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Abstract. Computing a physiologically accurate electrocardiogram
(ECG) is one of the key outcomes of cardiac electrophysiology (EP)
simulations. Indeed, the simulated ECG serves as a validation, may be
the target for optimization in inverse EP problems, and in general allows
to link simulation results to clinical ECG data. Several approaches are
available to compute the ECG corresponding to an EP simulation. Lead
field approaches are commonly used to compute ECGs from cardiac EP
simulations using the Monodomain or Eikonal models. A coupled pas-
sive conductor model is instead common when the full Bidomain model
is adopted. An approach based on solving an auxiliary Poisson problem
propagating the activation field from the heart surface to the torso sur-
face is also possible, although not commonly described in the literature.
In this work, through a series of numerical experiments, we investigate
the limits of validity of the different approaches to compute the ECG
from simulations based on the Monodomain and Bidomain models. Sig-
nificant discrepancies are observed between the common lead field and
direct ECG approaches in most realistic cases – e.g., when conduction
anisotropy is included – while the ECG computed via solution of an auxil-
iary Poisson problem is similar to the direct ECG approach. We conclude
that either the direct ECG or Poisson approach should be adopted to
improve the accuracy of the computed ECG.

Keywords: Electrocardiogram · Cardiac electrophysiology ·
Validation criteria · Monodomain model · Bidomain model

1 Introduction

Validation of mathematical models in cardiac electrophysiology is a challenging
task, which gained significant attention over the last years. Indeed, satisfying
verification and validation criteria is a critical step necessary to translate math-
ematical models and the respective numerical simulations to clinical practice.
Once validated, EP simulations have a vast range of applications from personal-
ized medicine to drug development. Our goal is to move one step further towards
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unlocking these applications by investigating commonly used methods to com-
pute electrocardiograms (ECGs) in numerical studies. The ECG is one of the
most widely used diagnostic tools in cardiology for its low cost, simplicity, and
amount of information provided on cardiac function and disease. Given its wide
adoption and significant relevance in the clinical practice, the ECG is one of the
key validation criteria to be satisfied by an EP simulation, while simultaneously
respecting physiological activation sequences [9].

The contribution of the current study towards reaching this milestone is to
carefully review commonly adopted modeling assumptions to compute the ECG
from EP simulations and to highlight discrepancies and their causes. Particular
attention will be given to evaluating the lead field approach due to its common
use in the literature. Preliminary analyses comparing the lead field approach and
the direct ECG have been carried out in [12], while [3] investigated the effect on
the ECG of different coupling models between the torso and the heart. In this
work we continue this effort with an in depth analysis comparing the lead field
approach and directly computed ECGs.

2 Methods

Cardiac electrophysiology and the ECG are commonly simulated using the Mon-
odomain model together with the lead field approach (to recover the ECG) [14].
In comparison, fewer studies solve the Bidomain equations [16] coupled with a
passive conductor model for the torso, where the extracellular potential is tied
at the torso-heart interface. In this case the ECG is directly computed from the
extracellular potential on the surface of the torso.

2.1 Direct ECG

The Bidomain model [16] coupled to a surrounding passive conductor can be
stated in parabolic-elliptic form as:

χCm
∂ϕm

∂t
= ∇ · (κi∇ϕm) + ∇ · (κi∇ϕe) − χIion(ϕm, s) − χIstim(t) in ΩH

0 = ∇ · (κi∇ϕm) + ∇ · (κe + κi)∇ϕe in ΩH

∂s
∂t

= g(ϕm, s) in ΩH

0 = ∇ · (κb∇ϕb) in ΩB

with boundary conditions (BCs) at any time t ∈ (0, T ]:

