
A Top-k QoS-Optimal Service Composition
Approach Under Dynamic Environment

Cheng Tian1(B), Zhao Zhang2,3, Sha Yang2,3, Shuxin Huang2,3, Han Sun2,3,
Jing Wang2,3, and Baili Zhang1

1 School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
220181734@seu.edu.cn

2 State Key Laboratory of Smart Grid Protection and Control, Nanjing 211106, China
3 Nari Group Corporation, Nanjing 211106, China

Abstract. To deal with low efficiency of existing Web service composition algo-
rithms under dynamic environment, this paper proposes a Top-k QoS-optimal
service composition algorithm based on QWSC-K static algorithm. The algo-
rithm first considers the influence of dynamic environment on the existing service
composition and service dependency graph, and classifies the changed services
in dynamic environment. Moreover, different strategies are adopted to obtain the
intermediate results of service composition for different categories of services.
The influence of different service categories on the service dependency graph is
analyzed to realize the updating of the service dependency graph. Finally, based
on the updated service dependency graph and the intermediate results of the ser-
vice composition, the adaptive incremental update can be applied to change the
original service composition results, avoiding the time-consuming re-query pro-
cess. Experiments show that the algorithm is efficient and accurate in dynamic
environment.

Keywords: Dynamic environment · Service composition · Intermediate results ·
Dependency graph · Incremental updating · Adaptive

1 Introduction

Due to the limited functions of singleWeb service, how to combine exitingWeb services
to meet complex business requirements has become a research focus [1, 2]. The existing
Top-k QoS-optimal service composition schemes have been utilized to provide users
with multiple service compositions to meet their requirements [3–6]. However, most
of these service composition methods are based on the static environment with fixed
services. Faced with the dynamic changing service environment, it is often necessary
to recalculate the built composite services, which is very inefficient. Therefore, many
researchers propose their own solutions to the service composition problem in dynamic
environment.

Literature [7, 8] proposes that artificial intelligence planning method can be used to
process dynamic services and update composite services accordingly. However, because

© Springer Nature Switzerland AG 2021
X. Sun et al. (Eds.): ICAIS 2021, LNCS 12736, pp. 597–609, 2021.
https://doi.org/10.1007/978-3-030-78609-0_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78609-0_51&domain=pdf
https://doi.org/10.1007/978-3-030-78609-0_51

598 C. Tian et al.

QoS of services is not taken into account in the process of service composition update,
these methods usually cannot guarantee that the updated composite services still meet
the non-functional requirements.

Literature [9] proposed a service composition method oriented to dynamic service
environment. It is based on the shortest path graph search algorithm to search for chain-
like composite services. However, this method cannot search for non-chain composite
services that actually exist, such as composite services that can be modeled as Directed
Acyclic Graph (DAG).

Literature [10, 11] respectively gives the methods of automatic service composition
oriented to dynamic environment. However, these methods only focus on the changes of
services functional factors (such as the change of service interface), and do not consider
the influence of non-functional factors (such as service QoS). Thus, it is difficult to
recommend a service composition under constrains of user QoS. Contrary to the above
two works, literatures [12, 13] focus on improving the quality of service according to
the change of QoS of atomic services.

Literature [14] proposes a composite service adaptive algorithm to deal with the
dynamically changing service environment. However, this method only performs adap-
tive updating for a single optimal service composition, and does not solve the adaptive
updating problem of the first k optimal service composition.

Therefore, this paper proposes a Top-k QoS-optimal service composition algorithm
DQWSC-K in dynamic environment. The algorithm is based on the updated service
dependency graph and uses an incremental adaptive algorithm to partly update the
affected service state, avoiding time-consuming re-composition process.

The second section introduces the knowledge related to the proposed algorithm.
The third section describes the service composition algorithm in dynamic environment.
Section 4 gives the experimental results. The last part is the summary and prospect of
the paper.

2 Related Knowledge

2.1 Service Dependency Graph Model

In order to accurately express the association relationship of Web services in the Web
services set and their QoS information, this paper uses the service dependency graph G
= (V, E) to model the Web services set.

