
Chapter 9
Ambiguous Ideal Classes and Quadratic
Reciprocity

It is quite difficult to determine class numbers, even in the simplest case of quadratic
number fields, for fields with large discriminant. It is, however, possible to make
several rather precise statements concerning the parity of class numbers of quadratic
number fields. The theory behind these statements is called genus theory and goes
back to Gauss, who worked with quadratic forms rather than quadratic number
fields. Genus theory may be generalized to cyclic extensions, and in fact the question
we will answer is how the Galois group of an extension acts on the ideal classes.
In this chapter we will only scratch the surface of genus theory by proving the
ambiguous class number formula.

The essential idea behind the proof is to reduce the action of the Galois group on
ideal classes to the action on ideals, then on principal ideals and finally on elements,
where everything can be done explicitly. Once more we will be studying a difficult
object, namely the class group, by studying homomorphisms into simpler structures.

9.1 Ambiguous Ideal Classes

Let A be a finite abelian group. Then A can be written as a direct sum of cyclic
groups, say A = A1 ⊕ · · · ⊕ An. If A is a finite 2-group, i.e., a group whose order
is a power of 2, then the 2-rank of A is the number n of cyclic components. Since it
is easy to see that A/A2 � A1/A

2
1 ⊕ · · · ⊕ An/A

2
n, and since Aj/A

2
j � Z/2Z for

cyclic groups Aj , the 2-rank of A is n if and only if #A/A2 = 2n.
The determination of the order of the quotient group Cl(k)/Cl(k)2, i.e., of the

2-rank of the ideal class group, goes back to Gauss, who solved this problem in
the language of binary quadratic forms. It is almost impossible to miss the central
questions of this theory when studying the operation of the Galois groupG = {1, σ }
of k/Q on the ideal class group.
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For an ideal class c = [a] we set cσ = [aσ ]; of course we have to show that this
action is well defined (see Exercise 9.1). Clearly an ideal class c and its conjugate
cσ always have the same order. Moreover, since c · cσ = [a][aσ ] = [(Na)] = (1) is
the principal class, cσ = c−1 is always the inverse class of c.

We call an ideal class c ∈ Cl(k) ambiguous if cσ = c. Similarly, an ideal a is
called ambiguous, if aσ = a.

Lemma 9.1 The nontrivial automorphism σ : √
m → −√

m of k = Q(
√

m ) acts
as −1 on the class group Cl(k). In particular, an ideal class c is ambiguous if and
only if c2 = 1.

Proof We have already seen that a1+σ = aa′ = (Na) is principal, and that this
implies that cσ = c−1.

If c is ambiguous, i.e., if c = cσ , then c2 = c1+σ = 1. Conversely, if c2 = 1,
then cσ = c−1 = c. �	

If k is a number field with class number 2, then the nontrivial ideal class c is
always ambiguous. For k = Q(

√−5 ), the nontrivial ideal class is generated by the
prime ideal (2, 1+√−5 ); since this ideal is ambiguous because of (2, 1+√−5 )σ =
(2, 1−√−5 ) = (2, 1+√−5 ). The ideal class c is also generated by (3, 1+√−5 ),
and here (3, 1+√−5 )σ = (3, 1−√−5 ) 
= (3, 1+√−5 ). InQ(

√−5 ), each ideal
class contains an ambiguous ideal (the principal class contains the ambiguous ideal
(1)), as well as many non-ambiguous ideals.

For ideal class groups of order 4, the number of ambiguous classes determines
the structure. If Cl(k) � Z/2Z ⊕ Z/2Z is elementary abelian, then the number
of ambiguous ideal classes is 4 since in this case, every ideal class is ambiguous.
If Cl(k) � Z/4Z, on the other hand, then the two classes with order 4 are not
ambiguous, whereas the class with order 2 and the principal class are ambiguous,
Thus there are only 2 ambiguous ideal classes in this case.

