)

Check for
updates

On-Chain and Off-Chain Collaborative
Management System Based on Consortium
Blockchain

Kete Wang! ™ Yong Yan?, Shaoyong Guo!, Xin Wei!, and Sujie Shao'

1 Beijing University of Posts and Telecommunications, Beijing 100000, China
wangkete@bupt.edu.cn
2 State Grid Zhejiang Electric Power Co., Ltd., Electric Power Research Institute,
Zhejiang 310000, China

Abstract. The blockchain system can provide a trust infrastructure for sharing
data among untrusted parties. However, storing the original shared data directly on
the blockchain is not suitable for large-scale data sharing scenarios. Therefore, we
designed a data sharing system architecture in which data hashing and response
records are stored on the blockchain and the original data is stored in the off-chain
database. This architecture can alleviate the system overload and protect privacy
problems to a certain extent. This paper proposes a three-tier system structure to
ensure the function of the network. Subsequently, formulate request rules, deploy
smart contracts, and build a platform based on the alliance chain. Finally, the sys-
tem functions and performance are analyzed and compared through experiments.
The results show that the system can realize efficient and transparent information
sharing while satisfying on-chain and off-chain collaborative management, and
the system has certain advantages in function, overall performance and throughput
performance.

Keywords: Consortium blockchain - Collaborative management - Data share

1 Introduction

With the development of society, the use of identification is more and more frequent,
and different types of identification are formed in different ways, but they all have secu-
rity problems such as easy tampering and poor credibility. Compared with traditional
physical storage evidence, review and certification is more complicated. When the iden-
tification is stored in a centralized manner, once the center is attacked or tampered with
externally or internally, the credibility will decrease. In addition, to ensure the security of
storage, the electronic storage of evidence often needs to use multiple backup methods,
which will cause problems such as high storage costs. The identification has a strong
relevance to the data, but it is difficult to support the data because of the difficulty of
authentication, the large quantity, and the high cost of storage [1].

With the development of Internet technology, centralized architecture can no longer
meet the requirements of security and performance. The researchers then turned to dis-
tributed storage and cloud computing, but the platform was vulnerable to DDos attacks

© Springer Nature Switzerland AG 2021
X. Sun et al. (Eds.): ICAIS 2021, CCIS 1423, pp. 172-187, 2021.
https://doi.org/10.1007/978-3-030-78618-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78618-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-78618-2_14

On-Chain and Off-Chain Collaborative Management System 173

and ignored issues such as authentication. The emergence of blockchain provides a feasi-
ble solution to the problems of traditional electronic storage of evidence [2]. Blockchain
technology [3, 4] has a unique block-chain structure to store data, as well as timestamps,
cryptography, consensus mechanisms, peer-to-peer communication, and distributed stor-
age, which are jointly maintained by multiple parties to achieve decentralization and
trusted data, hard-to-tamper target. Blockchain can build trust and centralization, and
distributed storage protects electronic evidence. Electronic evidence includes transaction
information and time stamp storage in summary form. Multiple parties jointly maintain
consistency, reducing the possibility of tampering and making it more secure.In terms
of data sharing, due to the lack of mutual trust between different companies or different
government departments, the risks of data leakage and improper use, and the differences
in administrative interests between companies or government departments, many data
owners are unwilling to share. In terms of data privacy, literature [5] et al. proposed an
EHR sharing protocol based on the security and privacy protection of the blockchain by
using the decentralization, anonymity, unforgeability and verifiability of the blockchain.
In the solution, the data requester can search for the required keywords from the data
provider, find the relevant HER on the blockchain, and obtain the re-encrypted ciphertext
from the cloud server after obtaining the authorization of the data owner. This solution
mainly Use searchable encryption and conditional proxy re-encryption to achieve data
security, privacy protection and access control.

In terms of data access control and security, literature [6] according to most database
systems and enterprise information systems are role-based access control technology,
but due to the simple role access control, its flexibility and control granularity sometimes
cannot meet the actual access control. Therefore, a security access control model based
on RBACV1 and ABAC is proposed to solve this problem.

In terms of credible deposits, literature [7] proposes an Ethereum trusted deposit
framework based on smart contracts for the data management problems of the Ethereum
platform, and then through centralized data unified processing, certified data distributed
storage and efficient dynamics Forensic mechanism to achieve. Finally, the system devel-
opment scheme design based on smart contract shows the feasibility of the mechanism.
Hou Yibin et al. [8] tried and studied the combination of blockchain technology and
electronic evidence technology to highlight the digitalization of electronic evidence and
the security and reliability of blockchain technology. The electronic evidence storage
system architecture in the form of batch packaging of evidence improves the efficiency
of evidence storage.

