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Abstract. The vulnerabilities found in Internet of Things (IoT) devices have
caused a large number of IoT devices being compromised and used as botnet
platforms, which imposes a serious threat to the cyber security. In order to miti-
gate this threat, several network-based intrusion detection methods are proposed.
While models and algorithms are important, so are the representative datasets and
comprehensive feature vectors. In this paper, we firstly construct a botnet net-
work traffic dataset by automatically monitoring some latest IoT botnet samples
in our self-built experimental system. The dataset contains 17.5GB network traffic
which generated by 257 samples from 10 families. We can see the samples’ entire
lifecycle, including installation, propagation, scanning, DDoS attacks, C&C and
other typical botnet behaviors. Then, through an in-depth analysis of the collected
dataset, we propose a set of feature vectors for detecting. Since we are from the
perspective of samples’ entire lifecycle, our feature vectors provide more dimen-
sions and is more expressive than existing works. To evaluate the effect of these
feature vectors, we design a classification model based on machine learning, and
run it on the constructed dataset and another public dataset. The experiment results
demonstrate that the proposed feature vectors perform better on our dataset than
on others, showing that the future IoT botnet detection model needs to face a
longer botnet lifecycle and adopt more comprehensive feature vectors.
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1 Introduction

With the rapid development of the Internet, Internet of Things (IoT) plays an increas-
ingly significant role in our daily activities. Unfortunately, IoT devices have traditionally
lacked of proper control measures and proactive security management (e.g., usage of
default passwords, no firmware updates, no access control policy), featuring them as high
vulnerable and prone to be compromised devices. These features have been exploited to
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create large and powerful botnets by attackers, such as Mirai [1], Haijme [2], VPNFliter
[3]. An IoT botnet [4] is a group of compromised IoT devices that can be controlled
remotely by a botmaster to execute coordinated attacks. The lifecycle of a botnet such as
Mirai are typically constructed in several distinct operational stages, namely propaga-
tion, C&C (Command and Control) communication and attack. By using the power of
compromised IoT devices, IoT botnets can perpetrate a wide range of malicious attacks,
from massive SPAM and phishing campaigns to distributed denial-of-service (DDoS).
Most famously, the Mirai botnet [5] was used to launch a 623 Gbps DDoS attack [4]
against krebsonsecurity.com, and a 1.2 Tbps attack [6] against Dyn DNS provider in
2016.

To mitigate the threats caused by IoT botnets, the most common countermeasures
for defenders is to deploy network-based intrusion detection systems. Detection systems
are built and trained using legitimate and malicious data to establish the normality
or abnormality behavior patterns, then using machine learning algorithms to identify
potential infected devices. The performance of detection systems based on machine
learning algorithms heavily rely on data quality and extracted feature vectors. Therefore,
a complete dataset and comprehensive feature vectors are key components for a high-
performance effective IoT botnet detection system. While there have been in-depth
studies into IoT botnet datasets [7, 11], as well as the features used by the detection
models [12–14], there remain some drawbacks. First, most existing detection research
only focus on some stage of a botnet lifecycle,making the datasets and the feature vectors
incomplete, which not only can not accurately de-scribe the behavior pattern of botnets,
but also affect the results of the detection model to some degree. Second, as malwares
are constantly being updated, the datasets need to be continuously supplemented and
improved.

To overcome limitations of existing studies, we focus on detecting botnets during
its entire lifecycle, and present an in-depth analysis of IoT botnet traffic. In the dataset
aspect, we construct an experimental environment that automatically captures botnet
sample’s traffic. By running more than 300 latest botnet samples, we construct a new
realistic dataset including 257 botnets from 10 families which can truly reflect the behav-
ior of IoT botnet in thewild. In the feature vectors aspect, we propose a new set of features
which depict the traffic characteristics of the entire lifecycle of IoT botnets, including the
propagation stage, the C&C stage and the attack stage. Our work is aimed at providing
representative dataset and comprehensive features that could be useful for researchers
to develop the detection model for IoT botnets. The main contributions of this paper are
as follows:

• We collect some latest botnet samples, and construct a new realistic IoT botnet traffic
dataset by running samples in a self-built lab environment.