If an ideal a is ambiguous, then so is the ideal class c = [a] it generates; the
converse is not true in general: Since k = Q(

√
34 ) has class number 2, the ideal

class c of order 2 is ambiguous. This ideal class is not generated by an ambiguous
ideal for the simple reason that all ambiguous ideals in k are principal. As we will
see below, each ambiguous ideal is a product of ramified prime ideals and ideals
generated by ordinary integers. But in k we have (2,

√
34 ) = (6 + √

34 ) and
(17,

√
34 ) = (17 + 3

√
34 ).

The ambiguous ideal classes form a group Am(k), in which the ideal classes
generated by ambiguous ideals form a subgroup, namely the group Amst(k) of
strongly ambiguous ideal classes. Our goal is determining the structure of the group
Am(k).

This will allow us to deduce information about the elements of order 2 in the class
group. In fact, since cσ = c−1 we have c1−σ = c2, and therefore the homomorphism
c �→ c1−σ maps the class group Cl(k) of a quadratic number field k to the group
Cl(k)1−σ = Cl(k)2 of ideal classes that are squares, and this homomorphism is
onto. Its kernel consists of the ideal classes c with c1−σ = 1, i.e., of the ambiguous
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ideal classes. This implies that the order of the group Am(k) of ambiguous ideal
classes is equal to the order of Cl(k)/Cl(k)2:

Proposition 9.2 Let k be a quadratic number field. Then

#Cl(k)/Cl(k)2 = #Am(k),

and, in particular, the class number of k is odd if and only if the number of
ambiguous ideal classes is 1.

Actually, since both groups are elementary abelian, equal cardinality implies
isomorphism. The last claim follows from the observation that squaring is an
isomorphism on a finite group if and only if it has odd order.

9.1.1 Exact Sequences

The calculations below are far easier to digest by using exact sequences. A short
sequence of abelian groupsA,B,C consists of group homomorphismsα : A −→ B

and β : B −→ C, which are composed as follows:

1 −−−−→ A
α−−−−→ B

β−−−−→ C −−−−→ 1. (9.1)

The map 1 −→ A (which is often denoted by 0 −→ A if A is written additively)
sends the element of the trivial group {1} to the neutral element of A. Similarly,
C −→ 1 is the homomorphism sending each element of C to the element of the
trivial group {1}.

A sequence of abelian groups is called exact if the kernel of each map in the
sequence is equal to the image of the preceding map (if there is one). Thus the
sequence (9.1) is exact if and only if the following conditions are satisfied:

• kerα = im (1 −→ A) = {1}; in other word, α must be injective;
• C = ker(C −→ 1) = im β; in other words, β must be surjective;
• kerβ = im α.

Essentially, this short exact sequence contains the same information as the homo-
morphism theorem C � B/im A, but it has the advantage that all the maps occur
explicitly in the diagram. Perhaps this advantage will only become clear by studying
homological algebra more carefully. One goal of this chapter is showing that this is
a useful thing to do for those who are interested in algebraic number theory.

The proof of Proposition 9.2 consisted in verifying the exactness of the sequence

1 −−−−→ Am(k) −−−−→ Cl(k)
1−σ−−−−→ Cl(k)2 −−−−→ 1.
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The definitions of principal ideals and the ideal class group Cl(k) of a number field
k provide us with two exact sequences, namely

1 −−−−→ Ek −−−−→ k× −−−−→ Hk −−−−→ 1,

1 −−−−→ Hk −−−−→ Ik −−−−→ Cl(k) −−−−→ 1,

where Ek is the unit group, Hk the group of (fractional) principal ideals 
= (0), and
Ik the group of all fractional ideals 
= (0).

9.1.2 Ambiguous Ideal Classes

The group Amst(k) of strongly ambiguous ideal classes is, by definition, equal to
Amst(k) = AH/H � A/A ∩ H , where A denotes the group of nonzero ambiguous
ideals andH the group of nonzero principal ideals. ClearlyA∩H = HG is the group
of ambiguous principal ideals, and so we have Amst(k) � A/HG. This observation
gives us the exact sequence

1 −−−−→ HG ι−−−−→ A −−−−→ Amst(k) −−−−→ 1.

