
Efficient Forward and Backward Private
Searchable Symmetric Encryption

for Multiple Data Sources

Lin Mei, Chungen Xu(B), and Lin Li

School of Science, Nanjing University of Science and Technology,
Nanjing 210094, China
xuchung@njust.edu.cn

Abstract. Searchable symmetric encryption (SSE) has been widely
applied in the encrypted database for keyword queries. Although SSE
is powerful and feature-rich, it is always plagued by information leaks.
Some recent researches have pointed out that forward and backward pri-
vacy which disallows leakage from update operations should be the basic
requirement for a secure SSE scheme. However, most existing forward
and backward private SSE schemes only consider the single data source
model which is not practical in the IoT scenario (e.g., data are often
separately distributed over multiple devices). Considering the above
issues, this paper proposes an efficient forward and backward private
SSE scheme for multiple data sources (FBSSE-MDS). As far as we know,
FBSSE-MDS is the first efficient SSE scheme which supports both for-
ward privacy and backward privacy BP-II (the second level of backward
privacy) in the scene of multiple data sources. Finally, we implement our
scheme and compare its performance with two other related schemes.
The experiment results show that our scheme is highly efficient.

Keywords: Internet of Things · Searchable symmetric encryption ·
Forward privacy · Backward privacy · Multiple data sources

1 Introduction

Internet of Things (IoT) enables different devices to achieve convenient and effi-
cient connections, during which tremendous data are collected and transferred
via the internet. With the sharp increase of the massive data, outsourcing data to
the IoT cloud has recently become prevalent. Despite the benefits of cloud stor-
age, such as low cost and ubiquitous access, data privacy is a major concern. To
dispel user’s concern, encrypting data before uploading it to the untrusted cloud
server is a straightforward solution. However, encryption hinders the usability

The authors would like to thank the support from the National Natural Science Foun-
dation of China (No: 62072240), the National Key Research and Development Program
of China (No. 2020YFB1804604).

c© Springer Nature Switzerland AG 2021
X. Sun et al. (Eds.): ICAIS 2021, CCIS 1424, pp. 126–139, 2021.
https://doi.org/10.1007/978-3-030-78621-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78621-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-78621-2_10

Efficient Forward and Backward Private Searchable Symmetric Encryption 127

of data, which results in common retrieval methods such as the keyword search
fails to be directly executed over ciphertexts. To solve this problem, searchable
symmetric encryption (SSE) was introduced in 2000 [16]. It allows a client to
retrieve the outsourced encrypted files containing a certain keyword by sub-
mitting a cryptographically generated token. The original SSE schemes only
provided secure search over static database, which seriously restrict the appli-
cability due to the lack of update functionality. Dynamic searchable symmetric
encryption (DSSE) was formally proposed by Kamara et al. [12] to allow users
to perform update operations on the outsourced database.

At the core of designing SSE schemes is to improve efficiency while ensuring
the security at the same time. The researches of the former goal is focused on stor-
age requirements, bandwidth or latency. The latter faces more challenged issues
since tremendous works have uncovered devastating and fairly generic attacks
against many SSE schemes. For example, deterministic encryption used in SSE
makes it easy for the malicious server to observe repeated queries and other infor-
mation. These leakages typically include the search pattern that reveals which
search queries refer to the same keyword as well as the access pattern that reveals
which files are returned for a query. Generally, these leakages could be eliminated
by using oblivious RAM (ORAM) [7]. However, applying ORAM brings heavy
computational overhead and bandwidth cost. To gain a more practical counter
measure, Islam et al. [9] proposed the first database padding approach and be
further improved by Xu et al. [22].

Compared with SSE, DSSE introduces two additional privacy concerns,
owing to the added functionality. The first is that newly updated files can be
related to previous search results. The second is that search queries can leak
matching files after they have been deleted. In 2016, Zhang [23] gave a more pow-
erful attack named file injection attack, which shows how the leakages in DSSE
can be exploited to reveal a considerable amount of information in practice. In
this attack, an adversary can inject files containing some special keywords into
the server’s database. Then the adversary can use old search queries to search
those injected files and then easily recover the keyword of a query.

