
An Efficient Passive-to-Active Compiler
for Honest-Majority MPC over Rings

Mark Abspoel1, Anders Dalskov2(B), Daniel Escudero3, and Ariel Nof4

1 CWI, Amsterdam, The Netherlands
abspoel@cwi.nl

2 Partisia, Aarhus, Denmark
3 Aarhus University, Aarhus, Denmark

escudero@cs.au.dk
4 Technion, Haifa, Israel

ariel.nof@cs.technion.ac.il

Abstract. Multiparty computation (MPC) over rings such as Z232 or
Z264 has received a great deal of attention recently due to its ease of
implementation and attractive performance. Several actively secure pro-
tocols over these rings have been implemented, for both the dishonest
majority setting and the setting of three parties with one corruption.
However, in the honest majority setting, no concretely efficient protocol
for arithmetic computation over rings has yet been proposed that allows
for an arbitrary number of parties.

We present a novel compiler for MPC over the ring Z2k in the hon-
est majority setting that turns a semi-honest protocol into an actively
secure protocol with very little overhead. The communication cost per
multiplication is only twice that of the semi-honest protocol, making the
resultant actively secure protocol almost as fast.

To demonstrate the efficiency of our compiler, we implement both an
optimized 3-party variant (based on replicated secret-sharing), as well as
a protocol for n parties (based on a recent protocol from TCC 2019). For
the 3-party variant, we obtain a protocol which outperforms the previous
state of the art that we can experimentally compare against. Our n-party
variant is the first implementation for this particular setting, and we show
that it performs comparably to the current state of the art over fields.

1 Introduction

Multiparty computation (MPC) is a cryptographic tool that allows multiple
parties to compute a given function on private inputs whilst revealing only its
output; in particular, parties’ inputs and the intermediate values of the compu-
tation remain hidden. MPC has by now been studied for several decades, and
different protocols have been developed throughout the years.

Most MPC protocols are “general purpose”, meaning that they can in prin-
ciple compute any computable function. This generality is typically obtained by

A. Dalskov—Work done while author was a student at Aarhus University.

c© Springer Nature Switzerland AG 2021
K. Sako and N. O. Tippenhauer (Eds.): ACNS 2021, LNCS 12727, pp. 122–152, 2021.
https://doi.org/10.1007/978-3-030-78375-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78375-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-78375-4_6

An Efficient Passive-to-Active Compiler for Honest-Majority MPC 123

representing the function as an arithmetic circuit modulo some integer p. Note
that implied in this representation, is a set of integers on which computation can
be performed. Traditionally, MPC protocols are classified as being either boolean
or arithmetic, where the former have p = 2 and the latter has p > 2. However,
most of the existing arithmetic MPC protocols, independently of their security,
require the modulus to be a prime (and for some protocols this prime must be
large) [5,6,14,18,22,29,31].

1.1 Secure Computation over Rings

It was only recently that practical protocols in the arithmetic setting for a non-
prime modulus were developed. The SPDZ2k protocol securely evaluates func-
tions in the dishonest majority case [15], while several other works focus on hon-
est majority case for small number of parties [2,14,21,22]. Computation over Z2k

is appealing as it is generally more natural than computation modulo a prime,
especially for powers like 232, 264 or 2128. This type of computation has the poten-
tial to lead to more efficient protocols with respect to computation over fields, as
in practical settings it avoids a software implementation of a modular reduction
operation by using native data-types existing in modern architectures. For exam-
ple, computing fast reductions modulo an n-bit Mersenne prime requires com-
puting a product of two n-bit numbers without overflow.1 Thus, for a ≈128-bit
prime, this requires arithmetic on 256-bit numbers. In contrast, arithmetic inZ2128

is supported by most modern compilers. Furthermore, many MPC applications
require bitwise operations, like secure comparison to be able to perform branch-
ing, or secure truncation to be able to handle fixed-point data. This is particularly
relevant for machine learning applications, for example. Protocols based on com-
putation modulo 2k have the potential to execute these operations much more
efficiently, given the existing compatibility between binary computation, that is,
computation modulo 2, and operations modulo a larger power of 2.

The improvement in performance of ring-based protocols was observed exper-
imentally for the aforementioned SPDZ2k protocol in [17]. More recently, the
work by Dalskov et al. [16] demonstrated that the same applies for honest major-
ity protocols, where the protocols over rings presented in that work outperform
similar ones over fields by a factor of around 2.

1.2 Our Contributions

As discussed above, it is a natural and well-motivated question to study the
efficiency of MPC protocols over Z2k . In spite of the benefits that this algebraic
structure may provide, protocol design becomes much harder due to the unde-
sired properties of this ring, like the existence of zero-divisors. For example, to
date, no concretely-efficient protocol over Z2k that works for any number of par-
ties has been proposed in the honest majority setting. This is particular critical
when active adversaries are considered, as techniques to ensure security in this

1 This reduction uses the identity x · y = a2n + b ≡ a + b mod 2n − 1 for some a, b.
However this requires computing and storing the product x · y without overflow.

124 M. Abspoel et al.

case typically rely on properties of fields. In this work, we push the knowledge
barrier on this area by presenting a generic compiler that transforms a passively
secure protocol for computation over Z2k+s in the honest majority setting, to a
protocol over the ring Z2k that is actively secure with abort and provides roughly
s bits of statistical security. Summarizing our contributions:

– Our compiler simplifies protocol design by only requiring that the underlying
passively secure protocol is secure up to an additive attack, which is a con-
dition that is much easier to ensure. For example, this was shown to hold for
multiple well-known protocols over fields in [24], a result which we extend in
our paper to recent protocols over rings.

– Our compiler is highly efficient and the overhead is essentially just twice that
of the passively secure protocol. More precisely, each multiplication just needs
to be evaluated twice.

– Our compiler preserves all the properties of the passively secure protocol. In
particular, we obtain the first actively secure protocols where the cost of dot
products is independent of their length without relying on expensive function
dependent preprocessing such as is the case for prior work [13,21,22,34].

– Finally, we provide two instantiations and show through experiments that
they are concretely efficient:
1. Our first instantiation is for 3 parties and is based on replicated secret

sharing. We show experimentally as well as theoretically that it outper-
forms other 3 party protocols both over the ring Z2k+s and over fields
Zp with log(p) ≈ k + s. This gap of s bits for the field case is necessary
when considering applications that require more complex primitives like
secure comparison or truncation, as traditional techniques for these tasks
(e.g. [12]) require such a gap to guarantee privacy.

2. Our second instantiation is for an arbitrary number n of parties, and
is based on the work by Abspoel et al. [2]. It is the first practical (in
the sense of having been experimentally demonstrated to be concretely
efficient) example of such a protocol for Z2k with active security and an
honest majority. The protocol from [2] requires 3(k + s) log n bits per
multiplication in the online phase; however we describe a novel optimiza-
tion that removes the log n factor that might be of independent interest.
Although our protocol does not outperform its field counterpart from [14]
(it is merely comparable), our results illustrate that the a priori benefits
of working over Z2k may be outweighed by the complexity of computing
over the so-called Galois ring extensions, which are required to make these
protocols work. This observation is relevant as many recent works, such
as [8,9,34], rely on Galois ring extensions of large degree without taking
into account their computational overhead.

Outline. Section 2 introduces some of the definitions we will be needing and
Sect. 3 introduces the building blocks we need in our compiler. In Sect. 4 our
main protocol (i.e., our compiler) is presented, as well as the formal statements
of security and security proofs. We then present the n party instantiation in

An Efficient Passive-to-Active Compiler for Honest-Majority MPC 125

Sect. 5, and a three party instantiation in Sect. 6. Finally, in Sect. 7 we present
our experimental results and compare our results with prior works.

1.3 Related Work

The only previous general compiler with concrete efficiency over rings, to the
best of our knowledge, is the compiler of [20], which was improved by [21].
However, their compiler does not preserve the adversary threshold when moving
from passive to active security. In addition, in [20] and [21] the compiler was
instantiated for the 3-party case only.

The only concretely efficient protocol for arithmetic computation over rings
that works for any number of parties is the SPDZ2k protocol [15] which was
proven to be practical in [17]. This protocol is for the dishonest majority and
thus requires the use of much heavier machinery, which makes it orders of mag-
nitudes slower than ours. However, they deal with a more complicated setting
and provide stronger security.

The work of [30] provides a method for working over small fields (e.g., F2)
which improves upon the Chida et al. protocol [14]. However, their method is
not suited for the rings that we consider in our work.

In the three-party setting with one corruption, there are several works which
provide high efficiency for arithmetic computations over rings. The Sharemind
protocol [7] is being used to solve real-world problems but provides only passive
security. The actively secure protocol of [22], which was optimized and imple-
mented in [3], is based on the “cut–and–choose” approach and will be favorable
when working over small rings. The actively secure three-party protocol of [21]
is the closest to our protocol in the sense that they also focus on efficiency for
large rings. The overall communication per multiplication gate of their protocol
is 3(k + s) bits sent by each party, which is higher than ours by (k + s) bits.
We provide a detailed empirical comparison with [21] in Sect. 7.3. Finally, a new
promising direction was presented by [9], but their verification step takes sev-
eral seconds for a 1-million gate over fields, and this is expected to be orders of
magnitude worse for rings due to the need of large-degree Galois ring extensions.
The protocols of [13,34] have a slightly higher bandwidth overall than [3], but
they focus on minimizing online (input-dependent) cost and they tailor their
protocols to specific applications for machine learning. Also, [34] uses the tech-
niques from [9] for the preprocessing, so it is unlikely to provide any efficiency
in practice.

