
Chapter 4
Divisibility in Integral Domains

In this chapter we will study the notion of divisibility in general domains. We will
restrict our attention to commutative domainsR containing a unit1 1, i.e., an element
with the property 1r = r for all r ∈ R. Recall that a ring R is called a domain if it
does not contain any zero divisors, that is, if ab = 0 for elements a, b ∈ R implies
that a = 0 or b = 0. Subrings of fields are always domains, and every domain may
be interpreted as a subring of its field of quotients (see Exercise 4.3). Our goal is the
definition of units, primes, and irreducible elements and a first investigation of the
question in which quadratic number rings the theorem of unique factorization holds.

4.1 Units, Primes, and Irreducible Elements

It is easy to transfer the notion of divisibility of integers in Z to arbitrary domains
R: Given a, b ∈ R, we say that b divides a if there is a c ∈ R such that a = bc, and
we write b | a in this case. More generally we write a ≡ b mod mR if m | (a − b)

in R. Congruences in R have the usual properties; we leave the proofs as exercises
(see Exercise 4.9).

Proposition 4.1 Let R be a domain; for all a, b, c, d,m, n ∈ R, we have

(a) a ≡ b mod m, c ≡ d mod m �⇒ a + c ≡ b + d mod m;
(b) a ≡ b mod m, c ≡ d mod m �⇒ ac ≡ bd mod m; and
(c) n | m und a ≡ b mod m �⇒ a ≡ b mod n.

The properties (a) and (b) are equivalent to the statement that a ≡ b mod m implies
f (a) ≡ f (b) mod m for all polynomials f ∈ Z[x]. The following result shows

1The standard example of a domain without 1 is the ring of even integers.
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that certain congruences in Ok imply congruences in Z; it allows us to work in the
bigger ringOk and then pull back results from there to the ring of ordinary integers.

Proposition 4.2 Let a, b,m ∈ Z. Then a ≡ b mod m in Ok if and only if a ≡
b mod m in Z.

Proof The congruence a ≡ b mod m in Ok is equivalent to a − b = mγ for some
γ ∈ Ok . Since γ = a−b

m
, we have γ ∈ Ok ∩Q, and now Proposition 2.4 shows that

γ ∈ Z, and hence a ≡ b mod mZ in Z. The converse is trivial. ��
The following result is also useful for computing with quadratic irrationalities;

the simple proof is given in Exercise 4.10.

Proposition 4.3 Let {1, ω} be an integral basis of a quadratic number field, and let
m ∈ Z be an integer. Then m | (a + bω) in Ok if and only if m | a and m | b.

Elements of a domain R that divide 1 are called units of R. The set R× of all
units forms a group with respect to multiplication; it is called the unit group of R.
Examples of unit groups of some well-known rings are the following:

R Z Z[x] Q[x] Z[√−2 ] Z[i] Z[√2 ]
R× {±1} {±1} Q

× {±1} {±1,±i} {±(1 + √
2 )n}

The computation of units in number fields is often challenging; checking whether
a given element is a unit is rather easy:

Proposition 4.4 An element ε ∈ Ok is a unit if and only if Nε = ±1. If we write

ε = t+u
√

m
2 for integers t ≡ u mod 2, then ε is a unit if and only if t2 − mu2 = ±4.

Proof Let ε ∈ Ok be a unit; then εη = 1 for some η ∈ Ok , and taking the norm
yields NεNη = N(1) = 1. Since Nε and Nη are integers whose product is 1, we
either have Nε = Nη = 1 or Nε = Nη = −1. Conversely, Nε = ±1 for some
ε ∈ Ok means ±εε′ = 1, and hence ε is a unit.

If ε = t+u
√

m

2 is a unit, then clearly t2−mu2 = ±4. If conversely t2−mu2 = ±4
and m ≡ 2, 3 mod 4, then it follows that t and u both must be even, and hence
ε = t

2 + u
2

√
m ∈ Z[√m ]. If m ≡ 1 mod 4, on the other hand, then t ≡ u mod 2. In

both cases, ε is a unit in Ok . ��
It follows that the norm yields a group homomorphism Ek −→ EQ = {±1},

where Ek = O×
k and EQ = Z

× are the unit groups of Ok and Z.
The unit groups in complex quadratic number fields can be described explicitly.

Theorem 4.5 Let m < 0 be squarefree, k = Q(
√

m ), and R = Ok the ring of
integers in k. Then

R× =
⎧
⎨

⎩

〈i〉 if m = −1;
〈−ρ〉 if m = −3;
〈−1〉 otherwise.
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Here i = √−1 denotes a primitive fourth and ρ = 1
2 (−1+ √−3 ) a primitive cube

root of unity.

Proof Assume first that m ≡ 1, 2 mod 4, and let ε = a + b
√−m be a unit. Then

1 = Nε = a2 + mb2 (the case Nε = −1 cannot occur since m > 0). For m > 1,
this implies a = ±1 and b = 0, and hence ε = ±1 (and of course ±1 are units). If
m = 1, there are four possibilities, namely a = ±1, b = 0 and a = 0, b = ±1. All
these units are powers of i = √−1.