The group P of all fractional ideals (a) with a ∈ Q
× is a subgroup of both HG and

A; this allows us to modify the exact sequence slightly and turn it into

1 −−−−→ HG/P
ι−−−−→ A/P

π−−−−→ Amst(k) −−−−→ 1. (9.2)

Since Am(k) is elementary abelian, i.e., since c2 = 1 for each ambiguous
ideal class c, for determining the structure of Am(k) and Amst(k) it is sufficient
to compute the orders of these groups. The exact sequence (9.2) is a first step in this
direction. The next steps consist in the computation of the order of HG/P and of
A/P . Before we do so we present a simple but very effective tool.

9.1.3 Hilbert’s Theorem 90

Hilbert’s Theorem 90 (in Hilbert’s report on algebraic numbers, his famous
Zahlbericht, the theorems were numbered, and this one had the number 90) comes
in two versions, one for elements and one for ideals.

Theorem 9.3 (Hilbert’s Theorem 90 for Elements) Let k be a quadratic number
field and α ∈ k×. Then Nα = 1 if and only if α has the form α = β1−σ . Here β is
determined uniquely up to rational factors.
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Equivalent formulations of Hilbert’s Theorem 90 are the following:

1. There is an exact sequence

1 −−−−→ (k×)1−σ −−−−→ k× N−−−−→ k×,

where N denotes the norm map Nk/Q : k× −→ Q
×.

2. The group k×[N]/(k×)1−σ is trivial. Here k×[N] denotes the kernel of the norm
map N : k× −→ Q

×.

Proof The proof of “⇐�” is trivial. Assume therefore that Nα = 1. If α = −1,
we set β = √

m; if α 
= −1, we set β = ασ + 1; then βσ−1 = α+1
α′+1 = α(α+1)

αα′+α
=

α(α+1)
1+α

= α. �	
The corresponding result for ideals is

Theorem 9.4 (Hilbert’s Theorem 90 for Ideals) If a is a fractional ideal1 in Ok ,
then we have Na = (1) if and only if a has the form a = bσ−1 for some (integral)
ideal b.

Proof As in the case of elements, the proof of “⇐�” is trivial. Assume therefore
that Na = 1 (hence a = cd−1 is the quotient of two integral ideals c and d with
the same norm). By the uniqueness of prime ideal factorization we may assume
that c and d are coprime. This immediately implies that c and d are not divisible by
any inert prime ideals: If, for example, we had (q) | c, then q2 would occur in the
factorization of Nd, hence d would also be divisible by (q), and this contradicts our
assumption that c and d are coprime. For the same reason, no ramified prime ideals
can divide c. Thus c and d are products of split prime ideals. If c = pe1

1 · · · per
r is the

prime ideal factorization of c, then we must have Nc = p
e1
1 · · · per

r = Nd. Since
c and d are coprime, none of the pj can divide d, hence the only possibility is that
d = p′

1
e1 · · · p′

r
er = c′. But then a = cd = d′d−1 = dσ−1. �	

9.2 The Ambiguous Class Number Formula

As a warm-upwe construct a few exact sequences involving the following groups:

• E = O×
k is the unit group of Ok;

• E[N] = {ε ∈ E : Nk/Q(ε) = 1} is the kernel of the norm map on the unit group,
that is, the subgroup of units with norm +1;

• E1−σ = {ε1−σ : ε ∈ E};
• HG = {(α) : (α)σ = (α)} is the group of ambiguous principal ideals;
• P = {(a) : a ∈ Q

×} is the subgroup of A consisting of all nonzero ideals
generated by rational numbers.

1For integral ideals, the statement is trivial since then Na = (1) is equivalent to a = (1).
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Now we claim

Proposition 9.5 There is an exact sequence

1 −−−−→ E1−σ −−−−→ E[N] λ−−−−→ HG/P −−−−→ 1.

