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Abstract. Attention Deficit Hyperactivity Disorder (ADHD) is a common ner-
obehavioral disease in school-age children. Its accurate diagnostic methods have
drawn widespread attention in recent years. Among them, neurobiological diag-
nosis methods are proved as a significant way to identify ADHD patients. By
employing some neurobiological measures of ADHD, machine learning is treated
as a useful tool for ADHD diagnosis (or classification). In this work, we develop
a Laplacian regularization subspace learning model for ADHD classification. In
detail, we use resting-state Functional Connectivities (FCs) of the brain as input
neurobiological data and cast them into the subspace learning model which is
carried out in an existing binary hypothesis testing framework. In this testing
framework, under a hypothesis of the test subject (ADHD or healthy control sub-
ject), training data generates its corresponding feature set in the feature selection
phase. Then, the feature set is turned to its projected features by the subspace model
for each hypothesis. Here, a Laplacian regularization is employed to enhance the
relationship of intra-class subjects. By comparing the subspace energies of pro-
jection features between two hypotheses, a label is finally predicted for the test
subject. Experiments show, on the ADHD-200 database, the average accuracy is
about 91.8% for ADHD classification, which outperforms most of the existing
machine learning and deep learning methods.
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1 Introduction

Attention Deficit Hyperactivity Disorder (ADHD) is a common neurobehavioral disease
in school-age children. It is characterized by inattention, excessive activity, and lack of
self-control [1]. Many individuals who suffered from ADHD persist in the symptoms
during their adulthood [2]. Current clinical diagnosis is with the direct observation of
patients, which mainly depends on the subjective scores from various Hamilton scales
[3]. Some questionnaires are taken for children to investigate their multiple perfor-
mances in life, and then clinicians judge the disease status. However, such a diagnostic
method is highly subjective and requires experienced clinicians. It frequently causes
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misdiagnosis for patients with mild symptoms. Therefore, the objective ADHD diagno-
sis becomes more attractive. Various objective methods have been proposed, wherein
ADHD classification with Machine Learning (ML) and Deep Learning (DL) has made
great developments in recent years.

Nowadays, well-developed imaging approaches, e.g., structural Magnetic Resonance
Imaging (sMRI), functional Magnetic Resonance Imaging (fMRI), Positron Emission
Computed Tomography (PET), and Electroencephalogram (EEG) [4, 5], provide plenty
of objective data for diagnosis. Among these approaches, fMRI has more advantages
in detecting psychological disorders. It monitors the Blood-Oxygen-Level-Dependence
(BOLD) signals to discover the dynamic change in brain regions. With a series of data
operations, more advanced biosignals can be extracted from the BOLD signals. Here,
Functional Connectivity (FC) has received increasing attention by revealing the dys-
functions of the brain network [6]. Therefore, given a set of resting-state fMRI data, we
focus on the FC analysis for ADHD classification.

Machine learning is an effective method to distinguish ADHD patients from healthy
control subjects [7, 8]. The ML-based ADHD classification methods mainly include
three phases, i.e., feature selection, feature extraction, and label decision. In feature
selection, some recognizable biosignals are selected from a huge number of biosig-
nals as their typical ones. Some feature selection algorithms are recommended such as
Support Vector Machine Recursive Feature Elimination (SVM-RFE) [9], Least Abso-
lute Shrinkage and Selection Operator (LASSO) [10], and Elastic Network [11]. Feature
extraction contributes to the model design for capturing high-level features from selected
features, where dimensionality reduction is a common and effective approach [12-14].
For example, a feature extraction framework is proposed with the forward-backward
learning strategy to obtain low-dimension subspaces for FC data [15]. Label decision
is another crucial phase to impact the classification performance. Many well-designed
classifiers, e.g., logistic regression, random forest, and decision tree, are incorporated
for ADHD classification. Most existing machine learning methods are carried out in a
training-and-test framework. However, it may hinder the further promotion of classifi-
cation accuracy. In practice, the features of test subjects often cannot be well included
in the feature space of training data (a.k.a. training subjects) due to ADHD databases of
small size. As aresult, a binary hypothesis framework is presented to overcome this prob-
lem. For example, a binary hypothesis testing approach with dual subspace clustering is
deployed and achieves a remarkable ADHD classification performance [16].