Finally, it is important to mention that the techniques from [9], which work
for 3 parties, can be generalized to multiple parties as a passive-to-active com-
piler. This has been done in [28] over fields, and it is not hard to see that these
techniques can be made to work over Z2k by considering large-degree Galois ring
extensions, as done in [9]. However, this method is not practical as even a small
degree extension can be quite expensive, as shown in this work. Furthermore,
the round complexity of the passively secure protocol is not preserved by this
transformation.

126 M. Abspoel et al.

2 Preliminaries and Definitions

Notation. Let P1, . . . , Pn denote the n parties participating in the computation,
and let t denote the number of corrupted parties. In this work, we assume an
honest majority, hence t < n

2 . Throughout the paper, we use H to denote the
subset of honest parties and C to denote the subset of corrupted parties. We use
[n] to denote the set {1, . . . , n}. ZM denotes the ring of integers modulo M , and
the congruence x ≡ y mod 2� is denoted by x ≡� y.

We use the standard definition of security based on the ideal/real model
paradigm [10,25], with security formalized for non-unanimous abort. This means
that the adversary first receives the output, and then determines for each honest
party whether they will receive abort or receive their correct output. It is easy
to modify our protocols so that the honest parties unanimously abort by run-
ning a single (weak) Byzantine agreement at the end of the execution [26]. For
simplicity, we omit this step from the description of our protocols. Our protocol
is cast in the synchronous model of communication, in which it is assumed that
the parties share a common clock and protocols can be executed in rounds.

2.1 Linear Secret Sharing and Its Properties

Let � be a positive integer. A perfect (t, n)-secret-sharing scheme (SSS) over
Z2� distributes an input x ∈ Z2� among the n parties P1, . . . , Pn, giving shares
to each one of them in such a way that any subset of at least t + 1 parties
can reconstruct x from their shares, but any subset of at most t parties cannot
learn anything about x from their shares. We denote by share(x) the sharing
interactive procedure and by open([[x]]) the procedure to open a sharing and
reveal the secret. The share procedure may take also in addition to x, a set
of shares {xi}i∈J for J ⊂ [n] and |J | ≤ t, such that share(x, {xi}i∈J) satisfies
[[x]] = (x1′ , . . . , xn′), with xi′ = xi for i ∈ J . The open procedure may take an
index i as an additional input. In this case, the secret is revealed to Pi only. In
case the sharing [[x]] is not correct as defined below, open([[x]]) will output ⊥. An
SSS is linear if it allows the parties to obtain shares of linear combinations of
secret-shared values without interaction.

Our compiler applies to any linear SSS over Z2k that has a multiplication
protocol that is secure against additive attacks, as defined in Sect. 2.2. The only
extra, non-standard properties required by our compiler are the following (for a
formalization of the requirements of the SSS, see the full version of this work):

Modular Reduction. We assume that the open procedure is compatible with
modular reduction, meaning that for any 0 ≤ �′ ≤ � and any x ∈ Z2� ,
reducing each share in [[x]]� modulo 2�′

yields shares [[x mod 2�′
]]�′ . We denote

this by [[x]]� → [[x]]�′ .

An Efficient Passive-to-Active Compiler for Honest-Majority MPC 127

Multiplication by 1/2. Given a shared value [[x]]�, we assume if all the shares
are even then shifting these shares to the right yields shares [[x′]]�−1, where
x′ = x/2.2

Throughout the entire paper, we set the threshold for the secret-sharing
scheme to be 	n−1

2
, and we denote by t the number of corrupted parties. Now we
define what it means for the parties to have correct shares of some value. Let J be
a subset of honest parties of size t + 1, and denote by val([[v]])J the value obtained
by these parties after running the open protocol, where no corrupted parties or
additional honest parties participate, i.e. open([[v]]J). Note that val([[v]])J may
equal ⊥ and in this case we say that the shares held by the honest parties are
not valid. Informally, a secret sharing is correct if every subset of t + 1 honest
parties reconstruct the same value (which is not ⊥).

2.2 Secure Multiplication up to Additive Attacks [23,24]

Our construction works by running a multiplication protocol (for multiplying two
values that are shared among the parties) that is not fully secure in the pres-
ence of a malicious adversary and then running a verification step that enables
the honest parties to detect cheating. In order to achieve this, we start with a
multiplication protocol with the property that the adversary’s ability to cheat
is limited to carrying out a so-called “additive attack” on the output. Formally,
we say that a multiplication protocol is secure up to an additive attack if it real-
izes the functionality Fmult, which receives input sharings [[x]] and [[y]] from the
honest parties, and an additive error value d from the adversary, and outputs a
sharing of x · y + d. Since the corrupted parties can determine their own shares
in the protocol, the functionality allows the adversary to provide the shares of
the corrupted parties, but this reveals nothing about the secret-shared value.

The requirements defined by this functionality can be met by several semi-
honest multiplication protocols over Z2� . In this work we focus on two of them in
particular: one based on replicated secret sharing, and the other a more recent
protocol of Abspoel et al. [2], which extends Shamir’s secret sharing to the setting
of Z2� .

In addition to the above, we consider a similar functionality FDotProduct that,
instead of computing one single multiplication, allows the parties to securely
compute the dot product of two vectors of shares, where the adversary is allowed
to inject an additive error to the final output. As in [14], we will show that the
functionality can be realized at almost the same cost as Fmult.

2 If all the shares [[x]]� are even then these shares may be written as [[x]]� = 2 · [[y]]�,
which, by the homomorphism property, are shares of 2 · y. Since these are shares of
x as well, this shows that x ≡� 2 · y, so x is even.

128 M. Abspoel et al.

3 Building Blocks and Sub-protocols

Our compiler requires a series of building blocks in order to operate. These
include generation of random shares and public coin-tossing, as well as broadcast.
Furthermore, a core step of our compiler is checking that a secret-shared value
is zero, leaking nothing more than this binary information. This is not easy
to instantiate over Z2k , and we discuss this in Sect. 3.1. We stress that our
presentation here is very general and it assumes nothing about the underlying
secret-sharing scheme beyond the properties stated in Sect. 2.1.

Frand – Generating Random Coins. We define the ideal functionality Frand to
generate a sharing of a random value unknown to the parties. The function-
ality lets the adversary choose the corrupted parties’ shares, which together
with the random secret chosen by the functionality, are used to compute the
shares of the honest parties. The way to compute this functionality depends
on the specific secret-sharing scheme that is being used, and we discuss con-
crete instantiations later on.

Fcoin – Generating Random Coins. Fcoin(�) is an ideal functionality that
chooses a random element from Z2� and hands it to all parties.

Fbc – Broadcast with Abort. With this functionality, a given party sends a
message to all other parties, with the guarantee that all the honest parties
agree on the same value. Furthermore, if the sender is honest, the agreed-
upon value is precisely the one that the sender sent. The protocol may abort,
and can be instantiated using the well-known echo-broadcast protocol, where
the parties echo the message they received and send it the other parties.

Finput – Secure Sharing of Inputs. This is a functionality that allows a party
to distribute consistent shares of its input. This can be instantiated generi-
cally by sampling [[r]] using Frand, reconstructing this value to the party who
will provide input x, and letting this party broadcast the difference x − r.
The parties can then compute the shares [[x]] = (x − r) + [[r]].

3.1 Checking Equality to 0

For our compiler we require a functionality FCheckZero(�), which receives [[v]]H�
from the honest parties, uses them to compute v and sends accept to all parties
if v ≡� 0. Else, if v �≡� 0, the functionality sends reject.

A simple way to approach this problem when working over a field is sampling
a random multiplicative mask [[r]], multiply [[r ·v]] = [[r]] · [[v]], open r ·v and check
that it is equal to zero. Clearly, since r is random then r · v looks also random
if v �= 0. However, this technique does not work over the ring Z2� : for example,
if v is a non-zero even number then r · v is always even, which reveals too much
about v. In this section we present a generic protocol to solve the problem of
checking equality of zero over the ring, which is unfortunately more expensive
and complicated than the protocol over fields described above. On the upside,
this check is only called once in a full execution of the main protocol and so the

An Efficient Passive-to-Active Compiler for Honest-Majority MPC 129

complexity of this technique is amortized away. Furthermore, for 3 parties for
example, one can get a much more efficient solution, as we show in Sect. 6.

Our general protocol to compute FCheckZero is described in Protocol 1. We
consider two functionalities, FCorrectMult and FrandBit, that compute correct mul-
tiplications and sample shared random bits, respectively.

We have the following proposition.

Proposition 1. Protocol 1 securely computes FCheckZero with abort in the
(FrandBit,FCorrectMult)-hybrid model in the presence of malicious adversaries who
control t < n/2 parties.

Protocol 1 Checking Equality to 0

Input: The parties hold a sharing [[v]]�.

The protocol:

1. The parties call FrandBit to get � random shared bits [[r0]]�, . . . , [[r�−1]]�.
2. The parties bit-decompose v:

(a) The parties compute [[r]]� =
∑�−1

i=0 2i · [[ri]]�.
(b) The parties call c = open([[v]]� + [[r]]�) and bit-decompose this value as (c0, . . . , c�−1).
(c) The parties locally convert [[ri]]� → [[ri]]1 for i = 1, . . . , � − 1.