Proof The map E1−σ −→ E[N] is the inclusion map: Each unit ε1−σ has norm
1 and thus is an element of E[N]. For constructing λ : E[N] −→ HG/P assume
that ε ∈ E[N], i.e., Nε = 1. By Hilbert’s Theorem 90 there is an α ∈ k× such that
ε = α1−σ ; clearly (α) ∈ HG since (α)σ = (ασ ) = (εα) = (α). The map ε �→ (α)

is not well defined, however, since with α each element αa for any a ∈ Q
× has

the property (αa)1−σ = ε. For this reason we set λ(ε) = (α)P , and this map now
is well defined. Clearly ε ∈ kerλ if and only if λ(ε) = P ; this is equivalent to
(α) = (a), i.e., to α = aη for some unit η. This implies ε = α1−σ = η1−σ , which
shows that kerλ = E1−σ .

The surjectivity of λ is clear: If (α) is ambiguous, then (α)σ = (α) and thus
εασ = α for some unit ε, hence ε = α1−σ . �	

The content of this proposition may also be expressed by the isomorphism

E[N]/E1−σ � HG/P.

The quotient group H−1(G,E) = E[N]/E1−σ is a cohomology group. We
have come across such a group already in Hilbert’s Theorem 90, which says that
H−1(G, k×) = k×[N]/(k×)1−σ = 1. Hilbert’s Theorem 90 for ideals claims
accordingly that H−1(G, Ik) = Ik[N]/I 1−σ

k = 1, where Ik denotes the group of
nonzero fractional ideals in a quadratic number field. Such cohomology groups for
cyclic Galois groups G = 〈σ 〉 are all over the place in class field theory, the theory
of abelian extensions of number fields.

Galois cohomology2 gives the exact sequence in Proposition 9.5 in the other
direction (Exercise 9.10).

The order of the group E[N]/E1−σ can be determined quickly. If Δ < 0, then E

consists only of roots of unity with norm 1. Thus εσ = ε−1, hence E1−σ = E2 and

2Those who are familiar with the first principles of cohomology get the sequence for free: The
trivial sequence

1 −−−−−→ E −−−−−→ k× −−−−−→ H −−−−−→ 1,

in which H denotes the group of nonzero fractional principal ideals, provides the long exact
sequence

1 −→ EG −→ (k×)G −→ HG −→ H 1(G,E) −→ H 1(G, k×),

from which the claim follows using Hilbert’s Theorem 90 (H 1(G, k×) = 1), the periodicity
H 1(G,A) � H−1(G,A) for cyclic groups G, as well as (k×)G = Q

×, EG = {±1} and
Q

×/EG � P .
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E[N]/E1−σ = E/E2 � Z/2Z. If Δ > 0, then let ε denote the fundamental unit. If
Nε = +1, then again E[N] = E and E1−σ = E2, hence E[N]/E1−σ = E/E2 =
〈−1, ε〉/〈ε2〉 � (Z/2Z)2. If Nε = −1, on the other hand, then E[N] = 〈−1, ε2〉
and E1−σ = E2 = 〈ε2〉, hence E[N]/E1−σ = E/E2 � Z/2Z.

Lemma 9.6 Let k be a quadratic number field whose unit group E is generated by
the fundamental unit ε (and −1). Then

H−1(G,E) = E[N]/E1−σ �

⎧
⎪⎪⎨

⎪⎪⎩

Z/2Z, if d < 0,

Z/2Z, if d > 0, Nε = −1,

(Z/2Z)2, if d > 0, Nε = +1.

It remains to determine the order of A/P . To this end we will use the following
lemma.

Lemma 9.7 An ideal a is ambiguous if and only if a is the product of ramified prime
ideals and an ideal (a) with a ∈ Q

×. More exactly we have

A/P � (Z/2Z)t ,

where t is the number of primes that ramify in k/Q, in other words, the number of
distinct prime factors of the discriminant of k.

