
Chapter 7
The Pell Equation

Complex quadratic number rings have finitely many units; in the real quadratic case,
the rings of integers of Q(

√
m) seem to contain a unit ε of infinite order:

m 2 3 5 6 7

ε 1 + √
2 2 + √

3 1
2 (1 + √

5) 5 + 2
√
6 8 + 3

√
7

The existence of nontrivial units ε = x+y
√

m

2 in real quadratic number fields
Q(

√
m) is equivalent to the solvability of the Pell equation x2 − my2 = ±4 in

nonzero integers for all squarefree values of m > 0. In this chapter we will prove
that the equation x2 − my2 = 1 has a nontrivial1 solution in integers whenever
m > 0 is not a square, and we will provide methods for computing units in real
quadratic number fields.

Before we prove the solvability of the Pell equation, we make a few remarks on
the connection between the equations x2−my2 = ±4 and the equation x2−my2 = 1
and on how to compute the fundamental unit ofQ(

√
m) from the minimal nontrivial

solution of x2 − my2 = 1 and vice versa.
Consider for example the case m = 13. Here the fundamental unit of the

ring of integers Ok of the quadratic number field k = Q(
√
13) is ε = 3+√

13
2 ,

which corresponds to the solution (3, 1) of the Pell equation x2 − 13y2 = −4.
The unit ε3 = 18 + 5

√
13 is a unit in the order Z[√13 ] and corresponds to the

fundamental solution (18, 5) of the Pell equation x2 − 13y2 = −1. Finally the unit
ε6 = 649 + 180

√
13 corresponds to the minimal nontrivial solution (649, 180) of

the Pell equation x2 − 13y2 = 1.

1By this we mean solutions with y �= 0.
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166 7 The Pell Equation

Proposition 7.1 If k = Q(
√

m) for some squarefree integer m ≡ 1 mod 4, and if ε

is a unit in Ok , then ε3 is a unit in the order Z[√m ].
In other words, if t2 − mu2 = ±4, then T 2 − mU2 = ±1, where

T + U
√

m =
( t + u

√
m

2

)3
.

Proof If t2−my2 = ±4 for odd integers t and u, then reducing this equationmodulo
8 shows that m ≡ 5 mod 8. In this case, the prime ideal (2) is inert in Q(

√
m);

hence, the group of coprime residue classes modulo 2 has order N(2) − 1 = 3, and
this in turn implies that ε3 ≡ 1 mod 2. ��

Clearly, if ε is a unit with norm −1, then ε2 is a unit with norm +1. Thus if we
want to compute a fundamental unit from the unit x + y

√
m corresponding to the

smallest positive solution of the Pell equation x2 − my2 = 1, then we have to check
whether ε is a square, a cube, or a sixth power of a unit in Q(

√
m).

We will explain how to do this in the case at hand. Assume we have the minimal
positive solution (649, 180) of the Pell equation x2 − 13y2 = 1; then η = 649 +
180

√
13 is a unit with norm 1 (and the smallest positive unit with norm 1 in the

domain Z[√13 ]).
For checking whether

√
η ∈ Q(

√
13), we use the real approximations

η = 649 + 180
√
13 ≈ 1297.9992295 . . .,

η′ = 649 − 180
√
13 ≈ 0.0007704 . . . .

Clearly, the trace η + η′ = 2 · 649 is an integer. If η is a square, then the trace of
√

η

must also be an integer. We find

√
η ≈ 36.0277563773 . . . ,√
η′ ≈ 0.0277563773 . . . .

This shows2 that 1
2 (

√
η − √

η′) ≈ 18 and
√

η+√
η′

2
√
13

≈ 5 are very close to integers,

which in turn suggests that
√

η = 18 + 10
√
13. Now we can readily verify that

(18+5
√
13)2 = η. Observe that 18−5

√
13 < 0, which is why 18−5

√
3 ≈ −√

η′.
In a similar way we can check that η is a cube and in fact a sixth power:

6
√

η ≈ 3.30277563773 . . . ,
6
√

η′ ≈ 0.30277563773 . . . ,

2See Exercise 7.1.
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and this time

6
√

η − 6
√

η′
2

≈ 1.5 and
6
√

η + 6
√

η′

2
√
13

≈ 0.5

suggests that 6
√

η = 3+√
13

2 , which can then be verified.

7.1 The Solvability of the Pell Equation

The history of the Pell equation in Europe3 begins with Fermat’s challenge in 1657.
In that year, Fermat posed the following problem (among others) and asked his
contemporaries, in particular the English mathematicians John Wallis and William
Brouncker, for a solution:

Given an arbitrary natural number, which is assumed to be not a square, there are infinitely
many square numbers with the property that after adding 1 to the product of one of these
square numbers with the given number, another square is produced [. . . ]. We ask e.g. for a
square that produces another square after adding 1 to the product with 149 or 109 or 433
etc.

Thus Fermat asked for solutions of equations such as Na2 + 1 = b2 for positive
nonsquare integersN , in particular for the valuesN = 149, 109, and 433. Brouncker
andWallis solved these equations in rational numbers,4 and Fermat remarked that he
hardly would have posed a problem that any “three-day-arithmetician” could have
solved. Brouncker then succeeded in solving Fermat’s equation for any given value,
but Fermat complained that Brouncker had not shown that his method would always
work‘ and claimed that such a proof is possible using his method of infinite descent.
Whether Fermat himself had such a proof is an open question.

Long before Fermat, Indian mathematicians such as Brahmagupta (ca. 598–670)
and Bhaskara II (1114–1185) had developed a method for solving the Diophantine
equation Nx2 + 1 = y2; this became known in Europe only rather late and did not
have, as far as we know, any influence on the development of number theory in the
West.5

Leonhard Euler later studied the equation Na2 + 1 = b2 in several articles,
and Joseph-Louis Lagrange succeeded in proving the solvability in integers. His
first proof, which already used what later became known as Dirichlet’s pigeonhole

3Strictly speaking, the investigation of Platon’s side and diagonal numbers by Theon may be seen
as the only serious investigation of a Pell equation in ancient Greece. Equations of Pell type also
figure prominently in the Cattle Problem of Archimedes; it is not known, however, whether there
were any attempts at solving this problem before it was discovered by Lessing in 1773.
4We have derived the rational parametrization of Pell conics in Theorem 3.1.
5An excellent account of Indian mathematics was given by Kim Plofker [104]. For an investigation
of the Indian method of solving the equation Nx2 + 1 = y2, see [114].
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principle, was streamlined and generalized by Dirichlet: In his unit theorem, he
proved the existence of nontrivial units in all number fields except Q and complex
quadratic number fields.

Below we will prove the solvability of the Pell equation x2 − my2 = 1 for
all natural numbers m that are not squares. The essential idea behind this proof is
due to Lagrange, who derived the necessary lemmas from the theory of continued
fractions. Dirichlet later replaced Lagrange’s arguments by repeated applications of
his pigeonhole principle, which simplified the proof considerably. The proof is more
or less by descent: From the solvability of an equation x2−my2 = c for some value
of c > 1, we will deduce the solvability of x2 − my2 = c′ for some c′ < c. In order
to make this argument work, we will have to exploit the fact that these equations
x2 − my2 = c have infinitely many solutions.

Dirichlet’s pigeonhole principle6 may be stated as follows:

If N + 1 pearls are put into N pigeonholes, then there must be a pigeonhole containing at
least two pearls.

For finding solutions of equations such as x2 − my2 = c, we observe that if m

is large and c is small, then x2 ≈ my2 implies that x
y
is an approximation of

√
m.

