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Abstract. Convolutional Neural Networks (CNNs) have excellent rep-
resentative power and are state-of-the-art classifiers on many tasks.
However, CNNs are vulnerable to adversarial examples, which are sam-
ples with imperceptible perturbations while dramatically misleading the
CNNs. It has been found that, in past studies, Radial Basis Function
(RBF) network can effectively reduce the linearization of the neural net-
works model, and Gaussian noise injection can prevent the network from
overfitting, all of which are conducive for defending against adversar-
ial examples. In this paper, we propose an incorporated defense method
with Gaussian noise injection and RBF network, and analytically investi-
gate the robustness mechanism of incorporated defense method. For our
proposed method, it has the following two advantages: (1) it has signif-
icant classification accuracy, and (2) it can resist to various adversarial
attacks effectively. The experimental results show the proposed method
achieves the performance of about 79.25% accuracy on MNIST dataset
and 43.87% accuracy on Fashion-MNIST dataset, even in the full white-
box attack where attackers can craft malicious adversarial examples from
defense models.
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1 Introduction

CNNs have recently outperformed machine learning methods in various tasks,
such as image classification [1–3], object detection [4–6], and speech recognition
[7–9]. However, like many classification machine learning algorithms, deep learn-
ing methods can be easily fooled by small imperceptible perturbations in the
input [10]. The main reason may be that the linear classifier is used at the last
layer of deep learning methods. Although linear classifiers are very effective for
the linear classification, they force the model to assign high confidence to these
regions far from the decision boundary. Thus the adversarial attack can easily
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make some changes in multiple dimensions of the input image, which makes the
perturbed images cross the classification boundary. The perturbed images are
misclassified by the network in the end.

In order to mitigate the effect of adversarial attacks, the following two kinds
of defense techniques are proposed: data-level method and algorithmic-level
method. The former includes adversarial training [11,12], pre-processing meth-
ods using basis functions [13] and noise removal [14]. The later can be seen in
literatures [15–20], and the deep model is modified or the algorithm is trained
by reducing the magnitude of gradients [17], or masking gradient [18]. However,
these approaches are not completely effective against several different white-box
and black-box attacks [14]. Similar to the methods based on pre-processing, they
may decrease accuracy to defense some attacks. Generally, most of these defense
strategies make the classification accuracy descend on clean data.

As mentioned above, successful adversarial attacks are mainly due to that
fact that the models are linearly high in high dimension. This greatly decreases
the flexibility of the models and makes the decision boundary close to the man-
ifolds of the training data. In order to improve the nonlinearity of the model,
Goodfellow et al. [11] have explored a variety of methods, including shallow
and deep RBF networks. They used the shallow RBF network to achieve good
performance against adversarial perturbations. However, they found that it was
difficult to train the deep RBF network.

In this paper, we explore the incorporated network model with the deep
neural network and RBF network, which not only ensures that the network
model can effectively resist perturbations, but also makes the network model be
trained easily. Meanwhile, small noise is added before the network input, which
improves the robustness of the network attack and resists the white-box and
black-box attack effectively.

2 Related Work

2.1 Adversarial Examples

The adversarial examples were first introduced by Szegedy et al. [12]. Szegedy et
al. show that the prediction of the network can be changed arbitrarily by apply-
ing imperceptible non-random perturbations to the input image. The malicious
input is X ′ = X + α and α is a lightly perturbation with ‖α‖ < ε, where ε is so
small that it makes no visual difference between X and X ′ for human being but
deep neural networks will be fooled.

In addition, Szegedy et al. point out that the adversarial examples are rel-
atively robust and can be generalized in neural networks with different depths
and activation functions. In other words, if we use one neural network to gen-
erate the adversarial examples, another neural network also misclassifies these
examples even when it is trained with different hyper-parameters, or when it is
trained on different subset of a dataset. This phenomenon makes the black-box
attacks feasible.
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Finally, Szegedy et al. also state that it is linear transformation of high-
dimensional space of the model that leads to the phenomenon of adversarial
examples, and proposes the Fast Gradient Sign Method (FGSM) for crafting
adversarial examples. FGSM is an untargeted attack method and uses the same
attack strength at every dimension:

XFGSM = X + εsign (�XJ (X, y)) . (1)

In this equation, the adversarial examples are obtained by adding a transformed
gradient to the input X, where ε is small enough to be undetectable.

