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Abstract. Skyline and Top-K operators are both multi-criteria prefer-
ence queries. The advantage of one is a limitation of the other: Top-k
requires a scoring function while skyline does not, and Top-k output size
is exactly K objects while skyline’s output can be the whole dataset. To
cope with this state of affairs, regret minimization sets (RMS) whose
output is bounded by K and where there is no need to provide a scoring
function has been proposed in the literature. However, the computation
of RMS on top of the whole dataset is time-consuming. Hence previous
work proposed the Skyline set as a candidate set. While it guarantees
the same output, it becomes of no benefit when it reaches the size of
the whole dataset, e.g., with anticorrelated datasets and high dimen-
sionality. In this paper we investigate the speedup provided by other
skyline related candidate sets computed through the structure Negative
SkyCube (NSC) such as Top k frequent skylines. We show that this
query provides good candidate set for RMS algorithms. Moreover it can
be used as an alternative to RMS algorithms as it provides interesting
regret ratio.

1 Introduction

Skyline [3] and Top K [4] are two well known preference queries. The Skyline
queries are based on the dominance relation. A tuple t is said to be dominated by
a tuple t′ iff (i) t′ is better or equal on all dimensions and (ii) t′ is strictly better
on at least one dimension. The Skyline result is then the set of non dominated
tuples. Top-K queries are based on scoring functions given users. Often scoring
functions are linear, e.g., f(t) =

∑d
i=1 w[i] ∗ t[i] where w is called the weight

vector. In a normalized setting, 0 ≤ w[i] ≤ 1 ∀i ∈ [1, d] and
∑d

i=1 w[i] = 1. The
result of Top-K query by considering the scoring function f is K tuples with the
best scores.

Example 1. Consider Table 1 that describes Hotels by their price and their dis-
tance from the beach. Suppose that cheaper and closer to the beach is better

The Skyline set with respect to this dataset is illustrated in Table 2. Only h2

does not belong to the Skyline set because it is dominated by t1. Indeed, t1 is
cheaper and closer to the beach
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Table 1. Hotels.

Hotels Price Distance

h1 200 120

h2 390 140

h3 465 20

h4 395 90

h5 100 300

Table 2. Skyline hotels.

Hotels Price Distance

h1 200 120

h3 465 20

h4 395 90

h5 100 300

Table 3. Top K Hotels.

Hotels – Weight vector (0.2, 0.8) (0.5, 0.5) (0.8, 0.2)

h1 136 160 184

h2 190 215 340

h3 109 242.5 376

h4 151 242.5 334

h5 260 200 140

Table 3 represents the hotels’ score wrt three linear scoring functions. Note
that lower the value the better the hotel. Top-1 hotels score is underlined. h1 is
Top-1 wrt (0.5, 0.5), h3 is Top-1 wrt (0.2, 0.8) and h5 is Top-1 wrt (0.8, 0.2)

However Skyline queries and Top K queries have some limitations. On one
hand, Skyline queries do not bound the results. Indeed the output may be the
whole dataset, e.g., in presence of high dimensions and anti-correlated data. On
the other hand, Top-K queries require the user to provide weight vector which is
not an easy task. To solve these limitations, [8] presented the regret minimization
queries. These queries bound the results and they do not require the user to
provide the weight vector. Given a family of functions F , they compute a subset
S ⊂ T that minimizes the maximum regret ratio. In a nutshell, the maximum
regret ratio of a set S represents how far a user’s best tuple in the whole dataset
is from the best tuple in S. To simplify, consider the family of 3 functions F =
{f(0.2,0.8), f(0.5,0.5), f(0.8,0.2)} and consider a set S = {h3, h1}. The maximum
regret ratio of S wrt F , i.e., mrr(S,F), is 31.4% which represents the ratio
between the best score within T and the best score within S wrt the function
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f(0.8,0.2). Concretely, this means that for a user whose scoring function is in F ,
the best score he can get from S is at most 31.4% less than the best score he
can get from T . Further details about the computation of the maximum regret
ratio are in Sect. 2.1.

[8] presented the RMS problem: Given a dataset T , the family of all lin-
ear functions L , and an integer K, compute a set S ⊆ T of size K such
that mrr(S,L) is minimum. This problem has been proven NP-Complete in
[5]. Hence, [8] and later work proposed heuristics. Nonetheless the computation
is still time-consuming. [8] showed that it is sufficient to consider the Skyline set
rather than the whole dataset as input to compute the regret minimization set.
However the Skyline becomes with marginal benefit when its size grows, e.g., in
anti-correlated setting. [6,7] proposed respectively the Top-K frequent skylines
(Top-KF) and Top-K priority (Top-KP) skylines as candidates sets for comput-
ing the regret minimization set. They claimed that both operators speed up the
RMS computation by up to two orders of magnitude. However, the empirical
evaluation in that work are not conclusive. In this paper, we investigate the
speed up provided by these two candidates sets. Concretely, we verify wrt sev-
eral parameters (i) if these sets speed up RMS computation and (ii) impact the
output regret. We consider the RMS state of the art algorithm sphere [12]. More-
over, we use NSC [1] an indexing structure to compute (i) Skyline, (ii) Top-KF
and (iii) Top-KP sets.