If m ≡ 3 mod 4, we set ε = 1
2 (a + b

√−m) for integers a, b and find 4 =
a2 +mb2 as a necessary and sufficient condition for ε to be a unit. For m > 3, there
are again only the trivial solutions corresponding to ε = ±1; if m = 3, then we
obtain the units

±1, ±−1 + √−3

2
, ±1 + √−3

2
.

Setting ρ = −1+√−3
2 (this is a cube root of unity since ρ3 = 1), we find that Ek is

generated by −ρ (a primitive sixth root of unity). ��
The determination of the unit group of rings of integers in real quadratic number

fields boils down to solving the Pell equation t2 − mu2 = ±4; we will prove in
Chap. 7 below that this equation has integral solutions whenever m ≥ 2 is not a
square. At this point we only observe that ε = 1 + √

2 is a unit with infinite order
in Z[√2 ] (see Theorem 2.7): If we had (1 + √

2 )n = ±1 for some n ≥ 1, then
taking absolute values (after identifying

√
2 with the positive real square root of 2),

we obtain 1 = | ± 1| = |1 + √
2 |n > 1, and similarly 1 = | ± 1| = |1 + √

2 |n =
|1 − √

2 |−n < 1 if n ≤ −1. In particular, Z[√2 ] has infinitely many units.
John Pell (1611–1685) was an English mathematician. His name got attached to

the Pell equation through a mistake by Euler, who apparently confused him with
Lord William Brouncker. It was Brouncker who developed a method for solving
such equations in integers in connection with Fermat’s challenge in 1657 for the
English mathematicians. The proof that Brouncker’s method always leads to a
solution was given much later by Lagrange.

A method for solving the Pell equation similar to Brouncker’s had already been
developed by Indian mathematicians, in particular Brahmagupta (ca. 598–670) and
Bhaskara II (1114–1185); their contributions (see Plofker [104]) became known in
Europe only during the nineteenth century. We will present a method for solving the
Pell equation in Chap. 7.

Elements a, b ∈ R are called associated, if there is a unit e ∈ R× such that
a = be; we write a ∼ b and verify easily that this defines an equivalence relation
on R.

Irreducible and Prime Elements An element a ∈ R\R× is called irreducible if a

has only trivial divisors, that is, units and associates. More exactly: a is irreducible
in R if a = bc implies that b or c is a unit. An element p ∈ R \R× is called prime if
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p | ab implies that p | a or p | b. Observe that units are by definition neither prime
nor irreducible.

Proposition 4.6 Prime elements are irreducible.

Proof Let a be prime. If we could factor a, there would exist b, c ∈ R \ R× with
a = bc. Now a | bc; if a | b, i.e., b = ad for some d ∈ R, then a = acd , hence
1 = cd , and c is a unit in contradiction to our assumption. ��

A simple criterion for the primality of an element in a ring is the following:

Proposition 4.7 An element p ∈ R is prime if and only if the residue class ring
R/pR of the residue classes modulo p is a domain.

The proof is simple. The residue class ring modulo p does not have a zero divisor
if ab ≡ 0 mod p implies that a ≡ 0 mod p or b ≡ 0 mod p. But this is just a
version of the definition of a prime element, which states that an element is prime if
p | ab implies that p | a or p | b.

4.1.1 Elements with Prime Norm Are Prime

We have already seen that elements π ∈ Ok for which p = |Nπ | is a rational prime
are always irreducible. As a matter of fact, such elements are always prime. This
will follow easily from the theory of ideals that we will develop later; here we will
give a direct proof based on Proposition 4.7.

Proposition 4.8 If k is a quadratic number field with ring of integersOk , then each
π ∈ Ok with prime norm is prime.

This is easy to see if Ok is a unique factorization domain (see the next section):
Elements with prime norm are irreducible, and in unique factorization domains,
irreducible elements are prime. In order to prove this for general ringsOk , we show
that the residue class ring Ok/πOk does not have zero divisors. In fact, we will
show that Ok/πOk � Fp = Z/pZ is isomorphic to the field with p elements.

To this end, let {1, ω} be an integral basis of Ok; then π = a + bω for integers
a, b ∈ Z. We claim that b is not divisible by π (and thus not divisible by p = |ππ ′|).
In fact, π | b implies π | a since a = π − bω, and taking norms, we find p | a2 and
p | b2. Since p is prime, this implies that p | a and p | b. But then π = a + bω

would be divisible by p, and hence π ′ would be a unit: a contradiction.
Thus there exists an integer c ∈ Z with bc ≡ 1 mod p, and in particular, we

have bc ≡ 1 mod πOk . We find bω ≡ −a mod π , after multiplying through by c,
thus ω ≡ −ac mod πOk . If any γ = r + sω ∈ Ok is given, then we find γ ≡
r − sac mod πOk , and thus modulo π every element is congruent to an ordinary
integer. Reducing this number modulo p (and p is a multiple of π), we find that γ

is congruent to one of the numbers 0, 1, 2, . . . , p − 1 modulo π .
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Now it is easy to show that there are no zero divisors in the ring of residue
classes: If we had αβ ≡ 0 mod π and if A,B ∈ {0, 1, . . . , p − 1} are integers
with α ≡ A mod πOk and β ≡ B mod πOk , then π | AB; taking norms yields
p | A2B2, and hence p | A or p | B. Thus A = 0 or B = 0, and therefore
α ≡ A = 0 mod π or β ≡ B = 0 mod π .