3. The parties check that all the bits of v mod 2� are zero:

(a) The parties use FCorrectMult(1) to compute
∨�−1

i=0 ([[ri]]1 ⊕ ci) and open this result.
(b) If the opened value above is equal to 0 then the parties output accept. Otherwise they

output reject.

Correct Multiplication. We consider a functionality FCorrectMult, that is sim-
ilar to Fmult, except it does not allow additive errors. Our protocol to instantiate
this functionality is based on a technique known as “sacrificing”. The idea is
to generate correct random multiplication triples, which are then consumed to
multiply the inputs. This is done by calling Frand three times to obtain random
shares [[a]], [[b]], [[a′]], calling Fmult twice to obtain [[a · b]] and [[a′ · b]], and using one
triple to check the correctness of the other. Some modifications are needed in
order to make this work over the ring Z2� for which we use the “SPDZ2k trick”
from [15]. This requires us to perform the check over the ring Z2�+s , thereby
achieving a statistical error of 2−s. The construction is presented in detail in
Protocol 2.

Note that the protocol can be divided into two stages: an offline phase where
the multiplication triple is generated, and an online phase where the triple is used
to compute the product of the given shares. Thus, an efficient implementation
would batch all the preprocessing together, and then proceed to consume these
triples when the actual multiplication is required.

We remark that other approaches to produce random triples, such as “cut–
and–choose”, would work here as well. However, the “cut–and–choose” method
becomes efficient only when many triples are being generated together—much
more than what is needed by our protocol (for example, in [22], to achieve good
parameters for the “cut–and–choose” process which yield low bandwidth, 220

130 M. Abspoel et al.

triples are generated together). Thus, the sacrificing approach is favorable in our
setting.

It can be easily checked that w in the protocol equals d′ − r · d, where d′ and
d are the additive errors from the two calls to Fmult. The following lemma shows
that d cannot be non-zero with non-negligible probability, which shows that
the triple ([[a]]�+s, [[b]]�+s, [[c]]�+s) is correct modulo 2k. From this, the security of
Protocol 2 follows.

Lemma 1 ([15]). If the check at the end of the first step in Protocol 2 passes,
then the additive error d ∈ Z2�+s that A sent to Fmult is zero modulo 2� with
probability at least 1 − 2−s.

Protocol 2 Correct Multiplication

Inputs: Two shares [[x]]� and [[y]]� to be multiplied.

The protocol:

1. Generate a multiplication triple via sacrificing.
(a) The parties call Frand(� + s) three times to obtain sharings [[a]]�+s, [[a′]]�+s, [[b]]�+s.
(b) The parties call Fmult(� + s) on input [[a]]�+s and [[b]]�+s to obtain shares [[c]]�+s, and

on input [[a′]]�+s and [[b]]�+s to obtain shares [[c′]]�+s.
(c) The parties call Fcoin(s) to obtain a random element r ∈ Z2s .
(d) The parties execute open(r · [[a]]�+s − [[a′]]�+s) = a′′.
(e) The parties execute open(a′′ ·[[b]]�+s −r ·[[c]]�+s+[[c′]]�+s) = w and check that w ≡�+s 0.
(f) If the check in the previous step has failed, the parties abort. Otherwise they compute

[[π]]�+s → [[π]]� for π ∈ {a, b, c}, take ([[a]]�, [[b]]�, [[c]]�) as a valid triple and continue to
the next step.

2. Use the generated triple to multiply the input shares.
(a) The parties execute open([[x]]� − [[a]]�) = u and open([[y]]� − [[b]]�) = v.
(b) The parties locally compute [[z]]� = [[c]]� + u · [[b]]� + v · [[a]]� + u · v.

Outputs: The parties output the shares [[z]]�.

Proof: Since Fmult is used in the first step, we have that c = a · b + d and
c′ = a′ · b + d′, where d, d′ ∈ Z2�+s are the additive attacks chosen by the
adversary in the first and second call to Fmult respectively. It follows that a′′ ·
b − r · c + c′ ≡�+s d′ − r · d. Hence, if 2v is the largest power of 2 dividing d, it
holds that if w ≡�+s 0 then r

2v ≡�+s−v

(
d
2v

)−1 d′
2v , which holds with probability

at most 2−(�+s−v). If d �≡� 0, then v > � and therefore this probability is upper
bounded by 2−s, which concludes the proof. �

Generating Random Shared Bits. We also consider a functionality FrandBit

that operates in a similar way to Frand, but ensures the random shared value is
in {0, 1}. We instantiate this functionality essentially by showing that the bit-
generation procedure from [17], which is presented in the setting of SPDZ-type
of shares, also extends to more general secret-sharing schemes. The main tool
needed here is the “multiplication by 1/2” property presented in Sect. 2.1, which
states that parties can locally divide their shares of a secret x mod 2� by 2 to
obtain shares of x/2 mod 2�−1, as long as the shares and the secret are even.

An Efficient Passive-to-Active Compiler for Honest-Majority MPC 131

Proposition 2. Protocol 3 securely computes functionality FrandBit with abort
in the (Frand,FCorrectMult)-hybrid model in the presence of malicious adversaries
controlling t < n/2 parties.

Proof: First, observe that simulation here is straightforward. Since the protocol
has no inputs, the simulator S can perfectly simulate the honest parties in the
execution (including aborting the protocol if the honest parties output ⊥ when
running the open procedure). In addition, S receives the corrupted parties’ shares
when playing the role of Frand and FCorrectMult and thus it can compute locally
[[b]]C� and hand it to FrandBit.

Next, we show that the honest parties’ output is identically distributed in
both the real and ideal executions. In the simulation, the honest parties’ output
is random shares of a random bit (computed given the corrupted parties’ shares).
We now show that this is the same for the real world execution.

To see this, first observe that c ≡�+2 a2 (with no additive errors), since
FCorrectMult was used. Furthermore, using Lemma 4.1 in [17], we obtain that
d =

√
c
−1 · a mod 2�+2 satisfies d ∈ {±1,±1+2�+1}, so in particular d ≡�+1 ±1,

with each one of these cases happening with equal probability. This implies that
b = b′/2 mod 2� satisfies b ≡� 0 or b ≡� 1, each case with the same probability.

The final observation is that all the shares of b′ = d + 1 mod 2�+1 are even,
which is required to ensure that the parties can execute the right-shift operation
in step 5. This is implied by the following argument. First of all, notice that
[[d]]�+2 + 1 = 2 · √

c
−1[[r]]�+2 + (

√
c
−1 + 1). Now, the shares 2 · √

c
−1[[r]]�+2 are

even since these are obtained by multiplying the constant 2. Furthermore, the
constant (

√
c
−1 + 1) is even since

√
c
−1 is odd, and by the assumptions of the

secret-sharing scheme each canonical share of it is either 0 or the constant itself
(see the “shares of a constant” property in Sect. 2.1), so in particular all of its
shares are even.

The above implies that at the end of the protocol, the parties hold a sharing
of a random bit, exactly as in the simulation. This concludes the proof. �

Protocol 3 Random Shared Bits Generation

The protocol:

1. The parties call Frand(�+2) to obtain a shared value [[r]]�+2. Then, the parties set [[a]]�+2 =
2 · [[r]]�+2 + 1.

2. The parties call FCorrectMult(� + 2) on input [[a]]�+2 and [[a]]�+2 to obtain shares [[c]]�+2 =

[[a2]]�+2. Then, they run open([[c]]�+2) to obtain c.

3. The parties compute [[d]]�+2 =
√

c−1 · [[a]]�+2, where
√

c is a fixed square root of c modulo

2�+2, and the inverse is taken modulo 2�+2.
4. The parties locally convert [[d]]�+2 → [[d]]�+1, and compute [[b′]]�+1 = [[d]]�+1 + 1.
5. The parties locally shift their shares of b′ one position to the right to obtain shares [[b]]�,

where b ≡�
b′
2 .

Outputs: The parties output [[b]]�.

132 M. Abspoel et al.

4 The Main Protocol for Rings

In this section, we present our construction to compute arithmetic circuits over
the ring Z2k . A formal description appears in Protocol 4. Our protocol follows
the paradigm of [14], which roughly works by running a “redundant” copy of the
circuit where each shared wire value [[w]] is accompanied by [[r ·w]] for some global
uniformly random r. In [14] it was shown that such a “dual” execution allows
the parties to perform a simple check to ensure that no additive errors were
introduced in the multiplication gates. However, such check does not directly
work over Z2k , given that it relies on the fact that every non-zero element must
be invertible, which only holds over fields.

In order to reduce the cheating success probability, we borrow the idea of [15]
of working on the larger ring Z2k+s . As we will show below, this ensures that a
similar check to that in [14] over fields can be carried out over Z2k+s , ensuring no
additive attacks over Z2k are carried out, except with probability at most 2−s.

At the core of the security of our protocol lies the following lemma, which
shows that an additive attack that is non-zero modulo 2k in any multiplication
gate leads to failure in the final check to zero, with overwhelming probability.

Protocol 4 Computing Arithmetic Circuits Over the Ring Z2k

Inputs: Each party Pj (j ∈ {1, . . . , n}) holds an input xj ∈ Z
L

2k .