0 = (κi∇ϕi) · n on ∂ΩH ϕe = ϕb on ∂ΩH ∩ ∂ΩB

0 = (κb∇ϕb) · n on ∂ΩB \ ∂ΩH (κe∇ϕe) · n = (κb∇ϕb) · n on ∂ΩH ∩ ∂ΩB

together with admissible initial conditions and a cellular ionic model. We denote
with κi and κe the intracellular and extracellular conductivity tensor fields, with
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κb the torso conductivity, with ϕm, ϕe, ϕb the transmembrane, extracellular, and
body potential fields, with χ the volume to membrane surface ratio, and with Cm

the membrane capacitance. In this work we have used the Mahajan’s model for
rabbit ventricular cardiomyocytes [11] as adopted in [9] for g and Iion. Note that
this formulation yields semi-definite forms. Therefore an additional Dirichlet BC
ϕb = 0 on a non-empty subset of ∂ΩB\∂ΩH is introduced (this BC can be loosely
interpreted as a grounding). In this model, under the implicit assumption of no
mechanical deformation, the ECG is simply the evaluation of ϕb over time at
specific locations in ΩB. We will refer to this ECG as the direct ECG.

2.2 Poisson Reconstruction

More widely used than the Bidomain model is the Monodomain model. Here the
assumption κi = λκe is added to the previous system of equations to collapse
the first two equations into one. Although it allows to simplify significantly the
model, this assumption is rather problematic as all experimental observations
suggest that κi �= λκe, see, e.g., [8]. Furthermore, this simplification raises the
question on how to enforce the boundary conditions on the extracellular poten-
tial, as they are known to affect the electrical wave propagation at the boundary.
We adopt the most commonly used approach and set the flux of the transmural
potential across the heart’s boundary equal to zero with a suitable conductivity
tensor κ representing the conductivity in the Monodomain model:

χCm
∂ϕm

∂t
= ∇ · (κ∇ϕm) − χIion(ϕm, s) − χIstim(t) in ΩH

∂s
∂t

= g(ϕm, s) in ΩH

0 = (κ∇ϕm) · n on ∂ΩH

With the solution of the Monodonain model we can reconstruct an approxi-
mate ECG as a postprocessing step by solving the following problem:

∇ · (κe + κi)∇ϕe = −∇ · (κi∇ϕm)
︸ ︷︷ ︸

‘=f ′

in ΩH

∇ · (κb)∇ϕb = 0 in ΩB

0 = ϕb − ϕe on ∂ΩH ∩ ∂ΩB

Because of its familiar structure, we name this approach Poisson reconstruction
throughout this work.

2.3 Pseudo-ECG

Most studies using the Monodomain or Eikonal model reconstruct the ECG with
a lead field approach [14] because it is less expensive to compute and it does not
require an additional mesh for the surrounding torso. The ECG computed using
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this approach is often refer to as pseudo-ECG and we adopt this convention here
as well. A general integral form of the pseudo-ECG is given by:

ϕb(x, t) �→ 1
4πκb

∫

ΩH

∇ · κi(x̃)∇ϕm(x̃, t)
||x̃ − x||2 dx̃ , (1)

where the original derivation assumes uniform, isotropic conductivity tensors.
Moreover it is assumed that ΩB is a sphere with infinite radius and Dirichlet
boundary condition ϕb = 0 everywhere on the surface. Note that we introduced
a modification to the formula, as we exchanged the commonly used bulk con-
ductivity tensor with the intracellular conductivity tensor. This accounts for
the intracellular anisotropic conductivity in the elliptic part of the Bidomain
equation and is equivalent to ‘f’ in the Poisson reconstruction equations.

2.4 ECG Comparison: Similarity Measure

In order to quantitatively compare the morphology of computed ECGs, we adopt
the PC∗ correlation measure [12]. In contrast to the classic L2 distance, the
PC∗ correlation measure is only sensitive to morphological differences – e.g.,
fractionations or spurious Q-waves – and not to differences in phase, amplitude,
and duration.

2.5 Numerical Implementation

The Bidomain problem is solved by applying a Godunov operator splitting to
separate the nonlinear cell model, containing the reaction term together with the
system internal variables, from the linear system of partial differential equations
(PDEs). The linear system of PDEs is solved using Rothe’s method, where time
is discretized via an implicit Euler scheme and space is discretized via the linear
finite element method (see, e.g., [15]).

