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Abstract. Training of large-scale machine learning models presents
a hefty communication challenge to the Stochastic Gradient Descent
(SGD) algorithm. In a distributed computing environment, frequent
exchanges of gradient parameters between computational nodes are
inevitable in model training, which introduces enormous communication
overhead. To improve communication efficiency, a gradient compression
technique represented by gradient sparseness and gradient quantization is
proposed. Base on that, we proposed a novel approach named Gaussian
Averaging SGD (GASGD), which transmits 32 bits between nodes in
one iteration and achieves a communication complexity of O(1). A the-
oretical analysis demonstrates that GASGD has a similar convergence
performance compared with other distributed algorithms with a signif-
icantly smaller communication cost. Our experiments validate the the-
oretical conclusion and demonstrate that GASGD significantly reduces
the communication traffic per worker.

Keywords: Communication-efficient · Distributed optimization ·
Parallel computing

1 Introduction

Deep learning is widely used in various fields. Recently, more complex and lager
models with over millions and even billions of parameters have appeared. i.e.,
BERT [7] (1.1B). A simple way to train such a model effectively is to use a
distributed SGD algorithm. It can be formulated as below, where wt represents
the parameters of the model in iteration t, ηt is the learning rate, or the step
size. And gp(x) is the gradient on a data batch x ∈ Xp, in which the Xp is a
subset of dataset X computed by the local computing worker p.

wt+1 = wt − ηt
1
P

P∑

p=1

gp(x)
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Traditional distributed SGD algorithms need to transfer all local gradients to
relevant workers, which results in some communication overhead. As the model
becomes larger, the communication overhead might be overwhelming in terms
of training time. Many studies have proposed to address this issue. Two typi-
cal types include sparsification and quantization. Sparsification methods select
a portion of gradients for transmission among them all and achieve a higher
compression ratio. Differently, quantization methods use a low precision repre-
sentation for the gradient. i.e., TernGrad [19] uses three values (−1, 0 and 1)
and 1BitSGD [13] only uses 1 bit. The quantization could achieve a compression
ratio of up to 32 at most, assuming the gradients are Float32 values.

In this paper, we proposed a novel algorithm named Gaussian Averaging
SGD (GASGD), which is different from sparsification and quantization. Our
algorithm GASGD only needs to transfer one 32-bit value for each worker and
minimize the communication complexity. The key idea is based on an approxi-
mately Gaussian distribution of gradients, we maintain an average of the gradient
distribution rather than all gradients from each worker. Our theoretical analysis
shows that the GASGD can converge as other distributed algorithms do. Our
empirical results also validate the analysis and that our algorithm has better
performance than others. Respectively, GASGD has achieved 2.6× and 1.3×
speedup on execution time per iteration compared to the QSGD and Top-K in
training the LSTM-PTB model (which has nearly 66 million parameters).

Our Contributions as follows:

– By examining the scalability challenge of gradient synchronization in dis-
tributed SGD and analyzing its computation and communication complexi-
ties, we have proposed a Gaussian distribution averaging algorithm (GASGD)
for distributed workers to exchange only one mean value globally.

– We give a theoretical analysis of the convergence of GASGD and demon-
strated that our algorithm achieves an overall improvement compared to
other sparsification and quantization algorithms with a lower computation
complexity.

To the best of our knowledge, GASGD is the first attempt that can reduce
the communication down to 32 bits per iteration for distributed SGDs.