The work in [23] underlines the importance of forward privacy (FP) when
constructing DSSE schemes, which requires that the update (addition and dele-
tion) operations cannot be linked to previous search queries and further ensures
that the scheme can resist file injection attacks. The initial work that achieve
FP is proposed by Chang and Mitzenmacher, which is designed by utilizing
pseudo-random functions [4]. However, in their scheme the size of search query
grows linearly in the number of updates, which means there exists a threshold
for update, and the communication cost for the search operation will become
unacceptably high once the threshold is exceeded. In 2016, Bost [1] creatively
proposed an efficient forward secure SSE scheme named

∑
oϕoς, which only relies

on trapdoor permutations. Since then, several schemes have been proposed to
achieve FP using different cryptographic primitives [6,13,17,18].

Regarding data deletion, most past schemes cannot resist the server from
learning that the new document has a keyword user searched for in the past

128 L. Mei et al.

[1,6,13,17,18]. To hide the relationship between the deleted files and the query,
Bost [2] introduced a formal definition of backward privacy (BP) with three
different types of leakage ordered from most to least secure (from BP-I to BP-
III). Besides, Bost [2] provided four backward-private constructions that achieve
different privacy/efficiency trade-offs. Later, Chamani et al. [3] proposed an
enhanced forward and backward secure scheme named MITRA, which offers
backward-privacy Type-II.

As far as we know, most existing forward and backward private SSE schemes
only consider the single data source model, that is to say, suppose that the search-
able index can be directly built by the single data source. This assumption only
makes sense when data files are extremely lightweight and stored centrally, which
is not realistic in IoT. For example, industry IoT, as a specific application sce-
nario of IoT, always involves multiple data sources (e.g., interconnected sensors,
instruments and other devices networked together with computers’ industrial
applications). It is not rational for a company to centralize all the data and then
build a searchable index for secure query. In order to address the mentioned
issues, Liu et al. [15] proposed the notion of Multi-Data-Source (MDS) SSE,
which allows each data source to build a local index individually and enables the
storage provider to merge all local indexes into a global index afterwards.

Contributions. We propose an efficient and secure scheme FBSSE-MDS, which
achieves both forward privacy and BP-II (the second level of backward privacy)
in the scenario of multiple data sources. To the best of our knowledge, FBSSE-
MDS is the first scheme which achieve all above properties. Also, we give the
strict security proof of our scheme to show that our scheme is forward private
and BP-II private. Through theoretical analysis, our scheme is demonstrated to
own rich functionalities and high security while maintaining high efficiency. We
implement our scheme and other related schemes using the Java programming
language. The experimental results show that our scheme achieves better balance
between security and efficiency.

Related Works: SSE was first introduced by Song et al. [16], with a scheme
whose search time is linear in the number of documents. To improve efficiency,
Curtmola et al. [5] gave the first index-based SSE constructions to achieve sublin-
ear search time. Since then, many works has been done to enrich the functionality
[12,14] and improve the security [1–3,6,13,17,18]. Among others, Kamara et al.
[12] proposed the first dynamic SSE to support sublinear search with update
operations, but it leaks the hashes of the unique keywords contained in the
updated documents. Kamara and Papamanthou [11] later improved their con-
struction by increasing the space complexity. Recently, a series of DSSE schemes
have been proposed to offer varieties of functionalities [10] and improve efficiency
[17] and security [18].

In 2014, Stefanov et al. Stefanov2014 first formalized the notion of FP for
DSSE scheme. In 2016, Zhang et al. [23] gave a formalized definition of a very
strong attack, named file injection attack. This attack can easily recover the key-
word of a query by injecting only a small number of files in a DSSE scheme. Since
then, several schemes have been proposed to achieve forward privacy using dif-

Efficient Forward and Backward Private Searchable Symmetric Encryption 129

ferent cryptographic primitives, including Sophos [1] (uses trapdoor permutation
(TDP)), Diana [2] (uses Constrained Pseudorandom Function (CPRF)), Dual [6]
(uses keyed hash function), FSSE [21] (uses keyed-block chains), SGX-SE [20]
(uses intel SGX) and VFSSE [8] (uses blockchain).

