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1  Introduction

Food security is the most important fundamental need of society. The wide-ranging 
increase in environmental damage and the pressure of ever-increasing human popu-
lation have adversely affected global food production (Etesami and Jeong 2018). 
The world population today is estimated to be about 7 billion and projected to reach 
between 7.5 to 10.5 billion by 2050 (Godfray et al. 2010). Such an enormous rise in 
the population would demand higher agricultural productivity per unit area from 
already degraded lands. Moreover, climate change has aggravated the occurrence 
and intensities of various biotic and abiotic stresses (Etesami and Jeong 2018). Such 
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conditions would compel farmers to cultivate marginal lands and poor soils 
(Glick 2014).

Stress affects the growth and development of the plants, thereby leading to more 
significant losses in agricultural productivity. However, plants have adopted numer-
ous mechanisms to tolerate stress and survive stress-induced conditions. Healthy 
plants are capable of combating stress, and plant nutrients are vital to maintaining 
healthy plant growth. The microelements or micronutrients are known to give stress 
tolerance to plants (Vanderschuren et al. 2013; Bradáčová et al. 2016). Though the 
roles of several macro- and micronutrients in plants have been well documented, 
few of the nutrient elements have remained neglected. This chapter focuses on the 
role of silicon, one of the neglected plant nutrients, and its role in plants suffering 
from adverse environmental conditions.

2  Adverse Environmental Conditions

2.1  Biotic Stress

Throughout their life, plants get exposed to a multitude of stresses that modify plant 
growth and development. Organisms like fungi, bacteria, mycoplasma, insets, nem-
atodes, weeds, and parasitic plants induce biotic stress. The viruses and viroids, 
though nonliving, also contribute to the biotic stress. These agents affect the plant 
growth and development by depriving nutrients leading to reduced plant vigor and 
death of plants in extreme cases (Das and Rakshit 2016). The severity of biotic 
stress depends on the environmental factors, cropping systems, types of crops, cul-
tivars, and resistance levels of plants. Hot and humid conditions and poor crop man-
agement practices are the two leading causes of biotic stresses (Pantazi et al. 2020). 
Early recognition of biotic stress is the key to control it via integrated pest manage-
ment and the use of pesticides.

Plants do not have an adaptive immune system like vertebrates. They can neither 
adapt to new diseases nor memorize the previous infections. However, plants have 
developed several mechanisms to combat biotic stresses. They rely on various phys-
ical and chemical barriers that confer strength and rigidity to survive under biologi-
cal stress.

2.2  Abiotic Stress

The nonliving factors imposing adverse effects on healthy growth and development 
of the plants are called abiotic stresses. These include drought, salinity, heavy met-
als, too low or too high temperatures, and other environmental extremes. These 
factors can reduce the crop yield by 51–82% (Bray et al. 2000). Plants combat these 
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stresses at various levels like morphological, physiological, biochemical, and 
molecular levels (Husen 2010; Getnet et al. 2015; Embiale et al. 2016; Husen et al. 
2016, 2018, 2019; Hussein et al. 2017; Siddiqi and Husen 2017, 2019; Zeng et al. 
2020; Kar and Öztürk 2020). Over the past few decades, advances in plant physiol-
ogy, genetics, and molecular biology have greatly upgraded our understanding in 
terms of crops respond to stress conditions. These responses depend not only on 
their duration and severity but on the age and the developmental stage of the plant 
as well (He et al. 2018).

3  Is Silicon Essential to Plants?

Silicon (Si) is the eighth-most abundant element in the universe. In earth’s crust, its 
abundance ranks only second to oxygen. The lithosphere contains about 27.7% sili-
con (Epstein 1999). It rarely occurs in its pure form, and more than 90% of the Si in 
the earth’s crust exists as silicates (Mitra 2015).

Biological systems also contain significant amounts of silicon, as amorphous 
silica (SiO2·nH2O), and its soluble form, silicic acid (Si(OH)4). The first indication 
of in vivo formation of organosilicates, their distribution, and physiological impor-
tance was discovered in a diatom Navicula pelliculosa (Kinrade et al. 2002). Plants 
also contain significant amounts of Si that can range from 0.1 to 10% on the dry 
weight basis (Epstein 1994; Ma and Takahashi 2002; Hodson et al. 2005; Ma et al. 
2006). Differences in the levels of silicon in different plants could be due to the dif-
ferential ability of roots to absorb Si (Takahashi et  al. 1990). Despite its high 
amounts in plants, Si is looked upon as a quasi-essential element since most of the 
plant species can live their entire life in the absence of silicon (Arnon and Stout 
1939). Nonavailability of Si-free environment due to its contamination in purified 
water, chemicals, and dust might be the reasons for considering Si as nonessential 
for higher plants (Liang et al. 2015). Therefore, adhering to the definition of essen-
tiality proposed by Epstein and Bloom (2005), Si is a quasi-essential element 
in plants.