2 Related Work

Quantization. 1-bit SGD [13] is to quantize the gradients into 1 bit to trans-
fer, and the experiment in which it used the 1-bit SGD to train a speech model
achieved a higher speedup. After 1-bit SGD, 8-bit quantization [6] has been
proposed. It maps each Float32 gradient to 8 bit: 1 bit for sign,3 bit for the
exponent, and the other 4 bit for the mantissa. Quantized SGD (QSGD) [2]
proposed another method which used stochastic rounding to estimate the gradi-
ents and could quantize the gradients into 4 or 8 bit. Similar to QSGD, there is
another approach named TernGrad, which uses 3-level values (−1, 0 and 1) to
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represent a gradient, could quantize the gradients into 2 bit. QSGD and Tern-
Grad also give a theoretical analysis to demonstrate the convergence of their
quantization algorithm. Moreover, both of them also do lots of experiments to
demonstrate that their algorithm works a lot. SignSGD [3] transmits the sign of
gradient elements by quantizing the harmful components to −1 and the others to
1. There are also some attempts to apply the quantization method to the entire
model, not only the gradients to transfer, but also the parameters in the model.
The DoReFa-Net [22] used 1-bit to represent the parameters in the model and
2-bit for gradients. Furthermore, LPC-SVRG [21] also applies that quantization
method to another classical optimization algorithm - SVRG [9], which gives a
code-based approach that combines gradient clipping with quantization.

Sparsification. Sparsifing the whole gradients to a part of them is another way
to solve the communication bottleneck. Threshold-v [17] selects the elements by
giving a threshold v that whose absolute values are larger than a fixed defined
threshold value, which is difficult to choose in practice and uses zeros to repre-
sent the other elements. Unlike the threshold-v, Top-K [1] selects the k largest
gradient values in absolute value, and there is also a random version named
Random-K [16]. To further realize a lower loss on the accuracy, DGC [12] apply
a local update inspired by the momentum SGD, and a warm-up step for the
selection of hyperparameter K. After finding that the gradient variance affects
the convergence rate, Wangni et al. [18] proposed an unbiased sparse coding
to maximize sparsity and control the variance to ensure the convergence rate.
Concurrently, Adacomp [5] has been proposed to automatically modify the com-
pression rate depending on the local gradient activity, which realizes a 200×
higher compression ratio for the fully-connected layer in deep learning model
and 40× for the convolutional neural layer with a sightly loss in top-1 accuracy
on the ImageNet.

3 Distributed SGD with Guassian Distribution Averaging

As mentioned in Sect. 1, since all workers are required to exchange their gra-
dients, gradient synchronization poses a fundamental scalability challenge for
data-parallel distributed SGDs. Although sparsity and quantization methods
are significant to reduce the communication complexity of gradient synchroniza-
tion, the computational efficiency of sparsity and quantization could be critical
to gradient synchronization’s scalability. Shi et al. pointed out that although the
Top-K algorithm could reduce communication traffic for each worker, its com-
putational overhead can offset communication reduction, which results in even
higher execution time for each iteration. As we have observed in the experimen-
tal evaluation on distributed systems with a bandwidth of 100-Gbps bandwidth
network, the high computational cost of the top-K algorithms can overshadow
its benefits in communication efficiency. The same problem occurs with quanti-
zation algorithms, i.e., QSGD [2] and TernGrad [19]. Shi et al. [14] proposed a
simple way to avoid expensive sorting and selecting the first K elements on all
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gradient values. They assume a Gaussian distribution of gradients and estimates
a statistical threshold to select the gradient value. It has proved the importance
of low computation complexity for compression. All these studies above could
reduce the computational cost of gradient decent while proving the model’s abil-
ity to converge. However, they all require computing workers to exchange at
least a not-so-small portion of gradients.

(a) ResNet-20 (b) AlexNet

(c) ResNet-110

(a) ResNet-20 (b) AlexNet

(c) ResNet-110

Fig. 1. Progression of gradient distribution during training.

Based on previous studies, we proposed a novel approach to optimize the
communication process. We assume that gradients computed per iteration obey a
Gaussian distribution, and we could locally estimate standard deviation. Instead
of selecting top gradient elements, we can exchange the standard deviation across
the distributed workers and get a mean of these standard deviation values. A
global mean of standard deviation could be used for gradient synchronization
in all workers. We refer to our algorithm as Gaussian Average (GASGD). It
effectively reduces the communication cost per iteration down to one values (32
bits), achieving a communication complexity of O(1). To further maintain the
information, we also compute the mean of the gradient vector locally and adapt
it to the decoding process.