In G, the node set V represents a set of services. Each service Wi is represented
as a node in G. The directed edge set E represents the set of service matches. The set
satisfies: ∀ek ∈ E, ek = (vn, vm, tagk), in which vn and vm respectively represent the
service nodes corresponding to the start and the end of the edge. The tagk satisfies the
following relationship:

1. tagk ⊆ vn.O
2. tagk ⊆ vm.I

It is necessary to point out that when there is a service request R, the entrance service
node Start and the exit service node End are dynamically generated in the graph. The
two service nodes satisfy the following relationship:

A Top-k QoS-Optimal Service Composition Approach Under Dynamic Environment 599

Table 1. Service node.

Service name Input parameters Output
parameters

QoS value

v1 A, B, C D 900

v2 A, B E, F 100

v3 C, E H 200

v4 C, F G 500

v5 L, J D 600

v6 K H 500

v7 H D 200

v8 G H 500

1. Start.I = ∅; Start.O = R.I
2. End .I = R.O; End .O = ∅

According to the above definition, if the service set is the service described in Table
1, the service request is R = <I, O>, in which the request input parameter is I = {A,
B, C} and the request output parameter is O = {D}. The service dependency graph
constructed is shown in Fig. 1.

Start

v1

v2

v3

v4

v5

v6

v7

v8

v9

End

C

ABC

C

AB

D

EF

E

F

G

H

H

D

H

D

Fig. 1. Service dependency graph.

2.2 QWSC-K Algorithm Structure and Process

The Top-k QoS-optimal service composition algorithmQWSC-K [15] under static envi-
ronment mainly includes three modules: the service filtering module, the obtaining the
combined path sequence module and the combined path sequence conversion mod-
ule. Firstly, in the service filtering module, an effective hierarchy filtering algorithm
is adopted to filter the initial service set. The search space of the graph and the time
complexity of the entire algorithm can be reduced greatly. Secondly, in the obtaining the

600 C. Tian et al.

combined path sequence module, the filtered service candidate set is used to construct a
service dependency graph. Then traverse the service dependency graph. In the traversal
process, the Top-k composition path information sequences associated with each service
node are calculated and saved. The sequences are sorted according to global QoS values.
Finally, in the combined path sequence conversion module, the Top-k composition path
information sequences at the exit service node End are converted into the solution of the
final Top-k service composition.

3 DQWSC-K Algorithm Description

The DQWSC-K algorithm mainly include four modules: dynamic service acquisition
and classification module, service composition intermediate result acquisition module,
service dependency graph updating module and incremental adaptive updating module.
The algorithm framework is shown in Fig. 2.

Data set

Database

Publish/Subscribe
Monitoring Module

The updated graph
module

Original graph module

Incremental self-
adaptive algorithm

The updated topk
service composition

The original topk
service composition

Update

generate

QWSC-K algorithm

Topk service composition algorithm in dynamic environment

Dynamic service acquisition Service dependency graph update Incremental self-adaptive algorithm

Fig. 2. Top-k service composition algorithm framework in dynamic environment.

3.1 Dynamic Service Acquisition and Classification Module

In accordance with the method described in literature [16], this paper receives events
related to dynamic services from the publish/subscribe network, and uses soapUI to
monitor and obtain Web services and their QoS. For the received dynamic services,
this paper divides them into four categories according to different processing strategies:
(1) new services: the services newly added to the service set; (2) failed services: the
services that need to be deleted in the service set; (3) interface change services: the

A Top-k QoS-Optimal Service Composition Approach Under Dynamic Environment 601

services existing in the original service set, but their input and output parameter set
changes; (4) the services with changed QoS. As shown in Table 2, compared with Fig. 1,
v10 in Table 2 (1) is a new service, v3 in Table 2 (2) is a failed service, v3 in Table 2
(3) is an interface change service, and v3 in Table 2 (4) is a service with changed QoS
value from 200 to 1000.

Table 2. Dynamic services.

Dynamic services Example
(1)New services

(2)Failed services

(3)Interface change services

(4)Services with changed QoS

3.2 Service Composition Intermediate Result Acquisition Module

In the process of running the QWSC-K algorithm, the effective service candidate set
was obtained by using the hierarchical filtering algorithm. Then, according to the effec-
tive service candidate set, the combined path traversal algorithm is used to obtain the

602 C. Tian et al.

parameter source table and the combined path sequence information source table gener-
ated during the traversal process. These two tables are the intermediate result of service
combination.

