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Abstract. Boolean functions have been extensively studied in coding
theory, cryptography, sequence design and graph theory. By adding two
products of three linear functions to some known bent functions, in this
paper, we construct a class of bent functions and obtain their dual func-
tions. In the meantime, a class of semi-bent functions and some classes
of five-valued Walsh spectra are given.
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1 Introduction

Boolean functions are widely used in cryptography, error correction codes [2]
and signal sequence design [7]. Their applications in cryptographic systems have
been studied for more than three decades. Some important properties of these
functions, including balance, nonlinearity and algebraic immunity, are obtained.
Walsh transform is a powerful tool to study the properties of Boolean functions
in the application of cryptography and coding theory. The Walsh transform of
a Boolean function, a discrete Fourier transform, can be used to express the
cryptographic properties of a Boolean function.

Bent functions proposed by [14] are Boolean functions with two different
Walsh transform values and implements the maximum Hamming distance func-
tion to all the affine Boolean functions. Bent functions exist only with even
number of variables. Bent functions have been extensively studied because of
their interesting algebraic and combinatorial properties and it have received a
lot of attention in the literature on communications, because of their multiple
applications in cryptography [1], the fields of coding theory [8] and sequence
design [13].

No bent function is balanced. As generalizations of bent functions, [5] intro-
duced the concept of semi-bent functions and obtained the balancedness and
good nonlinearity in both even and odd number of variables. Moreover, [17,18]
proved that bent functions and semi-bent functions are particular cases of the
so-called plateaued functions. Like bent functions, semi-bent functions are also
widely studied in cryptography. Because they have low Walsh transform val-
ues which can provide protection against fast correlation attacks [12] and linear
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cryptanalysis [9], they can possess desirable properties such as low autocorre-
lation, propagation criteria, resiliency, and high algebraic degree. Several new
families of semi-bent functions were proposed by [3,4,6,10,15].

In 2014, [11] provided several new effective constructions of bent functions,
and then gave several new infinite families of bent functions by adding a product
of two linear functions to some known bent functions and their duals. After that,
by adding a product of three linear functions to some known bent functions, [16]
presented several classes of bent functions. Inspired by those results, in this
paper, we firstly add a product of three linear functions to some known bent
functions, and then add another product of three linear functions to which one
(the added two products are related each other), so we obtain a class of bent
functions and their duals. On the other hand, we promote a class of semi-bent
functions and some classes of Boolean functions with five-valued Walsh spectra.
Finally, a spectrum distribution of some class of Boolean functions with five-
valued Walsh spectra is presented.

The paper is organized as follows. In Sect. 2, we introduce some notations and
preliminaries. In Sect. 3, we present some bent functions, semi-bent functions
and some functions with five-valued Walsh spectra. In Sect. 4, a spectrum distri-
bution of the Boolean functions obtained in Sect. 3 is given. Section 5 concludes
the paper.

2 Preliminaries

For a positive integer n, let IF2n be the finite field with 2n elements, IF∗
2n =

IF2n \ {0}. T rn
1 denotes the absolute trace function from IF2n onto IF2

Trn
1 (x) = x + x2 + · · · + x2n−1

, for all x ∈ IF2n .

Thus the Walsh transform of a Boolean function f on F2n is defined by

f̂(a) =
∑

x∈IF2n

(−1)f(x)+Trn
1 (ax), for all a ∈ IF2n .