• We propose a set of features including three dimensions that cover the network
behavior characteristics of a botnet lifecycle.

• We evaluate the detection effect of the proposed features on our dataset by deploying
machine learning algorithms, and it performs better than on some existing datasets,
demonstrating that both representative datasets and comprehensive feature vectors are
important to botnet detection models.
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2 Related Work

In recent years, research on detection methods for IoT botnets has gradually studied.
Some IoT botnet datasets and detection methods with different feature vectors were
proposed.

Koroniotis et al. [7] deployed a testbed relying on some simulated IoT services and
network platforms include normal and attacking virtual machines (VMs) with additional
network devices such as a firewall, to generate a new realistic Bot-IoT dataset. By
implementing different botnet scenarios, the dataset covers various types of attack traffic
commonly used by botnets. To evaluate the reliability of the dataset and the performance
of detection methods, authors proposed 45 features which indicated an attack flow, the
attacks category and subcategory. This work focus on collecting IoT botnet traffic on
diverse attack scenarios, and provides the baseline for allowing botnet identification
across IoT-specific networks.

Alejandro et al. [8] provided a novel dataset with network data collected from a
medium-sized IoT network architecture. To generate legitimate and malicious traffic,
some virtual IoT devices were deployed using a Raspberry Pi which allows to emulate
the behavior of an IoT device, and three IoT botnet malware were deployed in the IoT
devices. The generated dataset focus on the first stages of a botnet deployment, including
infection, propagation and C&C communication. Based on this dataset, a total of 100
network traffic statistical features were calculated within different time windows, and
used as predictors/input for the machine learning models. Similarly, Bezerra et al. [9]
also built an IoT experimental environment using a Raspberry Pi to generate a labelled
dataset, but the dataset only covers the infection stage, including the device was not
infected, and other ones when multiple botnet malware infected the device.

Meidan et al. [10] proposed and evaluated a novel IoT botnet detectionmethodwhich
extracts behavior snapshots of the network traffic and uses deep autoencoders to detect
botnet attacks. The dataset used in this paper gathered from nine commercial IoT devices
infected by authentic botnets from two families. To train the detection model, 115 traffic
statistics features which capture behavioral snapshots are extracted from the packets’
context. Different from [8, 9], this work focus on the attack stage, the propose is to
detect compromised IoT devices which have been added to a botnet and have been used
to launch attacks.

Different from these studies that only focus on a specific stage of the botnet lifecycle,
we propose a set of new features which can cover the nearly all network characteristics
of a botnet lifecycle, based on a new generated dataset. Our goal is to address the
shortcomings by constructing a new botnet traffic dataset and extracting new detection
feature vectors, thus providing a support for developing a high-performance IoT botnet
detection model.

3 Experimental Environment and Dataset

This section presents the experimental environment developed to build a dataset, and
the detail steps carried out to generate the dataset. The constructed dataset in this paper
will be publicly available for the research community, and can be accessed at here [15].
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Existing researches usually create a scenario to simulate the IoT botnet activities in
local network. For that purpose, it is necessary to set up an isolated network, including
the infected devices, C&C servers, real or virtual IoT devices and other network con-
figurations, then capture the traffic generated by the bot. These requirements rely on
very time-consuming tasks, multiple device components and complex network struc-
ture. Besides, to eliminate the risk of running the botnet sample, the source code is often
modified to connect with the specific C&C server which is controlled by re-searchers.
However, the C&C server and attack activities are often changed by the botmaster, so the
captured traffic in this kind of experimental environment can only represent the behavior
of the botnet during a certain period.