However, the intermediate state results obtained by the QWSC-K algorithm may
be incomplete for new services and interface change services. The reason is that the
new service and the interface change service could lead to a previously inaccessible
service node becoming accessible,whichmay eventually lead to generating a new service
composition. Sowhen traversing the graph, the state of every reachable service node need
tobe recorded inorder to checkwhether the original unreachable nodebecomes reachable
due to the appearance of the new services or interface change services. However, in
reality, the QWSC-K algorithm will directly filter out the previously unreachable nodes
during the filtering phase, so new service combinations cannot be generated. Therefore,
for the new services and the interface change services, the QWSC-K algorithm needs to
be improved to remove the filtering stage, so that the intermediate states of all reachable
service can be obtained.

The improvedQWSC-Kalgorithm (IQWSC-K) is similar to theQWSC-Kalgorithm.
After the filtering phase is removed, the parameter source table is obtained through the
entire service set instead of the original valid service list. At the same time, the service
dependency graph is directly constructed from the original service set.

For the failed services and the services with changed QoS, the emergence of these
two types of dynamic services will not lead to the original unreachable service node
reachable. Therefore, the QWSC-K algorithm can be directly used to filter and calculate
the intermediate state result.

3.3 Service Dependency Graph Update Module

It can be seen from Sect. 3.1 that four types of dynamic services will have an impact
on the structure or attributes of the service dependency graph. According to the type
of dynamic service, the following strategies are used to update the service dependency
graph respectively. First of all, for the new service, the corresponding node is added in
the service dependency graph. And according to the matching relationship between this
node and other nodes, the corresponding edge is added in the service dependency graph.
Then, the precursor service node of the new service node is obtained according to the
saved parameter source table. And the Top-k composite path sequence associated with
the new node is obtained from the precursor service node and saved to the composite
path information source table. Secondly, for the failed service, the corresponding node
and its associated edges are removed from the service dependency graph. And the table
items associated with the node are removed from the composite path information source
table and parameter source table. Thirdly, for the service with changed QoS, the QoS
values of the corresponding nodes in the service dependency graph are updated. And the
Top-k composite path sequence associated with this node is found from the composite
path information source table to update its global QoS value. Finally, for the interface
change service, it is handled in two steps: (1) Delete the original service in the service
dependency graph; (2)Handle the service as a new service. Thus, in themanner described
above, we have transformed the four dynamic services into the three dynamic services
for processing.

A Top-k QoS-Optimal Service Composition Approach Under Dynamic Environment 603

3.4 Incremental Adaptive Update Module

At present, for Top-k service composition algorithm, when dynamic services arrive,
the service composition engine reruns the service composition process and generates
a new Top-k service composition scheme. However, this approach is less efficient in
a dynamic environment with real-time change. Through the analysis of the existing
QWSC-K algorithm, it is found that in the process of generating service composition,
each service node saves the composite path sequence from the starting node to the service
node. This also shows that for each service node, only the change of service state in the
precursor service set will have a direct impact on it. Thus, the generation of each dynamic
service can only affect its associated subsequent services, while the state of its precursor
services does not change. So, in the process of service composition, the service nodes
affected by the dynamic service are updated in turn according to the state of the dynamic
service and the intermediate results of the saved service nodes. After that, a new Top-k
service composition scheme can be obtained.

When the dynamic service is received, according to specific categories of dynamic
service, incremental adaptive algorithm (IA_Alg) takes the corresponding processing
strategy and generates new Top-k service composition. The specific steps of IA_Alg
algorithm are as follows:

(1) Analyze the impact of dynamic services and judge whether dynamic services may
cause changes in the intermediate state of other services. Specifically, for failed ser-
vices, interface change services and services with changed QoS, determine whether
this dynamic service exists in the saved composite path information list. If it exists,
it indicates that the new servicemay affect the state of the subsequent service nodes.
If it does not exist, then the dynamic service will not affect other service nodes.
For a new service, determine whether it can trigger a new service node. If so, it
means that the service may generate a new service combination. It needs to con-
tinue to consider the influence of subsequent nodes. If not, it means that there is no
influence.