3.1 Gradient Distribution

Shi et al. [14] have carried out many experiments to discuss the gradient distribu-
tion in deep learning models. Moreover, it assumed the Gaussian distribution of



Efficient Distributed Stochastic Gradient Descent 45

gradient values and proposed the Gaussian-K sparsification algorithm. Figure 1
shows the frequency distribution of gradient values with a single machine for
three representative models: ResNet-20 [8], AlexNet [11], and ResNet-110. We
could find that most of the values are close on either side of zero, following a
normal distribution. Besides, as the models finish more iterations of the train-
ing, more gradient values converge to the center around zero (a lower standard
deviation than before). In our algorithm, we also give an assumption that the
gradient obey a Gaussian distribution.

3.2 Details of GASGD

As we assume a Gaussian disrtibution of gradient values (g ∼ N(μ, σ2)), for a
gradient vector g = {g1, g2, . . . , gn} ∈ R

n, we could estimate two key parameters
from all gradient values as follows,

μ = μ(g) =
1
n

n∑

i=1

gi, σ = σ(g) =

√√√√ 1
n − 1

i∑

i=1

(gi − μ)2)

Algorithm 1. Parallel GASGD algorithm on node k

Require: dataset X
Require: minibatch size b per node
Require: the number of node N
Require: optimization function SGD
Require: init parameters ω0, η0

1: for t = 0, 1, . . . , T do
2: for i = 1, . . . , b do
3: Sample data x from the dataset X
4: gt

t ← 1
b
∇f(x; wt)

5: end for
6: μt

k ← μ(gt
k) and σt

k ← σ(gt
k)

7: gt
normal ← (gt

k − μt
k)/σt

k

8: σt ← Allreduce(σt
k,average)

9: gt
k ← gt

normal · σt + μt
k

10: ωt+1 ← SGD(ηt, g
t
k)

11: end for
12: kb ← Argmin(lossk)
13: ωk ← Broadcast(ω, kb)

The GASGD algorithm is described in details above. As shown in Algo-
rithm1, node k starts training with a learning rate of η0 and an initial parameter
ω0. In an iteration t, node k compute its stochastic gradients gt

k with a mini-batch
form dataset X (Line 2 to 5). After obtaining local gradients, it then estimates
the mean and standard deviation in Gaussian distribution through the equation
above (Line 6). Before all nodes call the Allreduce operation to exchange their
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local standard deviation and get back the global mean of standard deviations
(Line 8), It would map their gradient value to a standard normal distribution
(Line 7). Then the local gradient would be decode by using the global standard
deviation (Line 9). Finally, the model’s parameters are updated using the new
gradient and the specific learning rate ηt with an optimization function SGD at
Line 10. At the end of the training process, one more operation, for synchroniz-
ing the model across all nodes, is to find the node which has a minimal loss and
broadcast the model parameters to the others.

3.3 Convergence Analysis

Distributed Optimization (specifically SGD) can be considered as an online
learning system to be analyzed in its framework. The convergence analysis is
based on the convergence proof of GOGA (General Online Gradient Algorithm)
by Bottou [4], similarly as the previous works [19]. We adopt two assumptions
and one lemma to our analysis.

Assumption 1. L(ω) has a single minimum ω∗ and gradient −∇ωL(ω) always
points to ω∗.

∀ε > 0, inf
||ω−ω∗||>ε

(ω − ω∗)T ∇ωL(ω) > 0

Assumption 2. Learning rate ηt is positive and constrained as follow,
{∑

η2
t < +∞∑

ηt = +∞

The constraints about learning rate ηt ensure that ηt could change at a
appropriate speed. We defined the square of distance between the current weight
w and the minimun weight ω∗ we want to get below:

ht � ||ω − ω∗||2

where || · || is l2-norm. We also define the set of all random variables before
step t as follows:

Dt � (z1...t−1, b1...t−1)

Under the Assumption 1 and 2 above, using Lyapunov process and Quasi-
Martingales convergence theorem, Bottou proved the Lemma 1 below.

Lemma 1. If ∃A,B > 0 s.t.

E{(ht+1 − (1 + η2
t B)ht)|Dt} ≤ −2ηt(w − w∗)T ∇ωC(ωt) + η2

t A
then L(z, ω) converges almost surely toward the minimum ω∗. i.e.
P ( lim

t→+∞ωt = ω∗) = 1
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To further give a proof to our algorithm, we make another assumption that
the gradients have a bound as follows. We also denote that gt + ∇G as the net
gain. As E(∇G) = 0, we would have ∇ωC(ωt) = E(gt + ∇G).