Interestingly, there are several reports on the positive roles of Si in the plant 
growth (Eneji et  al. 2008; Soundararajan et  al. 2014; Zhang et  al. 2015), yield 
(Epstein 1999), structural toughness (Epstein 1994), nutrient management (Tripathi 
et al. 2012), and absorption of light (Li et al. 2004). Its role in accelerating the toler-
ance to biotic and abiotic stresses in plants has also been explained (Ma 2004; 
Cookson et al. 2007; Liang et al. 2007; Muneer et al. 2014; Soundararajan et al. 
2014). How Si alleviates biotic and abiotic stresses has become a booming topic of 
interest. In the past 15 years, several researchers have reported and reviewed the 
positive effects of Si under biotic and abiotic stresses (Fig. 1a, b). However, studies 
on Si in conjunction with abiotic stress were significantly more than those with 
biotic stress (Fig. 1b). This chapter summarizes how plants use silicon and respond 
to Si availability during adverse environmental conditions.
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4  Uptake of Si in Plants Under Adverse 
Environmental Conditions

In plants, roots take up more than 90% of Si and translocate it to shoots (Ma and 
Takahashi 2002). Roots absorb Si in the form of silicic acid at pH < 9 (Takahashi 
and Hino 1978; Raven 2001; Ma and Takahashi 2002). The concentration of silicic 
acid in soil solutions usually ranges between 0.1 and 0.6 mM (Epstein 1994), and in 
some cases, up to 0.8 mM (Sommers and Lindsay 1979). The soil pH modulates the 
solubility of silicates, and with the increasing pH, solubility decreases. However, 
most of the crops are cultivated in soils with pH well below the alkaline mark 
of pH 9.0.

Fig. 1 (a) Silicon-related publications in the plant sciences from 2005 to 2020 (Till June) (Based 
on PubMed search with the keywords “silicon” and “abiotic stress”). (b) Silicon-related publica-
tions in the plant sciences from 2005 to 2020 (Till June) (based on PubMed search with the key-
words “silicon” and “biotic stress”)

P. S. Mundada et al.



361

Studies in rice have shown that roots take up Si from the rhizosphere by some 
kind of transporter, which transports it radially from the root cortical cells to the 
xylem (Tamai and Ma 2003). Once absorbed, Si is transported to the shoot as silicic 
acid. In different plants like rice, cucumber, and tomato, the concentration of silicic 
acid in the root cell symplast was higher than that in the external solution. Rice has 
shown a significantly higher concentration of Si than observed in cucumber and 
tomato (Mitani et al. 2005). This difference in the ability to take up Si is attributed 
to the different modes of transport in these plants. Moreover, the xylem loading of 
Si in rice occurs through a transporter. In contrast, in cucumber and tomato, it occurs 
by passive diffusion.

Plants differ in their ability to take up and distribute Si. The highest levels of Si 
uptake are reported in bryophytes and lycopods and Equisetum among the pterido-
phytes. However, ferns and gymnosperms tend to accumulate Si in lesser quantities 
(Takahashi et  al. 1990). Two of the angiosperm families, viz., Cyperaceae and 
Poaceae, are known to accumulate Si at higher concentrations (Hodson et al. 2005). 
Depending upon their ability to accumulate Si, plants are categorized into three 
classes: Si accumulators (e.g., rice, wheat, millet, and sugarcane) since they absorb 
large quantities of Si; Si non-accumulators (e.g., Snapdragon); and Si excluders 
(e.g., soybean) (Van der Vorm 1980; Marschner 1995).

So far, only a few genes have been identified that are involved in the uptake of Si 
in plants. The first of those genes is Lsi1 that was reported in rice (Ma et al. 2006). 
The Lsi1 gene is expressed mainly in roots, and its encoded protein has Si trans-
porter activity. The Lsi1-encoded protein is located on the distal sides on plasma 
membranes in both the layers of exodermis and endodermis. Bioinformatics tools 
have revealed that the Lsi1 belongs to a subfamily of aquaporin Nod26-like major 
intrinsic proteins (NIP). Chiba et al. (2009) have reported the HvLsi1 gene in barley 
for the influx of Si from roots. The presence of ZmLsi1 and ZmLsi6 transporter from 
maize was reported by Mitani et al. (2009). Bokor et al. (2017) have studied the 
expression of ZmLsi1, ZmLsi2, and ZmLsi6 genes and their effects on Si uptake and 
ionome content in maize (Bokor et al. 2017).

5  Transport of Si in Plants

Si absorbed by the root cells must be transported to other plant organs. Therefore, 
Si must be taken out of the root cells first. In marine organisms, the influx and efflux 
of Si are mediated by the same protein (Hildebrand et al. 1998). In rice, however, 
the efflux is mediated by a transporter Lsi2 (Ma et al. 2006), and Lsi6 mediates the 
influx of silicic acid from xylem to xylem parenchyma cells, thus influencing the 
distribution of Si in rice roots (Yamaji et al. 2008).

