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Abstract. Ambient Assisted Living (AAL) is an application of Smart
Environments, dealing with elderlies and their caregivers’ assistance in
their daily life within their enhanced apartments. An AAL environment
needs constant observation of the inhabitant’s activities to inform care-
givers of critical situations respectively to react to them, such as the
patient leaving the flat with the stove still on. Setting up an AAL envi-
ronment is costly and complicated, as all sensors are tailored to the
specific situation. Various industrial systems or research activities exist
to monitor the environment and apply a rule-based inference to detect
the multiple conditions as far as possible. There are, however, a range of
standard day-to-day sensors, such as light switches, window sensors etc.,
which do not directly monitor patient conditions but allow for inference
about a situation, e.g. whether a person has left the flat. We call this
“lifted” contextual information. Also, there is much uncertainty in such
environments, such as sensor malfunctions, power loss, or connectivity
issues. Hence, a situation awareness system should freely combine and
switch between combinations of sensors for identifying and verifying the
current situation, respectively, inferences drawn from it. For example,
confirm that the person has left the flat by checking for a webcam move-
ment. This resembles our ability to use commonsense when we look at
possible sensor readings on a dashboard. We make plain inferences based
on a hypothesis on the given evidence. Such a system needs to make logi-
cal connections between different data and contribute to a derived infor-
mation. We propose developing a logic-based system using the sensor
events as evidence for a commonsense reasoning task.
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1 Introduction

Reasoning about an environment in the context of smart homes gained signif-
icant attention in the last two decades. Researchers have been developing con-
cepts and tools to employ miscellaneous artificial intelligence (AI) techniques for
ambient assisted living (AAL) environments [13]. Such systems target the well-
being of the inhabitants [18], via health monitoring [8], energy-efficient appliance
operation [11] and personalised service adaptation [12]. AI applications in AAL
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environments perceive the inhabitant via the surrounding sensors and automat-
ically adapt or make decisions. This component eventually exhibits reasoning
capabilities and systematic decision support; see [14] for a recent survey. An
essential aspect of those systems is detecting and recognising human activities
or situations (such as left the apartment) and detecting emergencies (such as
falls). It is of high relevance for the ageing population, where an AAL sys-
tem [9] would notify or act promptly in scenarios of significance. However, such
ecosystems’ complexity requires high maintenance costs and complex relations
to achieve semantic interoperability to recognise activities in focus. There can be
many situations worth identifying using sensors in a single room, ranging from
“is someone present” to “is the water boiling”. Considering an entire home, we
may end up with hundreds of such situations, and an office building could have
thousands. This leads to increasing numbers of sensors to cover all the above
situations, driving the economic and maintenance costs to higher levels.

This paper focuses on the reusability and repurposing of existing day-to-day
sensors in the environment (e.g., light switches, contact sensors). As such, they
do not directly offer the property in need (e.g., situation or activity) but allow
their incorporation in an inference task, as “lifted” contextual information. One
with a naive knowledge of physics may exercise a hypothesis evaluation about
the situation using sensor results as evidence. We offer a solution to encode
this Commonsense Knowledge (CK) in rules with the different combinations of
sensors while forming a model for recognising the situation in need. The rules
mentioned above contain a form of uncertainty in their definition. More specifi-
cally, we employ a Markov Logic Network (MLN) for developing a probabilistic
model to support the uncertain varieties of different compositions of sensors,
expressed as commonsense logic rules, for identifying the situation in need. The
inference task also contains a set of meta-rules, which encode the interaction
between the sensor events and their interpretation effects. The paper gives a
quick overview of the approach and a discussion over state of the art in reason-
ing in AAL environments. We conclude with a short outlook and future steps.

2 Proposed Approach

This section will briefly describe our approach to representing the situation
recognition from “lifted” contextual information (i.e., sensor information) using
CK and its uncertainty aspects. In our case, we use the term “CK” to metaphor-
ically argue behind the transfer of knowledge one has behind a naive under-
standing of physics of how sensors work. For general definitions of CK, see [6].
For example, one knows that a light bulb in operation, in simple words, emits
light and gets hotter over time; this accounts for commonsense. As such, using
environmental properties (of light intensity and ambient temperature), we may
reason behind the followings situations via explanations of the sensor readings
(accounts as knowledge): (i) a light switch is flipped on, (ii) someone is present
in the room, (iii) but could also possibly mean that there is a fire in the room;
and many others. Specifically, for the situation in (iii), the readings of a light
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sensor and a temperature sensor may not be enough. An additional sensor (e.g.,
an air quality sensor) will increase the explanation’s accuracy (“there is fire”).
One may observe a factor of uncertainty regarding the reasoning behind some
sensor readings, as much as a process of Commonsense Reasoning (CR) does.

We automate this form of CR, using symbolic representations of sensor data
in logic-based rules over continuous time. MLN is a robust framework that com-
bines both logical and probabilistic reasoning [16]. It allows us to declare a
stochastic model at a high level using first-order logic. Besides, we use the well-
defined temporal formalism of Event Calculus (EC), a many-sorted predicate
calculus, to reason about events and their effects [10]. A hybrid approach of the
two was presented by Skarlatidis et al. [19], developing a dialect of EC to model
the inertia laws for recognising complex events in an annotated video surveil-
lance dataset. Their work inspired us to select the technologies for dealing with
uncertain knowledge and extract situations of interest from continuous sensor
data.

