
SACache: Size-Aware Load Balancing
for Large-Scale Storage Systems

Yihong Su1, Hang Jin1, Fang Liu1(B), and Weijun Li2

1 School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, China
liufang25@mail.sysu.edu.cn

2 Shenzhen Dapu Microelectronic Co., Ltd., Shenzhen, China

Abstract. The fast cache could be used in storage clusters to alleviate load imbal-
ance caused by highly-skewed requests between storage nodes. In a smaller cluster,
we can use a single cache node to solve the I/O bottleneck caused by load imbal-
ance. However, in a Large-scale cluster, we may need more than one cache node
to afford enough capacity, which brings a new load balance problem in cache
nodes. DistCache successfully solved this problem by applying the power-of-
two-choices. In the above storage clusters, cache nodes cache the hottest objects
while ignoring the size of objects, which leads to poor performance when meeting
objects with variable sizes. We present SACache, a size-aware mechanism for
large-scale storage clusters, which can improve I/O performance by maximizing
the benefit of the unit cache. In this mechanism, we set an object admission fil-
ter to filter out objects with lower caching benefit. To adapt to changing request
patterns, we record recently requested objects and their size, then replay those
requests periodically in a cache simulator to find the best cache admission param-
eter using a greedy algorithm and apply it to the object admission filter. We apply
this mechanism in a prototype distributed storage system. Experimental results
show that it can increase the system’s overall bandwidth when the object’s size is
different.

Keywords: Load balancing · Size-aware · Large-scale storage · Caching

1 Introduction

Distributed object storage systems provide scalable storage for modern data-intensive
applications where data is stored as key-value pairs, and applications can access values
from a storage cluster that spans thousands of nodes with a unique key [1–4]. Key-
value storages are already widely deployed in social networking, data analytics, Web
search, download centers, and other applications. In the real world, the request loads
are high-skewed, few popular objects may receive most of the requests, which brought
challenges to the load balancing. However, skewed access leads to a spatial locality.
Thus, we can load hot objects into the cache, improve the system bandwidth, and reduce
latency, resulting in a better user experience and meet stricter service-level objectives
(SLOs).

© Springer Nature Switzerland AG 2021
X. Sun et al. (Eds.): ICAIS 2021, CCIS 1423, pp. 89–105, 2021.
https://doi.org/10.1007/978-3-030-78618-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78618-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-78618-2_8


90 Y. Su et al.

In a typical object storage system, HDD is used as the storage medium with a large
capacity with low cost; however, it has a high access latency. Due to disk seek time
(about 10 ms), HDD is not friendly to random access. Besides, the access speed of
HDD is slower than RAM. If we cache some objects into RAM, we can reduce disk
I/O’s performance overhead. Meanwhile, caching hot objects can also be used as a load
balancing strategy for a storage cluster. For a cluster with n storage nodes, caching
O(nlogn) hottest objects can balance the system, regardless of the number of objects
[5].

Fig. 1. Cumulative distribution for object sizes in three different data centers, traces are from an
IBM Docker Registry.

In an object storage system, cache replacement algorithms (e.g., LRU and LFU)
prioritize hot objects and evict objects in the cache. In real-world applications, there are
also differences in size between objects besides differences in popularity. Figure 1 shows
the object distribution of three traces from the IBM Docker Registry production [6]. We
can find that the range of object size is vast, from KB magnitude to GB magnitude. In
this case, if using the unmodified cache management algorithm, putting a large object
into the cache can cause multiple small objects to be evicted. If we need to access these
small objects once again, we need to access HDD storage nodes, resulting in a large
number of HDD random access, which will decrease the system’s overall bandwidth.

Because the object size range in an object storage system is wide, to maximize the
value of the small but expensive RAM, we need a mechanism to evaluate the benefit
of an object being cached and decide whether to be admitted by the cache. At the
same time, this mechanism should be able to automatically adapt to different data load
characteristics and dynamically adapt to the change of load characteristics over time.
Therefore, it is necessary to analyze the benefits of storage systems based on HDD
and RAM characteristics and design a cache admit mechanism to maximize the system
performance with limited cache capacity.



