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Abstract. In modern medical applications, computed tomography image is used
as one of the most useful tools for diagnosis and localization of lesions. It can pro-
vide patients with precise information about the location and size of their tumor
lesions. Traditional medical diagnosis is not only very time consuming but also
not very accurate. Nowadays, the automatic detection of lesions on computed
tomography has become a research area of great interest, and researchers aim to
use computer-aided diagnosis to assist in clinical medical diagnosis. However, for
current detection algorithms, the accuracy of automatic lesion detection is still low,
especially for small lesions. In this paper, to improve the accuracy of detection
of small lesions, we propose a Multi-Scale Response Module (MSR) that incor-
porates global attention into Feature Pyramid Network (FPN) build on backbone.
At each pyramid level, the proposed Aggregated Dilation Block (ADB) is used to
capture the variations in the fine-grained scales. The response of the network to
small lesion features is then reinforced by the Global Attention Block (GAB). We
build a Feature Pyramid Network (FPN) based on the highly responsive output of
the MSR module, with each layer of the FPN fusing high semantic information
from low resolution layers. The experimental results show that our method has a
higher detection accuracy with mAP value of 58.4 and a high sensitivity compared
to the state-of-the-art methods.

Keywords: Deep lesion detection · Attention mechanism · Dilated convolution ·
RCNN

1 Introduction

According to the most recent statistics, we found that the diseases with the highest
mortality rates in the world are malignant tumors, heart disease, pneumonia, and cere-
brovascular diseases. In addition, the number of deaths caused by malignant tumors is
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increasing each year [1]. Therefore, accurate diagnosis is of great significance to the dis-
covery and treatment of tumor disease. Diagnostic imaging is the most common method
used to detect cancer, especially the rapid development of medical imaging technology
in recent years has made it possible to obtain high-resolution CT and MRI datasets. At
the same time, it also makes it possible to train high-resolution CT images to detect
lesions.

In the diagnosis based on CT images, clinicians judge the presence of tumor based on
their subjective medical knowledge and relevant laboratory report data, which is largely
dependent on the experience of the doctor. However, with the rapid advancement of
medical information systems in recent years, doctors now can easily access the medical
image data of patients to facilitate the diagnosis of the disease, the massive task of
analyzing lesions on computed tomography (CT) andmagnetic resonance images (MRI)
images is onerous for the physician. Therefore, we propose to automate the detection of
tumors in computed tomography images by computer, aiming at alleviating the burden
on doctors and expecting to achieve higher accuracy of analysis.

Currently, many laboratories and scholars in the field of computer vision and image
recognition are attempting to introduce object detection techniques in the medical field.
For example, [2–8] showcase some of the explorations that researchers have made in
the field of medicine in recent years. However, the size of tumors varies greatly within
a certain range. For example, in DeepLesion dataset, the size of the lesion area varies
from 0.21 mm to 342.5 mm. As for the treatment of such large differences in spatial
scale changes, the above methods failed to deal well with the low precision of detection
of small lesions. Especially for small lesion regions detection, which is an important
evidence to detect early lesions in the body, it is necessary to improve the detection
accuracy for small lesions.

In this paper, we propose a fine-grained lesion detection method with a novel multi-
scale global attention mechanism. For the samples of small lesions in dataset (DeepLe-
sion), we improve the network structure based on the two-stage network of Faster RCNN
and use ResNet101 network as backbone. First of all, we use dilation and erosion oper-
ations in a mathematical morphology approach to process the input CT images, which
makes the diseased areas more visible. In order to fuse more semantic information when
constructing the feature pyramid,we continue to deepen the network based onResNet101
until the resolution of the featuremap is 8×8. After up-sampling, the output of each layer
residue block is fused with the high-resolution topographic map to preserve as much
spatial and semantic information as possible at different scales. We then use multi-scale
response (MSR) to facilitate lesion detection across fine-grained scales. Given a feature
map with a specific resolution, the aggregated dilation block (ADB) in MSR is based
on the split-transform merge principle, using the regional correlations in each pyramid
feature generation block. As the dilation rate increases, new feature maps are generated
from a wide range of contexts. Aggregated dilation blocks further increase the receptive
fields of the top-down paths in the feature pyramid. The channel and spatial attention
modules in theMSR then focus on the different lesion responses in featuremaps. Finally,
we re-sample the high-response features with the upper feature map and fuse it with the
upper map again, which is then fed into the RPN to obtain the coordinates of the predic-
tion score and the bounding box of the output category. The experiments show that the
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network using the MSR module has a significant improvement in accuracy compared to
the original two-stage network.