Very recently, Bost et al. [2] introduced a formal definition for backward
privacy with three different types of leakage ordered from most to least secure
(from BP-I to BP-III). Bost et al. [2] provided four backward private (and for-
ward private) constructions that achieve different privacy/efficiency trade-offs.
They first described a simple and generic method to transform a forward private
SSE scheme to a backward private SSE scheme at the cost of an extra roundtrip
per search query. Moneta and Fides are two instantiations of this method, while
the security level of the latter is BP-II. Then they proposed two BP-III schemes
named Dianadel and Janus that rely on puncturable cryptographic primitives
to achieve better results, but increasing the amount of information leaked. Sun
et al. [19] proposed a backward-secure SSE scheme from symmetric puncturable
encryption. Compared to Janus (the first non-interactive backward-secure SSE
scheme), the proposed construction in [19] is proved to be more practical through
implementation.

1.1 Organization

The remainder of this paper is organized as follows. In Sect. 2, we state the system
model, threat model and design goals of our scheme. In Sect. 3, we describe
the cryptographic background for our construction. In Sect. 4, we introduce the
details of our proposed scheme FBSSE-MDS. Then we carry out the security
analysis and performance evaluation in Sect. 5 and Sect. 6, respectively. Finally,
we conclude the paper in Sect. 7.

2 Problem Statement

2.1 System Model

As shown in Fig. 1, there are four roles in a FBSSE-MDS system: (1) data sources,
denoted as DS, who own various collections of data files. (2) data user, denoted
as DU, who issues search queries for interested keywords. (3) trusted authority,
denoted as TA, who stores some valuable information to help DU and DS perform
search or update operation. (4) cloud server, who stores encrypted data files and
responses DU’s search queries and DS’s update operations. Note that the roles
of DU and DS are interchangeable, which means an authorized DU who shares
the secret key with DS is assumed to be a DS as well or any DS can be called
DU when he performs a search query.

Figure 1 illustrates the architecture of our proposed FBSSE-MDS system.
Firstly, DS encrypt data files and build searchable indexes before data outsourc-
ing. Upon receiving all indexes from DS, server merges them into one searchable
index. Then DU can query the encrypted data by generating a search token,
which will later be submitted to the server. Finally, the server searches the
index and returns the identities of data files containing searched keywords.

130 L. Mei et al.

Fig. 1. System model

2.2 Threat Model

We treat the server as the adversary, who behaves “honest-but-curious”. As its
name implies, the server will follow all the operations defined in the FBSSE-MDS
system model, while trying to deduce private information about the original data
or searched keywords. Meanwhile, we suppose that DS, DU and TA are fully
trusted, that is to say, there is no collusion among DS, Du and TA. Following
most of the existing settings, the key is assumed to be transferred via a secure
channel between DS and DU.

2.3 Design Goals

The proposed model should accomplish the following goals:

– Providing forward privacy. The server cannot violate the privacy of newly
updated files by utilizing previously received search tokens. Each search token
is associated with a state that is renewed every time files are updated. There-
fore, the disclosure of the old token will not pose a threat to the updated
files.

– Providing BP-II backward privacy. As for the deletion operation, the
server cannot learn which deletion cancels which addition. In particular, the
identity of files will be hidden by XOR operation. It ensures that FBSSE-MDS
achieves BP-II backward privacy.

– Supporting multiple data sources. The server can merges indexes built
by different DS that are indistinguishable into one index before perform-
ing search operations. Afterwards, the server can search over only one index
rather than k indexes, which greatly enhances the efficiency.