Plants are capable of synthesizing Si-rich molecules of various sizes. The accu-
mulated Si provides rigidity and roughness to the plant cell walls (Epstein and 
Bloom 2005) and also offers other beneficial effects (Van Soest 2006). The passive 
transport of Si driven by transpiration also leads to its deposition on the cell wall. 
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Researchers have used several biophysical tools like scanning electron microscopy 
(SEM) coupled with X-ray microanalysis, laser ablation (LA), X-Ray fluorescence 
spectrometry, and X-ray absorption near edge structure (XANES) to study the dis-
tribution of Si in plants (Rufo et al. 2014; Bokor et al. 2017). Si is mostly deposited 
in the epidermal cells of leaves, stems, and hulls where double layers of silica- 
cuticle or silica-cellulose containing hydrated polymers of amorphous silica are 
formed on their surface (Fauteux et  al. 2005; Wiese et  al. 2007; Deshmukh 
et al. 2017).

6  Role of Si in Plants Under Adverse 
Environmental Conditions

It is speculated that the global climate changes will trigger more frequent incidences 
of biotic and abiotic stresses leading to severe agricultural losses. The abiotic 
stresses reduce the global agricultural yield by as much as 70% (Acquaah 2012). 
How to fulfill the ever-increasing food demand under such circumstances will be a 
real challenge. The application of Si in soils deteriorated due to abiotic stresses has 
been beneficial for crop productivity. A summary of the beneficial and or positive 
effects of Si in plants exposed to various biotic and abiotic stresses is presented in 
Table 1.

6.1  Si and Plant Growth

Seed germination plays a significant role during seedling establishment. Drought 
adversely affects seed germination leading to agriculture losses (Hubbard et  al. 
2012; Shi et al. 2014). However, there are few reports on the effects of Si on seed 
germination under drought stress (Hameed et al. 2014; Shi et al. 2014). Priming of 
wheat seeds with sodium silicate was beneficial in enhancing the rate of seed germi-
nation under drought stress (Hameed et  al. 2014). Similar observations were 
reported in tomato (Siddiqui and Al-Whaibi 2014), and maize (Zargar and Agnihotri 
2013) seeds germinated under drought stress.

All the essential nutrients are required in adequate amounts for the healthy 
growth and development of plants. The process of absorption of these nutrients 
from the surrounding is disturbed under various stresses (Gunes et al. 2007a; Chen 
et al. 2011; Khattab et al. 2014). The deposition of Si in the endodermal layer of root 
cells helps in the selective uptake of nutrients, and such deposition reduces the accu-
mulation of toxic ions in different plant parts (Yeo et al. 1999). The soil application 
of Si has enhanced the uptake of macronutrients (P, K, Ca, and Mg) and micronutri-
ents (Fe, Cu, and Mn) in sunflower (Gunes et al. 2008a). The application of Si to the 
rice plants subjected to drought stress showed an increase in the uptake of 
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Table 1 Summary of the beneficial effects of silicon in different plants under adverse environmental 
conditions

Crop Stress Effect of Si Reference

Abelmoschus 
esculentus (Okra)

NaCl Enhanced photosynthesis, 
osmoprotectants, and 
antioxidant metabolism

Abbas et al. (2015)

Aloe vera (Aloe) NaCl Growth, quality, and ionic 
homeostasis

Xu et al. (2015)

Arachis hypogaea 
(Pea nut)

Aluminum toxicity Antioxidative enzymes and 
lipid peroxidation

Shen et al. (2014)

Brachypodium 
distachyon (stiff 
brome)

Antiherbivore Jasmonic acid (JA) 
signaling pathway

Hall et al. (2019)

Brassica napus 
(Canola)

NaCl Alleviates physiological 
disorders

Farshidi et al. (2012)

Capsicum annuum 
(Capsicum)

NaCl Regulating the physiology, 
antioxidant enzyme 
activities, and protein 
expression

Manivannan et al. (2016)

Chloris gayana 
(Rhodes grass), 
Phleum pretense 
(Timothy grass), 
Sorghum 
sudanense (Sudan 
grass) and Festuca 
arundinacea (Tall 
fescue).