In order to find such approximations, one may use, as Lagrange did, the theory of
continued fractions; if we are content with proving the existence of solutions, we
may use Dirichlet’s pigeonhole principle.

Theorem 7.2 The equation x2 − my2 = 1 is solvable in nonzero integers x, y

whenever m > 0 is not a square.

We begin with the following lemma.

Lemma 7.3 If ξ1 and ξ2 are two nonzero real numbers such that ξ1/ξ2 is irrational,
then for any N ∈ N there exist integers A,B ∈ Z, which are not both 0 and satisfy
the following inequalities:

|Aξ1 + Bξ2| ≤ 1

N
(|ξ1| + |ξ2|), |A| ≤ N, |B| ≤ N. (7.1)

Proof We assume that ξ1 and ξ2 are both positive (otherwise we just have to change
the signs of a and b in the proof below). The irrationality of ξ1/ξ2 implies that the
function

f : Z × Z −→ R : (a, b) �−→ aξ1 + bξ2 (7.2)

is injective (see Exercise 7.7.17).
There are (N + 1)2 pairs of integers (a, b) ∈ [0, N] × [0, N], and for these we

have 0 ≤ f (a, b) ≤ N(|ξ1| + |ξ2|). If we divide the interval [0, N(|ξ1| + |ξ2|)]

6It seems that this principle was given a name rather late (in the twentieth century?); a pigeonhole
is a drawer, so the last thing you would like to put there are pigeons.
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into N2 subintervals of equal length 1
N

(|ξ1| + |ξ2|), then since (N + 1)2 > N2

there must exist, according to Dirichlet’s pigeonhole principle, at least two pairs
(a, b) �= (a′, b′) with |f (a, b)−f (a′, b′)| ≤ 1

N
(|ξ1|+|ξ2|). Now we set A = a−a′

and B = b − b′; these integers have the desired properties. ��
Corollary 7.4 Assume that m ∈ N is not a square. Then there exists an integer c

such that the equationA2−mB2 = c has infinitely many solutions (A,B) ∈ Z×Z.

Proof By the preceding lemma, there exist numbers A,B ∈ Z, not both 0, that
satisfy the inequalities

|A − B
√

m | ≤ 1

N
(1 + √

m), |A| ≤ N, |B| ≤ N. (7.3)

The triangle inequality shows that

|A + B
√

m | ≤ |A| + |B√
m | ≤ (1 + √

m ) · N, (7.4)

and multiplying (7.3) and (7.4) yields

|A2 − mB2| ≤ (1 + √
m)2. (7.5)

Now let N → ∞; then infinitely many distinct pairs (A,B) must occur, since if
we had only finitely many, then the set {|A − B

√
m | : A,B ∈ Z} would possess a

minimum, which is impossible because of (7.3).
Since |A2 − mB2| is bounded from above by (7.3), there must exist an integer c

with |c| ≤ (1 + √
m)2 for which A2 − mB2 = c has infinitely many solutions in

integers. ��
Now we can prove Theorem 7.2. According to Corollary 7.4, there exists an

integer c �= 0 such that there are infinitely many pairs (A,B) with A2 − mB2 = c;
here we may clearly assume that A > 0. Among these infinitely many solutions, we
choose (c + 1)2 solutions and consider the residue classes of A and B modulo c;
by Dirichlet’s pigeonhole principle, there must exist pairs (A1, B1) �= (A2, B2) with
A1 ≡ A2 mod c andB1 ≡ B2 mod c. The elements ηj = Aj +Bj

√
m then have the

same norms Nη1 = Nη2 = c and satisfy the congruence η1 ≡ η2 mod c. It follows
from N(η1/η2) = 1 that η1/η2 is a unit if we can show that this is an algebraic
integer. To this end, observe that η1/η2 = 1 + (η1 − η2)/η2 = 1 + (η1 − η2)η

′
2/c.

Since the difference η1 − η2 is divisible by c by construction, η1/η2 is indeed an
algebraic integer and thus a unit.

It remains to show that η1/η2 �= ±1 is a nontrivial unit. But η1/η2 �= 1 follows
from η1 �= η2, and η1/η2 �= −1 follows from the fact that A1 and A2 are both
positive. This concludes the proof of Theorem 7.2.

We now know that there exist nontrivial units in each real quadratic number field.
In fact, it is possible to determine the abstract structure of the unit group: For real
quadratic number fields k, we have O×

k � (Z/2Z) × Z. As we will show in a
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moment, each unit η ∈ O×
k can be written in the form η = (−1)sεt for some

“fundamental unit” ε, and then the map λ : Ek −→ (Z/2Z) × Z defined by λ(η) =
(s, t) provides us with an isomorphism of abelian groups. This is the content of our
next theorem.

Theorem 7.5 If k is a real quadratic number field, then there is a unit ε ∈ O×
k with

the property that every unit η ∈ O×
k can be written uniquely in the form η = ±εt

for some t ∈ Z. In particular,

O×
k � Z/2Z ⊕ Z.

We immediately see that if ε has the property in Theorem 7.5, then so do the
units ±ε±1. Among these four units, there are two that are positive, and among
these exactly one is > 1. This unit ε > 1 will be called the fundamental unit of k.

Proof We identify the numbers a + b
√

m with those real numbers that correspond
to the positive square root of m. The only units η ∈ O×

k with |η| = 1 then are
η = ±1, which follows from irrationality of

√
m.

We claim that among the units with |η| > 1, there is one with minimal absolute
value. Otherwise there would exist a unit (in fact, infinitely many) with 1 < |η| < 5

4
(just pick two units that are sufficiently close to the infimum of the absolute values
and consider their quotient). Since |ηη′| = 1, this implies 4

5 < |η′| < 1. If we write
η = a + b

√
m (where 2a, 2b ∈ Z), then 2|a| = |η + η′| ≤ |η| + |η′| < 9

4 , and
hence |a| ≤ 1. Since a = 0 is not possible, we must have a = ±1. Then it follows
immediately from 1 < |η| < 5

4 that b = 0, and hence η = 1 in contradiction to our
assumption.

Let ε be a unit with minimal absolute value > 1. We claim that ε has the
properties listed in Theorem 7.5. Otherwise there would exist a unit η with εn <

|η| < εn+1 for some n ∈ N (the proof is similar to that of Theorem 2.6). But
then ηε−n is a unit whose absolute value lies strictly between 1 and |ε|, and this
contradicts the choice of ε.

Uniqueness is clear: ±εt = ±εu implies |εt−u| = 1, which in turn implies t = u

since ε is irrational. But then the signs must also coincide. ��
Remark The proof of the solvability of the Pell equation t2 − mu2 = 1 given here
does not provide us with a method of computing the fundamental unit, except for
very small values ofm. For example, ε = 48842+5967

√
67 is the fundamental unit

of Q(
√
67), and this solution is hard to find by solving the Pell equation by brute

force (i.e., looking for an integerm = 1, 2, 3, . . . such thatmu2+1 = t2 is a square).
A much better way of computing the fundamental unit of quadratic number fields
with modest discriminants is based on the theory of continued fractions. For number
fields of higher degree, the computation of the unit group becomes time consuming
with growing degree and discriminant even when using the best algorithms that are
known today.7

7Good sources for the state of the art are [20, 91], and, in particular, [66].
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7.1.1 The Negative Pell Equation

The equation t2 − mu2 = −1 is called the negative Pell equation or sometimes the
anti-Pell equation. In this section we will show how to derive solvability conditions
for the negative Pell equation from the solvability of the usual Pell equation.