2 Background

2.1 Regret Minimization Sets (RMS)

[8] presented the regret minimization queries RMS to avoid the limitations of
skyline and Top-k queries. Unlike Top-K queries, RMS do not require scoring
functions, and unlike Skyline queries, they bound the result size. The main idea
is to select a subset S of a dataset T such that S minimizes the user regret. The
regret represents how far the user’s best tuple in S is from the user’s best tuple
in T . Specifically, reference [8] addressed the following problem:

Problem RMS Given a dataset T , the family of all linear scoring func-
tion L, an integer K, compute a set S ⊂ T of size K that minimizes the
maximum regret ratio mrr(S,L).

In the following, we explain the maximum regret ratio of a set S wrt L.
Let f ∈ L be a scoring function. Given a dataset X, let f1(X) be the highest
score by considering tuples in X. The regret of S ⊆ T wrt a function f is
f1(T ) − f1(S) and the regret ratio is f1(T )−f1(S)

f1(T ) . The maximum regret ratio

is then mrr(S,L) = maxf∈L
f1(T )−f1(S)

f1(T ) . [5] proved the NP hardness of RMS
problem. The regret minimization set has been shown (i) scale-invariant, i.e.,
the maximum regret ratio remains the same even if the values in the dataset
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are multiplied by the same factor, and (ii) stable, i.e., the RMS does not change
when weak tuples (tuples not having the highest score wrt any function) are
inserted or deleted from the dataset. Sphere [12] is currently the state of the art
heuristic algorithm. It has interesting time complexity and provides theoretical
guarantees on the output. Its time complexity is O(n · eO(

√
d·ln(n)) + n · k3 · d)

where n represents the dataset size, d the number of dimensions and k the output
size. [8] showed that it suffices to consider the skyline set to compute the RMS
rather than the whole dataset. In other words, the optimal solution S∗ is only
composed of skyline tuples. [9] presented an even smaller and accurate candidate
set, namely Happy tuples. However, it is time-consuming. Its time complexity is
O(n2 · d2).

2.2 Multidimensional Skyline

The multidimensional skyline or subspace skyline consists in considering subsets
of the set of dimensions for skyline analysis. Given a set of dimensions D and a
dataset T . Let X ⊂ D, Sky(T,X) is the set of skyline points by considering only
attributes in X. The Skycube [10] has been proposed to optimize the evaluation
of the skyline wrt any subspace. It consists simply in materializing the results
wrt any subspace. Since it requires an exponential space wrt the number of
dimensions, [1,2,11] proposed summarization techniques. We note NSC [1] which
stores in an intelligent way, for every tuple, the subspaces where the tuple is
dominated. It has been shown as time and memory efficient.

The multidimensional skyline analysis of a dataset gives a useful insight on
the best tuples within a dataset. For example, the frequency of a tuple is the
number of subspaces in respect to which it belongs to its respective skyline.
Let t ∈ T Frequency(t) = |{X ⊆ D s.t. t ∈ Sky(T,X)}|. The tuple with
the highest frequency may have the best values on the dimensions. Another
interesting operator is called the skyline priority which simply is the size of
the smallest subspace wrt to which the tuple belongs to its respective skyline.
Let t ∈ T Priority(t) = minX⊆D|t∈Sky(X)(|X|). A tuple with low priority may
belong to several skylines.

In this paper, we want to investigate the impact of (i) Top-KF a ranking
query based on the skyline frequency and (ii) Top-KP a ranking query based
on the skyline priority on sphere performance, i.e., processing time and output
regret. Given K, computing Top-KF and Top-KP requires exponential time wrt
the numbers of dimensions d. Hence we use NSC for that purpose.

2.3 The NSC Structure

NSC (Negative SkyCube) stores for each tuple t a list of pairs, each summarizing
the subspace where t is dominated. Let t ∈ T and a let p = 〈X|Y 〉 computed
wrt some tuple t′ ∈ T . X represents dimensions where t′ is strictly better than
t, and Y represents dimensions where t and t′ are equal. p summarizes the set
of subspaces where t′ dominates t. This set, denoted by cover(p) is equal to
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{Z ⊂ D|Z ⊆ X ∪ Y and Z �⊆ Y }. We give an example to illustrate NSC and we
refer the interested reader to [1] for more details for this structure.