Therefore, the main technical contributions of this paper are summarized as follows:

e This article proposes a fabric-based on-chain and off-chain data collaborative man-
agement mechanism based on the problems of easy tampering, low data trust,
unguaranteed security, data islands, and large storage capacity in traditional storage
methods.

e Through the designed on-chain smart contract for certification and virtualized resource
pool as an off-chain database, this article uses blockchain technology to make the
certification data safe and reliable, and at the same time alleviate the storage pressure
on the chain. Consortium chain nodes are jointly maintained by multiple institutions,

174 K. Wang et al.

and each consortium block chain node (CBN) is executed by a private server belonging
to a trusted authority.

e The system establishes a two-way communication between organization A and orga-
nization B. After data collection or addition, the identification is stored in the
blockchain through a smart contract, and the data is added to the shared database.
The blockchain will serve as a depository. Including the hash of the verification data
and the organization to which the recorded data belongs.

2 Related Work

2.1 Hyperledger Fabric

HyperLedger Fabric [9, 10] is a modularized distributed ledger solution platform and
the underlying basic framework of a permission blockchain. It has the advantages of
convenient expansion and pluggability, and is suitable for enterprise-level applications.
In the ledger, the data blocks are linked in sequence in the order of generation time, and
cryptography [11], consensus algorithm [12] and other methods are used to ensure the
uniformity, non-tampering and unforgeability of the data of the ledger. Compared with
other public chains, HyperLedger Fabric’s differences are mainly reflected in the two
aspects of privateness and permission. Members of its organization can register through
membership services to ensure the security of platform access. The main structure of
Hyperledger is shown in Fig. 1.

APIs, SDKs, CLI

MEMBERSHIP BLOCKCHAIN TRANSACTION CHAINCODE

Membe.r ship Blockchain Services Chaincode
Services Services
Registration CI\(/)[nsensus D1]str1buted Secure
. anager edger container
Identity
Management
P2p Ledger Secure
Auditability protocol Storage Register

Event Stream
Services

Fig. 1. Hyperledger architecture

Member management services ensure the security of Fabric platform access and pro-
vide system members with registration, management and audit functions. The blockchain

On-Chain and Off-Chain Collaborative Management System 175

service is the core part, which provides support for the main functions of the blockchain,
including consensus mechanism management, implementation of distributed ledgers,
storage of ledgers, and communication between nodes. The chain code service part
provides an environment for the deployment and operation of smart contracts.

2.2 Transaction Process

In the Fabric network environment, its nodes can be divided into Endorsing peer, Com-
mitting peer, Orderer peer, Anchor peer and Leading peer according to different func-
tions. Among them, the Endorsing peer will endorse the transaction according to the
called smart contract and return it to the client. Committing peer is responsible for veri-
fying transaction data and saving it in the ledger. The Orderer node is responsible for sort-
ing transactions and creating blocks. Anchor peer is responsible for cross-organization
communication. Leading peer is the representative of all members in the organization,
responsible for connecting to the Orderer node and broadcasting the received messages.
The specific transaction process is described in Fig. 2 below.

4. Transactions
are sorted Leader

peer

3. Build request

Order
CA and submit

Services

5. Broadcast to the
master node

Register
6 . broadcast

1. submit a
transaction request

Leader
peer

Endors
peer

Client 2. Simulation execution
return signature

Fig. 2. Description of the transaction process

3 Requirements Analysis

3.1 Application Scenario

It shows an application scenario of on-chain storage of certificates and off-chain data
transmission. In this scenario, there are 4 participants A, B, C, and D. Each participant
has its own data. The original data is in ciphertext. The form is stored on the cloud server.
The identification of the original data (that is, the data catalog information, including the
basic description, category, owner, etc. of the data) and its hash digest are stored on the
blockchain. Suppose that due to certain services, node D needs to obtain data set R, and
the client of node D finds that node B has data set R by querying the catalog information
on the chain. Therefore, the client of the D node initiates a data acquisition request to
the B node, and the B node uses the public key of the D node client to symmetrically

176 K. Wang et al.

Virtualized Cloud
Storage Sefver Blockchain network

Data Sharing Request

Reponse

Fig. 3. Application scenario

encrypt the key K and the vector IV to the D node. Finally, the D client downloads the
data to the cloud server according to the received information and verifies its hash, and
uses the data set R legally after verification. In order to protect the respective rights of
data owners and data users, the data request from the D node client and the B node’s
response are recorded on the blockchain, of which 4 nodes A, B, C, and D are all this
data Witnesses of requests and responses. As shown in Fig. 3.