Assumption 3 (Gradient Bound)

E||gt + ∇G|| ≤ A + B||ω − ω∗||2

Theorem 1. When the learning system is updated as follow equation,

ωt+1 = ωt − ηt(gt + ∇G)

then, it would converges almost surely towards minimum ω∗. i.e.
P ( lim

t→+∞ωt = ω∗) = 1

Proof.
ht+1 − ht = −2ηt(ωt − ω∗)T (gt + ∇G) + η2

t (gt + ∇G)2

Taking the expectation of the equation above based on the condition Dt, we
have

E{ht+1 − ht|Dt} = −2ηt(ωt − ω∗)T
E{gt + ∇G|Dt} + η2

tE{||gt + ∇G||2|Dt}

By using the following condition: ∇ωC(ωt) = gt + ∇G, then

E{ht+1 − ht|Dt} = −2ηt(ωt − ω∗)T ∇ωC(ωt) + η2
tE{||gt + ∇G||2|Dt}

→ E{ht+1 − ht|Dt} + 2ηt(ωt − ω∗)T ∇ωC(ωt) = η2
tE{||gt + ∇G||2|Dt}

From the Gradient Bound (Assumption 3), we can further have:

E{ht+1−ht|Dt}+2ηt(ωt −ω∗)T ∇ωC(ωt) ≤ Aη2
t +Bη2

t ||ω−ω∗||2 = Aη2
t +Bη2

t ht

E{(ht+1 − (1 + η2
t B)ht)|Dt} ≤ −2ηt(w − w∗)T ∇ωC(ωt) + η2

t A
The equation above satisfies the condition of Lemma 1, which is proved by Bot-
tou, and could proves the Theorem1.

4 Experiments and Results

In this section, we first describe our experimental setup and then present our
evaluation results to validate the convergence of GASGD. Besides, we compare
its performance with Dense SGD (without compression), one sparsification tech-
niques Top-K [1] and one quantization technique QSGD [2].
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Table 1. System parameters of each computation node.

HW/SW module Description

CPU Intel(R) Xeon(R)Gold 6132 14-core multi-core × 2

GPU NVIDIA Tesla V100 SXM2 × 4

OS CentOS Linux release 7.6.1810

Memory 256 GB(shared by 2 CPUs)

Development Environment CUDA 10.0, PyTorch 1.3.0, Horovod 0.18.2

Network Between Nodes 100-Gbps InfiniBand

4.1 Experiment Setup

We performed all experiments on a GPU-V100 cluster. The main system param-
eters of each node in GPU-V100 are listed in the Table 1 above.

We have implemented GASGD on top of PyTorch [41] v1.3.0 with CUDA
[44] v10.1 and utilized Horovod [45] v0.18.2 for data-parallel implementation of
different models. Top-K and QSGD implementation are adapted from a Github
repository (GRACE) [20], which is a gradient compression framework for dis-
tributed deep learning. Both implementations use the PyTorch Tensor API.

In our tests, we have employed two different DNN models, including (1) three
types of Convolutional Neural Networks (CNNs), i.e., VGG-16 [15], ResNet-110
and AlexNet using CIFAR-10 [10] or CIFAR-100 dataset; and (2) RNN which
consists of the recurrent neuron, i.e., the 2-layers Long Short Term Memory
(LSTM) neural network model which has 1500 hidden units per layer using
Penn Treebank corpus (PTB) dataset. We train the CNNs using the momentum
SGD with learning rate decay and use vanilla SGD with learning rate decay for
RNN.