Let Ni be the number of α ∈ IF2n such that f̂(α) = vi, i.e., Ni = |{α ∈ IF2n :
f̂(α) = vi}|, where 1 <= i <= t and t is a positive integer. By the properties of
Walsh transform, we have the following system of equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t∑
i=1

Ni = 2n,

t∑
i=1

Nivi = 2n(−1)f(0),

t∑
i=1

Niv
2
i = 22n,

(1)

A Boolean function f : IF2n → IF2 (n even) is said to be bent if f̂(ω) = ±2
n
2

for all ω ∈ F2n . Bent functions occur in pair. In fact, given a bent function f
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over IF2n , we define its dual function, denoted by f̃ , when considering the signs
of the values of the Walsh transform f̂(x)(x ∈ IF2n) of f. More precisely, f̂ is
defined by

f̂(x) = 2
n
2 (−1)f̃(x). (2)

A Boolean function f : IF2n → IF2 is said to be semi-bent if f̂(ω) ∈
{0,±2

n+2
2 } and if f̂(ω) ∈ {0,±2

n+1
2 } for all ω ∈ IF2n corresponding to n even

and n odd, respectively. It is well known that the algebraic degree of a bent or
semi-bent function defined on IF2n is at most n

2 [2].
Let n = 2m be a positive even integer and h be the monomial Niho quadratic

function
h(x) = Trm

1 (λx2m+1), (3)

with λ ∈ IF∗
2m . It is well known that h is bent, and its dual function h̃ is given

(see [11]) by
h̃(x) = Trm

1 (λ−1x2m+1) + 1. (4)

Below we always let n = 2m be an even and λ ∈ IF∗
2m .

3 Infinite Families of Bent, Semi-bent and Five-Valued
Functions from Monomial Bent Functions

In this section, we give a class of bent functions, its dual function, a class of
semi-bent functions and some classes of five-valued Walsh spectra.

We begin with the result presented by [11] that plays an important role.
Let f1, f2 and f3 be three pairwise distinct Boolean functions. Then define g :
IF2n → IF2:

g(x) = f1(x)f2(x) + f1(x)f3(x) + f2(x)f3(x). (5)

Lemma 1. [11] Let f1, f2 and f3 be three pairwise distinct bent functions over
IF2n such that ψ = f1 + f2 + f3 is bent. Let g be a Boolean function defined by
Eq. (5). Then g is bent if and only if f̃1 + f̃2 + f̃3 + ψ̃ = 0. Furthermore, if g is
a bent function, then g̃ is given by

g̃(x) = f̃1(x)f̃2(x) + f̃2(x)f̃3(x) + f̃3(x)f̃1(x), for all x ∈ IF2n .

[11] provides several new effective constructions of bent functions based on
Eq. (5). Let fi, 1 <= i <= 3 be three bent functions given by

fi(x) = Trm
1 (λx2m+1) + Trn

1 (aix), ai ∈ IF∗
2n ,

where a1, a2 and a3 are pairwise distinct elements of IF∗
2n . After a simple cal-

culation, Mesnager obtained that the Boolean function g(x) = f1(x)f2(x) +
f1(x)f3(x) + f2(x)f3(x) = Trm

1 (λx2m+1) + Trn
1 (ax)Trn

1 (bx) + Trn
1 (a1x), where

a = a1 + a3, b = a1 + a2. In the next lemma, Mesnager pointed out that g(x) is
a bent function under some conditions.
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Lemma 2. [11] Let (a, b) ∈ IF∗
2n × IF∗

2n such that a �= b and Trn
1 (λ−1b2

m

a) = 0.
Then the Boolean function g defined on IF2n as g(x) = Trm

1 (λx2m+1) +
Trn

1 (ax)Trn
1 (bx), it is a bent function of algebraic degree 2 and its dual func-

tion g̃ is given by

g̃(x) = 1 + Trm
1 (λ−1x2m+1) +

(
Trm

1 (λ−1a2m+1) + Trn
1 (λ−1a2mx)

)

·
(
Trm

1 (λ−1b2
m+1) + Trn

1 (λ−1b2
m

x)
)
.

Then one constructs a new class of Boolean functions and invests their prop-
erties by the two lemmas above. Let

fi(x) = Trm
1 (λx2m+1) + Trn

1 (ax)Trn
1 (aix),

where a, a1, a2, a3 are pairwise distinct elements of IF∗
2n . Hence by Eq. (5), one

can obtain

f(x) = f1(x)f2(x) + f2(x)f3(x) + f1(x)f3(x)
= Trm

1 (λx2m+1) + Trn
1 (ax)Trn

1 (a1x)Trn
1 ((a2 + a3)x)

+Trn
1 (ax)Trn

1 (a2x)Trn
1 (a3x). (6)

Motivated by [16, Lemma 1], we get the following result.