To construct datasets that can expose sample’s actual behaviors in the wild, we
design a real experimental environment allowing botnet samples to connect to real C&C
servers. Because the architectures of IoT devices are various, such as MIPS, MIPSEL,
ARM, we use QEMU [16] to deploy virtual hosting of several virtual computers on
a single computer. QEMU is a free and open-source emulator that performs hardware
virtualization, and it can provide a set of different hardware and device models for
the machine, enabling it to run a variety of guest operating systems [17]. QEMU can
also do CPU emulation for user-level processes, allowing applications compiled for one
architecture to run on another.

Fig. 1. The architecture of experimental environment.

The architecture of experimental environment is shown in Fig. 1. It consists of three
components, namely multi-IoT samples operating environment, traffic monitor and FTP
server. The multi-IoT samples operating environment is responsible for running IoT
botnet samples. It can support the emulation of various architectures, including MIPS,
PowerPC, ARM, RISC-V. The traffic monitor is responsible for capturing the traffic
generated by the samples. In this paper, we use the QPA [18] tool as the traffic monitor.
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QPA is an open source, real-time traffic analysis software which could capture network
traffic generate by specific process. Based on the advantages of process capture, it can
accurately determine the process of each package in real time. The FTP server is used to
store malware samples. To improve the efficiency of the experiment, we develop a script
automatically launch QEMU virtual machine, run botnet samples and capture network
traffic.

We collected a set of fresh botnet samples which are captured from honeypots on
March 2020. The total number of samples is more than 300, and shown as Table 1, 257
samples from 10 families exhibit network behavior. We executed these samples in the
experimental environment and generated 17.5 GB pcap files containing only malicious
traffic generated by them. This traffic became an important source for us to analyze IoT
botnet network behaviors. Considering that training effective IoT anomaly detection
methods rely on the acquisition of both malicious and normal behavioral traffic, we
mixed the normal traffic comes from several popular public datasets, including Bot-IoT
dataset [7], CTU-IoT-23 dataset [19].

Table 1. The malware families.

Family Number of samples Family Number of samples

Agent 2 Generic 8

CoinMiner 1 Mayday 2

Ddostf 1 Mirai 131

Gafgyt 109 Xarcen 1

Ganiw 1 Xorddos 1

4 Feature Extraction

This section present the feature vectors extracted from the collected network traffic. Bots
within a botnet typically exhibit the uniformity of traffic behavior and unique communi-
cation patterns. These botnet characteristics are well known and have been exploited by
various researchers towards the development of detection systems. Based on the obser-
vation,most researches focus on analyzing the botnet network behavior at a certain stage.
For example, [13] focus on detecting malicious activities, in particular attacks against
DNS, HTTP, and MQTT protocols utilized in IoT networks, so the proposed statistical
features are established from aggregating network flows with the potential analysis of
MQTT, HTTP, and DNS protocols. In this case, the features are difficult to accurately
describe the network behavior characteristics of the complete life cycle of a botnet, the
proposed detection model can only be applied to datasets and scenarios containing some
specific attacks.

To comprehensively depict the characteristics of botnet networks behavior, we pro-
pose a set of features from an in-depth analysis of the raw traffic, which covers the C&C
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communication and attack activities of a botnet. The proposed features are based on the
flows which are extracted from the captured pcap files, namely our constructed dataset.
Flows contain header information about network connections between two endpoint
devices. Typically, all transmitted network packets with the same source IP address,
source port, destination IP address, destination port and transport protocol within a time
window are aggregated into one flow. We divide these features into three groups: basic
feature, time-based feature, and service-based feature.

Basic Feature: The basic feature contains flow statistics, packet statistics and the header
information of raw packets. The group ‘srcip’, ‘sport’, ‘dstip’, ‘dsport’, ‘proto’ are
considered networkflow identifiers, as this information is capable of uniquely identifying
a flow and assisting in the labeling process. The packet statistics assist the examination
of the payload beside the headers of the packets. As a supplement of network behavior,
we also extract some features of the TCP protocol, mainly containing TCP flags (e.g.
SYN flag, ACK flag, etc.).

