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Chapter 8
Sensing in Precision Horticulture

Manuela Zude-Sasse, Elnaz Akbari, Nikos Tsoulias, Vasilis Psiroukis, 
Spyros Fountas, and Reza Ehsani

Abstract  Information technology is playing an increasingly important role in 
today’s agricultural production systems, regardless of operation size, commodity or 
management approach. Precision horticulture is an information-based management 
strategy that relies on collecting site-specific or plant-specific data. These data can 
be converted to useful information that helps growers make informed management 
decisions. Precision horticulture can benefit growers because of the high value of 
their products and the large amounts of crop inputs used in producing horticultural 
crops. Any improvement in reducing production costs can greatly increase profit for 
producers. Also, the optimal use of crop inputs in precision horticulture can poten-
tially reduce the environmental impact of horticultural crop production. 
Implementation of precision horticulture relies heavily on sensors and systems that 
can collect weather, soil and plant-specific data cost-effectively. Plant data, in par-
ticular, allow a direct feedback for production and harvest management. Examples 
of data that need to be recorded by the plant sensors include biotic and abiotic stress 
detection at asymptomatic or early stages, canopy size and density, yield estimation 
and crop quality. For example, LiDAR-based or computer vision-based sensors are 
being used for measuring tree canopy size and density. The quantifying of variation 
in canopy size of orchards is needed for variable-rate crop inputs. With advances in 
sensing technology, various types of sensors have been developed commercially 
and are becoming available for precision horticulture. Optical sensors are most 
commonly used and several techniques have shown the potential for efficient, rapid, 
non-invasive field detection of plant diseases and yield estimation. This chapter 
reviews the current applications of sensor technologies being used in horticultural 
production systems.
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8.1  �The Situation in Horticulture

In the production and harvest of fruit and vegetables (horticultural crops), large 
investment costs and expected high productivity of the land provide strong incen-
tives for implementing technology-supported production methods because the 
application of more technology possibly results in more precise, optimized manage-
ment of production. The horticultural product is highly perishable, of high value and 
has heterogeneous quality. This heterogeneity of horticultural produce often requires 
the handling of individual plants (Schouten et al. 2007).

With increasing demands regarding the yield, sustainable use of land and water 
resources, and requests for good crop quality production methods have been chang-
ing. Conventional citrus orchards with fixed tree spacing have been replaced by 
systems with greater tree density supported by water-efficient drip irrigation. 
Intensive production systems using adapted cultivars and pruning techniques show 
densities up to 3200 trees per ha, which is in the range that we find in apple produc-
tion with small spindle tree forms enabling planting density of 2600–3700 trees per 
ha. In stone fruit, such as mango (Mangifera indica), sweet cherry and olive produc-
tion similar trends can be seen after rootstocks became available that reduce vegeta-
tive growth of the cultivar. In addition, sophisticated tree training has been practised 
for over 30 years (Fig. 8.1). In olive production, for example, the system is called 
hedgerow or super high density allowing 600–1250 trees per ha. Mechanization of 
spraying, foliar application of fertilizers and thinning agents, pruning, and 

Fig. 8.1  Tree forms in olive (Olea europaea L.) (a), sweet cherry (Prunus avium L.) as slender 
spindle (b), and apple (Malus x domestica Borkh) in Y-shaped trellis system (c). Photographs 
courtesy of: Zude / Zude / Penzel
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harvesting fruit (Fig. 8.2) has been introduced because machinery ensure the safety 
of application and labour costs have also become a crucial factor in fruit and vege-
table production.

Applications are usually carried out uniformly over the orchard blocks because 
information on the individual plant has either not been available or utilized. A huge 
step forward in precision horticulture was achieved when the variable-rate applica-
tion of chemical inputs was introduced, allowing treatment to be based on the 
requirement of the crop. In the first approach, recognition of plant biomass, tree 
height, gaps due to missing plants as this occurs regularly in perennial orchards 
represent the crop’s variability and, therefore, the ‘variable’, i.e. adaptive compo-
nent of the precise production. Efforts are also being made to integrate variable-rate 
application legally into the pest management of tree fruit production. In Europe 
according to common agricultural policy (CAP), the amount of foliage needs to be 
known instead of a simple area-dependant calculation. The actual plant information 
on the foliage has been used as the basis for calculating the expenditure since 2020. 
Companies are now marketing variable-rate equipment and software so that innova-
tion is entering horticultural practises.

Furthermore, horticulturists seek new or renewed tree training such as planar, 
cordon and y-shaped trellis systems that enhance light interception, which is closely 
related to the yield and fruit quality that the plants can achieve. Coincidently, such 
light-effective orchards (Fig. 8.1) might also favour the application of robots for 
harvesting and other tasks. Mechanical harvesting of table fruit is a benchmark 
(Fig. 8.2c), which still needs to be achieved because harvest costs amount to >50 % 
of all production costs in many countries.

The advantage of an intensive production system is to grow fruit more economi-
cally and in a way that allows variable-rate application in plant protection, foliar 
application of fertilizers, flower and fruit thinning, and harvest. The drawback is the 
increased susceptibility of the system to unfavourable conditions because the soil’s 
capacity to act as a buffer is diminishing. Furthermore, the tree is tied in the produc-
tion system possibly reducing the tree’s adaptation capacity. Taking into account the 

Fig. 8.2  Machine pruning in citrus (a) and apple (b) production, and harvester prototype (c). 
Photographs courtesy of: Zude / Betz / Karkee
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enhanced investment costs of intensive production systems, the introduction of sen-
sors for in situ analysis of specific traits of the plant or even the plant’s physiological 
responses appears increasingly reasonable with feedback from the plant to reduce 
errors in the management of production and harvest.

In situ data acquisition can now be applied to reflect the plant status in digital 
format. At present, we see close cooperation between industry and research partners 
to develop digital twins of orchards and vegetable greenhouse production. The digi-
tal twins represent a model tree or single fruit in digital format that can be used to 
follow or simulate a process with an underlying physiological model. Here tree or 
fruit sensors provide information, preferably in real time, on the plant or fruit to 
define the digital twin, y. The environmental and production system variables form 
the X matrix to simulate the development of tree or fruit. The new information 
might provide valuable knowledge for sustainable fruit and vegetable production 
because, for the first time, agronomic models based on sensor data can be applied 
easily with cloud computing. This approach can possibly lead to new services and 
business models based on selling information rather than sensor devices.

From a fruit grower’s perspective ‘farming with sensors is so much easier’ 
because knowledge of the crop in real-time assists decision-making for precise 
management. To meet this goal, sensors should collect data in situ during produc-
tion and postharvest. Information and communication technology tools, such as sat-
ellites, drones, autonomous platforms, wireless networks and data management 
techniques are available for all scales to support data acquisition by remote and 
proximal sensors directly. On the other hand, the translation of sensor data into 
information on the crop and knowledge of the process is still challenging.

