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Chapter 11
Applications of Sensing to Precision 
Irrigation

Yafit Cohen, George Vellidis, Carlos Campillo, Vasileios Liakos, Nitsan Graff, 
Yehoshua Saranga, John L. Snider, Jaume Casadesús, Sandra Millán, 
and Maria del Henar Prieto

Abstract Precision irrigation aims at improving productivity and sustainability by 
addressing spatial as well as temporal variability of soil and crop water status. This 
chapter presents three case studies from south-eastern USA, Israel and Spain which 
relate to different attributes of precision irrigation: (1) type of precision: whether it 
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targets the spatial variability by using variable-rate irrigation (VRI) system or the tem-
poral variability by using automatic triggering of the irrigation, (2) type of irrigation 
system, and (3) type of data the system uses for irrigation decisions. Each of the case 
studies addresses a unique combination of attributes and together they draw a more 
complement picture of precision irrigation. All case studies have shown that well-timed 
data provides decision support for VRI management, i.e. soil moisture sensor-data 
(south-eastern USA and Spain) and thermal aerial imagery (Israel). The three case 
studies showed that precision irrigation treatments performed better than uniform irri-
gation. Yield increased by 4.3–12% and water-use efficiency (WUE) was improved by 
14–40%. The reliance on point-sensor data in the case studies from south-eastern USA 
and Spain dictated the use of pre-determined irrigation management zones (IMZ), yet, 
enabled adaptive in season irrigation management. In season remotely sensed images 
can be further used for adaptive IMZ, i.e. to modify their boundaries, yet it currently 
suits VRI in drip irrigation. From these case studies, it can be seen that full VRI imple-
mentation, which adapts for spatial and temporal changes, faces “site-specific” chal-
lenges, i.e. every irrigation system is unique, and thus requires tailored solutions.

Keywords Variable-rate-irrigation · Automatic-irrigation · Soil-sensors · Thermal- 
imagery · Decision support system

11.1  Introduction

Irrigation accounts for more than 70% of total water withdrawals on a global basis 
(The World Bank; https://www.worldbank.org/en/topic/water- in- agriculture). The 
inevitable competition between agriculture and other users of limited water resources 
will require that farmers become more efficient at producing crops with a finite water 
supply. In addition, because irrigated agriculture provides about 40% of the global 
food supply on 20% of the total cultivated land, the pressure to produce even more 
food on irrigated land will also intensify as global population increases. Productivity 
per unit of water consumed would increase by implementation of crop location strat-
egies (optimal soil and climate attributes), conversion to crops with higher economic 
value, and adoption of alternate drought-tolerant crops as well as by the implementa-
tion of precision irrigation (Evans and Sadler 2008). These high- technology tools 
will not only allow adjustments of the water schedule depending on the needs of the 
crops at each moment and the characteristics of the soil, but will also increase the 
farmer’s expertise and be more attractive to new generations of young farmers. The 
term precision agriculture (PA) in general and precision irrigation in particular is 
perceived differently by stakeholders from research, extension, industry and by the 
farmers themselves. From the perspective of the research community, PA aims at 
improving productivity and sustainability by addressing spatial and temporal varia-
tion within fields. Automated irrigation scheduling is recognized as precision irriga-
tion, and even though it does not address spatial variation, it addresses temporal 
variation. This chapter presents three case studies from south- eastern USA, Israel 
and Spain which relate to different attributes of precision irrigation: (1) type of 
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precision: whether it targets the spatial variation using a variable-rate irrigation 
(VRI) system or temporal variation by automatic triggering of the irrigation, (2) type 
of irrigation system and (3) type of data the system uses for irrigation decisions. Each 
of the case studies addresses unique combinations of attributes and together they 
draw a more complete picture of precision irrigation. Yet they are not totally sepa-
rated from each other because they share some attributes which connect them 
(Fig. 11.1). The first case study from south-eastern USA describes VRI with centre 
pivots based on soil sensors, the second case study from Israel deals with variable-
rate drip irrigation (VRDI) based mainly on thermal remote sensing, and the third 
case study from Spain presents an automatic drip irrigation system triggered by soil 
sensors. Figure 11.1 summarizes the shared and complementary attributes.

11.2  Case Study 11.1. Variable-Rate Irrigation with Centre 
Pivot in South-Eastern USA

11.2.1  Introduction

Precision irrigation has its roots in VRI technology developed for centre pivot irri-
gation systems by the University of Georgia (UGA) Precision Agriculture team in 
2001 (Perry et al. 2002; Perry and Podcknee 2003). The UGA Precision Agriculture 
team recognized that variable-rate application of irrigation water was a key enabling 
technology for the adoption of PA in south-eastern USA. This was because fields in 
this region have very variable soil type and texture, moisture holding capacity and 
slope. If site-specific water needs are disregarded while attempting to vary other 

Fig. 11.1 Shared and complementary attributes of the case studies. White represents country; 
Outlined light grey represents type of input data; Dark grey represents the type of irrigation system 
and light grey (no outline) the type of precision irrigation
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inputs such as fertilizers, then this would not result in the desired gains in efficiency 
theoretically possible with PA. An additional reason was that in the south-eastern 
USA, irrigation of agronomic crops such as cotton (Gossypium spp.), maize (Zea 
mays), peanut (Arachis hypogaea) and soya bean (Glycine max), is now done almost 
exclusively with centre pivot irrigation systems.

Conventional centre pivots apply the same rate of water along the entire length 
of the pivot and cannot account for within-field variability or non-farmed areas. The 
UGA VRI technology was commercialized by FarmScan, an Australian electronics 
company. The large pivot manufacturers began offering their own VRI systems once 
the original patent expired in 2012.

The VRI allows centre pivots to vary water application rates along the length of 
the pivot using electronic controls to cycle sprinklers and control pivot speed. 
Sprinklers are controlled individually or together typically in groups of 2–10 
depending on the level of resolution desired by the farmer. Each group or bank of 
sprinklers represents a grid with a 1–10-degree arc in which the application rate of 
irrigation water can be set as a percentage of the normal application rate; for exam-
ple from 0 to 200% of normal (Fig. 11.2c). The number of degrees in the arc is 
determined by the level of resolution desired. A 50% application rate is half the 
normal rate and is achieved by cycling the sprinklers on and off every 30 s. A 150% 
application rate is achieved by leaving the sprinklers on continuously while decreas-
ing the travel speed of the pivot. If other grids along the length of the pivot require 
smaller rates of application, the VRI controller adjusts the sprinkler cycling pattern 
within those grids accordingly.

The VRI can be installed retroactively on most existing pivots. Installation costs 
vary widely by brand and are also a function of the length of the pivot and the level 
of resolution desired by the farmer to address the variability of the field. Application 
rates are determined from an application or prescription map. A short video describ-
ing VRI is available at (https://www.youtube.com/watch?v=DgexX_IToI0).

11.2.2  Prescription Maps

The prescription map for a field is developed jointly by the farmer and VRI dealer 
on desktop software (Fig. 11.2a, b, c) and then downloaded to the VRI controller on 
the pivot. The field is divided into irrigation management zones (IMZs) and applica-
tion rates assigned to each of the IMZs using whatever information is available. In 
almost all VRI applications, the prescription maps are static. In other words, they 
are typically developed once and used thereafter. Static prescription maps do not 
respond to environmental variables such as weather patterns and other factors that 
affect soil moisture conditions and rates of crop growth. Although VRI offers a great 
leap forward in improving water-use efficiency (WUE), the system can be greatly 
enhanced with real-time information on crop water needs to control the application 
rates. One approach for creating dynamic prescription maps is to use soil moisture 
sensors to estimate the amount of irrigation water needed to return each IMZ to an 
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ideal soil moisture condition (Fig. 11.2c). This case study describes the on-farm 
application of a dynamic VRI control system developed by the UGA Precision 
Agriculture Team. The control system couples real-time soil moisture sensing net-
works, an irrigation scheduling decision support system (DSS), and VRI.