Time-based Feature: The time-based feature characterizes the regularity of flow
behavior over time. The features contain a timestamp attribute like record start time,
record last time, a continuous attribute like record total duration and numeric attributes
like bytes per second.

Service-based Feature: The service-based feature comprises intrinsic information of
the DNS and HTTP protocols which are acquired from the application layer of the
TCP/IP model. These two protocols are often used in the C&C communication. Tradi-
tionally, malware finds the C&C server through querying the domain, and after estab-
lishing contact with C&C server, it begins to download the payload through the HTTP
protocol. Therefore, we extract the DNS features from the common DNS queries and
responses. The statistical features include the length and mean of the query and answer
attributes. Similarly, the HTTP features are created from analyzing the HTTP requests
and responses, and generating statistical features.

The detailed feature description is shown in Table 2, Table 3 and Table 4. These
features are proposed based on the dataset which are generated in our experimental
environment. They depict the botnet network behavior from multiple dimensions, and
can be applied to detection models based on machine learning at various scenarios.
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Table 2. Basic features.

# Feature Description

1 srcip Source IP address

2 sport Source port number

3 dstip Destination IP address

4 dsport Destination port number

5 proto Transaction protocol

6 pktcount Total count of packets

7 spkts Source to destination packet count

8 dpkts Destination to source packet count

9 sloss Source packets retransmitted or dropped

10 dloss Destination packets retransmitted or dropped

11–16 spktlength Statistics on the packet size transmitted from source to destination packet (sum, max,
min, avg, std and var)

17–22 dpktlength Statistics on the packet size transmitted from destination to source packet (sum, max,
min, mean, avg, std and var)

23–28 pktlength Statistics on the packet size (sum, max, min, avg, std and var)

29–34 pktheader_length Statistics on the packet header size (sum, max, min, avg, std and var)

35–40 spktheader_length Statistics on the packet header size transmitted from source to destination packet (sum,
max, min, avg, std and var)

41–46 dpktheader_length Statistics on the packet header size transmitted from destination to source packet (sum,
max, min, avg, std and var)

47 pktratio The value of spkts divided by dpkts

48 pktlength_entropy Entropy of packet length

49 spktlength_entropy Entropy of source to destination packet length

50 dpktlength_entropy Entropy of destination to source packet length

51 pktheader_entropy Entropy of packet header length

52 spktheader_entropy Entropy of the packet header size transmitted from source to destination packet

53 dpktheader_entropy Entropy of the packet header size transmitted from destination to source packet

54–61 tcp_flag TCP flags (FIN,SYN,RES,PSH,ACK,URG,ECE,CWR)

62–69 stcp_flag TCP flags from source to destination
(FIN, SYN, RES, PSH, ACK, URG, ECE, CWR)

70–77 dtcp_flag TCP flags from destination to source
(FIN, SYN, RES, PSH, ACK, URG, ECE, CWR)

79–81 swin Source TCP window advertisement value(max, avg, std)

82–84 dwin Destination TCP window advertisement value (max, avg, std)
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Table 3. Time-based features.

# Feature Description

85 duration Record total duration

86 bytes_second Bytes per second

87 sbytes_second Frequency of bytes transmitted from source to destination

88 dbytes_second Frequency of bytes transmitted from destination to source

89 pkts_second Packets per second

90 sbytes_second Frequency of Packets transmitted from source to destination

91 dbytes_second Frequency of Packets transmitted from destination to source

92–96 pkttimedistance Statistics on time interval of all packets (sum, max, min, avg,
std)

97–101 spkttimedistance Statistics on time interval of source to destination packets (sum,
max, min, avg, std)

102–106 dpkttimedistance Statistics on time interval of destination to source packets (sum,
max, min, avg, std)

107 sttl The TTL of source to destination packets

108 dttl The TTL of destination to source packets

109–111 sjitter Statistics on jitter time from source to destination (max, min,
avg)

111–113 djitter Statistics on jitter time from destination to source (max, min,
avg)

Table 4. Service-based features.

