection

	4 Example: LULESH
	4.1 Region Instrumentation with Caliper
	4.2 Metadata Collection with Adiak
	4.3 Integrating the Caliper ConfigManager API
	4.4 Data Analysis and Visualization in SPOT

	5 Overhead Evaluation
	6 Case Study: Marbl
	7 Conclusion
	References

	Programming Environments and Systems Software
	Artemis: Automatic Runtime Tuning of Parallel Execution Parameters Using Machine Learning
	1 Introduction
	2 Background
	3 Artemis: Design and Implementation
	3.1 Design
	3.2 Training and Optimization
	3.3 Validation and Retraining
	3.4 Extending RAJA OpenMP Execution
	3.5 Enhancing Kokkos CUDA Execution
	3.6 Training Measurement
	3.7 Training Model Analysis and Optimization

	4 Experimentation Setup
	4.1 Comparators
	4.2 Applications
	4.3 Hardware and Software Platforms
	4.4 Statistical Evaluation

	5 Evaluation
	5.1 Instrumentation Overhead
	5.2 Model Training and Evaluation Overhead
	5.3 Speedup on Cleverleaf
	5.4 Effectiveness of Cleverleaf Policy Selection
	5.5 Strong Scaling with Different Node Counts
	5.6 Speedup on LULESH
	5.7 Speedup on Kokkos Kernels SpMV

	6 Related Work
	7 Conclusion and Future Work
	References

	Correction to: Performance of the Supercomputer Fugaku for Breadth-First Search in Graph500 Benchmark
	Correction to: Chapter “Performance of the Supercomputer Fugaku for Breadth-First Search in Graph500 Benchmark” in: B. L. Chamberlain et al. (Eds.): High Performance Computing, LNCS 12728, https://doi.org/10.1007/978-3-030-78713-4_20

	Author Index

