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Abstract. Aiming at the needs of the job shop to arrange production schedul-
ing reasonably in the actual industry, an improved particle swarm optimization
method is proposed to solve the job shop scheduling problem (JSSP). By analyz-
ing the scheduling characteristics of the job shop and according to various resource
constraints, a process-based coding and activity scheduling decoding mechanism
suitable for particle swarm optimization is designed. Use the proportional muta-
tion strategy and the ring topology structure to improve the traditional particle
swarm optimization algorithm, and combine the elite selection learning strategy
to retain excellent individual information which accelerate the convergence speed.
The improved particle swarm optimization algorithm is used to solve standard
instance problems of different scales, and the effectiveness of the algorithm is
verified by comparing with other methods.

Keywords: Particle swarm optimization · Large-scale optimization · Job shop
scheduling problem

1 Introduction

The job shop scheduling problem is one of the most representative and core schedul-
ing problems, and has important practical significance for the advanced manufacturing
industry. In recent years, it has attracted a large number of researchers to conduct in-
depth research on this problem.Many effective optimization algorithms are proposed for
the NP-hard problem of job shop scheduling. A distributed particle swarm optimization
algorithm is proposed in Literature [1], using coding and decoding technologymethod to
solve job shop scheduling problem, through simulation examples to verify the effective-
ness of this algorithm, and then extended this method to other actual assembly systems.
An ant colony algorithm with a local search mechanism is proposed to solve the dual-
objective job shop scheduling problem, the purpose of seeking a balance between the two
objectives [2]. An improved artificial bee colony algorithm is proposed to solve the more
complex job shop scheduling problem [3]. Literature [4] mixed genetic algorithm and
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particle swarm optimization algorithm with Cauchy distribution to obtain an improved
algorithm with better performance to solve flexible job shop scheduling problem. Lit-
erature [5] applied tabu search as a local search method, and combined with particle
swarm optimization algorithm to establish an algorithm framework for solving job shop
scheduling problems. A particle swarm optimization algorithm based on neighborhood
structure is proposed which performs a meticulous search through critical path analysis
technique. This algorithm is more effective for complex job-shop problems [6].

In this paper, an improved particle swarm optimization algorithm is proposed which
is based on the ring topology, combined with the variable ratio mutation strategy and the
elite learning strategy, according to a coding and decoding technology to solve job shop
scheduling problem. So as to provide a new way for the research of job shop scheduling
problem.

2 Mathematical Model of Job Shop Scheduling Problem

A typical job shop scheduling problem is described as follows: a scheduling system has
n sets of workpieces to be processed J = {1, 2, …, n}, which can be set on m machines
M = {1, 2, …, m} to complete the processing task. Each workpiece has m processing
steps, named separately O1m, . . . ,O2m, . . . ,Onm, where O11 represents the first step of
workpiece 1, O1m represents the mth step of workpiece 1, and so on to the mth step of
workpiece n. Each workpiece has a predetermined processing route, and the process-
ing operation time of the process of each workpiece on the corresponding machine is
defined. The purpose of scheduling is how to reasonably arrange the processing order of
all workpieces on eachmachine tool to satisfy the optimization constraints [7].Workshop
scheduling problems generally have two general constraints, which named order con-
straints and resource constraints. In the process of processing, in addition to satisfying
the constraints, the following ideal conditions are usually assumed:

(1) The processing of the next process can be started only after the processing of the
previous process of each workpiece is completed, and no process has the priority
of preemptive processing;

(2) At the same time, a certain process of a workpiece can only be processed on one
machine, and a lathe cannot process two processes at the same time;

(3) The processing time of each workpiece includes its preparation time and processing
setting time, and the processing time remains unchanged;

(4) During the entire processing process, once the process is performed, it cannot be
interrupted, and each lathe is fault-free and effective;

(5) Eachworkpiece cannot be processedmultiple times on the same lathe, and all lathes
handle different types of processes;

(6) Without special regulations, the processing time of the workpiece remains
unchanged.

