
Efficient Methods to Search for Best
Differential Characteristics on SKINNY

Stéphanie Delaune1(B), Patrick Derbez1, Paul Huynh2, Marine Minier2,
Victor Mollimard1, and Charles Prud’homme3

1 Univ. Rennes, CNRS, IRISA, Rennes, France
{stephanie.delaune,patrick.derbez,victor.mollimard}@irisa.fr
2 Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France

{paul.hyunh,marine.minier}@loria.fr
3 IMT-Atlantique, TASC, LS2N, Nantes, France

charles.prudhomme@imt-atlantique.fr

Abstract. Evaluating resistance of ciphers against differential crypt-
analysis is essential to define the number of rounds of new designs and
to mount attacks derived from differential cryptanalysis.

In this paper, we propose automatic tools to find the best differential
characteristics on the SKINNY block cipher. As usually done in the liter-
ature, we split this search in two stages denoted by Step 1 and Step 2.
In Step 1, we aim at finding all truncated differential characteristics
with a low enough number of active Sboxes. Then, in Step 2, we try to
instantiate each difference value while maximizing the overall differen-
tial characteristic probability. We solve Step 1 using an ad-hoc method
inspired from the work of Fouque et al. whereas Step 2 is modelized for
the Choco-solver library as it seems to outperform all previous methods
on this stage.

Notably, for SKINNY-128 in the SK model and for 13 rounds, we
retrieve the results of Abdelkhalek et al. within a few seconds (to com-
pare with 16 days) and we provide, for the first time, the best differen-
tial related-tweakey characteristics up to 14 rounds for the TK1 model.
Regarding the TK2 and the TK3 models, we were not able to test all
the solutions Step 1, and thus the differential characteristics we found
up to 16 and 17 rounds are not necessarily optimal.

Keywords: Differential cryptanalysis · Automatic tools · SKINNY

1 Introduction

Differential cryptanalysis [5] evaluates the propagation of an input difference
δX = X ⊕ X ′ between two plaintexts X and X ′ through the ciphering process.
Indeed, differential attacks exploit the fact that the probability of observing a

The research leading to these results has received funding from the French National
Research Agency (ANR) under the project Decrypt ANR-18-CE39-0007.

c© Springer Nature Switzerland AG 2021
K. Sako and N. O. Tippenhauer (Eds.): ACNS 2021, LNCS 12727, pp. 184–207, 2021.
https://doi.org/10.1007/978-3-030-78375-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78375-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-78375-4_8

Efficient Methods to Search for Best Differential Characteristics on SKINNY 185

specific output difference given a specific input difference is not uniformly dis-
tributed. Today, differential cryptanalysis is public knowledge, and block ciphers
such as AES have proven bounds against differential attacks. A classical exten-
sion of differential cryptanalysis is the so called related-key differential crypt-
analysis [4] that allows an attacker to inject differences not only between the
plaintexts X and X ′ but also between the keys K and K ′ (even if the secret key
K stays unknown from the attacker). This attack has been recently extended
to tweakable block ciphers [3]. Those particular ciphers allow in addition to the
key, a public value called a tweak. Thus, related-tweakey differential attacks
allow related-key differences but also related-tweak differences (i.e. differences
in a pair of tweaks (T, T ′)). In differential attacks, two notions are considered:
first, differentials where only the input and the output differences are known;
and differential characteristics where each difference after each round is com-
pletely specified. A classical approach to evaluate the resistance against differen-
tial attacks is to compute the probability of the best differential characteristic
of the cipher.

Finding optimal (related-tweakey) differential characteristics is a highly com-
binatorial problem that hardly scales. To limit this explosion, a common solution
consists in using a truncated representation [16] for which cells are abstracted by
single bits that indicate whether sequences contain differences or not. Typically,
each cell (i.e. byte or nibble) is abstracted by a single bit (or, equivalently, a
Boolean value). In this case, the goal is no longer to find the exact input and out-
put differences, but to find the positions of these differences, i.e., the presence or
absence of a difference for every cell. When a difference is present at the input of
an S-box, we talk about an active S-box or an active byte/nibble. However, some
truncated representations may not be valid (i.e., there do not exist actual byte
values corresponding to these difference positions) because some constraints at
the byte level are relaxed when reasoning on difference positions.

Hence, the optimal (related-tweakey) differential characteristic problem is
usually solved in two steps [1,6]. In the first one, every differential byte is
abstracted by a Boolean variable, denoted by Δ, that indicates whether there is a
difference or not at this position, and we search for all truncated representations
of low weight as the less differences passing through S-boxes there are, the more
the probability is increased. Then, for each of these low weight truncated repre-
sentations, the second step aims at deciding whether it is valid (i.e., whether it
is possible to find actual cell values, denoted δ, for every Boolean variable) and,
if it is valid, at finding the actual cell values that maximize the probability of
obtaining the output difference given the input difference.

Related Work. Many techniques have been proposed to search for the Step 1
solutions using automatic tools such as Boolean satisfiability (SAT) [21,26,27] or
Mixed Integer Linear Programming (MILP) [3,24,30] and Satisfiability Modulo
Theories (SMT) [17]. Dedicated solutions have also been proposed [20].

Regarding the search of the best instantiation of a truncated characteristic,
most of the approaches were ad-hoc and dedicated to a precise cipher [6,9–
11,18,28]. Concerning the use of SAT solvers, [28] implements a SAT model for

186 S. Delaune et al.

differential cryptanalysis based on Cryptominisat5 [26] for Midori64 and LED64.
This model implies a sufficiently small number of clauses to model the non-zero
values of the DDT and to be applicable. However, no result concerning 8-bit S-
boxes are given. As SAT uses Boolean formulas, it seems that the same problem
than for MILP appears for modeling S-box: a huge number of Boolean formulas
will be necessary to correctly model this step even if dedicated tools as Logic
Friday or the Expresso algorithm [1] are used. In [1], 16 days are needed to find
the best related tweakey differential characteristics on SKINNY-128 for the SK
model. Recently, in [11,12], the authors introduce Constraint Programming (CP)
models for Step 2 and the performance results are really promising regarding
AES-192 and AES-256.

Our Contribution. In this paper, we refine the security bounds on the SKINNY-
n tweakable block cipher regarding differential cryptanalysis for the four follow-
ing attack models according to the size of the tweakey: the SK model focuses
on single-key attack, the TK1 model considers related-tweakey attack when the
tweakey has only one component, the TK2 model in the related-tweakey settings
considers 2 components and the TK3 model, 3 components.

To do so, we implement Step 1 using an ad-hoc method inspired from [10]. We
also propose a CP model for Step 2 taking as input the solutions outputted by
Step 1. Thus, we provide, for the first time, the best differential related-tweakey
characteristics up to 14 rounds for the TK1 model. We also consider the TK2
and TK3 models and we were able to found some differential characteristics
up to 16 rounds for the TK2 model and up to 17 rounds for the TK3 model of
SKINNY-128. However, we were not able to test all the solutions Step 1, and thus
these differential characteristics are not necessarily optimal. This is an important
improvement compared to previous results. For instance, in [19] Liu et al. could
only find the best differential characteristics up to 7 and 9 rounds for TK1 and
TK2. Finally we also show there is no differential characteristic with probability
higher than 2−128 against 15 rounds in the TK1 model, 19 rounds for TK2 and
23 rounds for TK3. All those results clearly show that SKINNY is much more
resistant to differential cryptanalysis than one would expect while counting the
number of active S-boxes.

As a feedback, we also provide the time results we obtain when implementing
the Step 1 using another tool, a MILP model for the 4 attack settings. As a result
we show that MILP is not always the best choice. First, for Step 1, the ad-hoc
method is able to surpass the MILP model. Second, the CP model proposed for
Step 2 is incomparably much faster than the MILP model proposed in [1] that
requires 16 days according their paper.

All the codes to reproduce these results can be found at [7].

Organization of the Paper. Section 2 gives a short description of SKINNY-n;
Sect. 3 presents our Ad-Hoc tool and gives performance results comparing our
Ad-Hoc model with a MILP one; Sect. 4 presents our dedicated modeling for
Step 2 based on CP and analyzes the obtained results. Finally, Sect. 5 concludes
this paper.

Efficient Methods to Search for Best Differential Characteristics on SKINNY 187

2 Cipher Under Study: SKINNY-n

In this section, we briefly review the tweakable block cipher SKINNY-n where n
denotes the block size and can be equal to 64 or 128 bits. All the details that
have been overlooked can be found in [3].