SACache: Size-Aware Load Balancing for Large-Scale Storage Systems 91

We present SACache, an easy-to-understand cache management strategy suitable
for storage systems with large size differences. Based on a lightweight cache node
simulator (shadow cache), SACache searches for the current optimal caching parameters
by replaying the recent trace of object request records (including object name and size)
in the cache node. It can be used as both a cachemanagement mechanism for stand-alone
object storage systems and an optimization method for large distributed object storage.

SACache adds a cache admission mechanism based on the cache replacement algo-
rithm, ensuring that small objects have a greater probability of being cached. Simulta-
neously, there is a caching parameter in the admission mechanism, which determines
how much object size affects the probability of being admitted. The shadow cache is
the key to finding the appropriate caching parameters, and there is a shadow cache in
each cache node to simulate the node’s performance under a specific caching parameter.
When searching for caching parameters, we compare the shadow cache’s performance
under different caching parameters to select the optimal caching parameter. Fine-grained
search interval can guarantee higher precision butmaybring unacceptable time overhead.
Based on empirical observation, we implement a fast search algorithm that achieves high
precision through fewer search times so that the parameter search time is completely
acceptable.

1. We implement an object storage prototype system integrating SACache, measure
performance improvement and stability of SACache in the simulation environment
(for both single-node and storage cluster). Our contribution can be summarized as
follows:

2. We analyze and summarize a benefit formula of the object storage system with a
caching mechanism.

3. We designed an efficient shadow cache to simulate the behavior of real cache nodes.
4. We implement a fast parameter search algorithm for searching the optimal caching

parameters.
5. We evaluated the performance improvement of SACache under different loads in a

simulation environment for both single-node and storage clusters.

2 Background and Motivation

2.1 Cache Based Load Balancing

Partitioning is frequently-used in the extensible object storage system, where each node
independently provides the storage and query of partial objects.Uneven request loads can
lead to performance differences between nodes, resulting in reduced cluster throughput
and increased latency. A hash-based partitioning function is sufficient to partition the
objects evenly in a cluster with constant storage nodes. For applications that require
scalability, consistent hashing is used to ensure that objects can be partitioned evenly
after adding or removing a server node. However, these schemes are insufficient for the
load imbalance caused by the difference in popularity among objects.



92 Y. Su et al.

Popularity differences between objects are usually highly skewed in real-world inter-
net applications. Object access Popularity tends to follow Zipf distribution, and a small
amount of hot object will be requested frequently. The skewed accessmakes small capac-
ity high-speed caching system accepts many requests, which avoids many requests sent
directly to the back-end storage nodes by taking full advantage of the cache characters
of low latency and high bandwidth. Some researchers have used a small but fast enough
cache node in a cluster as a front-end load balancer, and the lower bound of cache size
depends only on the number of back-end storage nodes in the system but independent
of the total number of objects in the cluster. Caching at least O(nlogn) hottest objects
can ensure load balancing among n storage nodes [5]. Based on this theory, SwitchKV
[7] uses RAM cache to balance the SSD storage nodes, and NetCache [8] uses a faster
in-switch cache to balance storage nodes based on RAM. Furthermore, DistCache [9]
uses two independent hash functions to partition objects in two equivalent cache clusters.

2.2 Cache Systems with Variable Object Sizes

Existing caching algorithms mostly focus on eviction policies (i.e., LRU, LRU-K [10],
SLRU [11], ARC [12]), which tend to have no admission policy and cache all accessed
objects. At the same time, these studies are designed for caching similar object sizes.
In recent years, researches on caching with variable object sizes have emerged. The
size-based AdaptSize [13] caches an object with a probability of esize/c, and adjusts the
parameter c based on a Markov model. Rl-Cache [14] implements an admission policy
based on reinforcement learning, and it uses more features to characterize objects in a
request trace. However, the optimization goals of the above AdaptSize, RL-Cache are
the object hit ratio, which is not consistent with load balancing.