Proof We may assume that a is an integral ideal (otherwise we multiply it by a
suitable rational integer). Among all decompositions a = (a)b with an integral
ideal b we pick one in which a ∈ N is maximal.

Let p denote a prime ideal with pσ 
= p; if p divides b, then we must have pσ | b.
In fact by applying σ to p | a we see that pσ | bσ = b. Thus (p) | b, where
(p) = ppσ , which contradicts the maximality of a. This shows that b is not divisible
by a split prime ideal.

For the same reason, b is not divisible by any inert prime ideal (p). Thus b is a
product of ramified prime ideals. If p is such a prime ideal, then p2 = (p), and the
maximality of a implies that we can write a uniquely in the form

a = (a)
∏

p
ej

j ,

where pj runs through the ramified prime ideals and where ej ∈ {0, 1}. Now we set

φ : A/P −→ (Z/2Z)t : (a)
∏

p
ej

j �−→ (e1, . . . , et )

and show that φ is a group isomorphism, which is left as an exercise. �	
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If we collect everything, then the exact sequence (9.2) now implies

Corollary 9.8 In the quadratic number field k with discriminant Δ and fundamen-
tal unit ε we have

#Amst(k) =

⎧
⎪⎪⎨

⎪⎪⎩

2t−1 if Δ < 0,

2t−1 if Δ > 0, Nε = −1,

2t−2 if Δ > 0, Nε = +1,

where t denotes the number of primes that ramify in k.

Thus it remains only to determine the difference between the group of ambiguous
ideal classes Am(k) and that of strictly ambiguous ideal classes Amst(k):

Proposition 9.9 There is an exact sequence

1 −→ Amst(k) −→ Am(k)
μ−→ (EQ ∩ Nk×)/NEk −→ 1.

In particular, Am(k) = Amst(k) except when −1 is the norm of an element, but not
of a unit. In this case, #Am(k) = 2 · #Amst(k).

Proof Let c = [a] be ambiguous. Then aσ ∼ a, hence aσ = αa. Taking norms
yields (Nα) = (1), that is Nα = ±1 ∈ EQ ∩ Nk×. We set μ(c) = Nα · NEk

and claim that μ is well defined. In fact if we start from c = [b], then b = γ a, and
bσ = γ σaσ = γ σ αa = γ σ−1αb shows that N(γ σ−1α) · NEk = Nα · NEk since
elements of the form γ σ−1 have norm 1. Thus μ is well defined.

If c ∈ kerμ, then Nα = Nη, d.h. N(αη) = 1. According to Hilbert’s Theorem
90, we have αη = β1−σ , and now aσ = αa implies (βa)σ = (β)a. Thus b = βa
is an ambiguous ideal equivalent to a, and therefore c = [b] is strongly ambiguous.
Conversely, strongly ambiguous ideal classes are clearly contained in kerμ.

In order to prove the surjectivity of μ we have to show that −1NEk lies in the
image of μ if −1 is the norm of an element from k. Assume therefore thatNα = −1
for α = x + y

√
m. Then x2 − my2 = −1, hence −1 is a quadratic residue modulo

each odd prime divisor p of m. We know from elementary number theory (or from
the arithmetic of Gaussian integers) that this holds if and only if m = a2 + b2

is a sum of two squares; here we may assume that a is odd. Now we verify that
a = (a, b + √

m ) generates an ambiguous ideal class c = [a], and that μ(c) = −1.
In fact we have

a2 = (a2, ab + a
√

m, b2 + 2b
√

m + m)

= (a2, ab + a
√

m, 2b2 + 2b
√

m)

= (a2, a(b + √
m ), 2b(b + √

m )) = (a2, b + √
m) = (b + √

m )
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because of gcd(a2, 2b) = 1 and (b + √
m)(b − √

m) = b2 − m = −a2. Thus a2 =
(b + √

m ) and aaσ = Na = (a), and therefore a1−σ = a2/a1+σ = 1
a
(b + √

m ).