11.2.3  A Dynamic VRI System

The operational paradigm of the UGA dynamic VRI control system is that the field 
is divided into IMZs and a soil moisture sensing network with a high density of sen-
sor nodes is installed to monitor soil conditions within the IMZs. Between one and 

Fig. 11.2 The process of creating a VRI prescription map for a 49-ha field in Georgia. A bare-soil 
image is used as a base map to delineate IMZs (a). The percentages in (b) indicate the percent of 
the normal application rate assigned to each IMZ. Grid cells in (c) represent discreet areas that can 
receive unique application rates. Cells grouped into the same colour represent the IMZs delineated 
in (b). The yellow circles represent potential locations of soil moisture sensor nodes

11 Applications of Sensing to Precision Irrigation
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three nodes are installed in each IMZ depending on the zone’s size. Soil moisture 
data are uploaded hourly to a web-based user interface.

At the web-based user interface, the soil moisture data are used by the DSS run-
ning in the background to develop irrigation scheduling recommendations for each 
IMZ. The recommendations are then approved by the user (farmer) and downloaded 
wirelessly to the VRI controller on the pivot as a precision irrigation prescription. 
When the pivot is engaged by the farmer, the pivot applies the recommended rates. 
Figure 11.3 shows the dashboard of the UGA dynamic VRI system.

11.2.3.1  Real-Time Soil Moisture Sensing Network

A key requirement of a soil moisture sensor based dynamic VRI system is a dense 
network of sensor nodes that is inexpensive, reliable, wireless, energy efficient, easy 
to install and remove, and that does not interfere with farming operations. These 
types of networks are only now becoming commercially available. The UGA smart 
sensor array (UGA SSA) soil moisture sensor network was specifically developed 
for the dynamic VRI system described here.

Fig. 11.3 Dashboard of the UGA dynamic VRI system as seen by the user. The system requires 
the user to approve and then download the daily prescription map to the VRI controller located on 
the pivot. Real-Time Soil Moisture Sensing Network

Y. Cohen et al.
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The UGA SSA consists of smart sensor nodes and a base station. The term sen-
sor node refers to the combination of electronics and sensor probes installed within 
a field at a single location. The electronics include a circuit board for data acquisi-
tion and processing, and a radio frequency (RF) transmitter. The UGA SSA uses 
Watermark® soil moisture sensors that measure soil moisture in terms of soil water 
tension (SWT)—the absolute value of soil matric potential in units of kilopascals 
(kPa). Each soil moisture probe integrates up to three Watermark® sensors. In addi-
tion, each node supports two thermocouples for measuring soil and or canopy tem-
perature. For deep-rooted field crops like cotton or maize, the sensors on the probe 
are arranged so that when installed they are at 20, 40 and 60 cm below the soil sur-
face although any combination of depths is possible. For shallow-rooted crops like 
peanut, 10, 20 and 40-cm depths are used. Users access the data through a dedicated 
web-based user interface.

11.2.3.2  Web-Based User Interface and Decision Support System

The purpose of the web-based interface is to allow users to visualize their soil mois-
ture data and to make irrigation recommendations for each IMZ. A PHP (Personal 
Home Page) and JavaScript programming languages were used to create different 
visualizations of the soil moisture data (Fig. 11.4). The different visualizations pro-
vide users with the opportunity to view instantaneous SWT, time series of SWT and 
IMZ delineation of their fields. The user interface was smartphone compliant.

The web-based user interface also included a DSS which offers irrigation recom-
mendations for each IMZ (Liakos et  al. 2015). The DSS uses a modified Van 
Genuchten model to convert SWT data to volumetric water content (Liang et al. 
2016). The strength of the method is that it uses soil properties readily available 
from the United States Department of Agriculture – Natural Resources Conservation 
Service (USDA-NRCS) Web Soil Survey (https://websoilsurvey.sc.egov.usda.gov/) 
to translate measured SWT into irrigation recommendations that are specific to the 
soil moisture status of each IMZ. The DSS uses mean SWT data collected at 07:00 h 
from all nodes within an IMZ to calculate the volume of irrigation water needed to 
bring the soil profile back to the desired soil moisture condition, which could be 
field capacity or a percentage of field capacity (for example 75% of field capacity) 
(Fig. 11.5). Each node’s SWT value is a weighted average of the SWT values of the 
three Watermark® sensors of the node as shown in Eq. (11.1) where α, β and γ are 
weighting factors based on the phenological stage of the crop. Early in the growing 
season when the root system is not fully developed, more weight is given to the 
shallow sensors. As the root system develops, the weighting factors change accord-
ingly. For peanut, at maturity, α, β and γ were 0.5, 0.3 and 0.2 respectively. Weighting 
factors may differ by crop.

 
Weigh ed SWT SWT SWTcm cm cmt SWT = × + × + ×α β γ10 20 40  (11.1)

11 Applications of Sensing to Precision Irrigation
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Irrigation recommendations may use the same SWT threshold across all of the 
crop’s phenological stages or thresholds could be adjusted by phenological stage. 
For example, UGA cotton physiologists recommend a 70-kPa threshold before 
flowering and a 40-kPa threshold after flowering (Meeks et al. 2017).

11.2.3.3  On-Farm Testing of the UGA Dynamic VRI Control System

The UGA dynamic VRI control system was field-tested on commercial farms with 
funding from the United States National Peanut Board’s Southern Peanut Research 
Initiative (SPRI). Because of the funding source, the work was conducted with pea-
nut (Arachis hypogaea L.). A farmer who already operated several VRI-enabled 
centre pivots was recruited to participate in the project. Before this project, the 
farmer had used his VRI systems only to turn sprinklers off over non-farmed areas 
in the field. He had not varied application rates over farmed areas. The evaluation 
compared the performance of the dynamic VRI control system to the farmer’s stan-
dard method for scheduling irrigation on large fields. The case study below describes 
the on-farm evaluation conducted in 2017.

The 94-ha field was divided into IMZs using soil electrical conductivity, digital 
elevation models (DEMs), hydrography and the Management Zone Analyst geosta-
tistical software (MZA) (Fridgen et  al. 2004). Eight alternating 120–row wide 
(109  m) conventional irrigation and precision irrigation strips were then 

Fig. 11.4 Two different visualizations of UGA SSA data. On the left is current SWT displayed 
through colour coded gauges. Touching the gauges with the cursor or finger enlarges them. On the 
right are SWT curves for three depths for the entire growing season. Note the difference in response 
between nodes in the same field
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superimposed over the IMZs. The precision irrigation strips retained the IMZ 
boundaries while the conventional strips did not (Fig. 11.5). After planting, UGA 
SSA sensor nodes were installed in each of the IMZs in the precision irrigation 
strips. Sensor nodes were located close to the centre of each IMZ to avoid boundary 
effects created by changing the rates of water application as the VRI system transi-
tioned from one IMZ to another. Three sensor nodes were also installed in each of 
the conventional strips. A total of 30 nodes, 22 in IMZs and 8 in the conventional 
strips, were installed. Each probe contained Watermark® sensors at 10, 20 and 
40-cm depths below the soil surface.

The UGA SSA sensor probes installed in the conventional irrigation strips were 
used only to monitor soil moisture conditions. Each conventional strip was irrigated 
uniformly by the farmer using Irrigator Pro (Davidson Jr. et al. 2000) to make irriga-
tion decisions. Irrigator Pro is a public domain peanut crop growth model and irriga-
tion scheduling tool developed by USDA that uses soil temperature, ambient 
temperature and precipitation to provide yes/no irrigation decisions for peanuts. The 
user decides how much water to apply. The farmer installed his own soil thermom-
eters and a rain gauge in the field and manually collected data two to three times a 
week. He then entered the data into the Irrigator Pro model running on his personal 
computer to make irrigation decisions. Each uniform strip was irrigated uniformly.