3 Preliminaries

Forward privacy and backward privacy are two SSE properties that aim to con-
trol what information is leaked by dynamic schemes in relation to updates. Infor-
mally, a scheme is forward private if it is not possible to relate an update to

Efficient Forward and Backward Private Searchable Symmetric Encryption 131

previous search operations. This is particularly essential in practice, e.g., to hide
whether an addition is about a new keyword or a pre-existing one (which may
have been previously searched for).

Definition 1 (Forward Privacy). An L-adaptively-secure SSE scheme that sup-
ports addition/deletion of a single keyword is forward private iff the update
leakage function LUpdate can be written as:

LUpdate(op, w, ind) = L′
(op, ind),

where L′
is a stateless function, op is insertion or deletion, and ind is a file

identifier.

An SSE scheme satisfies backward privacy if after deleting a document ind
matching keyword w, the server cannot reveal the deleted document ind from the
subsequent search of keyword w. In 2017, Bost et al. [2] have defined backward
privacy at three levels: BP-I, BP-II and BP-III. The definitions of them can be
described as follows.

Definition 2 (BP-I). A L-adaptively-secure SSE scheme is insertion pattern
revealing backward-private iff leakage functions L can be written as:

LUpdate(op, w, ind) = L′
(op),

LSearch(w) = L′′
(TimeDB(w)),

where L′
and L′′

are stateless and |TimeDB(w)| = aw for aw is a constant.

Definition 3 (BP-II). A L-adaptively-secure SSE scheme is update pattern
revealing backward-private iff leakage functions L can be written as:

LUpdate(op, w, ind) = L′
(op, w),LSearch(w) = L′′

(TimeDB(w), Updates(w)),

where L′
and L′′

are stateless and |TimeDB(w)| = aw for aw is a constant.

Definition 4 (BP-III). A L-adaptively-secure SSE scheme is weakly backward-
private iff leakage functions L can be written as:

LUpdate(op, w, ind) = L′
(op, w),

LSearch(w) = L′′
(TimeDB(w),DelHist(w)),

where L′
and L′′

are stateless and |TimeDB(w)| = aw for aw is a constant.

4 Our Construction

This section mainly introduces the specific structure of FBSSE-MDS scheme,
which includes three protocols: setup, update and search. Among them, setup
and update are the protocols running between multiple DS, TA and servers,

132 L. Mei et al.

Fig. 2. Setup protocol

while search is the protocol running between DU, TA and server. Now we give
the detailed descriptions of three protocols as follows.

Setup. During the Setup protocol, each data source DSp encrypts his data
files and builds searchable indexes. The server receives encrypted data files and
indexes from each DSp and merges all indexes.

– DSp: Take the security parameter λ and an empty collection Lp, an empty
list O, the total number of data files currently stored on the server FileCnt
as inputs. Let PRP

′
: {0, 1}λ × {1, ..., N} → {1, ..., N} be a pseudo-random

permutation, and H1 : {0, 1}∗ → {0, 1}λ, H2 : {0, 1}∗ → {0, 1}N be two hash
functions, and PRF : {0, 1}λ ×{0, 1}∗ → {0, 1}λ, PRF

′
: {0, 1}λ ×{0, 1}∗ →

{0, 1}N be two pseudo-random functions. Run the first part of Setup protocol
(as shown in Fig. 2) to compute the indexes.

– Server: Run the second part of Setup protocol (as shown in Fig. 2) to merge
the received indexes into one index and store it.

Update. During the Update protocol, DSp needs to submit encrypted data
files and update tokens to the server, then the server updates index and stores
encrypted data files in cipher collection.

– DSp: Assuming the DSp wants to update the files in set IDadd and IDdel,
he runs line 1 to 16 of the first part in Update protocol to generate the
ciphertexts and identity set (as shown in Fig. 3). Furthermore, in order to

Efficient Forward and Backward Private Searchable Symmetric Encryption 133

Fig. 3. Update protocol

ensure the searchability of the updated files, he computes the update tokens
as line 17 to 35 of the first part in Update protocol. Finally, he sends them
to the server.