2.2 Gaussian Noise

In the space domain and frequency domain, Gaussian noise (also known as nor-
mal noise) is commonly used. The probability density function of the Gaussian
random variable Z is given by the following formula:

p (Z) =
1√
2πσ

e− (Z−Z̄)2

2σ2 , (2)

where Z is the gray value, and its mean and deviation are Z̄ and σ, respectively.
The perturbation is extremely small in general in order to get a normal

example. In [21], Gu and Rigazio consider an alternative strategy by adding
Gaussian noise damage into the adversarial examples. The aim of this additional
noise strategy is to remove the adversarial examples “blind spot” areas of the
classification space through adding extra “larger” interference noise to the input.
Moreover, adding the ordinary tiny perturbation does not have a impact on the
performance of the neural network. Experimental results show that the Gaussian
noise injection can defend against samples to some extent.

2.3 RBF

RBF networks [22–24] are neural networks with one hidden layer of RBF units
and a linear output layer. An RBF unit is a neuron with multiple real input
X = (X1, · · · ,Xn) and one output y. Each unit is determined by n-dimensional
vector C and the parameter β > 0. The output y is computed as:

y = ϕ (ξ) ; ξ = β ‖X − C‖2 , (3)

where ϕ : R → R is the suitable activation function. Typically, Gaussian ϕ (Z) =
e−z2

. Thus the network computes the following function f : Rn → Rn:

fs (X) =
h∑

j=1

ωijϕ (βj ‖X − Cj‖) , (4)

where ωij ∈ R and fs is the output of the sth output unit.
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Compared with normal networks, RBF networks use radial basis function
units at the last layer. Unlike the linear unit, RBF unit is activated in a well-
defined region of its input space [25]. In this case, the goal of the feature extractor
network is to map the data to a new representation, where each kind of data
forms a cluster. Experimental results show that when RBF is combined with
CNN, it can effectively resist the disturbance.

3 Method

3.1 Model

Inspired by the defense methods in [21,25], we combine the data-level defense
method with the algorithm-level defense method, and propose an incorporated
model with Gaussian noise injection and RBF network on neural networks. Noth
that the network can be any CNN (see Fig. 1).

Gaussian 
Noise

RBF LayerCNN

Images

Softmax

Fig. 1. The incorporated network model.

Here we take the classic Lenet-5 [26] network as the example to demonstrate
the proposed model (see Fig. 2). In this figure, the LeNet-5 network structure
is in the dashed box, and before the image input into the LeNet-5 network, the
tiny Gaussian noise is added to the image. After the feature extraction and the
classification through LeNet-5 network, the output of LeNet-5 is set as the input
into the RBF network. The RBF output is the final classification result of our
proposed model.

3.2 Loss Function

When training the proposed model, we calculate the loss of the final output and
use the cross-entropy loss function, the loss is computed as:

Loss = loss (ŷ, y) (5)

loss = −
N∑

i=1

yilog (ŷi) + (1 − yi) log (1 − ŷi) , (6)

where ŷ is the final output of the proposed model and y is the true label.
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Fig. 2. The incorporated network model based on LeNet-5.

4 Experiments

These experiments in this paper are based on two benchmark datasets:
MNIST [26] and Fashion-MNIST [27]. MNIST contains 60,000 images in the
training set and 10,000 images in testing set. Each image is a grayscale image
with 28×28 pixels, and the number of possible classes is 10. Fashion-MNIST is
the standard data set of commodity classification. The color size of pictures and
the scale of training set and the test set are all the same with MNIST, but the
classification difficulty is higher than MNIST.

4.1 Experiment Setups

In the experiments, we consider two basic CNNs: Simple-CNN with two convo-
lutional layers (S-CNN) and LeNet-5. The activation function in each network is
RELU and loss function is the cross-entropy function. The detailed model struc-
ture and the parameter information are shown in Table 1, and Table 2 contains
the chosen training hyper-parameters for all models.

In order to verify the superiority of the proposed model, the following three
defense methods are chosen: the basic CNN model, the CNN model combined
with RBF network (CNN RBF) [25] and the centers are set as 300 in RBF
network, and a CNN model incorporating Gaussian noise (Gauss CNN) [21]
with standard deviation σ = 0.3 on MNIST and Fashion-MNIST.