(2) Update the status of the affected service. First, the priority queue PQ is used to store
the dynamic services identified in the first step that may affect the state of other
services. Then the services in PQ are popped up by loop and processed accordingly.
In PQ, service nodes are saved in order from small to large according to their global
QoS value in order to avoid repeated update of service state.
For different dynamic service types, the specific process of updating the service
state is different. For the new service or the interface change service, it can make
the original unreachable service become the reachable service. Therefore, on the
one hand, for each service popped up from the PQ, it is necessary to determine
whether it enables other service nodes to change from the unreachable state to the
reachable state based on its output parameters. That is, each output parameter of the
dynamic service need to be traversed to see if it can trigger a new service node. If it
can trigger a new service node, the new service node needs to be added to PQ. On
the other hand, it is necessary to determine whether these dynamic services have an
impact on the Top-k composite path sequence stored in the subsequent service. Then
update the state of their subsequent service nodes and add the affected subsequent

604 C. Tian et al.

services to the PQ. For the failed service or the service with changed QoS, it is
only necessary to determine whether they have an impact on the Top-k combined
path sequence stored in subsequent services. If so, directly update the status of the
subsequent service nodes and add the affected subsequent services to PQ.

(3) After all the services in the priority queue PQ are processed, determine whether
the composite path sequence of the terminating service node End is updated. If
the sequence is updated, the path sequence transformation algorithm will con-
vert the new Top-k composite path sequence into the solution of the final ser-
vice combination. If not, the original solution of the Top-k service composition is
returned.

4 Experiment

4.1 Experimental Procedure

XML parsing
module

Combined
algorithm module

Incremental self-adaptive
algorithm module

Intermediate result
of service

composition

Dynamic topk
combination generator

< / >

Combined service

Dynamic services

name:W1
I:A,B,C
O:E,D
rsp Time:100ms

Request
I:A,B,C
O:D

Test set

wsdl file
wsla file

request file

Fig. 3. Dynamic environment experiment system.

The experimental test set uses the data set generated by the WSBen tool, which
contains 5 test sets with different number of services (200–10000). In the experiment,
we also generate dynamic services in a random way for each test set. There are three
types of files on each test set: the WSDL file describes the input and output parameters
of the service; the WSLA file describes QoS information of the service; the request file
describes the user’s request. The whole experimental system is shown in Fig. 3.

This paper mainly selects QWSC-K algorithm based on re-execution as the com-
parison object of DQWSC-K algorithm. This paper mainly adopts the following two
evaluation indexes: query response time and accuracy.

4.2 Query Response Time Evaluation

Because the intermediate results of the service composition obtained are different for
the different dynamic service types in the DQWSC-K algorithm, the intermediate results
of the service composition obtained for new services and interface change services are

A Top-k QoS-Optimal Service Composition Approach Under Dynamic Environment 605

different from those for failed services and services with changed QoS. Therefore it is
necessary to conduct experimental verification for these two situations. In order to verify
the time performance of the algorithm, this paper conducts two sets of experiments: the
same k value, the same number of dynamic services, and different service set sizes; the
same k value, the same service set size, and different numbers of dynamic service. The
specific experimental conditions are as follows:

Experiment 1: The influence of the same k value, the same service set size and different
dynamic service quantity on the algorithm.

Figure 4 shows that when the dynamic service is a new service or an interface change
service, k value is 5 and service size n = 1000, different dynamic service quantity has
an impact on the execution time of DQWSC-K algorithm and QWSC-K algorithm.
Figure 5 shows the impact of dynamic service as a failed service or a service with
changes QoS on the execution time of DQWSC-K algorithm and QWSC-K algorithm
under the same condition. It can be seen from Fig. 4 and Fig. 5 that the execution time of
both DQWSC-K algorithm and QWSC-K algorithm increases with the increase of the
number of dynamic services. But the execution time of QWSC-K algorithm increases
with large amplitude, while that of DQWSC-K algorithm is smaller. This is because for
QWSC-K algorithm, each addition of a dynamic service means an increase in the time
to search the entire service space, the time consumption increases with large amplitude.
In contrast, DQWSC-K algorithm can avoid re-search and consume less time, so the
increase amplitude is lower.