All irrigation decisions and the amount of irrigation water applied for the preci-
sion irrigation strip IMZs were made using the DSS. At each irrigation event, the 
DSS used mean weighted SWT from each IMZ to calculate the irrigation water 

Fig. 11.5 The experimental design of the field used in the 2017 case study showing four pairs of 
parallel VRI and conventional strips (brown). The VRI strips maintain the delineated IMZ. The 
yellow circles indicate the location of 30 UGA SSA sensor nodes. The table to the right indicates 
the depth of water that is recommended for each IMZ by the DSS. The recommendations are pro-
vided for shallow and deep-rooted crops

11 Applications of Sensing to Precision Irrigation
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needed to return the soil profile of the zone to 75% of field capacity. The irrigation 
recommendations for each IMZ were then transferred manually to the prescription 
map that was downloaded wirelessly to the pivot VRI controller. In this field, 
approximately 72 h were required for the pivot to irrigate the field. Because of this, 
a new prescription map was downloaded every morning during an irrigation event 
to address soil moisture changes that occurred over the past 24 h.

11.2.3.4  Yield and Water-Use Efficiency

Yield was aggregated by strip. Water-use efficiency (WUE) was calculated by divid-
ing yield by the irrigation applied to each strip. The 2017 peanut growing season 
was relatively dry with 272 mm of precipitation, which is about half of the normal 
precipitation received in this area. Since each IMZ within the VRI strips received 
different amounts of irrigation, the irrigation assigned to each VRI strip was 
weighted by the area of each IMZ. Table 11.1 presents a summary of the results. 
Every VRI strip had greater WUE than the conventional uniformly irrigated strips. 
Three of the VRI strips had larger yields than the uniform strips. Overall, the VRI 
strips resulted in a 39.7% increase in WUE and 4.3% more yield.

11.2.4  Conclusions

Pivot manufacturers have observed the outcomes of this study and dynamic VRI 
experiments conducted by other research groups and have begun to develop their 
own solutions to this issue. Lindsay Corporation which manufactures the Zimmatic 
brand centre pivot irrigation systems is offering its version of dynamic VRI under 
the trade name of FieldNET® Advisor (https://www.lindsay.com/usca/en/irriga-
tion/brands/fieldnet/resources/). This system uses FAO-56 type evapotranspiration 
models to estimate daily crop water use in each IMZ. This estimate and soil proper-
ties from the NRCS Web Soil Survey are used to calculate a daily soil water balance. 
When the soil water balance reaches a predetermined threshold, the IMZ is irri-
gated. Data from the model automatically populate a prescription map that is down-
loaded wirelessly to the pivot’s panel. This is likely to be a more adoptable dynamic 
VRI solution until sensor costs are greatly reduced and installation and removal 
requires less effort than current sensor solutions. However, models might not 

Table 11.1 Comparison of results between the VRI and Uniform treatments for the entire field

Treatment
Area 
(ha)

Yield 
(kg ha−1)

Avg Irrig 
(mm)

WUE 
(kg ha-1mm−1)

% Diff 
Yield

% Diff 
WUE

VRI 22.5 5983 91 66 4.3 39.7
Uniform 24.2 5735 122 47
Totals 47

Y. Cohen et al.
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account accurately for soil differences within IMZs that may be accounted for with 
a high-density sensor network.

11.3  Case Study 11.2. Variable-Rate irrigation with Drip 
irrigation in Israel

11.3.1  Introduction

Approximately half of the agricultural land in Israel is irrigated and the majority of 
that (around 60%) is irrigated with drip systems. The widespread implementation of 
drip irrigation has made a major contribution to the increase in irrigation water-use 
efficiency (WUE) in Israel, in terms of production per irrigation unit. Irrigation 
WUE in Israel has increased steadily since the 1960s and doubled in the period 
2000–2010. Yet, it hardly changed after 2011. Evans and Sadler (2008) argue that 
emerging computerized GNSS-based precision irrigation technologies for self- 
propelled sprinklers and micro-irrigation systems will enable growers to apply 
water and agrochemicals more precisely and site-specifically to match soil and plant 
status and needs using wireless sensor networks. While VRI technology for centre 
pivot irrigation systems goes back to the 2000s and is already implemented by farm-
ers (case study 1 from south-eastern USA), it is still under development for micro 
irrigation systems like sprinklers and drip systems.

There are two primary challenges for variable-rate drip irrigation (VRDI) devel-
opment: a lack of mobility and a lack of variable-rate emitters. A few recent studies 
have applied VRDI in vineyards (e.g. McClymont et al. 2012; Nadav and Schweitzer 
2017). To overcome the lack of mobility, the vineyards were subdivided into man-
agement zones each with valves and piping necessary for autonomous irrigation. 
The abovementioned studies differed in zonation methodology. McClymont et al. 
(2012) assumed relative stability of the IMZ condition over time, i.e. a zone with 
less vigour in 1 year was assumed likely to exhibit less vigour in other years. 
Accordingly, the vineyard was designed to irrigate a few pre-determined manage-
ment zones that differed in size and shape based on multi-year NDVI maps and a 
canopy temperature map. In this way, the number of valves and hence the cost of the 
system is reduced. In contrast to this, several studies have shown that IMZs are 
dynamic and can change from year to year and vary even during a single season 
(O’Shaughnessy et al. 2015; Scudiero et al. 2018). Sanchez et al. (2017) and Bahat 
et al. (2019) used a ‘blind’ zonation based on regular polygons of equal sizes allow-
ing greater flexibility and adaptation to in-season spatial changes of IMZ. Despite 
differences in zonation approach, and how irrigation decisions were made for each 
zone, all have shown a decrease in spatial variation in yield or in water status. 
Currently, there are no off-the-shelf VRDI systems, but prototypes have already 
been installed and tested in a few orchards.

11 Applications of Sensing to Precision Irrigation
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This section described how precision irrigation studies in Israel have evolved 
over the last 20 years following three central themes, i.e. (1) thermal imaging col-
lection and analysis to map the variation in water status, (2) creation of irrigation 
prescription maps and (3) implementing variable-rate drip irrigation to address vari-
ability in a commercial field.

11.3.2  Thermal Imaging for Mapping Variation 
in Water Status

Drip irrigation is very efficient compared to other irrigation systems, therefore, 
most of the precision drip irrigation studies in Israel have focused on crops that it 
would benefit most: cotton and vineyards. Both cotton and wine grape (Vitis vinif-
era) vineyards are grown under controlled regimes of water stress, therefore, the 
best irrigation practices involve monitoring of plant water status. This section 
focuses on cotton. In Israel, irrigation scheduling is predetermined and water stress 
corrections are made by modifying irrigation amounts.

Quantities of irrigation water are estimated according to the equation:

 Irrigation quantity ET= α× ×Kc 0  (11.2)

where ET0 is the reference evapotranspiration, (Kc) is the crop coefficient (FAO56; 
Allen et al. 1998) and α is the water status (or water stress) coefficient. Real-time 
daily values of ET0 for many locations in Israel are available from the Ministry of 
Agriculture and Rural Development’s (MARD) Agro-meteorology website (meteo.
co.il). The Kc tables are also available on the web, For example, this is the link for 
cotton: https://www.moag.gov.il/shaham/professionalinformation/documents/
daily_exhalation_user_guide_2014.pdf. In addition, an app was developed for most 
crops by MARD’s Extension Service (https://play.google.com/store/apps/
details?id=il.gov.moag.shaham.irrigationapp). The Kc of cotton while in its vegeta-
tive growth stage is further adjusted according to the rate of plant growth and in the 
boll-filling period to a measure of plant water status, leaf water potential (LWP). For 
these, growers measure, among other properties, height and LWP of a few plants in 
the field once or twice a week. Based on target curves of these properties that were 
developed by the cotton board they can estimate crop water status, ∝, and further 
correct irrigation quantities. Direct plant measures are reasonably reliable and 
reflect individual plant water status, but they do not represent the spatial variability 
of water status in the plot and are laborious and therefore expensive.