Lemma 3. Let h(x) be a Boolean function on IF2n , and a, a1, a2, a3 are pairwise
distinct elements of IF∗

2n . If f(x) is defined as follows

f(x) = h(x) + Trn
1 (ax)Trn

1 (a1x)Trn
1 ((a2 + a3)x) + Trn

1 (ax)Trn
1 (a2x)Trn

1 (a3x),

then for any b ∈ IF2n ,

f̂(b) =
1
4

(
2ĥ(b) +

3∑

i=1

ĥ(b + ai) − ĥ(b +
3∑

i=1

ai) + 2ĥ(a + b)

−
3∑

i=1

ĥ(a + b + ai) + ĥ(a + b +
3∑

i=1

ai)
)
.

Proof. For any (ε1, ε2, ε3) ∈ IF3
2, we define the set

T (ε1, ε2, ε3) = {x ∈ IF2n |Trn
1 (a1x) = ε1, T rn

1 (a2x) = ε2, T rn
1 (a3x) = ε3}

and integer
S(ε1,ε2,ε3)(b) =

∑

x∈T (ε1,ε2,ε3)

(−1)h(x)+Trn
1 (bx).
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Then for any b ∈ IF2n and (ε1, ε2, ε3) ∈ IF3
2, we have

f̂(b) =
∑

x∈F2n

(−1)f(x)+Trn
1 (bx)

=
∑

x∈F2n

(−1)h(x)+Trn
1 (ax)Trn

1 (a1x)Trn
1 ((a2+a3)x)

·
∑

x∈F2n

(−1)Trn
1 (ax)Trn

1 (a2x)Trn
1 (a3x)+Trn

1 (bx)

=
∑

wt(ε1,ε2,ε3)<=1

S(ε1,ε2,ε3)(b) +
∑

2<
=wt(ε1,ε2,ε3)

S(ε1,ε2,ε3)(a + b)

= ĥ(b) −
∑

2<
=wt(ε1,ε2,ε3)

(
S(ε1,ε2,ε3)(b) − S(ε1,ε2,ε3)(a + b)

)
, (7)

One can immediately have wt(ε1, ε2, ε3) is the Hamming weight of the vector
(ε1, ε2, ε3).

From the definitions of S(ε1,ε2,ε3)(b) we have

8S(ε1,ε2,ε3)(b) = 8
∑

x∈IF2n

(−1)h(x)+Trn
1 (bx)

3∏

i=1

1 + (−1)εi+Trn
1 (aix)

2

= ĥ(b) +
∑

di∈IF2
1<=i<=3

(−1)
3∑

i=1
diεi

ĥ(b +
3∑

i=1

diai), (8)

for 2 <= wt(ε1, ε2, ε3), substitute a + b for b in the above equation, we get

8S(ε1,ε2,ε3)(a + b) = ĥ(a + b) +
∑

di∈IF2
1<=i<=3

(−1)
3∑

i=1
diεi

ĥ(a + b +
3∑

i=1

diai). (9)

Applying Eqs. (8) and (9) to Eq. (7), and after a simple calculation, we get

4f̂(b) = 2ĥ(b) +
3∑

i=1

ĥ(b + ai) − ĥ(b +
3∑

i=1

ai) + 2ĥ(a + b)

−
3∑

i=1

ĥ(a + b + ai)) + ĥ(a + b +
3∑

i=1

ai).