Proposition 4.9 Let p be an odd prime number and Ok the ring of integers in k =
Q(

√
m). Then p is prime in Ok if and only if the congruence x2 ≡ m mod p is not

solvable.

Proof If x2 ≡ m mod p is solvable, then p | (x+√
m )(x−√

m ), but p � (x±√
m ).

Thus p is not prime.
Now we show that p remains prime in Ok if (m

p
) = −1. This case is not covered

by Proposition 4.8 since here N(p) = p2 is not prime. The idea for proving the
result is the same as in the proof of Proposition 4.8:We show that the residue classes
modulo p in Ok form a field.

We will give the proof in the case whereOk = Z[√m ]. Here the residue classes
modulo p in Ok are represented by the p2 elements a + b

√
m with 0 ≤ a, b < p;

clearly every α ∈ Ok is congruent modulo p to one of these elements, and they are
pairwise distinct. These residue classes form a ring, and we want to show that they
form a field. This will follow if we can write down an inverse for each residue class
a + b

√
m mod p different from 0 mod p. Now

1

a + b
√

m
= a − b

√
m

a2 − mb2
,

and the denominator is ≡ 0 mod p if and only if a and b are divisible by p

(otherwise m would be a quadratic residue modulo p). Since 0 ≤ a, b < p, this
implies a = b = 0. In fact, a2 ≡ mb2 mod p implies either (if b �= 0) that
( a
b
)2 ≡ m mod p, and then x2 ≡ m mod p is solvable and m is a quadratic residue

modulo p, or (if b = 0) that a2 ≡ 0 mod p and hence a = 0. Thus for each nonzero

residue class a + b
√

m mod p, the inverse is given by a−b
√

m

a2−mb2
mod p.

In the case m ≡ 1 mod 4, the residue classes modulo p are represented by
elements a + bω with 0 ≤ a, b < p; the rest of the proof is left to the readers
as an exercise. ��

For p = 2, there is a corresponding criterion that may be proved in a similar
manner.

Proposition 4.10 The element p = 2 is prime in the ring of integers Ok of the
quadratic number field k = Q(

√
m) if and only if m ≡ 5 mod 8.

We leave the proof as an exercise for the readers.
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4.2 Unique Factorization Domains

A domain in which the theorem of unique factorization holds is called a unique
factorization domain (UFD). More exactly, we demand

UFD–1. Each non-unit �= 0 is a product of finitely many irreducible elements.
UFD–2. Irreducible elements are prime.

There are domains in which UFD–1 fails: In the domain A that is obtained by

adjoining all 2n-th roots of 2 to Z, namely A = Z[√2,
4√
2 ,

8√
2 , . . .], the element

2 cannot be written as a finite product of irreducible elements since

2 = √
2
√
2 = 4√

2
4√
2

4√
2

4√
2 = . . . .

The defining property of unique factorization domains is that the factorization
guaranteed by UFD–1 should be unique:

UFD–3. Let a ∈ R \ {0} and a = ep1 · · · ps = e′q1 · · · qt , where e, e′ ∈ R× are
units and where the pj and qj are irreducible elements in R. Then s = t , and we
can rearrange the qj in such a way that pi ∼ qi for i = 1, . . . , s.

Clearly, UFD–3 holds in any unique factorization domain.

Proposition 4.11 Conditions UFD–2 and UFD–3 are equivalent in every domain
R in which UFD–1 holds.

Proof UFD–2 �⇒ UFD–3: Since the pi are irreducible, they are prime by
assumption. In particular, p1 divides one of the factors qj , say q1. Since q1 is
irreducible, we must have p1 ∼ q1. Since R is a domain, p1 may be canceled,
and we obtain e1p2 · · ·ps = e′

1q2 · · · qt . Induction now yields the claim.
UFD–3 �⇒ UFD–2: Let a be irreducible and a | xy, where x, y ∈ R. Then

there exists an element b ∈ R with ab = xy. Because of UFD–3, the decomposition
into irreducible elements is unique up to order and units; thus an associate of a must
occur in the factorization of x or y, and we find a | x or a | y. Thus a is prime. ��

Since 1 + √−5 is irreducible in R = Z[√−5 ], but not prime, R is not a unique
factorization domain. This fact also proves that the theorem of unique factorization
in Z, which often seems obvious to beginners in number theory, requires a proof.