In a typical job shop scheduling problem, conditions 1 and 2 are the sequence con-
straints and resource constraints of the processing process, and the other conditions are
the ideal processing conditions designed to construct a fault-free processing process [8].
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In order to establish an ideal mathematical model, J = {1, 2, …, n} represents
the workpiece set, M = {1, 2, …, m} represents the machine set, each workpiece has
the same process, The process set is O = {1, 2, …, m}, and the workpiece Ji has Oij

processes, then the set of all processes is I = ∑n
i=1

∑m
j=1 Oij, where each process meets

the sequence constraints. Set Tij represent the processing time of step Oij, Fij is the
completion time of step Oij, and A(t) represents the set of steps being processed at time
t. If the operation Oij is to be processed on the machine Mk , it is expressed as Eijk = 1,
otherwise it is Eijk = 0. Using minimized maximum completion time as the optimization
goal, the mathematical model can be described as follows,

S = min

(

max
i∈n (max

k∈m
Xik)

)

(1)

The constraints are

Fik ≤ Fij − Tij, k ∈ Pij; i = 1, 2, . . . , n; j = 1, 2, . . . ,m (2)

∑

j∈A(t) Eijk ≤ 1, k ∈ m; t ≥ 0 (3)

Fij ≥ 0, i = 1, 2, . . . , n; j = 1, 2, . . . ,m (4)

where Xik is the completion time of the workpiece i on the machine k. Formula
(1) is the minimized the maximum workpiece completion time, which is makespan
performance index. Equation (2) is used to guarantee sequence constraints between
processes, and Eq. (3) indicates that each lathe can only process one process at the same
time. Equation (4) ensures that all processes are completed.

A typical example is shown in Table 1, including 3 workpieces, 2 processes, and 2
machines in job shop scheduling problem.

Table 1. Processing timetable for job shop scheduling problem

Workpieces Process Machine and processing time

M1 M2

J1 O11 2

O12 2

J2 O21 3

O22 2

J3 O31 1

O32 1

Disjunctive graph models are generally used to describe job shop scheduling prob-
lems. For the job shop scheduling problem of n workpieces and m machines, the corre-
sponding disjunctive graph model is represented by G = (N, A, E), where N is the set
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of points composed of all the processing steps, including virtual operations 0 and n * m
+ 1 (respectively representing start processing and end processing); A represents a set
of arcs connected by a sequence of prescribed constraints in the same workpiece. The
connected arc is also called a directed arc and is represented by a solid line. The dotted
line connects the extraction arcs between all processes on the same machine, and the
extraction arcs of all machines form the set E.

Fig. 1. The feasible disjunction diagram in Table 1

Figure 1 is an example of the JSSP problem extraction graph shown in Table 1, which
represents two different feasible solutions. In the Fig. 1, the arc set 1 constitutes E1which
represents the sequence of processes on the machine 1, and the arc set 2 constitutes E2
which corresponds to the sequence of workpieces processed on the machine 2. It can
be analyzed that the ultimate goal of scheduling is to find a solution that traverses all
processes and satisfies the shortest path in set E. Optimizing the maximum completion
time in the scheduling scheme is tomake the longest path shorter in set E. As shown in the
example, the longest path of the extraction graph b is 7 unit times in set E2 corresponding
to machine 2, which is more unit time than E1 corresponding to machine 1. In order to
reduce the spent time in set E2, find a new solution through the optimization scheme,
such as inserting the original process O32 into the idle machine 2, which change the
processing sequence on the machine 2. Shortening the longest path makes it possible to
find an optimized solution in a shorter time.

Compared with the traveling salesman problem, the job shop scheduling problem
has a more complicated situation, which is caused by the following reasons [9]:

1) The scope of the solution space is obviously increased. Assuming that there are
n work pieces and m machines, which can combine (n!)m solutions. For exam-
ple, a scheduling problem with a scale of 10 * 10, the solution space is expanded
to 3.96 * 1065, if it traverses all the values in the solution space, it need to use
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a computer that operates 100 million times per second to continuously work for
1.26 * 1050 years.

2) Due to the various constraints of the problem, the difficulty of encoding and decod-
ing is increased, especially for the optimization algorithm for solving continuity
problems, appropriate processing is required.