In order to improve the performance of the load balancer when the object size is
different, we add an admission filter to the front-end cache. The existing related work
about cache admission policy is primarily for the CDN scenario and aims to maximize
the object hit ratio. Unlike them, SACache is designed for optimizing load-balancing
performance for storage systems with objects of different sizes.

2.3 Motivation

In cache systems, there are at least two kinds of storage media with different charac-
teristics: one is a high speed, low latency but expensive medium, which is suitable for
cache; the other is a medium with low speed, high latency but low price, it is suitable for
storage. The above works do not consider the size of the object, however, in some Inter-
net applications, for example, in a storage cluster of web resources, the size of objects
(web pages, pictures, videos) varies greatly. Meanwhile, the storage medium’s access
characters determine that when objects have the same popularity, caching many small
objects incurs a more significant overhead than caching one large object. For example,
caching ten small objects of size one does not yield the same benefits as caching one big
object of size ten, this is mainly due to the low latency nature of the cache media, which
we will explain it in the following paragraphs (Table 1).



SACache: Size-Aware Load Balancing for Large-Scale Storage Systems 93

Table 1. Notation used for the analysis.

Symbol Meaning

ts Latency of storage medium

tc Latency of cache medium

ks Inverse of the storage medium bandwidth

kc Inverse of the cache medium bandwidth

s Object’s size

v Object’s popularity

e Benefit of unit cache capacity

Suppose that in a storage-cache system with a cache node and a storage node, HDD
is used as the storage medium, and DRAM is used as the cache medium. Based on this
system, we ignore the network overhead to analyze the benefits of caching an object. For
HDD, each data Access Time can be divided into three parts: seek time (Ts), rotational
time (1/(2r)), and transfer time (B/(rN )), where r is the rotation speed of the disk, N
is the number of bytes on a track, and B is the number of bytes form an IO transfer.
Seek time and rotational time determine the average access latency, while transfer time
determines the transmission bandwidth. Typical access latency is about 10 ms, and the
transfer bandwidth is about 200 MB/s. The time cost of an s bytes IO transfer can be
formulated as ts + ks ∗ s. For RAM with random access character, the time cost can also
be formulated tc + kc ∗ s, The current common two-channel DDR4 has about 50 GB/s
bandwidth and 100 ns latency, so ts � tc and ks > kc.

In the above object caching system with limited memory, it is important to fully
utilize cache capacity to reduce the overall request wait time. We want to define a
metric for objects in cache to evaluate the “cost performance.” The benefit of caching
an object comes from the wait time saved by requesting the object directly from the
cache; if the object is requested v times over a period of time, the saved time is v ∗
(ts − tc + ks ∗ s − kc ∗ s); and the cost is s, the capacity occupied by the object. So we
can define a benefit

cost ratio (i.e., the benefit of unit cache) e for objects in the cache, and it
is the ratio of the IO time divided by used space of caching an object, we have:

e = v ∗ (ts − tc + ks ∗ s − kc ∗ s)

s
(1)

For a specific object storage system, ts, tc, ks, and kc are measurable constants. It is
easy to see that when v is constant, e decreases as s increases; which indicate that for
two objects with the same popularity, the smaller object has a higher benefit

cost ratio.



94 Y. Su et al.

To prevent low-value objects from occupying cache space, we want the e value of the
objects kept in the cache to be higher than a lower bound e. To find out the condition for
different objects to reach this lower limit, we need to study the popularity condition for
different objects of different sizes to have the same value of e. We describe popularity v
as a function of object size s.

v(s) = e ∗ s

(ts − tc) + (ks − kc) ∗ s
(2)

If the latency and bandwidth of the storage system and the cache system is known,
we can give an object of size s the popularity v needed to keep the unit cache benefit
equal toe. Figure 2 shows an equal e curve of a storage-cache system, where the X-axis
is the size of the object, the Y-axis is the relative popularity, and the benefit is consistent
at any point in the curve. And the background color on Fig. 2 corresponds to the unit
cache benefit e under a coordinate 〈s, v〉, darker color indicate highere.