Besides, deep learning has been successfully applied in ADHD classification. Dif-
ferent from ML-based methods, the classification via deep learning integrates the afore-
mentioned three phases as a whole. It flexibly learns the high-level features from various
biosignal sets [17, 18]. As we know, a Convolutional Neural Network (CNN) is exploited
to extract FC features through a fully connected network and then achieves an acceptable
classification result [19]. Later, a three-dimensional CNN (3D-CNN) model [20] further
uses various fMRI data to comprehensively analyze the local spatial abnormal patterns of
ADHD patients. Moreover, another 3D-CNN variant is provided for the feature training,
which adopts the linear discriminant analysis for classification [21].

Affected by recent research progress, we propose an ADHD classification method by
Laplacian regularized subspace learning and binary hypothesis testing. The Laplacian
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approach enhances the relationship of intra-class subjects in the learned subspace. Under
the binary hypothesis framework, the subspace energy is exploited as a measure for the
label prediction of the test subject. Experiments show, on the ADHD-200 database, the
average classification accuracy is about 91.8%, which outperforms most of the existing
ML-based and DL-based methods.

2 Material and Method

2.1 Image Data Preprocessing

In our work, all resting-state fMRI data is from the ADHD-200 consortium (http://fcon_1
000.pro-jects.nitrc.org/indi/adhd200/). ADHD-200 database is an open-source database
of fMRI scans and contains the corresponding clinical characteristics of ADHD and
healthy control subjects. We use four datasets of the ADHD-200 database to investigate
our ADHD classification method. These datasets are from New York University Med-
ical Center (NYU), Neurolmage (NI), Kennedy Krieger Institute (KKI), and Peking
University (PU), respectively. Their detailed information is given in Table 1.

In ADHD data processing, we obtain the time course value of BOLD signals
from the connectome website (http://www.preprocessed-connectomes-project.org/adhd-
200/). The preprocessing steps include removing of first four time points, slice time cor-
rection, motion correction (first image taken as the reference), registrationon 4 x 4 x 4
voxel resolution in Montreal Neurological Institute (MNI) space, filtration (bandpass fil-
ter with 0.009 Hz—0.08 Hz) and smoothing via 6mm FWHM Gaussian filter. According
to the Automatic Anatomical Label-116 template, we select the first 90 brain regions as
regions of interest to establish the FC network. FCs are generated from the Pearson cor-
relation coefficients between regional BOLD signals. Later, a Fisher’s r-to-z transform is
utilized to transform the sampling distribution of correlation coefficients for normality.

Table 1. Information about used ADHD-200 datasets

Site Age | Female | Male | Control | ADHD | Total
NYU |7-18 |77 145 | 99 123 222
KKI [8-13 |33 46 | 61 22 83
NI 11-22|17 31 | 23 25 48
PU 817 |52 142 | 116 78 194
PU_1*|8-17 |36 48 | 62 24 86

*PU_I is the first sub-dataset of PU.
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2.2 Binary Hypothesis Testing Framework

The core idea of binary hypothesis testing is to use the FCs of the test subject (without
seeing its label) to affect the FC selection of training data. During the feature selection
phase, the typical FCs of training data can be got under the true hypothesis of the test
subject, while the obscure ones are under the false hypothesis. Sequentially, we adopt
the Laplacian regularized subspace learning model in the feature extraction phase. It
respectively provides their subspace energies under different hypotheses as a measure
for the label prediction of the test subject. Finally, by comparing these two energies, the
label of the test subject under the true hypothesis is effectively identified. Its ADHD
classification framework is shown in Fig. 1.