3) When solving hypersurface optimization problems, there are often more irregularly
distributed suboptimal solutions. Due to the lack of prior information of the problem,
it is more difficult to find the optimal solution to the problem.

3 Job Shop Scheduling Algorithm Based on Improved Particle
Swarm Optimization

This paper proposes an improved particle swarm optimization algorithm for the job
shop scheduling problem. First step, the process of the workpiece is coded. Next step,
the discrete scheduling problem is converted into a continuous problem that can be
solved by the particle swarm optimization algorithm. Then, the target area is searched
according to an improved particle swarm optimization algorithm. Finally, the optimal
solution obtained by the algorithm is activated decoding. Determine the processing
sequence of the workpiece, and select the optimal processing procedure of the job shop
scheduling problem according to the minimum completion time.

3.1 Encoding Operation

Encoding operation is an important process link of particle swarm optimization algo-
rithmapplied toworkshopproduction scheduling problems.Without encoding operation,
particle swarm optimization algorithm cannot be used to solve discrete scheduling prob-
lems. Therefore, this chapter uses a process-based coding technique to make continuous
optimization algorithms for solving discrete problems. Through coding, each particle
contains all the workpiece processes, which represents a feasible solution to the corre-
sponding scheduling problem. Different discrete values are used to represent different
workpieces, and the number of occurrences of the values indicates different processing
procedures for eachworkpiece. For example, if a processingworkshop needsmmachines
to process nworkpieces, each particle is composed of n×mvariable dimensions, and the
variable dimensions in the particles represent the sequence-constrained process. After
decoding operations, the machine pair can be obtained. The processing sequence of the
workpiece process forming a feasible solution to the job shop scheduling problem.

For example, a 3 × 3 workshop scheduling problem consisting of 3 machines and
3 workpieces. After the encoding operation, one of the particles is [1 2 2 3 3 2 1 1 3],
and the values 1, 2, and 3 represent different workpieces. One of the workpieces has 3
different processing steps, so each number is appearing 3 times. Use Oij to represent
the j-th processing step of the i-th workpiece, then the operation step indicated by the
corresponding particle is [O11 O21 O22 O31 O32 O23 O12 O13 O33].

Owing to the particle swarm optimization algorithm is an optimization algorithm
for solving continuity problems, it is necessary to convert continuous real numbers into
discrete codes to use the particle swarm optimization algorithm. First, sort the particles
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in ascending order, take the corresponding position index to form a matrix of the same
size, divide all the elements in the matrix by the number of operations and take an
integer, and then determine the dimensional order of the process of each workpiece in
the particle, use a continuous series of ascending numbers indicate the process of the
workpiece. The starting data of differentworkpieces is associatedwith the corresponding
workpiece number, and a continuous code is formed according to the sequence of the
processes. For example, a particle’s process-based code is [1 2 2 3 3 2 1 1 3], and it
becomes [1 4 5 7 8 6 2 3 9] by the above conversion method, where the value 1 indicates
the first of the 1 workpiece. In the process, the value 2 represents the second process
of 1 workpiece, the value 4 represents the first process of 2 workpiece, and so on, and
the value 9 represents the third process of 3 workpiece. The values 1, 2, and 3 are
used to represent the sequence constraints of 1 workpiece process, respectively, to avoid
repeated occurrence of the values. The above method provides a way to solve discrete
optimization problems using continuous intelligent optimization methods.

3.2 Particle Swarm Initialized

The initialized particle swarm should be widely distributed and cover most of the search
space. Therefore, in this chapter, the initial population is generated by random distribu-
tion, then the initial population is normalized by coding technology, so that each initial
particle meets the constraints of the actual problem, ensuring the feasibility and rational-
ity of each particle. Randomly perturb of 20% particles and select the same number of
particles to form the initial population. Expand the distribution of the initial population
through the above methods [10].

3.3 Improved Particle Swarm Algorithm

In this part, the improvedparticle swarmalgorithmbasedon the ring topology andpropor-
tional variation of the elite learning strategy is used to solve the scheduling optimization
problem of the job shop.