Fig. 1. The framework of the proposed lesion detection method

The main contributions of this work can be summarized as follows.

1) An Aggregated Dilation Block (ADB) is proposed. The block alleviates the short-
comings of the low-resolution feature layer in the network due to the large receptive
field and the small target features are not obvious.

2) TheGlobalAttentionBlock (GAB) is designed to reduce the influence of background
noise andhighlight the target features,which is effective for detecting obscure objects
at different scales.

2 Proposed Method

The structure of framework we proposed is illustrated in Fig. 1. Firstly, we selected
differentmorphological operations (dilation and erosion) for tumorswith different colors
in each organ as pre-processing, and then these feature-enhanced maps were fed into
the network. We extracted features from the ResNet backbone (P2-P7) (Sect. 2.2). The
extracted features are further processed by ADB (Sect. 2.3) and GAB (Sect. 2.4) in
the MSR module. The output of the MSR is subsequently fed into the RPN while
being up-sampled and summed with the output of the previous layer of high-resolution
feature maps to create a feature pyramid network constructed from the output of the
MSR module. Finally, the network undergoes Softmax loss (detection of classification
probability) and Smooth L1 loss (detection of frame regression) to train classification
probability and bounding box regression.

2.1 Mathematical Morphology Operations

Mathematical morphology image processing refers to a series of image processing tech-
niques to enhance image shape features. Thebasic idea ofmorphology is feature enhance-
ment by using a special structure element to measure or extract the corresponding shape
or feature when given an input image. Common morphological processing methods
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include: erosion, dilation, opening and closing. Morphological operations rely on the
correlation of pixel values rather than their absolute values, so they are very suitable for
binary image processing. By constructing the corresponding mathematical morphology
structure element suitable for DeepLesion dataset, the maximum or minimum area can
be effectively found in the image, which can reduce some noises in CT scanning and
make the lesions more obvious. For the DeepLesion dataset, we could roughly divide
it into two categories, dark background with light color lesion area or the opposite. We
selected the CT images of representative Lung and Liver organs, which respectively rep-
resented the images of the previous two background types. Through the experiment of
morphological processing method as shown in Fig. 2, the images obtained after different
morphological operations for light and dark tumors are shown. We can see that for CT
images containing light color tumors, dilation operation can magnify the lesion area and
facilitate the network to detect small lesions. For the CT images containing dark tumors,
we can see that the tumor portion of the erosion manipulated images not only becomes
larger, but also retains a lot of texture information. The formulas of dilation and erosion
operations are shown as follows:

(a)                    (b)                     (c)                     (d)                       (e) 

Fig. 2. The output of different colors tumors after morphological operations. Organs with rep-
resentative light and dark colors of lesions in the dataset are shown. Where, (a)-(e) represent the
labeled image, erosion, dilation, opening and closing respectively. First row is lung CT image and
second row is liver CT image.

A ⊕ B = {x, y|(B)xy ∩ A �= ∅} (1)

A � B = {x, y|(B)xy ⊆ A} (2)

Where, ⊕ and � represent dilation and erosion respectively.

2.2 Feature Extraction Network

Faster-RCNN [9] is an object detection algorithm proposed by Kaiming He in 2015.
Based on Fast-RCNN [10], this algorithm puts forward the RPN region proposal box
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Fig. 3. The structure of FPN built based on the proposed MSR module

Fig. 4. The structure of MSR module. The detailed architecture of the Multi-Scale Response
(MSR) module consists of two parts: Aggregated dilated block (ADB) in the blue dashed box on
the left and Global attention Block (GAB) in the orange dashed box on the right. (Color figur
online)

generation algorithm, which greatly improves object detection speed. The detection part
is divided into four steps: The first step is to input the whole image into CNN for feature
extraction. The second step is to generate the anchor box by RPN. In the third step, the
RoI pooling layer makes each RoI generate a feature map with a fixed size. In the fourth
step: Softmax Loss and Smooth L1 Loss are used for classification and Bounding box
regression respectively.

We first modified the backbone of the model, the original backbone of Faster RCNN
is VGG16 and we replaced it with ResNet101 [11]. The ResNet results on the ImageNet
dataset [12] show that the performance of the residual structure is significantly better than
the traditional convolution framework. Due to the down-sampling effect in traditional
convolutional neural networks, small objects cannot acquire obvious features.