3.2 Functional Module

The user registration module mainly means that the user must submit a request and per-
form authentication registration first to participate in the system, and only after passing
the system audit can the user participate in the system, which ensures that the identity of
the system participant is clear. The system will also record the user’s operating behavior
to ensure that the responsibility of the electronic deposit data can be traced.

The original data storage module is mainly responsible for passing the user’s original
data to the logic layer through the front end, and to the cloud storage server through the
call interface. After obtaining the hash value of the file, it is encrypted by the access
control module for the next step of identification On the chain. In the same way, the
original data storage module needs to call the interface through access permission control
to download the original data from the cloud server.

On-Chain and Off-Chain Collaborative Management System 177

4>| User registration and login |

4| Raw data storage |
4| Hash mark on the chain |
On-chain and Off-chain N Access control
Collaborative Management |

—>| On-chain identification query

4| Raw data query

%| Data comparison check

Fig. 4. System module

The hash mark on-chain module is mainly responsible for storing the summary of the
user’s data information in the ledger. The user submits an application to the system before
the data is uploaded, and after the application is approved, the unique identification ID
assigned by the system will be obtained to identify user information. The chain can handle
different service requirements and control the participation of nodes through different
channels. In the process of chaining, smart contracts approved by judicial review are
used for chaining to avoid uncertain factors caused by human intervention. In the same
way, the identification query module on the chain uses the unique identification ID to
request the corresponding node to perform the identification query on the blockchain.

The main purpose of the access control module is to enhance the privacy of data
uploaded by users in the system. When user A does not want other users in the same
channel to query the hash value of the electronic evidence file uploaded by him, and then
query the file he uploaded, he can use symmetric encryption for the hash value of the
file before the data is uploaded to the chain encrypt it in the method, and then use the
public key of user B who is authorized to access the encrypted key and initial vector to
asymmetrically encrypt, and then send the encrypted data to user B who is authorized to
access through the service layer, and the user who is authorized to access B can use its
private key to decrypt the encryption key and initial vector of user A, and then decrypt
the hash value of the file.

The data comparison verification module mainly verifies the correctness and trace-
ability of data or files. Check the hash results of the blockchain and the cloud database,
and return the two results to the client if they are correct. As shown in Fig. 4.

4 Design and Implementation

4.1 Architecture Design

This paper establishes a system model that can realize encrypted data transmission,
identity verification and secure data storage. The entire system architecture is divided
into three layers, namely the user layer, the blockchain layer and the data storage layer.
As shown in Fig. 5.

178

A.

B.

K. Wang et al.

Data storage layer

Blockchain layer

Verification

(&@ Regiser @ &) S~ S
AL\[hClV[YCB[YOI\ AN
L@ B
User layer \ A \1\
Product hashset

\ s de
Access data / q Consortium
\ @ Return .?ﬂ b‘ 3 blockchain node

Fig. 5. System architecture

User layer

The user layer, including the process of data collection, encryption, and transmission,
interacts with the storage layer and the blockchain layer through visual interfaces
such as the web. In addition, including user registration and authentication. This
layer implements data storage, query, and credibility verification, provides access
interfaces, and automatically executes after triggering smart contracts. For exam-
ple, trusted verification, by querying database data and blockchain authentication
information, the hash is compared and displayed on the web. The user interacts with
the system through the interface.

Blockchain layer

The node maintains the consistency of the Consortium blockchain according to the
preset consensus mechanism, and verifies the integrity of the data and the identity of
the corresponding user by checking identity information through signatures and cer-
tificates. The blockchain layer uses existing access points to access the CBN server
for triggering. After identity authentication, the data is packaged and hashed into the
blockchain through the smart contract, and the original data is packaged and stored
in the database. In other words, the node packs the transactions generated within a
specific time window into the data block of the Merkle tree structure. In addition,
the client accesses the blockchain through the smart contract, parses the required

On-Chain and Off-Chain Collaborative Management System 179
data through the smart contract, performs privacy protection processing on the orig-
inal data owner, and performs credibility verification through hash comparison to
ensure that the data is true and credible and returned to the requester. In short, due
to the consensus-based distributed data verification mechanism, the system brings
an immutable, anonymous, irrevocable and traceable blockchain distributed ledger
for the auditable data in the system verification.