Drought Growth and nutrient use Eneji et al. (2008)

Cucumis sativus 
(Cucumber)

Drought Physiological and 
biochemical mechanisms

Ma et al. (2004)

NaCl Antioxidant enzymes 
activity in leaves

Zhu et al. (2004)

Manganese 
toxicity

Hydroxyl radical 
accumulation in the leaf 
apoplast

Maksimović et al. (2012)

Iron deficiency Mobilization of iron in the 
root apoplast

Pavlovic et al. (2013)

NaCl Lipid peroxidation and 
antioxidant response

Khoshgoftarmanesh et al. 
(2014)

NaCl Increasing root water 
uptake

Zhu et al. (2015)

NaCl Act as an elicitor to 
precondition

Zhu et al. (2019)

Dianthus 
caryophyllus 
(Carnation)

NaCl Antioxidant enzyme 
activities

Soundararajan et al. 
(2015)

Hyperhydricity in 
in-vitro cultures

Recovery of hyperhydric 
shoots by stabilizing the 
physiology and protein 
expression

Soundararajan et al. 
(2017)

(continued)
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Crop Stress Effect of Si Reference

Eleusine coracana 
(Finger millet)

Pink stem borer
(Sesamia inferens 
Walker)

Defense hormone 
regulation

Jadhao et al. (2020)

(Grasslands) High-Salinity Biomass accumulation Liu et al. (2020)
Gossypium 
hirsutum (Cotton)

Copper Physiological and 
biochemical mechanisms

Ali et al. (2016)

Glycine max 
(Soybean)

Helicoverpa 
punctigera
(Lepidoptera: 
Noctuidae)

Relative growth rates 
(RGR)

Johnson et al. (2020)

Helianthus annuus 
(Sunflower)

Drought Growth, Antioxidant 
mechanisms, and Lipid 
peroxidation

Gunes et al. (2008b)

Drought Essential and Nonessential 
element uptake

Gunes et al. (2008a)

Brackish water 
stress

Growth and yield 
improvement

Hussain et al. (2018)

Hordeum vulgare 
(Barley)

NaCl Increases antioxidant 
enzyme activity and 
reduces lipid peroxidation 
in roots

Liang et al. (2003)

NaCl H+-ATPase activity, 
phospholipids, and fluidity 
of the plasma membrane in 
leaves

Liang et al. (2005)

Mangifera indica 
(Mango)

Drought Growth and mineral uptake Aal and Oraby (2013)

Medicago sativa 
(Alfalfa)

NaCl Ion distribution in the roots, 
shoots, and leaves

Wang and Han (2007)

Nicotiana rustica 
L. (Tobacco)

Salinity Mitigation of cell death in 
cultured tobacco

Liang et al. (2015)

Drought Growth, antioxidant 
mechanisms, osmolytes 
accumulation

Hajiboland et al. (2017)

Cuscuta europaea 
(Dodder)

Protein profile and 
antioxidant enzymes 
activities (POX, CAT, and 
SOD)

Lukacova et al. (2019)

Table 1 continued

(continued)

P. S. Mundada et al.



365

Crop Stress Effect of Si Reference

Oryza sativa 
(Rice)

Drought & Heat 
Stress

Electrolyte leakage Agarie et al. (1998)

Drought Plant water status, 
photosynthesis, and mineral 
nutrient absorption

Chen et al. (2011)

Salinity Decreased chloride 
transport

Shi et al. (2013)

Salinity Phytohormonal and 
antioxidant responses

Kim et al. (2014)

Heavy metal stress Regulation of P-type heavy 
metal ATPases, Oryza 
sativa low silicon genes, 
and endogenous 
phytohormones

Kim et al. (2015)

cadmium toxicity Cd-responsive transcription 
factor (TF) genes

Farooq et al. (2016)

Arsenic (As) Mineral nutrient uptake and 
biochemical responses 
through modulation of Lsi1, 
Lsi2, Lsi6 and nutrient 
transporter genes

Khan and Gupta (2018)

Low temperature Plant growth and yield Jang et al. (2018)
Salinity Multivariate analysis of 

antioxidants and osmolytes
Lekklar et al. (2019)

Cadmium Improving oxidative stress Chen et al. (2019a)
NaCl Alters organic acid 

production and enzymatic 
activity of the TCA cycle

Das et al. (2019)

Ultraviolet-B 
radiation

Antioxidant capacity, 
osmolytes

Fang et al. (2019)

Cadmium and 
Lead

Physiological and 
biochemical responses 
(ROS Production)

Wang et al. (2020)

Cadmium Induction of phytochelatin 
and ROS scavengers

Bari et al. (2020)

Phaseolus 
vulgaris (Bean)

Salinity Photosynthesis, water 
relations, and nutrient 
uptake

Zuccarini (2008)

Phaseolus 
vulgaris and Vigna 
unguiculata 
(Beans)

Salinity Growth, physiological 
parameters, and mineral 
nutrition

Murillo-Amador et al. 
(2007)

Phoenix 
dactylifera (Date 
palm)

Salinity and 
Cadmium stress

Improvements in plant 
growth, physiology, and 
modulation of stress-related 
hormonal crosstalk

Khan et al. (2020a)

Table 1 continued

(continued)

