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Abstract

Advancement of effective therapies to treat established CIPN will require a
deeper understanding of CIPN pathomechanisms. Simplified models of CIPN
have been developed using whole-animal systems, primary cultures, and
immortalized cell lines to allow for detailed mechanistic studies. Recently,
human stem-cell derived neuronal cultures have also allowed new opportunities
to study CIPN. In this chapter, we provide an overview of studies that used model
systems to investigate the treatment of established CIPN. We have divided the
chapter into two main areas. First, there are studies that investigate CIPN-related
nerve damage through the lens of neurogenesis, Schwann cells, and axonal
regrowth. Next, we review model approaches to treat CIPN-related pain that
have focused on voltage-gated ion channels, neuroinflammation, sphingosine
metabolism, and endocannabinoids. The broad approaches that are being
employed to study the treatment of established CIPN in model systems provide
hope for future beneficial therapeutics.
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6.1 Introduction

Despite a growing understanding of the pathophysiology of CIPN few therapies
have shown success in humans. Only the antidepressant medication duloxetine has
shown moderate efficacy to treat established pain due to CIPN [1]. Animal models
appear to be important for identifying appropriate therapies for treating established
CIPN. Experimental models of CIPN can be induced in different strains of rats or
mice through intraperitoneal (ip), subcutaneous (sc), or intravenous
(iv) administration of the desired drug [2]. “In vitro” studies are also important to
further study the effects of the different drugs at the cellular level and for the search
of potential therapy targets against CIPN. These studies can be performed with
cultures of dorsal root ganglion (DRG)-neurons obtained from rats or mice [3] or
with immortalized and commercially available murine sensory neurons cell lines
[4, 5]. Nonetheless “in vitro” studies have limitations due to the biologic differences
between humans versus mice or rats. To overcome this problem, sensory neurons
can be induced from human skin fibroblasts or multipotential CD34+ hematopoietic
stem cells obtained from peripheral blood [6, 7].

6.2 Models of CIPN

6.2.1 In Vivo Animal Models of CIPN

About 70% of in vivo animal studies are conducted with rats and 30% with mice, the
drugs commonly used to induce CIPN are oxaliplatin, paclitaxel, vincristine, cis-
platin, and bortezomib [8]. The doses and schedules of the different chemotherapy
agents for the induction of CIPN in rodents are listed in Table 6.1.

After the administration of the drug in the required dosage, behavioral tests are
performed to assess the establishment of neuropathy. These tests are directed to test
motor coordination, mechanical allodynia, and thermal sensitivity. Neuromuscular
coordination is assessed with the rotarod test, which consists of a circular rod turning
at different speeds. The amount of time in which an animal stays on the rotating rod
is related to its motor coordination. Mechanical allodynia is measured with the
electronic von Frey hair test, placing the mouse or rat in an inverted plastic cage
with a wire-mesh floor. Semiflexible filaments are then applied to the center of the
hind paws, gradually increasing the pressure for 5 s, in order to establish a pain
threshold [18]. Cold hyperalgesia and alterations in thermal sensibility are tested
with the acetone test and the hot plate test, respectively. The acetone test consists of
touching the plantar skin of a hind paw with a 100 μl droplet of acetone from a
syringe, while the hot plate test is performed by placing animals on an aluminum
plate which is uniformly heated. For the hot plate a cut-off time of 30 s is used, to
prevent damage [19].
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6.2.2 In Vitro Models of CIPN

The difficulties in obtaining human neurons for study make cell culture models an
important tool for CIPN pathophysiological and pharmacological research. The
commercially available rat PC12 pheochromocytoma cell line differentiates to
neurons in the presence of forskolin, stimulating neurite outgrowth [20]. Forskolin
is a diterpenoid obtained from the plant Coleus forskohlii that penetrates cell
membranes and increases the levels of adenylyl cyclase (cAMP), which is involved
in many transduction pathways [21]. The 50B11 neuronal cell line is another
commercially available cell line derived from rat DRG [4].

Primary cell cultures can be performed with DRG neurons obtained from embry-
onic or early-postnatal rats after surgical removal, cultivation with collagenase I,
centrifugation and seeding in neurobasal medium [3]. Schwann cells derived from
the sciatic nerves of neonatal rats are also used for primary culture [22].