As its name indicates, it enciphers blocks of length 64 or 128 bits seen as a
4 × 4 matrix of cells (nibbles for n = 64 or bytes for n = 128). We denote xi,j,k

the cell at row i and column j of the internal state at the beginning of round k
(i.e. 0 ≤ i, j ≤ 3 and 0 ≤ k ≤ r + 1 where r is the number of rounds depending
on the tweak length and on the key length). SKINNY-n follows the TWEAKEY
framework from [15]. SKINNY-n has three main tweakey size versions: the tweakey
size can be equal to t = 64 or 128 bits, t = 128 or 256 bits and t = 192 or 384 bits
and we denote z = t/n the tweakey size to block size ratio. Then, the number
of rounds is directly derived from the z value: between 32 rounds for the 64/64
version up to 56 for the 128/384 version.

The tweakey state is also viewed as a collection of z 4 × 4 square arrays of
cells (nibbles for n = 64 or bytes for n = 128). We denote these arrays TK1
when z = 1, TK1 and TK2 when z = 2, and finally TK1, TK2 and TK3 when
z = 3. We also denote by TKki,j the nibble or the byte at position [i, j] in TKk.
Moreover, we define the associated adversarial model SK (resp. TK1, TK2 or
TK3) where the attacker cannot (resp. can) introduce differences in the tweakey
state.

One encryption round of SKINNY is composed of five operations applied
in the following order: SubCells (SC), AddConstants (AC), AddRoundTweakey
(ART), ShiftRows (SR) and MixColumns (MC) (see Fig. 1).

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Fig. 1. The SKINNY round function with its five transformations [14].

SubCells. A 4-bit (n = 64) or an 8-bit (n = 128) S-box is applied to each cell
of the state. See [3] for the details of the S-boxes.

AddConstants. A 6-bit affine LFSR is used to generate round constants c0 and c1
that are XORed to the state at position [0, 0] and [1, 0] whereas the constant
c2 = 0x02 is XORed to the position [2, 0].

AddRoundTweakey. The first and second rows of all tweakey arrays are extracted
and bitwise exclusive-ored to the cipher internal state, respecting the array
positioning. More formally, we have:

– xi,j = xi,j ⊕ TK1i,j when z = 1,
– xi,j = xi,j ⊕ TK1i,j ⊕ TK2i,j when z = 2,

188 S. Delaune et al.

– xi,j = xi,j ⊕ TK1i,j ⊕ TK2i,j ⊕ TK3i,j when z = 3.
Then, the tweakey arrays are updated. First, a permutation PT is applied on
the cells positions of all tweakey arrays: if � = 4 ∗ i + j where i is the row
index and j is the column index, then the cell � is moved to position PT (�)
where PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7]. Second, every cell of
the first and second rows of TK2 and TK3 are individually updated with an
LFSR on 4 bits (when n = 64) or on 8 bits (when n = 128) with a period
equal to 15.

ShiftRows. The rows of the cipher state cell array are rotated to the right. More
precisely, the second (resp. third and fourth) cell row is rotated by 1 position
(resp. 2 and 3 positions).

MixColumns. Each column of the cipher internal state array is multiplied by the
4 × 4 binary matrix M :

⎛
⎜⎜⎝

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

⎞
⎟⎟⎠

Since 2016 and the birth of SKINNY-128, the cryptographic world never
stopped trying to attack it. Among all the cryptanalysis results, we could cite the
following ones in the related-tweakey settings and classified according the type
of attacks. First, in [19,25,31], boomerang and rectangle related-tweakey attacks
are considered. The best result is on 28 rounds with a complexity of 2315 in time
based on a boomerang distinguisher of 23 rounds in the TK3 scenario. Con-
cerning impossible related-tweakey attack [19,29], the best attack has 23 rounds
using a distinguisher with 15 rounds in the TK2 scenario. Even if the distin-
guishers presented here have less rounds, they do not look at the same attack
scenario. This paper essentially goes further than [1] concerning the search of
the best related-tweakey differential trails and aims at refining the best security
bounds of SKINNY in this attack model.

3 Models and Results for Step 1

As explained in the introduction, in a first step called Step 1, we abstract each
possible difference at cell (nibble or byte) level by a binary variable which sym-
bolizes the presence/absence of a difference value at a given position of the cipher.
The main concern regarding this step is the combinatorial explosion induced by
the abstract XOR operation for which the sum of two non-zero values can lead
to the presence or the absence of a difference.

3.1 Possible Transitions

Since the S-box is bijective and the ShiftRows operation only permutes
cells, both those operations do not affect truncated differences. But for the
AddRoundTweakey and MixColumns transformations we need to take care of the

Efficient Methods to Search for Best Differential Characteristics on SKINNY 189

XOR operation. More precisely, given two truncated differences a and b we know
that the possible values of (a, b, a ⊕ b) are:

(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)

However we have to pay attention to uninstantiable solutions. For instance,
given three truncated differences a, b and c, (1, 1, 1, 0, 0, 1) is a possible value
for (a, b, c, a⊕ b, a⊕ c, b⊕ c) but it is impossible to instantiate it because if a = b
and a = c then b = c.

Hence we rewrite the equation y = MixColumns ◦ AddRoundTweakey(x, k) to
avoid such patterns:

– y[1] = x[0] ⊕ k[0],
– y[3] = y[1] ⊕ x[2],
– y[0] = y[3] ⊕ x[3],
– y[2] = x[1] ⊕ k[1] ⊕ x[3]

We experimentally verified that each truncated solution of this system can be
instantiated.

Keyschedule. When looking at the key schedule of SKINNY at the cell level and
for truncated differential characteristics it is mostly a simple cell permutation.
In the model SK, there are no differences in the round keys. In the TKx models,
differences in the round keys are possible. If the number of rounds targeted is
at most 30, the rule for active cells on the round keys is quite simple: either the
cell is inactive for all round keys, either it is active for all round keys but one
(TK2) or two (TK3).

3.2 Ad-hoc Models for Step 1

To the best of our knowledge, the most efficient algorithm to search for trun-
cated differential characteristics on SPN ciphers is the one described in [10] by
Fouque et al. which was applied on the 3 versions of AES. It is mostly dynamic
programming as Round i is independent of the paths of rounds 0, 1, . . . , i − 1
and at each step we only have to save, for each truncated state, the minimal
number of active S-boxes to reach it. Hence, the complexity of this algorithm is
exponential in the state size but linear in the number of rounds. The algorithm is
specified in Algorithm 1. At the end of the algorithm we obtain an array C such
that C[r][s] contains the minimal number of active S-boxes required to reach
state s after r rounds. Retrieving the truncated representations is then done
quite easily using C, starting from the last state to the first. Let say we want
to exhaust all truncated differential characteristics on R rounds with at most b
active S-boxes ending with state s. From C[R − 1][s], we know whether such
characteristic exists or not. If C[R − 1][s] ≤ b we exhaust all states s′ such that
the transition s′ → s through one round is possible and, for each of them, we
now need to exhaust all truncated differential characteristics on R − 1 rounds
with at most b − |s| active S-boxes ending with state s′.

190 S. Delaune et al.

Algorithm 1: Search for the best truncated representation (SK).
foreach state s do

M [s] ←− list of states s′ reachable from s through one round
end
foreach state s do

C [0] [s] ←− number of active cells of s
end
for 1 ≤ r < R do

foreach state s do C [r] [s] ←− ∞
foreach state s do

foreach state s′ in M [s] do
c ←− C [r − 1] [s] + number of active cells of s′

if c < C [r] [s′] then C [r] [s′] ←− c

end

end

end
return C

The complexity of the algorithm in the single key model is very low, and we
experimentally counted around (R − 1) × 220 simple operations for R rounds.
A naive solution to search for truncated representations in the TK1, TK2 and
TK3 models would be to apply the previous algorithm for each possible configu-
ration of the key. While for TK1 this would only increase the overall complexity
by a factor 216, the search would not be practical for both the TK2 and TK3
models. Indeed, because of the possible cancellations occurring in the round keys,
the number of configurations is very high:

⎛
⎝

8∑
k=0

(
8
k

)(
tk−1∑
i=0

(�(R − 1)/2�
i

))k
⎞
⎠

⎛
⎝

8∑
k=0

(
8
k

)(
tk−1∑
i=0

((R − 1)/2

i

))k
⎞
⎠ .

For instance, for R = 30, there are more than 264 configurations in the TK2
model.

In the following we present the first practical algorithm which tackles down
the problem for the TK models without relying on a black box solver as MILP,
SAT or CP solvers. Actually this is the only algorithm fast enough to gener-
ate all the Step 1 solutions required to perform the Step 2. Indeed, the best
differential characteristic is rarely based on the truncated differential character-
istics minimizing the number of active S-boxes and thus we need to generate a
large number of truncated characteristics to find the one instantiating with the
best probability. As we will explain in Sect. 3.4, all other approaches we tried to
generate them failed.