8.2  �Biotic and Abiotic Plant Stresses

8.2.1  �Background

Pests and diseases can cause major economic loss in horticulture, and managing 
pests and diseases accounts for a significant cost of production. Consequently, one 
of the major components of precision horticulture is the detection of pests and dis-
ease at an early stage. Detection of anomalies at an early stage, in most cases, could 
allow the growers to manage the stress cost-effectively and prevent the adverse 
effects of that stress on yield and profit. Plant stresses can be divided into biotic and 
abiotic stresses. Abiotic stress is defined as the stress caused by non-living factors 
on living organisms under a specific environment (Husain et  al. 2017). Abiotic 
stress can be caused by high irradiation, salinity, heat, frost, drought, flooding or 
undesirable conditions such as nutritional availability, nutrient imbalance or con-
tamination by toxic chemical compounds. When the environmental conditions 
change and are beyond the normal range, abiotic stress can occur and adversely 
affect the performance of the plants. Abiotic stress is one of the major harmful fac-
tors affecting the growth and productivity of crops worldwide (Gao et al. 2007).
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Biotic stress occurs as a result of plant interactions with other living organisms, 
such as arthropods, bacteria, viruses, fungi, parasites, insects, weeds, and cultivated 
or native plants (Gupta and Senthil-Kumar 2017; Shabala 2017; Atkinson et  al. 
2015). Herbivores can be harmful to the plants causing mechanical damage and 
competition for growth factors, resulting in reduced growth rate. On the other hand, 
plant pathogens can cause different types of diseases. Once an attack is perceived, 
plant metabolism must balance the demands for resources to support defence mech-
anisms against the requirements for cellular maintenance, growth and reproduction 
(Berger et al. 2007). Hence defence processes can be costly in terms of plant growth 
and health. Plants, herbivores and their natural enemies have coexisted for at least 
100 million years, evolving a variety of beneficial and deleterious interactions 
(Karimzadeh and Wright 2008).

Currently, stress detection mainly relies on manual scouting, which is labour 
intensive and costly. Furthermore, human scouts rely on their senses, which are 
often not sufficiently quantitative and often fail to detect early stress. For example, 
certain plant stresses can be detected easily in the near-infrared range, but are not 
detectable by the human eye, which can only see in the visible bands. Much effort 
has been applied by engineers and scientists to develop sensor systems for detecting 
plant stress. Sensors for detecting plant stress in the field need to be cost-effective, 
easy to use, non-invasive, real-time or near real-time, and robust. They can be very 
valuable if they can detect the stress at an asymptomatic stage. The majority of the 
sensors that have these capabilities are based on spectroscopy or imaging techniques 
in the electromagnetic wavelength range from UV to far-infrared (Table 8.1). Other 
emerging techniques are volatile profiling-based and polymerase chain reaction-
based sensors. These are new and growing areas of research, and more commer-
cially available sensors that use these principles are anticipated. The advantage of 
these types of sensors is that they can be very accurate, and crop and disease-
specific. The material in this chapter describes the optical techniques, which are 
currently used for biotic and abiotic stress detection. Sensors can be operated at the 
production site with tractors, autonomous platforms or robots, cranes, unmanned 
aerial vehicles (UAV), wireless sensor networks and manual readings (Fig.  8.3). 
Earlier approaches used cranes and sensors mounted on tractors (Zude-Sasse et al. 
2016), whereas now trees can be monitored on all scales (Figs. 8.3b and 8.4).

8.2.2  �Remote Sensing for Stress Detection

One of the significant applications of remote sensing in agriculture has been stress 
and disease detection. Numerous different types of platforms can be used for remote 
sensing in precision agriculture (PA), such as manned aircraft (Hunt and Daughty 
2018; Kamal et al. 2020), satellite (Hegarty-Craver et al. 2020; Zhou et al. 2017), 
and UAVs (Xiang and Tian 2011). Satellite-based remote sensing technologies are 
used more often for general stress detection over a large area because they have the 
capacity for continuously monitoring the earth’s surface. However, the measure-
ment uncertainty is increased due to mixed pixels capturing the plant rows and the 
soil or ground cover in between the rows.
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Recent advancements in UAV technologies resulted in the production of more 
affordable UAVs; lower costs and ease of use made them the platform of choice for 
stress detection when a high-resolution image is needed. Different types of sensor 
such as thermal cameras, multispectral cameras, NIR cameras, and regular digital 
cameras have been used on-board UAVs to collect data or monitor plant health 
(Martinelli et  al., 2015). Computer vision and image processing have also been 
applied to remotely sensed images to make decisions in agricultural applications. 
These decisions could be carried out after collecting and processing the data or on-
board while the UAV is flying (Maes and Steppe 2019).

Table 8.1  Examples of techniques reported in the literature for biotic stress detection in 
different crops

Type of 
sensing

Crop 
species Name of disease

Classification or 
numerical analysis 
method References

Hyper- and 
multispectral

Vineyards Phylloxera Various Vanegas et al. 
(2018)

Lettuce Anomalities Various Ren et al. 
(2017)

RGB imaging Strawberry 
leaf

Powdery mildew ANN, SVM Shin (2020)

apple apple scab (Venturia 
inaequalis), apple rot, apple 
blotch

Multi-class SVM

Mango leaf Red rust, bacterial canker, 
gall flies, powdery mildew,

SVM, PCA Padhye et al. 
(2014)

Cacao Cacao black pod rot (BPR) SVM Tan et al. 
(2018)

Thermal 
sensors

Cucumber Downy mildew 
(Pseudoperonospora 
cubensis); powdery mildew 
(Podosphaera xanthii)

Correlation 
analysis

Berdugo et al. 
(2014) and 
Mahlein et al. 
(2013)

Apple Defect K-nearest 
neighbours, Otsu 
method

Yogeshi et al. 
(2018)

Florescence Grapefruit Anomalities PCA, PLSR Saleem et al. 
(2020)

Bean Common bacterial blight 
(Xanthomonas fuscans)

– Rousseau et al. 
(2013)

Lettuce Downy mildew (Bremia 
lactucae)

Generalised linear 
mixed model with 
binomial 
distribution

Brabandt et al. 
(2014)

Spectral 
sensors

Banana Fusarium wilt SVM, ANN Ye et al. (2020)
apple Blotch, rot, and scab Multi-class SVM Dubey and 

Jalal (2016)
Tomato Anomalities Histogram Zhu et al. 