C. Data storage layer
Since the blockchain is not designed for large-scale database storage, a collaborative
management mechanism for verification on the off-chain storage chain should be
required. Instead, only data identifiers such as identity verification information, hash
values, and data signs are stored on the alliance chain nodes. Store a large amount
of user data in a virtualized resource pool.

4.2 Smart Contract Design

Smart contracts in the Fabric network are also called chain codes. They run in Docker
containers and are mainly written in Golang. All peers in the system can call the contract
to access data hash transaction information after adding the chain code. The core smart
contract part of this system is mainly for hash mark on-chain and on-chain query. The
created transaction includes user number, transaction number, timestamp, hash, type,
description, and attribution. The structure is expressed as Hd = (User, ID, Timestamp,
Hash, Type, Describe, Belong). When operating, use the system package provided by
Fabric to communicate with the blockchain network, namely Shim package and Peer
package. The Shim package contains the interface method for the interaction between
the smart contract and the Hyperledger, which provides the context of the Hyperledger
network for the operation of the chaincode.

Table 1. Hash related attributes

Method Request | Input Output | Description

Init GET N/A Boolean | Initialize the chaincode and return a
boolean

Invoke GET N/A Boolean | Forward parameters to the corresponding
method

Regist POST HASH, ID TxID Register hash, mark return transaction ID

SetHash GET ID HASH Set hash mark

QueryHash | GET ID Data Query hash mark

Indentify GET Data, HASH | Boolean | Verify the credibility and correctness of
data

To call the chain code in Fabric to query the ledger information, the system must
implement the ChaincodeStublnterface interface under the shim package in the chain-
code chainCode. The chain code provides a hash service for users and mainly defines the

180 K. Wang et al.

related functions of Table 1. According to different request types of chaincode calling
methods, transactions are divided into query and invoke. For example, simple query
of ledger information will directly send querys; if it involves update and increase, etc.,
the invoke transaction will be sent, waiting for other nodes to endorse to complete the

transaction (Table 2).

Table 2. Chaincode related functions

Property | Type | Description

User String | User ID

1D Int Transaction ID

Timestamp | Date | Time to record data

Hash String | File or data hash

Type String | Data type

Describe | String | Data description

Belong String | Data Ownership Organization

The hash on the chain is mainly stored in the ledger through the PutState method
in the shim package in Fabric. First, you need to define a suitable JSON data structure
to store the data that needs to be on the chain. Get the parameters through the Chain-
codeStublnterface in Shim, and then you need to check Whether the format and content
of the upload parameters meet the requirements, in addition, the GetState method needs
to be used to verify whether the data already exists in the ledger. When the data is verified
to meet the requirements, it is converted into a JSON string and stored and the PutState
method is called to store the data on the chain. If successful, the result of the chain is
returned. The specific algorithm flow is summarized as follows (Table 3).

Table 3. Chaining and storage

Algorithm 1

Input: Hd (User, ID, Timestamp, Hash, Type, Describe, Belong)
Output: (Putstate Result, Event, TxID)

N R

Return Result

Get parameters Hd through ChaincodeStublnterface

If the number of Hd is not 7, then return an error message

Check whether the number ID already exists by GetState(ID)

If number exist ,then return error

If the number does not exist, convert the information in Hd into a JSON string
Through Putstate function of shim to storage into hyperledger

On-Chain and Off-Chain Collaborative Management System 181

Table 4. Query and verification

Algorithm 2

Input: T(ID)

Output: (Getstate result, Query result)

1: Get parameters Hd through ChaincodeStublnterface

2: If the number of Hd is not 1, then return an error message

3: Read the data content of Number ID through GetState(ID)

4 Determine whether the read data is empty, if so, return an error mes-
sage

5: Return the query result.

The smart contracts queried on the chain are mainly used to obtain data from the

ledger through the GetState method of the shim package in Fabric. The user can use the ID
when hashed on the chain as the query condition, first check whether the input parameters
meet the requirements, and then query the data information numbered ID according to
the GetState method, and judge whether the retrieved data is null or whether there is an
error. Finally, the query result is returned. The specific algorithm flow is summarized as
follows (Table 4).