This completes the proof. ��
In the following, we assume that A = Trm

1 (λ−1b2
m+1). Replace h(x) with

Trm
1 (λx2m+1) in Lemma 3, which happens to be Eq. (6), then after a tedious

calculation by using Eqs. (2)–(4), we obtain
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f̂(b) =
1
4
(−2m)(−1)A

(
2 +

3∑

i=1

(−1)ci − (−1)
3∑

i=1
(ci+ti)

+ 2(−1)c4

−
3∑

i=1

(−1)ci+c4+ti+3 + (−1)
4∑

i=1
ci+

6∑

i=1
ti

)
, (10)

where

ci = Trm
1 (λ−1(b2

m

ai + ba2m

i + a2m+1
i )), c4 = Trm

1 (λ−1(b2
m

a + ba2m + a2m+1)),
t1 = Trn

1 (λ−1a2m

1 a2), t2 = Trn
1 (λ−1a2m

2 a3),
t3 = Trn

1 (λ−1a2m

3 a1), ti+3 = Trn
1 (λ−1a2mai),

for 1 <= i <= 3.

Remark 1. In fact, since a, a1, a2, a3 are pairwise distinct elements of IF∗
2n , if

a, a1, a2, a3 are linear dependent over IF2, we have the following two cases holds:

(1) If a+ ai + aj = 0, i �= j, then the three cases are corresponding to the result
with [11].

(2) If
3∑

i=1

ai = 0 or a +
3∑

i=1

ai = 0, then the two cases are the same with the

result of [16].

Below we always put t0 =
3∑

i=1

ti modulo 2.

Now we discuss the properties of the function defined in Eq. (6).

Theorem 1. With the notation as above. Let a, a1, a2, a3 are linear independent
over IF2. If (t4, t5, t6) = (0, 0, 0), then f(x) in Eq. (6) is a bent function if and
only if t0 = 0. Furthermore, the dual function f̃(x) of the bent function f(x) in
Eq. (6) is given by

f̃(x) = f̃1(x)f̃2(x) + f̃2(x)f̃3(x) + f̃1(x)f̃3(x)

= 1 + Trm
1 (λ−1x2m+1) +

(
Trn

1 (λ−1a2mx) + Trm
1 (λ−1a2m+1)

)

( ∑

1<
=i<j<

=3

(
Trn

1 (λ−1a2m

i x) + Trm
1 (λ−1a2m+1

i )
)

·
(
Trn

1 (λ−1a2m

j x) + Trm
1 (λ−1a2m+1

j )
))

.

Proof. Let ϕ(x) =
3∑

i=1

fi(x) = Trm
1 (λx2m+1) + Trn

1 (ax)Trn
1 (

3∑
i=1

aix). Since t4 =

t5 = t6 = 0, i.e., Trn
1 (λ−1a2mai) = 0 for 1 <= i <= 3, by Lemma 2 we find that

f1, f2, f3, ϕ are all bent functions and their dual functions f̃1, f̃2, f̃3, ϕ̃ are given
by

f̃i(x) = 1 + Trm
1 (λ−1x2m+1) + Trm

1 (λ−1a2m+1)

+Trn
1 (λ−1a2mx)

(
Trm

1 (λ−1a2m+1
i ) + Trn

1 (λ−1a2m

i x)
)
,
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and

ϕ̃(x) = 1 + Trm
1 (λ−1x2m+1) + Trm

1 (λ−1a2m+1) + Trn
1 (λ−1a2mx)

(
Trm

1 (λ−1(
3∑

i=1

ai)2
m+1) + Trn

1 (λ−1(
3∑

i=1

ai)2
m

x)
)
.

Assume that 0 =
3∑

i=1

f̃i(x) + ϕ̃(x), which is equivalent to

(
Trn

1 (λ−1a2m+1) + Trn
1 (λ−1a2mx)

)( 3∑

i=1

Trm
1 (λ−1a2m+1

i

)

+ Trm
1 (λ−1(

3∑

i=1

ai)2
m+1)

)
= 0,

for all x ∈ IF2m , hence the equation holds if and only if Trn
1 (λ−1(a2m

1 a2+a2m

1 a3+
a2m

2 a3)) = 0. Thus the result follows from Lemma 1.
The dual function f̃ of the bent function f(x) then follows from

Lemmas 1–2. ��
Remark 2. The condition t0 = 0 in Theorem 1 implies that (t1, t2, t3) ∈
{(1, 1, 0), (0, 1, 1), (1, 0, 1), (0, 0, 0)}. Thus, if (t1, t2, t3) = (0, 0, 0), then Theo-
rem 1 can be easily obtained by [19, Corollary 4.2]. Even though the function
constructed in Eq. (6) is contained in the function in [19, Corollary 4.2], where
the other three cases are not discussed.