(2018)

M. Zude-Sasse et al.
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Extensive reviews on the application of remote sensing for the detection of plant 
diseases were published by, e.g., Jackson (Jackson 1986), and West and co-workers 
(West et al. 2003). The topic was also covered in a review of video remote sensing 
systems for agricultural assessment (Abd El-Ghany et al. 2020). Remote sensing 
has been a useful tool in detecting foliar and soil-borne plant diseases (Oerke 2020). 
Assessments of plant disease infestations are typically carried out visually by work-
ers. However, individual differences in perception of colour and light, as well as 
lack of concentration or fatigue, can significantly reduce the accuracy of visual 
disease assessments. Here as well as in instrumental remote sensing, other factors, 
such as cloud cover causing varying levels of light on different parts of the plant 
canopy, also limit accuracy of visual and instrumental disease assessments.

Instrumental remote sensing can be applied to plant disease detection because of 
pathogen-induced colour changes from chlorosis or necrosis. Furthermore, water-
stressed crop canopies consistently have higher temperatures than non-stressed crop 
canopies because of reduced transpiration; thermal IF emissivity may be measured 
to detect these types of changes (Martinelli et al. 2015). Remote sensing may pro-
vide earlier detection of plant stress, even prior to the appearance of visual symp-
toms (Matese et al. 2018). Utilizing remote sensing instruments capable of detecting 
non-visible wavelengths could allow these reduced photosynthesis rates to be 
detected earlier than by visible disease symptoms (Reddy 2018; James et al. 2020; 
Vitrack-Tamam et al. 2020). A wide variety of remotely sensed data can be col-
lected, and these data can help plan and schedule irrigation, water management 
(Gonzalez-Dugo et al. 2020), detect insect infestation problems and weed infiltra-
tion, and determine plant stress by carrying out small scale photogrammetric sur-
veys using RGB and/or 4-band multispectral imaging and LiDAR laser scanning.

Plant health is detectable by airborne sensors because of the plant’s reflectivity 
and absorption of electromagnetic radiation. The pigmentation of the plants controls 
this reflectivity and absorption, creating incident radiation depending on the plant 
size, orientation, and colour. Plant pigment heavily relies on the amount of 

Fig. 8.3  Sensor platforms supporting optical sensors: (a) an agricultural vehicle and (b) unmanned 
aerial vehicle. Photographs courtesy of: Ehsani / Zude
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chlorophyll (Saglam et al. 2019), which intensely absorbs radiation within the visible 
spectrum. When a plant is stressed, chlorophyll production declines, increasing the 
reflectance of wavelengths in the visible spectrum, including those in the red bands.

Plant health and heterogeneity can be quantitatively and qualitatively measured by 
means of calculating a series of remotely sensed vegetation indices (VIs) (Zare et al. 
2020). This is done through a series of image band calculations (Rasmussen et al. 
2016). The most common calculation performed is related to crop status such as leaf 
area index (LAI), canopy cover, biomass, vegetation wellbeing, or ‘greenness’. Most 

Fig. 8.4  (a) Contour yield map of a citrus orchard, (b) contour map of tree volume (in cubic 
metres), (c) map of apparent soil electrical conductivity. Photographs courtesy of: Ehsani
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estimations are based on the chlorophyll content, which is frequently calculated by 
the normalized difference vegetation index (NDVI), and is calculated using the sen-
sor’s red band (Rouse et al. 1973), which registers the absorption of red wavelengths 
due to chlorophyll content (Rouse 1973; c.f. Walsh et al. 2020). The NIR channel can 
be useful in determining plant stress due to higher reflection in plants containing more 
chlorophyll and vice versa. Meggio et  al. (2010) used hyperspectral imagery via 
manned aerial vehicles to calculate a series of VI for detecting iron chlorosis in a 
vineyard. It was concluded that this type of imagery is useful in determining plants 
with iron chlorosis, which is a huge problem in vineyards and citrus plantations. Most 
sensing principles of remotes sensing for stress detection have been focused on opti-
cal techniques so far, but in recent years more complex approaches are emerging 
using multiple sensors and sensor fusion techniques. For example, it is common to 
see more cost-effective sensors that combine multispectral images and thermal 
images. Multi-sensor remote sensing could potentially enhance the possibility of 
early stress detection and has a lot of potential for large scale adaptation by growers.

8.2.3  �Visible and NIR Bands

Visible and NIR bands are ideal for developing sensors for disease detection because 
the detectors used in this part of the electromagnetic spectrum are relatively inexpen-
sive (Table  8.1). Sankaran and Ehsani (2013) used a portable spectrophotometer 
(SVC HR-1024, SpectraVista, USA) in the 350–2500 nm range for detection and 
classification of citrus greening or Huanglongbing (HLB) and citrus canker from 
healthy trees. They used quadratic discriminant analysis and a K-nearest neighbour 
classifier; both techniques provided large detection accuracy. Similar studies were 
performed with different classification techniques. Sankaran and co-workers 
(Sankaran et  al. 2012) used a hand-held spectrophotometer to collect data from 
asymptomatic, symptomatic, freeze-damaged and healthy plants. Linear discriminant 
analysis, quadratic discriminant analysis, Naïve-Bayes and bagged decision trees 
were used as classifiers with 77, 92, 84 and 99 % accuracy, respectively. All classifiers 
were able to discriminate symptomatic-infected leaves from freeze-damaged leaves, 
but some asymptomatic leaves were incorrectly detected as healthy. Low-cost, rugged 
disease-specific sensors can be built that use only a few selected bands rather than 
continuous spectral data in the whole range of the visible and NIR bands. Active 
multispectral sensors using high-density illuminators at a specific narrow band for 
detecting disease and stress might be even better suited to field application. These 
bands are usually tailored for a specific diseases rather than for general stress detec-
tion. They use two bands in the red and NIR range to calculate the NDVI based on 
changes in chlorophylls (Olsen et al. 1969; Zude 2003) and flavonoids (Moran and 
Moran 1998) that provide data on the plant and its stress response. Previous experi-
ments indicated that these approaches can distinguish between adaptation and irre-
versible damage to plants. Consequently, reflectance measurements based on remote 
sensing may be used to estimate integrated stress responses of the canopies (e.g., 
Peñuelas and Filella 1998). Mishra et al. (Mishra et al. 2011) used a four-band active 
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optical sensor for detecting Huanglongbing (HLB) disease in citrus, two bands of 
which were in the visible region (570 and 670 nm), whereas the other two were in the 
NIR region (750 and 870  nm). They used K-nearest neighbour, support vector 
machines (Rançon et al. 2019) and decision trees for classification and achieved 96, 
97 and 95.5 % accuracy, respectively. However, it can be assumed that distinguishing 
diseases by means of chlorophyll, water and microstructural changes is almost impos-
sible because they are almost universal in all fruit and leaf responses. An additional 
trait, but still unspecific, is the intensity difference of reflected light between 450 and 
570 nm, which is caused by changes in the xanthophyll cycle. The xanthophyll cycle 
describes variation in the actual composition of carotenoids. Changes in the related 
carotenoids (zeaxanthin, violaxanthin and antheraxanthin) appeared measurable with 
reflectance spectra and were recorded in remote- or proximal-sensing with the leaf 
under various stress conditions (Peñuelas and Filella 1998). They have been little 
studied on fruit because reproductive plant organs tend to accumulate carotenoids 
during seasonal development to enhance attraction to vectors. However, wavelength-
specific indices or multivariate methods for processing the spectra of harvest products 
or leaves might provide relevant data for detecting anomalies.