We design a binary hypothesis framework still within three phases, i.e., feature
selection, feature extraction, and label decision. At the very beginning, we employ the
label hypothesis of the test subject as healthy control () or ADHD patients (H1).
In the feature selection, both FCs of training and test data is applied to calculate the
reliability of FCs via SVM-RFE. By sorting all feature reliability values in descending
order, two rank sets (RHO, RHl) are obtained under different hypotheses. Then, the
first k-th FCs of training data is pruned to form the selected feature sets (X Ho xHy,
which are correspondingly guided by (RMo, R™1). In the feature extraction, optimal

subspace projection matrices (PHO, i’Hl) are achieved through our Laplace regularized
subspace learning model. Thus the projected feature sets of (X Ho xHryare provided as

X" with

B0 = @XM (1)
XHI _ (i,HI)TXHl ’

We introduce an energy comparison strategy in the label decision. To avoid the energy
fluctuation influence impacted by the input selected features, an energy normalization
operation is performed as

EH:':M ief0, 1) ()
|IXHi1F T

where EMi is the normalized energy. Thus, we get the label prediction of the test subject
by

oo = Hi, AE <0
¢ Ho otherwise’

3)

where AE = ET1 — ET0 s the energy difference between two hypotheses. Since in
practice, the mean value of selected features (a.k.a. selected FCs) that share the same
label is approximately zero, the subspace energy can be viewed as a scatter measure for
intra-class subjects. As a result, Eq. (3) is adopted to test the scatter measures between
different hypotheses.
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Fig. 1. Framework of proposed ADHD classification.

2.3 Laplacian Regularized Subspace Learning

Given the selected FCs as X = [X,, X.], where X, and X are the corresponding FCs
of ADHD and healthy control subjects respectively, we firstly define the graph Laplacian
matrix among the FCs. It is described as

L=D-W, “4)

where W is an adjacency matrix, D is a degree matrix with its diagonal elements as the
row sum of W by d;; = Zj w;j. We set the adjacency matrix W as a block diagonal

matrix with
W, 0
W= , 5
[0 WC] )
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where W, and W, are the adjacency matrices for the ADHD and healthy control groups
respectively. Moreover, the matrices W, and W, are formulated with the full binary
conjunction in their categories.

Thus, we give the Laplacian regularized subspace learning model as

P=arg min IIPTX||% + rer(PTXLXTP), (6)
P P=I

where P is a subspace project matrix, A is a weighted coefficient and I is an identity
matrix. The projected energy of X is deployed in the first term of Eq. (6), while the
second term requires the projected features close to each other in the same category
during the dimension reduction.

To solve the problem in Eq. (6), we rewrite it as

P =arg min tr(PTXAXTP), (7
PTP=I

where the complex matrix A is defined asA = I'+ L. Finally, the optimal project matrix
P is obtained as

P = cig,(XAXT), ®)

where symbol eig,(.) denotes the eigenvalue decomposition to give the eigenvectors
with the first ¥ minimal eigenvalues.

3 Experiment Results

We conduct a series of performance evaluations on the ADHD datasets of Table 1. The
classification accuracy is achieved by Leave-One-Out Cross Validation (LOOCYV). In
each test iteration, one subject is got from the database as the test subject, while the rest
subjects are used as training data. As for the parameter setting, we choose the selected
feature number k = 110 by SVM-RFE. The subspace dimension r is set as » = 105 for
each dataset. Moreover, we further set A = 0.1 to balance the term values in Eq. (6).

3.1 Subspace Dimension and Analysis

We first evaluate the accuracy performance with the subspace dimension variation in
Fig. 2. It is observed that the highest accuracy is approximate with the subspace dimen-
sion r = 105. Meanwhile, the subspace dimension is not seriously reduced compared
with the selected features of k = 110. The selected features now have limited redundant
information. It also proves our selected feature number is fit for this subspace learning
model. In this case, the task of subspace learning is to remove noise from input data
rather than to reduce the feature number. As a result, this operation enhances feature
discrimination to achieve remarkable accuracy.
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Fig. 2. Accuracy with subspace dimension

3.2 C(lassification Comparison

Various ADHD classification measures, including specificity, sensitivity, and accuracy,
are given in Fig. 3. Our method reaches an average accuracy of 91.8%. In Fig. 3, the
accuracy of KKI is the lowest. It is because of the subject imbalance problem, where
the number of ADHD patients is seriously less than that of healthy controls. Conversely,
NI’s accuracy is acceptable for its balance subjects, though its dataset is of the smallest
size. PU has the best classification performance. It benefits from its large dataset. With
the subject number increasing, the subspace can be learned more effectively to contain
reliable information about ADHD.