Moreover, five test sets are set in the defense experiments. For the net-
work based on S-CNN, we first set the 10,000 clean test set images of the
MNIST dataset as Test Set I. We then generate adversarial examples test sets
by attacking four models(S-CNN, S-CNN RBF, Gauss S-CNN, the proposed
model), which are set as Test Sets from II to V. For the network based on
LeNet-5, two benchmark datasets, MNIST and Fashion-MNIST, are chosen. For
each dataset, the same numbers of the clean test set images are set in Test Set
I. Finally, we generate adversarial examples test sets by attacking four models
(LeNet-5, LeNet-5 RBF, Gauss LeNet-5, the proposed model), which are set as
Test Sets from II to V.
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Table 1. Network model parameters.

LeNet-5 Parameters S-CNN Parameters

Conv. 32, 5 × 5 Conv. 32, 3 × 3

Max Pooling 2 × 2 Max Pooling 2 × 2

Conv. 64, 5 × 5 Conv. 64, 3 × 3

Max Pooling 2 × 2 Max Pooling 2 × 2

Full Connection 1024 Full Connection 128

Softmax 10 Softmax 10

Table 2. Overview of training parameters.

S-CNN LeNet-5

Learning Rate 0.01 0.01

Optimizer Adam Adam

Batch Size 128 128

Epochs 20 20

4.2 Experiment Results

In this section, we report the results of several experiments for the task of classifi-
cation. We first start with S-CNN model on MNIST. Next, the proposed method
is applicable to another classical model LeNet-5 on MNIST and Fashion-MNIST.
A series of adversarial examples of each test set are generated by FGSM attack,
as shown in Fig. 3.

Fig. 3. An illustration of each test set. In this figure, the leftmost column displays the
original images, and the next four columns show adversarial examples corresponding
to Test Set II, III, IV and V from left to right.
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S-CNN. In this section, we compare the recognition accuracy of the four net-
work models in each dataset and the experimental results are shown in Table 3.

Observing the data of the first column (Test Set I) in Table 3, the proposed
network model does not drop the accuracy significantly on clean images. That
is, Gaussian noise can prevent the network model from overfitting, and the inter-
ference of Gaussian noise is equivalent to the data augmentation of the original
dataset. From Test Set II to Test Set V, the diagonal data indicate the recog-
nition accuracy of each network model under the white-box attack. Compared
with these diagonal data, the performance of S-CNN RBF and Gauss S-CNN
against white-box attack are improved, especially the improvement effect of S-
CNN RBF is obvious, which is more than 65% higher than S-CNN. Therefore,
adding the RBF network after the softmax layer of basic network can greatly
improve its robustness. This is due to that fact that the strong local approxima-
tion ability of RBF network successfully makes the basic model S-CNN better
fit the real decision boundary and compress the adversarial space, and thus the
basic mode with RBF can be against the white-box attack effectively. Further-
more, the data in the Test Set II show that defensive performance of four models
can be against the black-box attack. Obviously, although S-CNN RBF model
has higher performance against the white-box attack, the defense performance
against the black-box attack is still only about 30%. This is due to the fact
that the adversarial examples of Test Set II are generated by the original model,
and the adversarial examples have the ability to migrate across model. There-
fore, utilizing RBF network can resist the white-box attack, though it cannot
be against the migration attack effectively. The migration attack is defined as
the attack that uses other network against vulnerabilities to generate adversarial
examples of the space, and use its migration ability against unknown network.

Table 3. Experimental results based on S-CNN model on MNIST dataset.