We begin by considering the equation t2 − pu2 = 1 for prime values of p. We
can write this equation in the form

pu2 = t2 − 1 = (t − 1)(t + 1).

The greatest common divisor of t +1 and t −1 divides their difference 2, and hence
one of the following four possibilities must occur:

t + 1 = a2, t − 1 = pb2,

t + 1 = pb2, t − 1 = a2,

t + 1 = 2a2, t − 1 = 2pb2,

t + 1 = 2pb2, t − 1 = 2a2.

We choose the integers a and b positive. Subtracting the right equation from the left,
we find that at least one of the following four equations must be solvable in integers:

a2 − pb2 = 2; a2 − pb2 = −2; a2 − pb2 = 1; a2 − pb2 = −1.

If we assume that (t, u) is the smallest positive solution of the Pell equation, then
we can exclude the equation a2 − pb2 = 1 since t + 1 = 2a2 implies that a < t .

A necessary condition for the equation a2 − pb2 = 2 to be solvable is that
p ≡ ±1 mod 8. Similar considerations yield the following table:

p ≡ 3 mod 8 p ≡ 5 mod 8 p ≡ 7 mod 8

a2 − pb2 = +2 x x

a2 − pb2 = −2 x x

a2 − pb2 = −1 x x

Here “x” represents the unsolvability of the corresponding equation.
If p ≡ 1 mod 8, it follows from t2 − pu2 = 1 that t must be odd and thus

gcd(t − 1, t + 1) = 2. Therefore the first three cases are impossible, and we end up
with the equation a2 − pb2 = −1.

Since, as we have seen, one of the three equations must be solvable, we obtain
the following:
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Proposition 7.6 The solvability of t2 − pu2 = 1 for odd prime numbers p implies
the solvability of

a2 − pb2 = −1 for p ≡ 1 mod 4,

a2 − pb2 = −2 for p ≡ 3 mod 8,

a2 − pb2 = +2 for p ≡ 7 mod 8.

Even if the equation a2−pb2 = ±2 for some prime p ≡ 1 mod 8 is not solvable
in integers, the ring of integers in k = Q(

√
p) might contain elements of norm ±2,

as the example N( 5+
√
17

2 ) = 2 shows.

7.2 Which Numbers Are Norms?

The only method we know so far for showing the unsolvability of the norm equation
x2−my2 = c for given values of m ∈ N and c ∈ Z is reducing the equation modulo
n for some choice of n, where n in general is a divisor of m or c, and showing
that the congruence does not have a solution. For example, x2 − 10y2 = ±2 is not
solvable in integers since the congruence x2 ≡ ±2 mod 5 does not have solutions.
This method does not work in the case of the equation x2 − 79y2 = ±3, the reason
being that x2 − 79y2 = −3 has the rational solution x = 2

5 , y = 1
5 ; in particular,

this equation is solvable module each modulus coprime to 5. Similarly, the solutions
x = 13

7 and y = 2
7 show that the congruence is solvable for each modulus coprime

to 7. This implies by the Chinese remainder theorem that x2 − 79y2 ≡ −3 mod m

is solvable for each nonzero modulus m ∈ Z.

Remark Hasse’s Local–Global Principle for quadratic forms implies that equations
such as x2 − my2 = c have rational solutions if and only if the congruence x2 −
my2 ≡ c mod N is solvable for each modulus N . The example above implies that
there is no similar Local–Global Principle for integral solutions of such equations.
For cubic equations such as y2 = x3 − m even the Local–Global Principle for
rational solutions does not hold. In the case of integral solutions of x2 − my2 = c,
the class group Cl(k) of k = Q(

√
m) is a measure for the obstruction to the Local–

Global Principle in the sense that if the class group of k is trivial, the equation x2 −
my2 = c is solvable in integers if and only if the congruence x2 − my2 ≡ c mod N

is solvable for each modulus N . In the case of elliptic curves, there is a similar
group called the Tate–Shafarevich group. Understanding the failure of Local–Global
principles is a central area of research in modern number theory.

In order to show that x2 − 79y2 = −3 does not have integral solutions, we have
to employ a different technique. Let us consider an arbitrary real quadratic number
field k = Q(

√
m), and let ε = t+u

√
m > 1 be the fundamental unit (we allow t and

u to be half-integers). Assume moreover that α ∈ Ok is a solution of the equation
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|Nα| = c. The basic idea is to choose the exponent n in β = αεn in such a way that
the coefficients of β with respect to the basis {1,√m } become as small as possible.
It is clear from geometric considerations that there exists an exponent n ∈ Z such
that

1 ≤ |εnα| < ε.

If we set β = εnα and write β = a + b
√

m (again a and b are allowed to be
half-integers), then

|β ′| = |ββ ′|
|β| = c

|β| ,

and we obtain the bounds

c

ε
< |β ′| ≤ c.

The triangle inequality now yields

|2a| = |β + β ′| ≤ |β| + |β ′| < ε + c,

|2b|√m = |β − β ′| ≤ |β| + |β ′| < ε + c.
(7.6)

This immediately yields bounds for a and b, and now the problem can be solved in
finitely many steps by simply checking the possible values of a and b one by one.
Before we do this in our example, we will improve the bounds on a and b.

To this end, we set β = εnα and choose the exponent n ∈ Z in such a way that

√
c√
ε

≤ |β| <
√

cε .

As above, this implies the bounds

|β| <
√

cε and |β ′| ≤ √
cε ,

and now we obtain |2a| < 2
√

cε, which is a lot better than |2a| < ε + c.
As a matter of fact these bounds may be improved again by using the following

lemma:

Lemma 7.7 If x, y ∈ R satisfy the inequalities 0 < x ≤ r , 0 < y ≤ r , and
0 < xy ≤ s, then x + y ≤ r + s

r
.

This claim follows from the observation 0 < (r−x)(r−y) = r2−r(x+y)+xy ≤
r2 + s − r(x + y).
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In our case, we have r = √
cε and s = c; thus |β + β ′| ≤ √

c
(√

ε + 1√
ε

)
.

Since 1√
ε

< 1, this bound improves the previous one by a factor of about 2. We

have proved the following:

Theorem 7.8 Let k be a quadratic number field with a unit ε > 1; then for each
α ∈ Ok with norm |Nα| = c, there exists an associate β = a + b

√
m (with integers

or half-integers a, b) such that

|a| ≤ 1

2

√
c
(√

ε + 1√
ε

)
and |b| ≤ 1

2
√

m

√
c
(√

ε + 1√
ε

)
. (7.7)

If there is an element α ∈ Z[√79 ] with norm ±3, then (set m = 79, ε =
80 + 9

√
79, and c = 3) there is an element a + b

√
79 with norm ±3 such that

|b| < 1.25. Thus it is sufficient to consider b = 1, but the equation a2−79 ·12 = ±3
is not solvable in integers since 79 ± 3 is not a square. Thus Z[√79 ] does not
contain an element with norm ±3, and hence 3 is irreducible, but not prime since
3 | (2 − √

79 )(2 + √
79).

Remark Theorem 7.8 goes back to Pafnuty Chebyshev [18]; the corresponding
result in general number fields but with weaker bounds had been obtained before
by Dirichlet [30]. Chebyshev is best known for his contributions to the proof of
the prime number theorem. This theorem states that the number π(x) of all prime
numbers ≤ x is asymptotically equal to π(x) ∼ x

logx
in the sense that the quotient

of these functions has limit 1 as x → ∞; here log x denotes the natural logarithm.
Chebyshev proved that if the limit of π(x)

x/ logx
for x → ∞ exists, then it must be equal

to 1. The existence of this limit and thus the prime number theorem was established
independently in 1896 by Jacques Hadamard and Charles-Jean de la Vallée-Poussin.