Auxiliary Input: The parties hold the description of an arithmetic circuit C over Z2k that
computes f on inputs of length M = L · n. Let N be the number of multiplication gates in C.
In addition, the parties hold a parameter s ∈ N.

The protocol:

1. Secret sharing the inputs:
(a) For each input xj held by party Pj , party Pj represent it as an element of ZL

2k+s and

sends xj to Finput(k + s).

(b) Each party Pj records its vector of shares (xj
1, . . . , xj

M) of all inputs, as received from
Finput(k+s). If a party received ⊥ from Finput, then it sends abort to the other parties
and halts.

2. Generate randomizing shares: The parties call Frand(k + s) to receive [[r]]k+s, where r ∈R

Z2k+s .
3. Randomization of inputs: For each input wire sharing [[vm]]k+s (where m ∈ {1, . . . , M})

the parties call Fmult on [[r]]k+s to receive [[r · vm]]k+s.
4. Circuit emulation: The parties traverse over the circuit in topological order. For each gate

G� the parties work as follows:
– G� is an addition gate: Given tuples ([[x]]k+s, [[r · x]]k+s) and ([[y]]k+s, [[r · y]]k+s)

on the left and right input wires respectively, the parties locally compute
([[x + y]]k+s, [[r · (x + y)]]k+s).

– G� is a multiplication-by-a-constant gate: Given a constant a ∈ Z2k

and tuple ([[x]]k+s, [[r · x]]k+s) on the input wire, the parties locally compute
([[a · x]]k+s, [[r · (a · x)]]k+s).

– G� is a multiplication gate: Given tuples ([[x]]k+s, [[r · x]]k+s) and ([[y]]k+s, [[r · y]]k+s)
on the left and right input wires respectively:
(a) The parties call Fmult on [[x]]k+s and [[y]]k+s to receive [[x · y]]k+s.
(b) The parties call Fmult on [[r · x]]k+s and [[y]]k+s to receive [[r · x · y]]k+s.

5. Verification stage: Let {([[zi]]k+s, [[r · zi]]k+s)}N
i=1 be the tuples on the output wires of all

multiplication gates and let {[[vm]]k+s, [[r · vm]]k+s}M
m=1 be the tuples on the input wires of

the circuit.
(a) For m = 1, . . . , M , the parties call Frand(k + s) to receive [[βm]]k+s.
(b) For i = 1, . . . , N , the parties call Frand(k + s) to receive [[αi]]k+s.
(c) Compute linear combinations:

An Efficient Passive-to-Active Compiler for Honest-Majority MPC 133

i. The parties call FDotProduct on ([[α1]]k+s, . . . , [[αN]]k+s, [[β1]]k+s, . . . , [[βM]]k+s) and
([[r · z1]]k+s, . . . , [[r, ·zN]]k+s, [[r · v1]]k+s, . . . , [[r · vM]]k+s) to obtain

[[u]]k+s = [[
∑N

i=1 αi · (r · zi) +
∑M

m=1 βm · (r · vm)]]k+s.
ii. The parties call FDotProduct on ([[α1]], . . . , [[αN]], [[β1]], . . . , [[βM]]) and

([[z1]]k+s, . . . , [[zN]]k+s, [[v1]]k+s, . . . , [[vM]]k+s) to obtain

[[w]]k+s = [[
∑N

i=1 αi · zi +
∑M

m=1 βm · vm]]k+s.
(d) The parties run open([[r]]k+s) to receive r.
(e) Each party locally computes [[T]]k+s = [[u]]k+s − r · [[w]]k+s.
(f) The parties call FCheckZero(k + s) on [[T]]k+s. If FCheckZero(k + s) outputs reject, the

parties output ⊥ and abort. If it outputs accept, they proceed.
6. Output reconstruction: For each output wire of the circuit with [[v]]k+s, the parties locally

convert to [[v]]k. Then, they run v mod 2k = open([[v]]k, j), where Pj is the party whose
output is on the wire. If Pj received ⊥ from the open procedure, then it sends ⊥ to the
other parties, outputs ⊥ and halts.

Output: If a party has not aborted, then it outputs the values received on its output wires.

Lemma 2. If A sends an additive value d �≡k 0 in any of the calls to Fmult in
the execution of Protocol 4, then the value T computed in the verification stage
of Step 5 equals 0 with probability bounded by 2−s+log(s+1).

Proof: Suppose that ([[xi]]k+s, [[yi]]k+s, [[zi]]k+s) is the multiplication triple corre-
sponding to the i-th multiplication gate, where [[xi]]k+s, [[yi]]k+s are the sharings
on the input wires and [[zi]]k+s is the sharing on the output wire. We note that
the values on the input wires may not actually be the appropriate values as when
the circuit is computed by honest parties. However, in the verification step, each
gate is examined separately, and all that is important is whether the randomized
result is [[r · zi]]k+s for whatever zi is here (i.e., even if an error was added by the
adversary in previous gates). By the definition of Fmult, a malicious adversary
is able to carry out an additive attack, meaning that it can add a value to the
output of each multiplication gate. We denote by δi ∈ Z2k+s the value that is
added by the adversary when Fmult is called with [[xi]]k+s and [[yi]]k+s, and by
γi ∈ Z2k+s the value added by the adversary when Fmult is called with the shares
[[yi]]k+s and [[r · xi]]k+s. However, it is possible that the adversary has attacked
previous gates and so [[yi]]k+s is actually multiplied with [[r · xi + εi]], where the
value εi ∈ Z2k+s is an accumulated error from previous gates.3 Thus, it holds
that val([[zi]])H = xi · yi + δi and val([[r · zi]])H = (r · xi + εi) · yi + γi. Similarly,
for each input wire with sharing [[vm]], it holds that val([[r · vm]])H = r · vm + ξm,
where ξm ∈ Z2k+s is the value added by the adversary when Fmult is called with
[[r]]k+s and the shared input [[vm]]k+s. Thus, we have that

3 Although attacks in previous gates may be carried out on both multiplications, the
idea is here is to fix xi which is shared by [[xi]]k+s at the current value on the
wire, and then given the randomized sharing [[xi′]]k+s, define εi = xi′ − r · xi as the
accumulated error on the input wire.

134 M. Abspoel et al.

val([[u]])H =
N∑

i=1

αi · ((r · xi + εi) · yi + γi)

+
M∑

m=1

βm · (r · vm + ξm) + Θ1

val([[w]])H =
N∑

i=1

αi · (xi · yi + δi) +
M∑

m=1

βm · vm + Θ2

where Θ1 ∈ Z2k+s and Θ2 ∈ Z2k+s are the values being added by the adversary
when FDotProduct is called in the verification step, and so

val([[T]])H = val([[u]])H − r · val([[w]])H =

=
N∑

i=1

αi · ((r · xi + εi) · yi + γi) +
M∑

m=1

βm · (r · vm + ξm) + θ1

− r ·
(

N∑

i=1

αi · (xi · yi + δi) +
M∑

m=1

βm · vm + Θ2

)

=
N∑

i=1

αi · (εi · yi + γi − r · δi) (1)

+
M∑

m=1

βm · ξm + (Θ1−r · Θ2),

where the second equality holds because r is opened and so the multiplication
r · [[w]]k+s always yields [[r · w]]k+s. Let Δi = εi · yi + γi−r · δi.

Our goal is to show that val([[T]])H , as shown in Eq. (2), equals 0 with prob-
ability at most 2−s+log(s+1). We have the following cases.

– Case 1: There exists m ∈ [M] such that ξm �≡k 0. Let m0 be the smallest such
m for which this holds. Then val([[T]])H ≡k+s 0 if and only if

βm0 · ξm0 ≡k+s

⎛

⎜
⎝−

N∑

i=1

αi · Δi −
M∑

m=1
m
=m0

βm · ξm − (Θ1−r · Θ2)

⎞

⎟
⎠ .

Let 2u be the largest power of 2 dividing ξm0 . Then we have that

βm0 ≡k+s−u

⎛

⎝
−∑N

i=1 αi · Δi − ∑M
m=1

m
=m0

βm · ξm − (Θ1−r · Θ2)

2u

⎞

⎠·
(

ξm0

2u

)−1

.

By the assumption that ξm �≡k 0 it follows that u < k and so k + s − u > s
which means that the above holds with probability at most 2−s, since βm0 is
uniformly distributed over Z2k+s .

An Efficient Passive-to-Active Compiler for Honest-Majority MPC 135

– Case 2: All ξm ≡k 0. By the assumption in the lemma, some additive value
d �≡k 0 was sent to Fmult. Since none was sent for the input randomization,
there exists some i ∈ {1, . . . , N} such that δi �≡k 0 or γi �≡k 0. Let i0 be the
smallest such i for which this holds. Note that since this is the first error added
which is �≡k 0, it holds that εi0 ≡k 0. Thus, in this case, val([[T]])H ≡k+s 0 if
and only if αi0 · Δi0 ≡k+s Y , where

Y =

⎛

⎜
⎝−

N∑

i=1
i
=i0

αi · Δi −
M∑

m=1

βm · ξm − (Θ1−r · Θ2)

⎞

⎟
⎠ .

Let q be the random variable corresponding to the largest power of 2 dividing
Δi0 , where we define q = k + s in the case that Δi0 ≡k+s 0. Let E denote the
event αi0 · Δi0 ≡k+s Y . We have the following claims.