# Feature Description

114 Domain_count Number of domain names requested

115 q_type DNS Query type

116–118 len_qry Length of DNS query packets (max, avg, std)

119–121 len_asn Length of DNS response packets (max, avg, std)

122–123 ttls Statistics on DNS query packet buffer time (max, std)

124 host_count Total number of HTTP request hosts

125 len_host Average length of the HTTP host header

126 url_count The total number of HTTP request URLs

127 len_url Average length of URL length
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5 Evaluation

In this section, we present the design and results of several experiments conducted to
evaluate the proposed features and generated dataset.

5.1 Detection Model

To distinguish botnet and benign traffic effectively, we design a detection model based
on the proposed features, as shown in Fig. 2. The detection model consists of three
classifiers, and each classifier is used to process the network flow data of the TCP/UDP,
HTTP, DNS protocol, respectively. We first extract all flow information from the given
pcap files, then parse the flows into relevant attribute vectors based on different protocols,
and use corresponding classifier to identify malicious and benign traffic. As shown in
Table 5, there are a total of 106,827 malicious flows in our test set. Of these flows,
76,315 are DNS flow, 512 are HTTP flow, and 30,000 are TCP/UDP flow. A total of
8,963 non-malicious flows are extracted from Bot-IoT dataset and CTU-IoT-23 dataset,
including 4,509 DNS flows, 336 HTTP flows and 4,118 TCP/UDP flows.

Training 
Data

TCP/UDP 
Classifier

Protocol
Identifier

DNS
Classifier

HTTP 
Classifier

Feature Extractor
(DNS/HTTP/TCP/UDP)

Network 
Traffic

Supervised
Learning

Botnet Flow
or

Benign Flow

Fig. 2. Detection model.

We investigated different machine learning based classification techniques, finally
selected the random forest classification algorithm for our classifiers. For each classi-
fier, two performance metrics are reported: Precision and Recall. Precision (Pre) refer
to the fraction of positive instances correctly classified among all the positive classified
instances. Recall refer to the fraction of positive instances correctly classified among all
the actual positive instances. All the performance metrics are bounded on the interval
[0, 1]. If the classifiers show a performance close to 1 in both metrics it may be inferred
that the data is suitable for machine learning-based IoT botnet detection, and can effec-
tively distinguish between malicious traffic and legitimate traffic. To evaluate detection
accuracy, we used the 5-fold cross validation. The results are listed in Table 6. As we can
see, the detection model produce a very high precision and recall, 0.9996 and 0.9998
respectively in malicious flows, 0.9978 and 0.9949 respectively in non-malicious flows.
We also observe that the results of the TCP/UDP classifier and the HTTP classifier both
achieve a perfect value 1. On the one hand, it may be because the amount of HTTP traffic
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is too small, the difference between benign traffic and malicious traffic is obvious, so
that it is easy to be detected; on the other hand, for the TCP/UDP classifier, it shows
that the basic feature can well distinguish malicious traffic patterns from benign ones.
Overall, these results indicate that the proposed feature vectors are effective in detecting
IoT botnets.

Table 5. The number of flows in dataset.

Categories DNS HTTP TCP/UDP Total

Malicious flow 76,315 512 30,000 106,827

Non-malicious flow 4,509 336 4,118 4,509

Table 6. Classification results.

Categories Total TCP/UDP
classifier

HTTP classifier DNS classifier

Pre Recall Pre Recall Pre Recall Pre Recall

Malicious 0.9996 0.9998 1 1 1 1 0.9994 0.9997

Non-malicious 0.9978 0.9949 1 1 1 1 0.9954 0.9897

5.2 Comparison

To prove that our features are relatively robust against various detection scenarios, we
design two comparison experiments. First, we evaluate classification result based on
Bot-IoT dataset using Bot-IoT features compare with ours. Bot-IoT dataset incorporates
both normal IoT-related and other network traffic, along with various types of attack
traffic commonly used by botnets. To enhance the predictive capabilities of classifiers,
authors proposed 45 features which describe the patterns of several attacks. Based on
the Bot-IoT dataset, we trained two classification models using our features and theirs,
Table 7 lists the results of classification. We can see that the precision and recall using
our features is higher than using theirs, which shows that the proposed features can more
comprehensively represent the botnet network behavior pattern, effectively improve the
predictive capabilities of classifiers. Second, we evaluate classification result using the
Bot-IoT features on our dataset. As shown in Table 8, the result also achieves a very
high precision and recall.