8.2.4  �Mid-Infrared Bands

Mid-infrared (MIR) spectra range from 2500–50,000 nm. The MIR spectroscopy 
usually requires sample preparation, which is a disadvantage compared to NIR 
spectroscopy. However, MIR has some advantages over NIR spectroscopy. One of 
the major advantages of MIR spectroscopy is that many chemicals have a unique 
peak or signature in this region which makes spectral interpretation easy compared 
to the NIR region where the spectra comprise overlapping overtones of absorption 
bands of many interfering functional groups of molecules. The application of MIR 
for measuring the nitrogen content in impregnated tomato leaf has been indicated. 
Sankaran et al. (2010) used a portable MIR spectrometer (InfraSpec VFAIR, Spectro 
Scientific, USA) in the range of 5.15–10.72 μm to detect healthy leaves as well as 
those infected with HLB and canker. The leaves were ground into a fine powder and 
were placed on the crystal window of a MIR spectrometer. The scan time was 
1 minute. Quadratic discriminant analysis and K-nearest neighbour classifiers were 
used, and resulted in large accuracies of 98 ± 0.9 % and 99 ± 0.9 %, respectively.

8.2.5  �Fluorescence Spectroscopy

Fluorescence spectroscopy is an optical sensing technique that takes advantages of 
the re-emission of light from a sample. In this process, excitation light is absorbed by 
the material of interest and then emits this light at longer wavelengths. There are com-
mercial sensors that use this technique. A hand-held multiparameter optical sensor 
(Multiplex_3, Force A, France) was used to detect HLB disease in leaves of two dif-
ferent sweet orange cultivars, Hamlin and Valencia. Four excitation wavelengths are 

M. Zude-Sasse et al.



231

employed in the instrument: UV, blue, green, and red (c.f. Zude 2009). For each exci-
tation wavelength, yellow, red and far-red fluorescence can be measured. The classi-
fiers used were Naïve-Bayes and bagged decision tree with accuracies of 85 % and 
more than 94 %, respectively. The bagged decision tree classifier performed better 
than Naïve-Bayes; however, it needed more time for the computation process, at least 
10 times more than the Naïve-Bayes classifier (Sankaran et al. 2012).

8.2.6  �Laser-Induced Breakdown Spectroscopy

Laser-induced breakdown spectroscopy (LIBS) is destructive, but it is an in situ 
spectroscopic technique that can be used for qualitative and quantitative analysis of 
elemental composition in solids, liquids and gases. This technique uses a high-
power laser to generate plasma around the target and emissions from the atoms in 
the plasma are analyzed by a detector. The advantages of this technique include 
little to no sample preparation, analysis is done on very small samples and there is 
simultaneous measurement of multiple elements. The technique can also be rapid 
and cost-effective. The LIBS has been used in several applications, many of which 
include elemental analysis in different media (Yamamoto et  al. 1996; Xu et  al. 
1997; Hussain and Gondal 2008). In addition to these studies, LIBS has also been 
used to measure nutrients in plant materials (Santos Jr. et al. 2012). Trevizan et al. 
(2009) used LIBS for analyzing microelements such as B, Cu, Fe, Mn and Zn in 
plant materials. They compared the laser-induced breakdown spectrometer results 
with those of conventional acid digestion. The detection limit of the LIBS method 
using their analysis protocol was 2.2 mg kg−1 for B, 3.0 mg kg−1 for Cu, 3.6 mg kg−1 
for Fe, 1.8 mg kg−1 for Mn and 1.2 mg kg−1 for Zn. Similarly, Yao et al. (2010) used 
the LIBS technique to identify nutrients in orange leaves. The authors found that 
the spectral peaks indicate the specific elements and that their intensity is propor-
tional to the elemental concentration. Thus, they concluded that the nutrient status 
can be evaluated from the spectral characteristics of the orange leaves using a LIBS 
system. Despite being able to demonstrate the potential of LIBS for nutrient analy-
sis in citrus leaves, the study did not evaluate different citrus anomalies with the 
LIBS system. Sankaran et al. (2015) studied the variation in LIBS spectra obtained 
from healthy citrus leaves and leaves with anomalies such as diseases (HLB, can-
ker) and nutrient deficiencies (Zn, Fe, Mg and Mn). Pattern recognition algorithms, 
support vector machine (SVM) and quadratic discriminant analysis (QDA) were 
applied successfully to classify the healthy leaves from leaves with anomalies.

8.2.7  �Thermal Bands

The water status of fruit and vegetable plants as well as the detection of fruit have 
been analyzed frequently with thermal imaging. Thermal data can be obtained from 
satellites, airplanes and drones or by proximal sensing over the entire thermal range 
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or with filters at a specific wavelength. The crop water stress index (CWSI) (Jones 
and Corlett 1992) and adapted indices have been employed for water stress detec-
tion. The CWSI is a surface temperature-based index between 1 and 0, with 1 rep-
resenting the temperature of non-transpiring dry leaves and 0 representing fully 
transpiring wet leaves. Thermal imaging of canopies has been carried out by cranes, 
drones, terrestrial robots and tractors (c.f. González-Dugo et al. 2013). The CWSI 
has been used to guide irrigation protocols, for example in olives in arid climates 
(Ben-Gal et  al. 2009) and in peach orchards considering the fruit development 
stages in the semi-arid environment (Bellvert et al. 2016). Interpretation of the data 
differs considerably in semi-arid conditions from that in arid sub-tropics in relation 
to emissivity itself and even more considering the thresholds indicating water stress 
(Jones and Corlett 1992). In differently irrigated apple trees under a hail net, CWSI 
values ranged between 0.08 and 0.55 with values >0.3 defined as stressed trees 
under the given conditions (Nagy 2015).