This yields μ(c) = N(
b+√

m
a

) = b2−m

a2
= −1 as claimed. �	

The group (EQ ∩ Nk×)/NEk is small, because even EQ = {±1} has only two
elements. In fact we have (EQ ∩ Nk×)/NEk = 1 unless −1 is the norm of an
element from k or if Nε = −1, and (EQ ∩ Nk×)/NEk � Z/2Z if −1 is the norm
of an element, but not the norm of a unit. As we just have seen, −1 is the norm of
an element if and only if Δ = � + � is the sum of two squares. Thus we have

Theorem 9.10 (Ambiguous Class Number Formula) In quadratic number fields
k with discriminant Δ and fundamental unit ε we have

#Am(k) =
{
2t−2, if Δ > 0, Nε = +1, Δ 
= � + �,

2t−1, otherwise.

where t denotes the number of primes ramified in k.

Examples

Δ t Nε � + � #Amst(k) #Am(k)

8 1 −1 12 + 12 1 1
10 2 −1 12 + 32 2 2
12 2 +1 no 1 1
30 3 +1 no 2 2
34 2 +1 32 + 52 1 2

−30 3 − no 4 4

As an additional consequence of the ambiguous class number formula we claim:

Corollary 9.11 The class number of the quadratic number field with discriminant
Δ is odd if and only if we are in one of the following cases; there p denotes prime
numbers ≡ 1 mod 4 and q, q ′ prime numbers ≡ 3 mod 4:

(1) Δ is a prime discriminant, i.e., Δ = −4,±8, p,−q;
(2) Δ is a product of two negative prime discriminants: Δ = 4q , Δ = 8q or

Δ = qq ′.

Proof The class number of k is even if and only if # Am(k) 
= 1, thus if the
number of ambiguous ideal classes is even. The other claims follow directly from
the ambiguous class number formula. �	
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9.3 The Quadratic Reciprocity Law

The quadratic reciprocity law is a corollary of Corollary 9.11. We begin by proving
the two supplementary laws.

Theorem 9.12 (First Supplementary Law) For all odd prime numbers p, the
following assertions are equivalent:

(1) (−1
p

) = +1, i.e., the congruence x2 ≡ −1 mod p is solvable.

(2) p = a2 + 4b2 is sum of two squares.
(3) We have p ≡ 1 mod 4.

The equivalence of (1) and (3) may also be expressed by the equation

(−1

p

)
= (−1)

p−1
2 .

Proof (1) �⇒ (2): If (−1/p) = 1, then p splits in k = Q(i). Multiplying through
by i we may assume that the coefficient of i is even. Thus p = (a + 2bi)(a − 2bi),
and taking the norm yields p = a2 + 4b2.

(2) �⇒ (3): Since p and a are odd, p = a2 + 4b2 implies p ≡ 1 mod 4.
(3) �⇒ (1): If p ≡ 1 mod 4, then (−1

p
) = (−1)(p−1)/2 = 1 according to Euler’s

Criterion. �	
Similarly we can prove

Theorem 9.13 (Second Supplementary Law) For all odd prime numbers p, the
following assertions are equivalent:

(1) ( 2
p
) = +1, i.e., the congruence x2 ≡ 2 mod p is solvable.

(2) We have p = e2 − 2f 2 for integers e, f ∈ Z.
(3) We have p ≡ ±1 mod 8.

The equivalence of (1) and (3) can also be expressed by the equation

( 2

p

)
= (−1)

p2−1
8 .

Proof (1) �⇒ (2): If ( 2
p
) = +1, then p splits in Q(

√
2 ), and we have ±p =

x2 − 2y2; multiplying x + y
√
2, if necessary, by the unit 1+ √

2 we can make sure
that p = e2 − 2y2.