• Claim 1: For k < j ≤ k + s, it holds that Pr[q = j] ≤ 2−(j−k).
To see this, suppose that q = j and j > k. It holds then that Δi0 ≡j 0, and
so Δi0 ≡k 0. We first claim that in this case it must hold that δi0 �≡k 0.
Assume in contradiction that δi0 ≡k 0. In addition, by our assumption
we have that γi0 �≡k 0, εi ≡k 0 and Δi0 = εi0 · yi0 + γi0 − r · δi0 ≡k 0.
However, εi · yi0 ≡k 0 and r · δi0 ≡k 0 imply that γi0 ≡k 0, which is a
contradiction.
We thus assume that δi0 �≡k 0, and in particular there exists u < k,
such that u is the largest power of 2 dividing δi0 . It is easy to see then

that q = j implies that r ≡j−u

(
εi0 ·yi0+γi0

2u

)
·
(

δi0
2u

)−1

. Since r ∈ Z2k+s

is uniformly random and u < k, we have that this equation holds with
probability of at most 2−(j−u) ≤ 2−(j−k).

• Claim 2: For k < j < k + s it holds that Pr[E | q = j] ≤ 2−(k+s−j).
To prove this let us assume that q = j and that E holds. In this case

we can write αi0 ≡k+s−j
Y
2j ·

(
Δi0
2j

)−1

. For k < j < k + s it holds that
0 < k + s − j < s and therefore this equation can be only satisfied with
probability at most 2−(k+s−j), given that αi0 ∈ Z2s is uniformly random.

• Claim 3: Pr[E | 0 ≤ q ≤ k] ≤ 2−s.
This is implied by the proof of the previous claim, since in the case that
q = j with 0 ≤ j ≤ k, it holds that k + s − j ≥ s, so the event E implies

that αi0 ≡s
Y
2j ·

(
Δi0
2j

)−1

, which holds with probability at most 2−s.
Putting these pieces together, we thus have the following:

Pr [E] = Pr [E | 0 ≤ q ≤ k] · Pr[0 ≤ q ≤ k]

+
k+s∑

j=k+1

Pr [E | q = j] · Pr[q = j]

≤ 2−s + s · 2−s = (s + 1) · 2−s = 2−s+log(s+1). (2)

To sum up the proof, in the first case we obtained that T = 0 with probability
of at most 2−s whereas in the second case, this holds with probability of at

136 M. Abspoel et al.

most 2−s+log(s+1). Therefore, we conclude that the probability that T = 0 in
the verification step is bounded by 2−s+log(s+1) as stated in the lemma. This
concludes the proof. �

The security of Protocol 4 now follows as Lemma 2 shows that additive errors
that are non-zero modulo 2k cannot take place without leading to abort. How-
ever, one non-trivial issue lies in handling additive attacks that are zero modulo
2k, but not modulo 2k+s, as these do not affect correctness but may lead to
selective failure attacks, in which an abort signal can be generated depending
on the inputs from honest parties. Our protocol deals with this potential attack
by using secret coefficients for the random linear combination taken in the veri-
fication step. If we take public coefficients, as done in [14], the following attack
can be carried out.

Assume that the adversary has attacked exactly one gate, indexed by i0, in
the following way. When multiplying xi0 with yi0 , the adversary acted honestly,
but when multiplying r ·xi0 with yi0 , it added the value di0 . Thus, on the output
wire, the parties hold a sharing of the pair (xi0 · yi0 , r · xi0 · yi0 + di0). Now,
assume that this wire enters another multiplication gate, indexed by j0 with
input shares on the second wire being (wj0 , r · wj0) and that the output of this
second gate is an output wire of the circuit. Thus, on the output of this gate,
the parties will hold the sharing (xi0 · yi0 · wj0 , (r · xi0 · yi0 + di0)wj0) (assuming
the adversary does not attack this gate as well). In this case, we have that
T = αi0s · di0 + αj0 · (di0 · wj0) = di0(αi0 + αj0 · wj0). Now, if di0 = 2k+s−1 then
it follows that T ≡k+s 0 if and only if αi0 + αj0 · wj0 is even.

The attack presented above does not change the k lower bits of the values on
the wires, and thus has no effect on the correctness of the output. However, if αi0

and αj0 are public and known to the adversary, then by FCheckZero’s output the
adversary may be able to learn whether wj0 is even or not. In contrast, when αi0

and αj0 are kept secret, learning whether αi0 + αj0 · wj0 is even or odd does not
reveal any information about wj0 since it is now perfectly masked by αi0 and αj0 .
Therefore, to prevent this type of attack, we are forced to use random secrets
for our random linear combination. Here is where the functionality FDotProduct

becomes handy, as it allows to compute the sum of products of sharings in an
efficient way which is exactly what we need to compute

∑N
i=1[[αi]] · [[zi]].

We state the security of our protocol below. A full simulation-based proof
appears in the full version of this work.

Theorem 1. Let f be an n-party functionality over Z2k and let s be a sta-
tistical security parameter. Then, Protocol 4 securely computes f with abort in
the (Finput,Fmult,Fcoin,Frand,FCheckZero,FDotProduct)-hybrid model with statistical
error 2−s+log(s+1), in the presence of a malicious adversary controlling t < n

2
parties. The communication complexity in bits of the resulting protocol is

M · (
2 · Crand(k + s) + Cmult(k + s) + Copen(i)(k + s) + (k + s)

)

+N · (Crand(k + s) + 2 · Cmult(k + s)) + O · Copen(i)(k),

An Efficient Passive-to-Active Compiler for Honest-Majority MPC 137

where M is the number of inputs, N is the number of multiplication gates in the
circuit, O is the number of output wires of the circuit and C∗ represents the cost
(in bits) of calling the functionality F∗.

5 Instantiation for n Parties

In this section, we present our instantiation based on Shamir’s secret sharing
over rings, using the techniques from [2]. This technique works for any number
of parties, although for 3 parties one can obtain more efficient solutions, such
as the one we describe in Sect. 6 that uses replicated secret sharing. Over finite
fields, Shamir’s scheme requires a distinct evaluation point for each player, and
one more for the secret. This is usually not a problem if the size of the field is
not too small. However, over commutative rings R the condition on the sequence
of evaluation points α0, . . . , αn ∈ R is that the pairwise difference αi − αj is
invertible for each pair of indices i �= j. For our ring of interest Z2� , the largest
such sequence the ring admits is only of length 2 (e.g., (α0, α1) = (0, 1)).

The solution from [2] is to embed inputs from Z2� into a large enough Galois
ring R that has Z2� as a subring. This ring is of the form R = Z2� [X]/(h(X)),
where h(X) is a monic polynomial of degree d = �log2 n� such that h(X) mod 2 ∈
F2[X] is irreducible. Elements of R thus correspond uniquely to polynomials with
coefficients in Z2� that are of degree at most d − 1. Note the similarity between
the Galois ring and finite field extensions of F2: elements of the finite field F2d

correspond uniquely to polynomials of at most degree d − 1 with coefficients
in F2.

There is a ring homomorphism π : R → Z2� that sends a0 + a1X + · · · +
ad−1X

d−1 ∈ R to the free coefficient a0, which we shall use later on.4 For more
relevant structural properties of Galois rings, see [2].

We adopt the above-mentioned version of Shamir’s scheme over R, but
restrict the secret space to Z2� . The share space will be equal to R. Let 1 ≤ τ ≤ n
be the privacy parameter of the scheme. Then, the set of correct share vectors
is

Cτ =
{

(f(α1), . . . , f(αn)) ∈ Rn

∣
∣
∣
∣
f ∈ R[X], deg(f) ≤ τ,
and f(α0) ∈ Z2� ⊂ R

}
. (3)

With the restriction that the secret is in Z2� , we have that Cτ is an Z2�-module,
i.e., the secret-sharing scheme is Z2�-linear. Since it is based on polynomial inter-
polation, the properties from Sect. 2.1 can be easily seen to hold. This includes
division by 2 if all the shares are even.

In this section, we denote a sharing under Cτ as [[x]]τ = (x1, . . . , xn). We call
τ the degree of the sharing. The reason we are explicit about τ is that we will
use sharings of two different degrees. This stems from the critical property of
this secret-sharing scheme that enables us to evaluate arithmetic circuits: this
secret-sharing scheme is multiplicative. This means there is a Z2� -linear map
Rn → Z2� that for sharings [[x]]τ , [[y]]τ sends (x1y1, . . . , xnyn) �→ x · y.
4 Technically, an element of R is a residue class modulo the ideal (h(X)), but we omit

this for simplicity of notation.

138 M. Abspoel et al.

Put differently, (x1y1, . . . , xnyn) ∈ C2τ is a degree-2τ sharing with secret x·y.
We denote it [[x ·y]](2τ) = (x1y1, . . . , xnyn)—in particular note the parenthesized
subscript refers to the degree of the sharing, as opposed to the modulus. Note
that Ci ⊆ Cj for 0 < i < j; in particular every degree-2τ sharing is also a sharing
of degree n − 1. A sharing of degree n − 1 is related to additive secret sharing,
where the secret equals the sum of the shares x =

∑
i xi. The difference is that

here there are constants, i.e. we may write x =
∑

i λixi, for λ1, . . . , λn ∈ R. We
shall make use of this in our multiplication protocol, ensuring that parties only
need to communicate an element of Z2� instead of an element of R. However, note
that [[·]](2τ) does not meet the definition of a secret-sharing scheme in Sect. 2.1, in
particular because the corrupted parties shares are not well defined and cannot
be computed from the honest parties’ shares.