We can design a cache admission policy based on the v(s) function, the keynote
is that only a object of size s reaches the popularity v, which makes benefit e higher
than e, the object can be admitted by cache. The key is to find an appropriate e that
maximizes the storage node bandwidth under the current load characteristics (e.g., object
size distribution and request skew). Too small e will disable the cache admission policy
and too big ewill make it almost impossible for an object to be cached. In Sect. 3, wewill
show the specific design of the cache admission mechanism which we call SACache.

Fig. 2. An equal benefit curve, reflecting the popularity to ensure the same unit cache benefit as
the object size increases. And the depth of the red color reflects the level of the unit cache benefit
e. (Color figure online)



SACache: Size-Aware Load Balancing for Large-Scale Storage Systems 95

3 SACache System Design

The SACache mechanism is applied in all cache nodes, and the fundamental idea of this
mechanism is to decrease the admission probability of big objects. In applications with
different sizes of objects, accepting a large object when the cache space is insufficient
will lead to the eviction of many small objects, which may be requested again soon.
The cache admission policy is designed in cooperation with the load balancing mecha-
nism to maximize the system’s load balancing. In this section, we provide an overview
of SACache’s architectural design and implementation, as well as two use cases for
SACache.

Fig. 3. Cache node architecture.

3.1 SACache Architecture

Figure 3 shows an overview of the SACache node’s architecture. SACache adds an
admission policy to LRU, called the admission filter, which intercepts PUT operations to
LRU. The admission filter has a cache parameter c, which, together with the object’s size,
determines the request frequency for the object to be admitted. Finding the appropriate
parameter c is the key to maximize load balancing performance. Cache node will record
recent requests, replay them in the shadowcache, and use a greedy algorithm to search the
best cache admission parameter to maximize the optimization object (i.e., bandwidth).

Object Admission Filter. In SACache, small size objects will have more chances to be
admitted by the cache node. Based on the Eq. (2) in Sect. 2, we design an admission
function. For an object of size size and popularity K , it will be admitted by the cache
if K > v(size)/v(c). The cache parameter c ranges between 1 and cache_size, and
it is essential to find optimal parameter copt ; we use an accelerated search method to
search for copt in the logarithmic space with shadow cache, which we will describe later.



96 Y. Su et al.

Another important thing is to find a method to sense the popularity of an object. To
achieve this, we use a recent visit counter to provide a popularity reference for cache
admission; The counter is essentially a FIFO queue of length N , and it will record at
most N unique latest cache miss objects’ visit count. For cache miss in the cache node,
the visit counter will be refreshed after fetching the object from the storage node, then
the visit count of the uncached object increased by one. If the uncached object does not
exist in the FIFO queue, it will be pushed a new record to the queue; and of course,
if the FIFO queue’s length has reached N after the push, the last record entry will be
deleted before push operation. The recent visit counter is equivalent to the popularity
estimation of an object. An object in a recent visit counter will be decided to be admitted
after it is refreshed. Specifically, if an object’s visit count is greater than v(size)/v(c),
it will be admitted by the cache, and then the record will be removed from the recent
visit counter. In this way, the popularity needed to put an object into the cache increases
linearly with the object’s size, and there is a static optimal parameter c that maximizes
the optimization target for a static object distribution and request distribution.

Shadow Cache. To find the optimal parameter c, we record the recent request traces,
and each item includes the object name and object size. To save storage space, we map
the object name to a 64-bit id and then storage the object size as a 64-bit unsigned integer,
so the record item is a 16-byte tuple 〈id , size〉. When we have enough request records,
we can choose a parameter c and replay the traces in a shadow cache. By simulating a
request in the shadow cache, we can know whether the requested object is cached or not.
Then we can know the system’s overall bandwidth under a specific caching parameter c
in these traces. Experiments show that the shadow cache’s performance overhead is not
too large, and the simulation of 250k requests can be completed within 40 ms.