7.2.1 Davenport’s Lemma

Using Theorem 7.8, it is easy to prove a result going back to Harold Davenport:

Proposition 7.9 Let m,n, and t be natural numbers with m = t2 + 1; if the
Diophantine equation x2 − my2 = ±n has integral solutions with n < 2t , then
x + y

√
m is associated with a rational integer a and n = a2 is a perfect square.

This result tells us that the only norms less than 2t in absolute value are the
obvious ones, namely elements associated with rational integers a, which have
norms ±a2. The norms of all other elements have absolute value ≥ 2t .
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For a proof, set ξ = x + y
√

m; we will show that if | Nξ | = n is not a square,
then n ≥ 2t . Assume therefore that n < 2t; since ε = t + √

m > 1 is a unit in
Z[√m ], we can find a power η of ε for which ξη = a +b

√
m has coefficients a and

b that satisfy the bounds from Theorem 7.8. Because of 2t < ε < 2
√

m, we find

|b| ≤
√

n

2
√

m

(√
ε + 1√

ε

)
< 1 + 1

t
.

Since the claim is trivial for t = 1, we may assume that t ≥ 2, and then the last
inequality gives |b| ≤ 1. If b = 0, then (x + y

√
m)η = a is associated with a

rational integer, and |Nξ | = a2 is a square. If b = ±1, then α = ξη = a ± √
m.

Now |Nξ | = |Nα| = |a2 − m| is minimal for values of a close to
√

m, and we find

n = |a2 − m| =
{
2t if a = t ± 1;
1 if a = t .

Thus either n = 1 (which we have excluded) or n ≥ 2t . This proves our claims.
Proposition 7.9 was used by Ankeny, Chowla, and Hasse [2] for constructing

quadratic number fields with nontrivial class groups.

Proposition 7.10 The quadratic number field k = Q(
√

m) with m = t2 + 1 and
t = 2lq , where q is prime and l > 1, has class number > 1.

Since m ≡ 1 mod q , the prime q splits in k, and we have (q) = qq′. If q is
principal, then the equation x2 − my2 = ±4q has integral solutions. But since
4q < 2t = 4lq is not a square, this contradicts Proposition 7.9.

Examples In the following examples, m = t2 + 1 is prime. The ambiguous class
number formula (see Chap. 9) will explain why the class number h is odd in this
case.

q l t2 + 1 h

3 4 577 7
6 1297 11
9 2917 3

11 4357 5
14 7057 21

q l t2 + 1 h

5 2 401 5
4 1601 7
9 8101 13

11 12101 5
12 14401 43

The following result8 shows that even a simple result such as Proposition 7.9
allows us to deduce astonishingly simple lower bounds for class numbers of fields
of Richaud–Degert type.

8This theorem is due to Halter-Koch [48] and the proof presented here to Mollin [95].
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Theorem 7.11 Let t be an odd integer with prime factorization t = p
e1
1 · · · pes

s and
set m = t2 + 1, and assume that m = t2 + 1 is squarefree. Then the class number
h of Z[√m ] satisfies h ≥ S = 2τ (n) − 2, where

τ (n) = (e1 + 1)(e2 + 1) · · · (es + 1)

denotes the sum of all divisors of n.
If t = qe is a prime power, then the class number is divisible by S.

Proof For each prime p1 | m, we have (m/pj ) = +1, and hence pj splits in
Z[√m ] as (pj ) = pjp

′
j , where pj = (pj , 1 + √

m). Let p0 = (2,
√

m) denote the

prime ideal above 2 and set e1 = 1. We now consider the ideals a = p
a0
0 pa1

1 · · · pas
s

with 0 ≤ aj ≤ ej ; clearly there are (e0 + 1)(e1 + 1) · · · (es + 1) such ideals;
since (e0 + 1)(e1 + 1) · · · (es + 1) = τ (n) is the number of divisors of n and since
e0 + 1 = 2, the number of ideals is 2τ (n).

The class number bound will follow if we can show that only two among these
ideals a can be principal:

• the unit ideal a = p00p
0
1 · · · p0s = (1);

• the ideal a = p0p
e1
1 · · · pes

s with norm 2t .

In fact, if a = p
a0
0 pa1

1 · · · pas
s = (x + y

√
m) is principal, then |x2 − my2| = Na ≤

N(p0p
e1
1 · · · pes

s ) = 2t . If a is not one of the two ideals with norm 1 or 2t , then
1 < |x2 − my2| < 2t; but then y = 0 and a = (x) for some rational integer x. Now
a = aσ for the the nontrivial automorphism of k/Q implies a1 = . . . = as = 0, and
hence a = p0; but the prime ideal above 2 is not principal.

For proving the last claim, assume that t = qe for an odd prime number q . The
relation p0q

e = (t + 1 + √
m), together with the fact that no ideal of the form 2qj

with 0 ≤ j < e is principal, implies that the ideal class of q has order 2e; thus we
obtain the lower bound 2e | h, where 2e = 2τ (t) − 2. ��

The following table compares the lower bound S in Theorem 7.11 with the class
number h for a few small values of m:

t m S h

3 10 2 2
5 26 2 2
9 82 4 4

11 122 2 2
13 170 2 4
15 226 6 8
17 290 2 4
19 362 2 2

t m S h

21 442 6 8
23 530 2 4
25 626 4 4
27 730 6 12
29 842 2 6
31 962 2 4
33 1090 6 12
35 1226 6 10

t m S h

37 1370 2 4
39 1522 6 12
45 2026 10 14
47 2210 2 8
49 2402 4 8
51 2602 6 10
53 2810 2 8
55 3026 6 16



7.3 Computing the Solution of the Pell Equation 177

7.3 Computing the Solution of the Pell Equation

The computation of the units in a real quadratic number fieldQ(
√

m), that is, solving
the corresponding Pell equation x2−my2 = ±1, is usually a quite difficult problem.

The basic idea behind the computation of the fundamental unit of a quadratic
number field that we will present here is, as in the proof of the solvability of the Pell
equation, the construction of sufficiently many elements of small norm. If we have
many such elements, then we will look for elements α and β that not only have the
same norm but also generate the same principal ideal. In this case, the quotient α

β

will be a (possibly trivial) unit.
In order to convey the main idea, we consider the ring Z[√11 ]. We look for

solutions of the equation x2 − 11y2 = n for small values of n. If we pick y = 1, the
expression x2 − 11y2 will be small if x ≈ √

11, that is, for x = 3 and x = 4. Thus

32 − 11 = −2,

42 − 11 = +5.

For y = 2, we choose x ≈ 2
√
11, and we find

62 − 11 · 22 = −8,

72 − 11 · 22 = +5.

Thus we already have found elements 4±√
11 and 7±2

√
11 with the same norm 5.

Which of these generate the same ideal? One possibility of finding the right choice
of signs is simply computing the quotients:

7 + 2
√
11

4 + √
11

= (7 + 2
√
11)(4 − √

11)

(4 + √
11)(4 − √

11)
= 6 + √

11

5
,

which is not an algebraic integer; thus 7 + 2
√
11 and 4 + √

11 generate distinct
prime ideals above 5. On the other hand,

7 + 2
√
11

4 − √
11

= (7 + 2
√
11)(4 + √

11)

(4 + √
11)(4 − √

11)
= 50 + 15

√
11

5
= 10 + 3

√
11,

and we have found the nontrivial unit ε = 10 + 3
√
11.