(2) �⇒ (3): Reduction modulo 8 yields p ≡ ±1 mod 8 in all cases.
(3) �⇒ (1): Let h denote the class number of k = Q(

√
p ), which is odd by

Corollary 9.11. If p ≡ ±1 mod 8, then 2 splits in k/Q, hence 2Ok = pp′ for prime
ideals p, p′. Since ph = 1

2 (x + y
√

p ) is a principal ideal, taking the norm yields
x2−py2 = ±4 ·2h. Reduction modulo p shows that±2h and thus ±2 is a quadratic
residue modulo p; the claim now follows from the first supplementary law. �	
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The quadratic reciprocity law for odd prime numbers is the content of the
following theorem.

Theorem 9.14 (Quadratic Reciprocity Law) If p and q are odd primes, then

(p

q

)( q

p

)
= (−1)

p−1
2

q−1
2 .

Proof We first discuss the case where one of the primes, say p, is congruent to
1 mod 4. We will show that in this case we have

(p
q

) = +1 ⇐⇒ ( q
p

) = +1.

Since
(p

q

) = +1, the prime q splits in k = Q(
√

p). Thus qOk = qq′ and
qh = 1

2 (x + y
√

p ) is a principal ideal, where h is the class number of k, which
is odd by Corollary 9.11. Taking the norm yields ±4qh = x2 − py2. This in turn
provides us with the congruence ±4qh ≡ x2 mod p, and then

(−1
p

) = +1 implies
( q

p

) = +1 as claimed.

If
( q

p

) = +1, on the other hand, then we use the number field k = Q(
√

q ),
which also has odd class number h. Again the fact that p splits in Ok yields the
equation ±4ph = x2 − qy2 and thus

(±p
q

) = +1. Since either q ≡ 1 mod 4 and

(−1
q

) = +1 or q ≡ 3 mod 4 and the sign is necessarily positive (Exercise 9.15), we

obtain
(p

q

) = +1.
Finally assume that p ≡ q ≡ 3 mod 4. Consider the field k = Q(

√
pq ).

According to Corollary 9.11, the class number h of k is odd. Thus the prime ideal
p = (p,

√
pq ) above p must be principal: In fact we have p2 ∼ (1) and ph ∼ 1, and

since h = 2j+1 we get p = ph−2j ∼ (1). Assume therefore that p = 1
2 (x+y

√
pq ).

Then ±4p = x2 − pqy2, hence x = pz and ±4 = pz2 − qy2. If the positive sign
holds, then reduction modulo q and p shows that (

p
q
) = +1 and (

q
p
) = −1. If the

negative sign holds, then we find accordingly that (
p
q
) = −1 and (

q
p
) = +1. This

completes the proof. �	

9.3.1 Summary

In this chapter we have proved the ambiguous class number formula for quadratic
number fields, and derived the quadratic reciprocity as a corollary.

9.4 Exercises

9.1. Show that the operation [a]σ = [aσ ] on the ideal class group of a quadratic
number field is well defined, i.e., that [a] = [b] implies [aσ ] = [bσ ].

9.2. Show that the ideal class of order 2 in Q(
√
10 ) contains the ideals (2,

√
10 ),

(3, 1 + √
10 ) and (5, 1 + √

10 ). Which of these ideals are ambiguous?
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9.3. Let p ≡ 5 mod 8 be prime. Show that the ideal class Q(
√
2p ) generated by

the ambiguous ideal (2,
√
2p ) has order 2.

9.4. Let p ≡ 1 mod 8 be prime. Show that the ambiguous ideal (2,
√
2p ) is

principal in k = Q(
√
2p ) if and only if the norm of the fundamental unit

in k is +1.
In this case write 2p = a2 + b2 with a > b > 0 and show that the ideal
a = (a, b + √

m) generates an ambiguous ideal class of order 2.
9.5. Show that if k is a quadratic number field with class number 2, then Am(k) =

Cl(k).
9.6. Show that if k is a quadratic number field with odd class number, then

Am(k) = 1.
9.7. Show: IfA andB are subgroups of an abelian group, then AB/B � A/A∩B.