0

1000

2000

3000

30 40 50 60 70 80al
go

rit
hm

 e
xe

cu
tio

n
tim

e/
m

s

number of dynamic services

QWSC-K DQWSC-K

Fig. 4. Dynamic service is the new service or interface change service.

Experiment 2: The influence of the same k value, the same number of dynamic services,
and different service set sizes on the algorithm.

Figure 6 shows that when the dynamic service is a new service or an interface change
service, the value of k is 5 and the number of dynamic services is 10, different service
set sizes have an impact on the execution time of DQWSC-K algorithm and QWSC-
K algorithm. Figure 7 shows the impact of dynamic service as a failed service or a
service with changed QoS on the execution time of DQWSC-K algorithm and QWSC-K
algorithm under the same condition. As can be seen from Fig. 6 and Fig. 7, the execution
time of the QWSC-K algorithm obviously depends on the size of the Web service set.

606 C. Tian et al.

0

1000

2000

3000

30 40 50 60 70 80al
go

rit
hm

 e
xe

cu
tio

n
tim

e/
m

s

number of dynamic services

QWSC-K DQWSC-K

Fig. 5. Dynamic service is the failure service or service with changed QoS.

The more services there are, the longer the query execution time will be. This is because
each time a dynamic service is generated, the QWSC-K algorithm needs to re-execute
the query and search the entire service space, the execution time depends mainly on the
number of services. But for the DQWSC-K algorithm, because the incremental adaption
only needs to update the service state partially affected by the dynamic service, the
execution time is lower than that of QWSC-K algorithm.

0
1000
2000
3000
4000
5000

200 500 1000 2000 5000 10000

al
go

rit
hm

 e
xe

cu
tio

n
tim

e/
m

s

service set size

QWSC-K DQWSC-K

Fig. 6. Dynamic service is the new service or interface change service.

4.3 Accuracy Assessment

This section evaluates the accuracy of the two algorithms. It refers to whether the Top-
k service combination returned by the two algorithms satisfies the query request and
guarantees global QoS optimization. Because the QWSC-K algorithm has been proved
theoretically and experimentally that the service composition it returns is globally opti-
mal, by comparing whether the global QoS returned by QWSC-K algorithm is equal
to the global QoS returned by DQWSC-K algorithm, we can determine whether the

A Top-k QoS-Optimal Service Composition Approach Under Dynamic Environment 607

0

2000

4000

6000

200 500 1000 2000 5000 10000al
go

rit
hm

 e
xe

cu
tio

n
tim

e/
m

s

service set size

QWSC-K DQWSC-K

Fig. 7. Dynamic service is the failure service or service with changed QoS.

service combination returned by DQWSC-K algorithm is the global optimal QoS result.
We respectively use two algorithms to conduct experiments based on the service depen-
dency graph in Fig. 8: take the dynamic service as w4, its QoS value changes from 10
to 30, and k is 3. The final experimental result is shown in Table 3.

Fig. 8. Service dependency graph.

The result shows that the Top-k service combination results returned by QWSC-K
algorithm and DQWSC-K algorithm are consistent and can be executed correctly. And
the associated global QoS is also the same. This shows that the DQWSC-K algorithm
can deal with the dynamic changing service environment and automatically update the
service combination as required to ensure that the updated results still meet the query
request and the global QoS is optimal.

608 C. Tian et al.

Table 3. Updated service composition result table.

QWSC-K algorithm DQWSC-K algorithm

5 Conclusion

This paper presents a Top-k QoS-optimal service composition algorithm under dynamic
environment,which is based on theQWSC-Kalgorithm.This algorithmuses incremental
adaptive algorithm to dynamically update the state of some affected services according
to different service categories. The algorithm does not recalculate and search the entire
service set space, which ensures the efficiency of the algorithm. The next step is to try
to use the idea of distributed parallel or approximate computation to solve the Top-k
QoS-optimal service combination problem in the dynamic service environment.

Acknowledgement. This work was partly supported by Open Research Fund from State Key
Laboratory of Smart Grid Protection and Control, China, Rapid Support Project (61406190120)
and the National Key R&D Program of China (2018YFC0830200).