We call an element d in some domain a common divisor of elements a, b ∈ R

if d | a and d | b. How should we choose a “greatest” common divisor among
these common divisors? In the ordinary integers, we can choose the greatest divisor
with respect to the absolute value, but this is not a suitable definition for general
domainsR. What we want is a definition of the greatest common divisor in terms of
divisibility alone: We call d ∈ R a greatest common divisor of a, b ∈ R and write
d ∼ gcd(a, b) if d has the following properties:

GCD–1. d is a common divisor of a and b, i.e., d | a and d | b.
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GCD–2. Every common divisor of a and b divides d , i.e., if c | a and c | b for some
c ∈ R, then c | d .

Again we would like to emphasize the fact that this definition is well suited for
building a theory of greatest common divisors but cannot easily be used for finding
a greatest common divisor of two elements in some domain.

In unique factorization domains, the greatest common divisor of two elements
can be written down explicitly. In fact, if a = u

∏
pαp and b = v

∏
pβp are the

prime factorizations of a and b (with units u, v ∈ R×), then we can easily show
that d = ∏

pmin(αp,βp) is a greatest common divisor of a and b. One has to remark
that even in the case of the ordinary integers, finding the prime factorization of two
(large) integers can be very difficult.

Two elements a and b of some unique factorization domain R are called coprime
(or relatively prime) if their greatest common divisor is a unit. Observe that we
demand that R be a unique factorization domain. In fact, in domains without unique
factorization, a greatest common divisor need not exist, and if it does, it need not
have the properties we expect from a greatest common divisor, such as gcd(a, b)2 =
gcd(a2, b2).

Proposition 4.12 If R is a unique factorization domain, if a, b ∈ R are coprime,
and if ab = exn (n ≥ 2) for some unit e ∈ R× and some x ∈ R, then there exist
units e1, e2 ∈ R× and elements c, d ∈ R such that a = e1c

n and b = e2d
n, where

cd = x and e1e2 = e.

Proof We prove this by induction on the number of prime factors of a. If a is a unit,
then the claim follows with c = 1, d = x, e1 = a, and e2 = ea−1.

Assume that the claim is true for all a ∈ R with at most t different prime factors,
and let p ∈ R be a prime with p | a. Assume that ph ‖ a (we write ph ‖ a if ph | a

and ph+1
� a, i.e., if ph is the largest power of p that divides a). Since ph ‖ xn (here

we use the fact that a and b are coprime), we must have h = nk for some k ∈ N and
pk ‖ x. Thus a = pha1, x = pkx1 and a1b = exn

1 . By induction assumption, we
have a1 = e1c

n and b = e2d
n, and now the claim follows since a = e1(cp

k)n. ��
Corollary 4.13 IfR is a unique factorization domain, if gcd(a, b) = p for elements
a, b, p ∈ R, where p is prime, and if ab = exn (n ≥ 2) for some e ∈ R× and x ∈ R,
then there exist units e1, e2 ∈ R× and c, d ∈ R with a = e1pcn and b = e2p

n−1dn

(after switching a and b, if necessary).

Proof Exercise 4.28. ��

4.3 Principal Ideal Domains

Principal ideal domains will play a minor role in this chapter, mainly as a link in the
chain of inclusions
Euclidean Domains ⊂ Principal Ideal Domains ⊂ Unique Factorization Domains
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that we will use for constructing unique factorization domains. Both inclusions
are proper; for rings of integers in quadratic number fields (and in fact of general
number fields), the second inclusion is in fact an equality.

First we will have to explain the notion of a principal ideal domain. To this end,
consider a domain R; a subring I of R is called an ideal of R if I · R ⊆ I . Thus an
ideal is a subset of a domain that is closed with respect to addition (I + I ⊆ I ) as
well as with respect to multiplication by arbitrary elements of the domain R.

Observe that I is a subring of R if the weaker condition I · I ⊂ I is satisfied.
In the domain R = Z, it can be shown that each subring is an ideal. The following
example shows that this is not true for general domains: The set

M = Z + 2
√

mZ = {a + 2b
√

m : a, b ∈ Z }

is a subring of Z[√m ], but not an ideal. This is because MR = R; in fact, 1 ∈ M

implies that each element of R is contained in MR. Since
√

m ∈ R \M , the subring
M is not an ideal.

It is very easy to write down examples of ideals. If we are given elements
a1, . . . , an ∈ R, then the set of all R-linear combinations

I = (a1, . . . , an) := {a1r1 + . . . + anrn : rj ∈ R}

of these elements is an ideal called the ideal generated by a1, . . . , an. Clearly I is
closed with respect to addition; thus it remains to verify that IR ⊆ I . But this is
easy: Since a = a1r1 + . . . + anrn ∈ I , clearly ar = a1(r1r) + . . . + an(rnr) is an
element of I .

In our proofs we have to consider ideals generated by infinitely many elements
a1, a2, . . .These ideals I = (a1, a2, . . .) are by definition the set of all finiteR-linear
combinations of the elements ai ∈ I .

Remark In fields R = K , there are only two different ideals, namely the zero ideal
(0) and the unit ideal (1) = R.