Niching Methods with Ring Topology. Most existing niching methods usually suffer
from the niching parameters adjustment, such as the species distance in species conserv-
ing genetic algorithm and the species radius in the speciation-based PSO. The niching
radius should be set to neither too large nor too small. If it set too large, which would
be very hard to capture the global optima exactly. On the other hand, if the niche radius
set too small, these niches tend to prematurely converge. Relying on the niching radius
is a main disadvantage for niching methods.

In this paper, it will prove that a PSO with ring topology can urge stable niching
behavior and maintain diverse population without any niching parameters. In particular,
one key advantage of this type of PSO algorithms is that there is no need to specify any
niching parameters, which are usually required in existing traditional niching methods.
In reducing the premature convergence of PSO, more ring communication topologies
(two neighborhood members and one interacting member) have been shown to be very
effective.
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The appropriate PSO algorithm with a ring topology uses the local memory of par-
ticles to form a stable network. It reserves the best positions it has found so far and
maintains solutions diverse through elitist learning strategy instead of one particle pbest
only. A ring topology is described as follows. One particle interacts with two neighbor-
ing particles to form an ecological niche. The first particle is the neighbor of the last one
and vice versa. The neighborhood of the i-th particle returns the best-fit personal best
solution nbesti in its neighborhood, which represents the neighborhood best for the i-th
particle.

Different particles residing on the ring are possible to have different nbests. So it is
possible to converge to different optima for different particles over time.

vk+1
ij = wvkij + c1r1(pbest

k
ij − xkij) + c2r2(nbest

k
ij − xkij) (5)

The ring topology neighborhood structure not only provides an opportunity to decel-
erate the rapid information propagation from the super individuals, but also makes dif-
ferent neighborhood bests to exist together (rather than becoming homogeneous) over
time. The reason is that a particle’s nbest will be updated only when there exists a better
personal best around [11].

Elitist Select and Learning Strategy. It is obvious that PSO with ring topological
structure supplies the opportunity for each particle to learn from its local niche best
and the pbest solutions. Correspondingly, the possibility of being trapped by local opti-
mumwill be decrease. However, owing to the natural difficulties ofmultimodal functions
it is also liable to be trapped by local optima. Furthermore, particle’s pbest is used as the
learning source of other PSOs. The promising particles are adopted used as the poten-
tially exemplars to guide the particle flying. In traditional PSO algorithm, each particle
will abandon its current pbest solution if even better solution is existing. However, the
abandoned solutions may also have better character and include the hopeful information
about the global optimal solution. So as to make use of the useful historical information,
one elitist set is constructed as an exemplar guidance pool.

The elitist set is composed by a history pbest and other satisfactory suboptimal
individuals with 10 individuals. The sub-optimal solutions record some abandoned indi-
viduals; however, the location is opposite to the pbest solutions. After one iteration, the
worst solution in elitist set is updated by the current particle or the pbest with better func-
tion value. Each particle learns information from the elitist set (eset) randomly, which
is described as (6).

vk+1
ij = wvkij + c1r1(eset

k
ij − xkij) + c2r2(nbest

k
ij − xkij) (6)

Mutation Strategy. Anew hybridmutation strategy is proposedwhich intends tomain-
taining the diversity and avoiding premature convergence. The proposed mutation strat-
egy balances between exploration and exploitation by means of combining the mutation
operation of differential evolution (DE) with the global search ability of PSO.

In traditional algorithms, large search space usuallymeans higher risk for divergence,
so it is an adventure tomake particles have larger search space. Therefore, how to enlarge
the exploitation areas of particles is an important improving direction for PSO. However,
too large exploitation areas will mismatch the inherent need of algorithm to decrease
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the quality of particles. Mutation operation can preserve information through crossover
operation in differential evolution. If a random number is larger than the crossover
probability the component of the original position of the particle will be copied to
the new individual. So, it is natural to combine both sides to utilize their advantages
simultaneously. Conservatism and adventurism principle mutation, i.e., scalingmutation
strategy, is defined as follows

lj =
{
0 if sj < −1
1 else

(7)

vk+1
ij = wvkij + c1r1(eset

k
ij − xkij) + c2r2(lbest

k
ij − xkij) (8)

xk+1
ij = xkij +

∣
∣sj

∣
∣ · ljvk+1

ij (9)

where Gaussian random number s~ N (0, 1), lj ∈ {0, 1}. If sj < −1, lj = 0, xk + 1ij =
xkij. At this current conservatism principle procedure, the corresponding j-th component
of the i-th particle will preserve the initial information from the previous position.