The idea of our ad-hoc method is quite similar to the one used in the single
key model. Actually, to compute the minimal number of active S-boxes at round
r + 1 we only need to know the minimal number of active S-boxes for each
possible state at round r together with the number of cancellations for each

Efficient Methods to Search for Best Differential Characteristics on SKINNY 191

key cell occurred so far. Indeed, we do not need to know at which rounds the
cancellations occurred but only how many times they did. A simplified version
of this algorithm is described in Algorithm 2. The most important part is related
to the variable cancelled which count how many times each key cell is cancelled
through the encryption. It is a vector of 16 cells, each cell taking values among
{0, 1, . . . , x − 1, r} for the TKx model. The main advantage of our representation
is that at each step of the algorithm, C[r][s] contains at most (x+1)16 elements
for the TKx model which is much lower than the number of possible sequences
of round keys.

Algorithm 2: Search for the best truncated representation (TK).
foreach state s, round key k do

M [k] [s] ←− list of states s′ reachable from s and k through one round
end
foreach state s do

C [0] [s] ←− {(number of active cells of s, 0)}
end
for 1 ≤ r < R do

foreach state s do C [r] [s] ←− ∅
foreach state s do

foreach (cost, cancelled) ∈ C [r − 1] [s] do
foreach round key k compatible with cancelled do

foreach state s′ in M [k] [s] do
c ←− cost + number of active cells of s′

C [r] [s′] ←− C [r] [s′] ∪ {(c, update(cancelled, k))}
end

end

end

end
foreach state s do keepOptimals(C [r] [s])

end
return C

Finally we introduce a new improvement which greatly speeds up the search
procedure. It is based on the so-called early abort technique principle and the
idea is to handle the key cell by cell. Indeed, we expect that the best truncated
differential characteristics do not involve many active cells in the round key and
so we want to quickly cut those branches during the search. To do so we first
pick a key cell and guess whether it is active or not. At this step we have not
decided yet if any cancellations occur nor their positions but only if it is always 0
or at least once 1. Then we apply the algorithm partially and guess another key
cell if and only if it seems possible to find a truncated differential characteristic
with a small enough number of active S-boxes. More precisely, along the search
we have the relation y = x ⊕ k where k is the round key. We introduce a new
16-bit variable g such that gi = 0 if we made a choice for bit i of k and 1

192 S. Delaune et al.

otherwise. To compute the possible truncated transitions from x to y through
k for all the possible key (according to g) we can restrict ourself at looking at
the possible truncated transitions from (x|g) to y through (k|g) where | is the
bitwise OR. Indeed, we use the fact that in truncated setting 1 ⊕ 1 is 0 or 1 and
thus our technique allows to handle all the possible keys by looking only at few
transitions.

3.3 Results for Step 1

For Step 1, we run our ad-hoc tool on the four attack scenarios (SK, TK1, TK2,
and TK3) when varying the number of rounds between 3 and 20. We conducted
all our experiments on our server composed of 2× AMD EPYC 7742 64-Core
and 1TB of RAM. In particular, we were able to complete the security analysis
made in [2,3] and claim that the minimal number of active S-boxes in TK1 for
28, 29 and 30 rounds are 105, 109 and 113 respectively (as shown in Table 1).

Table 1. Lower bounds on the number of active S-boxes in SKINNY.

Rounds 28 29 30

TK1 105 109 113

However, the optimal solution of Step 2, in terms of differential characteristic
probability, could be obtained for a number of active S-boxes which is not the
optimal one. Hereafter, we denote ObjStep1 the number of active S-boxes we
consider when solving the problems. For example, assume that, when processing
Step 2, one obtains a differential characteristic with the best probability equal to
2−3×6 = 2−18 with ObjStep1 = 6 and whereas the optimal differential probability
of the S-box is 2−2. It means that one has to test all solutions outputted by
Step 1 until ObjStep1 < 18/2 = 9 to be sure that none has a better differential
characteristic probability. This is exactly what happened for the case of SKINNY-
128 in the TK models. We only want to stress here that computing the optimal
bounds is often not enough and we need to go further. However, increasing the
value of ObjStep1 induces an increase of the possible number of Step 1 solutions as
illustrated in the third column of Table 4. As one can see, this number of solutions
tends to grow exponentially when we increase v. For example, for SKINNY-128
with 14 rounds in the TK1 model, for the optimal value v∗ = 45, Step 1 outputs
only 3 solutions; whereas we have 897 solutions for v = v∗ + 5 = 50; 137 019
solutions for v = v∗ + 10 = 55 and finally 7 241 601 solutions for v = 59. So,
the time required to output all those Step 1 solutions and the time required
for the Step 2 computations on 1 solution outputted by the Step 1 become the
bottleneck of the overall process.

Efficient Methods to Search for Best Differential Characteristics on SKINNY 193

3.4 Other Approaches

We tried different approaches to solve the Step 1 problem, including MILP, SAT
and CP models.

Our SAT model is encoded through the high level modeling language MiniZ-
inc while our CP model is based on the Choco-solver. Unfortunately, the results
of both the SAT and the CP models are really bad: for example, for all instances
greater than 16 rounds we were unable to obtain the solutions in reasonable time.
This is mainly due to the need to enumerate solutions for SAT, which implies to
prohibit all solutions previously found. For CP, on the other hand, this has to do
with the nature of the Boolean variables themselves where the Choco-solver can
not efficiently propagate lower bounds and upper bounds on Boolean variables.

Our MILP model was much better than our SAT and CP ones. We started
from the original model presented in [3] but made several optimizations. First,
we added constraints in the SK model to obtain all solutions up to column shifts
in order to remove symmetries. Moreover, as the original model only describes
the way to find the minimal number of active S-boxes, we added a constraint in
each model to set a lower bound on the number of active S-boxes and thus, be
able to enumerate all the Step 1 solutions given a particular lower bound for the
number of active S-boxes. Then, in the original MILP model all xor operations
were modeled using dummy variables which is known to be inefficient. Thus
we replaced the corresponding inequalities, using that x ⊕ y ⊕ z = 0 can be
described with the three inequalities:

{x + y ≥ z}, {x + z ≥ y}, {y + z ≥ x}.

Finally, regarding the resolutions of the MILP models, the parallelization were
left to the Gurobi solver.1

We compared the MILP model to our ad-hoc tool and we found that our
MILP model is much slower in most cases and actually too slow to output all
the Step 1 solutions needed to perform Step 2. Running times are given in
Table 2.

Table 2. Comparison of the running times required to generate all Step 1 solutions
between our MILP and ad-hoc approaches.

Rounds Model ObjStep1 MILP Ad-hoc

14 TK1 45 → 59 >6 h 5m

19 TK2 52 → 63 >6 h 19m

20 SK 96 342 m 16 s

20 TK1 70 38 m 28 s

20 TK2 57 745 s 193 s

20 TK3 45 998 s 326 s

1 see: https://www.gurobi.com/documentation/9.0/refman/threads.html .

https://www.gurobi.com/documentation/9.0/refman/threads.html

194 S. Delaune et al.

Note that while our ad-hoc tool gave very good running times, it may require
a lot of memory to store the array C. For instance, for 30 rounds in TK3 mode,
our tool required up to 500 GB of RAM to finish the search. It is also important
to note that it did not take fully advantage of the 128 cores of our server, and
most often used less than 40 cores.

4 Modeling Step 2 with CP

The aim of Step 2 is to try to instantiate the abstracted solutions provided
by Step 1 while maximizing the probability of the differential characteristic.
Thus, Step 2 takes as input a solution of Step 1 with the objective function
of maximizing the probability of the differential characteristic. However, some
solutions of Step 1 could not be instantiated in Step 2 as refining the abstraction
level of Step 2 will induce non-consistent solutions. In the literature, this step
has been modeled using ad-hoc methods [6], MILP [1], SAT [28] or CP [12]. As
MILP [1] and SAT [28] seem to hardly scale due to prohibitive computational
times (linked with the size of the 8-bit S-boxes that must be represented in
the form of linear inequalities or of clauses), we focus here on a dedicated CP
method implemented using the Choco solver [22]. We also provide, in the second
part of this section, the results we obtain when instantiating the differential
characteristics in the 4 attack scenarios.

4.1 Constraint Programming

Although less usual than MILP to tackle cryptanalytic problems, CP has already
been used in e.g. [9,13]. We recall some basic principles of CP and we refer the
reader to [23] for more details.