Theorem 2. Let a, a1, a2, a3 are linear independent over IF2. If (t0, t4, t5, t6) =
(0, 1, 1, 1), then f(x) in Eq. (6) is a semi-bent function.

Proof. If (t0, t4, t5, t6) = (0, 1, 1, 1), then Eq. (10) can be written as

f̂(b) =
1
4
(−2m)(−1)A

(
2 + 2(−1)c4 +

3∑

i=1

(−1)ci − (−1)
3∑

i=1
ci

−
3∑

i=1

(−1)ci+c4+1 + (−1)
4∑

i=1
ci+1)

.

So if c4 = 0, we have

f̂(b) =
1
2
(−2m)(−1)A(2 +

3∑

i=1

(−1)ci + (−1)
3∑

i=1
ci+1

)

=
{−2m+1(−1)A, wt(c1, c2, c3) <= 1,

0, 2 <= wt(c1, c2, c3),

and if c4 = 1, we have

f̂(b) =
1
4
(−2m)(−1)A(0) = 0.
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According to the definition of semi-bent function, we find that f(x) is a semi-bent
function. ��
Theorem 3. With the notation defined as above, we have

(1) If (t0, t4, t5, t6) = (1, 1, 1, 1), then f(x) in Eq. (6) is five-valued and the
Walsh spectrum of f is {0,±2m,±3 · 2m}.

(2) If (t0, t4, t5, t6) ∈ IF4
2\{(0, 0, 0, 0), (0, 1, 1, 1), (1, 1, 1, 1)}, then f(x) is five-

valued and the Walsh spectrum of f is {0,±2m,±2m+1}.

Proof. We only give the proof for the case of (1) since the other case can be
proved in the same manner.

(1) If (t0, t4, t5, t6) = (1, 1, 1, 1), then Eq. (10) can be reduced as

f̂(b) =
1
4
(−2m)(−1)A

(
2 + 2(−1)c4 +

3∑

i=1

(−1)ci − (−1)
3∑

i=1
ci+1

−
3∑

i=1

(−1)ci+c4+1 + (−1)
4∑

i=1
ci

)
.

Thus if c4 = 0, we have

f̂(b) =

⎧
⎨

⎩

3 · 2m(−1)A+1, wt(c1, c2, c3) = 0,
2m(−1)A, wt(c1, c2, c3) = 3,
2m(−1)A+1, otherwise.

And if c4 = 1, we have

f̂(b) =
1
4
(−2m)(−1)A(0) = 0.

The remaining cases of proof are similar to that of (t0, t4, t5, t6) = (1, 1, 1, 1),
so we omit it here. ��

Let m = 6 and ξ be a primitive element in IF26 such that ξ6+ξ4+ξ3+ξ+1 = 0.

Example 1. Let λ = a = 1, a1 = ξ, a2 = ξ5, a3 = ξ7. Then we have
(t0, t4, t5, t6) = (0, 0, 0, 0) and it was verified by a Magma program that

f(x) = Tr31(x
9) + Tr61(x)Tr61(ξx)Tr61((ξ

5 + ξ7)x) + Tr61(x)Tr61(ξ
5x)Tr61(ξ

7x)

is a bent function. This is consistent with our result in Theorem 1.