Example 2. Consider Table 4. We assume that small values are preferred for
every dimension. The skyline of T wrt dimension A is {t1, t2} because these
two tuples have the least value of A. The skyline wrt dimensions AD is
{t1, t2, t3, t4, t5}. t6 does not belong to the skyline because it is dominated by t4:
the later has a better value of A and a better value on D.

Table 4. Dataset T

Id A B C D

t1 1 1 3 3

t2 1 1 2 3

t3 2 2 2 2

t4 4 2 1 1

t5 3 4 5 2

t6 5 3 4 2

By comparing some tuple t to all the others, we obtain a set of pairs that
summarizes the the subspaces where t is dominated. For example, comparing t1
to t2 returns the pair 〈C|ABC〉: t2 is better than t1 in C and these two tuples
are equal on ABC. From this pair, we can deduce that, e.g., t1 doesn’t belong
to the skyline wrt AC. Table 5 depicts the list of pairs associated to each tuple
after comparing it to all the others. Note that pairs 〈X|Y 〉 where X = ∅ are not
stored because they do not bring any dominance information.

Table 5. List of pairs associated to every t ∈ T

Tuples Pairs

t1 〈C|ABD〉, 〈CD|∅〉, 〈D|∅〉
t2 〈D|C〉, 〈CD|∅〉, 〈D|∅〉
t3 〈AB|∅〉, 〈AB|C〉, 〈CD|B〉
t4 〈AB|∅〉, 〈A|B〉, 〈A|∅〉
t5 〈ABC|∅〉, 〈ABC|D〉, 〈BCD|∅〉, 〈BC|D〉
t6 〈ABC|∅〉, 〈ABC|D〉, 〈ABCD|∅〉, 〈A|D〉

In Table 5, some pairs can be seen as redundant. For example, pair 〈D|∅〉
associated to t1 tells that t1 is dominated wrt D. The same information can be
derived from 〈CD|∅〉 that is associated to t1 too. Hence, 〈D|∅〉 without losing any
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information regarding dominance. The summarized sets of pairs are represented
in Table 6. Note that the number of pairs decreases from 20 to 9. This is the
NSC associated to the dataset T .

Table 6. NSC of Table T

Tuples Pairs

t1 〈C|ABD〉, 〈CD|∅〉
t2 〈CD|∅〉
t3 〈AB|C〉, 〈CD|B〉
t4 〈AB|∅〉
t5 〈ABC|D〉, 〈BCD|∅〉
t6 〈ABCD|∅〉

Again, [1] gives all the details about how this summary is obtained, maintained
in case of dynamic data and used to speed up skyline queries evaluation.

Algorithm 1 describes the procedure to compute Top-KF through NSC. We
compute the subspaces where a tuple t is dominated by computing the cover of
all pairs related to t (line 4–7). We then compute the score of each tuple and put
them in list Score (line 8). We sort Score and select Top-K tuples (line 9–11).
Algorithm for Top-KP is similar to Algortihm 1 with a difference in computing
the score (line 8).

Algorithm 1: Top K frequent tuples
Input: NSC, T , K, D
Output: Top − KF

1 begin
2 Top − KF ← ∅
3 Score ← []
4 foreach t ∈ T in parallel do

5 E ← ∅
6 foreach p ∈ NSC[t] do
7 E ← E ∪ cover(p)

8 Score.append(t, 2|D| − |E|)
9 sort(Score)

10 foreach i ∈ [0,K) do
11 Top − KF ← Top − KF ∪ Score[i].first

12 return Top − KF
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3 Experiments

In this section, we report on some of the experimental results we obtained so
far. We focus our comments on three aspects:

1. We evaluate the speed up of RMS computation provided by considering the
Skyline set as a candidate set.

2. We investigate the speed up and output regret of RMS algorithm sphere by
considering Top-K Frequent and Top-K priority sets as candidates sets for a
given K.

3. Given K, we evaluate the regret of Top-K frequent and priority sets.

Hardware & Software. we consider the state of the art algorithm sphere [12] for
computing regret minimizing sets and the structure NSC [1] for computing (i)
skyline, (ii) Top-K frequent and (iii) Top-K priority sets. All the experiments
are conducted on a Linux machine equipped with two 2.6 ghz hexacore CPUs
and 32GB RAM. Software is in C++ and available on GitHub1.

Datasets. We consider synthetic datasets generated through the framework in
[3]. The parameters considered for these experiments and their (default) values
are illustrated in Table 7.

Table 7. Parameters

Parameters Values

Distribution Independent (INDE), Anti-correlated (ANTI)

n (dataset size) 100K, 1M

d(number of dimensions ) 4,8, 12

k(output size) 20,30, 40, 60, 80, 100

3.1 Speed up with Skyline Set

Here, we evaluate the speed up of sphere by considering the Skyline set (S(n))
as input instead of the whole data set (D(n)). Note that the output set and
regret are the same whether we consider the skyline set or the whole dataset
(Refer [8]). Figures 1 and 2 depict the results. It is also important to note that
the reported execution time when the skyline is used as input data set includes
the execution time used to obtain this skyline.