If sj≥ −1, lj= 1. Currently, it becomes the adventurism principle, in which particles
are possible to move to new positions with different coefficients. So, the search space is
possible to be scaled by this mutation strategy according to the above analysis.

vk+1
ij = wvkij + c1r1(eset

k
ij − xkij) + c2r2(nbest

k
ij − xkij) (10)

xk+1
ij = xkij +

∣
∣sj

∣
∣ · ljvk+1

ij (11)

3.4 Decoding Operations

The optimal solution for the job shop scheduling problem must be active scheduling,
so this chapter uses active decoding operations to calculate the minimum maximum
completion time by calculating the processing time of the process on each machine. The
activity decoding operation flow is: first, determine the machine number of the work-
piece process represented by each particle; then, calculate the start processing time and
completion processing time of the workpiece process; then, according to the sequence
constraints and resource constraints, theworkpiece process is the correspondingmachine
starts processing at the earliest allowable processing time. After finishing all the work-
piece processes, calculate the total processing time of each machine one by one, and
select the longest time as the adaptation value.

This chapter uses the most commonly minimum maximum completion time as the
optimization goal of the job shop scheduling problem, that is makespan. Through the
decoding operation, the corresponding makespan value can be obtained.

4 Process Steps of JSSP-SERPSO Algorithm

Steps of the algorithm are as follows:
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Step 1: Initialize the population and define control parameters of the elite library.
Step 2: Encode the generated particles, calculate the fitness value of each particle, and
record the optimal value. Establish an elite library using the best 10 particles in the
population.
Step 3: Construct a ring topology structure, use the left (right) particles of the cur-
rent particle to form a niche neighborhood, and record the optimal particles in the
neighborhood.
Step 4: Update each particle in the population according to formula (10) and (11), replace
the current individual optimal particle with a random particle in the elite library, replace
the global optimal particle with the optimal particle in the neighborhood, and mutate the
dimension of the current particle using normal distribution.
Step 5: Calculate the optimal solution through decoding. If the iteration termination
criterion is met, stop the iteration and output the optimal solution. If not, return to Step
2.

In Step 4, the replacement operation represents that the particles obtain update infor-
mation from better elite particles and neighborhood particles in the population, while the
mutation operation improves the diversity of the population and provide more effective
and feasible solutions.

5 Experiments and Results Analysis

In order to verify the performance of the proposed JSSP-SERPSO algorithm, several
experiments are developed using the standard JSSP test, including a total of 10 scheduling
problems in LA (LA01, LA02, LA06, LA07, LA11, LA12, LA18, LA23, LA26, LA31).
The goal is to minimize the maximum completion time of workpieces. The designed
experiments compare the results of the proposed JSSP-SERPSO algorithm with other
algorithms that are GA, LSGA, GRASP, PGA. Parameters of the JSSP-SERPSO algo-
rithm are set as follows: the population size is set to n = 100; the size of elite library is
10; the maximum number of iterations is MaxIter= 10000. For the large-scale problems
after LA18, the maximum number of iterationsMaxIter= 30000. For each test problem,
the experiment runs 20 times continuously. The parameter settings of the comparison
algorithms are designed according to the original pattern.

Table 2 gives the optimization results of JSSP-SERPSO and some other algorithms
in the literature. Best is for JSSP - SERPSO algorithm to get the optimal solution, “−”
indicates no corresponding data. In order to try to eliminate the random factor, algorithms
run independently 20 times, selecting average value as an indicator of algorithm, which
is to make the algorithm more stable and effective. As Table 2 shows, JSSP-SERPSO
can basically obtain the optimal solution for small-scale simples about LA01, LA02,
LA06, LA07, LA11 and LA12 problems. Its average value can also reach the optimal
solution, which has good stability. For the larger and more difficult problem of LA18,
JSSP-SERPSOalso achieves excellent results and achieves an optimal value. In theLA23
with a size of 15 × 10, JSSP-SERPSO may obtain the optimal solution, but its mean
value cannot obtain the value of the optimal solution. JSSP-SERPSO in scale for LA26
problem, not to find the optimal value to solve the problem, according to the average
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index, the lack of certain algorithm local search ability which need to design a kind of
auxiliary local search algorithm to improve the local search ability of the algorithm. In
LA31 problem, JSSP-SERPSO can obtain the optimal value of the problem every time,
which shows the effectiveness of the algorithm in dealing with larger scale scheduling
problems.