The biologic differences between mice or rats and humans limit the extrapolation
of results. To overcome this problem, sensory neurons can be induced from human
embryonic fibroblasts, through the transfection with lentiviral vectors of the tran-
scription factor Brn3a with either Ngn1 or Ngn2 [23]. The pluripotent hematopoietic
CD34+ stem cells are also a source for the induction of sensory neurons, which can
be available from blood banks or from peripheral blood sampling. The isolated
CD34+ stem cells are cultured in the required media and transfected with the
lentivirus OCT4 delivery system to produce induced neural progenitor cells
(iNPCs). The iNPCs are then cultured in a sensory neuron specification medium,
supplemented with brain derived neurotrophic factor, glial derived neurotrophic
factor, nerve growth factor, neurotrophin-3 and forskolin, until the desired matura-
tion stage [7]. Likewise, sensory neurons can be differentiated from human induced
pluripotent stem cells [6], which has been also utilized as a model for CIPN [24–27].

Table 6.1 Doses and schedules for experimental models of CIPN in mice and rats

Drug Animal Dose Route Schedule References

Oxaliplatin Rat 4 mg/kg Ip Twice a week � 4 [9]

Rat 5 mg/kg Ip Days 0, 3, 6, and 9 [10]

Mouse 4 mg/kg Ip Days 0, 2, 4, and 6 [10]

Paclitaxel Rat 2 m/kg Ip Days 0, 2,4, and 6 [11]

Mouse 4 mg/kg Ip Days 0, 2, 4, and 6 [12]

Vincristine Rat 200 μg/kg Iv Single dose [13]

Mouse 200 μg/kg Ip Single dose

Cisplatin Rat 2 mg/kg Ip 4 consecutive days [14]

Mouse 2.3 mg/kg Ip 2 cycles of 5 consecutive
days with 5 days rest in
between.

[15]

Bortezomib Rat 0.1–0.2 mg/kg Ip Days 0, 3, 7, and 10 [16]

Mouse 400 μg/kg Ip 3 days /week � 4 weeks [17]
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These “in vitro” models enable the study of the cellular effects of the different
cytotoxic drugs and of the effects of potential products directed to protect the
neurons of the cytotoxic damage. For this purpose, the cells are cultured with
different concentrations of the chemotherapy agent to be studied; after an established
incubation period, biochemical and morphological testing can be performed to
assess its effects on the concrete functions or structures to which the experiment is
directed. These cell cultures enable the study of drugs or natural products with
potential properties in reversing the effects of the drugs causing CIPN or with the
capability of inducing neuronal regeneration.

6.3 Treatment of CIPN-Related Nerve Damage

At the moment the only clinically available treatments for CIPN are only symptom-
atic [1], so there is an urgent need for the development of treatments aimed to revert
or reduce the neuronal damage. The different cytotoxic drugs causing CIPN affect
different cells, organelles, or pathways within the sensory nerve system, resulting in
mitochondrial dysfunction, oxidative stress, inflammation, microtubule damage, and
alterations in ion channels, along with other effects [10], making the search to
uncover CIPN treatments a great challenge. Research can be aimed at a common
pathomechanism of damage shared with different drugs or directed to revert the
changes induced by a specific drug.

6.3.1 Categorized by Pathomechanism

As chemotherapy targets fast dividing cells and not all chemotherapy agents produce
CIPN, there may be additional effects of the cytotoxic drugs on the non-dividing
neurons [28]. Most chemotherapy agents do not cross the blood–brain barrier, but
they may accumulate in the DRG and nerve terminals, resulting in neuronal body,
axonal, or myelin sheath injury [29]. The research toward therapies is aimed at
reversing the pathogenic mechanism of the different drugs or in inducing the
regeneration of neurons, Schwann cells, or axons.