Silicon and Plant Responses Under Adverse Environmental Conditions



366

Crop Stress Effect of Si Reference

Pisum sativum 
(Pea)

Salinity Antioxidant enzyme 
activity

Shahid et al. (2015)

Boron (B) toxicity Antioxidant defense 
systems

Oliveira et al. (2020)

Portulaca 
oleracea 
(Purslane)

Salinity Root characteristics, 
growth, water status, 
proline content, and ion 
accumulation

Kafi and Rahimi (2011)

Raphanus sativus 
L. (Radish)

Ammonium 
toxicity

Increased photosynthesis, 
greater instantaneous 
water-use efficiency, and 
higher total dry biomass

Olivera Viciedo et al. 
(2020)

Spartina 
densiflora 
(Cordgrass)

Salinity Physiological parameters 
and mineral composition

Mateos-Naranjo et al. 
(2013)

Spinacia oleracea 
(Spinach) and 
Solanum 
lycopersicum 
(Tomato)

Salinity Some physiological and 
enzymatic parameters 
symptomatic for oxidative 
stress

Gunes et al. (2007a)

Spinacia oleracea 
(Spinach)

Boron toxicity and 
salinity

Oxidative damage and 
antioxidant activity

Eraslan et al. (2008)

Saccharum 
officinarum 
(Sugarcane)

Salinity Improve yield and juice 
quality

Ashraf et al. (2009)

Salinity Decreased Na+ 
concentration and increased 
K+

Ashraf et al. (2010a)

Salinity Morphology and mineral 
content

Ashraf et al. (2010b)

Table 1 continued

(continued)
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Crop Stress Effect of Si Reference

Solanum 
lycopersicum 
(Tomato)

Salinity Chlorophyll content, 
chlorophyll fluorescence, 
and antioxidative enzyme 
activities

Al-aghabary et al. (2004)

Salinity Growth, ion content, and 
water relation

Romero-Aranda et al. 
(2006)

Cadmium toxicity Mineral nutrient 
concentrations

López-Millán et al. 
(2009)

Salinity Physiological parameters Haghighi and Pessarakli 
(2013)

Drought Seed germination and 
alleviates oxidative stress

Shi et al. (2014)

Salinity Physiological and 
proteomic analysis in 
chloroplasts

Muneer et al. (2014)

Salinity Proteomic analysis of 
salt-stress responsive 
proteins in roots

Muneer and Jeong 
(2015)

Salinity Gas exchange, ion 
accumulation, root 
hydraulic conductance, 
antioxidant defense

Li et al. (2015)

Drought Root Hydraulic 
Conductance

Shi et al. (2016)

high-pH stress Modification of the 
endogenous Na+ and K+ 
contents, regulating 
oxidative damage and key 
genes and modulating 
endogenous hormone levels

Khan et al. (2019)

Bacterial Wilt Contents of salicylic acid 
(SA), ethylene (ET), and 
jasmonic acid (JA) and the 
activity of defense-related 
enzymes

Jiang et al. (2019)

Thermo tolerance Activation of the 
antioxidant system, heat 
shock proteins, and 
endogenous phytohormones

Khan et al. (2020b)

Table 1 continued

(continued)
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Crop Stress Effect of Si Reference

Sorghum bicolor 
(Sorghum)

Drought Silicon deposition Lux et al. (2002)
Drought Drought tolerance 

mechanism
Ahmed et al. (2011)

Salinity Ameliorating osmotic and 
ionic stresses

Yin et al. (2013)

Drought Increase in root hydraulic 
conductance

Liu et al. (2014)

Drought Changes in polyamine and 
1-aminocyclopropane-1-
carboxylic acid

Yin et al. (2014)

Drought Growth and level of 
antioxidant enzymes

Ahmed and Fayyaz-ul-
Hassan (2014)

Salinity Enhanced root hydraulic 
conductance by aquaporin 
regulation

Liu et al. (2015)

Salt stress Modifying the antioxidative 
defense mechanism

Calero Hurtado et al. 
(2020)

Sorghum bicolor 
(Sorghum) and 
Helianthus annuus 
(Sunflower)

Sodium toxicity Improving nutritional 
efficiency

Calero Hurtado et al. 
(2019)

salt stress Modifying the antioxidative 
defense mechanism

Calero Hurtado et al. 
(2020)

Table 1 continued

(continued)
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Crop Stress Effect of Si Reference

Triticum aestivum 
(Wheat)

Copper Growth Nowakowski and 
Nowakowska (1997)

Drought Growth Gong et al. (2003)
Drought Alleviation of oxidative 

damage
Gong et al. (2005)

Powdery mildew Induction of antifungal 
compounds

Rémus-Borel et al. 
(2005)

Freezing stress Morphology and 
antioxidant enzymes

Liang et al. (2008)

Drought Oxidative stress at different 
developmental stages

Gong et al. (2008)