Greedy Search. In SACache, the caching parameter c is in the range of [1, cache_size].
We take log-scale caching parameter log(c) as the x-axis and the optimization goal (e.g.,
hit ratio or bandwidth) as the y-axis. In order to get high precision results quickly, we
designed a greedy search algorithm. The algorithm consists ofmultiple iterations: in each
iteration, c is selected at equal log-scale intervals; the optimization goal under parameter
c is obtained through the shadow cache, the copt that maximizes the optimization goal is
the optimal parameter in this iteration. In the next iteration, the search range will change;
the new search range is centered around log

(
copt

)
, and the range will be halved. In this

way, each iteration’s execution time is similar, but each iteration’s accuracy is doubled
than the previous iteration. We use the above search algorithm in our system, and we
search 16 parameters in each iteration and have five iterations. So we run the simulator
50 times, but the search accuracy is equivalent to 256 times (256 = 16 × 25−1). The
pseudocode is shown in Appendix A.



SACache: Size-Aware Load Balancing for Large-Scale Storage Systems 97

3.2 Implementation

Cache Node. The cache node caches objects as key-value pairs (e.g., A: value and B:
value).With a size-aware admission policy, small objectswill be cachedpreferentially. To
manage the cached objects in memory, we use a traditional LRU algorithm. Specifically,
we implement an LRUcache using two containers (list and unordered_map) inC++STL.
The list in unordered_map is a doubly-linked list that is efficient at inserting and deleting
when the address of the element is known. We use unordered_map to map the object
name to the object address, so we can locate the object in constant time complexity. On
a cache miss, the cache node visits the storage node and relays the object directly to the
client, rather than having another access storage node on the client to request the object.
At the same time, the object admission filter will decide whether to save the missed
object. We use a single-consumer task queue to operate the cache, which ensures thread
safety. The cache node will record information such as object requests, the number of
cache hits, and the most recent hit ratio to measure SACache’s performance.

Client. The client is implemented to test our storage system by requesting objects from
the cache node through the HTTP API. The client can either replay the existing trace to
generate requests or generate trace by configuring the object size distribution and access
popularity distribution. Besides, we implement DistCache by storing the cache node’s
address on the client.

Fig. 4. Cache miss and object can’t be cached. Fig. 5. Cache miss and object can be cached.

3.3 Request Path

In SACache, we used a client agent to connect to numerous clients and the object storage
cluster. In order to reduce the overhead caused by frequent network interactions within
the system, long-lived connections are established between the agent and the cache nodes
and storage nodes in the cluster. On a cache hit, the cache node returns the object kept
in memory to the agent. For a cache miss, the cache node will update its visit counter
and forwards the request to the storage node where the accessed object exists.



98 Y. Su et al.

Due to the existence of the admission filter mechanism in SACache, an object
returned directly to the cache node by the storage node in case of a cache miss could
be refused by the cache admission filter, which causes additional transfer overhead. We
want the storage node to have the ability to determine whether the current object needs
to be cached or not. If it is not cached, returning the object directly to the client agent
can save an object transfer overhead. In the prototype system implementation, the cache
node will append the parameter c and the object’s visit count K (from visit counter) to
the request to the storage node. In this way, the storage node can judge the next network
transmission direction by comparing the object access counts K and v(size)/v(c). When
K < v(size)/v(c), the object can be directly returned to the client agent; Otherwise, the
object needs to be returned to the cache node, which forwards the object to the client
agent. Figure 4 and Fig. 5 show two types of routing processing for a cache miss; the
pseudocode is shown in Appendix B.

3.4 Use Cases

SACache is a general mechanism for increasing system bandwidth in scenarios with
varying object sizes. It can be used in both single cache nodes and distributed cache
nodes, which we describe next.

Single Cache Node. Compared with storage nodes, storage media of cache nodes per-
formbetter in bandwidth and latency,which canbe used to ensure load balancing between
storage nodes by caching hot objects into cache nodes. For applications with a small
number of objects and a large request heat tilt, a single high-speed cache node may be
used to load O(nlogn) of the hottest objects to balance the request pressure between
storage nodes. A single cache node does not avoid load balancing between cache nodes
and is easier to handle on cache consistency, but it cannot provide sufficient bandwidth
and reliability for a larger cluster.