6.3.1.1 Neurogenesis
The sensory neurons and the supporting glial cells that form the DRG arise from a
sub-population of trunk neural crest cell progenitors and the Notch signaling path-
way is involved in its final differentiation. Some of these cells remain in the
undifferentiated stage [30] and express the neural stem cells markers nestin and
p75 neurotrophin receptor (p75NTR). The transcription factors involved in its
differentiation to neurons or glia could be potential targets in neurogenesis
[31]. As seen in the experimental model of peripheral nerve crush injury, the number
of DRG neurons increase up to 42%, compared to controls [32]. Alternatively,
survival pathways could be activated, as evidenced by the fact that DRG neurons
expressing ptv1 oncogene (plasmacytoma variant translocation 1), a long
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non-coding RNA gene, are protected from apoptosis through the activation of the
PI3K/AKT pathway [33].

6.3.1.2 Schwann Cell Mechanisms
Schwann cells are essential for the regeneration of peripheral nerves after an injury.
In this process Schwann cells halt the production of myelin, digest myelin debris,
and facilitate a process of dedifferentiation. These dedifferentiated Schwann cells
guide the axon’s growth until its completion. After this, the Schwann cells differen-
tiate again and restart the production of myelin [34]. Dynein is a motor protein and
regulator of microtubule dynamics, axonal transport, and membrane trafficking.
Dynein is essential for the process of Schwann cell dedifferentiation and, conse-
quently, for axon regeneration [35]. Following nerve injury, several pathways are
activated in Schwann cells, such as p38, JNK, and ERK, which are involved in the
acquisition of the dedifferentiated phenotype of the Schwann cells to start axon
recovery [36], resulting in the upregulation of proteins C-Jun and p75NTR, whereas
the myelination associated protein EGR2 (early growth response protein 2) becomes
downregulated [37]. The involvement of signaling pathways involved in these
mechanisms is another focus of research.

6.3.1.3 Axonal Regrowth
The peripheral nervous system, in contrast with the central nervous system, has a
capacity to recover after traumatic or toxic injuries. This process involves a series of
changes that provides the neuron with the capacity to growth. Axon regeneration is
regulated through the activation of several transcription factors, epigenetic changes
of chromatin and microRNAs (miRNAs) [38]. Some of the transcribed mRNAs are
transported to distal parts of the axon where the translation into proteins occurs,
preventing both axon degeneration and neuron apoptosis. One of these retrograde
response genes is Bclw (Bcl2l2), which belongs to the Bcl2- family and induces axon
survival [39]. Following peripheral nerve injury, the activation of the JNK signaling
pathway increases the expression of transcription factors JUN and ATF3, in DRG
neurons starting axon regeneration. Other transcription factors induced by peripheral
axon injury are members of the SMAD family and STAT3 [38]. Activation of
STAT3 happens in DRG neurons after nerve injury by being phosphorylated by
cyclin-dependent kinase 5 (Cdk5) [40].

6.3.2 Categorized by Drug

The fact that anticancer chemotherapy targets rapid dividing cells but not all agents
produce CIPN supports that different drugs have their own mechanisms of causing
neuronal damage [28]. The different gene expression induced by different chemo-
therapy drugs in normal cells can help in the search for targets in the development of
therapies to treat CIPN [41]. As oxaliplatin, paclitaxel, vincristine, cisplatin, and
bortezomib are the drugs that commonly cause CIPN in clinical practice, many
studies are related to them [42].
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6.3.2.1 Oxaliplatin
Animal and “in vitro” studies have shown that the nuclear factor-erythroid-2-related
factor 2 (Nrf2) pathway protects from oxaliplatin-induced axonal damage, by
stimulating the synthesis of proteins with antioxidant activity. Dimethyl fumarate
is a drug used in the treatment of multiple sclerosis that exerts a neuroprotective
effect through Nrf2-mediated reduction in oxidative stress. Recent work
demonstrated functional and structural improvements with dimethyl fumarate treat-
ment in the rat model of oxaliplatin-induced neuropathy [43]. Another
neuroprotective agent, donepezil, an inhibitor of acetylcholinesterase and used for
the treatment of Alzheimer’s disease, reduced sciatic nerve degeneration and
improved mechanical allodynia in rats treated with oxaliplatin, without a reduction
in the antitumor efficacy [20]. Oxaliplatin and paclitaxel produce an inflammatory
response in DRGs and spinal cord astrocytes with an increased production of
inflammatory cytokines (CCL2, CCL3, TNF-α, IL-6, IL1β, and IL-8) and a reduc-
tion in the anti-inflammatory cytokines (IL-10 and IL-4). In a rat model of
oxaliplatin-induced neuropathy, the selective inhibition of IL-8 receptors improved
the results of the behavioral test and reduced the expression of the proteins JAK2 and
STAT3, which are associated with oxaliplatin damage [44].