Salinity Morphophysiology and 
Osmolyte

Tuna et al. (2008)

Powdery mildew Absorption of aqueous 
inorganic and organic 
silicon compounds and 
their effect on growth

Côté-Beaulieu et al. 
(2009)

Drought Antioxidant defense and 
Osmotic adjustment

Pei et al. (2010)

Drought Antioxidant enzyme 
activities and osmotic 
adjustment

Ahmad and Haddad 
(2011)

Drought Regulation of water 
relations, photosynthetic 
gas exchange, and 
carboxylation activities of 
wheat leaves

Gong and Chen (2012)

Salinity Morphophysiology and 
Osmolyte

Chen et al. (2014)

Salinity Germination, grain yield, 
foliar application, 
photosynthesis, proline, 
relative water content

Ahmad (2014)

Copper Micro and macro elements 
content

Keller et al. (2015)

Drought Transcriptional regulation 
of multiple antioxidant 
defense pathways

Ma et al. (2016)

Drought Tolerance by seed priming 
with silicon

Ahmed et al. (2016)

Salinity Morphology and osmolyte 
accumulation

Sienkiewicz-Cholewa 
et al. (2018)

NaCl Improved the growth and 
physiological performance

Javaid et al. (2019)

Cadmium Enhanced the leaf gas 
exchange attributes and 
chlorophyll a and b 
concentrations and 
antioxidant enzymes

Ali et al. (2019)

Cadmium Improved the plant growth 
indicators and 
photosynthesis

Khan et al. (2020c)

Table 1 continued

(continued)
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Crop Stress Effect of Si Reference

Trifolium repens 
(White Clover)

Salinity Selective transport capacity 
for K+ over Na+

Guo et al. (2013)

Vitis vinifera 
(Grapevine)

Boron toxic, 
salinity

Antioxidant and stomatal 
response

Soylemezoglu et al. 
(2009)

Zea mays (Maize) Drought Plant growth and mineral 
nutrition composition

Kaya et al. (2006)

Drought and 
oxygen deficiency

Antioxidant enzyme 
activities and osmotic 
adjustment

Sayed and Gadallah 
(2014)

Salinity Antioxidant enzyme 
activity and ammonia 
assimilation

Kochanová et al. (2014)

Alkalinity Physiological and 
biochemical responses

Latef and Tran (2016)

Drought Regulates 
morphophysiological 
growth and oxidative 
metabolism

Parveen et al. (2019)

Zingiber officinale 
(Ginger)

Lead toxicity Morphology indexes, 
antioxidant enzyme 
activities

Chen et al. (2019b)

Table 1 continued

potassium and phosphorus (Khattab et al. 2014). An increased levels of phosphorus 
(Gong and Chen 2012), and potassium and calcium (Kaya et al. 2006) were observed 
in wheat under drought stress. In other grasses such as Chloris gayana, Sorghum 
sudanense, Festuca arundinacea, and Phleum pratense, the levels of N, P, and K 
were increased upon the application of Si under drought stress (Eneji et al. 2008).

6.2  Effect of Si on Structure and Physiology of Plants

Si plays two critical roles under adverse environmental conditions: physical and 
mechanical protection due to its deposition in the epidermal layer, and triggering a 
biochemical response to metabolic changes. Numerous researchers have reported 
the deposition of Si in the form of phytoliths in plant tissues (Katz 2015). Evidence 
of cross-linking of Si in cell walls with hemicellulose is also reported (He et al. 
2015; Luyckx et al. 2017). Si accumulates in the epidermal layer of leaves in the 
form of silica bodies. This deposition of Si in various forms improves mechanical 
properties and may act as a physical barrier (Massey et al. 2007). Such Si deposition 
might also increase roughness and tensile strength of leaves, causing reduced palat-
ability and digestibility in herbivores (Massey and Hartley 2009; Hartley et al. 2015; 
Frew et al. 2016).
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The supplementation of Si has proven beneficial to reduce the transpirational 
loss of water from leaves (Gong et al. 2003). It also enhanced the UV tolerance that 
resulted in reduced membrane damage (Goto et al. 2003; Shen et al. 2010). Stomatal 
conductance in relation to turgidity in guard cells is also reduced due to the deposi-
tion of Si in leaves (Zhu and Gong 2014). Under drought stress, plants can absorb 
water from the soil due to Si-induced root elongation and upregulation of aquaporin 
genes in roots (Hattori et al. 2005; Liu et al. 2015). The supply of Si reduces the 
translocation of toxic ions such as Na+, Cl−, and heavy metals from root to shoot 
(Savvas and Ntatsi 2015). Si-containing materials alter the rhizospheric pH and 
limit the bioavailability of heavy metals (Wu et al. 2013). In contrast, soluble sili-
cates produce metasilicic acid (H2SiO3), which is gelatinous and retains heavy met-
als (Gu et al. 2011).