5.1 Generating Randomness

We efficiently realize Frand by letting each player Pi sample and secret-share
a random element si, and then multiplying the resulting vector of n random
elements with a particular5 Vandermonde matrix [19].6 Of the resulting vector,
τ entries are discarded to ensure the adversary has zero information about the
remaining ones. Thus, n − τ random elements are outputted, resulting in an
amortized communication cost of O(n) ring elements per element. A priori the
adversary can cause the sharings to be incorrect; this is remedied with Protocol 6
by opening a random linear combination of the sharings and verifying the result.

Since our secret-sharing scheme [[·]]τ is Z2� -linear, we would like to choose our
matrix with entries in Z2� . Unfortunately, the Vandermonde matrix we need does
not exist over Z2� , for the same reason secret sharing does not work. However,
the secret-sharing scheme which consists of d parallel sharings of [[·]]τ be inter-
preted as an R-linear secret-sharing scheme [2,11]. This secret-sharing scheme,
which we denote as 〈·〉, has share space Sd (since the scheme is identical to shar-
ing d independent secrets in S in parallel using [[·]]τ), and secret space Rd. The
scheme is R-linear because the module of share vectors, which is (Cτ)d, is an R-
module via the tensor product (Cτ)d ∼= Cτ ⊗S Sd ∼= Cτ ⊗S R. In practice, a single
secret-shared element 〈x〉 may be interpreted as a secret-shared column vector
([[x1]]τ , . . . , [[xd]]τ)T . To compute the action of an element r ∈ R on 〈x〉 in this rep-
resentation, we first need to fix a basis of R over S. Recall R = Z2� [X]/(h(X)),
so we may pick the canonical basis 1,X, . . . ,Xd−1 ∈ R. This allows us to repre-
sent an element a ∈ R as a column vector (a0, . . . , ad−1)T ∈ Sd, i.e., explicitly:
a = a0 + a1X + · · · + ad−1X

d−1. Multiplication by r ∈ R is an S-linear map of
vectors Sd → Sd, i.e., it can be represented as a d × d matrix Mr with entries in
S. The product r 〈x〉 = 〈rx〉 is then equal to Mr([[x1]]τ , . . . , [[xd]]τ)T . If a single
party P has a vector of shares (s1, . . . , sd) ∈ R for 〈x〉 = ([[x1]]τ , . . . , [[xd]]τ)T ,
then Mr(s1, . . . , sd)T is their vector of shares corresponding to 〈rx〉.
5 Over fields this can be a general Vandermonde matrix, but this is not sufficient over

R.
6 In general, any R-linear code with good distance and dimension suffices to get O(n)

complexity in the protocol, but the Vandermonde construction is optimal.

An Efficient Passive-to-Active Compiler for Honest-Majority MPC 139

In our protocol, the parties compute (〈r1〉 , . . . , 〈rn−τ 〉)T = A(〈s1〉 , . . . ,
〈sn〉)T , where A has entries in R. This can be computed by writing out the R-
linear combinations 〈ri〉 =

∑n
k=1 aik 〈sk〉 =

∑n
k=1 Maik

〈sk〉, with 〈sk〉 =
([[sk1]]τ , [[skd]]τ)ᵀ. Fix a sequence β1, . . . , βn ∈ R such that for each pair of indices
i �= j we have that βi − βj is invertible.7 We let A be the (n − τ) × n matrix such
that the j-th column is (1, βj , βj2 , . . . , βn−τ−1

j)T . This matrix is super-invertible,
i.e. any square submatrix obtained by sampling a subset of n−τ columns is invert-
ible [2].

Protocol 5 Generating random sharings of [[·]]τ
The protocol:

1. Each party Pi samples an element si ← (Z2�)
d and secret-shares it as 〈si〉 among all

parties.
2. The parties locally compute the linear matrix-vector product to obtain

(〈r1〉 , . . . , 〈rn−τ 〉)T := A(〈s1〉 , . . . , 〈sn〉)T .
3. The parties execute Protocol 6 �κ/d� times in parallel on 〈r1〉 , . . . , 〈rn−τ 〉 If any exe-

cution fails, they abort. Otherwise, for each j = 1, . . . , n − τ they interpret 〈rj〉 =
([[rj1]]τ , . . . , [[rjd]]τ) and output [[r11]]τ , . . . , [[r1d]]τ , [[r21]]τ , . . . , [[r(n−τ)d]]τ .

Lemma 3. Protocol 5 securely computes (n − τ)d parallel invocations of Frand

for [[·]]τ with statistical error of at most 2−κ in the presence of a malicious adver-
sary controlling t < n/2 parties.

Proof: Let A be the real-world adversary. The simulator S interacts with A
by simulating the honest parties in an execution of the protocol. In doing so, S
obtains honest parties’ shares 〈r1〉H , . . . , 〈rn−τ 〉H .

We distinguish three cases:

1. If at least one of the simulated honest parties aborts in any of the executions
of Protocol 6, then S sends abort to Frand.

2. If the checks pass but the honest parties’ shares are inconsistent, S outputs
fail. By Lemma 4 this only happens with probability at most 2−κ, allowed
by the claim.

3. In the remaining case, the checks of Protocol 6 pass and the honest
parties’ shares are consistent. S calculates the corrupted parties’ shares
〈r1〉C , . . . , 〈rn−τ 〉C from the honest parties’ shares, and sends them to Frand.

Before the invocation of Frand, the honest parties have no private inputs,
hence S simulates them perfectly and A’s view will be identical to the real
execution. Thus, the simulated honest parties will abort in the ideal execution
precisely when they would in the real execution.

The only thing it remains to prove is that if the parties do not abort, the
output shares are identically distributed in the real and ideal executions. In par-
ticular, we need to prove that in the real execution, the sharings are independent
and uniformly sampled from 〈·〉.
7 We may just use (β1, . . . , βn) = (α1, . . . , αn).

140 M. Abspoel et al.

Let H ⊆ H be a subset of honest parties of size n − τ , and let C :=
{1, . . . , n}\H denote its complement. Let AH , AC denote the submatrices of A
corresponding to the columns indexed by H and C respectively. Let 〈sH〉 denote
the vector 〈si〉i∈H of length n − τ , and correspondingly 〈sC〉 := 〈si〉i∈C . Then
(〈r1〉 , . . . , 〈rn−τ 〉)T = AH 〈sH〉+AC 〈sC〉. Since 〈sH〉 is wholly generated by the
honest parties, it consists of n − τ independent and uniformly random sharings
of 〈·〉. AH is invertible (since A is super-invertible), hence we also have that
〈sH〉 consists of independent and uniformly random sharings. Adding a fixed
AC 〈sC〉 will not affect the distribution, hence the sharings 〈r1〉 , . . . , 〈rn−τ 〉 are
independent and uniformly random sharings. �

5.2 Checking Correctness of Sharings

We check whether sharings are correct by taking a random linear combination
of the sharings, masking it with a random sharing, and opening the result to all
parties.

This protocol does not securely compute an ideal functionality, because pri-
vacy is not preserved if the sharings are incorrect. The way we use it this does
not matter, since we only verify correctness of sharings of random elements.

Protocol 6 Checking correctness of sharings of 〈·〉

Inputs: possibly incorrect sharings 〈x1〉 , . . . , 〈xN 〉, and a possibly incorrect sharing 〈r〉 ←
(Z2�)

d of a random element.

The protocol:

1. The parties call Fcoin N times to get a1, . . . , aN ← (Z2�)
d.

2. The parties compute 〈u〉 := a1 〈x1〉 + · · · + aN 〈xN 〉 + 〈r〉.
3. The parties run open(〈u〉). If it returns ⊥, output ⊥. Else, output correct.

Lemma 4. If at least one of the input sharings 〈x1〉 , . . . , 〈xN 〉 is incorrect, Pro-
tocol 6 outputs correct with probability at most 1

2d .

To show correctness, we use the following consequence from [2, Lemma 3].

Lemma 5. Let C ⊆ Rn be a free R-module. Then for all x /∈ C and u ∈ Rn,
we have that

Pr
r←R

[rx + u ∈ C] ≤ 1
2d

where r is chosen uniformly at random from R.

Proof: [Proof of Lemma 4]. Let C denote the R-module of correct share vectors
(such as in (3)). One of the input sharings is incorrect; without loss of generality
assume it is 〈x1〉. The protocol open(〈u〉) returns a value not equal to ⊥ if and
only if 〈u〉 = a1 〈x1〉 + (a2 〈x2〉 + · · · + an 〈xn〉 + 〈r〉) is in C. By Lemma 5 this
probability is bounded by 1/2, since a1 was chosen uniformly at random. Since
〈u〉 is masked with 〈r〉, the protocol is private. �

An Efficient Passive-to-Active Compiler for Honest-Majority MPC 141

5.3 Secure Multiplication up to Additive Attacks

Multiplication follows the outline of the passively secure protocol of [19]. The
protocol begins with a preprocessing phase, where random double sharings are
produced, i.e. a pair of sharings ([[r]]τ , [[r]](2τ)) of the same uniformly random
element r shared using polynomials of degree τ and degree 2τ , respectively.