To address this issue. First of all, we deepened the backbone to continue to enhance
the network’s ability to extract deeper semantic information. conv2_ ×, conv3_ ×,
conv4_ ×, conv5_ ×, conv6_ ×, and conv7_ × blocks are used to build the feature
pyramid. P2, P3, P4, P5, P6 and P7 correspond to conv2_ × –conv7_ ×. We convolved
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the corresponding bottom-up feature maps by 1 × 1 kernels to reduce the number of
channels and fuse the deep feature [13]. After processing by the MSR module, the
corresponding bottom-up feature map is added to the corresponding bottom-up feature
map by up-sampling. The feature map of P2–P4 resolution in Backbone can help the
network find and locate small lesions. With the deepening of the network, the small
objects information will dismiss because of the convolution and pooling operations.
There are two purposes for adding conv6_× and conv7_×. The first point is to improve
the feature extraction capability of the backbone. The second point is to fuse with the
upper layer feature map after up-sampling when constructing FPN, see Fig. 3, which
can bring more deep semantic information into the higher resolution feature map in the
upper layer.

2.3 Aggregated Dilation Block

In the process of generating feature pyramids based on ResNet residual blocks, the
imbalanced problem between spatial and semantic information will emerge. To address
this issue, we build a feature pyramid network constructed by multiple scale output
of Res-block in the top-down pathway. We introduced dilated convolution in the ADB
module byusingmulti-branch structure to adapt to the receptivefield of featuremapswith
multi-scales through different dilation rates. In each parallel dilated convolution branch,
the feature map is enhanced by the cascade convolution kernels with different dilation
rates. After the convolution of each layer, the output is nonlinearized by the activation
function to prevent gradient explosion and can bringmore differential representations for
feature transformation. Weighted combinations in the multi-branch dilation convolution
process can eliminate to some extent the noise left behind in low-resolution images. Then
we concatenate the output features of each branch with the original image to become
an aggregated feature map. The feature map output by the ADB module has a larger
receptive field.

In ADB module, f ∈ RW×D is used to describe the architecture of ADB,
where W and D are the width and depth of ADB respectively. The dilation rate of
specific layer in ADB is expressed as fij, where i = 1, 2, . . . ,W and j = 1, 2, . . . ,D
represent the index of width and depth respectively. The aggregated dilated operation is
shown as follows:

F(x) =
∑W

i=1
Ti(x|fi1, fi2, ..., f iD) (3)

where Ti(x) represents the cascade-transformation.
As shown in Fig. 4, the parallel structure branch inside the ADBmodule is connected

in series with convolution kernels with different dilation rates, and the output multi-scale
feature map restores more detailed spatial information of the instance. It also provides
more long-range context information for the construction of the feature pyramid. The
receptive field of each layer is expressed as follows:

Ai0 = 1 (4)

kij = kij +
(
kij − 1

) × (
fij − 1

)
(5)
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Aij = ri,j−1 × kij −
(
kij − 1

) × (Ai,j −
j−1∏

k=1

sk) (6)

Where, Aij denotes the receptive field, kij denotes the kernel size and sk represents
the stride.

From the formula, we can see that the size of the receptive field extracted by the
convolution kernel with different dilation rates is also different. Usually in the feature
extraction network, that is, in the backbone, the dilation convolution helps us identify
the large object from the enlarged receptive field [14]. However, we added dilation
convolution follows the output of the feature pyramid, expecting to providemore context
spatial information to improve the detection accuracy of small lesions.

Fig. 5. Lesion detection results for sample CT images of various methods. Each row from top to
bottom represents the label image, our proposed method, Faster R-CNN respectively

2.4 Global Attention Block

Inspired by the current popular attention mechanism, we propose a Global Attention
Block (GAB).When the network’s backbone extracts information froma large number of
featuremaps, theGABallows the network to paymore attention to somevital information
and improving the accuracy of detection. Each attention block consists of two parts: a
spatial attention block and a channel attention block.

Object detection needs to be extremely sensitive to changes in spatial location, so we
proposed spatial attention block which uses a self-attentive mechanism to model remote
dependencies in order to enhance the network’s global understanding of the visual scene.
In addition, inspired by SENet [15], we proposed a channel attention block that aims to
focus on the feature information we need.