6.3.2.2 Paclitaxel
Oxidative stress produced by the effect of paclitaxel on the mitochondria of DRG
neurons and peripheral nerves is one of the pathophysiological mechanisms of
CIPN. Melatonin has been shown to be a potent antioxidant that enters the
mitochondria. “In vitro” studies showed that melatonin reduces paclitaxel-induced
mitochondrial damage. Using the rat model of paclitaxel-induced neuropathy,
co-treatment with melatonin improved the results of the behavioral tests and reduced
the C-fiber activity-dependent slowing [45]. Paclitaxel-induced apoptosis of DRG
neurons is another mechanism involved in CIPN and the tumor suppressor gene p53
appears to play an essential role in pathways related with DNA-damage and apopto-
sis. In an “in vitro” study with DRG neurons obtained from neonatal rats treated with
paclitaxel and in a mice model of paclitaxel-induced CIPN, duloxetine reduced the
expression of p53 and improved thermal and mechanical allodynia. The effect of
duloxetine on p53 is through the reduction of oxidative stress [3]. As with
oxaliplatin, inflammation in DRGs plays an important role in paclitaxel-induced
neuropathy. Pretreatment with an IL-6 neutralizing antibody protects mice from such
neuropathy [18].

Membrane drug transporter proteins are also involved in CIPN. These proteins
such as ABCB1 and ABCC1 regulate uptake and efflux of drugs and are expressed
in the peripheral nervous system [46]. Organic anion-transporting polypeptides
(OATPs) are related with the accumulation of paclitaxel in DRG. OATP1B2 knock-
out mice have a decreased uptake of paclitaxel in DRG. The tyrosine kinase inhibitor
nilotinib is a potent inhibitor of OATP1B1 and OATP1B2, protecting mice of
paclitaxel induced neuropathy without impairing antitumor activity [47].
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6.3.2.3 Vincristine
Axonal degeneration is an active process that is triggered by several transcription
factors after a traumatic or toxic lesion. Sterile alpha and TIR motif-containing
protein 1 (SARM1) is one of its components. Sarm1-knockout mice are protected
from vincristine induced neuropathy, when compared with wild-type mice. SARM1
or its down-stream effectors could be potential therapeutic targets for reducing
neuropathy [48]. Vincristine also stimulates the immune system, resulting in
the consequent release of pro-inflammatory cytokines and neuroinflammation
[28]. The anti-diabetes drug metformin reduces the levels of TNF-α, IL-6 and
suppress the macrophage activation through the adenosine monophosphate activated
protein kinase (AMPK) pathway, preventing mechanical allodynia and numbness in
CIPN mice models [29].

6.3.2.4 Cisplatin
Cisplatin targets nuclear and mitochondrial DNA of DRG neurons, causing inter-
and intra-strand adducts, inducing DGR-neurons apoptosis and mitochondrial
disfunction, with the consequent generation of oxidative stress [49]. Peroxisome
proliferator-activated receptor-α (PPAR-α) is a ligand-activated transcription factor
of the nuclear hormone receptor superfamily expressed in several cells, including
microglia and astroglia. PPAR-α increases mitochondrial and peroxisomal
β-oxidation of fatty acids and thus has an important role in oxidation/antioxidant
pathway [50]. Stimulation of PPAR-α could increase the levels of endogenous
antioxidants reducing the oxidative stress. One stimulator of PPAR-α, undergoing
CIPN animal studies, is the endogenous fatty acid, palmitoylethanolamide [49]. “In
vitro” studies have shown that cisplatin mediated DRG neurons apoptosis can be
prevented with phenoxodiol, an isoflavone analogue, that upregulates the cell-cycle
regulator p21 Waf1/Cip1 stimulating neurite growth [5]. The sirt2 gene encodes the
enzyme NAD-dependent deacetylase sirtuin 2, which results in neurite growth and
protects mice from cisplatin-induced neural damage [51].