Thermal infrared (TIR) images have been used in most of the precision irrigation 
studies as alternatives for estimating and mapping water status in the productive 
periods. Initial studies focused on correlating the crop water stress index (CWSI) 
(Idso et al. 1981) extracted from thermal images and leaf or stem water potential 
(Cohen et al. 2005; Möller et al. 2007). The CWSI is defined as follows:

Y. Cohen et al.
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where Tcanopy is leaf or canopy temperature, and Twet and Tdry are approximations of 
minimum and maximum canopy temperatures, respectively. Correlations between 
CWSI calculated using ground-based thermal images and LWP/SWP in both cotton 
and vines were strong (r = 0.85–0.92). Further studies examined whether robust 
relationships exist between the two measures throughout a cotton growing season, 
for different varieties, across years and in different geographical areas (different 
climates and soils) (Cohen et  al. 2015). To test this, a dataset from three cotton 
growing seasons and from different geographical areas was created. A linear CWSI–
LWP relationship was found to be appropriate, and had with a high coefficient of 
determination (r = 0.84).

To upscale the use of thermal imaging to commercial application, aerial thermal 
images over commercial cotton fields were used to map the variation in LWP and to 
produce prescription maps according to water status levels (Cohen et al. 2017b). 
Transformation of raw aerial thermal images into CWSI to be used further to map 
LWP requires a simple, rapid and yet accurate procedure to extract Twet. An exten-
sive comparison between various wet baselines that were used to calculate CWSI in 
cotton have shown the superiority of bio-indicator wet baselines including the aver-
age temperature of the coolest 5–10% of the canopy pixels in the overall field 
(Alchanatis et al. 2010; Rud et al. 2014; Gonzalez-Dugo et al. 2013). Furthermore, 
the statistical bio-indicator for wet-baseline (Twet) has minimal requirements (mea-
surements of air temperature) compared to other existing alternatives, thus paving 
the way towards commercialization.

Based on bio-indicators, prescription-like maps which were based on the LWP 
recommended curve for several commercial fields were produced on three dates 
during the season (Fig. 11.6 presents maps for one of the fields). The variation in 
water status was not constant (Cohen et al. 2017b). The maps show the importance 
of in-season mapping of the variation for rational irrigation management. This 
means that to improve VRI, in-season IMZ’s should be used.

11.3.3  Thermal-Based Water Status Maps 
for Irrigation Management

11.3.3.1  Irrigation Management Experiment in Cotton

Cotton is an important crop in the crop rotation widely practiced in Israel. Cotton 
yield and quality are very dependent on an adequate supply of water and in the boll- 
filling growth stage they are grown under controlled water stress to allow balance 
between vegetative growth and cotton production. While it has been proved efficient, 
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adoption of LWP as a complementary tool for irrigation management has been 
limited because of the time and manpower needed to obtain manual measurements. 
In addition, these measurements do not necessarily represent the entire field or its 
variability. The experiment described in this section compared thermal- imaging 
based irrigation management to LWP-based management (Rosenberg et al. 2014).

Field Plots and Irrigation Treatments:
Field measurements were conducted in the summer of 2013 at Kibbutz Givat 
Brener, Israel. Experimental plots were planted with cotton, Gossypium hirsutum 
× Gossypium barbadense hybrid (“Acalpi”) at the beginning of April and were 
drip-irrigated with one drip line every other row. Each plot was 18 m × 19 m. Plots 

Fig. 11.6 Multi-temporal LWP variability maps of a 15 ha commercial cotton fields in Yavne, 
Israel. The LWP maps are based on aerial thermal images acquired on 10/7/11 (a), 27/7/11 (b), 
18/8/11 (c)
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were irrigated with four different treatments and with six replicates (a total of 24 
sub-plots). Irrigation amounts were determined based on ET0 and crop coefficients, 
and stress factor (α) corrections were made according to height measurements in 
the vegetative period and LWP in the boll-filling period. The treatments differed by 
the estimation stress factor α and thus the irrigation amounts. In one treatment, 
denoted Reg-LWP, α was estimated according to the commercial practice, i.e. 
based on a few direct LWP measurements conducted twice a week and irrigation 
decisions were made based on a recommended LWP curve. In the three other treat-
ments, denoted Reg-TIR, Def-TIR (deficit irrigation) and Oir-TIR (over-irrigation) 
α was estimated based on LWP calculated by thermal images acquired once a 
week. Different LWP curves were used for the different treatments. In Reg-TIR, 
like the Reg-LWP, irrigation decisions were based on a recommended LWP curve. 
In Def-TIR and Oir-TIR, irrigation decisions were based on water saving and over-
irrigation LWP curves, respectively.

Image Acquisition:
Oblique thermal images were acquired above the experimental plots using uncooled 
infrared thermal cameras (SC655 and SC2000, FLIR systems, Oregon, USA) that 
were attached to a vertical 20 m mast (mounted to a tractor). The two cameras are 
sensitive in the thermal range of 7.5–13 μm and have measurement sensitivity and 
accuracy of 0.1 °C and ± 2 °C, respectively. Image acquisition was carried out on 4 
days in the boll-filling period: 04/08/13, 11/08/13, 18/08/13 and 25/08/13. The ther-
mal images were acquired a few hours before irrigation, around solar noon 
(11:00–15:00 h daylight saving Israel Standard Time, GMT +3).

Processing of Thermal Images and LWP Calculation:
To estimate Tcanopy separation between vegetation and background pixels in the ther-
mal images was first done empirically following Meron et al. (2010). Second, the 
mean canopy temperature was extracted for each sub-plot. The CWSI was calcu-
lated according to Eq. (11.3). The Tdry was used in its empirical form, i.e. Tair + 5 °C 
which gave a reasonable estimate of the maximum leaf temperature for cotton 
(Alchanatis et al. 2010). To estimate Twet temperature, a reference strip adjacent to 
the experimental plot was double irrigated using a drip-line every row. The tempera-
ture of this strip was extracted each time from the thermal images similar to the 
extraction of the Tcanopy. Last, LWP was determined from a linear CWSI–LWP rela-
tionship (Eq. 11.4) based on a multi-year database (Cohen et al. 2015).

 LWP CWSI= − − −1 77 1 28. . K  (11.4)

where K is a transformation constant between the LWP [MPa] measurement meth-
odology and other methodologies (Cohen et al. 2017b).

The LWP Measurements:
Parallel to image acquisition, 4–6 leaves from each replicate were sampled and their 
LWP was measured with a pressure chamber (model ARIMAD 1, Mevo Hama 
Instruments, Israel), as described by Meron et al. (1987).
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11.3.4  Results

The CWSI-based and measured LWP were well correlated with r = 0.88 and RMSE 
of 0.14 MPa. In addition, the slope of the regression model was not significantly 
different from 1.