6.3  Role of Si in Plant Defense Under Adverse 
Environmental Conditions

Supplementation of Si fertilizers enhances the defense mechanisms of plants against 
pathogens such as viruses, bacteria, fungi, and other organisms like nematodes, 
arthropods, vertebrates, and herbivores (Griffin et al. 2015; Reynolds et al. 2016). Si 
mitigates the biotic stress in plants by either acting as a physical barrier in the epi-
dermal layer or by alleviating resistance to pathogens. The distribution of silica in 
the leaf tissues can contribute more to the defense against herbivorous insects than 
other animals (O’Reagain and Mentis 1989). Likewise, the deposition of phytoliths 
throughout the leaf epidermis acts as a barrier against leaf-chewing insects than the 
phloem-feeding insects (Massey et al. 2006).

The application of Si improves the plant’s ability to restrict the spread of patho-
gens. For example, enhanced resistance to Eldana saccharina in sugarcane was 
examined by Keeping et  al. (2009). Si application has also reduced the rates of 
infections by pathogenic fungi such as Rhizoctonia solani and Bipolaris oryzae 
(Ning et al. 2014; Schurt et al. 2014; Zhang et al. 2014). In the Si-supplemented 
wheat plants, the invasion by Pyricularia oryzae and Bipolaris sorokiniana was 
restricted within the leaf epidermis (Domiciano et al. 2013).

6.4  Effect of Si on the Plant Biochemical Responses Under 
Adverse Environments

At the biochemical level, Si contributes to the defense mechanisms by increasing 
the levels of diverse secondary metabolites like phenolics, flavonoids, momilac-
tones, and phytoalexins (Cherif et al. 1994; Rémus-Borel et al. 2005; Debona et al. 
2017). It also enhances the activities of defense enzymes like chitinase, 
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lipoxygenase, peroxidase, phenylalanine ammonia-lyase, and polyphenol oxidase 
(Rahman et al. 2014). Signaling of key phytohormones like salicylic acid, jasmonic 
acid, and ethylene that are active during stress is also influenced by the Si treatments 
(Glazebrook 2005; Wu and Baldwin 2010; Liang et al. 2015). Si also interferes with 
the insect’s life cycle by lowering the phenology, thereby making it more prone to 
predation (James 2003; Connick 2011). Elevated malondialdehyde (MDA) contents 
reflect membrane damage caused due to lipid peroxidation (Zhu et al. 2004). The 
MDA levels were reduced upon supplementation of Si in barley (Liang et al. 2003), 
grapevine (Soylemezoglu et al. 2009), and maize (Moussa 2006). Additionally, Si 
also influences the levels of osmolytes and plant growth regulators (Adrees et al. 
2015; Ali et al. 2015; Noman et al. 2015; Jabeen et al. 2016).

7  Si and Osmolytes

Osmolytes are organic solutes that maintain the cellular potential for a healthy 
metabolism. They do not interfere with the normal metabolism of the plants (Zhang 
et al. 2004) but protect the cellular enzymes and cell membranes from the detrimen-
tal effects of high ion concentrations due to stress (Bohnert and Shen 1999; Ashraf 
and Foolad 2007). Thus, osmolytes act as osmoprotectants and include low molecu-
lar weight solutes like glycine betaine (GB), proline, polyols, alanine betaine, and 
simple sugars like trehalose and sucrose (Sharma et al. 2019). These solutes help the 
host to sustain severe osmotic stress (Singh et al. 2015) by maintaining the osmotic 
balance between the cytosol and surrounding medium of the cell. Osmolytes are 
also known to inhibit the production of ROS, thereby protecting the plants from 
oxidative damage. Plants produce osmolytes mainly under adverse environmental 
conditions, especially abiotic stress. Accumulation of osmolytes indicates the 
plant’s adaptation to stress.

Si seems to modulate the levels of osmolytes in stressed plants. Application of Si 
reduced the proline levels in stressed plants of spinach and tomato (Gunes et al. 
2007b), wheat (Tuna et al. 2008), sorghum (Yin et al. 2013), soybean (Lee et al. 
2010), and grapevine (Soylemezoglu et  al. 2009). The levels of glycine betaine, 
proline, and total soluble sugars were elevated after foliar application of Si in the 
tolerant as well as sensitive okra genotypes exposed to salt stress. However, the 
effect was more pronounced in sensitive genotypes (Abbas et al. 2015). A similar 
trend was also reported in capsicum (Pereira 2013), tobacco (Pereira 2013), and 
maize (Sayed and Gadallah 2014). Exposure of Si has enhanced the plant tolerance 
to drought stress via osmolytes modification in many crops (Crusciol et al. 2009), 
such as the augmented proline content in drought-stressed condition for wheat 
(Gong et al. 2005; Kaya et al. 2006) and pepper plants (Pereira 2013).
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8  Si and Phytohormones