Distributed Cache Nodes. In large-scale distributed storage, a single cache node is not
enough to provide sufficient cache capacity. The bandwidth also needs to be higher than
the cumulative bandwidth of all storage nodes as the cache layer. Therefore, multiple
cache nodes are needed to realize load balancing among storage nodes. Simply copying
hot objects to all cache nodes does not take full advantage of expensive memory and
incurs write time synchronization overhead; and if objects are divided into different
cache nodes by a hash function, load imbalance will occur between cache nodes under a
highly skewed load. We can refer to DistCache to implement a distributed cache system.
Because there is no coupling between the cache nodes, SACache can be easily extended
to a distributed cache without additional modifications.



SACache: Size-Aware Load Balancing for Large-Scale Storage Systems 99

4 Evaluation

4.1 Experimental Setup

Our testbed is a server machine equipped with an 8-core 16-thread CPU (AMD 3700x),
16 GBmemory (Samsung 16 GBDDR4-3200memory), and we use G++ 9.3.0 compiler
and running the simulation program on ubuntu20.04. We conduct four experiments to
show the characteristics of SACache in different aspects. In the following subsections,we
explore the performance benefits of SACache and the costs of introducing the SACache
mechanism. The experimental results show that our SACache can improve the load
balancing performance within the accepted performance cost.

Fig. 6. Object hit ratio for single cache node. Fig. 7. Bandwidth for single cache node.

4.2 Experimental Result

Performance on Single Cache Node. In this section, we evaluate the performance
(including hit ratio and throughput) of SACache compared to AdaptSize and LRU cache
on an object storage system with a single cache node and ten storage nodes. We generate
random request trace with Zipf distribution; under this workload, a small number of
objects are accessed frequently, and most objects are rarely accessed. Simultaneously,
small objects account for more bytes and large objects for less, consistent with the trace
from the IBM Docker registry. Traditionally, the hit ratio is an important indicator to
evaluate cache replacement algorithms. In a cache system for objects of the same size,
a higher hit ratio means a higher IOPS performance. Figure 6 shows the hit ratio perfor-
mance of three different caching policies, with cache sizes ranging from 8 GB to 64 GB.
We use a log-scale x-axis to present a wide range of cache capacities. We can observe
from Fig. 6 that for the three different caching policies, as the cache’s capacity increases,
the cache can keep more objects, and less cache replacement occurs, which leads to a
higher hit ratio. Simultaneously, with the increase of cache capacity, the hit rate will
reach saturation and approach an upper bound. Considering the object size difference,
both AdaptSize and SACache can achieve a higher hit ratio than LRU cache for differ-
ent cache capacity. SACache improves the mean hit ratio and max hit ratio by 16.7%



100 Y. Su et al.

and 26.2% over LRU cache, respectively. Moreover, compared to AdaptSize, SACache
improves the mean hit ratio by 10.6% and improves the max hit ratio by 5.8%. However,
in applications with different object sizes, the hit ratio is insufficient to indicate perfor-
mance, so we also record the cache system’s bandwidth with different policies. Figure 7
shows the bandwidth of the system under different cache capacities. As shown in the
hit ratio experiment, SACache is superior to AdaptSize and LRU cache in bandwidth
performance. Compared to LRU, SACache’s bandwidth is 33.5% higher on average and
39.9% higher at most.

Fig. 8. Object hit ratio for multi-node
cache.

Fig. 9. Bandwidth for multi-node cache.

Performance on Distributed Cache Nodes. To verify the applicability of SACache in
large-scale storage systems, we examine the performance of SACache for distributed
cache nodes. The request mode of the generated trace is the same as that on a single
cache node, but the scale of the dataset is larger, with both the number of unique objects
and the length of the trace greater than the set in the single-node test. The cache nodes
in SACache are not independent of each other, and there is no data interaction, which
allows the multi-node cache to be extended without modifying the nodes. Referring to
DistCache’s design,we realize a load-balancing distributed cache system,which contains
a total of 16 cache nodes in two layers. The client agent records the load of the cache node
and chooses the node with a lower load adaptively according to power-of two-choices
[15] when requesting objects. Figure 8 and Fig. 9 respectively show the bandwidth and
hit ratio performance for distributed caches. Similar to the performance on a single node,
SACache is superior to AdaptSize, suggesting that SACache can also be used as a new
optimization approach in distributed cache systems.