MFEM [1] is used as the numerical framework. The resulting linear system
is solved via preconditioned conjugate gradient (PCG) method, where a block
diagonal preconditioner combining HYPRE’s [5] l1-scaled block SSOR for the
first subsystem and BoomerAMG for the second subsystem is utilized. The dis-
cretization is finalized by applying an adaptive substepped explicit Euler scheme
to the cell model as described in [10]. The Monodomain problem is solved fol-
lowing an analogous implementation, but using only a l1-scaled block SSOR pre-
conditioner. The Poisson reconstruction is similarly implemented in MFEM and
solved via PCG and BoomerAMG preconditioner. Default MFEM and HYPRE
solver parameters have been adopted.

The used Monodomain and Bidomain solvers have been verified using the
benchmark proposed in [13].

Equation 1 can be computed numerically using three approaches. A first pos-
sibility consists in using the mass matrix method (MMM) described in [4]. In
this case, given ϕm, an auxiliary problem is solved for f:

f = ∇ · κi(x̃)∇ϕm(x̃, t) ,
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and the pseudo-ECG is approximated by solving numerically

ϕb(x, t) �→ 1
4πκb

∫

ΩH

f

||x̃ − x||2 dx̃.

The second approach is named Gauss method [6,9], since it relies on applying
the Gauss theorem to Eq. 1. The boundary flux of the transmembrane potential
is then set to zero (in agreement with the assumptions used in deriving the
Monodomain model) leading to:

ϕb(x, t) �→ − 1
4πκb

∫

ΩH

κi(x̃)∇ϕm(x̃, t) · x̃ − x
||x̃ − x||32

dx̃ ,

which is then evaluated numerically given ϕm. This formulation can be inter-
preted as the projection of the electrical flux onto the scaled direction vectors
pointing to the leads’ positions [6].

A third possibility consists in evaluating directly Eq. 1, but is applicable only
when ϕm is approximated using higher order interpolations (≥ 2).

3 Results

In this section we investigate the effect of the modeling assumptions on the
ECG through numerical studies. We use the direct ECG as a reference, since the
alternative approaches are derived from the full Bidomain model. We will analyze
a simple “sphere in sphere” numerical setup and a biventricular model with a
Purkinje network [9] embedded into a box torso to investigate the implications
of alternative approaches to compute the ECG. In all numerical simulations a
timestep equal to 0.01 ms is used, unless otherwise stated. Further we have set
Cm = 0.01µF/mm2 and χ = 140 /mm in all experiments as chosen in [13].

3.1 Sphere in Sphere Numerical Setup

The first series of numerical experiments is constructed to satisfy as close as
possible the original assumptions from which the lead field approach is formu-
lated. Subsequently, we drop these assumptions individually to investigate their
effect on the ECG. With this goal in mind, the active myocardium is modeled
with a sphere embedded in a larger spherical domain representing the surround-
ing tissue as illustrated in Fig. 1. In one numerical test, a region with a lower
conductivity is also introduced in the outer sphere to conceptually mimic the
presence of the lungs. In order to ensure convergence, linear hexahedral elements
with an average edge size of 200µm and 300µm have been used to discretize
the active cardiac domain and the torso domain, respectively.

In the first experiment, we set κb = 0.2 mS/mm, κi = κe = 0.2 ImS/mm, and
a zero Dirichlet BC on the surface of the outer sphere. The radius R of the outer
sphere is varied from 12.5 mm to 25 mm and 50 mm to analyze convergence of the
Poisson reconstruction approach toward the pseudo-ECG. The pseudo-ECG is
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Fig. 1. “Sphere in sphere” numerical setup. An inner sphere centered at the origin
with a radius of 2 mm models the heart. The inner sphere is embedded in a larger
sphere, also centered at the origin and of radius R, which models the surrounding
tissue. A spherical stimulus of 200µA/mm is applied at [0, 0, –1] for the first 1 ms
of the simulation. The electrical field ϕb is measured at [0, 0, 10] in all numerical
experiments. In the second numerical experiment, a C-shaped subdomain constructed
by the set difference between a sphere of radius 4 mm centered at [0,0,0] and a smaller
sphere of radius 3.25 mm centered at [0.00, 0.25, 0.75] is inserted in ΩB. (Note that the
representation of the numerical setup is not to scale.)

computed using both the Gauss method and Mass Matrix method. As illustrated
in Fig. 2 (left), the ECG computed using the Poisson approach converges toward
the pseudo-ECG as the radius of the outer sphere increases, therefore satisfying
a key assumption in the derivation of the pseudo-ECG equation (Eq. 1). In this
case, the Gauss method and Mass Matrix method lead to the same computed
ECG. Although the MMM and Gauss methods do not always lead to exactly
the same quantitative result, they always agree qualitatively in our experiments.
Hence all the conclusions presented here hold and for simplicity only the Gauss
method is used to compute the pseudo-ECG in the following.