8.2.8  �Ranging Sensors

Ranging sensors, particularly those based on light detection and ranging (LiDAR) 
and the ultrasonic sensors, gained importance in fruit tree management for variable-
rate application in plant protection and foliar fertilizer application. These types of 
sensors are mainly utilized to estimate the geometric (height, width, volume) and 
structural (leaf area, leaf density, stem diameter, etc.) characteristics of fruit trees. 
The initial applications of ranging sensors in horticulture have been deployed with 
ultrasonic sensors (McConnell et  al. 1984; Giles et  al. 1987). The sensors were 
arranged at different heights along a vertical pole, facing the side of the tree row. 
Each ultrasonic unit measured its distance to the canopy as the system moved along 
the row at constant speed and aimed to estimate height, width and tree-row volume 
(TRV). This system was used to control variable-rate application in real-time, result-
ing in spray volume savings up to 52 % in apples and 28 % in peach (Giles et al. 
1987) and 30 %–37 % in citrus (Moltó et al. 2000). In a similar study, the spray 
application based on the actual tree width measured by the ultrasonic sensor reduced 
spray deposits by 70, 28 and 39 % in olive, pear and apple orchards, respectively 
(Solanelles et al. 2006). Moreover, Zaman et al. (2005) created a real-time variable 
application of nitrogen fertilizer in citrus, considering the TRV and nitrogen content 
of leaves; it decreased the costs by 40 %. However, in comparison with LiDAR sen-
sors, the ultrasonic sensors had a lower resolution and poorer accuracies because of 
sound divergence or distance within the sensors and slower sampling rate (Tumbo 
et al. 2002).

The implementation of LiDAR sensors enabled the detection of geometric and 
structural properties of fruit trees with enhanced accuracy, but the sensor devices 
were more costly. The LiDAR sensors followed the arrangement of the ultrasonic 
sensor and were mounted on a vehicle and moved along the tree rows to generate 3D 
point clouds. In earlier studies, the structural properties of apple and citrus trees 
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have been described by simplified geometric equations (Walklate et al. 2002; Lee 
and Ehsani 2009; Tsoulias et al. 2019a). Polo et al. (2009), after analysing the TRV 
in 3D, obtained a strong correlation and high coefficients of determination with leaf 
area in pear trees (R2 = 0.85), apple trees (R2 = 0.81) and a vineyard (R2 = 0.80). In 
a similar experiment, a logarithmic equation was used to describe the relation 
between TRV and leaf area density (R2 = 0.89) in pear and apple trees, and vine-
yards denoting the reciprocal relation between both properties (Sanz et al. 2018). 
The LAI, which is one of the most widely used indices to characterize grapevine 
vigour, was well estimated with TAI (tree area index) from LiDAR scanning with 
R2 = 0.91 (Polo et al. 2009).

Escolà et  al. (2017) developed tools for point cloud data analyzes from the 
LiDAR-based system to extract further geometric and structural information. 
Meanwhile the estimation of the leaf area (Fig. 8.5a) is state of the art in research 
(Tsoulias et  al. 2019b). Fruit detection and fruit size estimation are currently 
approached based on geometric and full waveform (intensity) information derived 
from LiDAR systems (Tsoulias et al. 2020). Particularly LiDAR-based laser scan-
ning seems to be promising for in situ fruit size analysis due to high density 3D 
point clouds (Fig. 8.5b), which are not affected by varying lighting conditions mak-
ing segmentations easier. Irrigation treatments showed a positive effect on canopy 
growth in grapevines measured by LiDAR (Chakraborty et al. 2019). Spatial depen-
dence between soil electrical conductivity and leaf area has been observed in apple 
production with a terrestrial 2D LiDAR-based laser scanner. The spatial informa-
tion of LiDAR-estimated leaf area was implemented in a water balance model, 
revealing variation in water needs in an apple orchard (Tsoulias et al. 2019a) provid-
ing a good example of how plant sensor data can be integrated in existing agro-
nomic models, aimed at more precise management.
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Fig. 8.5  3D point cloud of apple trees (green) and ground (purple) obtained by means of a light 
detection and ranging (LiDAR) –based system (a); apple fruit segmented from the tree 3D point 
cloud 120 days after full bloom, fruit size is 69.7 mm (b). Photo courtesy of: Tsoulias
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8.3  �Proximal fruit Sensing

8.3.1  �Background

Proximal sensing in fruit production can be approached with gas exchange analysis, 
which provides information on the growth efficiency, but this has not been auto-
mated for monitoring the crop throughout the season. Dendrometers can be 
employed for measuring growth and shrinkage versus swelling of stem, branch or 
fruit. Dendrometers can be placed in orchards and data can be continuously recorded 
with a wireless network (Vougioukas 2013). For real-time analysis of produce after 
harvest and for grading and monitoring during processing, machine vision systems 
became commercially available in 1980. Research groups in cooperation with 
industry developed new sorting lines using spectroscopic methods that became 
commercially available e.g. 2002 by Greefa, Netherlands. Meanwhile it is possible 
to classify fruit and vegetables according to their soluble solids content (Walsh 
et  al., 2020), various internal defects (e.g. internal browning, glassiness, stone 
cracking, bruising, bitter pit), storage reserve level (soluble sugar, starch or oil) and 
pigment contents (Merzlyak et al., 2003), but attempts have been made to analyze 
the fruit flesh for firmness only (Lu et al. 2020; Zude-Sasse et al. 2019). Desktop 
modules and portable instruments for individual product testing became available at 
the same time based on the same technology, in 2001 by Fantec, Japan, 2002 by CP, 
Germany and 2004 by Integrated Spectronics, Australia. With the new sensors, the 
quality of fruit can be assessed in situ at the production site and subsequently fol-
lowed postharvest. It is precisely this repeated analysis along the supply chain that 
is essential to optimize the processes for variable-rate application in production and 
at postharvest.

8.3.2  �Maturity

Horticultural maturity or commercial maturity is the stage of development when the 
produce develops several attributes and characteristics that make them desirable to 
consumers. Physiological maturity refers to the stage that fruits or vegetables reach 
the characteristic, fully ripe eating sensation. For certain crops, maturity can be 
defined chronologically considering the amount of heat energy an organism accu-
mulates over a period of time. Based on the principle that plant organs grow in 
proportion with ambient temperature, a certain amount of heat energy is required 
over a period of time for crops to reach maturity. This amount is expressed as grow-
ing degree-days (GDD) and is frequently used in practise as the optimal harvest 
time indicator (Holmes and Robertson 1959). Researchers have experimented with 
models to estimate crop maturity using meteorological data. Jenni et al. (1998) used 
heat unit formulae to forecast cantaloupe melon (Cucumis melo var. cantalupensis) 
yield. The relation between heat energy and time that iceberg lettuce needs to reach 
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maturity has been modelled by Wurr et al. (1988). In fruit trees many models exist 
based on the GDD.

The stage of maturity at the time of picking influences the storage life and quality 
of the crop (Rahman et al. 2016). If harvesting is done too early, fruits often fail to 
ripen on reaching the market, whereas on the other hand harvesting too late will 
result in fruits softening too early in the supply chain. Consumers demand high 
quality food and are likely to refuse to buy unripe or overripe fruit. Harvesting time 
is one of the most important variables that affects final economic benefit. However, 
deciding on the optimal harvest time is a major problem because specific indices 
that determine maturity have been developed for only a few fruits and vegetables, 
while for the vast majority such indices do not exist.