Ideals generated by a single element a are called principal ideals. These have the
form I = (a) = {ar : r ∈ R}; occasionally, we will write I = aR. Principal ideals
(a) consist of all multiples of a.

The transition from elements to principal ideals consists essentially in disregard-
ing units.

Lemma 4.14 For a, b ∈ R, the following assertions are equivalent:

1. (a) = (b);
2. There is a unit e ∈ R× with a = be.

The proof is a simple exercise.
A domain in which each ideal is principal is called a principal ideal domain

(PID). Clearly, the ringZ of ordinary integers is a PID; in fact, the ideal (a1, . . . , an)

is generated by the greatest common divisor d = gcd(a1, . . . , an). Not every unique
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factorization domain is a principal ideal domain; the best known example is the
domain C[x, y] of polynomials in two variables with complex coefficients; here,
(x, y) is not principal, as is easily seen.

Remark The fact that C[x, y] is a unique factorization domain follows from a well-
known theorem in algebra: If R is a UFD, then so is the polynomial ringR[y]. Since
R = C[x] is a UFD (this ring is even Euclidean—see Sect. 4.4), the claim follows.

Now we prove that principal ideal domains have unique factorization.

Theorem 4.15 Principal ideal domains are unique factorization domains.

Proof Assume that UFD–1 is not satisfied. Then there is an a1 ∈ R that cannot
be written as a product of irreducible elements (in particular, a1 is not irreducible).
Thus, a1 = a2b2 (for non-units a2, b2 ∈ R\R×), where one of the factors, say a2, is
not a product of irreducible elements. Thus, a2 = a3b3, etc., and we obtain a chain
of elements a1, a2, a3 . . . ∈ R with a2 | a1, a3 | a2, . . . , where ai and ai+1 are not
associated.

Now consider the ideal I = (a1, a2, . . .) generated by the ai . By assumption,
there is an element a ∈ R with I = (a), and thus there exist m ∈ N and ri ∈ R

such that a = r1a1 + . . . + rmam. Since am | am−1 | · · · | a1, we have am | a. Since
am+1 ∈ (a), there is an element r ∈ R such that am = ar , i.e., with a | am+1. By
construction of the ai , we have am+1 | am, and hence am and am+1 are associated in
contradiction to the construction of the ai .

Now we show that irreducible elements are prime (UFD–2). To this end, let a ∈
R be irreducible, and let x, y ∈ R be given with a | xy and a � x; then we have to
show that a | y. Now (a, x) = (d) for some d ∈ R; thus d | a and d | x. If we
had d ∼ a, it would follow that a | x in contradiction to our assumption. Since a

is irreducible, d must be a unit. Thus d−1 ∈ R, and therefore 1 = d−1d ∈ (d) =
(a, x), i.e., there exist m,n ∈ R with 1 = ma + nx. Multiplication by y yields
y = may + nxy, and since a | xy, we find a | y. This is what we wanted to show.

��
An important property of principal ideal domains is the fact that they are Bézout

domains:2 A domain R is called a Bézout domain if for all a, b ∈ R there exists
a d ∼ gcd(a, b) such that d = ar + bs is an R-linear combination of a and b.
Principal ideal domains are always Bézout domains: Given a, b ∈ R, we form the
ideal I = (a, b); since R is a principal ideal domain, there is an element d ∈ R with
(a, b) = (d). We claim that d ∼ gcd(a, b). In fact, since a ∈ (d), there is a t ∈ R

with a = dt; this shows that d | a, and similarly we find that d | b, and hence d is
a common divisor of a and b. On the other hand, d ∈ (a, b) implies that there are
elements r, s ∈ R with d = ar + bs; if e is any common divisor of a and b, then e

2Étienne Bézout (1730–1783) was a French mathematician, an author of textbooks. Bézout proved
the existence of Bézout elements for polynomial rings; in the case of integers, they already occurred
in the work of Bachet.
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divides ar + bs = d , and hence d is a greatest common divisor of a and b. Observe
that we have proved the Bézout property en passant.

4.4 Euclidean Domains

In his Lectures on number theory [31, p. 20], Dirichlet (actually we do not know how
much of this is due to Dedekind) discusses the foundations of elementary number
theory and then writes the following:

It is now clear that the whole structure rests on a single foundation, namely the algorithm for
finding the greatest common divisor of two numbers. [. . . ] any analogous theory, for which
there is a similar algorithm for the greatest common divisor, must also have consequences
analogous to those in our theory.

In order to show that some domain R is a unique factorization domain, we will
at first use the Euclidean algorithm. A function f : R −→ N0 is called a Euclidean
function if it has the following properties:

EA–1. f (a) = 0 if and only if a = 0.
EA–2. For all a ∈ R and b ∈ R \ {0}, there exists a c ∈ R such that f (a − bc) <

f (b).