CP is used to solve Constraint Satisfaction Problems (CSPs). A CSP is
defined by a triple (X,D,C) such that X = {x1, x2, . . . , xn} is a finite set of
variables, D is a function that maps every variable xi ∈ X to its domain D(xi)
and C = {c1, c2, . . . , cm} is a set of constraints. D(xi) is a finite ordered set of
integer values to which the variable xi can be assigned to, whereas cj defines
a relation between some variables vars(cj) ⊆ X. This relation restricts the set
of values that may be assigned simultaneously to vars(cj). Each constraint is
equipped with a filtering algorithm which removes from the domains of vars(cj),
the values that cannot satisfy cj .

In CP, constraints are classified in two categories. Extensional constraints,
also called table constraints, explicitly define the allowed (or forbidden) tuples
of the relation. Intentional constraints define the relation using mathematical
operators. For instance, in a CSP with X = {x1, x2, x3} such that D(x1) =
D(x2) = D(x3) = {0, 1}, a constraint ensuring that the sum of the variables in X
is different from 1 can be either expressed in extension (1) or in intention (2):

1. Table(〈x1, x2, x3〉 , 〈(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)〉)
2. x1 + x2 + x3 �= 1

Efficient Methods to Search for Best Differential Characteristics on SKINNY 195

Actually, any intentional constraint can be encoded with an extensional one
provided enough memory space, and conversely [8]. However, they may offer
different performances.

The purpose of a CSP is to find a solution, i.e. an assignment of all vari-
ables to a value from their respective domains such that all the constraints are
simultaneously satisfied. When looking for a solution, a two-phase mechanism
is operated: the search space exploration and the constraint propagation. The
exploration of the search space is processed using a depth-first search. At each
step, a decision is taken, i.e. a non-assigned variable is selected and its domain
is reduced to a singleton. This modification requires to check the satisfiability
of all the constraints. This is achieved thanks to constraint propagation which
applies each constraint filtering algorithm. Any application may trigger modifi-
cations in turn; the propagation ends when either no modification occurs and
all constraints are satisfied or a failure is thrown, i.e., at least one constraint
cannot be satisfied. In the former case, if all variables are assigned, a solution
has been found. Otherwise a new decision is taken and the search is pursued. In
the latter case, a backtrack to the first refutable decision is made and the search
is resumed.

Turning a CSP into a Constrained Optimisation Problem (COP) is done by
adding an objective function. Such a function is defined over variables of X, the
purpose is then to find the solution that optimizes the objective function. Finding
the optimal solution is done by repeatedly applying the two-phase mechanism
above, and by adding a cut on the objective function that prevents from finding
a same cost solution in the future.

4.2 Modeling Step 2 with CP

Given a Boolean solution for Step 1, Step 2 aims at searching for the byte-
consistent solution with the highest (related-tweakey) differential characteristic
probability (or proving that there is no byte-consistent solution). In this section,
Model 1 describes the CP model we used for SKINNY-128 (SK). Actually, the
ones used to model the other variants, as well as SKINNY-64 are rather similar.

For each Boolean variable ΔXr,i,j of Step 1, we define an integer variable
δXr,i,j . The domain of this integer variable depends on the value of the Boolean
variable in the Step 1 solution: If ΔXr,i,j = 0, then the domain is D(δXr,i,j) =
{0} (i.e., δXr,i,j is also assigned to 0); otherwise, the domain is D(δXr,i,j) =
[1, 255]. For each byte that passes through an S-box, we define an integer variable
δSBr,i,j which corresponds to the difference after the S-box. Its domain is {0}
if ΔXr,i,j is assigned to 0 in the Step 1 solution; otherwise, it is D(δSBr,i,j) =
[1, 255]. This is expressed in (3) of Model 1.

Finally, as we look for a byte-consistent solution with maximal probability,
we also add an integer variable Pr,i,j for each byte in an S-box: this variable
corresponds to the absolute value of the base 2 logarithm of the probability
of the transition through the S-box. Actually, a factor 10 has been applied to
avoid considering floats. Thus we define a Table constraint (4) composed of
valid triplets of the form (δXr,i,j , δSBr,i,j , Pr,i,j). Note that these triplets only

196 S. Delaune et al.

Minimize

ObjStep2 =

R∑

r=1

4∑

i=1

4∑

j=1

Pr,i,j (1)

subject to

20 × n ≤
R∑

r=1

4∑

i=1

4∑

j=1

Pr,i,j ≤ min(70 × n, O∗) (2)

∀r ∈ 1..R, ∀i ∈ 1..4, ∀j ∈ 1..4
{

δXr,i,j = 0 ∧ δSBr,i,j = 0 ∧ Pr,i,j = 0 if ΔXr,i,j = 0

δXr,i,j ≥ 1 ∧ δSBr,i,j ≥ 1 ∧ Pr,i,j ≥ 20 otherwise

(3)

∀r ∈ 1..R, ∀i ∈ 1..4, ∀j ∈ 1..4

Table(〈δXr,i,j , δSBr,i,j , Pr,i,j〉 , 〈SBox〉) if ΔXr,i,j 	= 0
(4)

∀r ∈ 1..R − 1, ∀j ∈ 1..4 δSBr,0,j = δXr+1,1,j

(5)

∀r ∈ 1..R − 1, ∀j ∈ 1..4
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δSBr,2,(2+j)%4 = δXr+1,2,j if ΔSBr,1,(3+j)%4 = 0

δSBr,1,(3+j)%4 = δXr+1,2,j if ΔSBr,2,(2+j)%4 = 0

δSBr,1,(3+j)%4 = δSBr,2,(2+j)%4 if ΔXr+1,2,j = 0

Table(
〈
δSBr,1,(3+j)%4, δSBr,2,(2+j)%4, δXr+1,2,j

〉
, 〈XOR〉) otherwise

(6)

∀r ∈ 1..R − 1, ∀j ∈ 1..4
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δSBr,2,(2+j)%4 = δXr+1,3,j if ΔSBr,0,j = 0

δSBr,0,j = δXr+1,3,j if ΔSBr,2,(2+j)%4 = 0

δSBr,0,j = δSBr,2,(2+j)%4 if ΔXr+1,3,j = 0

Table(
〈
δSBr,0,j , δSBr,2,(2+j)%4, δXr+1,3,j

〉
, 〈XOR〉) otherwise

(7)

∀r ∈ 1..R − 1, ∀j ∈ 1..4
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δXr+1,0,j = δXr+1,3,j if ΔSBr,3,(1+j)%4 = 0

δSBr,3,(1+j)%4 = δXr+1,3,j if ΔXr+1,0,j = 0

δSBr,3,(1+j)%4 = δXr+1,0,j if ΔXr+1,3,j = 0

Table(
〈
δSBr,3,(1+j)%4, δXr+1,0,j , δXr+1,3,j

〉
, 〈XOR〉) otherwise

(8)

where ∀r ∈ R..n, ∀i ∈ 1..4, ∀j ∈ 1..4,

δXr,i,j ∈ 0..255, δSBr,i,j ∈ 0..255, Pr,i,j ∈ {0, 20, .., 70},

and 〈XOR〉 encodes ⊕ relation and 〈SBox〉 the S-box constraint.

Model 1: Formulation of SK Step2.

Efficient Methods to Search for Best Differential Characteristics on SKINNY 197

contain non-zero values and that Pr,i,j takes only 2 different values for the 4-
bit S-box (SKINNY-64) and 7 different values for the 8-bit S-box (SKINNY-128).
There are roughly 214 triplet elements in the Table constraint for the SKINNY-
128 case. As the S-box layer is the only non-linear layer, the other operations
could be directly implemented in a deterministic way at the cell level. The asso-
ciated constraints thus follow the SKINNY-128 linear operations. When possible,
i.e. when one element is known to be zero, we replace XOR constraints (encoded
using Tableconstraints) by a simple equality constraint. This corresponds to
Table constraints (5), (6), (7) and (8) in Model 1.

The overall goal is finally to find a byte-consistent solution which maxi-
mizes differential characteristic probability. Thus, we define an integer variable
ObjStep2 to minimize the sum of all Pr,i,j variables (1). This value mainly depends
on the number of S-boxes outputted by Step1 ObjStep1 and can be bounded to
[[20 · ObjStep1, 70 · ObjStep1]] (2).

The differences for the models TK1, TK2 and TK3 are the modeling of
the XORs induced by the lanes of the tweakey through XOR table constraints.
Each XOR constraint depicted in Model 1 provides high quality filtering but
requires 65536 tuples to be stored which results in prohibitive memory usage.
This may limit the number of threads that can be used for the resolution, which
was the case for TK2 and TK3. To get around this issue, we encoded the XOR
constraint in intention (by defining filtering rules), providing a more memory
efficient algorithm, at the expense of filtering strength. This last choice was
applied for TK2 and TK3 (SKINNY-128 only). We also rely on Tableconstraints
to model the LFSRs applied on TK2 and TK3.