We converted the input feature map x into three paths F1, F2 and F3, where F1(x) =
W1x and F2(x) = W2x. Firstly, obtaining the attention map of the long-range correlation
between each position in the feature map throughSij, whereSij = F1(xi)T ⊗F2(xj).Sij is
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transformed into Ai,j by softmax, where, Aij = softmax(sij) represents the relationship
between the position of i and the position of j in the feature map, and then Aij and F3
are multiplied to query the response relationship between pixels on the feature map.

zi =
N∑

j=1

Ai,j ⊗ F3
(
xj

)
,F3(x) = W3x (7)

Where i represent the index of query position.N = H ×W andN represents number
of feature locations. ⊗ denotes matrix multiplication.

After the spatial attention block, we compress the global information into channels
through global average pooling, the main difference between the SE block and the block
weproposed is the fusionmodule,which reflects the different goals of the twoblocks. The
SE module uses re-adjustment to re-calibrate the importance of the channel, but it does
not fully simulate the long-range correlation. We captured the long-range correlation by
using addition to aggregate the global context to all positions. The detailed architecture
of the global attention block (GAB) is formulated as follows:

yi = xi + Wv2ReLU (LN (Wv1z)) (8)

Where Wv1 ∈ R
C
r ×C ,Wv2 ∈ RC× C

r . In order to obtain the lightweight attribute of
the channel attention block, we reduced the parameters of the module from C to C/r.
Where r is the bottleneck ratio, setting r too large will lose feature information and vice
versa will consume a lot of computation, so we need to strike a balance between two
costs, we found that when r = 4, the model performs best.

3 Experiments and Results

3.1 Datasets

TheDeepLesion is the largest open dataset ofmulti-category, lesion-level labeled clinical
medical CT images ever published by an NIH Clinical Center. By training deep neural
networks on this dataset, itwill be possible to obtain a large-scale universal lesiondetector
that can more accurately and automatically measure the size of all lesions in the patient’s
body, allowing initial assessment of cancer system-wide. The dataset contains 32,735
labeled lesion instances from4,427 independent, anonymous patients. The dataset covers
a wide range of lesions involving the lung, liver, mediastinum (mainly lymph nodes),
kidney, pelvis, bone, abdomen and other soft tissues.We used 70% samples of the dataset
for training, 15% for validation, and 15% for testing.

3.2 Training Schedule

We set training learning rate to 0.008 and training momentum to 0.9; after 10,000 itera-
tions, the training weights decayed to 0.001; the training batch is 128, the mini_batch is
2; and the learning process is 12 epochs. The initialization weights for P1–P5 are from
the ImageNet pre-trained model, and for the deepened network part.
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Table 1. mAP and AP of each lesion type on the official split set of DeepLesion.

Methods Total BN AB ME LV LU KD ST PV

Baseline 0.484 0.524 0.512 0.549 0.549 0.582 0.419 0.436 0.368

Baseline + (Res101) 0.512 0.526 0.515 0.553 0.557 0.591 0.436 0.447 0.414

Baseline + + ADB 0.545 0.527 0.521 0.557 0.569 0.604 0.487 0.452 0.465

Baseline + + MSR (ours) 0.584 0.531 0.534 0.563 0.573 0.659 0.532 0.471 0.533

Table 2. An ablation studywith various configurations of the proposedmodules. Lesion detection
sensitivity is reported at different false positive (FP) rates on the DeepLesion test set.

Method FPs per image

0.5 1 2 4 8

Baseline 0.560 0.677 0.763 0.832 0.867

Baseline + (Res101) 0.592 0.693 0.788 0.843 0.871

Baseline + + ADB 0.615 0.719 0.804 0.851 0.887

Baseline + + MSR (ours) 0.658 0.752 0.827 0.881 0.891

We initialize the parameters randomly.We resized the input image to 512× 512 size.
The optimization algorithm we used is stochastic gradient descent (SGD). The training
time of our detector is about 60 h, compared to one-stage detector we have drawbacks in
training cost and test speed, but speed is not very important in medical image detection
scenario, compared to the need to accurately detect the focal area.

3.3 Hardware and Software Setup

Experiments were conducted on a Workstation with IntelCore i7, 2.7 GHz CPU, 8 GB
RAM under Ubuntu 18.4, and a NVIDIA GTX 2080 video processing card with 11
GB memory. Faster RCNN was deployed in pytorch 1.5.1 framework and based on
python3.7, cuda 10.1 and cudnn 7.6.3.

3.4 Evaluation

We quoted two evaluation metrics in our subsequent ablation experiments and compar-
isons. In our experiments, the object detection accuracy was measured by mean Aver-
age Precision (mAP) when IoUthres = 0.5. Another evaluation metric is the average
sensitivity values at different false positives rates (FROC) of the whole test set.
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3.5 Results

Ablation Study
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Fig. 6. Ablation FROC Curve on test set of official split test set of DeepLesion.