Phytohormones induce the vital responses needed for the healthy growth and devel-
opment of plants. Apart from their regulatory functions, they also coordinate signal 
transduction pathways under biotic and abiotic stress (Wolters and Jürgens 2009). 
Si application regulates the levels of phytohormones to enhance plant tolerance to 
stress (Kim et al. 2014). However, the level of ethylene declined after the applica-
tion of Si under salinity stress in sorghum (Yin et al. 2016). In soybean, the level of 
GA was elevated, and that of abscisic acid (ABA) declined in the presence of Si 
(Lee et al. 2010). Similarly, the level of jasmonates (JA) was reduced, and that of 
salicylic acid (SA) increased in the presence of Si (Hamayun et al. 2010). Si induced 
the thermo-tolerance in potato by regulating the endogenous level of SA and 
ABA. The Si-mediated tolerance to brown spot disease in rice depends on immune 
hormones SA and JA as well as fungal ethylene (Van Bockhaven et  al. 2015). 
Likewise, Si priming of seeds gave tolerance to powdery mildew in A. thaliana 
(Vivancos et al. 2015).

9  Si and Antioxidant Enzymes

All kinds of stress culminate in oxidative stress caused by reactive oxygen species 
(ROS) such as superoxide (O2•-) radicals, hydrogen peroxide (H2O2), and hydroxyl 
(OH•) radicals (Imlay 2003). Plants have evolved many protective mechanisms 
against ROS. These mechanisms include the production of antioxidants and antioxi-
dative enzymes, for instance, catalases (CAT), superoxide dismutases (SOD), per-
oxidases (POD), and glutathione reductases (GR) (Ahire et  al. 2012). Among 
various antioxidative enzymes, SOD, CAT, and POD make up the first line of 
defense in scavenging ROS. SOD converts superoxide radicals to H2O2, which is 
noxious to the nucleic acids, proteins, and chloroplast, and is dealt with by CAT and 
POD (Shen et al. 2010).

Si modulates the plant antioxidant defense system to prevent oxidative damage 
in the stressed plants (Kim et al. 2017). Several reports have described the Si-induced 
upregulation of antioxidative enzymes such as CAT, GR, SOD, guaiacol peroxidase 
(GPX), and ascorbate peroxidase (APX) (Shen et  al. 2010; Soundararajan et  al. 
2014; Zhu and Gong 2014; Etesami and Jeong 2018), and peroxidase mediated host 
defense responses as well (Torres et al. 2006). Supplementation of Si had increased 
the level of POD in rice and cucumber plants challenged with Bipolaris oryzae and 
Podosphaera xantii (Dallagnol et al. 2011).

Silicon and Plant Responses Under Adverse Environmental Conditions



374

10  Si and Nutrient Uptake

The availability and uptake of nutrients in sufficient amounts is a prerequisite for 
healthy plant growth and architecture. Plant nutrients are primarily divided into two 
groups: macronutrients and micronutrients, based on the amount in which the plants 
require them. Any change in the optimum levels of any of these nutrients leads to 
abnormalities in plants (Shrivastav et al. 2020).

The application of Si is known to influence the uptake of macronutrients like N, 
P, and K in plants. Such an application elevated the level of N in cowpea (Mali 
2008), wheat (Mali and Aery 2008), and rice (Singh et  al. 2006; Detmann et  al. 
2012). The use of Si fertilizers increases the availability of P (Ma 2004; Singh et al. 
2006) and influences the uptake of K (Kaya et al. 2006). In soybean, the application 
of Si was shown to improve the growth of plants and enhance the uptake of K (Miao 
et al. 2010). Si also mediates enhanced uptake of Ca and Mg (Kaya et al. 2006; Mali 
and Aery 2008). Moreover, the presence of Si not only reduces the uptake of heavy 
metals like Al and Cd (Ma and Takahashi 2002; Ma et al. 2004) but also mitigates 
the deficiency of micronutrients like Fe, Mn, Cu, Zn, and B in plants (Pavlovic et al. 
2013; Hernandez-Apaolaza 2014).

11  Conclusions

Adverse environmental conditions adversely affect plant growth, development, and 
yield. Si plays a vital role in the alleviation of stress caused by various harsh envi-
ronments. It influences multifunctional traits such as growth, morphology, the activ-
ity of antioxidant enzymes, accumulation of osmolytes, photosynthesis, and nutrient 
uptake in plants. The ability to take up Si under different environmental conditions 
varies from species to species. Moreover, the effects and their magnitudes caused 
due to Si supplementation vary from species to species and the prevalent conditions. 
Substantial evidence exists that underline the beneficial role of Si in plants under 
abiotic stress, but how Si manipulates the mechanisms of alleviation is still much of 
a mystery.
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