The first observation we can make is that using Skyline as input data set
enables faster computation of the minimum regret set on all cases. That’s, thanks
to NSC structure, the skyline computation time is negligible compared to Sphere

1 https://github.com/karimalami7/NSC.

https://github.com/karimalami7/NSC
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Fig. 1. Speedup of Sphere with Skyline as input set by varying dimensionality d
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Fig. 2. Speedup of Sphere with Skyline as input set by varying the output size k

execution time. The second observation is that when d increases, the benefit of
using the skyline as input decreases. This is because the skyline size gets closer to
that of the entire data set. Hence, the benefit of Sphere gets smaller. For example,
for a dataset with 1 million tuples with uniform distribution, the skyline set
contains 418 tuples with 4 dimensions and 237726 tuples with 12 dimensions.
This behavior is also observed when we compare INDE and ANTI distributions.
With anti-correlated data, gain of using the skyline is already negligible when
d = 8 with anti-correlated data which is not the case with independent uniform
data distribution.

It is also interesting to note that the execution time of Sphere is almost
constant wrt to K (the size of its output) (see Fig. 2.

We conclude that considering the Skyline set as candidate set has a limitation
(its size is large when d is large), even if its computation time is negligible. In
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the next section, we investigate the impact of multidimensional skyline variations
related ranking functions, i.e., Top-KF and Top-KP, on sphere.

3.2 Speedup and Regret of Sphere with Multidimensional Skyline

In this section, we evaluate the speedup of Sphere by providing Top-KF and
Top-KP sets as input sets. Figure 3 depict the obtained results.
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Fig. 3. Computation time of sphere with inputs sets (i) Skyline (ii) Top K Frequent
and (iii) Top K Priority by varying d

Regarding computation time, we do not see big improvement by providing
Top 1% tuples by frequency or priority. Indeed, Sphere computation time is
improved because the input sets are smaller and have constant sizes (Top 1%
instead of the whole skyline) however the computation time of input sets is
now large and grows rapidly with increasing dimensionality. Indeed, computing
Top-KF tuples requires the computation of an exponential number of skylines.
Hence this computation time is not amortized by the fact that the obtained
result is small.

3.3 Regret Ratio with Different Input Sets

In this section we analyze the quality of Sphere output when using different
input data sets by contrast to the previous section where we analyzed just the
execution time. Figures 4 and 5 show the results obtained from the same data sets
as those used in the previous section. We see that all input sets provide similar
regret ratio. We also see that for small k (under 60) when considering Top 1%
frequent tuples as input sets, the regret ratio computed by Sphere is better than
that of the output when the skyline is used as input set. This is explained by the
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fact that sphere is actually a heuristic approach to compute RMS. Indeed, Top
1% frequent tuples discard some noisy points that are consequently not selected
by Sphere.
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Fig. 4. Regret of sphere by input sets (i)Sky (ii) TopKF (iii) TopKP and varying d
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Fig. 5. Regret of sphere by input sets (i)Sky (ii) TopKF (iii) TopKP and varying k

3.4 Multidimensional Skyline Metrics as Alternatives to RMS
Algorithms

So far, we showed that Top-KF and Top-KP provide good input sets for sphere.
Now we want to answer the question: Can Top-KF or Top-KP (without sphere)
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compute sets that achieve regret ratio close to that achieved by sphere? Con-
cretely, we evaluate the regret ratios of sets of size K computed with (i)sphere
(ii) TopKF and (ii) TopKP. Figures 6 and 7 depict the results. Globally, we can
see that TopKF achieves a good regret ratio when dimensionality gets large and
k is small. One possible explanation of this behavior would be the fact that
higher dimensionality means a higher number of skylines. This makes tuples
better differentiated. Indeed, with lower dimensionality, many tuples share the
same score(number of skyline they belong to) which makes them hardly distin-
guishable.
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Fig. 6. Regret of (i) sphere (ii) TopKF (iii) TopKP by varying k
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Fig. 7. Regret of (i) sphere (ii) TopKF (iii) TopKP by varying k
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4 Discussion

The experimental results we obtained show that NSC is useful for RMS algo-
rithms as it computes very efficiently different variants of input data sets that
are provided to RMS algorithms such as Sphere. Some of these input data sets
can be even used as an approximations of RMS results. Indeed, our empirical
results showed that some of them already provide small regrets. From the prac-
tical point of view, this is very important since the Sphere application on even
small input data sets can be prohibitive when the number of dimensions is large.
The encouraging empirical results obtained so far should be pursued to state
some theoretical error guarantee bounds wrt chosen input data sets. This is our
plan for future research.
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