The construction of a first-order knowledge base is expressive, powerful and
uses unambiguous semantics for its syntactic rules. Constructing an MLN Knowl-
edge Base (KB) is a set of tuples 〈w, F 〉, where w is the confidence value to the
rule formula F . Each first-order formula contains different atoms connected with
logical operators. Each atom is a predicate symbol applied to a tuple of terms,
representing an object in the domain. A term can be a constant (e.g., a sensor
type - ContactSensor, MotionSensor), a variable (which ranges over a domain -
a range of constants) or a function (applied over terms also).

Using the domain-independent predicates from the EC dialect (MLN-EC)
in [19], we create CK formulas that reflect different sensors’ compositions to
recognise a situation of interest. EC’s main components are the event and the
fluent (a property whose value changes over time). In our system, the events are
“lifted” contextual information from the sensor data. They are low-level symbolic
representations of sensor data, matching primitive shape-based patterns - we
name them shapeoids. The fluents are the monitored situations whose value
persists over time. The meta-rules of EC encode the so-called inertia laws [17],
which dictate that something continuous to hold unless it is indicated otherwise
(e.g., terminated by an event). The variables and functions start with a lowercase
letter. The predicates and constants with an uppercase letter.

The offline statistical relation framework of MLN, combined with the meta-
rules of Event Calculus, offers a formal, but at the same time, a powerful prob-
abilistic logic-based method for complex event recognition [19]. Open-source
implementations of MLN exists, such as Alchemy1, Tuffy2, LoMRF3. For our
purpose, we use LoMRF as its implementation is in Scala, matching the language
of any modern data processing framework (e.g., Apache BEAM4), to realise a

1 http://alchemy.cs.washington.edu/.
2 http://i.stanford.edu/hazy/tuffy/.
3 https://lomrf.readthedocs.io/.
4 https://beam.apache.org/.
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holistic architecture for online inferences from streaming data. Also, LoMRF has
the most recent development cycle than any of the other tools.

Finally, we envisage an architecture for our approach and turn it into a
holistic system and a complete pipeline that spawns over the following steps/
components:

– Modelling CK and representing a different set of sensor compositions as alter-
natives for monitored situations.

– Extract low-level symbolic representations of streaming sensor data, matching
primitive shape-based patterns - named shapeoids.

– Initiate dynamic inference processes (i.e., inference in MLN) on incoming
streaming shapeoid events while posing queries for the recognition.

3 Related Work

Several different approaches have been pursued over the years to encode CK [6]
and perform CR [7]. In AAL, the notion of CR is applied when there is a cre-
ation of a symbolic knowledge base and perform reasoning upon these symbols.
In a recent survey [4], the authors contacted a study for augmenting the sit-
uation of AAL and the kinds of solutions applied in such environments. The
pervasiveness of sensor devices in smart environments enables systems to “read”
and understand the environmental behaviour from sensor data [3,20,21]. The
task of reasoning in AAL, bases mostly on the probes of information installed
in the environments (i.e., sensors) and the context they are applied for (e.g.,
the inhabitant, daily activities etc.). A fundamental step in a reasoning task,
is the initial representation of the entities and their connections (if any). Many
use the concept of ontologies [5] as a shared conceptual model of the world,
to facilitate the core knowledge representation. The authors in [15] distinguish
between lightweight ontologies, storing only the formal hierarchies and relation-
ships, and heavyweight ontologies, adding inference rules for semantic interpre-
tations. Nonetheless, we concur that some situations do not exist implicitly in
the data or are challenging to collect and annotate.

The inference process for reasoning with ontologies is monotonic; a new
observation will not change already inferred knowledge. For instance, in [1],
the authors use a hybrid system incorporating an ontological representation of
data and a non-monotonic inference process using answer set logic for sensor
data [2] targetting AAL environments. However, their approach does not handle
rule uncertainty, although they model their semantics in a model that supports
fallible logic. Besides, their approach does not support a formal grounded theory
at the meta-level, dictating logic and supporting the CR mode [7]. We opt for
integrating fundamental domains from formal grounded theories, probabilistic
theory and modern dynamic data processing solutions to automate the CR in
smart environments.
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4 Conclusion and Future Steps

This paper introduced an approach to use “lifted” contextual information from
sensor data and introduce sensor data interpretation via CR rules. A naive knowl-
edge of physics coupled with background domain knowledge of a smart environ-
ment opts for detecting occurrences of certain situations. As such, declaring these
logical “inference” sentences results in a human-readable form of reasoning that
incorporates commonsense logic.

Due to the uncertain nature of making a hypothesis about given observations,
we use MLN to soften the constraints against the possible world where the logical
sentences are satisfied. The inertia rules must remain as hard constraints. The
choice of a bounded environment, such as AAL, narrows down the available
knowledge for encoding it with our method. The approach does not foresee an
infinite amount of encoded inference rules, as inference in MLN may become
intractable if we make too many open-world assumptions in the CK rules. The
complexity of the system relies on the definition of the CK rules. However,
our approach’s novelty is the redundancy in detecting the desired situation via
alternatives from ones’ CK with the available nearby sensors, considering that
we normally use direct means for sensing (e.g., use a contact sensor to detect if
the door is open).

As future steps, we want to demonstrate in a dynamic scenario of how the
sensor data patterns (shapeoids) relate to semantic interpretations (CK rules).
Moreover, an evaluation with a real dataset is foreseen to examine the scalability
of the approach.
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