Table 2. Comparison results between JSSP-SERPSO and other algorithms

Instance Size BKS SERPSO GA LSGA GRASP PGA

Best Mean

LA01 10 × 5 666 666 666 666
—

666 666

LA02 10 × 5 655 655 655 666
—

655 681

LA06 15 × 5 926 926 926 926
—

926 926

LA07 15 × 5 890 890 890 890
—

890 890

LA11 20 × 5 1222 1222 1222 1222
—

1222 1222

LA12 20 × 5 1039 1039 1039 1039
—

1039 1039

LA18 10 × 10 848 848 851 848 857 848 916

LA23 15 × 10 1032 1032 1039 1032 1047 1032 1072

LA26 20 × 10 1218 1246 1251 1231 1307 1271 1278

LA31 30 × 10 1784 1784 1784 1784 1784 1784
—

It can also be seen from the table that JSSP-SERPSOcompareswith other algorithms.
Because the basic structure and operational mode design of GA algorithm are more
suitable for the optimization of discrete problems, JSSP-SERPSO usually shows certain
advantages in solving discrete problems. PSO algorithm is an optimization method for
solving continuous problems, so coding and decoding are needed to facilitate. Therefore,
PSO algorithm has certain disadvantages compared with GA in algorithm construction.
However, this does not hinder the diversity of problem solving, so PSO optimization
algorithm can be explored and applied in a broader field. GA algorithm solves scheduling
optimization problems, whether for small scale problems or large scale problems, shows
better optimization performance and strong stability, with excellent overall performance.
Compared with GA, JSSP-SERPSO is only slightly superior to GA algorithm in LA02.

Table 2 gives the comparative results of JSSP-SERPSO, LSGA, GRASP and PGA.
According to the average value of JSSP-SERPSO algorithm, LA18, LA23, and LA26
problems, JSSP-SERPSO has a superior optimization effect and achieves a smaller max-
imum completion time, while LSGA only obtains the same optimization performance in
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LA31 problems. For GRASP algorithm, the optimal value obtained on problem LA26
is slightly lower than the average value obtained by JSSP-SERPSO algorithm, which
basically achieves the same performance on other problems. However, the optimal value
obtained by PGA on the small scale LA02 problem and the large scale LA18, LA23 and
LA26 problem is not as good as the average value obtained by JSSP-SERPSO algorithm.

Fig. 2. Gantt chart of problem LA06

Fig. 3. Gantt chart of problem LA18
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Figures 2, 3 give the JSSP-SERPSO Gantt chart for problems of LA06, LA18. As
can be seen from the figure, the minimum maximum completion time was obtained in
the whole processing process due to the adoption of the active decoding strategy.

The experimental results show that the JSSP-SERPSO algorithm proposed in this
chapter achieves good results in solving job shop scheduling problem and provides an
effective way for solving JSSP problem.

6 Conclusion

This paper proposes a new SERPSO algorithm, which combines ring topology and scale
mutation operation to solve JSSP problem. Ring topology with niche structure increase
the population diversity and avoid particles trapped in local optimum, which enhance the
ability to jump out of local optimal trap particles, increase the effective solution of the
search range. Combined with the elite library, particles with potential ability are used as
learning objects for the next generation of particles, so that the better particles with good
information can participate in the evolutionary process of the group. Through coding
and decoding techniques, SERPSO algorithm can solve discrete scheduling problem.
Ten standard JSSP test problems with small and large scale are adopted to evaluate the
proposed algorithm and compare with other algorithms. The experimental results verify
the optimization ability and effectiveness of the proposed algorithm for solving JSSP
problems.
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