The second series of experiments utilizes the same setup except the Mon-
odomain model is exchanged with the Bidomain model and the Poisson recon-
struction is replaced with the direct ECG. Similarly to the first experiment, the
direct ECG converges toward the pseudo-ECG for increasing R (Fig. 2, right).
However, a difference between the pseudo-ECG computed from the Monodomain
model and the direct ECG still exist even for R = 50.0 mm. This difference is
due the boundary flux of ϕe across ∂ΩH, which was assumed to be zero.

Next the effect on the ECG of inhomogeneous conductivities in the sur-
rounding tissue is investigated. For the next two experiments κb is set equal to
0.01 mS/mm (Fig. 3, left) and 0.05 mS/mm (Fig. 3, right) within the C-shaped
region (see Fig. 1). Inhomogeneous conductivities may be due to the presence of
different tissues such as the lungs and bones in a torso model. In this case we
observe that the magnitudes of the direct and Poisson reconstructed ECGs are
lower than the pseudo-ECG magnitude (Fig. 3).
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Fig. 2. Verification and validation of the pseudo-ECG formula with the Monodomain
and Bidomain models using the setup from Fig. 1 with varying radius of the outer sphere
and isotropic conductivity tensors κi = κe = 0.2 ImS/mm and κb = 0.2 mS/mm.
Reference pseudo-ECGs were computed from the Monodomain solution. The Gauss
and mass methods result in the same pseudo-ECG.

Fig. 3. ECG computed with inhomogeneous conductivities in ΩB. All conductivities
remain unchanged with respect to the previous experiment, except in the C-shaped
subdomain (Fig. 1) where κb = 0.01 mS/mm (left) and κb = 0.05 mS/mm (right).

The subsequent set of experiments was designed to investigate the effect
of the uniform and isotropic conductivity tensor assumption required to derive
the pseudo-ECG approach, which is violated in realistic EP simulations. In all
numerical experiments with an anisotropic conductivity tensor (uniform and
non-uniform) the pseudo-ECG is not recovered for any sphere radius R with
either the Poisson reconstruction or the direct ECG approach (Fig. 4).

In all numerical experiments involving the “sphere in sphere” numeri-
cal setup, the width of the ECG traces are nearly identical and the PC∗
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measures are all close to 1. The main differences are related to the magnitude
of the pseudo-ECG compared to the ECG traces computed with the Poisson
reconstruction or direct approach.

Fig. 4. ECG resulting from the setup illustrated in Fig. 1 with anisotropic uniform
and non-uniform conductivity tensors. Solid lines represent Bidomain simulations and
dashed lines Monodomain simulations. The eigenvalues of κi and κe are chosen as
[0.2, 0.1, 0.05] mS/mm and κb = 0.2 mS/mm. In the uniform case (left) the eigenvectors
are, in order, [1, 0, 0], [0, 1, 0], and [0, 0, 1]. In the non-uniform case, the second
eigenvector is chosen along the radial direction, the third eigenvector along [0,0,1], and
the first eigenvector along the direction identified by the cross product of the second
and third eigenvectors.

3.2 Biventricular Rabbit Model

Final experiments are conducted using a biventricular setup to investigate the
effect of a more complex and realistic geometry together with more realistic
boundary conditions. We have extended the rabbit biventricular model presented
in [9] by embedding it in a box-shaped torso. Since we only investigate antero-
grade propagation from the Purkinje network in the healthy case, the activation
sequence is precomputed via Dijkstra’s algorithm as presented in [17]. Accord-
ingly, a short stimulus of 250µA/mm is applied for 4 ms to all nodes in a search
radius equal to 300µm from the activated Purkinje muscle junctions. Here we
use a timestep of 0.05 ms.