– Server: Run the second part of Update protocol (as shown in Fig. 3) to update
the ciphertexts and update tokens.

Search. During the Search protocol, DU issues the search token and then the
server returns search results.

– DU : Assuming the DU wants to search the files containing keyword w, he
runs line 1 to 9 of the first part in Search protocol to generate the search
token (as shown in Fig. 4). Then, he sends it to the server.

– Server: After receiving the search token, the server runs the second part of
Search protocol (as shown in Fig. 4) to obtain the result set and returns it to
the DU.

5 Security Analysis

In this section, we analyze the security of our FBSSE-MDS scheme. Our scheme
can achieve forward privacy and backward privacy BP-II. We first define the
leakage functions in our scheme as follows:

134 L. Mei et al.

Fig. 4. Search protocol

LSetup({Dj}1≤j≤k,W) = (k, n,N,W),LUpdate(op, w, ind) = ⊥
LSearch(w) = L′(TimeDB(w),Updates(w))

where k, n,N,W stands for the number of data sources, the total number of
data files for initialization, the maximum number of update operations and the
keyword universe respectively.

We are now ready to state the following theorem regarding the security of
FBSSE-MDS.

Theorem 1. If H1,H2, PRF, PRF ′, PRP, PRP ′, SKE are secure crypto-
graphic primitives, then our scheme FBSSE-MDS is an adaptively-secure SSE
scheme with L = (LSetup,LUpdate,LSearch).

Proof. For the adversary A, challenger C and simulator S, we define the following
two experiments: RealA,C(λ) and IdealA,S(λ).

RealA,C(λ): the challenger C generates a secret key K = KeyGen(1λ). A
chooses k collections of data files D1, ...,Dk containing n data files in total and
a keyword universe W. A receives {cj}1≤j≤n, {IDj}1≤j≤n, {Ij}1≤j≤k such that
cj is an encrypted data file, IDj is the identity of file cj and Ij is the local index
built by DSj . Then A merges all indexes {Ij}1≤j≤k. Afterwards, A makes a
polynomial number of adaptive queries. For each queried keyword w, A receives
a search token ST w or update token UT w from the challenger C. Finally, A
returns a bit b that is output by the experiment.

IdealA,S(λ): A chooses k collections of data files D1, ...,Dk containing n
data files in total and a keyword universe W. Given LSetup({Dj}1≤j≤k,W), S
simulates and sends {c′

j}1≤j≤n, {ID′
j}1≤j≤n, {I ′

j}1≤j≤k to A and then A merge
them. Afterwards, A makes a polynomial number of adaptive queries. For each
queried keyword w, S receives LQuery(w) or LUpdate(op, w, ind). Meanwhile, S

Efficient Forward and Backward Private Searchable Symmetric Encryption 135

simulates and sends a search token ST ′
w or update token UT ′

Wup
to A. Finally,

A returns a bit b that is output by the experiment.
Then we prove that A cannot distinguish between the experiments RealA(λ)

and IdealA,S(λ). In other words, A cannot distinguish between {cj}1≤j≤n,
{IDj}1≤j≤n, {Ij}1≤j≤k, ST w, UT w and {c′

j}1≤j≤n, {ID′
j}1≤j≤n ,{I ′

j}1≤j≤k,
ST ′

w, UT ′
w. In the following proof, when we say “indistinguishable” or “cannot

distinguish” we mean the advantage in distinguishing two variables is limited by
negl(λ).

Simulating {c′
j}1≤j≤n: For 1 ≤ j ≤ n, S randomly selects a bit string c′

j of
length |cj |. As SKE is a secure cryptographic primitive, {cj}1≤j≤n and {c′

j}1≤j≤n

are indistinguishable to A.
Simulating {ID′

j}1≤j≤n: For 1 ≤ j ≤ n, S simply set ID′
j = IDj .