Example 2. Let λ = a = 1, a1 = ξ3, a2 = ξ6, a3 = ξ12. Then we have
(t0, t4, t5, t6) = (0, 1, 1, 1) and it was verified by a Magma program that

f(x) = Tr31(x
9) + Tr61(x)Tr61(ξ

3x)Tr61((ξ
6 + ξ12)x) + Tr61(x)Tr61(ξ

6x)Tr61(ξ
12x)

is a semi-bent function. This is consistent with our result in Theorem 2.
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Example 3. (1) If λ = 1, a = ξ, a1 = ξ3, a2 = ξ9, a3 = ξ13, then we have
(t0, t4, t5, t6) = (1, 1, 1, 1) and it was verified by a Magma program that

f(x) = Tr31(x
9)+Tr61(ξx)Tr61(ξ

3x)Tr61((ξ
5+ξ13)x)+Tr61(ξx)Tr61(ξ

5x)Tr61(ξ
13x)

has {0,±23,±3 · 23} five-valued Walsh spectra.
(2) If λ = a = 1, a1 = ξ, a2 = ξ2, a3 = ξ4, then we have (t0, t4, t5, t6) =

(1, 0, 0, 0) and it was verified by a Magma program that

f(x) = Tr31(x
9) + Tr61(x)Tr61(ξx)Tr61((ξ

2 + ξ4)x) + Tr61(x)Tr61(ξ
2x)Tr61(ξ

4x)

has {0,±23,±24} five-valued Walsh spectra.

4 The Walsh Spectrum of the Functions Given
in Section 3

In this section, we give a spectrum distribution of the Boolean functions proposed
in Sect. 3 with five-valued Walsh spectra.

Theorem 4. Let a, a1, a2, a3 are linear independent over IF2. Then for f(x)
given by Eq. (6), the following statements hold:

(1) If (t0, t4, t5, t6) = (1, 1, 1, 1), then the spectrum distribution of f(x) is

f̂(b) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(−1)A3 · 2m, 2n−5 + (−1)A2m−4(1 +
3∑

i=1

(−1)ti) times,

(−1)A2m, 7 · 2n−5 + (−1)A2m−4(5 − 3
3∑

i=1

(−1)ti) times,

0, 2n−1 times.

(2) If (t0, t4, t5, t6) = (1, 0, 0, 0), then the spectrum distribution of f(x) is

f̂(b) =

⎧
⎨

⎩

(−1)A2m+1, 2n−4 times,
(−1)A2m, 2n−2 + (−1)A2m−1 times,
0, 3 · 2n−3 times.

(3) For other cases, the spectrum distribution of f(x) is

f̂(b) =

⎧
⎨

⎩

(−1)A+12m+1, 2n−4 + (−1)A+12m−3(1 − (−1)δ) times,
(−1)A2m, 2n−2 + (−1)A2m−2(1 + (−1)δ) times,
0, 3 · 2n−3 times,

with

δ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t1, if (t0, t4, t5, t6) = (0, 0, 0, 1),
t2, if (t0, t4, t5, t6) = (0, 1, 0, 0),
t3, if (t0, t4, t5, t6) = (0, 0, 1, 0),
t1 + 1, if (t0, t4, t5, t6) ∈ {(0, 1, 1, 0), (1, 0, 0, 1), (1, 1, 1, 0)},
t2 + 1, if (t0, t4, t5, t6) ∈ {(0, 0, 1, 1), (1, 1, 0, 0), (1, 0, 1, 1)},
t3 + 1, if (t0, t4, t5, t6) ∈ {(0, 1, 0, 1), (1, 0, 1, 0), (1, 1, 0, 1)}.
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Proof. We only prove (t0, t4, t5, t6) = (0, 0, 0, 1), i.e., δ = t1 in (3), since the
other cases can be proved in the same method. If (t0, t4, t5, t6) = (0, 0, 0, 1), then
from Eq. (10) we have

f̂(b) =
1
4
(−2m)(−1)A(2 + 2(−1)c4 +

3∑

i=1

(−1)ci + (−1)
3∑

i=1
ci+1

+
2∑

i=1

(−1)ci+c4+1 + (−1)c3+c4 + (−1)
4∑

i=1
ci+1

).