Until day 30 from onset (21/07/2013) the entire field received homogeneous irri-
gation of 316.4 mm. From 31 days after onset, treatments were irrigated differently 
as LWP measurements or calculations were used for Kc corrections. From 22/7/2013 
until 28/8/2013 Def-TIR and Oir-TIR received 70.6 and 156.1 mm, respectively 
while Reg-LWP and Reg-TIR received very similar irrigation amounts (96.5 and 
90.0 mm, respectively). Figure 11.7 shows the yield and irrigation water-use effi-
ciency (WUE) of the four treatments. The WUE here was not calculated for the 
seasonal irrigation amounts but for the irrigation amounts given during the irriga-
tion experiment (during the reproductive stage; from 31 days after onset onwards). 
The yields of the different treatments were very similar (one-way ANOVA, F = 0.26, 
p = 0.85). In terms of irrigation amounts, both regular treatments (Reg-LWP and 
Reg-TIR) were larger than the deficit irrigation treatment and smaller than the over- 
irrigation treatment. Significant differences were found in WUE (one-way ANOVA, 
F = 169.9, p < 0.01; n = 24). With a standard error of the difference (SED) of 1.3 
and least significance difference (LSD) of 2.7 it can be said that WUE of Reg- 
TIR (88.3  kg  mm−1 ha−1) was significantly larger than that of Reg-LWP 
(79.1 kg mm−1 ha−1) (Fig. 11.7). The results suggest that remotely sensed thermal 
data can replace direct pressure chamber measurements, while maintaining at least 
the same yield with similar amounts of water application. Furthermore, it has the 
potential to improve WUE. It is assumed that despite the imperfect estimation of 
LWP measurements by the thermal images, the images can represent most if not all 
the plants leading to sound irrigation decisions.

Fig. 11.7 Yield and irrigation water-use efficiency (WUE)  for every irrigation treatment. The 
WUE was calculated from the irrigation given at the reproductive stage only
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11.3.4.1  Addressing the Natural Variation in Water Status 
in a Commercial Cotton Field

The experiment in Givat Brener, described above, demonstrated the ability of ther-
mal based LWP maps to aid irrigation decisions by correcting Kc. As mentioned 
above, variable-rate drip irrigation is challenging and its efficiency should be justi-
fied by either increasing yield and or WUE and or reducing variability. For that, an 
experiment was conducted in a highly variable zone in a commercial cotton field in 
Bnei-Darom farm near to the coastline plain of southern Israel, a well-known area 
for cotton cultivation. This experiment aimed at demonstrating the implementation 
of VRI in a drip irrigation system and its efficiency compared to unified commercial 
irrigation. The northern part of the field is characterized by considerable natural 
variability in soil type and water holding capacity. Figure  11.8 shows there is a 
patch of sandy soil in the northern part of the field (white arrow). The experimental 
area was divided into three treatments, one commercial and two VRIs, denoted 
COM, VRI, TIR (Fig. 11.8a) with 8 blocks (Fig. 11.8b) assuming each block to have 
similar soil texture characteristic. Every treatment was divided into eight cells (24 m 
wide by 30–40 m long), giving a total of 24 cells. From each, a soil sample was 
taken for texture. In addition, the height of three plants was measured twice a week 
in every cell from May to July, and LWP of four leaves was measured once a week 
from July to the end of August (boll-filling period). All treatments were irrigated 
similarly by the farmer until the boll-filling period (beginning of July). In general, 
the farmer followed the cotton board recommendations, but he added 10% to the 
recommended irrigation amounts relying on his experience that this area is sandy 
and requires more water. From the boll-filling period, the commercial treatment 
(COM) was irrigated by the farmer as for the Reg-LWP described in the previous 
section. The VRI and TIR were irrigated as for Reg-TIR, i.e. LWP was calculated 
from CWSI extracted from weekly aerial thermal images. The two treatments were 
differentiated by the size of their management cell (Fig. 11.8a). In TIR, the eight 
cells were grouped into two irrigation units (outlined in green in Fig. 11.8a), i.e. the 
northern and southern four cells were irrigated individually based on their averaged 
calculated LWP. In general, the northern cells are sandier (62% on average) than the 
southern cells (41% on average). In VRI, each of the eight cells (outlined in black in 
Fig.  11.8a) were irrigated individually based on their averaged calculated 
LWP. Figure 11.8a presents the map of accumulated irrigation amounts for each 
irrigation unit. Focusing on both VRI treatments (VRI and TIR), it can be seen that 
the northern areas were irrigated more than the southern areas, which are less sandy 
and experienced less water stress (as indicated by their calculated LWP in different 
dates, data not shown).

The unified irrigated strip (COM) was irrigated with 476 mm and 386 mm in the 
northern and southern irrigation units, respectively. The northern and the southern 
irrigation units of TIR treatment were irrigated with 440 mm (−8% vs COM) and 
347 mm (−10% vs COM), respectively. Irrigation in the VRI strip ranged between 
329 mm (−15% vs COM) and 590 mm (+24% vs COM). Table 11.2 presents a sum-
mary of the yield (before ginning) and WUE results. Yield for the whole 
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experiment area ranged between 6714 and 12 388 kg ha−1 and WUE ranged 
between 15.7  kg ha−1 mm−1  and 26.6 kg ha−1 mm−1. No significant differences 
were found between blocks in both yield and WUE and no significant differences 
were found between treatments (Two-way ANOVA, no repetition, p > 0.05). Four of 
the VRI blocks had larger yields than uniform irrigation (COM) while three blocks 
had smaller yields. Additionally, in four of the VRI blocks greater WUE was 
observed compared to the conventional uniformly irrigation (COM). Overall, the 
VRI treatments resulted in 6% more yield and 4% increase in WUE. The TIR treat-
ment showed lower performance in yield (−3.2%) while better performance in 
WUE (6.1%). It might be related to the precision scale. The TIR treatment repre-
sents a lower resolution of VRI having only two irrigation units compared with eight 
irrigation units of the VRI. A similar experiment was conducted in the 2019 season 
in which VRI was practiced throughout the whole irrigation period. In the 2019 
experiment seven out of eight blocks had more yield and WUE than the uniform 
irrigation treatment (COM). The VRI treatments resulted in 15.5% more yield (not 
significant) with 17.4% larger WUE (significant; data not shown).

11.3.5  Conclusions

Multi-year studies on thermal-remote sensing for water status mapping and for irri-
gation management have been summarized briefly. The results suggest that remotely 
sensed thermal data can replace manual measurements of water status, with the 
same or higher yields and similar or less amounts of water application. Thus, ther-
mal imaging has the potential to improve WUE. It is assumed that despite the imper-
fection in the estimation of LWP by thermal imaging, the latter has the advantage of 

Fig. 11.8 Treatment borders and accumulated seasonal irrigation (a) and yield (b) for every cell. 
The white arrow marks a patch of sandy soil
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measuring many more of the plants, leading to better irrigation decisions. Another 
step towards the implementation of this technique was a field irrigation experiment 
in which natural variation of water status in a commercial cotton field was addressed 
by variable-rate drip irrigation. Larger, though not significant, yields were obtained. 
Since this is the first attempt in using VRDI in field crops, more experiments should 
be conducted to prove its added value. Thermal imaging, however, can be used not 
only for VRI but also for better estimation of the field water status and to improve 
irrigation decisions. Because of its relatively high cost, to assimilate thermal imag-
ing for commercial use more cost effective methods should be developed (Cohen 
et al. 2017a).