Several studies demonstrate a connection between vegetation indices and fruit 
maturity, suggesting fruit sensing is a reliable method for maturity assessment. 
Reduced vegetation growth and shading can lead to changes in sugar content in 
grapes, suggesting that NDVI or other vegetation indices would be a good tool for 
quality estimation (Bonilla et al. 2015). Guthrie and Walsh (1997) used temporal 
satellite data to determine the optimum harvest date for pineapple fields and mango 
orchards. Early remote sensing applications to identify the optimal date of harvest-
ing of vegetable crops were also reported by Nageswara Rao et al. (2004), who used 
aerial imagery to quantify colour changes of the visible spectrum related to several 
horticultural vegetables and fruit ripening processes in the canopy. Mango maturity 
was analyzed using spectral data recorded with a ground-based vehicle (Wendel 
et al. 2018). However, as experienced recently in PA applications, the chlorophyll-
based NDVI can be influenced by several factors that may limit the robustness of the 
harvest date model; for example, in citrus production, physiological iron deficiency 
can cause yellowing of leaves. Furthermore, large within-field variation of fruit 
maturity was described for most fruit and vegetables, which can indicate the need 
for selective harvesting in some high value climacteric crops needing to be main-
tained at high quality in long-term storage. Consequently, the analysis of maturity 
and quality is requested at the individual fruit level. Mobile applications have been 
investigated already to provide decision support systems for fruit maturity monitor-
ing (King 2017).

8.3.3  �Visible and NIR Bands

With reflectance readings in the visible to infrared wavelength range, changes in 
pigment profiles, overtones of a molecule’s vibration and rotation, temperature and 
emission coefficients can be measured. Most commonly silicon-based detectors in 
the 400–1100 nm range are applied because they are inexpensive and allow easy 
handling in outdoor conditions. With a light source and a detector, attenuation of the 
radiation by the fruit tissue can be recorded. Colour data are related to the red 
(700.0 nm), green (546.1 nm) and blue (435.8 nm) bands, which can be transferred 
in colour spaces such as the L*a*b* space described in the CIE standards. However, 
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to approach the pigment contents in the visible and functional groups such as –OH 
in the SWNIR range (700–1100 nm), an enhanced spectral resolution is required. 
The coinciding absorption of red pigments and chlorophylls can be addressed now 
with a spectral resolution of 10 nm provided that calibration and interpolation are 
carried out. For example, the NDVI calculated on two wavelengths or, with enhanced 
sensitivity, the red edge (nm) calculated by means of the second and third derivative 
of the full spectrum considering the wavelength at zero in the range 660–690 nm 
(Zude-Sasse et al. 2002) (Fig. 8.6) can be employed to calculate the chlorophyll at 
its absorption peak even if visually masked by red pigments. It is even possible to 
detect the specific chlorophylls out of the total pool of chlorophylls (Seifert et al. 
2015). Consequently, the possible perturbation by means of coinciding absorption 
spectra from the complex matrix of fruit tissue can be better addressed with high 
spectral resolution.

The wavelength of the molecule under question can be approached by the rele-
vant spectrum of the molecule in solvent, but the binding conditions may change the 
actual absorption peak in vivo. For chlorophyll, the peak of dissolved chlorophyll, 
an absorption, appears at 660 nm, while in vivo the peak changes during fruit devel-
opment, ranging between 682 nm and 686 nm (Seifert et al. 2015). This discrepancy 
is usually disregarded, but it provides considerable potential for more indicative 
plant sensing. In summary, changes in the chlorophylls can be detected non-
destructively in situ assuming rather isotropic pip fruit such as apples.

In more anisotropic fruit, the changes in scattering coefficients of the sample can 
perturbate the measurement (Cubeddu et  al. 2001; Seifert et  al. 2015). Here, 

Fig. 8.6  Spectrum of unripe (solid line) and ripe (dotted line) apple measured in optical geometry 
of diffuse reflection with a halogen lamp, integrating sphere, silicon-based and InGAs detectors. 
Photograph courtesy of: Zude
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fluorescence analysis might be a better option to detect chlorophyll even if the mea-
surement appears less robust than visible spectroscopy (Kuckenberg et  al. 2008; 
Baluja et al. 2012).

An interesting development is that radiometric information can be obtained with 
ranging sensors that have little information on surface colour. Such data might pro-
vide a reasonable approach to measure fruit location and size in the tree (Wang et al. 
2017; Tsoulias et al. 2020) (Fig. 8.6).

8.4  �Data Analyses

Sensors usually provide raw data that cannot be used directly for data analysis. 
Figure 8.7 shows the typical steps involved in processing data obtained from optical 
sensors. It includes baseline correction and background removal, dimension reduc-
tion and feature extraction, and then estimation by numerical analysis or a classifi-
cation algorithm. In the estimation of certain plant properties, the adjusted coefficient 

Fig. 8.7  Typical steps involved in data processing of plant stress detector sensors with examples 
of methodology and necessary reporting of results
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of determination (R2
adj) in calibration and cross-validation, e.g. using the leave-one-

out method, needs to be reported. Obviously better than a cross-validation on the 
same data set coming from the same population of samples, an independent test-set 
validation on samples of different origin should be carried out. This will result in 
robust calibrations. In addition to the coefficient of determination, the root mean 
square error (RMSE) of calibration, cross-validation, and test-set validation are 
requested (Walsh et  al. 2020). Recently, machine learning algorithms have been 
used extensively for classification for grading fruit inline, and subsequently for spa-
tial or tree-wise information of the planting system. Classification data measured in 
situ in the planting system provides a 3D reconstruction for detection and monitor-
ing (Zha et al. 2020). The results usually report both false positives and false nega-
tives. In most cases it is desirable to have the minimum number of false negatives 
because they mean that there are stressed trees that were not detected which could 
lead to more problems in the future. The work flow can also be visualized consider-
ing the ground truth data (Fig. 8.8).

Fig. 8.8  Workflow to develop a calibration model and achieve yield prediction mapping by inte-
grating reference or frequently named ground truth data, critical interfering or beneficial stages, 
and final validation
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8.5  �Yield Estimation

8.5.1  �Background

Crop yield is the most important information for crop management in PA. Yield 
monitors are commercially available for many crops and are used increasingly, 
while the estimation of yield before harvest is implemented far less in practise. 
Yield monitor data can be obtained after harvest, whereas some problems such as 
nutrient deficiencies, water stress or disease occurrence that affect yield, should be 
managed during the growing season (Usha and Singh 2013). These problems can be 
solved with continuous data sources that can provide valuable information on crop 
health and stress, nutrient requirements and, ultimately, yield estimates. The need 
for accurate yield predictions has become evident since precision viticulture was 
first adopted, because vineyards have considerable variability in both yield and 
quality (Bramley 2005). Yield estimation can help the growers to optimize the tim-
ing of harvest operations, as well as storage and shipping of their products. However, 
the difficulty of sampling and lack of efficient methods are obstacles that greatly 
limit the growth and development of the sector. The traditional method used by wine 
growers for predicting yield is based on the weight of bunches (Wolpert and Villas 
1992), an inefficient and time-consuming operation, which also fails to provide 
accurate estimates (Clingeleffer et al. 2001).