Table 5. Permission access control

Algorithm 3

Input: (Hash, K, IV, PKp)

Output: (E Hash, E K, E IV)

1: The hash value of the input data

2: XOR hash to initial vector, temp «— hash to IV XOR

3: The results of step 2 are encrypted symmetrically Hash «— AES
E (K, Temp)

4. Using PKj to encrypt K and IV asymmetrically, E K, E IV «
ECC_E (PKp, K, IV)

S: Returns the encrypted hash E_ Hash and ciphertext ¢ K and ci-

phertexte IV

The design scheme of system privacy protection mainly realizes data privacy pro-
tection by encrypting the data submission link. When user A does not want the hash
value of the uploaded file to be seen by all users in the channel, he can use the AES
encryption algorithm to encrypt the hash value of the file before uploading the data to
the chain. The process is described as follows: User A uses the key K and the initial

182 K. Wang et al.

vector IV to encrypt the data. The encryption function is defined as AES_E(K, Hash),
where K is the key and Hash is the hash of the data returned by the database sql. When
user B is expected to view the data, user B’s public key PKg can be used to perform ECC
asymmetric encryption on the key K and the initial vector I'V. The encryption function is
defined as ECC_E(PKp K, IV), and the encrypted text is ciphertext E_K and ciphertext
E_IV are sent to user B through the business layer after encryption (Table 5).

5 Evaluation

The first part introduces the required hardware configuration and basic software envi-
ronment. The second part introduces the construction of Hyperledger fabric and node
introduction. The third part introduces the function of data storage query on the sys-
tem chain and the system access control. The fourth part tests and compares the system
throughput.

5.1 Environment Configuration

This article installs a virtual machine in the host and deploys the Hyperledger to run in
the virtual machine. The required software environment is shown in Table 6 below.

Table 6. Software environment

Software environment | Detailed information

(N Ubuntu 20.04.1 LTS
Docker v19.03.12
Docker-compose v1.26.0

Go go1.13.8

Hyperledger Fabric v1.2.0

5.2 Operating Environment

Set up four different types of nodes in the fabric operating environment. As shown in
the following Table 7.
The setup process of Hyperledger’s operating environment is as follows:

1. Generate the peer node and orderer node to generate the certificate and key. In this
article, two peer organizations are set up, each organization contains two nodes, and
an orderer node is set.

2. Use the encryption tool configtxgen to read the configuration information in the
configtx.yaml file:

On-Chain and Off-Chain Collaborative Management System 183

Table 7. Fabric node types

Node name | Node type

Leveldb Database node

Peer Bookkeeping node
Orderer Sort node
CA CA node

3. Create a channel and read information. Finally, create a container according to the
docker compose startup image, add each node to the created channel, and build it.
After the network operating environment of Hyperledger is built, the chain code
needs to be installed and instantiated before the chain code can be used normally.
The chain code installation process is shown in the Fig. 6.

+ root@wangkete: ~/go/src/github.com/kongyixueyuan.com/kongyixu...

Creating ca.orgil.kevin.kongyixueyuan.com ...
Creating peer0.orgl.kevin.kongyixueyuan.com ...
Creating peeri.orgl.kevin.kongyixueyuan.com ...
Environment up
Start app ...

.Fabric SDK initialized successfully.

.Channel created successfully.

.Peers successfully joined the channel.

.Start installing chaincode...

.The specified chaincode was installed successfully.

.Start instantiating chaincode...

haincode instantiation succeeded.

.The channel client is successfully created and can be used to query or execute tra
nsactions.
&{0xc00048b080O OxcOOO5f7680 OXxcOOO66a210 OXxcOOO5e31a0 OxcOOO397080}
9.fabric is established.
10.Successfully connected to the database.
Chaincode event received: &{80617893620919212e4f3be8f32a8b4992776456769b6426aad7b392
c82cd44e simplecc eventSetInfo [] 2 localhost:7051}
The information is successfully released,the transaction number is: 8061789362091921
2e4f3be8f32a8b4992776456f69b6426aad7b392c82cd44e.
Query information based on user and nummber successfully.
{hdobj userA dc5c7986daef50c1e02abo9b442ee34f tZQYGNNTSqQGGtSvmbV3aDkSW3eSBTrDazxOhtn
eX0XBaD1z0zZTpQzfvfRTX48fAr account 2020/9/20-10:23:45 oelLg+LoAnPXPvXoD3PGlcw==
Start web service.listen to the port number: 9000

Fig. 6. Fabric successfully built

5.3 System Functions

To verify the add function of the system, the user uploads the file through the database
provided by the web to get the hash value. After the members of the organization encrypt
the hash, the ID, user identity, and timestamp assigned by the system are uploaded to the
blockchain through the SDK. When UserA adds data to the system, the page is shown
in the Fig. 7, and the terminal is Fig. 9.