11.4  Case Study 11.3. Automatic Irrigation of Orchards 
Using Soil Moisture Sensors (IRRIX Model)

11.4.1  Introduction

At the scientific level, the processes that determine the water demand of crops are 
well known, and various methodologies have been developed to improve irrigation 
efficiency. The water balance method, in which the water inputs of the soil-plant 
system must be balanced to the expected outputs (Allen et al. 1998), is the most 

Table 11.2 Comparison of results between the VRI, TIR and Uniform (COM) treatments 
by blocks

Block Com TIR VRI % Diff TIR % Diff VRI

Yield (kg ha−1) 1 7997 7609 9282 −5 16
2 9263 9392 12388 1 34
3 10398 10467 12108 1 16
4 9103 8765 9199 −4 1
5 9531 8674 8718 −9 −9
6 7794 8674 7276 11 −7
7 7013 9104 9444 30 35
8 10593 6714 7519 −37 −29
Avg. 8961 8675 9492 -1.4 7.2

WUE (kg ha-1mm−1) 1 18.68 17.30 15.73 3 −6
2 21.64 21.35 26.65 10 37
3 24.29 23.79 25.19 9 15
4 22.27 19.92 20.58 4 8
5 22.27 21.85 22.09 1 −10
6 18.21 21.85 19.28 24 −4
7 16.38 22.93 21.99 44 21
8 24.75 16.91 22.87 −30 −17
Avg. 20.94 20.74 20.55 1.2 4.0
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widely used system to determine the irrigation needs of a crop. One of the draw-
backs of the water balance method is that any inaccurate parameterization will pro-
duce a systematic error that will accumulate throughout the crop cycle due to 
deviations that occur between estimated values and actual consumption. Irrigation 
control based on feedback from moisture sensors is a viable alternative to the water 
balance method, having as its main advantage the ability to adjust irrigation to the 
needs of a specific plot (Casadesús et al. 2012). However, there are also drawbacks 
to irrigation control based only on sensors such as the risk of sensor breakdown, 
variability in the measurements (Nolz and Kammerer 2017) and difficulty in inter-
preting sensor results, especially for drip irrigation where soil water distribution is 
heterogeneous.

In general terms, as both the water balance and sensor-based irrigation control 
methods have their pros and cons, combining both approaches seem to be the best 
way to improve the efficiency of irrigation in agricultural systems. This can be done 
by determining the irrigation dose from a water balance model and then using sen-
sors to adjust that model to the real situation of each plot. Information and commu-
nication technologies (ICTs) can be used to attain this objective. In the last decade, 
most of the studies that have been published on automatic irrigation controllers have 
focused on regulating soil water content (SWC) or soil water tension (SWT) with 
feedback-based on/off strategies (Luthra et al. 1997; Miranda et al. 2005; Cáceres 
et al. 2007; Tahar et al. 2011). These devices are relatively inexpensive and easy to 
use, but ground water measurements imply certain limitations: they require a large 
number of sensors and do not consider plant status and response. Xiang (2011) and 
Zhu and Li (2011) published a study on irrigation controllers that used a combina-
tion of SWC and weather data to control drip irrigation. Romero et al. (2012) con-
cluded that the approach of combining weather data with soil moisture signals could 
increase irrigation efficiency in almond trees. O’Shaughnessy and Evett (2010) and 
Peters and Evett (2008) proposed irrigation controllers aimed at regulating canopy 
temperature instead of SWC sensors.

Software tools and web applications are of fundamental importance when it 
comes to determining when and how much irrigation should be applied in response 
to crop development, crop type and environmental conditions (Casadesús et  al. 
2012). Various computer software packages have been developed to monitor soil 
properties and irrigation scheduling over a wide range of irrigation systems (Hess 
1996; Abreu and Pereira 2002). Kim and Evans (2009) developed decision support 
software to collect information from wireless sensor networks (WSN) and control a 
site-specific linear-move irrigation system on a malting barley (Hordeum vulgare 
L.) field. A similar approach was described in the first case study of this chapter. 
There are also researchers who have developed software tools that allow operation 
in combination with the water balance approach and crop evapotranspiration (ETc) 
estimation using soil or plant humidity sensors to enable subsequent readjustment 
of the ETc estimation (Bacci et al. 2008; Casadesús et al. 2012; Osroosh et al. 2016). 
In addition, there are researchers who used a DSS that executed a pre-established 
irrigation schedule in which regulated deficit irrigation (RDI) was applied without 
human intervention in a Japanese plum crop (Prunus salicina) (Millán et al. 2019) 
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and a hedgerow olive orchard (Millán et  al. 2020) combining the water balance 
method with soil moisture sensors.

11.4.2  Semi Commercial Testing of an Automatic 
Irrigation System

To demonstrate the use of an automatic irrigation system (IRRIX), an experiment 
was conducted during 2018 (FERTINNOWA Project) on a commercial farm called 
“Finca El Chaparrito”. The farm belongs to the company Haciendas Bio S.A., and 
is in the municipality of Pueblonuevo del Guadiana, Badajoz (latitude 38°5 6′ 
13.59″ N, longitude 6° 45′ 21.98″ W, WGS84), Spain. Three different varieties of 
early-maturing peach (Prunus persica) were present in the measurement area 
(4.5 ha): Kay-sweet (1.5 ha), Almaneb (1.5 ha) and UFO-4 (1.5 ha). All trees were 
planted in the spring of 2009 at a spacing of 5 m × 3 m, in an east-west row orienta-
tion. The trees were irrigated daily using a drip system with a single lateral line per 
tree row located 0.5 m from the base of the tree and on-line emitters with discharge 
rates of 2.2 l h−1, spaced at 0.5 m. The irrigation sector was separated into two parts 
for each variety, thus allowing the establishment of two irrigation management sys-
tems for each variety.

11.4.2.1  Selection of the Testing Zone

An analysis of soil and plant spatial variation was carried out to select the best area 
to install the IRRIX system and enable comparison between it and the irrigation 
system carried out by the farmer (FARMER). For this purpose, the most homoge-
neous zone possible was selected. To determine soil heterogeneity, the apparent 
electrical conductivity (ECa) of the soil was measured with a Dualem-1S non- 
contact sensor (Dualem, Inc., Milton, Ontario, Canada), equipped with a global 
positioning system (GPS) antenna. The entire field was surveyed for ECa, obtaining 
both shallow (0–50 cm) electrical conductivity (ECs) and deep (0–150 cm) electrical 
conductivity (ECd) values. The ECs data were used as most root activity occurs in 
the first 50  cm. The final data set consisted of 3386 measurements for ECs. 
Figure 11.9 shows the ECs values, with the green line indicating the division of 
irrigation sectors. This line separates each variety into different irrigation sectors for 
IRRIX installation and allows comparison with the application carried out by the 
farmer. The data obtained with the soil sensor indicate a less variation in soil char-
acteristics between the corresponding irrigation sectors in the zone of the Kay-sweet 
(red) than between those of the Almaneb (purple) and UFO-4 (brown) varieties.

Sentinel-2 (ESA) satellite images were used to study crop variability. The nor-
malized difference vegetation index (NDVI) values were used to characterize spa-
tial variation within the different varieties and sectors (Fig. 11.10). The maximum 
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and minimum NDVI values for the different irrigation sectors of the varieties show 
different values in the sectors for each variety (Table 11.3). In the pre-harvest period, 
the greatest variability occurred in the Kay-sweet variety.

The soil and crop values indicated that the best location to develop the trial was 
in the Kay-sweet area because the soil was less variable and crop development was 
similar, especially in the post-harvest period. The area occupied by the Kay-sweet 
variety was delimited by a central pipeline controlled by two solenoid valves that 
allowed two types of irrigation in two zones. In one of the zones (FARMER), tradi-
tional irrigation was carried out by the farmer following his experience in irrigation 
scheduling, replacing ETc in pre-harvest and a deficit irrigation strategy at 75% of 
ETc post-harvest. Irrigation doses were applied using a general irrigation program-
mer (Agronic 2500, Progrés, Spain) installed on the farm. In the other zone, an 
IRRIX system was installed to automate irrigation decisions. The IRRIX treatment 
was applied through the IRRIX application, and the seasonal plan that was intro-
duced in IRRIX was the same as in the FARMER treatment.