Here is a more elegant way of verifying that 7 + 2
√
11 and 4 − √

11 generate
the same ideal: We know that these elements have norm 5, and hence they generate
prime ideals above 5. There are only two such ideals, namely 51 = (5, 1 + √

11)
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and 52 = (5, 1 − √
11). Thus

√
11 ≡ −1 mod 51 and

√
11 ≡ +1 mod 52, hence

7 + 2
√
11 ≡ 0 mod 51, 7 + 2

√
11 ≡ 4 mod 52,

4 + √
11 ≡ 3 mod 51, 4 + √

11 ≡ 0 mod 52,

and this shows that (7 + 2
√
11 ) = (4 − √

11) = 51.
Another possibility of finding a nontrivial unit is based on the observation that

(2) = 22 is ramified inK . Since 3+√
11 has norm−2, we must have 2 = (3+√

11),

and then (2) = 22 = (3+√
11 )2 = (20+6

√
11) shows that 20+6

√
11

2 = 10+3
√
11

is a unit.
Now let us see how this method works for larger values of m, say for m = 3431.

Again we begin by collecting elements with small norms:

α Nα

55 + √
m −2 · 7 · 29

56 + √
m −5 · 59

57 + √
m −2 · 7 · 13

58 + √
m −67

59 + √
m 2 · 52

α Nα

60 + √
m 132

61 + √
m 2 · 5 · 29

62 + √
m 7 · 59

63 + √
m 2 · 269

64 + √
m 5 · 7 · 19

We remark in passing that 602 − m = 132 is a square; this implies that m = 602 −
132 = (60 − 13)(60 + 13) = 47 · 73. Fermat’s method of factorization is based on
this idea.

The fact that 3 does not occur among these prime factors is explained by the
observation that there is not even an ideal with norm 3 in Q(

√
m) since (m

3 ) = −1.
For the same reason, the primes 11 and 17 do not show up as factors. Instead of
waiting until elements with the same norm occur, we will use an idea that was
already used by Fermat and his contemporaries in their search for numbers whose
sums of divisors are squares or cubes. We factor the elements with small norm into
primes. It is easy to write down a list of prime ideals with small norms; in our case,
these are 2 = (2, 1+√

m), 51 = (5, 1+√
m), 52 = (5, 1−√

m), 7 = (7, 1+√
m),

and 72 = (7, 1 − √
m). Now we factor all elements with small norm that are only

divisible by 2, 5, and 7:

α 2 51 52 71 72
1 + √

m 1 1 0 3 0
1 − √

m 1 0 1 0 3
41 + √

m 1 3 0 0 1
41 − √

m 1 0 3 1 0
59 + √

m 1 0 2 0 0
59 − √

m 1 2 0 0 0
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The first line in this table records the prime ideal decomposition

(1 + √
m ) = 21 · 511 · 731.

If we look carefully at this table, then we can see that

(1 + √
m )(41 + √

m)3 = 245101 7317
3
2.

Since 22 = (2) und 7172 = (7), the element

(1 + √
m)(41 + √

m )3

22 · 73 = 21549+ 364
√

m

has the prime ideal factorization 5101 . But then (59 − √
m )5 = 25510 shows that

α = (59 − √
m )5

21549+ 364
√

m
= 49316884− 841948

√
m

is an algebraic integer with the factorization 25. Since the ideal 2 is ramified, the
element ε = 25/α2 must be a unit, and we have

ε = 152009690466840+ 2595140740627
√

m.

Observe that this method gives us not only a nontrivial unit but also something
called a “compact representation” of this unit:

ε = 2(1 + √
m )2(41 + √

m)6

76(59 − √
m )10

.

Also observe that the prime ideal factorization in quadratic number fields is an
essential component of this method of solving the completely elementary equation
x2 − my2 = 1.

After having found a nontrivial unit ε, the question remains how we can check
that this unit is fundamental. So far we only know that ε = ±ηn for some integer
n, where η is the fundamental unit. Since ε > 1, the positive sign must hold, and
we have n ≥ 1. Clearly, ε is not a square as we can read off from its compact
representation. Thus we only have to check whether ε is an n-th power for the values
n = 3, 5, 7, . . . , and the first problem is bounding this exponent.
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The following bound is simple and best possible:

Lemma 7.12 Let η > 1 be the fundamental unit of a real quadratic number field
with discriminant d . Then

log η >

{
log

√
d, if Nε = +1,

log(
√

d − 1), if Nε = −1.

Proof Let K = Q(
√

m) with m ≡ 2, 3 mod 4 and Nε = +1. Then the smallest
possible value of ε is a + √

m with a ≈ √
m. If Nε = +1, then a >

√
m, and this

implies ε > 2
√

m = √
d.

Observe that the family of quadratic number rings Z[√m ] with m = t2 − 1 has
units εm = t + √

m for which εm = √
m + 1 + √

m > 2
√

m = √
d is best possible

since εm − √
d = √

m + 1 − √
m = 1√

m+1+√
m

< 1
2
√

m
.

The other cases are discussed similarly. ��
In our case we have m = 3431 = 47 · 73; since m is divisible by the prime

number 47 ≡ 3 mod 4, we must have Nε = +1 and thus log ε ≥ 4.763 . . ., and
hence n = log ε/ log η ≤ 33.3/4.763 = 6.991 . . .. Therefore n ≤ 6, and since we
already know that ε is not a square, we must have m ≤ 5.

Thus it remains to show that ε is not a cube or a fifth power. Perhaps the easiest
way of doing this is finding a prime ideal p modulo which ε is not a cube or a fifth
power.

• Since ε ≡ 0 − 3
√

m ≡ 3 mod 51, the unit ε is not a square; in fact, ( 35 ) = −1
implies that 3 is not a square modulo 51.

• For showing that ε is not a cube, we need to find a prime ideal p with norm
Np ≡ 1 mod 3. Now ε ≡ 3 + √

m ≡ 2 mod 71, and since 2 is not a cubic
residue modulo 7 and OK/71 � Z/7Z, the unit ε is not a cubic residue modulo
71. In particular, ε is not a cube.

• Let q = (61, 25+√
m); then p has normNp = 61, and we have ε ≡ 40−3

√
m ≡

54 mod q. Since 54 is not a fifth power modulo 61, the unit ε cannot be a fifth
power.

Instead of working with residue classes, we can compute with real numbers. To this
end, we determine the real approximations

ε ≈ 304 019 380 933 679.999 999 999 999 996 711
1/ε ≈ 0.000 000 000 000 003 289.

Now ε+1/ε is an integer; in fact, if we write ε = a+b
√

m, then 1/ε = a−b
√

m =
ε′ and thus ε + 1

ε
= 2a. If ε = η5 were a fifth power, then η + 1/η = η + η′ would

be an integer. Since η ≈ 788.098052 . . . and 1/η ≈ 0.001268877 . . ., we have
η + 1/η ≈ 788.0993 . . .. Thus ε is not a fifth power, and the cases n = 2 and n = 3
can be treated similarly.
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7.4 Parametrized Units

It is rather easy to construct families of quadratic number fields in which the
fundamental unit can be written down explicitly. The simplest way of finding such
a family is looking at the unit equation t2 − mu2 = ±1 and setting u = 1; then
m = t2 ∓ 1 (with t ≥ 2), and in fact εt = t + √

t2 ∓ 1 is a unit in Z[√m ].
Proposition 7.13 If m = t2 − 1 is squarefree for t ≥ 2, then εm = t + √

m is the
fundamental unit of Z[√m ].

This result also holds if m is not squarefree, but then Z[√m ] is not the ring of
integers of Q(

√
m).