Table 3. mAP and AP of each lesion type of various methods on the official split test set of
DeepLesion.

Methods Total BN AB ME LV LU KD ST PV

YOLOv3 [16] 0.468 0.371 0.372 0.587 0.524 0.562 0.373 0.403 0.435

RetinaNet [17] 0.510 0.539 0.430 0.555 0.524 0.612 0.424 0.455 0.421

3DCE, 3 slices [5] 0.506 0.434 0.424 0.522 0.543 0.633 0.426 0.421 0.423

3DCE, 9 slices [5] 0.544 0.492 0.468 0.577 0.564 0.663 0.480 0.441 0.470

Ours 0.584 0.531 0.534 0.563 0.573 0.659 0.532 0.471 0.533

The proposed network consists of three main components: Faster R-CNN, ADB
and GAB. In Table 1 and Table 2, Baseline denotes the original Faster R-CNN model,
and Baseline + (Res101) denotes the method for deepening the backbone mentioned in
Sect. 2.2. To assess the validity of each module, we performed ablation studies on the
DeepLesion dataset. From Table 1, we can see that the original model was improved
by our proposed method and the mAP values were improved to 10%. Based on the
coarse lesion types provided by DeepLesion for each CT slice, we calculated the AP for
each lesion type. Besides, the table shows that the AP values were increased by different
magnitudes for different sites. The metrics assessed in Table 2 are the average sensitivity
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Table 4. Comparison of the proposed method with state-of-the-art methods on the DeepLesion
test set. Lesion detection sensitivity values are reported at different false positive (FP) rates.

Method FPs per image

0.5 1 2 4 8

RetinaNet [17] 0.458 0.542 0.625 0.698 0.742

YOLOv3 [16] 0.520 0.626 0.719 0.795 0.843

Mask R-CNN [18] 0.398 0.527 0.656 0.777 0.852

ULDor [4] 0.529 0.648 0.748 0.844 0.861

3DCE, 3, slices [5] 0.569 0.673 0.756 0.816 0.858

3DCE, 9, slices [5] 0.593 0.707 0.791 0.843 0.878

3DCE, 27, slices [5] 0.625 0.733 0.807 0.857 0.891

Ours 0.658 0.752 0.827 0.881 0.891
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Fig. 7. FROC Curves of various methods.

values for the entire test set at different false positives rates. The comparison between
different configurations shows that the proposed method achieves the highest sensitivity
at different false positives rates. We plotted the FROC curves to make the results more
intuitive, see Fig. 6. The detection results are also shown in Fig. 5.
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Comparisons with State-of-the-Art. We compared our model with state-of-the-art
methods. As can be seen from Table 2 and Table 4 we have chosen YOLOv3 [16],
Reti-naNet [17], Mask R-CNN [18] and 3DCE [5] Yan et al. selected different numbers
of slices and sent them to the detector. The detector generated 3D context information
fromdifferent numbers of slices to help the detectormake thefinal lesion prediction.From
Table 3, we can see that the mAP value of our proposed detector is higher than other
advanced detectors. Although it is slightly lower than 3DCE on the medi-astinum and
lung organs, higher than other detectors on all other organs.

Table 4 shows the results of the evaluation, which indicates that our method is
superior to the existing methods. We can see that the higher the number of CT slices
that the detector selects as input for 3DCE, the higher sensitivity the detector has, due
to the fact that the number of CT slices can provide more contextual information to the
detector. However, in this paper, we obtained better results by selecting only a single
CT slice as input. To make the comparison more straightforward, we plotted the FROC
curves comparing the experimental results of several methods in Fig. 7.

In terms of the overall comparison resultswith state-of-the-artmethods, our proposed
method is superior in detection accuracy and sensitivity.

4 Conclusion

We propose a fine-grained lesion detection method with a novel multi-scale global atten-
tion mechanism to enhance the detection of lesions on feature maps of different sizes.
In different scale convolution levels of the detection network, we augment the detector’s
awareness of feature map scale variation by ADB. ADB provides finer size estimates of
the feature map to capture the response to scale under different receptive fields. To effec-
tively choose meaningful responses, we propose the GAB attention module, where the
results of ablation experiments on the DeepLesion dataset demonstrate the effectiveness
of our proposed method for detection at different scales.
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