If there exists a Euclidean function on R, then R is called a Euclidean domain.
The ring of integers Z is Euclidean with respect to the absolute value | · |. Other

examples of Euclidean domains will be given in the Exercises section. The first
domain R �= Z that was shown to be Euclidean was the ring Q[X] of polynomials
with rational (or real) coefficients. The existence of a Euclidean algorithm in this
domain was proved by the Dutch mathematician Simon Stevin (1548–1620). Stevin
wrote almost a dozen textbooks and helped to popularize the decimal system in
Europe.

Theorem 4.16 Euclidean domains are principal ideal domains.

Proof Let f be a Euclidean function on R, and let A ⊆ R be an ideal in R. Among
the elements inA\{0}, there is one, say a, for which f is minimal (in fact, the values
of f are natural numbers). We claim that A = (a). Since a ∈ A, we clearly have
(a) ⊆ A; it remains to prove the reverse inclusion. To this end, take an arbitrary
b ∈ A; by EA–2, there is a q ∈ R with f (b − aq) < f (a); since f (a) was chosen
minimal on A \ {0}, we have f (b − aq) = 0, and EA–2 implies that b = aq . Thus
b ∈ (a), and since b ∈ A was arbitrary, we even have A ⊆ (a). ��

In particular, Euclidean domains have the Bézout property, i.e., given an ideal
(a, b), an element d ∼ gcd(a, b) can be written as d = ar + bs with r, s ∈ R. The
advantage of working in a Euclidean ring is that given a, b ∈ R, we can compute
the greatest common divisor d ∼ gcd(a, b) as well as the Bézout elements r and s

using the Euclidean algorithm.
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To this end, take elements a, b ∈ R \ {0}; applying the Euclidean algorithm,
we find q0, r1 ∈ R with a − bq0 = r1 and f (r1) < f (b). Similarly, there exist
q1, r2 ∈ R with b − r1q1 = r2 and f (r2) < f (r1) (unless we already have r1 = 0;
in this case, a = bq1 and d = b = 0a + 1b, so everything is trivial). Continuing in
this way, we find a chain of equations

a − bq0 = r1 f (r1) < f (b),

b − r1q1 = r2 f (r2) < f (r1),

r1 − r2q2 = r3 f (r3) < f (r2),
...

...

rn−2 − rn−1qn−1 = rn f (rn) < f (rn−1)

rn−1 − rnqn = rn+1 f (rn+1) < f (rn).

Now the natural numbers f (rj ) cannot become arbitrarily small; thus there exists
an index n ∈ N with rn+1 = 0. We then claim that rn ∼ gcd(a, b). In fact, it follows
from the last row that rn | rn−1, and then the next to last row gives rn | rn−2, and in
this way we climb the ladder until we reach rn | r1, rn | b and rn | a. Thus rn is a
common divisor of a and b.

Conversely, if d is any common divisor of a and b, then the first row tells us that
d | r1, the second d | r2, etc., and eventually we reach d | rn. In other words, rn is a
greatest common divisor.

It may be said that the definition of the greatest common divisor is chosen in such
a way that the proof of this fundamental result on the Euclidean algorithm becomes
essentially trivial.

We obtain the Bézout elements r, s ∈ R as follows: We start with rn = rn−2 −
rn−1qn−1 and replace the rj with the maximal index by the linear combination in
the preceding row, in our case rn−1 by rn−1 = rn−3 − rn−2qn−2. Now we have
written rn as a linear combination of rn−2 and rn−3. Next we replace rn−2 by rn−2 =
rn−4 − rn−3qn−3, etc., until we finally have written rn as an R-linear combination
of a and b.

4.4.1 Summary

We have defined the following notions in quadratic number rings:

• divisibility and congruences,
• units and associate elements, and
• primes and irreducible elements.
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Among the important results, we have obtained are the following:

• Primes are irreducible; the converse holds in unique factorization domains.
• We have the inclusions

Unique Factorization Domains ⊃ Principal ideal domains ⊃ Euclidean domains.

Moreover we know that in unique factorization domains, there exist greatest
common divisors d = gcd(a, b); in principal ideal domains, there exist Bézout
elements: We can write the greatest common divisor as a Z-linear combination of
a and b: d = am + bn. Finally, in Euclidean domains, we have an algorithm for
computing greatest common divisors as well as Bézout elements.

4.5 Exercises

4.1. In the ring R = Z[x] of polynomials, show that x | f (x) for some f ∈ R if
and only if f (0) = 0. Show more generally that (x − a) | f (x) if and only if
f (a) = 0.

Show that these properties continue to hold in polynomial rings R = K[x]
over fields K . What about polynomial rings over domains or arbitrary rings?

4.2. Show that (1.12) is also a counterexample to the Four Numbers Theorem in
Z[√−5 ], whereas (1.11) is compatible with the Four Numbers Theorem in
Z[√−2 ].

4.3. Let R be a domain. Consider the set S of pairs (p, q) and define an
equivalence relation on S by (p, q) ∼ (r, s) if and only if ps = qr . On
the set K of equivalence classes, define addition and multiplication via

• (p, q) + (r, s) = (ps + qr, qs);
• (p, q) · (r, s) = (pr, qs).