To verify the query function of the system, user UserA initiates a request to UserD.
UserD uses A’s public key to encrypt the password and sends it to A. After a series of

184 K. Wang et al.

<. HYPERLEDGER

&Y EABRIC QUERY INFORMATION UPDATE

Add information

ion is ion ID:

1badfo
Off-chain database stores

Uid: usera

Did: dcSc7986daef50c1e02abosSbaazee

Type: account ~ Time: 2020/9/20-10:23:45

Describe: +20

AES Encrytion; Padding:zeropadding; Data block: 128; Password:123456; Offset:16; Output: base64

Data encryption content:oeLg+LoANPXPVXoD3PGlcw==

Faric Consortium Blockchain Storage
Hash content: b7211e8cf0a99c08917Fe8afc87712

Hash encrypted
content:tZQYGNNTSQGGt5vmbV3aDk5W3eSBTrDazxOhtneX0XBabDIzOZTpQzfvfRTX4SfAr

submit

Fig. 7. Data Insertion page

<. HYPERLEDGER

<3 FABRIC i

Query Reault

Make a request to userA

Off-chain database query

UserA-AES Encryption; padding:zeropadding ;Data block: 128 ; Password:123456 Offset:16 Output: base64
Did: dc5c7986daef50cle02ab09b442ee34f

Type: account

Decrypt Describe +20

Time 2020/9/20-10:

:45

Get hash value from off-chain database:
Faric stores hash values:tZQYGnNTSqGGt5vmbV3aDk5W3eSBTrDazxOhtneX0XBaDIzOZTpQzfwfRTX48fAr
Faric stores decrypted hash value:b7211e8cf0a99c08917fe8afc8771259

The database hash and the bl in are verified

Fig. 8. Query and verify records page

{hdobj userA dc5c7986daef50c1e02ab09b442ee34f tZQYGNNTSQGGt5vmbV3aDkSW3eSBTrDazx eX0XBaD1z0zZT

pQzfvfRTX48fAr account 2020/9/20-10:23:45 oelLg+LoAnPXPvXoD3PGlcw:

Fig. 9. Inserted terminal

decryptions, A obtains the hash, and then requests the database to get the data decrypted
through the web and verify it. After the verification is successful, it is displayed on the

On-Chain and Off-Chain Collaborative Management System 185

Chaincode event received: &{4d9cd3f00a673469f7d14448ea9a7c2b62d44f93ee8fce2f253bdceec4b36899 sim
plecc eventSetInfo [] 3 localhost:7051}

Fig. 10. Query and verify terminal

screen, the query result is shown in Fig. 8, and the query background record is shown in
Fig. 10.

5.4 System Performance

This performance test mainly uses the Caliper tool for testing, which is a blockchain
performance benchmark framework and allows users to use predefined use cases to test
different blockchain design solutions and obtain performance test results. The system
tested the throughput of different numbers of nodes, and the throughput and latency of
different read and write times.

When the number of nodes is an experimental variable, the nodes grow from O to 35
with a step size of 5. Repeat the experiment under different nodes to take the average
value, and the experimental results are shown in Fig. 11.

—e— TPS

Throughputs

[5 10 20 25 30 35

15
Number of nodes

Fig. 11. The effect of nodes on throughput

The throughput of the write function reaches its peak at 20 requests, decreases slightly
with the increase in the number of accesses, then increases slightly, and finally stabilizes.
The throughput of the read function shows an upward trend as the number of requests
increases, indicating that the system can withstand a certain scale of access requests.

By comparison, in the Hyperledger fabric, the system reads without submitting new
transactions, and does not interact with the ordering node and the submitting node.
Therefore, the system read throughput is better than the write throughput. The specific
data is shown in Fig. 12.