The ECG is computed using the Wilson leads located in the same positions
as in [9] (see also Fig. 5). The ground electrode boundary condition is applied to
the face closest to the subject right foot. The first experiment uses an isotropic
conductivity tensor and focuses on the effect of boundary conditions and heart
geometry. The second experiment includes an anisotropic conductivity tensor [7]
in combination with the original experimentally measured myofiber, sheetlet,
and normal directions to investigate the discrepancies in a real case scenario
between pseudo-ECG and direct or Poisson-reconstructed ECGs. Direct ECG
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Fig. 5. Left: experimental setup with the heart embedded into a box torso of dimension
51.2 mm × 51.2 mm × 51.2 mm aligned with the biventricular model longitudinal axis.
The Wilson leads’ placement with respect to the biventricular model is also shown.
Right: open biventricular view of the activation maps obtained in the Bidomain simu-
lation with anisotropic conductivity tensors.

traces and ECG computed via Poisson reconstruction present the same overall
features and progression. In contrast, the pseudo-ECG presents larger and lead-
dependent discrepancies with respect to the direct ECG (Fig. 6). Results of the
correlation analysis are reported in Table 1.

Table 1. Generalized Pearson correlation coefficients comparing the ECG computed
in the isotropic and anisotropic biventricular simulations using the lead field method
(pseudo-ECG), the Poisson reconstruction, and the direct approach.

V1 V2 V3 V4 V5 V6

Isotropic PC∗
direct, pseudo 0.838 0.930 0.941 0.921 0.907 0.932

PC∗
Poisson, pseudo 0.910 0.943 0.936 0.931 0.919 0.940

PC∗
Poisson, direct 0.947 0.931 0.930 0.945 0.961 0.979

Anisotropic PC∗
direct, pseudo –0.039 0.416 0.703 0.855 0.922 0.976

PC∗
Poisson, pseudo –0.247 0.244 0.772 0.940 0.963 0.976

PC∗
Poisson, direct 0.989 0.985 0.989 0.995 0.996 0.997

4 Discussion

The first set of numerical experiments using the spherical setup confirmed that
the widely used pseudo-ECG agrees with the Poisson reconstruction approach
when an isotropic uniform conductivity tensor is adopted and for large enough
surrounding domains. In this ideal case the ECG computed using the Mon-
odomain model can be reconstructed using either approach. However, further
experimentation on the idealized spherical setup, revealed that the hypothesis
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Fig. 6. Precordial ECG computed from EP simulations on a rabbit heart. Left: uniform,
isotropic conductivity tensor (0.2 ImS/mm). Right: full model as in [9] with Hooks’
conductivities [7]. For the Monodomain simulation we have chosen κ = 0.5 κi. Note
that κb has been set equal to 0.2 mS/mm in these simulations.

of uniform isotropic conductivity tensor is essential for the pseudo-ECG to be
accurate. As soon as an inhomogeneous surrounding domain or an anisotropic
conductivity tensor – uniform or non-uniform over the inner sphere – is intro-
duced, the pseudo-ECG approach leads to traces that only qualitatively agree
with the direct ECG, i.e., their morphology is similar but their magnitude dif-
fers. In comparison, the Poisson reconstruction leads to results which remain
quantitatively closer to the direct ECG.

Discrepancies between the pseudo-ECG and the direct ECG increase in a
biventricular setup embedded in a homogeneous domain representing an ideal-
ized torso. In this case, the pseudo-ECG does not approximate the direct ECG
qualitatively well in some of the Wilson leads, e.g., V1 and V2 in the anisotropic
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case as shown in Fig. 6 and by the PC∗ measures in Table 1 being far from one.
This discrepancy may be due to the complex geometry and strongly anisotropic
conductivities in the biventricular simulations, which were not captured by the
“sphere in sphere” experiment.