Concerning the search space strategy, for the TK2 and the TK3 attack
settings, the Step 1 only outputs the truncated value of the sum of the TKi.
Thus, the search space strategy first looks at the cancellation places of the sum
of the TKi and then instantiates the TKi values according to those positions.
For the TK1 setting, we simply apply the default Choco-solver strategy.

Concerning the parallelization, we affect one solution outputted by Step 1
per thread and we share between the threads the value of ObjStep2.

4.3 Step 2 Performance Results

We run our Step 2 model on the two versions of SKINNY (SKINNY-64 and SKINNY-
128) using our CP models written in Choco-solver. We conduct all our exper-
iments on our server composed of 2× AMD EPYC 7742 64-Core and 1TB of
RAM. All the reported times are real system times.

Up to our knowledge, we only found [1] that gives time results concerning
finding the best SK differential characteristic probability on SKINNY-128 using
a MILP tool based on Gurobi.

More precisely, the authors say: “In our experiments, we used Gurobi Opti-
mizer with Xeon Processor E5-2699 (18 cores) in 128 GB RAM.” and, for 13
rounds, “in our environment, the test of 6 classes [Step 1 solutions with 58
active S-boxes without symmetries] finished in 16 days. Finally, it is proven that

198 S. Delaune et al.

the tight bound on the probability of differential characteristic for 13 rounds is
2−123” in the SK model.

Regarding the TK models, the best known results were obtained by Liu
et al. also using MILP models [19]. They could only find the best differential
characteristics up to 7, 9 and 13 rounds for TK1, TK2 and TK3 respectively.

Results for SKINNY-64. We sum up in Table 3 all the results we obtain for
SKINNY-64 in the four different attack models (SK,TK1,TK2 and TK3). The
overall time, in this case, is not a bottleneck. We only give results concerning
number of rounds that are at the limit (just under and just upper) when regard-
ing the number of active S-boxes which is equal to 32 in the case of SKINNY-64
as the state size is 64 bits and as the best differential probability of the S-box is
equal to 2−2. Thus, the best overall differential characteristic probability must
be under 2−64.

Note that sometimes, we need to browse several ObjStep1 bounds to find
the optimal differential characteristic probability when the number of rounds is
fixed. Indeed, we need to proactively adapt the probability bound we found. For
example, in the case of TK2 SKINNY-64 with 13 rounds, the optimal ObjStep1 is
equal to 25 and when providing the Step 2 process with this ObjStep1 bound, we
find a best differential characteristic probability equal to 2−55. Thus, we need to
enumerate all the Step 1 solutions with ObjStep1 = 26 and ObjStep1 = 27 to be
sure that the previous probability is really the best one. Then, before running
again Step 2 on those new results we adapt the best probability to the new
bound equal to 2−55 instead of the old bound equal to 2−64.

We also provide in Appendix A the details of the best found differential
characteristics.

Table 3. Overall results concerning SKINNY-64 in the four attack models. Step 2 time
corresponds to the Step 2 time taken over all Step 1 solutions when Objstep1 takes the
values precise in the first column. Best Pr corresponds to the best found probability
of a differential characteristic.

Nb Rounds ObjStep1 Nb sol. Step 1 Step 2 time Best Pr

SK 7 26 2 1 s 2−52

SK 8 36 17 1 s <2−64

TK1 10 23 1 1 s 2−46

TK1 11 32 2 1 s =2−64

TK2 13 25 → 27 10 1 s 2−55

TK2 14 31 1 1 s <2−64

TK3 15 24 → 26 46 2 s 2−54

TK3 16 27 → 31 87 4 s =2−64

TK3 17 31 2 1 s <2−64

Efficient Methods to Search for Best Differential Characteristics on SKINNY 199

Results for SKINNY-128. In the same way, we provide in Table 4 the best
differential characteristic probability with the total time required for this search
for the 4 different attack models. As one can see, we also verify all the possible
values for ObjStep1 for a given number of rounds, depending on the probability
value previously found. Thus, this time, the number of solutions outputted by
Step 1 could be huge when we move away from the optimal Step 1 value v∗.
However, as the time spent to solve one solution is reasonable (at least when
considering SK and TK1), our model scales reasonably well: the worst case
requires 25 days of real time on our server on 8 threads and 31 GB of RAM2.

Table 4. Overall results concerning SKINNY-128 in the four attack models. Step 2 time
corresponds to the Step 2 time taken over all solutions of Step1-enum when Objstep1

takes the values precise in the first column. Best Pr corresponds to the best found
probability of a differential characteristic.

Nb Rounds Objstep1 Nb sol. Step 1 Step 2 time Best Pr

SK 9 41 → 43 52 16 s 2−86

SK 10 46 → 48 48 11 s 2−96

SK 11 51 → 52 15 4 s 2−104

SK 12 55 → 56 11 6 s 2−112

SK 13 58 → 61 18 2m 27 s 2−123

SK 14 61 → 63 6 21 s ≤2−128

TK1 8 13 → 16 14 4 s 2−33

TK1 9 16 → 20 6 3 s 2−41

TK1 10 23 → 27 6 4 s 2−55

TK1 11 32 → 36 531 37 s 2−74

TK1 12 38 → 46 186 482 213m 2−93

TK1 13 41 → 53 2 385 482 2 days 2−106.2

TK1 14 45 → 59 11 518 612 20 days 2−120

TK1 15 49 → 63 7 542 053 25 days ≤2−128

TK2 9 9 → 10 7 3 s 2−20

TK2 10 12 → 17 132 11 s 2−34.4

TK2 11 16 → 25 4203 6m 2−51.4

TK2 12 21 → 35 1 922 762 512m 2−70.4

TK2 19 52 → 63 530 693 280m ≤2−128

TK3 10 6 3 3 s 2−12

TK3 11 10 3 10 s 2−21

TK3 12 13 → 17 373 1 h 2−35.7

TK3 13 16 → 25 34 638 85 h 2−51.8

TK3 23 55 → 63 47 068 11 h ≤2−128

2 It seems that the use of the 128 threads was prohibited by the memory usage of
XOR tables (i.e. XOR in extension).

200 S. Delaune et al.

Table 5. Overall results concerning SKINNY-128 with exactly one active cell in the
tweakey.

Nb Rounds Objstep1 Best Pr

TK2 13 25 → 44 2−86.2

TK2 14 31 → 54 ≥2−105.8

TK2 15 35 → 56 ≥2−113.8

TK2 16 40 → 63 ≥2−127.6

TK3 14 19 → 33 2−67

TK3 15 24 → 40 2−81

TK3 16 27 → 48 2−98

TK3 17 31 → 54 2−110

TK3 19 43 → 63 ≤2−128

TK3 20 45 → 63 ≤2−128

TK3 21 48 → 63 ≤2−128

TK3 22 51 → 63 ≤2−128

Our TK2 and TK3 models are based on XOR constraints encoded in intention
(and not using tables) and these experiences have been launched using the 128
threads of our server.

Concerning TK2 and TK3, we were not able to perform all the computations
due to the huge number of Step 1 solutions. Hence we decided to handle only the
Step 1 solutions with exactly one active byte in the round keys in order to limit
the number of truncated characteristics to instantiate. Those results are given in
Table 5. We provide in Appendix B the best TK2 differential characteristic we
found for 16 rounds, and the best TK3 differential characteristic we found for 17
rounds. Note that we do not know if these differential characteristics are optimal
in terms of probability as we were not able to test all the solutions Step 1.

Lessons Learnt. The overall gap is not to find the optimal value of ObjStep1 =
v∗ for a given number of rounds and to enumerate the corresponding overall
solutions if the Step 1 model is sufficiently tight. The real gap is if the value
obtained for ObjStep2 (here equal to 2 × v∗ as the best differential probability
for the S-box is equal to 2−2) is far from the optimal bound then we have to
increase ObjStep1 up to the bound �ObjStep2/2�. Further we are from v∗ in the
Step 1 resolution, more numerous are the Step 1 solutions (in fact this number
grows exponentially as could be seen in Table 4). Thus, the time for the Step 2
resolution becomes the bottleneck.

5 Conclusion

In this paper, we improve the security bounds regarding differential character-
istics search on the block cipher SKINNY. As usually done, we have divided the

Efficient Methods to Search for Best Differential Characteristics on SKINNY 201

search procedure into two steps: Step 1 which abstracts the difference values
into Boolean variables and finds the truncated characteristics with the smallest
number of active S-boxes; and Step 2 which inputs the results of Step 1 to output
the best possible probability instantiating the abstract solutions outputted by
Step 1. Of course, each solution of Step 1 could not always be instantiated in
Step 2.