We denote a double sharing as [[r]](τ,2τ) := ((r1, r′
1), . . . , (rn, r′

n)). It is a Z2� -
linear secret-sharing scheme with secret space Z2� and share space R ⊕ R. The
set of correct share vectors is the Z2� -module

⎧
⎨

⎩
((f(α1), g(α1)), . . . , (f(αn), g(αn)))

∣
∣
∣
∣
∣
∣

f, g ∈ R[X],
f(α0) = g(α0) ∈ Z2� ,

deg(f) ≤ τ, deg(g) ≤ 2τ

⎫
⎬

⎭
.

Secret-sharing an element r under [[·]](τ,2τ) involves selecting two uniformly ran-
dom polynomials of degrees at most τ and 2τ respectively.

To generate sharings in [[·]](τ,2τ), we essentially use Protocol 5. However, this
protocol does not securely realize Frand, since in Lemma 3 we use the fact that
the simulator can compute the corrupted parties’ shares from the honest parties’
shares, which is not the case for the degree-2τ part (hence why [[·]](2τ), therefore
also [[·]](τ,2τ), does not meet the definition of a secret-sharing scheme in Sect. 2.1).
This will only lead to an additive attack in the online phase, which is why we
can still use the protocol.

Protocol 7 Secure multiplication up to an additive attack

Inputs: Parties hold correct sharings [[x]]τ , [[y]]τ .

Preprocessing: The parties execute Protocol 5 for [[·]](τ,2τ) instead of [[·]]τ . They only check
correctness for the [[·]]τ part, and not for the [[·]](2τ) part. They obtain a random double sharing
([[r]]τ , [[r]](2τ)).

The protocol:

1. The parties locally calculate [[δ]](2τ) := [[x]]τ · [[y]]τ − [[r]](2τ).

2. Each Pi for i = 1, . . . 2τ+1 sends ui := π(λiδi) to P1 (recall π(a0+a1X+· · ·+ad−1Xd−1) =
a0 ∈ Z2� , and the λi are constants such that

∑n
i=1 λiδi = δ)

3. P1 can now reconstruct δ as δ =
∑n

i=1 ui.
4. P1 broadcasts δ.
5. The parties locally compute [[x · y]]τ = [[r]]τ + δ.

The reason each party sends ui instead of δi to P1 is two-fold. It saves band-
width, since only an element of Z2� needs to be communicated instead of an
element of R. More importantly though, if the inputs [[x]]τ , [[y]]τ are not guaran-
teed to be correct, then sending full shares δi can compromise privacy.

Note that it is important that the random double sharing [[r]](τ,2τ) is guar-
anteed to be correct. I.e., the shares are degree τ and 2τ respectively.

Lemma 6. Protocol 7 securely computes Fmult with statistical error ≤2−κ in the
Frand-hybrid model in the presence of a malicious adversary controlling t < n/2
parties.

142 M. Abspoel et al.

Proof: Without loss of generality, assume 2τ +1 = n (recall that τ is the secret
sharing threshold and not the number of corrupted parties, and so the proof still
holds for any t < n/2).

For the offline phase, the simulator acts as in Lemma 3. By the proof, we have
that [[r]]τ is a correct sharing. The sharing [[r′]](2τ) is not well-defined, because
the adversary can change its mind about its shares at any time. However, the
adversary always knows the additive error r′ − r that it introduces by changing
its shares.

For the online phase, S simulates the honest parties towards A.
We distinguish two cases:

– Case 1: P1 is not corrupt. The simulated P1 receives {ui}i∈C from A. If it
receives ⊥ for any value ui, it sends abort to Fmult and simulates P1 aborting.
Otherwise, it calls Fmult and receives {xi}i∈C , {yi}i∈C . For any i ∈ C, since
S knows xi, yi, r

′
i, it may calculate δi = xiyi − r′

i and thus the value π(λiδi)
the adversary is supposed to send if it behaves honestly. The simulator can
therefore extract d =

∑
i∈C ui − π(λiδi). S does not know the true value of

δ, however it may sample δ ← Z2� , send it to the corrupted parties, and
calculate the corrupted parties’ shares as zi = ri + δ + d.
It then simulates the broadcast of δ. If the broadcast aborts, S simulates the
parties aborting and sends abort to Fmult. Otherwise, it sends d, {zi}i∈C to
Fmult, and outputs whatever A outputs.
In the ideal execution, A receives a random δ. It cannot distinguish this from
the real value x · y − r, since r is uniformly random and by privacy of the
secret-sharing scheme it does not have any information on it.

– Case 2: P1 is corrupt. S samples [[δ]](2τ) ← [[·]](2τ). For i ∈ H it sends ui =
π(λiδi) to the corrupted P1. The simulated honest parties receive an identical
broadcasted value δ′, otherwise the broadcast protocol aborts.
Since S knows δ, it can extract d := δ′ − δ, and calculate the corrupted
parties’ shares as zi = ri + δ′. It then sends d, {zi}i∈C to Fmult, and it outputs
whatever A outputs.

As mentioned above, the adversary cannot distinguish whether it is talking
to a simulator or the real parties, hence its output will be identical.

In the ideal execution where no abort took place, the actual (non-simulated)
parties receive their shares {zi}i∈H directly from Fmult. The shares are consistent
and will reconstruct to the secret z = x · y +d. In the ideal execution, the shares
are generated by the probabilistic function share(z, {zi}z∈C), such that the shares
are uniformly random subject to the constraints on the shares.8 In the real
execution, the shares also correspond to z. The sharing in the real execution is
calculated as [[r]]τ + δ, where [[r]]τ is a uniformly random sharing. Therefore, the
outputs are identical in both executions. �

When evaluating a circuit gate-by-gate using Protocol 7, we consider an
optimization in which we do not need to execute the broadcast (which might

8 Depending on the privacy threshold the constraints may fully determine the shares.

An Efficient Passive-to-Active Compiler for Honest-Majority MPC 143

be expensive) for each multiplication, but instead they will perform a broadcast
just before opening the values. In the multiplication protocol, P1 will just send a
value (not guaranteed to be the same) to all other parties. Each party Pi keeps
track of a hash value hi of all received values in step 4 of the protocol far. Before
opening their outputs, each party Pi sends its hash hi to all other parties. If any
party detects a mismatch, they abort. Note that security up to additive attack is
guaranteed only after this procedure succeeds, which is executed before opening
the output.

In doing so, we lose the invariant that all secret-shared values are guaranteed
to be correct. In other scenarios, as for example the t < n/3 setting, this com-
pletely breaks the security of the protocol as shown in [27]. However, this is not
a problem in our case since the degree-2τ sharings have no redundancy in them.
As shown in [27], this is enough to guarantee the security of the protocol with
the deferred check, and the reason is essentially that the shares that the poten-
tially corrupt party P1 receives are now uniformly random and independent of
each other.

5.4 Reducing Communication Using Pseudo-Randomness [8,33]

Our protocol as described so far is information-theoretically secure. We can
reduce communication by using a pseudo-random generator in the following
way. Assume that each pair of parties hold a joint random seed. Then, when
party Pi shares an element with degree t, it is possible to derive t shares from
the seed known to Pi and the corresponding party, and set the remaining t + 1
shares (including the dealer’s own share) given the pseudo-random shares and
the value of the secret. Thus, only t shares need to be transmitted, thereby
reducing communication by half. Using the same reasoning, it is possible to
share a secret using degree 2t without any interaction. Here n − 1 = 2t shares
are computed using the seed known to the dealer and each party, and then the
dealer sets its own share such that all shares will reconstruct to the secret. We
can use this idea to also reduce communication in the multiplication protocol.
Instead of broadcasting δ, party Pi can share it to the parties with degree t, and
use the above optimization, so that P1 will have to send t elements instead of
n−1. We note that here instead of comparing δ (to ensure correctness of output
sharings), the parties can perform a batch correctness check (Protocol 6) for all
sharings dealt by P1 before the verification step in the main protocol.

6 Instantiation for 3 Parties

We now present in detail the efficient three party instantiation of our compiler
from replicated secret sharing. Sharing a value x ∈ Z2� is done by picking at
random x1, x2, x3 ∈ Z2� such that

∑
i xi ≡� x. Pi’s share of x is the pair (xi, xi+1)

and we use the convention that i+1 = 1 when i = 3. To reconstruct a secret, Pi

receives the missing share from the two other parties. Note that reconstructing
a secret is robust in the sense that parties either reconstruct the correct value x
or they abort.

144 M. Abspoel et al.

Replicated secret sharing satisfies the properties described in Sect. 2.1, and
one can efficiently realize the required functionalities described in the same
section. Below we discuss some of these properties/functionalities.

6.1 Generating Random Shares

Shares of a random value can be generated non-interactively, as noted in [31,32],
by making use of a setup phase in which each party Pi obtains shares of two
random keys ki, ki+1 for a pseudorandom function (PRF) F . The parties generate
shares of a random value for the j-th time by letting Pi’s share to be (ri, ri+1),
where ri = Fki

(j). These are replicated shares of the (pseudo)random value
r =

∑
i Fki

(j). Proving that this securely computes Frand is straightforward and
we omit the details.

6.2 Secure Multiplication up to an Additive Attack

To multiply two secret-shared values, we use the protocol from [4,32], which is
described in 8. The shares of 0 that this protocol needs can be obtained by using
correlated keys for a PRF, in similar fashion to the protocol for Frand sketched
above.

Protocol 8 Secure multiplication up to an additive attack.