So if c4 = 0, we have

f̂(b) =

⎧
⎨

⎩

2m(−1)A+1, (c1, c2, c3) ∈ {(0, 0, 0), (0, 0, 1), (1, 1, 0), (1, 1, 1)},
2m+1(−1)A+1, (c1, c2, c3) ∈ {(1, 0, 0), (0, 1, 0)},
0, (c1, c2, c3) ∈ {(1, 0, 1), (0, 1, 1)},

(11)

and if c4 = 1, we have

f̂(b) =

⎧
⎨

⎩

2m(−1)A+1, (c1, c2) = (0, 0),
2m(−1)A, (c1, c2) = (1, 1),
0, (c1, c2) ∈ {(0, 1), (1, 0)}.

(12)

Now we figure out the number of b ∈ IF2n such that f̂(b) = 2m+1, i.e.,
c4 = 0, A = 1. Let N1 denote the number of b ∈ IF2n such that (c1, c2, c3, c4, A) ∈
{(1, 0, 0, 0, 1), (0, 1, 0, 0, 1)}. Then we have

N1 =
∑

b∈IF2n

(1 + (−1)c4

2
· 1 + (−1)c1+1

2
· 1 + (−1)c2

2
· 1 + (−1)c3

2
· 1 + (−1)A+1

2

+
1 + (−1)c4

2
· 1 + (−1)c1

2
· 1 + (−1)c2+1

2
· 1 + (−1)c3

2
· 1 + (−1)A+1

2

)

=
1
25

∑

di∈IF2
1<=i<=4

∑

b∈IF2n

(
(−1)

∑4
i=1 dici+d1 + (−1)

∑4
i=1 dici+d2

+(−1)
∑4

i=1 dici+d1+A+1 + (−1)
∑4

i=1 dici+d2+A+1
)
.

To calculate N1, we first consider N11 =
∑

di∈IF2
1<=i

∑
b∈IF2n

(−1)
4∑

i=1
dici+d1

and N12 =

∑
di∈IF2
1<=i

∑
b∈IF2n

(−1)
4∑

i=1
dici+d2

, from the definitions of ci, 1 <= i <= 3, we have
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N11 =
∑

di∈IF2
1<=i<=4

∑

b∈IF2n

(−1)
3∑

i=1
Trm

1 (diλ
−1(b2

m
ai+ba2m

i +a2m+1
i ))

·(−1)Trm
1 (d4λ−1(b2

m
a+ba2m+a2m+1))+d1

=
∑

di∈IF2
1<=i<=4

(−1)
Trm

1 (λ−1(
3∑

i=1
dia

2m+1
i +d4a2m+1))+d1

·
∑

b∈IF2n

(−1)
Trm

1 (λ−1(b2
m

(
3∑

i=1
diai+d4a)+b(

3∑

i=1
diai+d4a)2

m
))

Note that a1, a2, a3 and a are linear independent, that is, we have
3∑

i=1

diai+d4a �=
0 if and only if (d1, · · · , d4) �= (0, · · · , 0). If (d1, · · · , d4) ∈ IF4

2\{(0, · · · , 0)}, then
we have

∑

b∈IF2n

(−1)
Trm

1 (λ−1(b2
m

(
3∑

i=1
diai+d4a)+b(

3∑

i=1
diai+d4a)2

m
))

= 0

since λ �= 0. Therefore, we obtain

N11 =
{

2n, (d1, · · · , d4) = (0, · · · , 0),
0, otherwise.

Then by a similar argument, we can also have N12 = N11.