For Step 1, an ad-hoc method which heavily uses the structure of the
problem is proposed. For solving Step 2, we have implemented a Choco-solver
model. Regarding Step 2, our Choco-solver model is much faster than any other
approaches. It allowed us to find, for the first time, the best (related-tweakey)
differential characteristics in the TK1 model up to 14 rounds for SKINNY-128
and to show there is no differential trail on 15 rounds with a probability better
than 2−128. Regarding the TK2 model, we were able to find the best differential
trails up to 16 rounds. For TK3, we are able to exhibit a differential charac-
teristic up to 17 rounds. Note that in [19] Liu et al. were only able to reach 7
and 9 rounds in the TK1 and TK2 model respectively. Our approach is thus
an important improvement.

A Best (Related-Tweakey) Differential Characteristics
for SKINNY-64

The best SK differential characteristics on 7 rounds of SKINNY-64 with proba-
bility equal to 2−52 is given in Table 6. The best TK1 differential characteristics
on 10 rounds of SKINNY-64 with probability equal to 2−46 is given in Table 7.
The Best TK2 differential characteristics on 13 rounds of SKINNY-64 with prob-
ability equal to 2−55 is given in Table 8. Best TK3 differential characteristics on
15 rounds of SKINNY-64 with probability equal to 2−54 is given in Table 9.

Table 6. The Best SK differential characteristics on 7 rounds of SKINNY-64 with
probability equal to 2−52. The four words represent the four rows of the state and are
given in hexadecimal notation.

Round δXi = Xi ⊕ X ′
i (before SB) δSBXi (after SB) Pr(States)

i = 1 0040 4444 4440 4400 0020 2222 2220 2200 2−2·10

2 0000 0020 0200 2002 0000 0010 0100 1001 2−2·4

3 0010 0000 0000 0001 0080 0000 0000 0008 2−2·2

4 0000 0080 0000 0080 0000 0040 0000 0040 2−2·2

5 0400 0000 0004 0000 0200 0000 0002 0000 2−2·2

6 0000 0200 0200 0000 0000 0100 0100 0000 2−2·2

7 0001 0000 0011 0001 0008 0000 0088 0008 2−2·4

202 S. Delaune et al.

Table 7. The Best TK1 differential characteristics on 10 rounds of SKINNY-64 with
probability equal to 2−46. The four words represent the four rows of the state and are
given in hexadecimal notation.

Round δXi = Xi ⊕ X′
i (before SB) δSBXi (after SB) δTK1i Pr(States)

i = 1 0000 0002 0020 0200 0000 0001 0010 0100 1000 0000 0B80 0000 2−2·3

2 1000 1000 0000 0000 B000 8000 0000 0000 B000 8000 1000 0000 2−2·2

3 0000 0000 0000 0000 0000 0000 0000 0000 0010 0000 B000 8000 −
4 0010 0010 0000 0010 00B0 00A0 0000 00B0 00B0 0080 0010 0000 2−2·3

5 0B00 0000 0002 0000 0100 0000 0001 0000 0000 1000 00B0 0080 2−2·2

6 0000 0100 0000 0000 0000 0800 0000 0000 0000 B800 0000 1000 2−2·1

7 0000 0000 0B00 0000 0000 0000 0100 0000 0000 0010 0000 B800 2−2·1

8 0001 0000 0000 0001 0008 0000 0000 0008 0008 00B0 0000 0010 2−2·2

9 0080 0000 000B 0000 0040 0000 0001 0000 0000 0100 0008 00B0 2−2·2

10 0140 0040 0110 0140 0820 0020 0880 0820 0000 0B08 0000 0100 2−2·7

Table 8. The Best TK2 differential characteristics on 13 rounds of SKINNY-64 with
probability equal to 2−55. The four words represent the four rows of the state and are
given in hexadecimal notation.

Round δXi = Xi ⊕ X′
i (before SB) δSBXi (after SB) δTK1i δTK2i Pr(States)

i = 1 0000 8200 0080 0000 0000 4100 0040 0000 0000 0008 0502 0000 0000 000C 060C 0000 2−2·3

2 4000 0000 0410 4000 2000 0000 02A0 2000 5000 0002 0000 0008 D000 0008 0000 000C 2−2·4

3 0000 A000 0002 0002 0000 6000 0006 0003 0800 0000 5000 0002 0800 0000 D000 0008 2−2·3

4 0630 0000 0000 0600 03F0 0000 0000 0100 0250 0000 0800 0000 01A0 0000 0800 0000 2−3·3

5 1000 0000 0000 0000 9000 0000 0000 0000 8000 0000 0250 0000 1000 0000 01A0 0000 2−2

6 0000 0000 0000 0000 0000 0000 0000 0000 2000 5000 8000 0000 2000 5000 1000 0000 −
7 0000 0000 0000 0000 0000 0000 0000 0000 0080 0000 2000 5000 0020 0000 2000 5000 −
8 00A0 00A0 0000 00A0 0060 0050 0000 0050 0020 0050 0080 0000 0040 00B0 0020 0000 2−2·3

9 0500 0000 000B 0000 0C00 0000 000C 0000 0000 8000 0020 0050 0000 4000 0040 00B0 2−3·2

10 0000 0C00 0000 0000 0000 0200 0000 0000 0000 2500 0000 8000 0000 9700 0000 4000 2−2

11 0000 0000 0B00 0000 0000 0000 0100 0000 0000 0080 0000 2500 0000 0090 0000 9700 2−2

12 0001 0000 0000 0001 000A 0000 0000 0008 0005 0020 0000 0080 000F 0030 0000 0090 2−2·2

13 0080 0000 0001 0000 0040 0000 0008 0000 0000 0800 0005 0020 0000 0300 000F 0030 2−2·2

Efficient Methods to Search for Best Differential Characteristics on SKINNY 203

Table 9. The Best TK3 differential characteristics on 15 rounds of SKINNY-64 with
probability equal to 2−54. The four words represent the four rows of the state and are
given in hexadecimal notation.

Round δXi = Xi ⊕ X ′
i

(before SB)
δSBXi (after SB) δTK1i δTK2i δTK3i Pr(States)

i = 1 0000 0001

4000 0004

0000 0008 2000 0002 0000 080D 0000 0800 0000 0408 0000 0500 0000 0E0D 0000 0C00 2−2·3

2 0000 0000

0000 0020

0000 0000 0000 0010 0008 0000 0000 080D 000B 0000 0000 0408 000E 0000 0000 0E0D 2−2

3 010D 000D

0000 000D

0A0E 0002 0000 0002 0D08 0000 0008 0000 0109 0000 000B 0000 060F 0000 000E 0000 2−2·32−3

4 0020 0000

2000 0000

0030 0000 3000 0000 0000 0008 0D08 0000 0000 0007 0109 0000 0000 000F 060F 0000 2−2·2

5 0000 0030

0030 0000

0000 00C0 00C0 0000 D000 0008 0000 0008 2000 0003 0000 0007 3000 0007 0000 000F 2−3·2

6 0000 C000

000C 0000

0000 2000 0002 0000 0800 0000 D000 0008 0F00 0000 2000 0003 0700 0000 3000 0007 2−2·2

7 0200 0000

0000 0200

0500 0000 0000 0300 08D0 0000 0800 0000 0640 0000 0F00 0000 0B90 0000 0700 0000 2−2·2

8 3000 0000

0000 0000

D000 0000 0000 0000 8000 0000 08D0 0000 E000 0000 0640 0000 B000 0000 0B90 0000 2−3

9 0000 0000

0000 0000

0000 0000 0000 0000 8000 D000 8000 0000 D000 9000 E000 0000 5000 4000 B000 0000 −

10 0000 0000

0000 0000

0000 0000 0000 0000 0080 0000 8000 D000 00C0 0000 D000 9000 0050 0000 5000 4000 −

11 0010 0010

0000 0010

0080 0090 0000 00A0 0080 00D0 0080 0000 00A0 0030 00C0 0000 00A0 0020 0050 0000 2−2·3

12 0A00 0000

0005 0000

0A00 0000 000A 0000 0000 8000 0080 00D0 0000 8000 00A0 0030 0000 A000 00A0 0020 2−22−3

13 0000 0A00

0000 0000

0000 0A00 0000 0000 0000 8D00 0000 8000 0000 5600 0000 8000 0000 D100 0000 A000 2−3

14 0000 0000

0000 0000

0000 0000 0000 0000 0000 0080 0000 8D00 0000 0010 0000 5600 0000 00D0 0000 D100 −

15 0000 0000

0004 0000

0000 0000 0002 0000 000D 0080 0000 0080 000D 00B0 0000 0010 0008 0060 0000 00D0 2−2

B Best (Related-Tweakey) Differential Characteristics
for SKINNY-128

Concerning the best SK differential characteristics on 13 rounds of SKINNY-128,
We obtain the same best SK differential characteristics on 13 rounds of
SKINNY-128 with probability equal to 2−123 given in Table 11 of Appendix D
of [1]. The best TK1 differential characteristics on 14 rounds of SKINNY-128
with probability equal to 2−120 is given in Table 10. The best TK2 differential
characteristics on 16 rounds of SKINNY-128 with probability equal to 2−127.6 we
found is given in Table 11. The best TK3 differential characteristics on 17 rounds
of SKINNY-128 with probability equal to 2−110 we found is given in Table 12.