Since we have already shown that εm is a unit, it only remains to show that
εm is fundamental. But since εm > 1, this unit can only be not fundamental if
εm = (r + s

√
m)k for some exponent k ≥ 2, and in that case the coefficient of

√
m

in ε would have to be strictly greater than 1; for example, we have (r + s
√

m)2 =
r2 + ms2 + 2rs

√
m.

The case m = t2 + 1 is slightly more complicated.

Proposition 7.14 Assume that m = t2 + 1 is squarefree for t ≥ 1. If t is odd,
then εm = t + √

m is the fundamental unit of Z[√m ]. If t is even, then εm is the

fundamental unit of Z[ 1+
√

m
2 ] except for t = 2, when ε5 = 2 + √

5 = ( 1+
√
5

2 )3.

The proof that εm is fundamental if t is odd (and thus if m ≡ 2 mod 4) is exactly
as above. Assume therefore that t is even and m = t2 + 1 ≡ 1 mod 4. If εm is not
fundamental, then εm = ( r+s

√
m

2

)k for some exponent k ≥ 2. If r and s are even,
the proof above works. Assume therefore that r and s are odd. Then the smallest

power of r+s
√

m

2 that lies in Z[√m ] is 3, and in fact k must be a multiple of 3. The
case k ≥ 6 cannot occur (the same proof as above), and if k = 3, then

( r + s
√

m

2

)3 = r3 + 3rms2 + (3r2s + ms3)
√

m

8

shows that we must have 3r2s + ms3 = 8. Since s is odd, this implies s = 1, and
then 3r2 + m = 8 yields m = 5 and r = 1 as the only integral solution.

We obtain a slightly less trivial family by writing the Pell equation t2 −mu2 = 1
in the form mu2 = t2 − 1 = (t − 1)(t + 1). Setting t − 1 = u2 and t + 1 = m, we
find m = u2 + 2 and t = u2 + 1. In this way we obtain the following proposition.

Proposition 7.15 Assume that m = t2 + 2 is squarefree. Then εm = t2 + 1 + t
√

m

is the fundamental unit of Z[√m ].
Here εm = (r + s

√
m )k is impossible for k ≥ 2 because already the coefficient

of
√

m in (r + s
√

m )2 = r2+ms2+2rs
√

m is too large: We must have r2+ms2 >

t2 + 1 since otherwise rs = 0, which is impossible.
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In the examples above, the units are rather small. For finding fields with larger
fundamental units,9 we construct elements α and β with Nα = ±an and Nβ = a;
using some additional conditions, we can make sure that the quotient ε = α/βn is
integral and therefore a unit.

For finding fields K = Q(
√

m) containing elements with norm ±an, we can
simply write m = r2 + an; then α = r + √

m has norm Nα = −an. For finding
elements with norm ±a in Z[√m ], we observe that if Q(x, y) = Ax2+Bxy+Cy2

(below, we will often abbreviate this form by Q = (A,B,C)) is a binary quadratic
form with discriminant Δ = B2 − 4AC = 4m, and if Q(s, t) = 1, then

As2 + Bst + Ct2 = 1 implies 4A = (2As + Bt)2 − Δt2,

and hence As + 1
2Bt + t

√
m has norm A. Clearly, the quadratic form Q =

(a, 2r, an−1) has discriminant 4m, so all we need is a solution of the equation
1 = Q(s, t) = as2 + 2rst + an−1t2 in integers. Before we construct such solutions,
we prove that we do in fact obtain units in this way:

Proposition 7.16 Assume that m = r2 + an ≡ 2, 3 mod 4 for coprime integers
a > 1 and n ≥ 2. Assume moreover that Q(s, t) = 1, where s and t are nonzero
integers and where Q = (−a, 2r, an−1). Set α = r + √

m and γ = as − rt − t
√

m;
then Nα = −an, Nγ = −a, and the element

ε = γ n

α

is a nontrivial unit in Z[√m ].
There is, of course, a similar result for m ≡ 1 mod 4. If r is odd, then one has to

consider elements of the form α = r+√
m

2 .

Proof Set a = (a, r + √
m). Clearly,

γ = as − rt − t
√

m = as − t (r + √
m ) ∈ a,

hence a | (γ ). Moreover,

an = (an, an−1α, . . . , aαn−1, αn) = (α)(r − √
m, an−1, . . . , αn−1) = (α)

since (α′, αn−1) ⊇ (α′, α) = (1). In fact, if p is a prime ideal dividing (α′, α), then
either p is ramified, or m ≡ 1 mod 4 and p | (2). Since we have excluded the last

9The class number formula roughly implies that fields with large fundamental units tend to have
small class numbers; constructing families of fields with large fundamental units is therefore
important with respect to Gauss’s conjecture that there are infinitely many real quadratic number
fields with class number 1.
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case, p is ramified. Since p | Nα = an, this implies p | (a). But then p | (m) implies
p | (r) contradicting the assumption that r and a are coprime.

Now γ ∈ a and |Nγ | = Na implies a = (γ ). This shows that (α) = (γ )n, and
hence ε is a unit as claimed.

It remains to show that the unit ε is nontrivial, i.e., that ε �= ±1. But ε = ±1 is
equivalent to±γ n = α = r+√

m, and this is impossible for n ≥ 2 as soon as a > 1.

Clearly, ±(t + u
√

m )2 = r + √
m is impossible; similarly, ±(

t+u
√

m
2 )3 = r + √

m

implies t = u = 1 andm = 5, which in turn is only possible if r = 2 and a = 1. ��
Now let m = r2 + a3 and Q = (−a, 2r, a2). Setting Q(x, 1) = 1 and solving

for r , we obtain

r = 1 − a2 + ax2

2x
.

This value of r is an integer, e.g., when x = a − 1 is even. Then r = a2−2a−1
2 , and

we have Q(a − 1, 1) = 1 for the quadratic form Q = (−a, a2 − 2a − 1, a2), and
hence

γ = a(a − 1) − a2 − 2a − 1

2
− √

m = a2 + 1 − 2
√

m

2

has norm −a.
An explicit calculation yields the unit

ε = a5 − a4 + 3a3 + a2 + 2

2
+ (a3 − a2 + 2a)

√
m.

The first few examples are given in the following table:

a r m γ ε

5 7 174 13 − √
m 1451+ 110

√
174

9 31 1690 41 − √
m 27379+ 666

√
1690

13 71 7238 85 − √
m 174747+ 2054

√
7238

17 127 21042 145 − √
m 675683+ 4658

√
21042

There are many other choices of r , each of which yields a similar family of units.
Now let Δ = (2a + 1)2 + 4 · 2n for some integer a. Then

(2a + 1)2 − Δ = −4 · 2n, or a2 + a + 1 − Δ

4
= −2n.

This shows that (a, 1) is an integral point on the conic x2 + xy + 1−Δ
4 = −2n;

equivalently, the element α = 2a+1+√
Δ

2 has norm Nα = −2n.



184 7 The Pell Equation

Next we look at conics of the form Q(x, y) = 1 with Q = (2, b, c) and

discQ = b2 − 8c = (2a + 1)2 + 4 · 2n

that have an integral point. The simplest possible form is Q = (2,−2a−1,−2n−1),
and the simplest possible integral points are those with y = ±1. A necessary
condition for the existence of an integral solution of Q(x,±1) = 1, that is, of

2x2 ± (2a + 1)x − 2n−1 = 1,

is that the discriminant of the quadratic equation in x is a square:

(2a + 1)2 + 8 · (2n−1 − 1) = 4a2 + 4a + 4 · 2n + 9 = �.