The delay of the write function is basically 0.3 or less, reaching a peak at 100 times.
As the number of accesses increases, the average delay decreases and tends to stabilize.
The delay of reading the function is basically lower than 0.1, and the average delay
decreases with the increase of the number of visits, reaching the lowest at 1000 times.
The specific data is shown in Fig. 13.

186 K. Wang et al.

300

—0— Query
—— Add

N N
o w
o o

Throughputs
=
wu
o

100
50
s —— - g
20 50 100 200 500 1000
Number of Visits
Fig. 12. Throughput test
0.30 —®— Query
- Add
N 0.25
1]
50.20
—
[}
o
£0.15
®
o
[}
=
< 0.10
0.05
20 50 100 200 500 1000

Number of visits

Fig. 13. Latency test

6 Conclusion

The rapid development of blockchain technology and the high level of social attention
have made blockchain applications in various fields. This paper proposes a fabric-based
on-chain and off-chain data collaborative management mechanism based on the prob-
lems of easy tampering, low data trust, unguaranteed security, and large storage capacity
in traditional storage methods. Through the designed on-chain smart contract for certifi-
cation and virtualized resource pool as an off-chain database, this article uses blockchain
technology to make the certification data safe and reliable, and at the same time alleviate
the storage pressure on the chain. The nodes of the alliance chain are jointly maintained

On-Chain and Off-Chain Collaborative Management System 187

by multiple institutions, etc., which solves the problems of information opacity, sharing,
and security to a certain extent. The system establishes channels in different organi-
zations, nodes can access each other, and the encryption algorithm is used to solve
the privacy problem, but the security problems and throughput problems in complex
environments need to be further improved in follow-up research.

Acknowledgement. This work has supported by State Grid Corporation of China science and
technology projected “Key Technologies Research and Application of High Elastic Power Grid
based on blockchain” (5700-202019374A-0-0-00).

References

1. Shangang, Z., Chao, W.: Review and judgment on the evidence ability of electronic data.
People’s Procur. Semimon. 8, 34-36 (2018)

2. Xin, Z., Tao, L.: Research on the judicial deposit system of blockchain. Cyberspace Secur.
10(7), 44-47+72 (2019)

3. Junfei, H., Jie, L.: Survey on blockchain Research. J. Beijing Univ. Posts Telecommun. 41(2),
5-12 (2018)

4. Yong, Y., Feiyue, W.: Blockchain: the state of the art and future trends. Acta Automatica
Sinica 42(4), 481-494 (2016)

5. Wang, Y., Zhang, A., Zhang, P, et al.: Cloud-assisted EHR sharing with security and privacy
preservation viaconsortium blockchain. IEEE Access 7, 136704-136719 (2019)

6. Ding, X., Yang, J.: An access control model and its application in blockchain. In: 2019
International Conference (2019)

7. Didi, C., Wei, C.: Mechanism of trusted storage in Ethereum based on smart contract. J.
Comput. Appl. 39(4), 145-152

8. Hou, Y., Liang, X., Zhan, X.: Block chain based architecture model of electronic evidence
system. Comput. Sci. 45(S1), 361-364 (2018)

9. Cachin, C.: Architecture of the hyperledger blockchainfabric [EB/OL]. http://bytacoin.io/
main/Hyperledger.pdf. Accessed 12 July 2016

10. Stallings, W.: Cryptography and network security: principles and practice. Int. Annals
Criminol. 46(4), 121-136 (1999)

11. Ruffing, T., Moreno-Sanchez, P., Kate, A.: Coinshuffle: practical decentralized coin mixing for
bitcoin. In: Kuty towski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 345-364.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1_20

12. Androulaki, E., Barger, A., Bortnikov, V., et al.: Hyperledgerfabric: a distributed operating

system for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference.
Association for Computing Machinery, New York, NY, United States

http://bytacoin.io/main/Hyperledger.pdf
https://doi.org/10.1007/978-3-319-11212-1_20

	On-Chain and Off-Chain Collaborative Management System Based on Consortium Blockchain
	1 Introduction
	2 Related Work
	2.1 Hyperledger Fabric
	2.2 Transaction Process

	3 Requirements Analysis
	3.1 Application Scenario
	3.2 Functional Module

	4 Design and Implementation
	4.1 Architecture Design
	4.2 Smart Contract Design

	5 Evaluation
	5.1 Environment Configuration
	5.2 Operating Environment
	5.3 System Functions
	5.4 System Performance

	6 Conclusion
	References