Now we considered N13 =
∑

di∈IF2
1<=i<=4

2∑
j=1

∑
b∈IF2n

(−1)
4∑

i=1
dici+A+dj+1

, then we have

N13 =
∑

di∈IF2
1<=i<=4

2∑

j=1

∑

b∈IF2n

(−1)
3∑

i=1
diTrm

1 (λ−1(b2
m

ai+ba2m
i +a2m+1

i ))

·(−1)d4Trm
1 (λ−1(b2

m
a+ba2m+a2m+1)) · (−1)Trm

1 (λ−1b2
m+1)+dj+1

=
∑

di∈IF2
1<=i<=4

2∑

j=1

(−1)
2∑

i=1
Trn

1 (λ−1didi+1a2m
i ai+1)+Trn

1 (λ−1d3d1a2m
3 a1)

·(−1)
3∑

i=1
diTrn

1 (λ−1did4a2m
i a)+dj+1 ·

∑

b∈IF2n

(−1)
Trm

1 (λ−1(b+
3∑

i=1
diai+d4a)2

m+1)
.
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Note that
∑

b∈IF2n

(−1)
Trm

1 (λ−1(b+
3∑

i=1
diai+d4a)2

m+1)
= −2m from the bentness of

Trm
1 (λ−1x2m+1). Thus, one can obtain that N13 can expressed as

N13 =
∑

di∈IF2
1<=i<=4

2∑

j=1

2m(−1)
2∑

i=1
didi+1ti+d1d3t3+

3∑

i=1
d4diti+3+dj

.

So we get

N1 =
1
25

(N11 + N12 + N13)

= 2n−4 + 2m−4
(
3 − (−1)t4 +

6∑

i=5

(−1)ti − (−1)t3 − (−1)t1 + (−1)t2

−(−1)t3+t4+t6 − (−1)t0 + (−1)t2+t5+t6 − (−1)t1+t4+t5 − (−1)
6∑

i=1
ti

)

= 2n−4 + 2m−3(1 − (−1)t1).

Let N2 denote the number of b ∈ IF2n such that f̂(b) = 0. It then follows from
Eqs. (11) and (12) that f̂(b) = 0 for any (c1, c2, c3, c4) ∈ {(1, 0, 1, 0), (0, 1, 1, 0),
(0, 1, 0, 1), (0, 1, 1, 1), (1, 0, 0, 1), (1, 0, 1, 1)}. It is the same as the calculation of
N11, we have

N2 =
1
24

∑

di∈IF2
1<=i<=4

∑

b∈IF2n

(
(−1)

4∑

i=1
dici+d1+d3

+ (−1)
4∑

i=1
dici+d2+d3

+ (−1)
4∑

i=1
dici+d2+d4

+(−1)
4∑

i=1
dici+d2+d3+d4

+ (−1)
4∑

i=1
dici+d1+d4

+ (−1)
4∑

i=1
dici+d1+d3+d4

)

=
1
24

(2n + 2n + 2n + 2n + 2n + 2n)

= 3 · 2n−3.

Let n1 = |{b ∈ IF2n : f̂(b) = 2m}|, n2 = |{b ∈ IF2n : f̂(b) = −2m}|, and
n3 = |{b ∈ IF2n : f̂(b) = −2m+1}|. Then from Eq. (1) we have
⎧
⎪⎪⎨

⎪⎪⎩

2n = n1 + n2 + n3 + 2n−4 + 2m−3 − 2m−3(−1)t1 + 3 · 2n−3,
2n = 2m · n1 − 2m · n2 − 2m+1 · n3 + 2m+1 · (2n−4 + 2m−3 − 2m−3(−1)t1),
22n = (2m)2 · (n1 + n2) + (−2m+1)2 · n3 + (2m+1)2

·(2n−3 + 2m−3 − 2m−3(−1)t1).

After a simple calculation, we have
⎧
⎨

⎩

n1 = 2n−4 + 2m−3 + 2m−3(−1)t1 ,
n2 = 2n−4 − 2m−3 − 2m−3(−1)t1 ,
n3 = 2n−4 − 2m−3 + 2m−3(−1)t1 .

��
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5 Conclusion

In this paper, a class of bent functions and their dual functions are constructed
according to [11]. In addition, we obtain a class of semi-bent functions and some
classes of five-valued Walsh spectra. Then according to the Magma program, we
can see that the conclusion is consistent with our result in this paper.
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