Setting this expression equal to (2a + 3)2 quickly yields a = 2n−1. In this case, the
quadratic equation

2x2 − (2n + 1)x − (2n−1 − 1) = 0

has the solutions

x1,2 = 2n + 1 ± (2n + 3)

4
, i.e., x1 = −1

2
, x2 = 2n−1 + 1.

Thus we now have Δ = (2n + 3)2 − 8 = (2n + 1)2 + 4 · 2n, and the conic
Q(x, y) = 1 with Q = (2,−2n − 1,−2n−1) has the integral point (2n−1 + 1, 1).
Since

8Q(x, y) = (4x − (2n + 1)y)2 − Δy2,

this provides us with the element

γ = 2n + 3 + √
Δ

2

with norm Nγ = −2. Since α = 1
2 [(2n + 1) − √

Δ ] has norm −2n, the solution of
the Pell equation is given by

ε = −γ n

α
,

which is a unit with norm −1. This family is due to Michael Nyberg [100] and
(independently) to Daniel Shanks [115].
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n Δ ε

1 17 4 + √
Δ

2 41 32 + 5
√

Δ

3 113 776 + 73
√

Δ

4 353 71264+ 3793
√

Δ

5 1217 27628256+ 791969
√

Δ

6 4481 46496952832+ 694603585
√

Δ

In this case, the discriminant Δ is asymptotically equal to Δ ∼ 22n, and we have
γ ∼ 2n. Moreover, 1

α
= α′

Nα
∼ − 2n

2n = −1 is bounded, and hence ε ∼ γ n ∼
(2n)n ∼ Δn/2. Thus log ε/ logΔ is not bounded.

7.5 Factorization Algorithms

The same idea that we have used for computing the fundamental unit of a real
quadratic number field can be applied directly for factoring large integers. As a
modest example, we choose N = 4469 and begin by factoring the integers a2 − N

for a ≈ √
4469 ≈ 67. We keep only those factorizations that involve sufficiently

small prime numbers:

a −1 2 5

62 1 0 4

63 1 2 3

67 0 2 1

The first line in this table encodes the factorization 622 − N = −54.
Already the Indian mathematician Narayana Pandit (ca. 1340–1400) and later

Pierre Fermat had used a similar method for factoring integers that do not have
small factors. They checked whether any of the numbers a2 − N for N = 1, 2,
3, . . . is a square number: If a2 − N = b2, then we obtain the factorization N =
a2 − b2 = (a − b)(a + b).

The essential idea behind the modern factorization methods based on this idea
(see, e.g., [130]) is the observation that we do not need a solution of the equation
a2 − N = b2 but only a solution of the congruence a2 ≡ b2 mod N . Once we have
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found such a pair of integers a and b, the numbers gcd(a +b,N) and gcd(a −b,N)

are (possibly trivial) factors of N . Now observe that

(632 − N)(672 − N) = −24 · 54

implies the congruence

632 · 672 ≡ −24 · 54 mod N.

Moreover we have 622 ≡ −54 mod N , and hence 632 · 672 ≡ 42 · 622 mod N , and
we find only the trivial factor gcd(63 · 67 − 4 · 62, N) = 1.

By enlarging our factor base, we obtain

a −1 2 5 11 13

62 1 0 4 0 0

63 1 2 3 0 0

67 0 2 1 0 0

71 0 2 0 1 1

72 0 0 1 1 1

83 0 2 1 2 0

Now we see 672 · 722 ≡ 712 · 52 mod N , but this solution gives us once again just
the trivial factorization. We are more lucky with 672 · 112 ≡ 832 mod N since now
gcd(67 · 11 − 83, N) = 109, and in fact we have N = 41 · 109.

Finding such relations is essentially linear algebra: We interpret the exponents in
the factorizations as elements of an F2-vector space, and then finding squares boils
down to finding linear dependent vectors. The factorization method based on this
idea is called the quadratic sieve.

Factoring Integers with the Pell Equation The computation of the fundamental
unit is, for many values of m, about as difficult as factoring m. Indeed it follows
from x2 − my2 = 1 that my2 = x2 − 1 = (x − 1)(x + 1), and gcd(m, x − 1) is a
(possibly trivial) factor of m. For m = 91, for example, the fundamental unit is ε =
1574 + 165

√
91, and we have gcd(91, 1573) = 13. The Bohemian mathematician

Franz von Schafgotsch [128] factored a = 909 191 by solving the Pell equation for
m = 5a = 4 545 955; he obtained

790482741705651738629349656268492900551186678587245833797608742 =
m · 370748861793367258280487230881607848045136342896607634986552 + 1,
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and used the Euclidean algorithm to find the greatest common divisor of

79048274170565173862934965626849290055118667858724583379760874+ 1

and m = 1315, which gave him the factorization

909 191 = 263 · 3457.

7.6 Diophantine Equations

There is a large class of Diophantine equation whose solution depends crucially
on the structure of the unit group of quadratic number fields. To give the readers
an idea of a few elementary techniques in this area, we will prove a result due to
J.H.E. Cohn (see, e.g., [21]).

Let m ≡ 5 mod 8 be a squarefree natural number, and assume that the

fundamental unit ε = a+b
√

m

2 has norm −1 and satisfies a ≡ b ≡ 1 mod 2. We
will consider the sequence of integers

Vn = εn + ε′n,

where ε′ = a−b
√

m
2 = − 1

ε
. The first three elements of the sequence (Vn) are V0 = 2,

V1 = a, and V2 = a2 + 2.
If m = 5 (and therefore a = 1), these are called Lucas numbers after Édouard

Lucas (1842–1891):

n 0 1 2 3 4 5 6 7

Vn 2 1 3 4 7 11 18 29

One consequence of the theorem we are about to prove is that the only squares in
this sequence are V1 = 1 and V3 = 4.

We will need the following observations:

Proposition 7.17 For all k, n ∈ Z, we have

Vn+2 = aVn+1 + Vn, (7.8)

V2n = V 2
n − 2(−1)n, (7.9)

Vn+2k ≡ (−1)k+1Vn mod Vk. (7.10)
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Equation (7.8) follows from

Vn+2 = εn+2 + ε′n+2 = (ε + ε′)(εn+1 + ε′n+1
) − εε′n+1 − ε′εn+1

= V1Vn+1 − εε′Vn = V1Vn+1 + Vn

since V1 = a and εε′ = −1. Next

V2n = ε2n + ε′2n = (εn + ε′n)2 − 2(εε′)n = V 2
n − 2(−1)n.

Equation (7.9) immediately implies that the numbers V2n cannot be squares.
Finally,

Vn+2k = εn+2k + ε′n+2k = (εk + ε′k)(εn+k + ε′n+k
) − εkε′n+k − ε′kεn+k

= VkVn+k − (−1)kVn ≡ (−1)k+1Vn mod Vk.

Next we observe that Vn is even if and only if n is divisible by 3. This follows
from the recursion

Vn+2 = aVn+1 + Vn

by induction.
In the following, k will always denote an integer not divisible by 3. Thus

V2k = V 2
k − 2(−1)k ≡

{
3 mod 8 if k is odd,

7 mod 8 if k is even.

Theorem 7.18 Let m ≡ 5 mod 8 be squarefree, and let ε = a+b
√

m

2 denote the
fundamental unit of Q(

√
m), where we assume that a and b are odd. The number

Vn = εn + ε′n is a square only in the following cases:

1. n = 1 and a is a square;
2. n = 3 and a(a2 + 3) is a square.