204 S. Delaune et al.

Table 10. The Best TK1 differential characteristics on 14 rounds of SKINNY-128 with
probability equal to 2−120. The four words represent the four rows of the state and are
given in hexadecimal notation.

Round δXi = Xi ⊕ X ′
i (before SB) δSBXi (after SB) δTK1i Pr(States)

i = 1 02000002 00000200 00020000 00020040 08000008 00000800 00080000 00080004 00000000 00000000 01000000 00000000 2−2·6

2 00000400 08000008 00000000 08000000 00000100 10000010 00000000 10000000 00000100 00000000 00000000 00000000 2−2·4

3 00000010 00000000 10100000 00000000 00000040 00000000 40400000 00000000 00000000 00000000 00000100 00000000 2−2·3

4 00004000 00000040 00004040 00004000 00000400 00000004 00000404 00000400 00000000 01000000 00000000 00000000 2−2·5

5 04000400 00000400 00050000 04040400 05000500 00000100 00050000 05050500 00000000 00000000 00000000 01000000 2−3·62−2

6 00050500 05000500 00000004 05000505 00050500 01000100 00000005 05000505 00000000 00000100 00000000 00000000 2−3·62−2·2

7 00050005 00050500 00040000 00000500 00050005 00050500 00050000 00000500 00000000 00000000 00000000 00000100 2−3·6

8 00000000 00050005 00000500 00050000 00000000 00010005 00000500 00050000 00000000 00010000 00000000 00000000 2−3·32−2

9 00000000 00000000 00000000 05000000 00000000 00000000 00000000 05000000 00000000 00000000 00000000 00010000 2−3

10 00000005 00000000 00000000 00000000 00000001 00000000 00000000 00000000 00000001 00000000 00000000 00000000 2−2

11 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 00000000 −
12 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 00000000 00000000 −
13 00000000 00000000 01000000 00000000 00000000 00000000 20000000 00000000 00000000 00000000 00000000 00000001 2−2

14 00002000 00000000 00002000 00002000 00008000 00000000 00008000 00008000 00010000 00000000 00000000 00000000 2−2·3

Table 11. The Best TK2 differential characteristics we found on 16 rounds of
SKINNY-128 with probability equal to 2−127.6. The four words represent the four rows
of the state and are given in hexadecimal notation.

Round δXi = Xi ⊕ X ′
i (before SB) δTK1i Pr(States)

δSBXi (after SB) δTK2i

i = 1 00000000 00404010 40400000 40000000 00000000 00000000 00000000 00007700 2−2·6

00000000 00040440 04040000 04000000 00000000 00000000 00000000 00003900

2 00000400 00000000 40000000 00000404 00000000 00770000 00000000 00000000 2−2·32−3

00000500 00000000 04000000 00000101 00000000 00730000 00000000 00000000

3 00010000 00000500 00000000 00000100 00000000 00000000 00000000 00770000 2−2·22−3

00200000 00000500 00000000 00002000 00000000 00000000 00000000 00730000

4 00000000 00200000 00000005 00200000 00000077 00000000 00000000 00000000 2−2·22−3

00000000 00800000 00000005 00800000 000000E7 00000000 00000000 00000000

5 80050090 00000090 00058000 00050090 00000000 00000000 00000077 00000000 2−2·8

03010002 00000002 00010200 00010003 00000000 00000000 000000E7 00000000

6 00010303 03010002 00000001 01010003 00000000 00000077 00000000 00000000 2−2·62−3·4

00202020 20200009 00000020 20200020 00000000 000000CE 00000000 00000000

7 20000000 00202020 B0002000 00002020 00000000 00000000 00000000 00000077 2−2·62−2.42−3

80000000 00808080 80008000 00009380 00000000 00000000 00000000 000000CE

8 00930000 80000000 00000080 00008000 00770000 00000000 00000000 00000000 2−2·32−6

00EA0000 03000000 00000003 00000300 009D0000 00000000 00000000 00000000

9 00000000 00000000 00000000 00030000 00000000 00000000 00770000 00000000 2−5

00000000 00000000 00000000 00BC0000 00000000 00000000 009D0000 00000000

10 BC000000 00000000 00000000 00000000 77000000 00000000 00000000 00000000 2−6

4C000000 00000000 00000000 00000000 3B000000 00000000 00000000 00000000

11 00000000 00000000 00000000 00000000 00000000 00000000 77000000 00000000 −
00000000 00000000 00000000 00000000 00000000 00000000 3B000000 00000000

12 00000000 00000000 00000000 00000000 00007700 00000000 00000000 00000000 −
00000000 00000000 00000000 00000000 00007700 00000000 00000000 00000000

13 00000000 00000000 00000000 00000000 00000000 00000000 00007700 00000000 −
00000000 00000000 00000000 00000000 00000000 00000000 00007700 00000000

14 0000000 00000000 00000000 00000000 00000000 77000000 00000000 00000000 −
00000000 00000000 00000000 00000000 00000000 EF000000 00000000 00000000

15 00000000 00000000 00980000 00000000 00000000 00000000 00000000 77000000 2−5

00000000 00000000 00420000 00000000 00000000 00000000 00000000 EF000000

16 00000042 00000000 00000042 00000042 − 2−2.4·3

00000008 00000000 00000008 00000008

Efficient Methods to Search for Best Differential Characteristics on SKINNY 205

Table 12. The Best TK3 differential characteristics we found on 17 rounds of
SKINNY-128 with probability equal to 2−110. The four words represent the four rows of
the state and are given in hexadecimal notation.

Round δXi = Xi ⊕ X ′
i (before SB) δTK1i Pr(States)

δSBXi (after SB) δTK2i

δTK3i

i = 1 00000200 00320000 08000000 00000808 00000000 00BA0000 00000000 00000000 2−2·32−3·2

00000800 00920000 18000000 00001010 00000000 00430000 00000000 00000000

00000000 00730000 00000000 00000000

2 00100000 00000800 00000000 00001000 00000000 00000000 00000000 00BA0000 2−2·3

00400000 00001000 00000000 00004000 00000000 00000000 00000000 00430000

00000000 00000000 00000000 00730000

3 00000000 00400000 00000010 00400000 000000BA 00000000 00000000 00000000 2−2·3

00000000 00040000 00000040 00040000 00000086 00000000 00000000 00000000

00000039 00000000 00000000 00000000

4 04400005 00000005 00400400 00400005 00000000 00000000 000000BA 00000000 2−2·62−3·2

05040001 00000001 00040100 00040005 00000000 00000000 00000086 00000000

00000000 00000000 00000039 00000000

5 00040505 05040001 00000004 04040005 00000000 000000BA 00000000 00000000 2−2·92−3

00010101 01010028 00000001 01010001 00000000 0000000D 00000000 00000000

00000000 0000009C 00000000 00000000

6 01000000 00010101 03000100 00000101 00000000 00000000 00000000 000000BA 2−2·62−32−4

20000000 00202020 20002000 0000B320 00000000 00000000 00000000 0000000D

00000000 00000000 00000000 0000009C

7 00B30000 20000000 00000020 00002000 00BA0000 00000000 00000000 00000000 2−2·32−7

00EE0000 80000000 00000080 00008000 001A0000 00000000 00000000 00000000

004E0000 00000000 00000000 00000000

8 00000000 00000000 00000000 00800000 00000000 00000000 00BA0000 00000000 2−2

00000000 00000000 00000000 00030000 00000000 00000000 001A0000 00000000

00000000 00000000 004E0000 00000000

9 03000000 00000000 00000000 00000000 BA000000 00000000 00000000 00000000 2−4

29000000 00000000 00000000 00000000 34000000 00000000 00000000 00000000

A7000000 00000000 00000000 00000000

10 00000000 00000000 00000000 00000000 00000000 00000000 BA000000 00000000 −
00000000 00000000 00000000 00000000 00000000 00000000 34000000 00000000

00000000 00000000 A7000000 00000000

11 00000000 00000000 00000000 00000000 0000BA00 00000000 00000000 00000000 −
00000000 00000000 00000000 00000000 00006900 00000000 00000000 00000000