Simulating {I ′
j}1≤j≤k: S initializes k arrays {I ′

j}1≤j≤k of size |W|. For each
{I ′

j}1≤j≤k, S randomly selects |W| strings {αj}1≤j≤|W| of length λ, |W| bit
strings {γ′

c,j}1≤c≤k,1≤j≤|W| of length N and |W| strings {δj}1≤j≤|W| of length
λ. S sets I ′

c[i] = (α′
i, γ

′
c,i, δ

′
i) for 1 ≤ c ≤ k, 1 ≤ i ≤ |W|. As H1 is a secure hash

function, {Ij}1≤j≤k and {I ′
j}1≤j≤k are indistinguishable to A.

Simulating UT ′
Wup

: We model two hash functions H1 and H2 as random
oracles. During an update query, for update keyword w, S gets the state
(tw, stc) from TA, chooses string stc+1 randomly from {0, 1}λ and then updates
state (tw, stc+1). Afterwards, S gets string str1 by sampling at random from
{0, 1}λ and stores (tw||stc+1, str1) in H1. Similarly, S gets string str2 by sam-
pling at random from {0, 1}N , stores (tw||stc+1, str2) in H2 and computes
δ = str2 ⊕ stc. Then S chooses string γ randomly from {0, 1}N . Let i be
the timestamp of the update. S stores entry I(i) = (str1, γ, δ). Then S sends
UT ′

Wup
= {(str1,j , γj , δj)}1≤j≤|Wup| to A.

Simulating ST ′
w: During a search, S receives leakage functions TimeDB(w)

and Updates(w). He/she then infers from Updates(w) the timestamps of pre-
vious updates related to the searched keyword w, denoted by J = (i1, ..., iup).
Afterwards, he/she infers from TimeDB(w) the set of file-identities that cur-
rently contain the searched keyword w and generates an N -bit string γ cor-
responding to the set(for each ID in the set, S sets ID-th bit to 1). Then
he/she computes the XOR result s among γ and all strings that stored in
I(ij) for j = 1, ..., upd. At last, S gets local state (tw, stc+1) and sends
search token ST ′

w = (tw, stc+1, s) to A. In such a way, S simulates correct
search/update tokens which have the same search/update results as in the exper-
iment RealA,C(λ). Therefore, A cannot distinguish between ST w, UT Wup

and
ST ′

w, UT ′
Wup

.
In summary, S cannot distinguish between the view in RealA,C(λ) and the

view in IdealA,S(λ). Thus we have |Pr[RealA,C(λ) = 1] − Pr[IdealA,S(λ) =
1]| ≤ negl(λ).

136 L. Mei et al.

6 Performance Evaluation

In this section we implemented our scheme, MITRA [3] and MDS-SSE [15] using
Java 11. All test programs were performed on an Intel(R) Core(TM) i7-9750H
2.60 GHz computer with 8GB RAM running Windows 10. Each data point in the
figures is an average of 50 executions. In all tests, we used a keyword universe of
5000 common English words and set N of FBSSE-MDS and MDS-SSE to 100000.
We are interested in measuring execution time for search and update operations
in MITRA, MDS-SSE and our FBEES-MDS scheme.

Fig. 5. Experiment results

Figure 5(a) and Fig. 5(b) reports the execution time for search token gener-
ation and search operation for different numbers of update operations in three
schemes. In two tests, we vary the number of update operations from 1000 to
5000. As can be seen from Fig. 5(a), for MDS-SSE, the execution time of search
token generation is independent of search results. The reason is that the result
extraction is merely to scan a bit string and find all positions where the bit is
1. Such operations are extremely efficient. For MITRA and FBSSE-MDS, the
execution time of search token generation increases when more search results are
returned. This is because they need to perform aw times hash computation while
FBSSE-MDS needs to perform (aw + k) times XOR operation in addition. We
can see from Fig. 5(a) that when the number of update times for w is 5000, the
execution time of FBSSE-MDS is below 1.2 ms. It is efficient in the application.