Show that this is well defined and that it makes K into a field with neutral
elements (0, 1) for addition and (1, 1) for multiplication.

Show that the map ι : R −→ K : r → (r, 1) is an injective ring
homomorphism. The field K is called the quotient field of R, and we may
regard R as a subring of K via the embedding ι.

4.4. Let R ⊆ S be domains, and let a, b,m ∈ R. Does a ≡ b mod m in R imply
the same congruence in S? Is the converse true?

4.5. Each fraction in Q can be reduced to lowest terms in a unique way; in

Z[√−5 ], on the other hand, 1+
√−5
2 = 3

1−√−5
, and both fractions are reduced

to lowest terms. Find more such examples.
4.6. Let α, β ∈ Ok; show that α | Nα. If moreover α | β, then Nα | Nβ (even in

Z).



4.5 Exercises 103

4.7. Show that if
√−2 | y in Z[√−2] for some y ∈ Z, then 2 | y.

Show more generally that
√

m | y, where m is squarefree, always implies
that m | y.

Find a counterexample to the claim that α | y always implies Nα | y.
4.8. Show that a + bi ≡ a + b mod (1 + i) in Z[i].
4.9. Prove Proposition 4.1.
4.10. Prove Proposition 4.3.
4.11. Show that a | b in Z implies a | b in the ring of integers Ok in a quadratic

number field k.
4.12. Show that the set of units R× in some ring R is a group with respect to

multiplication.
4.13. Show that if R = K is a field, then K× = K \ {0}.
4.14. If R is a domain and R[X] the ring of polynomials in one variable X with

coefficients from R, then R[X]× = R×, that is, the units in this polynomial
ring are all constant.

Show, on the other hand, that the polynomial 2X + 1 in (Z/4Z)[X] is a
unit.

4.15. Show that the unit groups of the domains R = Z[√m ] for m < −1 are given
by R× = {−1,+1}.

4.16. LetOk be the ring of integers in a quadratic number field k, and let Ek = O×
k

be its unit group. Show that Ek is a Gal (k/Q)-module (see Exercise 2.16).
4.17. Show: If R is a domain containing Z, and if π is prime in R, then the smallest

natural number divisible by π in R is a prime number.
4.18. Show that Nα = 1 for α = 1+2i

1−2i ∈ Q(i), but that α is not a unit in Z[i].
Construct infinitely many such examples.

4.19. Show that Z is Euclidean with respect to the absolute value.
4.20. Show that the polynomial ring K[x], where K is a field, is Euclidean with

respect to f (a) = 2dega , where deg a denotes the degree of a ∈ K[x], and
where we have set deg 0 = −∞ in order to have 2deg0 = 2−∞ = 0.

4.21. Discuss the examples 2 · 3 = −√−6 · √−6 in Z[√−6 ], 2 · 3 = √
6 · √

6 in
Z[√6 ], and 2 · 7 = (2 + √−10 )(2 − √−10 ) in Z[√10 ] as in (1.12).

4.22. Consider the quadratic number field k = Q(
√

m ); which of the rational
prime numbers p ∈ {2, 3, 5} in Ok with m ∈ {−5,−3,−2,−1, 2, 3, 5} are
irreducible and which are not?

4.23. Show that elements π ∈ Ok are irreducible if Nπ is a rational prime.
4.24. Let R be a unique factorization domain. Show:

a. gcd(a2, b2) = (gcd(a, b))2 for all a, b ∈ R.
b. If gcd(a, b) = 1, then gcd(a2, b) = 1.
c. gcd(a + b, b) = gcd(a, b).
d. gcd(ra, rb) = r gcd(a, b).

4.25. Show that the elements a = 1 + √−5 and b = 1 − √−5 do not have a
common divisor except ±1, but that 2 is a common divisor of a2 and b2.
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4.26. Let S be the domain you obtain by adjoining the element ω = 1
2 (1 + √−5 )

to R = Z[√−5 ]. Show that S = R[ 12 ] and S ∩ Q = Z[ 12 ].
Show moreover that the decomposition (1.12) is not an example for

nonunique factorization into irreducible elements because 3 = 1
2 (1 −√−5 )(1+√−5 ) is a factorization of 3 into the unit 1

2 and the two irreducible
(and even prime) elements 1 ± √−5. Explain the equation 3 · 3 = (2 −√−5 )(2 + √−5 ) by giving a factorization into irreducible elements.

4.27. Solve the Diophantine equation x2 + 5y2 = z2 by setting x + y
√−5 =

(r + s
√−5 )2 as Euler did, and show that the resulting parametrization x =

r2 − 5s2, y = 2rs does not yield all integral solutions of the equation.
Use the domain S = Z[√−5, 1

2 ] from the preceding exercise for obtaining
a complete parametrization of the solutions.

4.28. Prove Corollary 4.13. Hint: Try to obtain a = pa1 and b = pn−1b1, and then
apply Proposition 4.12 to a1 and b1.

4.29. Determine all integral points on the elliptic curve 4y2 = x3 + 1, i.e., all pairs
(x, y) ∈ Z × Z satisfying this equation.