Bandwidth Scalability of Different Policies. Figure 10 shows the system bandwidth
scalability using cache as the load balancer. Different admission policies show good
scalability under Zipf access popularity. This is because the front-end cache node absorbs
most of the popular objects, making the remaining cold objects distributed evenly on the
back-end storage node. However, SACache still performs better in scalability than the
other two policies.



SACache: Size-Aware Load Balancing for Large-Scale Storage Systems 101

Fig. 10. Bandwidth for single cache node.

Parameter Updating Time Cost. Figure 11 and Fig. 12 show the cache admission
parameter updating time cost of SACache,with parameter updated every specific number
of requests to track changes in the load. In our prototype system tests, we have 100K
requests per minute. Compared to a simple LRU-based cache system without object
admission filter, SACache inevitably incurs additional time cost to handle requests and
search for the best caching parameters. However, the added cost of handing requests
itself is negligible, so we focus on the optimal parameter search time cost. We use
the trace collected to generate requests to evaluate the elapsed time of the SACache
parameter search. For each parameter search, the cache node will replay the last 250k
requests (in about 150 s) recorded and calculate the hit rate; we use a greedy algorithm to
speed up finding the best caching parameter cwith the highest hit rate. The experimental
result shows that 99.3% of 30369 parameter search tests based on different traces can

Fig. 11. The time cost of update the cache
admission parameter every 150 s. We repeat the
experiment and showed the distribution and
cumulative probability sum of time consumption
in the figure.

Fig. 12. As the interval between update
parameters increases, the time cost of the
parameter search increases linearly because
longer records are used for parameter
searches.



102 Y. Su et al.

be completed within 3 s, and the maximum search time is 4.31 s. It will take several
minutes for the cache node to receive 250k requests in a real system, and the parameter
search could be executed in another process, so the parameter searching in SACache
would not be a performance bottleneck.

5 Related Work

Load balancing is crucial for distributed storage systems. Previous work indicates that
in a system owning n storage nodes, caching O(nlogn) hottest objects can avoid load
unbalancing. For larger distributed storage systems, multiple cache nodes are needed to
provide sufficient capacity for the storage cluster. To achieve load balancing among cache
nodes, DistCache proposes a two-layer caching architecture and uses independent hash
functions for request routing. However, in object storage systems, the size of objects
is often different. For storage systems with variable object sizes, the size-aware load
balancing mechanisms can achieve higher performance or lower cost. AdaptSize is the
first size-aware cache admission policy for hot object caching in CDN. To achieve a
higher object hit ratio, it searches for the optimal caching parameters based on a novel
Markov cache model and continuously adjusts the caching parameters according to the
change of request patterns. FOO and PFOO [16] gave the theoretical upper bound hit
ratio of caching with variable object sizes and reveal that the current caching system is
still far from optimal. To achieve cost-friendly load balancing by caching hot objects, we
design SACache with a focus on object size differences; the experimental results show
that the performance of SACache is better than AdatpSize.

6 Conclusion

Modern internet applications are becomingmore data-intensive, and in-memory caching
is crucial for improving applications’ storage performance. We present SACache, an
efficient caching mechanism that considers the difference in object size and is aimed at
maximizing system bandwidth. SACache takes advantage of a simple admission filter
that evaluates the benefits of caching an object when it is admitted. We present the
design and implementation of SACache and evaluate the load-balancing performance
improvement of SACache in large scale distributed cache through experiments.

Acknowledgement. This work is supported by The Key-Area Research and Development Pro-
gram of GuangDong Province (2019B010107001), National Key Research andDevelopment Pro-
gramofChina (2019YFB1804502), andNationalNatural ScienceFoundation ofChina (61832020,
61702569).