Hint: Show that A ∩ B is the kernel of the natural map A −→ AB/B.
9.8. Show that the inclusion ι : HG/P −→ A/P in (9.2) is injective and that

the map π : A/P −→ Amst(k) defined by π(aP) = [a] is well defined and
surjective. Also show that kerπ = im ι.

9.9. (O. Taussky) Solve the Pythagorean equation x2 + y2 = z2 using Hilbert’s
Theorem 90. Hint: α = x+yi

z
∈ Q(i) satisfies the equation Nα = 1. Write

α = m+ni
m−ni

and rationalize the denominator.

Generalize this exercise to all equations of the form x2 − my2 = z2 for
squarefree values m ∈ Z \ {0, 1}.

9.10. Show that there is an exact sequence

1 −−−−→ P −−−−→ HG −−−−→ E[N]/E1−σ −−−−→ 1,

where H denotes the group of nonzero principal ideals.
9.11. Let m = a2 + b2 be a sum of two squares. Then the ideals (a, b + √

m) do
not necessarily lie in the same ideal class for each choice of a and b. Verify
this for m = 10 = 12 + 32 = 32 + 12.
For the distribution of these ideals over the ideal classes see [82] and [9].

9.12. Let p be a ramified prime in k = Q(
√

m ), where m 
= ±p, and assume that
the prime ideal p above p is principal, say p = (π). Show that ε = 1

p
π2 is a

unit inOk , and that neither ε nor−ε is a square. Generalize this to products of
ramified prime ideals. Use this to compute the fundamental unit of Q(

√
30 ).

9.13. Let p ≡ 1 mod 4 be a prime number. Show that
( q

p

) = +1 implies
(p

q

) =
+1.
Hint: Use k = Q(

√
q∗ ) for q∗ = (−1

q
)q instead of Q(

√
q ).

9.14. Show that the solvability of the Pell equation implies that the norm of the
fundamental unit εp of Q(

√
p ) for primes p is equal to Nεp = −(−1

p
).

Show also that Nεpq = −1 if p ≡ q ≡ 1 mod 4 are primes with (
p
q
) = −1.

9.15. Let ±4ph = x2 − qy2 for prime numbers p ≡ 1 mod 4 and q ≡ 3 mod 4.
Show that x and y are both even, and that the plus sign must hold.
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9.16. Let k = Q(
√

m) be a quadratic number field with fundamental unit εm. Show:
If Nεm = +1, then there is an ambiguous principal ideal a = (α) with
a 
= (1), (

√
m ).

Hint: By Hilbert’s Theorem 90 we have ε = α′/α.
9.17. Show that the norm of the fundamental unit ε of Q(

√
p ) is negative if p ≡

1 mod 4 is prime.
Hint: Use the preceding exercise.

9.18. The idea behind Kummer’s ideal numbers was the construction of ring
homomorphisms Ok −→ Fq of the ring of integers of number fields into
finite fields. Restrict these homomorphisms to the multiplicative group, that
is, consider the group homomorphism ψ : O×

k −→ F
×
q . Find examples of

real quadratic number fields and primes q for which this homomorphism is
trivial, or where it is surjective.

9.19. Let p be a prime number such that ( 10
p

) = +1. Then there exist two
possibilities:

1. ( 2
p
) = ( 5

p
) = +1; in this case p = x2 − 10y2.

2. ( 2
p
) = ( 5

p
) = −1; in this case ±2p = X2 + 10y2 and, using X = 2x,

±p = 2x2 − 5y2.

Show that this implies that each element x + y
√
10 ∈ Z[√10 ] can be written

uniquely as a product of a unit and irreducible elements of the form a+b
√
10

or c
√
2 + d

√
5.

9.20. Let q ≡ 3 mod 8 be a prime number. Show that the class number ofQ(
√
2q )

is odd and deduce that the equation 2x2 − qy2 = −1 is solvable. Deduce that
( 2
q
) = −1.
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