4.30. Find all ring homomorphisms κ from Z[√−5 ] to Z/2Z, Z/3Z and Z/5Z,
and determine their kernels.

4.31. Show that the even integers 2Z form an ideal in Z. More generally, the sets
mZ for arbitrary m ∈ Z are ideals in Z.

4.32. Let (a) and (b) be principal ideals in some domain R. Show that a | b if and
only if (a) ⊇ (b). Show moreover that this implies the equivalence of the
following assertions:

a. (a) = (b);
b. a | b and b | a;
c. a = be for some unit e ∈ R×.

4.33. Show that the set

T =
{(

a b

0 d

)

: a, b, d ∈ Z

}

is a subring of R = M2(Z), the ring of all 2× 2-matrices with entries from Z

(this ring is neither commutative nor a domain since it contains zero divisors),
but that T is not an ideal in R. Hint: Consider the product of the identity
matrix with a lower triangular matrix such as

(
1 0
1 1

)
.

4.34. Let R ⊆ S be domains. Show that I ∩ R is an ideal in R if I is an ideal in S.
4.35. If I is a nonzero ideal in the ring of integers Ok of a quadratic number field

k, then I contains a natural number �= 0. (Hint: Take the norm). Show that,
on the other hand, the ideal (X) in the polynomial rings Z[X] and Q[X] does
not contain any natural number �= 0.

4.36. Show that the polynomial ring Z[x] admits a lot more homomorphisms
into simpler rings than the rings of integers Ok; show in particular that the
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reductions πp modulo p and πx modulo x yield the following commutative
diagram:

Z[x] πp−−−−→ Fp[x]
πx

⏐
⏐


⏐
⏐
πp

Z
πp−−−−→ Fp

4.37. Let k be a quadratic number field. Show that Z is a subring of Ok , but not an
ideal in Ok .

4.38. Show that the set 2Z+ √
2Z is an ideal in Z[√2 ] consisting of the multiples

of
√
2. Show moreover that Z + 2

√
2Z is a subring of Z[√2 ], but not an

ideal.
4.39. An order O in some quadratic number field is a subring of Ok that properly

contains Z. Consider the set F = {f ∈ Z : f ω ∈ O for all ω ∈ Ok}. Show
that F is an ideal in Z; the generator f > 0 of this ideal F = (f ) is called
the conductor of the orderO. Show that the maximal orderOk has conductor
1.

4.40. Show that gcd(2, x) = 1 in the unique factorization domain Z[x] and that
there do not exist associated Bézout elements, i.e., that there do not exist
polynomials p, q ∈ Z[x] with 2p(x) + xq(x) = 1.

Is (2, x) a principal ideal in Z[x] or in Q[x]?
4.41. Find ideals in Z[√−6 ], Z[√−10 ], and Z[√10 ] that are not principal.
4.42. Let R be the domain of all algebraic integers. Show that 2 does not

possess a factorization into irreducible elements. Also show that the ideal
(2,

√
2, 4

√
2, 8

√
2, . . .) is not principal in R and that it is not even finitely

generated (this means that it is not generated by finitely many elements, i.e.,
it does not have the form (a1, . . . , an) for suitable elements aj ∈ R).

4.43. LetR be a domain containingZ (for example,R = Ok). Show that if a, b ∈ Z

are coprime in Z, then they are also coprime in R. (Hint: Bézout).
4.44. Compute the Bézout elements for gcd(21, 15) in Z.
4.45. For n ≥ 3, compute the greatest common divisor of the polynomials xn +

x2 − 2 and x2 − 1 in Z[x] (the result will depend on n). How can the result
that x − 1 is always a common divisor be verified in advance?

4.46. Let α, β ∈ Ok and (Nα,Nβ) = 1 in Z. Then gcd(α, β) ∼ 1 inOk even ifOk

is not a unique factorization domain.
4.47. Bézout elements can be used for inverting residue classes. Assume for

example that a and m are coprime integers; show how to find the inverse
of the residue class a mod m in (Z/mZ)× (i.e., the element b ∈ Z such that
ab ≡ 1 mod m). Compute 1

2 mod 21 and 1
5 mod 33.

4.48. Study the equation y2 = x3 + 9 in integers.
4.49. Use the factorization (y − k)(y + k) = x3 to deduce results on the integral

solutions of the Diophantine equation y2 = x3+k2 for a fixed integer k. This
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is more of an open problem than an exercise. Do not despair if you cannot
find a complete solution (and look for an error if you do).

4.50. For integers k, study the Diophantine equation y2 = x3 − k2. You should
be able to prove that this equation is solvable for k = b(3a2 − b2) or k =
2(a3+3a2b−3ab2−b3). For k = 88, there are two different representations
k = b(3a2 − b2), and hence there are at least two solutions of the equation
also y2 = x3−k2 in this case. Can the number of solutions become arbitrarily
large?

4.51. Solve the Diophantine equation (1 + 8i)x + (5 + 4i)y = 1 in Z[i].
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