6.3.2.5 Bortezomib
As described earlier, the drug dimethyl fumarate, used in the treatment of multiple
sclerosis, is an antioxidant and neuroprotective agent whose effect is mediated
through the upregulation of Nfr2. “In vitro” studies using PC12 and rat DRG neurons
showed that it reduces the effect of bortezomib, oxaliplatin, and cisplatin on neurite
outgrowth, but lacks any protection against apoptosis [52]. Bortezomib alters the
energetic metabolism of DRG-neurons, shifting the mitochondrial oxidation to
aerobic glycolysis, the so-called Warburg effect. This aerobic glycolysis-phenotype
with the consequent overexpression of lactate dehydrogenase A (LDHA) and pyru-
vate dehydrogenase kinase 1 (PDHK1) contributes to development of CIPN. Studies
with a mouse model of bortezomib-induced neuropathy demonstrated that, by
inhibition of LDHA and PDHK1 with oxamate and dichloroacetate, respectively,
an improvement in the behavioral tests was achieved together with the reversal of the
metabolic phenotype [53].
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6.4 Treatment of CIPN-Related Pain

There are number of approaches that have been taken to treat CIPN-related pain in
animal model systems. Overall, studies suggest that while initial neuropathic pain in
CIPN is due to damage to the peripheral sensory nerve fibers, persistent CIPN-
related pain is likely due to a combination of peripheral and central
pathomechanisms. Supporting this idea is that duloxetine (which appears to act in
central nervous system) is the only medication to be shown to be effective in
reducing pain from established CIPN in double-blind placebo controlled human
clinical trials [54, 55]. Many of the other off-label use of neuropathic pain
medications have been tested and shown to provide relief in animal models
[56]. The disconnect between successful treatment of CIPN-related pain in animal
models versus the failure in human clinical trials is an important point that deserves
careful attention.

6.4.1 Categorized by Pathomechanism

The study of pathomechanisms of CIPN-related pain reflects the study of neuro-
pathic pain more broadly. As such, many of the pathways discussed below have
broad implications for neuropathic pain; however, there are some pathomechanisms
that are specific to the CIPN realm, which will be explicitly highlighted. While most
of the studies below focused on specific neurotoxic chemotherapy agents, it is
unclear how chemotherapy-specific any of the mechanisms below are. For example,
a given paper may study a treatment mechanism in cisplatin-induced peripheral
neuropathy, but does not explicitly test whether or not the same mechanism is at play
in CIPN from other medications. Furthermore the majority of papers either used
paclitaxel-, oxaliplatin-, or cisplatin-induced peripheral neuropathy models;
bortezomib and vinca alkaloid models are far less represented.

6.4.1.1 Voltage-Gated Ion Channels
Voltage-gated ion channels are a prominent target for CIPN-related pain. Multiple
models of CIPN have demonstrated altered voltage-gated ion channel expression
that leads to neuronal hyperexcitability and correlates with pain behaviors.
Voltage-gated sodium channels have shown increased expression in CIPN [57],
especially the Nav1.7-mediated sodium current; blockade of this channel reverses
hyperalgesia in a rat model of oxaliplatin-induced peripheral neuropathy
[58]. Reduced expression of potassium channels occurs in CIPN models [57, 59,
60], which has been shown to be counteracted by the voltage-gated potassium
channel activator retigabine (an FDA-approved epilepsy medication that targets
the Kv7 channel) [61]. Voltage-gated T-type calcium channel Cav3.2 expression is
increased in paclitaxel-induced peripheral neuropathy models [62]; blockade of this
channel or the N-type (Cav2.2) can alleviate CIPN-related pain behaviors
[63, 64]. The alpha-2-delta-1 auxiliary subunit for voltage-gated calcium channels,
the target of pregabalin and gabapentin, is also upregulated by paclitaxel (PMID
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17084535). Finally, the hyperpolarization-activated cyclic nucleotide-gated (HCN)
channels have been shown to be upregulated in a rat model of paclitaxel- or
oxaliplatin-induced neuropathy [57, 60], and blockade of these channels reduces
hyperalgesia and allodynia [60].