Table 2. Experimental setup for neural network models

Type Net # Params Dataset Batch size Base learning rate

CNN AlexNet 23,272,266 CIFAR-10 128 0.01

ResNet-110 1,727,962 CIFAR-10 128 0.01

VGG-16 14,728,266 CIFAR-100 128 0.01

RNN LSTM-PTB 66,034,000 PTB 20 22

4.2 Convergence Accuracy

To validate the convergence of the GASGD algorithm, we train all four deep
learning models, with 140 epochs for AlexNet, ResNet-110, and VGG-16, 90
epochs for LSTM-PTB with four workers. We measure the top-1 accuracy for
the first three models and the perplexity score for LSTM-PTB. The details are
shown in Table 2.
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Fig. 2. Comparison of convergence accuracy with 4 workers.

Figure 2 shows that the convergence performance of different models with
four workers. These results demonstrate that GASGD could converge and achieve
a closer top-1 accuracy to Dense SGD within the same number of epochs among
these three algorithms. GASGD achieves 78.27%, 87.60%, 56.46% top-1 accuracy
for AlexNet, ResNet-110, VGG-16 and 150.51 perplexity for LSTM-PTB (Dense
SGD: 84.61%, 87.99%, 69.71% top-1 accuracy and 104.83 perplexity). Further-
more, GASGD has a better performance than the other two algorithms for
AlexNet, VGG-16, and LSTM-PTB.

4.3 Computation and Communication Complexity

GASGD algorithm is designed to improve gradient synchronization with reduced
communication traffic without costly additional computation to process the local
gradients. To obtain an insight view on its impact to computation and com-
munication in gradient synchronization, we have characterized the asymptotic
computation complexity and the amount of communication traffic (number of
bits) per worker for GASGD, in comparison with the dense SGD, QSGD, and
Top-K. In data-parallel distributed SGD, each worker hosts a full copy of the
model and the gradients after each training iteration. We assume a model with
n parameters, therefore n gradients as well (Table 3).
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Table 3. Comparison of computation and communication complexity

Compression method Computation complexity Communication cost # of bit

Dense SGD O(1) 32n

Top K O(n + klogn) 32k

QSGD O(n2) 2.8n + 32

GASGD (ours) O(n) 32

Computation Complexity. For a gradient vector g ∈ R
n, Dense SGD does

not need to process gradient locally, and have a computation complexity of O(1).
The top-K algorithm needs to sort and select the largest K value so that it has a
computation complexity of O(n+klogn) with PyTorch implementation, where n
is the complexity of sorting and klogn for selecting. Moreover, QSGD computes
the second norm (a complexity of O(n)) and apply quantization for each gradient
value. Thus it has a computation complexity of O(n2) in total. GASGD has an
overall computation complexity of O(n) because it just needs to compute one
value for averaging, which is O(n).

Fig. 3. The performance of GASGD on computation and communication cost.

Communication Complexity. Obviously, Dense SGD transfers all the gradi-
ents for each worker with no information loss. Thus its cost is 32n bits. Top-K
selects the k gradients for transferring, i.e., 32k bits. QSGD transfers 2.8n + 32
bits, as the author reported. GASGD transfer one value for averaging (32 bits)
and achieve a communication complexity of O(1) for each worker.

Based on the analysis above, we also have designed some experiments to val-
idate our results. Figure 3(a) shows that GASGD has a much lower computation
complexity than the Top-K and QSGD algorithm. As shown in Fig. 3(b), GASGD
has a minimum average iteration time among all four algorithms. Besides, the
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execution time per iteration is always the longest for the QSGD algorithm. Com-
pare to the others, the main reason is that the overhead from its high computa-
tion complexity mitigates the benefit from the communication reduction on the
100-Gbps bandwidth InfiniBand network. These validation results demonstrate
that GASGD has a better performance on convergence accuracy, computation
complexity, and execution time with the other distributed algorithms. Further-
more, we could give a layer-wise implementation to improve algorithm perfor-
mance over the initial implementation in which we stitch together the gradients
of each layer.

5 Conclusion

In this paper, we proposed a novel compression GASGD method in distributed
SGD based on the gradient distribution assumption, which just transfers one
value for averaging and achieves a communication complexity of O(1) for each
worker. We have theoretically analyzed the convergence of GASGD and also
given the experimental results to validate our analysis. The GASGD has an
overall improvement compared to the other algorithms. In the future, we would
give a further optimization on both implementation and algorithm itself.
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