Using sage, it is possible to show that the elliptic curve y2 = a(a2+3) has exactly
four integral points, namely (0, 0), (1, 0), (3, 6), and (12, 42). A proof by hand leads
to the Diophantine equation x4 − 3y4 = −2, which seems to be difficult to solve
with the methods presented here.

For the proof of Theorem 7.18, we will distinguish several cases.

1. a ≡ 5, 7 mod 8 and n ≡ 3 mod 4 We write n = 2 · 3rk − 1 for an even integer
k not divisible by 3. Then Vk ≡ 3 mod 4 and

Vn = V2·3rk−1 ≡ −V−1 ≡ a mod Vk
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by (7.10); hence,

(Vn

Vk

)
=

( a

Vk

)
since Vn ≡ a mod Vk,

=
(−1

a

)(Vk

a

)
since ( a

Vk
) = (−Vk

a
)

=
(−2

a

)
sinceVk ≡ 2 mod a if k is even.

= −1 since a ≡ 5, 7 mod 8.

But this implies our claim that Vn is not a square in this case.

2. a ≡ 5, 7 mod 8 and n ≡ 1 mod 4 Here we write n = −3 + 2 · 3rk for some
even integer n not divisible by 3 and find Vn ≡ −V−3 = V3 mod Vk . Now V3 =
a(a2 + 3) = a · 4b for some odd integer b; hence,

(V3

Vk

)
=

( a

Vk

)( b

Vk

)
since

( 4
Vk

) = 1

=
( a

Vk

)(−Vk

b

)
since Vk ≡ 3 mod 4

=
( a

Vk

)
since Vk ≡ V2 = a2 + 2 ≡ −1 mod b.

= −1 since
(

a
Vk

) = (−Vk

a
) = (−2

a

) = −1 as above.

3. a ≡ 1, 3 mod 8 and n ≡ 1 mod 4 We write n = 2 · 3rk + 1 for an even integer
k not divisible by 3; since Vn ≡ −V1 ≡ −a mod Vk if n > 1, we have

(Vn

Vk

)
=

(−a

Vk

)
= −

( a

Vk

)
= −

(−2

a

)
= −1.

4. a ≡ 1, 3 mod 8 and n ≡ 3 mod 4 If n �= 3, we can write n = 3+ 2 · 3rk, where
k is even and not divisible by 3. Then Vn ≡ −V3 ≡ −a mod Vk , and again we find

(Vn

Vk

)
=

(−V3

Vk

)
= −

(V3

Vk

)
= −

(−2

a

)
= −1.

If n = 3, then V3 = a3 + 3a must be a square.
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7.6.1 Summary

In this chapter we have shown

• that the Pell equation x2 − my2 = 1 has nontrivial solutions in integers for each
nonsquare natural number m, that the unit group EK of a real quadratic number
field K is isomorphic to EK � Z/2Z × Z, and

• how to find the solutions of the Pell equation for modest values of m by studying
elements of K with small norms.

For learning more about the Pell equation, see [8, 66, 91], and [46], as well as the
series of articles [78].

7.7 Exercises

7.1. Let k be a real quadratic number field; assume that η = α2 and Nα < 0 for
elements η, α ∈ k×. Show that, as real numbers, Trα = √

η − √
η′.

7.2. Show that if m = n2 is a square, then the equation x2 −my2 = 1 has only the
trivial solutions x = ±1 in integers.

7.3. Show using Dirichlet’s pigeonhole principle that for each real number x, there
exist infinitely many pairs (p, q) ∈ Z × Z such that |x − p

q
| < 1

q2
.

Hint: Consider the remainders modulo 1 of the numbers 0, x, 2x, . . . , nx;
these n + 1 remainders lie in the n intervals [0, 1

n
), [ 1

n
, 2

n
), . . . , [ n−1

n
, 1).

7.4. Find elements with small nontrivial norm in the family of quadratic number
fields Q(

√
m) with m = t2 − 1 and m = t2 ± 4.

Use this result for finding examples of real quadratic number fields with
large class number.

7.5. Prove the following lemma (Hasse [58]): If m > 0 is not a square and

ε = t+u
√

m
2 the fundamental unit of Q(

√
m), and if n is the smallest positive

nonsquare for which x2 − my2 = ±4n is solvable in nonzero integers, then

n ≥
{

t

u2
, if Nε = −1,

t−2
u2

, if Nε = +1.

7.6. Show: If m = 2p for primes p ≡ 5 mod 8, then Nεm = −1 for the
fundamental unit εm of Q(

√
m).

7.7. Show: If m = 2p for primes p ≡ 3 mod 4, then either x2 − my2 = 2 or
x2 − my2 = −2 is solvable in nonzero integers. Also show that, in this case,
2εm is a square in K = Q(

√
m), where εm denotes the fundamental unit in

K .
7.8. Compute the fundamental units of Q(

√
m) for m = 3, 19, 43, 67, 131, 159,

199.
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7.9. Show: If ε = t+u
√

m
2 is the fundamental unit of Q(

√
m) for m ≡ 1 mod 8,

then t and u are even.
7.10. Let m = n2 − 1 for some natural number n ≥ 2. Show that ε = n + √

m

is a unit in Z[√m ] and that it is the fundamental unit of Q(
√

m) if m is
squarefree.

More generally, find units for m = n2 ± 1 and m = n2 ± 4.
7.11. Compute the class number and the fundamental unit of K = Q(

√
478).

Hint: Consider the prime ideal above (2) and the prime ideals above 3 and
7. Determine the prime ideal factorizations of (a +√

478) for a = 10, 17, 22,
24, and 25, and conclude that K has class number 1.

7.12. The solvability of the Pell equation x2 − my2 = 1 for positive nonsquares
m may be formulated as follows: The part of the Euclidean plane defined
by the hyperbolas x2 − my2 = 1 and x2 − my2 = −1 that contains their
asymptotes contains infinitely many lattice points. In this formulation, the
claim even holds when m is a square; in this case, all integral points lie on the
asymptotes.

Show that the region between the two hyperbolas 2x2 − 5y2 = 1 and
2x2 − 5y2 = −1 does not contain any lattice point except (0, 0).

7.13. Show that the continued fraction expansion of
√

m for m = t2 −1 is given by

√
m = [t − 1; 1, 2t − 2, 1, 2t − 2, 1, 2t − 2, . . .] = [t − 1; 1, 2t − 2].

For example,

√
3 = 1 + 1

1 + 1

2 + 1

1 + 1

2 + 1

1 + 1

2 + . . .

.

7.14. Show that the continued fraction expansion of
√

m for m = t2 +2 is given by

√
m = [t; t, 2t].

7.15. Show that x2 = a3 + 3a for odd integers a is equivalent to

(a − 1

2

)3 +
(a + 1

2

)3 = y2,

where y = x
2 .
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Show moreover that the equation y2 = x(x2 + 3) has the only integral
points (0, 0), (1,±2), (3,±6), and (12,±42) assuming that the equation r3−
3s4 = −2 has the only integral solution r = s = s.

7.16. Let p ≡ 3 mod 4 be a prime number, and let ε = t + u
√

p denote the
fundamental unit of Q(

√
p). Show that t is even and that t ≡ 1− ( 2

p
) mod 4.

7.17. Show that the function f defined in (7.2) is injective.
7.18. Let ε = 2 + √

3 be the fundamental unit of Z[√3 ]. Define the numbers
Vn = εn + ε′n for n ≥ 0. Show that these numbers satisfy the recurrence
relation

Vn+1 = 4Vn − Vn−1.

Also show that V2n = V 2
n − 2 and that the subsequence V2n consists of the

numbers occurring in the Lucas–Lehmer test.
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