8.5.2  �Weather Data

Quality and yield estimation of various crops is also a function of weather data 
(Frioni et al. 2017). An early assessment of yield reduction could help to avert a 
disastrous situation and help in strategic planning to meet market demands. Lobell 
et al. (2006) developed yield estimation models for 12 crops, including horticultural 
crops, cultivated in California using data from proximal meteorological stations as 
inputs. The models showed high accuracy in cross-validation testing for a period of 
23 years (1980–2003). Laxmi and Kumar (2011) developed a neural network-based 
yield forecasting model for various crops that used several meteorological data 
sources as inputs. Similarly, yield forecasting models based on applications of arti-
ficial intelligence with open access to weather data have been developed for various 
other horticultural crops recently (Kartika et  al. 2016). McKeown et  al. (2005) 
found that yield of cool season vegetable crops was inversely proportional to the 
number of hot days with temperatures >30  °C.  In the same year, Koller and 
Upadhyaya (2005) predicted tomato yield with a more complex model based on 
soil, crop and environmental variables. While there was no clear correlation with 
yield, similar yield patterns were observed in the maps. Solar radiation and tempera-
ture data were applied by Higashide (2009) for estimating the yield of greenhouse 
tomato at different growth stages. The results showed a strong correlation between 
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fruit yield and solar radiation. Radiation, in particular the light interception, has 
been identified as the driving force for the yield in apple production leading to the 
development of cordon and V-shaped trellis systems (Fig. 8.1).

Analysis of trellis tension continuously measures the tension in the horizontal 
(cordon) support wire of the trellis and is indirectly related to plant data (Tarara 
et al., 2004). As a field-based method, it allows the collection of temporal informa-
tion on the growing crop, but also provides information on changes during the grow-
ing stages and in different growing seasons (Blom and Tarara, 2009).

8.5.3  �Remote Sensing

Remote sensing applications can provide data throughout the season, and also pres-
ent an alternative when yield monitor data are not available (Li et al., 2010). Yang 
and Liu (2008) evaluated aerial photogrammetry and field reflectance data for esti-
mating the physical properties of cabbage, showing that both air-borne images and 
reflectance spectra can be used to extract reliable information on cabbage plant 
growth and yield. Applying machine vision to detect and count flowers was a crucial 
step in the estimation of yield in apple (Aggelopoulou et  al., 2011) and mango 
(Koirala et al., 2020). Smart et al. (1990) described the relation between canopy 
management and yield in vineyards. Vegetation indices are robust and feasible pre-
dictors of vegetative growth (Bonilla et al., 2015) and are strongly related to yield 
and quality of grapes (Fiorillo et  al., 2012) provided that no unfavourable event 
takes place affecting the generative growth. High correlation can be found between 
proximal NDVI measurement, yield, and fruit quality in apple (Aggelopoulou et al. 
2010; Liakos et al. 2017) and pear orchards (Vatsanidou et al. 2017), if the optimum 
(Penzel et al. 2020) leaf:fruit ratio is adjusted in crop management. The variable-
rate thinning (Penzel et al. 2021) would be an economically interesting approach for 
including plant sensor data in agronomic models that can be used for precise crop 
load management.

Much research has been done on the application of satellite data. Nageswara Rao 
et al. (2004) estimated yield of potato fields as well as other crops with an accuracy 
exceeding 90 % with satellite imagery-derived NVDI data. O’Connell and Goodwin 
(2005) used canopy coverage data derived from high resolution aerial imagery of a 
peach orchard and estimated yield. Shrivastava and Gebelein (2007) found a signifi-
cant correlation between citrus yields with remotely sensed Landsat images of can-
opy coverage. Anastasiou (2018) examined several vegetation indices derived from 
both proximal and satellite sensing to predict yield and quality in table grapes. 
Although satellite data that can be converted into vegetation indices show a strong 
correlation to yield, the number of factors affecting the values of indices is believed 
to be too large to be considered a reliable stand-alone data source by many research-
ers. Best et  al. (2005) combined soil electrical conductivity and NDVI values in 
multifactorial spatial regression models to generate the yield map of a vineyard. In 
the same study, selective harvesting of grapes was introduced as a method to 
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improve grape quality, a method that is well-known in tree fruit production. 
Tagarakis and Käthner also combined soil variables (elevation, electrical conductiv-
ity, soil texture) and plant data to delineate management zones based on the correla-
tions with yield and quality in vineyards and plum orchards, respectively (Tagarakis 
et al. 2013, Käthner et al. 2017). In plum orchards, the ECa was combined with 
thermal imaging (Käthner et al., 2017).

Considering that the thermodynamic properties of fruit and vegetables differ 
from those of the surrounding objects, yield forecasts can also be made with thermal 
imagery data, as demonstrated by Stajnko et al. (2004) and Bulanon et al. (2008). 
The latter, as well as Wachs et al. (2009), combined thermal and RGB images and 
managed to increase the accuracy of estimates. Grossetete et al. (2012) introduced 
an easy-to-use application that allows producers to create yield estimation maps 
using only their cell phones. Serrano et al. (2005) introduced a handheld system 
equipped with a camera and a GPS receiver that could make estimates based on 
image data from the fields. Mango fruits were detected based on colour images, and 
particularly testing colour spaces, with a high coefficient of determination (Payne 
et al. 2013). Various data processing techniques were tested on green citrus fruits 
(Maldonado and Barbosa 2016). In vineyards, on-the-go yield estimation based on 
photogrammetry has been advanced (Millan et al. 2018) by the reconstruction of 
fruit bunches (Herrero-Huerta et al. 2015) by structure from motion 3D point clouds.

The spatio-temporal monitoring of structural and geometric plant properties has 
become more reliable in outdoor applications with the implementation of ranging 
sensor technology. However, their relation with yield is complex and needs to be 
investigated further. The use of ultrasonic sensors, again revealed a correlation 
between yield and canopy volume similar to the vegetation indices studied earlier 
(Mann et al. 2011). Whitney et al. (2002) and Zaman et al. (2006) used ultrasonic 
sensors to create vegetation maps and accurate yield estimates in citrus groves. 
Zaman et al. (2005) and Schumann et al. (2006) found high coefficients of determi-
nation (R2 = 0.80 and 0.64, respectively) between canopy volume and fruit yield in 
commercial citrus plots.