6.4.1.2 Neuroinflammation
Neuroinflammation is an often-used, but somewhat nebulous, term that typically
refers to the deleterious effects of non-neuronal cells (e.g., immune cells, cytokines,
and glial cells) to a neuropathological process (in this case CIPN). Extensive data
have established neuroinflammation as playing an important role in CIPN and CIPN-
related pain. CIPN is associated with changes in the peripheral immune system, seen
as increases in CD4+ and CD8 T-cells [65]. Astrocytosis is seen in the central
nervous system with CIPN, which, in part, appears to be mediated by heme
oxygenase-1 expression [66], but there are no documented significant changes in
microglial activation [65, 67]. Alterations in cytokine levels have been observed in
CIPN models, with increased CNS levels of TNF-alpha, IFN-gamma, CCL11,
CCL4, CCL3, IL-12p70, and GM-CSF [65]. Blockade of CXCR pathways
[68, 69] or MCP-1 [70] can decrease CIPN-related pain behaviors. Increasing
evidence also implicates toll-like receptor family activation (a component of the
innate immune system) as playing a key role in CIPN-related pain, which can also be
beneficially targeted [71–73], noting that data points to sexual dimorphism in this
response [71].

6.4.1.3 Sphingosine Metabolism
Sphingosine 1-phosphate is generated via sphingolipid and ceramide metabolism,
which can be activated via a number of mechanisms, including bortezomib and
paclitaxel. Activation of the sphingosine 1-phosphate receptor in astrocytes has been
shown to be important in establishing and maintaining bortezomib and paclitaxel-
induced neuropathy in rat models [74, 75]. Importantly, this is an IL-10 dependent
mechanism and also exhibits sexual dimorphic response [76]. Accordingly, sphin-
gosine 1-phosphate receptor blockade (via an FDA-approved medication,
fingolimod) can both prevent and treat established CIPN in animal models and is
being tested in human clinical trials.

6.4.1.4 Endocannabinoids
A number of studies have reported the benefits of cannabinoids for CIPN-related
pain syndromes in animal models, which has become more pertinent given the
increased legalization of medical and recreational marijuana in many jurisdictions.
Endocannabinoids have been implicated in development of CIPN-related pain
[77, 78]. Activation of cannabinoid receptors has been shown to reduce CIPN pain
behaviors caused by platinates [79–82] and taxanes [80, 83, 84]. The data in these
studies is mixed as to whether this effect is mediated primarily by CB1 or CB2
receptors, as well as the relative importance of central versus peripheral cannabinoid
receptor activation.
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6.4.1.5 Miscellaneous Pathomechanisms
Several pathomechanisms have been explored as a treatment approach for
established CIPN, albeit in limited studies. Metalloproteinase 2 and 9 are increased
in the DRG of paclitaxel-treated rats, and a study demonstrated reversal of
paclitaxel-induced allodynia with intrathecal injection of MMP9 monoclonal
antibodies [85]. Histone deacetylase 6 inhibition has been shown to reverse
cisplatin-induced allodynia, possibly via improved mitochondrial bioenergetics
[86]. The impact of the microbiome has been studied in CIPN. Transferring gut
microbiota from a mouse strain that is susceptible to CIPN (C57BL/6) into a resistant
strain (129SvEV) can lead to the susceptibility in the 129SvEV strain to paclitaxel-
induced neuropathic pain behaviors [87]. It has not been reported whether gut
microbiome may be a target for treatment for established CIPN. Finally, an
intriguing study demonstrated that voluntary wheel-running decreased paclitaxel-
induced allodynia [88].

6.5 Conclusions

There has been considerable laboratory effort made at discovering therapies for
established CIPN, and there are a number of promising pathomechanisms that can
be further studied in the future. Some of these pathomechanisms are broad and
should ameliorate CIPN from varied chemotherapeutic agents, whereas others may
be more directed as specific drugs. Finally, it has become clear that in animal models
of CIPN there are system level changes due to neurotoxic chemotherapy that may
play synergistic or antagonistic roles and will require more sophisticated approaches
to elucidate.
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