In terms of execution time in search, as we can see from Fig. 5(b), for MDS-
SSE, it is independent of the number of update operations for w, and related
to N which is the maximum number for update operations. In this test, as we
have explained before, we set N to 100000 and the execution time of MDS-SSE
is 17.25 ms. As for MITRA and FBSSE-MDS, the time is linear with the number
of update operations for w. The reason is that for each update operation, there
is a tuple inserted to index. When 5000 results are returned, the time is about
1.5 ms in MITRA and about 2.4 ms in FBSSE-MDS. There is much difference in
search time between MDS-SSE and our FBSSE-MDS.

Figure 5(c) and Fig. 5(d) presents the execution time for update token gener-
ation and update operation for different numbers of keywords contained in the
updated file. In the test, we removed the file encryption time from the execu-
tion time for update token generation. Obviously, the execution time for update
token generation in three schemes is linear with keywords contained in update
files. For MDS-SSE, |Wup| times XOR operation are performed in the update

Efficient Forward and Backward Private Searchable Symmetric Encryption 137

token generation. While for MITRA, |Wup| times hash computation and |Wup|
times XOR operation are performed. As for our FBSSE-MDS, it needs to per-
form 2|Wup| times hash computation and generates |Wup| strings of length λ in
addition. As can be seen from Fig. 5(c), when the number of keywords in updated
files is 500, the time is below 2.5 ms and there is little difference between three
schemes.

In terms of execution time in update, as we can see from Fig. 5(d), for all
three schemes, the time is linear with |Wup| which is the number of keywords
in updated files. But there is a difference between three schemes. For MITRA
and FBSSE-MDS, the update operation is just inserting tuples (α, γ, δ) into
the index. While for MDS-SSE, |Wup| times connection operation for strings
is performed. As can be seen from Fig. 5(d), when the number of keywords in
updated files is 500, the time is about 0.05 ms in MITRA and FBSSE-MDS while
the time is about 0.45 ms in MDS-SSE.

7 Conclusion

Motivated by the universal phenomenon in data outsourcing that user’s data is
often separately distributed, we propose a FBSSE-MDS scheme in the scenario of
multiple data sources which also provides both forward privacy and BP-II back-
ward privacy to limit the leakage to the server when data sources perform update
operation. Compared to MITRA which is the fastest existing scheme achieving
both forward privacy and backward privacy, our FBSSE-MDS scheme supports
multiple data sources and reduces one round of interaction while maintains the
high efficiency, forward privacy and backward privacy. Compared to MDS-SSE
which is an efficient SSE scheme for multiple data sources, our FBSSE-MDS
scheme achieves both forward and BP-II backward privacy in addition. Experi-
mental results show that FBSSE-MDS is highly efficient and practical.

References

1. Bost, R.:
∑

oϕoς: forward secure searchable encryption. In: Weippl, E.R., Katzen-
beisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, pp. 1143–1154. ACM (2016)

2. Bost, R., Minaud, B., Ohrimenko, O.: Forward and backward private searchable
encryption from constrained cryptographic primitives. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, pp. 1465–1482. ACM (2017)

3. Chamani, J.G., Papadopoulos, D., Papamanthou, C., Jalili, R.: New constructions
for forward and backward private symmetric searchable encryption. In: Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, pp. 1038–1055. ACM (2018)

4. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005). https://doi.org/10.
1007/11496137 30

https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/11496137_30

138 L. Mei et al.

5. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. In: Proceedings of
the 13th ACM Conference on Computer and Communications Security, CCS 2006,
Alexandria, VA, USA, pp. 79–88. ACM (2006)

6. Etemad, M., Küpçü, A., Papamanthou, C., Evans, D.: Efficient dynamic searchable
encryption with forward privacy. PoPETs 2018(1), 5–20 (2018)

7. Garg, S., Mohassel, P., Papamanthou, C.: TWORAM: efficient oblivious RAM in
two rounds with applications to searchable encryption. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 563–592. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53015-3 20