SACache: Size-Aware Load Balancing for Large-Scale Storage Systems 103

Appendix A



104 Y. Su et al.

Appendix B

References

1. Ghemawat, S., Gobioff, H., Leung, S.-T.: The google file system. In: Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles, pp. 29–43 (2003)

2. Hastorun, D., et al.: Dynamo: Amazon’s highly available key-value store. In: Proceedings of
SOSP. Citeseer (2007)

3. Beaver, D., Kumar, S., Li, H.C., Sobel, J., Vajgel, P., et al.: Finding a needle in haystack:
Facebook’s photo storage. In: OSDI, vol. 10, pp. 1–8 (2010)

4. Factor, M., Meth, K., Naor, D., Rodeh, O., Satran, J.: Object storage: the future building block
for storage systems. In: 2005 IEEE International Symposium on Mass Storage Systems and
Technology, pp. 119–123 (2005)

5. Fan, B., Lim, H., Andersen, D.G., Kaminsky, M.: Small cache, big effect: provable load bal-
ancing for randomly partitioned cluster services. In: Proceedings of the 2ndACMSymposium
on Cloud Computing, SOCC 2011. Association for Computing Machinery, New York (2011)

6. Anwar, A., et al.: Improving docker registry design based on production workload analysis.
In: 16th USENIX Conference on File and Storage Technologies (FAST 2018), Oakland, CA,
pp. 265–278. USENIX Association, February 2018

7. Li, X., Sethi, R., Kaminsky, M., Andersen, D.G., Freedman, M.J.: Be fast, cheap and in
control with switchkv. In: 13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 2016), Santa Clara, CA, pp. 31–44, USENIX Association, March
2016

8. Jin, X., et al.: Netcache: balancing key-value stores with fast in-network caching. In:
Proceedings of the 26th Symposium on Operating Systems Principles, pp. 121–136 (2017)

9. Liu, Z., et al.: Distcache: provable load balancing for large-scale storage systems with dis-
tributed caching. In: 17th USENIX Conference on File and Storage Technologies (FAST
2019), Boston, MA, pp. 143–157. USENIX Association, February 2019

10. O’neil, E.J., O’Neil, P.E., Weikum, G.: An optimality proof of the LRU-K page replacement
algorithm. J. ACM (JACM) 46(1), 92–112 (1999)

11. Morales, K., Lee, B.K.: Fixed segmented LRU cache replacement scheme with selective
caching. In: 2012 IEEE 31st International Performance Computing and Communications
Conference (IPCCC), pp. 199–200 (2012)

12. Megiddo, N., Modha, D.S.: ARC: a self-tuning, low overhead replacement cache. Fast 3,
115–130 (2003)

13. Berger, D.S., Sitaraman, R.K., Harchol-Balter, M.: Adaptsize: orchestrating the hot object
memory cache in a content delivery network. In: 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 2017), Boston, MA, pp. 483–498. USENIX
Association, March 2017



SACache: Size-Aware Load Balancing for Large-Scale Storage Systems 105

14. Kirilin, V., Sundarrajan, A., Gorinsky, S., Sitaraman, R.K.: RL-cache: learning-based cache
admission for content delivery. IEEE J. Sel. Areas Commun. 38(10), 2372–2385 (2020)

15. Mitzenmacher, M.: The power of two choices in randomized load balancing. IEEE Trans.
Parallel Distrib. Syst. 12(10), 1094–1104 (2001)

16. Berger, D.S., Beckmann, N., Harchol-Balter, M.: Practical bounds on optimal caching with
variable object sizes. Proc. ACM Meas. Anal. Comput. Syst. 2(2), 1–38 (2018)


	SACache: Size-Aware Load Balancing for Large-Scale Storage Systems
	1 Introduction
	2 Background and Motivation
	2.1 Cache Based Load Balancing
	2.2 Cache Systems with Variable Object Sizes
	2.3 Motivation

	3 SACache System Design
	3.1 SACache Architecture
	3.2 Implementation
	3.3 Request Path
	3.4 Use Cases

	4 Evaluation
	4.1 Experimental Setup
	4.2 Experimental Result

	5 Related Work
	6 Conclusion
	Appendix A
	Appendix B
	References