Both comparison results show that the proposed features can be applied to various
datasets and detection scenarios, and achieve better performance. Moreover, our dataset
is updated and more abundant, so we believe that the detection model trained with our
feature vectors and dataset may be more powerful.
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Table 7. Classification based on Bot-IoT dataset using different features.

Categories Our features Bot-IoT features

Pre Recall Pre Recall

Malicious 0.9937 0.9951 0.9936 0.9941

Non-malicious 0.9768 0.9702 0.9718 0.9697

Table 8. Classification based on the proposed dataset using Bot-IoT features.

Categories Total TCP/UDP
classifier

HTTP classifier DNS classifier

Pre Recall Pre Recall Pre Recall Pre Recall

Malicious 0.9933 0.9994 1 0.9962 1 0.9701 0.9995 0.9942

Non-malicious 0.9996 0.9950 0.9995 1 0.9806 1 0.9956 0.9920

5.3 Feature Importance

Wealso evaluated the feature importance on three classifiers based on the RandomForest
algorithm. Feature importance gives a score for each feature of the dataset, the higher the
score more important or relevant is the feature towards results. The TCP/UDP classifier
used the basic feature and time-based feature, except the five tuple features, there are
108 features. The HTTP classifier used the basic feature, time-based feature, and HTTP
feature, a total of 112 features, and the DNS classifier used 118 features. The sum of
the scores of these features used by each classifier is 1. According to the algorithm, we
got the top 10 features in each classifier as shown in Fig. 3, Fig. 4(a) and Fig. 4(b).
For TCP/UDP classifier, we identified toe following best 10 features: sum_spktlength,
avg_swin, max_swin, sum_pktlength, sum_spktheaderlen, sum_spktlength, pktcount,
bytes_second, fwdpkts, slos. We can notice that the basic feature has higher weight than
other features, a similar situation occurs in the HTTP classifier and the DNS classifier. In
particular, the statistics features of packet header are more important in HTTP classifier.
For DNS classifier, there are three features related to DNS protocol in top 10 features:
the type of query, the max length of query and the average length of query. It shows that
the domain query in IoT botnets is quite different from the normal domain query.
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Fig. 3. The feature importance on TCP/UDP classifier.
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Fig. 4. The feature importance on HTTP classifier (a) and DNS classifier (b).

6 Conclusion

In this paper, we present an experimental environment based on QUME to automati-
cally capture botnet samples’ network traffic. By running 257 samples from 10 families,
we construct an IoT botnet network traffic dataset, which covers all samples’ network
behaviors during their entire lifecycles, including propagate, C&C communication and
attack stage. Through in-depth analysis of the botnet network behavior, a set of features
are proposed. We divide these features into three groups, basic feature, time-based fea-
ture, and service-based featurewhich related toDNS andHTTP protocol. Tomeasure the
effect of these features, we design a detection model based on Random Forest algorithm.
The results show that the proposed detection model using our extracted features perform
well on both benign flows and malicious flows based on our dataset, with the precision
and recall being above 99%. Besides, our features perform also well on both our and
the other’s dataset, especially in detecting malicious traffic. It is demonstrated that the
proposed features have the potential to be applied to various detection scenarios. Finally,
we compute feature importance on the generated dataset, and get the top 10 features.
Although algorithms are the core of botnet detection model, the updated datasets and
comprehensive feature vectors used for training and evaluation are important as well.
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We hope that the dataset and the features provided in this paper can benefit researchers
to develop and compare their detection methods.
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