8. Guo, Y., Zhang, C., Jia, X.: Verifiable and forward-secure encrypted search using
blockchain techniques. In: 2020 IEEE International Conference on Communica-
tions, ICC 2020, Dublin, Ireland, pp. 1–7. IEEE (2020)

9. Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable
encryption: ramification, attack and mitigation. In: 19th Annual Network and Dis-
tributed System Security Symposium, NDSS 2012, San Diego, California, USA.
The Internet Society (2012)

10. Kamara, S., Moataz, T.: Boolean searchable symmetric encryption with worst-case
sub-linear complexity. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10212, pp. 94–124. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 4

11. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 22

12. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: The ACM Conference on Computer and Communications Security, CCS
2012, Raleigh, NC, USA, pp. 965–976. ACM (2012)

13. Kim, K.S., Kim, M., Lee, D., Park, J.H., Kim, W.: Forward secure dynamic search-
able symmetric encryption with efficient updates. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2017, Dal-
las, TX, USA, pp. 1449–1463. ACM (2017)

14. Li, L., Xu, C., Yu, X., Dou, B., Zuo, C.: Searchable encryption with access control
on keywords in multi-user setting. J. Cyber Secur. 2(1), 9–23 (2020)

15. Liu, C., Zhu, L., Chen, J.: Efficient searchable symmetric encryption for storing
multiple source dynamic social data on cloud. J. Netw. Comput. Appl. 86, 3–14
(2017)

16. Song, D.X., Wagner, D.A., Perrig, A.: Practical techniques for searches on
encrypted data. In: 2000 IEEE Symposium on Security and Privacy, Berkeley,
California, USA, 14–17 May 2000, pp. 44–55. IEEE Computer Society (2000)

17. Song, X., Dong, C., Yuan, D., Xu, Q., Zhao, M.: Forward private searchable sym-
metric encryption with optimized I/O efficiency. IEEE Trans. Dependable Secur.
Comput. 17(5), 912–927 (2020)

18. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption
with small leakage. In: 21st Annual Network and Distributed System Security
Symposium, NDSS 2014, San Diego, California, USA. The Internet Society (2014)

19. Sun, S., et al.: Practical backward-secure searchable encryption from symmetric
puncturable encryption. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, Toronto, ON, Canada, pp.
763–780. ACM (2018)

https://doi.org/10.1007/978-3-662-53015-3_20
https://doi.org/10.1007/978-3-319-56617-7_4
https://doi.org/10.1007/978-3-319-56617-7_4
https://doi.org/10.1007/978-3-642-39884-1_22

Efficient Forward and Backward Private Searchable Symmetric Encryption 139

20. Vo, V., Lai, S., Yuan, X., Sun, S., Nepal, S., Liu, J.K.: Accelerating for-
ward and backward private searchable encryption using trusted execution. CoRR
abs/2001.03743 (2020)

21. Wei, Y., Lv, S., Guo, X., Liu, Z., Huang, Y., Li, B.: FSSE: forward secure searchable
encryption with keyed-block chains. Inf. Sci. 500, 113–126 (2019)

22. Xu, L., Yuan, X., Wang, C., Wang, Q., Xu, C.: Hardening database padding for
searchable encryption. In: 2019 IEEE Conference on Computer Communications,
INFOCOM 2019, Paris, France, pp. 2503–2511. IEEE (2019)

23. Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: the
power of file-injection attacks on searchable encryption. In: 25th USENIX Security
Symposium, Austin, TX, USA, pp. 707–720. USENIX Association (2016)

	Efficient Forward and Backward Private Searchable Symmetric Encryption for Multiple Data Sources
	1 Introduction
	1.1 Organization

	2 Problem Statement
	2.1 System Model
	2.2 Threat Model
	2.3 Design Goals

	3 Preliminaries
	4 Our Construction
	5 Security Analysis
	6 Performance Evaluation
	7 Conclusion
	References