Test Set I Test Set II Test Set III Test Set IV Test Set V

S-CNN 99.14% 10.69% 84.70% 48.80% 79.16%

S-CNN+RBF 99.00% 38.08% 75.36% 39.70% 75.58%

Gauss+S-CNN 99.20% 74.90% 93.21% 40.23% 84.31%

Gauss+S-CNN+RBF 99.13% 83.80% 93.55% 68.77% 79.25%

In addition, though the network with only adding Gaussian noise is not
ideal against the white-box attack (compared with the S-CNN, there is only an
increase of about 30%), it has a high recognition accuracy against the black-box
attack, which increases by more than 70%. This is because the perturbations are
extremely small, and there is a “blind spot” area in the input space of the image.
Using extra noise to images can undermine the dominance against perturbations.
In this way, adversarial examples can be removed from the “blind spot” to obtain
correct classification. Meanwhile, the extra noise will have less impact on the
performance of neural network. From the last line in the Table 3, we can observe
that the incorporated model with Gaussian noise and RBF network can promote
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each other. Compared with other defense model against the white-box attack
and the black-box attack, the defense performance of the proposed model has
improved effectively. From the Test Set I to Test Set V, the proposed model
almost keeps the superiority. In conclusion, the proposed network structure has
better robustness against the white-box and black-box attacks.

LeNet-5. Another classic network model, Lenet-5, is used in this section,
and experiments are carried out on two datasets: MNIST and Fashion-MNIST
datasets. The detailed defense performance on the MNIST and Fashion-MNIST
is reported in Table 4 and Table 5, respectively.

Table 4. Experimental results based on LeNet-5 model on MNIST dataset.

Test Set I Test Set II Test Set III Test Set IV Test Set V

LeNet-5 99.19% 16.86% 59.28% 33.67% 57.37%

LeNet-5+RBF 98.82% 34.57% 42.90% 31.37% 53.40%

Gauss+LeNet-5 98.67% 86.38% 92.23% 36.34% 83.16%

Gauss+LeNet-5+RBF 99.08% 82.25% 92.12% 69.03% 71.16%

Observing the data reported in Table 4, the same conclusions as in S-CNN
are obtained. The diagonal data from Test Set II to Test Set V represent
those defense models performance against the white-box attack. In addition,
the data from Test Set II to Test Set V except diagonal are the performance of
each defense model against the black-box attack. Though data analysis, LeNet-
5 RBF has a better defense performance against the white-box attack, while
Gauss LeNet-5 has better performance against the black-box attack. The pro-
posed model incorporated the merits of them has better defense performance
both in two aspect of against white-box and black-box attacks. Obviously, the
proposed model based on LeNet-5 has a recognition accuracy of over 70% on
each adversarial examples test set.

Table 5. Experimental results based on LeNet-5 model on Fashion-MNIST dataset.

Test Set I Test Set II Test Set III Test Set IV Test Set V

LeNet-5 91.43% 11.18% 31.90% 12.86% 28.46%

LeNet-5+RBF 90.72% 32.43% 30.20% 15.72% 33.98%

Gauss+LeNet-5 89.31% 57.88% 72.81% 8.94% 56.28%

Gauss+LeNet-5+RBF 88.96% 58.03% 73.07% 20.18% 43.87%

Observing data in Table 5, the improvement is not so obvious in the Fashion-
MNIST dataset compared with the MNIST dataset, but the improvement trend
in each defense model is consistent with MNIST dataset. Like LeNet-5 RBF, it
is helpful to enhance the robustness of the model and the defense ability against
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the white-box attack. The average defensive performance of the Gauss LeNet-5
against black-box attack is about 60%. And the proposed incorporated model on
MNIST dataset is slightly better than it on Fashion-MNIST dataset. However,
Gauss LeNet-5 and the proposed model defense accuracy have a drop in the
clean test set. This phenomenon is due to that fact that Fashion-MNIST dataset
is more complicated than MNIST dataset. Adding Gaussian noise on Fashion-
MNIST dataset has a impact on classification task. The recognition accuracy in
the fourth column of the Table 5 on each network in the Test Set IV is less than
20%. The reason may be that images in Test Set I are generated by attacking
the Gauss LeNet-5 model, and the incorporated noise is larger compared to
original image. Therefore these noises make the models have low accuracy in
the classification task. However, the consistent trend of ascension on Test Set
IV again indicates that the incorporated model structure is effective in defense
adversarial examples.

In summary, compared the defense performance with other three models
against white-box and black-box attacks, the proposed model can defend adver-
sarial examples effectively on Fashion-MNIST.

5 Conclusion

In this paper, we propose an incorporated defense method with Gaussian noise
and RBF network. The experimental results show that the proposed method
can effectively be against the adversarial examples in the white-box and black-
box attacks. Furthermore, compared with other methods, the proposed method
effectively improves the classification accuracy on adversarial images, and does
not drop the accuracy significantly on clean images.
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