References

1. Deng, S., Huang, L., Tan, W.: Top-k automatic service composition: a parallel method for
large-scale service sets. IEEE Trans. Autom. Sci. Eng. 11(3), 891–905 (2014)

A Top-k QoS-Optimal Service Composition Approach Under Dynamic Environment 609

2. Tan, W., Fan, Y., Zhou, M.: A petri net-based method for compatibility analysis and compo-
sition of web services in business process execution language. IEEE Trans. Autom. Sci. Eng.
6(1), 94–106 (2009)

3. Benouaret, K., Benslimane,D.,Hadjali, A., et al.: Top-kweb service compositions using fuzzy
dominance relationship. In: 2011 IEEE International Conference on Services Computing
(SCC), pp. 144–151. IEEE, Washington (2011)

4. Almulla, M.. Almatori, K., Yahyaoui, H.: A QoS-based fuzzy model for ranking real world
web services. In: 2011 IEEE International Conference onWeb Services (ICWS), pp. 203–210.
IEEE, Washington (2011)

5. Wang, X.L., Huang, S., Zhou, A.Y.: QoS-aware composite services retrieval. J. Comput. Sci.
Technol. 21(4), 547–558 (2006)

6. Jiang, W., Hu, S., Liu, Z.: Top k query for QoS-aware automatic service composition. IEEE
Trans. Serv. Comput. 7(4), 681–695 (2014)

7. Yan, Y., Poizat, P., Zhao, L.: Repair vs. recomposition for broken service compositions.
In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470,
pp. 152–166. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17358-5_11

8. Yan, Y., Poizat, P., Zhao, L.: Self-adaptive service composition through graphplan repair. In:
2010 IEEE International Conference on Web Services, pp. 624–627. IEEE, Miami (2010)

9. Kalasapur, S., Kumar, M., Shirazi, B.A.: Dynamic service composition in pervasive
computing. IEEE Trans. Parallel Distrib. Syst. 18(7), 907–918 (2007)

10. Wang, H., Wu, Q., Chen, X., et al.: Adaptive and dynamic service composition via multi-
agent reinforcement learning. In: 2014 IEEE International Conference on Web Services,
pp. 447–454. IEEE, Anchorage (2014)

11. Geyik, S.C., Szymanski, B.K., Zerfos, P.: Robust dynamic service composition in sensor
networks. IEEE Trans. Serv. Comput. 6(4), 560–572 (2013)

12. Feng, Y., Ngan, L.D., Kanagasabai, R.: Dynamic service composition with service-dependent
QoS attributes. In: IEEE 20th International Conference on Web Services, pp. 10–17. IEEE
Computer Society, Santa Clara (2013)

13. Groba, C., Clarke, S.: Opportunistic service composition in dynamic ad hoc environments.
IEEE Trans. Serv. Comput. 7(4), 642–653 (2014)

14. Lv, C., Jiang, W., Hu, S.: Adaptive method of composite service oriented to dynamic
environment. Chin. J. Comput. 39(2), 305–322 (2016)

15. Li, G., Wen, K., Wu, Y., Zhang, B.: Topk service composition algorithm based on optimal
QoS. In: Sun, X., Pan, Z., Bertino, E. (eds.) Cloud Computing and Security, ICCC 2018,
LNCS, vol. 11064, pp. 309–321. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
00009-7_29

16. Yan, W., Hu, S., Muthusamy, V., et al.: Efficient event-based resource discovery. In: Pro-
ceedings of the Third ACM International Conference on Distributed Event-Based Systems,
pp. 1–12. Association for Computing Machinery, New York (2009)

https://doi.org/10.1007/978-3-642-17358-5_11
https://doi.org/10.1007/978-3-030-00009-7_29

	A Top-k QoS-Optimal Service Composition Approach Under Dynamic Environment
	1 Introduction
	2 Related Knowledge
	2.1 Service Dependency Graph Model
	2.2 QWSC-K Algorithm Structure and Process

	3 DQWSC-K Algorithm Description
	3.1 Dynamic Service Acquisition and Classification Module
	3.2 Service Composition Intermediate Result Acquisition Module
	3.3 Service Dependency Graph Update Module
	3.4 Incremental Adaptive Update Module

	4 Experiment
	4.1 Experimental Procedure
	4.2 Query Response Time Evaluation
	4.3 Accuracy Assessment

	5 Conclusion
	References