In all experiments, the ECG computed using the Poisson reconstruction app-
roach is similar to the direct ECG. The remaining differences are likely due
to the boundary flux of ϕe across ∂ΩH, which was assumed to be zero in the
Monodomain model. This missing boundary term can be resolved adopting the
pseudo-Bidomain approach [2], which we plan to address in future work.

We conclude by noting some of the limitations of the current study. First,
only a few cases are considered in the “sphere in sphere” experimental setup.
These are likely not sufficient to pinpoint all major discrepancies between the
pseudo-ECG and the direct or Poisson reconstructed ECGs. Second, we did not
investigate the effect of different conductivity values on the ECGs computed
with the presented methods and their similarity measures. Third, we emphasize
that further refinement of the biventricular Bidomain model is needed to repli-
cate a physiologically accurate ECG with the conductivity tensor employed in
this study. In this context, the discrepancies between the Monodomain and Bido-
main experiments in the biventricular setup could be due, at least in part, to the
sub-optimal choice of the conductivity tensor for the Monodomain simulation.
Finally, the current study was focused on the Wilson leads and did not ana-
lyze the possible discrepancies among methods in computing other electrodes’
arrangements, such as the Einthoven leads’ placement.

Based on the current results, we recommend that the Poisson reconstruc-
tion approach is selected in cardiac EP simulations based on the Monodomain
model where obtaining a more accurate ECG is important. In all the numer-
ical experiments reported herein, the computational cost associated with the
Poisson reconstruction approach was only slightly higher than the cost required
by the pseudo-ECG approach. Although no careful optimization of the numer-
ical implementation has been carried out and the torso model employed here
is small, these preliminary results suggest that the Poisson reconstruction is a
viable solution to efficiently and accurately compute the ECG.

References

1. Anderson, R., et al.: MFEM: a modular finite element library. Comput. Math.
Appl. 81, 42–74 (2020)

2. Bishop, M.J., Plank, G.: Bidomain ECG simulations using an augmented mon-
odomain model for the cardiac source. IEEE Trans. Biomed. Eng. 58(8), 2297–2307
(2011)

3. Boulakia, M., Cazeau, S., Fernández, M.A., Gerbeau, J.F., Zemzemi, N.: Math-
ematical modeling of electrocardiograms: a numerical study. Ann. Biomed. Eng.
38(3), 1071–1097 (2010)

4. Dupraz, M., Filippi, S., Gizzi, A., Quarteroni, A., Ruiz-Baier, R.: Finite element
and finite volume-element simulation of pseudo-ECGs and cardiac alternans. Math.
Methods Appl. Sci. 38(6), 1046–1058 (2015)



514 D. Ogiermann et al.

5. Falgout, R.D., Yang, U.M.: hypre: a library of high performance preconditioners.
In: Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K., Dongarra, J.J. (eds.) ICCS 2002.
LNCS, vol. 2331, pp. 632–641. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-47789-6 66

6. Göktepe, S., Kuhl, E.: Computational modeling of cardiac electrophysiology: a
novel finite element approach. Int. J. Numer. Methods Eng. 79(2), 156–178 (2009)

7. Hooks, D.A., Trew, M.L., Caldwell, B.J., Sands, G.B., LeGrice, I.J., Smaill, B.H.:
Laminar arrangement of ventricular myocytes influences electrical behavior of the
heart. Circ. Res. 101(10), e103–e112 (2007)

8. Johnston, B.M., Johnston, P.R.: Approaches for determining cardiac bidomain
conductivity values: progress and challenges. Med. Biol. Eng. Comput. 58(12),
2919–2935 (2020). https://doi.org/10.1007/s11517-020-02272-z

9. Krishnamoorthi, S., et al.: Simulation methods and validation criteria for modeling
cardiac ventricular electrophysiology. PloS one 9(12), e114494 (2014)

10. Krishnamoorthi, S., Sarkar, M., Klug, W.S.: Numerical quadrature and operator
splitting in finite element methods for cardiac electrophysiology. Int. J. Numer.
Methods Biomed. Eng. 29(11), 1243–1266 (2013)

11. Mahajan, A., et al.: A rabbit ventricular action potential model replicating cardiac
dynamics at rapid heart rates. Biophys. J. 94(2), 392–410 (2008)
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