11.4.2.2  Automatic Irrigation System

The IRRIX system was calibrated in a national project (RTA2013-00045-C04) 
funded by the Spanish Agrarian and Food Research Institution (INIA) with different 
crops. The IRRIX system comprised two components: (a) sensors installed in the 
field and (b) a cloud-hosted web platform (IRRIX) which uses a control algorithm 

Fig. 11.9 Shallow soil apparent electrical conductivity (ECs) (mS m-1) values in trial areas. The 
dashed green lines indicate the division of irrigation sectors and the continuous red, purple and 
brown lines indicate the areas corresponding to the different varieties Kay-sweet, Almaneb and 
UFO-4 varieties, respectively
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combines a water-balance-based estimate of crop water needs with readjustment 
based on sensor readings:

 (a) Various sensors and other devices were installed in the field: (1) Soil moisture 
sensors at three selected control points (Cp). At each Cp, five 10HS soil mois-
ture sensors (Decagon Devices Inc., Pullman, WA, USA) were installed at dif-
ferent depths and locations in relation to dripper position (two sensors at a depth 
of 30 cm and located under the dripper; one sensor at a depth of 60 cm and 
located under the dripper; one sensor at a depth of 30 cm and located between 
drippers; one sensor at a depth of 60  cm and located between drippers; 
Fig.  11.11). The 10HS sensors used the general calibration proposed by the 
manufacturer for mineral soils, (2) an air temperature sensor (CS2015, Campbell 
Scientific Inc., Logan, UT, US), (3) a solenoid valve, (4) a water meter and (5) 
a relay. All sensors were connected to a CR1000 data logger (Campbell 
Scientific Inc., Logan, UT, US). All data were collected every 5 minutes and 
downloaded to the IRRIX server four times a day.

Other soil moisture measurement points were selected in the farm: (1) Observation 
points (Op) were also used to monitor soil moisture, but not to control IRRIX. Op1 
was installed in the FARMER zone using the Hidrosoph® system with soil moisture 
sensors every 10 cm to a maximum depth of 80 cm; and (2) Op2 was installed in the 
IRRIX zone using the same configuration as Cp above.

 (b) A cloud-hosted web platform (IRRIX) carried out the following daily tasks for 
water scheduling:

Fig. 11.10 Normalized difference vegetation index (NDVI) values in pre- (14/06/2017) and post- 
harvest (03/08/2017) periods using Sentinel-2 satellite images of the study zone. The green lines 
indicate the division of irrigation sectors and the continuous red, purple and brown lines indicate 
the areas corresponding to the different varieties Kay-sweet, Almaneb and UFO-4 respectively

Table 11.3 Maximum and minimum NDVI values for different varieties in the pre- and post- 
harvest period

NDVI
Kay-Sweet Almaneb UFO-4
Min Max SD Min Max SD Min Max SD

Pre-harvest 0.50 0.70 0.04 0.49 0.58 0.02 0.47 0.61 0.02
Post-harvest 0.45 0.63 0.02 0.50 0.62 0.03 0.47 0.64 0.03

Min minimum, Max maximum, SD standard deviation

11 Applications of Sensing to Precision Irrigation



324

 1. Data collection from sensors installed in the field. IRRIX downloads sensor 
data at periodic intervals during the day. The reference evapotranspiration 
(ET0) is estimated daily from the air temperature sensor using the Hargreaves 
equation (Hargreaves and Allen 2003).

 2. Analysis of all data and calculation of irrigation water volumes. The IRRIX 
analyses all incoming data to detect anomalies and detect if any important 
event has occurred in the system (irrigation, rain). IRRIX interprets the soil 
moisture sensors by focusing on the trend, between consecutive days, of the 
driest measurement of each day (SWCd). Then, to reduce variability between 
sensors, IRRIX normalizes these values specifically for each sensor 
through Eq. (11.4).

 
NSWCd SWCd SWCWP SWCFC SWCW= −( ) −( )/

 (11.4)

where soil water content wilting point (SWCWP) and soil water content field capac-
ity (SWCFC) correspond to the values that this sensor would record under wilting 
point and field capacity conditions, respectively. In practice, the SWCFC is taken at 
the beginning of the campaign from actual measurements of the system under field 
conditions, while the value assigned to the SWCWP is the expected SWC value 
under wilting point conditions for this type of soil. To obtain a single value to sum-
marize the state of an irrigation sector, IRRIX performs a weighted average of the 
values obtained with the 15 sensors installed in a sector where the weight of each 
sensor is the product of its reliability and representativeness. The reliability of a 
sensor is related to the quality of the data that a sensor records, in other words, 
whether the sensor is operating correctly or not due to some unexpected anomaly. 
IRRIX automatically estimates sensor reliability on a daily basis with a scale of 
values ranging from 0 to 1. All sensors have an initial value of 1, and each time an 
anomaly is detected the reliability value is decreased (multiplied by a value ranging 

Fig. 11.11 Location of soil moisture sensors
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between 0 and 0.5) depending on the seriousness of the anomaly. If the sensor stops 
working, IRRIX automatically removes it from the system (value of 0) and does not 
take the data from the sensor into account in its estimates. The representativeness of 
each sensor refers to whether the information provided by the sensor is relevant or 
not for the decision-making process in the irrigation control system. The level of 
representativeness is not set automatically by IRRIX but by the user according to his 
or her criteria. In practice, representativeness takes the value 1. The automatic sys-
tem and its control algorithms are described in Millán et al. (2019). Then, IRRIX 
analyses the set of data to determine and adjust the irrigation dose according to the 
information provided by the soil sensors.

 3. Irrigation scheduling. IRRIX sends the updated irrigation doses to the data log-
ger. Then, the IRRIX system orders the solenoid valve to be opened and closed 
in order to apply the corresponding irrigation dose as indicated by the water meter.

 4. Interaction with users. IRRIX is an autonomous system whose main objective is 
to free the user from work. The main function of the user is to check that the 
system has worked correctly, and the irrigation campaign has been undertaken as 
expected. Any anomaly in the system must also be resolved manually.

 5. In addition, before starting the irrigation season, the user must input a seasonal 
plan to IRRIX that includes a rough forecast of how the water will be distributed 
throughout the irrigation season. For this purpose, a set of curves has to be 
defined, and the automated control system positioned between those curves (lim-
its of the system) to ensure it has maximum and minimum cumulative irrigation 
values. Between these points, IRRIX can modify the irrigation schedule on the 
basis of the data provided by the soil sensors.

The Cp and Op were located in relation to the soil texture characteristics of the farm. 
The ECs map was used to select 46 points to measure the surface (0–30 cm) and 
deep (30–60 cm) soil properties. Soil sample texture was analyzed using the method 
introduced by Gee and Bauder (1986). Computation of variograms for ordinary 
kriging is unreliable with so few data points (Webster and Oliver 1992), therefore, 
regression kriging with the dense ECs data was used. Goovaerts and Kerry (2010) 
showed that the relationship between soil and dense ancillary data can account for a 
large proportion of the spatial variation and thus, a smaller sample size (around 50 
points) can be used when a multi-variate geostatistical approach like regression 
kriging is used. Regression kriging involves regression between, for example, the 
sand and ECs data, computation of a variogram of the residuals and then kriging of 
the residuals (Millán et al. 2019) (Fig. 11.12). Regression kriging was conducted 
using the Geostatistical Analyst extension of the ArcGIS software (version 10.3, 
ESRI, Inc., Redlands, Cal.). The sand and clay content values measured on the map 
allowed us to identify similar areas between the two zones (Fig. 11.12 a, b). The 
area next to the dividing line of the sector (black line) was identified as the most 
representative area for both zones. The three Cps were installed in this area in the 
IRRIX zone (right-hand side of map), with the distance between the different con-
trol points for automatic irrigation limited by the maximum possible cable distance 
to maintain the electrical signal with sufficient quality. The Op1 was installed in the 
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FARMER zone (left-hand side of map). Another Op (Op2) was installed in the 
IRRIX zone to allow monitoring of another point location at the highest elevation 
for potential pipe leakage problems (Fig.  11.12c), and to carry out checks with 
respect to the Cp, but becoming part of decision-making process.