0000D300 00000000 00000000 00000000

12 00000000 00000000 00000000 00000000 00000000 00000000 0000BA00 00000000 −
00000000 00000000 00000000 00000000 00000000 00000000 00006900 00000000

00000000 00000000 0000D300 00000000

13 00000000 00000000 00000000 00000000 00000000 BA000000 00000000 00000000 −
00000000 00000000 00000000 00000000 00000000 D3000000 00000000 00000000

00000000 69000000 00000000 00000000

14 00000000 00000000 00000000 00000000 00000000 00000000 00000000 BA000000 −
00000000 00000000 00000000 00000000 00000000 00000000 00000000 D3000000

00000000 00000000 00000000 69000000

15 0000000 00000000 00000000 00000000 00000000 0000BA00 00000000 00000000 −
00000000 00000000 00000000 00000000 00000000 0000A700 00000000 00000000

00000000 00003400 00000000 00000000

16 00000000 00000000 00000029 00000000 00000000 00000000 00000000 0000BA00 2−3

00000000 00000000 00000030 00000000 00000000 00000000 00000000 0000A700

00000000 00000000 00000000 00003400

17 00300000 00000000 00300000 00300000 − 2−2·3

00400000 00000000 00400000 00400000

206 S. Delaune et al.

References

1. Abdelkhalek, A., Sasaki, Y., Todo, Y., Tolba, M., Youssef, A.M.: MILP model-
ing for (large) s-boxes to optimize probability of differential characteristics. IACR
Trans. Symmetric Cryptol. 2017(4), 99–129 (2017)

2. Alfarano, G.N., Beierle, C., Isobe, T., Kölbl, S., Leander, G.: ShiftRows alternatives
for AES-like ciphers and optimal cell permutations for Midori and SKINNY. IACR
Trans. Symmetric Cryptol. 2018(2), 20–47 (2018). https://doi.org/10.13154/tosc.
v2018.i2.20-47

3. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 123–
153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 5

4. Biham, E.: New types of cryptanalytic attacks using related keys. In: Helleseth,
T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48285-7 34

5. Biham, E., Shamir, A.: Differential cryptanalysis of feal and n-hash. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 1–16. Springer, Heidelberg
(1991). https://doi.org/10.1007/3-540-46416-6 1

6. Biryukov, A., Nikolić, I.: Automatic search for related-key differential character-
istics in byte-oriented block ciphers: application to AES, Camellia, Khazad and
others. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 322–344.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 17

7. Delaune, S., Derbez, P., Huynh, P., Minier, M., Mollimard, V., Prud’Homme, C.:
SKINNY with scalpel comparing tools for differential analysis (April 2021). https://
hal.archives-ouvertes.fr/hal-03040548, working paper or preprint

8. Demeulenaere, J., et al.: Compact-table: efficiently filtering table constraints with
reversible sparse bit-sets. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 207–
223. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1 14

9. Eichlseder, M., Nageler, M., Primas, R.: Analyzing the linear keystream biases in
AEGIS. IACR Trans. Symmetric Cryptol. 2019(4), 348–368 (2019)

10. Fouque, P.-A., Jean, J., Peyrin, T.: Structural evaluation of AES, and chosen-key
distinguisher of 9-Round AES-128. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8042, pp. 183–203. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40041-4 11

11. Gérault, D., Lafourcade, P., Minier, M., Solnon, C.: Revisiting AES related-key
differential attacks with constraint programming. Inf. Process. Lett. 139, 24–29
(2018)

12. Gerault, D., Lafourcade, P., Minier, M., Solnon, C.: Computing AES related-key
differential characteristics with constraint programming. Artif. Intell. 278, 103183
(2020)

13. Gerault, D., Minier, M., Solnon, C.: Constraint programming models for chosen
key differential cryptanalysis. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp.
584–601. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1 37

14. Jean, J.: TikZ for cryptographers (2016). https://www.iacr.org/authors/tikz/
15. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY

framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-
8 15

16. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995). https://doi.org/
10.1007/3-540-60590-8 16

https://doi.org/10.13154/tosc.v2018.i2.20-47
https://doi.org/10.13154/tosc.v2018.i2.20-47
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/3-540-48285-7_34
https://doi.org/10.1007/3-540-46416-6_1
https://doi.org/10.1007/978-3-642-13190-5_17
https://hal.archives-ouvertes.fr/hal-03040548
https://hal.archives-ouvertes.fr/hal-03040548
https://doi.org/10.1007/978-3-319-44953-1_14
https://doi.org/10.1007/978-3-642-40041-4_11
https://doi.org/10.1007/978-3-642-40041-4_11
https://doi.org/10.1007/978-3-319-44953-1_37
https://www.iacr.org/authors/tikz/
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/3-540-60590-8_16

Efficient Methods to Search for Best Differential Characteristics on SKINNY 207

17. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher family.
In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 161–185.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6 8

18. Lafitte, F.: Cryptosat: a tool for sat-based cryptanalysis. IET Inf. Secur. 12(6),
463–474 (2018)

19. Liu, G., Ghosh, M., Song, L.: Security analysis of SKINNY under related-tweakey
settings (long paper). IACR Trans. Symmetric Cryptol. 2017(3), 37–72 (2017).
https://doi.org/10.13154/tosc.v2017.i3.37-72

20. Matsui, M.: On correlation between the order of S-boxes and the strength of DES.
In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375. Springer,
Heidelberg (1995). https://doi.org/10.1007/BFb0053451

21. Mouha, N., Preneel, B.: A proof that the ARX cipher salsa20 is secure against
differential cryptanalysis. IACR Cryptol. ePrint Arch. 2013, 328 (2013). http://
eprint.iacr.org/2013/328

22. Prud’homme, C., Fages, J.G., Lorca, X.: Choco documentation. TASC, INRIA
Rennes, LINA CNRS UMR 6241, COSLING S.A.S. (2016). http://www.choco-
solver.org

23. Rossi, F., Beek, P.V., Walsh, T.: Handbook of Constraint Programming (Founda-
tions of Artificial Intelligence). Elsevier Science Inc., New York (2006)

24. Sasaki, Yu., Todo, Y.: New impossible differential search tool from design and
cryptanalysis aspects. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10212, pp. 185–215. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 7

25. Song, L., Qin, X., Hu, L.: Boomerang connectivity table revisited. Application to
SKINNY and AES. IACR Trans. Symmetric Cryptol. 2019(1), 118–141 (2019).
https://doi.org/10.13154/tosc.v2019.i1.118-141

26. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 24

27. Sun, L., Wang, W., Wang, M.: Automatic search of bit-based division property
for ARX ciphers and word-based division property. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 128–157. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 5

28. Sun, L., Wang, W., Wang, M.: More accurate differential properties of LED64 and
Midori64. IACR Trans. Symmetric Cryptol. 2018(3), 93–123 (2018)

29. Sun, S., et al.: Analysis of AES, SKINNY, and others with constraint programming.
In: 24th International Conference on Fast Software Encryption (2017)

30. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-45611-8 9

31. Zhao, B., Dong, X., Meier, W., Jia, K., Wang, G.: Generalized related-key rectangle
attacks on block ciphers with linear key schedule: applications to SKINNY and
GIFT. Des. Codes Cryptogr. 88(6), 1103–1126 (2020). https://doi.org/10.1007/
s10623-020-00730-1

https://doi.org/10.1007/978-3-662-47989-6_8
https://doi.org/10.13154/tosc.v2017.i3.37-72
https://doi.org/10.1007/BFb0053451
http://eprint.iacr.org/2013/328
http://eprint.iacr.org/2013/328
http://www.choco-solver.org
http://www.choco-solver.org
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.13154/tosc.v2019.i1.118-141
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1007/978-3-319-70694-8_5
https://doi.org/10.1007/978-3-662-45611-8_9
https://doi.org/10.1007/s10623-020-00730-1
https://doi.org/10.1007/s10623-020-00730-1

	Efficient Methods to Search for Best Differential Characteristics on SKINNY
	1 Introduction
	2 Cipher Under Study: SKINNY-n
	3 Models and Results for Step 1
	3.1 Possible Transitions
	3.2 Ad-hoc Models for Step 1
	3.3 Results for Step 1
	3.4 Other Approaches

	4 Modeling Step 2 with CP
	4.1 Constraint Programming
	4.2 Modeling Step 2 with CP
	4.3 Step 2 Performance Results

	5 Conclusion
	A Best (Related-Tweakey) Differential Characteristics for SKINNY-64
	B Best (Related-Tweakey) Differential Characteristics for SKINNY-128
	References