The spatial dependence of height and volume with yield was investigated in three 
different citrus groves (Colaço et al. 2019). The canopy geometry showed consistent 
spatial coregionalization with historical yield in two of the three groves, yet the 
delineation of management zones based on the canopy volume has been proposed. 
A similar relation has also been identified between canopy volume and yield 
(R2 = 0.77) in almond trees (Underwood et al. 2016). However, this is not always the 
case because the fruit load can vary considerably in trees with similar canopy vol-
ume, for example because of pollination problems, pruning measures, frost events 
and alternate bearing (Uribeetxebarria et al. 2019; Penzel et al. 2020). Yield predic-
tion has been attempted from canopy volume and trunk circumference clustering to 
minimize sampling effort in mango trees (Anderson et  al., 2019). However, the 
frequently reported low coefficient of determination between trunk circumference 
and yield (R2 = 0.17) suggests that the leaf area represented in canopy volume or 
vegetation indices provides better predictions than trunk measurements in pruned 
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and well managed production. Furthermore, the tree structure is a useful indicator 
for identifying the fruiting potential of orchard crops.

Tagarakis et al. (2018), found that the pruning weight is strongly related with 
yield, suggesting the potential of LiDAR-based systems to assess the spatial varia-
tion in vine vigour to regulate site-specific application of inputs (irrigation, fertiliza-
tion) and to adapt vineyard management operations (i.e. pruning) to improve vine 
balance and grape quality. Despite the use of LiDAR and photogrammetric data 
collection methods, it has been suggested that in dwarf apple trees the yield predic-
tion results appear highly variable and difficult to predict simply from structural 
assessment (Murray et  al. 2020). Fruit detection has been reviewed recently (Fu 
et  al. 2020). Stein et  al. (2016) developed a multi-view approach with a LiDAR 
mask to detect, track, count and locate fruit within a mango orchard. Gené-Mola et 
al. (2019), detected and measured apples in the trees with different LiDAR systems 
using the ranging and radiometric (full wave form) information. The systems 
revealed a < 5 % error compared to ground truth, while the authors note that denser 
canopies could prevent a view of all fruit on the tree (Gené-Mola et  al. 2019; 
Tsoulias et al. 2020). A similar drawback was pointed out in photogrammetry ear-
lier and attempts have been undertaken to estimate weighting factors to link the 
number of fruit in the visible first layer with the crop load of the entire tree.

Holistic models such as the one proposed by Martínez-Casanovas et al. (2012) or 
Bonilla et al. (2015) can integrate spectral reflectance data and various other field 
variables and historical patterns, which might increase the accuracy of predictions 
in the horticultural sector.

8.6  �Harvesting

Selective fruit picking is a financially viable strategy considering the need to main-
tain quality along the supply chain. However, the harvesting of fruit and vegetables 
is a time-consuming operation. Mechanization of the process has been desired for 
decades, but several aspects such as the strong susceptibility of fresh produce to 
mechanical stress and the inability of robots to separate mature from immature 
fruits create very challenging conditions. Van Henten et  al. (2003) developed an 
autonomous harvesting robot for cucumbers that could assess maturity in real time 
and harvest only the cucumbers that were mature enough based on two RGB images. 
The images were also used to calculate the exact position of the cucumbers and to 
harvest with considerable accuracy. A robotic system was reported that could 
instantly detect and assess the maturity of strawberries in real time while harvesting 
(Hayashi et al., 2005). The robot determined the maturity of the fruit based on ripen-
ing index data extracted from RGB images. The group also created a similar system 
for tomato harvesting, which demonstrated high accuracy of 85 % yield success. A 
sweet pepper-harvesting robot achieved success rates between 26 and 33 % and a 
cycle time of 94 seconds for a full harvesting operation in a greenhouse (Bac et al., 
2017). A 76.5 % success rate, validated on 68 fruit, was reported recently (Lehnert 

M. Zude-Sasse et al.



243

et al. 2020). Si et al. (2015) developed a robot with a stereo camera system to rec-
ognize, locate, and harvest mature apples in tree canopies. The robot successfully 
recognized over 89.5 % of the crop, while the errors were less than 20 mm when the 
measuring distances were between 400 and 1500 mm. An apple harvesting robot 
used a spoon-shaped end-effector to grip and an electric blade to cut the stem of 
each fruit, reporting an average harvesting time of 15.4 seconds per apple (Zhao 
et al. 2011). Silwal et al. (2017) designed and evaluated an apple robotic harvester 
for a V-shaped trellis orchard system with an overall success rate of 84 % and an 
average picking time of 6.0 seconds per fruit. Still, 13 % of the fruit was missed 
because the end-effector finger made unplanned contact with obstacles during 
grasping. Even cherry harvesting has been approached (Amatya et  al. 2016). 
However, the cooperation between engineering and research is ongoing (Fig. 8.3c) 
and it seems that we are rather close to obtaining a harvest robot. The harvest 
accounts for roughly 50 % of the entire production costs in horticulture and, due to 
the high costs and decreased availability of workers, more developments are needed.

8.7  �Conclusions for the Chapter

At present, proximal and remote sensors can be used in precision horticulture. 
However, the implementation of sensor data in agronomic models to control pro-
cesses directly would be the next logical step. Here we speak about digital twins 
representing the crop information obtained by employing the crop data in physio-
logical models. Using the digital twins for simulating the process can support the 
optimization of this process.

However, there is a further need to develop cost-effective sensors that can detect 
stress of the whole plant and harvest products at an early stage. Currently, optical-
based sensors are the most widely used tools for stress detection. In general, optical 
sensors based on emission, reflectance, and fluorescence are feasible for detecting 
anomalies in orchards, vegetables  production, and berry fields (pre-screening) 
because they can detect stressed plants and are very cost effective. Some of these 
sensors can also be used to detect a specific stressor. However, most methods need 
a re-calibration for a given site or given variety with appropriate reference data that 
need to be produced by extension services or technical service providers. Another 
business model would be that the manufacturer remains the owner of the sensor 
system and sells the service. This would result in easy to access information for the 
fruit grower as well as big data sets that are interesting for further deep learn-
ing analysis. Recent developments in information and communication technologies 
provide some incentive for implementation in, e.g., yield prediction and harvest. 
Mobile applications on the smart phone for precise horticulture have been devel-
oped based on fruit sensor data (King 2017) to inform stakeholders in real time, but 
the economic advantage needs to be calculated.
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The use of the newly available plant data in agronomic models such as precise 
yield prediction, variable rate thinning, and precise harvest, represent the challenge 
for the next step of automation (Fig. 8.9).
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