Figure 11.13 shows the average soil moisture values at the Cp and Op sites inte-
grated in the root zone (first 60 cm of soil depth). Information from the sensors 
indicated water application above irrigation needs during the pre-harvest period at 
all points. This is traditional practice to avoid a loss of fruit size during the pre- 
harvest period. In this period, the IRRIX system had minor correction limits, deter-
mined in the seasonal plan by the farmer, with irrigation doses above crop needs. 
During the post-harvest period, the farmer uses RDI strategies and so the system 
limits are larger and allow RDI-based adjustment. With Cp-sourced soil sensor data 
(Fig. 11.13 a, b, c), the IRRIX management system enabled a significant reduction 
of irrigation water during the post-harvest period, thereby reducing the large water 
content in the soil (below the stress line). However, in the case of FARMER man-
agement, the decrease was less, resulting, as can be seen in Fig. 11.13e (Op1), in the 
crop maintaining its water status within the buffer zone of the system (solid and 
dashed lines). This indicates that the crop was not under the desired stress (dashed 
line) and that the farmer’s goals were not being achieved during this phase. This was 
subsequently confirmed with the measured stem water potential values (data not 
shown). The Op2 (Fig. 11.13d), installed at another point of the IRRIX zone at a 

Fig. 11.12 Prediction maps of soil properties (a) sand (%), (b) clay (%) according to the method 
described by Millan et al. (2020) and elevation (c) elevation (metres) in trial part of the farm. The 
Cp (control point) and Op (observation point) location shown in the map. The black line is the zone 
where the sector was divided into farmer and IRRIX zones
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higher elevation, showed a lower soil water content (due to different water pressure) 
closer to the stress situation (dashed line) intended by the farmer.

The IRRIX system not only allowed automation of the irrigation of a commercial 
plot, but also adjustment of the irrigation dose, reducing the application of water 
during the post-harvest period and resulting in water savings of 20–25% for all of 
the irrigation periods (Fig.  11.14a), especially in the post-harvest period. With 
respect to the impact of the IRRIX strategy on the following year’s yield. The yield 
was evaluated for 12 trees in each of the zones (FARMER and IRRIX). No losses 
were observed (Fig 11.14b), with a similar commercial yield between treatments 
(no significant differences).

Fig. 11.13 Evolution of soil moisture, average value of sensors in root zone (0–60 cm) at the dif-
ferent control and observation points: Cp1 (a), Cp2 (b), Cp3 (c), Op2 (d) and Op1 (e). Solid line 
indicates field capacity and dashed line indicates the start of crop stress. The vertical line marks the 
harvest date
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11.4.3  Conclusions

For efficient management of fruit crop irrigation and the possible implementation of 
water-saving irrigation strategies, soil moisture control systems provide important 
benefits with knowledge of the amount of water available to the plant in each crop 
phase; they are cheap, easy-to-install and can measure soil moisture content con-
tinuously. However, these systems also have some drawbacks, with the trickiest 
issues involving sensor positioning, possible errors and inconsistencies in sensor 
readings, the treatment given to the sensor readings, interpretation of the data 
obtained and the decision making process. In this sense, advances in computer sci-
ence combined with the development of ICTs and improvement of communication 
systems have revolutionized the possibilities for the integration of crop monitoring 
sensors in DSS. Automatic irrigation systems such as IRRIX allow the integration 
of DSS with sensors in the field, enabling early estimation of irrigation needs. 
Having a mechanism of readjustment based on feedback control from soil sensors 
allows selection of the most reliable data. Such interpretation of the results is very 
useful for decision making.

The correct installation of the soil moisture sensors in a representative area of the 
farm is an important factor to obtain useful data for the water management objec-
tives set by the farmer. The use of PA techniques to characterize spatial variation in 
the soil and plants and selection of the correct zone to install the sensors has also 
been a major advance. This enables representative data to be obtained of the hydrau-
lic state of the soil that can be applied to the whole plot and helps to avoid irrigation 
programs that influence each zone in a different way.

The IRRIX system could be very useful to farmers in the application of RDI 
strategies, saving water and reducing vegetative growth (pruning) while at the same 
time maintaining yield and fruit quality.

11.5  Conclusions for the Chapter

Three precision irrigation case studies have been described above that address a 
range of challenges associated with incorporating precision irrigation. The case 
study from south-eastern USA, presented the use a commercial VRI for pivot irriga-
tion system, the case study from Spain demonstrated an automatic irrigation system 
for a drip irrigated orchard and the one from Israel described the first steps towards 
VRDI implementation. Until recently, precision irrigation was based on pre- 
determined IMZ, essentially based on historical and soil data and predetermined 
irrigation scheduling based primarily on weather data. Adaptive irrigation control 
strategies can use both historical data and (near) real-time quantitative measure-
ments of crop status, weather and soil, either singly or in combination, to adjust the 
irrigation application locally, as required, to account for temporal and spatial varia-
tion in the field (McCarthy et  al. 2010). All three case studies have shown that 
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timely data provide decision support for VRI management, i.e. soil moisture sensor 
data (south-eastern USA and Spain) and thermal aerial imagery (Israel). The three 
cases studies showed that precision irrigation treatments performed better than uni-
form irrigation. Yield increase was 4.3, 6–15, and 12% in south-eastern USA, Israel 
and Spain, respectively. In addition, in all cases but one (in Israel, 2018) WUE was 
improved by 14, 25 and 40% in Israel, Spain and southern USA, respectively.

The reliance on point-sensor data in the case studies from south-eastern USA and 
Spain dictated the use of pre-determined IMZ, yet, enabled adaptive in-season irri-
gation management. In-season remotely sensed images can be used further for 
adaptive IMZ, i.e. to modify their boundaries (Fontanet et  al. 2020). The use of 
satellite imagery and to some extent aerial imagery, however, currently have a rela-
tively long revisit time which limits their use with VRI pivot irrigation systems. 
Irrigation of a field with VRI pivot irrigation systems is lengthy, thus a snapshot 

Fig. 11.14 Automatic (IRRIX) and traditional (FARMER) irrigation and rainfall (p) in the differ-
ent water scheduling programs in pre- and post-harvest period (a) and average yield of 12 trees 
from each zone in the following growing season (b). The error bars stand for the standard error
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image does not adequately represent the variation in plant water status that is rele-
vant to irrigation decisions. To overcome that, a sensor network mounted on the 
lateral of an irrigation system (O’Shaughnessy and Evett 2010) was suggested. The 
case study from Israel, by comparison showed that remotely sensed imagery might 
depict the variation in water status well in drip irrigated fields, enabling the delinea-
tion of dynamic management zones. In this case, however, the implementation of 
precision irrigation is limited by the current lack of VRI for drip irrigation. From 
these case studies, it can be seen that full VRI implementation, which adapts for 
spatial and temporal changes, faces ‘site-specific’ challenges, i.e. every irrigation 
system is unique, and requires unique solutions.

Precision irrigation is studied widely, but is still in its infancy in terms of assimi-
lation and commercialization. Similar to other PA disciplines, PI management is 
mainly based on: (1) data acquisition mostly from remote and proximal sensing, (2) 
data processing, (3) modelling and development of spatial decision support systems 
to manage within-field variability and create prescription maps, and (4) variable- 
rate application (VRA) devices. Previous scientific efforts regarding PI have con-
centrated on data acquisition and processing. Until recently, industries have focused 
mainly on the development of VRI systems. Both scientific and industrial communi-
ties currently invest increasing effort to develop advanced decision-making methods 
and tools (e.g. Navarro-Hellín et al. 2016; McCarthy et al. 2014). More effort should 
be invested in developing irrigation decision support systems that integrate atmo-
spheric data with timely data from soil sensors and in-season spatial plant data from 
remote sensing. Moreover, to shift from purely responsive irrigation control that 
relies on past and ‘near real time’ soil and plant sensing data, forecasts of soil and 
plant water status that are based on crop models should also be incorporated 
into DSS.
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