We further compare our method with other advanced ones in Table 2, including
several ML- and DL-methods [19, 20, 22-25]. It shows our method outperforms these
methods. Our method provides an alternative way to use binary hypothesis testing instead
of the traditional training-and-test approach. With this strategy, the FCs of test data par-
ticipate in the feature selection procedure. The subspace learning method then gives an
effective scatter measure to make the sequential energy detection. Therefore, it can reli-
ably deal with the classification task on different datasets, which significantly enhances
the system robustness compared to the existing ML- and DL-based methods. Here, we
also refer to a recent binary hypothesis method named dual-space learning with binary
hypotheses (Dual-SP-BH) [25]. Since the dual spaces are employed for feature projec-
tion, it obtains an unsatisfied performance on NI. However, our method only learns one
subspace to simplify the projection operation such that it brings better performance.
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Fig. 3. Comparison of group classification on various datasets

Table 2. Accuracy comparison with various methods (%)

NYU |PU |PU_1 KKI |NI | Average

Fusion fMRI |52.7 |- 85.8 |86.7 |729 |-
[22]

FCNet [23] |58.5 |- 62.7 |- 60.0 |-
3D-CNN 70.5 |63.0 |- 72.8 |- -
[20]

Deep fMRI | 73.1 |- 62.7 |- 679 |-
[19]

Deep Forest | 73.2 |64.9 |- 82.7 |72.0 |-
[24]

Dual-SP-BH 924 [923 /894 |85.5 |81.2 |88.2
[25]

Our method |91.5 |94.9 [94.1 |86.7 |91.7 |91.8

3.3 ROC Analysis

We adopt Receiver Operating Characteristic (ROC) and Area Under Curve (AUC) to
further evaluate our method. For the ROC measure, it is a balanced result for True
Positive Rate (TPR) and False Positive Rate (FPR), describing a given confusion matrix.
The indicators of TPR and FPR are computed as

TP
TPR = Tp T FN

o ©)
FPR

T FP+IN
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where TP is the true positive, TN is the true negative, FP is the false positive, and FN is
the false negative. Meanwhile, the value of AUC is defined as the area under the ROC
curve. The higher the AUC is, the better classification performance our model is.

The ROC curves are depicted in Fig. 4 and Fig. 5 for the datasets of large and small
sizes, respectively. In Fig. 4, NYU and PU datasets are tested. It is observed that their
ROC values are rapidly converged to 1 with FPR increasing. Their AUC values are both
above 0.9. It shows that the proposed classification method has a good performance on
large datasets. As for the small datasets in Fig. 5, including KKI, NI, and PU_1, their
ROC curves slowly increase compared with those in Fig. 4. Most of their AUC values
are below 0.9 due to their small dataset size. Interestingly, the AUC on NI is even better
than those on KKI and PU_1, though the size of NI is the smallest. We note that the
data in KKI and PU_1 suffer from the subject imbalance problem. It seems such a factor
seriously impacts the ADHD classification performance.

True Positive Rate

NYU(AUC=0.911)
........ PU (AUC=0943)

0 0.2 0.4 06 08 1
False Positive Rate

Fig. 4. ROC curves on large datasets

n o

True Positive Rate
o o o
@

KKI (AUC=0.872)|
........ NI (AUC=0910) |
- PU_1(AUC=0.894)

0 0.2 04 0.6 0.8 1
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Fig. 5. ROC curves on small datasets

4 Conclusion

‘We propose an ADHD classification method by Laplacian regularized subspace learning
and binary hypothesis testing. The binary hypothesis approach fully exploits the FC
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information on test data. Meanwhile, the Laplacian regularized subspace learning well
obtains the subspace energies under different hypotheses and thus effectively gives the
label prediction of test data. In our experiments, the average classification accuracy of
ADHD is 91.8%. It outperforms most of the existing machine learning and deep learning
methods.
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