Inputs: Parties hold sharings [[x]], [[y]] and additive sharings (α1, α2, α3) where
∑3

i=1 αi = 0.

The protocol:

1. Pi computes zi = xiyi + xi+1yi + xiyi+1 + αi and sends zi to Pi−1.
2. Pj , upon receiving zj+1, defines its share of [[x · y]] as (zj , zj+1).

The above protocol is secure up to an additive attack as noted in [31]. We
note that this can be extended to instantiate FDotProduct at the communication
cost of one single multiplication, as shown in [14].

6.3 Efficient Checking Equality to 0

Checking that a value is a share of 0 can be performed very efficiently in this
setting by relying on a random oracle H. The observation we rely on is that, if∑

i xi ≡� 0, then xi−1 ≡� −(xi + xi+1) and so Pi can send zi = H(−(xi + xi+1))
which will be equal to xi−1 which is held by Pi+1 and Pi−1. Since only one party
is corrupted, it suffices that each Pi will send it only to Pi+1. Upon receiving zi

from Pi, Pi+1 checks that zi = H(xi−1) and aborts if this is not the case.
This protocol is formalized in Protocol 9 in the FRO-hybrid model. The FRO

functionality is described in Functionality 1. We remark that this protocol does
not instantiate FCheckZero exactly. In order for the proof of security to work, we
need to allow the adversary to cause the parties to reject also when v = 0. We
denote this modified functionality by FCheckZero

′. This is minor change since the

An Efficient Passive-to-Active Compiler for Honest-Majority MPC 145

main requirement from FCheckZero in our compiler is that the parties won’t accept
a value as 0 when it is not, which is still satisfied by the modified functionality.

Functionality 1 FRO – Random Oracle functionality

Setup: Let M be an initially empty map.

The protocol:

– On input x from a party P , if (x, y) ∈ M for some y, return y. Otherwise pick y at random
and set M = {(x, y)} ∪ M and return y.

– On (x, y) from S and if (x, ·)
∈ M set M = {(x, y)} ∪ M .

Protocol 9 Checking Equality to 0 in the FRO-Hybrid Model

Inputs: Parties hold a sharing [[v]].

Protocol:

1. Party Pi queries βi ← FRO(−(vi + vi+1)) and sends βi to Pi+1.
2. Upon receiving βi−1 from Pi−1, each party Pi checks that βi−1 = FRO(vi+1). If this is not

the case, then Pi outputs reject. Otherwise, it outputs accept.

We have the following proposition.

Proposition 3. Protocol 9 securely computes FCheckZero in the FRO-hybrid
model in the presence of one malicious corrupted party.

Proof: Let A be the real adversary who corrupts at most one party and S the
ideal world simulator. Let Pi be the corrupted party. The simulation begins with
S receiving the shares of Pi, i.e., (vi, vi+1). Then, S proceed as follows:

– If S receives accept from FCheckZero
′, then it knows that v ≡� 0 and so it can

compute the share vi−1 = −(vi + vi+1) and so it knows the honest parties’
shares and can perfectly simulate the execution, while playing the role of
FRO. If A cause the parties to reject by using different shares, then S sends
reject to FCheckZero

′.
– If S receives reject, then it chooses a random vi−1 ∈ Z2�\{−(vi + vi+1)} and

defines the honest parties’ shares accordingly. Then, it plays the role of FRO

simulating the remaining of the protocol. By the definition of FRO, the view
of A is distributed identically in the simulated and the real execution. �

7 Implementation and Evaluation

We implement both protocols in C++ and rely on uint64 t and unsigned
int128 types for arithmetic over Z2� , where the former is used when � = 64
and the latter when � = 128. This choice allows us to investigate two sets of
parameters: � = 64 can be viewed as 32 bit computation with 32 bits of statistical
security, while � = 128 gives us 64 bits of computation with 64 bits of statistical
security. We rely on libsodium for hashing and the PRG we use is based on AES.

146 M. Abspoel et al.

For the Galois-ring variant our implementation uses the ring R =
Z2� [X]/(h(x)) with h(X) = X4 + X + 1 and denote this by GR(2�, d = 4).
This ring supports 24 −1 = 15 parties and the act of hard-coding the irreducible
polynomial allows us to implement multiplication and division in the ring using
lookup tables. It is worth remarking that operations in GR(2�, d) are more expen-
sive than certain prime fields (in particular, Mersenne primes as the ones used
in [14]). Concretely, a multiplication in GR(264, 4) requires 20 uint64 t multi-
plications and 18 additions, while a multiplication in Z264 requires only a couple
of uint64 t multiplications as well as a few bitwise operations. So while some
MPC primitives in Z2� may be cheaper (for example, masking a value in Z2� is
cheaper), this gain in efficiency is greatly reduced by the complexity of operating
over the Galois ring.

Experimental Setup. We run our experiments on AWS c5.9xlarge machines,
which have 36 virtual cores, 72 GB of memory and a 10 Gbps network. We utilize
3 separate machines and so for experiments with n > 3, some parties run on the
same machine. However, the load on each machine is distributed evenly (e.g.,
with 5 parties, the first two machines each run 2 parties each while the last run
only 1 party).

7.1 Experiments

For our experiments, we focus on two instantiations.
First we compare our Shamir based instantiation (cf. Sect. 5) against the

field protocol of [14]. For this, we use the implementation at [1]. We perform the
same benchmarks as reported on in [14]; that is, circuits of varying depth with
a fixed number of parties. Each experiment is repeated for n set to 3, 5, 7 and
9. The main goal here is to understand the overhead of working with GR(2�, d)
as opposed to working over Zp. As [1] supports different choices of the prime p
we set p to be a 61-bit Mersenne prime, as this is the most efficient field that
also allows for a reasonable expressive computations.

Our second set of experiments will compare our replicated secret-sharing
based instantiation (cf. Sect. 6) against the protocols for computation over rings
presented in [21]. In these experiments we measure the throughput of multi-
plications in our protocol; that is, how many multiplications our protocol can
compute per second. Since we do not have access to the implementations of [21],
we opt instead to use the same experimental setup as theirs in order to obtain
a fair comparison. We report here on benchmarks run in a LAN setting. Sec-
ondly, we compare our 3-party protocol against the 3-party instantiation from
[14]. The 3-party protocol in [14] can be considered state-of-the-art, and thus a
comparison against our protocol is in order.

While the protocol of [14] is the natural choice for comparing our n-party
instantiation, a number of efficient specialized 3 party protocols exist which we
briefly mention here. We choose the protocols of [21] for comparison as their
experiments and setup is straightforward to replicate with our protocol, thus
allowing us to make a fair comparison. Concurrently with [21], several other

An Efficient Passive-to-Active Compiler for Honest-Majority MPC 147

proposals for 3 party protocols have been published, such as [13] or [34]. How-
ever, no public implementation exists for these works, and the nature of the
experiments they perform makes it very hard to perform a fair comparison (as
we do later with the results from [21]). More precisely, both [13] and [34] eval-
uate their protocols relative to an implementation of ABY3 [32] that was also
implemented by the authors themselves (as no public implementation of ABY3
was available at that time).

While [34] have better amortized communication cost, we estimate that their
concrete running time (when considering end-to-end times, as we do in this
work) will be worse. We base this conjecture on the fact that [34] uses the
interpolation based check from [8]. For the case of fields, this check was shown
in [9] to take several seconds in order to check 1 million multiplications (which
is the benchmark we use). Running the same check, but over a ring, requires
computation over a fairly large extension of Z2k , which we have no reason to
expect would be significantly faster than the field based check. Concluding, we
would not be surprised if [34] is faster in the online phase; however, preprocessing
the triples needed to get this would be much slower than our protocol. We stress
that our protocol (for the 3 party case) has no preprocessing, so we expect our
protocol to perform much better when measuring end-to-end times.

7.2 Results: Shamir Instantiation

The results of our experiments can be seen in Table 1. Across the board, we see
that preprocessing is more expensive in our protocol than in [14]. However, the
overhead is in line with the observation made above that operating in GR(2�, d)
is about 4 times as expensive than in Zp when � = 64 and p is a 61-bit Mersenne
prime. This motivates a line of research in improving the efficiency of comput-
ing over Galois rings, given the relevance of these structures as highlighted in
Sect. 1.2. This is in particular true when the number of parties is small, as here
local computation is the dominant factor. Moving to a larger number of parties,
the overhead decreases, which we attribute to differences in the efficiency of the
communication layer between our protocol and the one in [14].

Interestingly, we see that for a lower number of parties combined with very
deep circuits, our protocol performs better in the online phase. E.g., [14] takes
7.3 s, while both of our version is below 4.5 s. This could again be explained by
differences in the communication layer (since both our protocols communicate
roughly the same amount of information due to the fact that we only need
to send a Z2� element during reconstruction). However, our protocol is again
less efficient when the number of parties increases, which would be due to the
fact that the king needs to send more data during a reconstruction, as well as
broadcast being more costly when more parties are involved. We remark that it
is possible to distribute the broadcast load of the king among several parties,
which may close the gap to some extent.

We see an expected overhead of roughly ×2 between � = 64 and � = 128
(consider the depth 20 row in Table 1, as this is the setting where differences in
local computation is most prominent). This more or less confirms the intuition

148 M. Abspoel et al.

Table 1. LAN running times in seconds for circuits with 106 multiplications, different
depth and for varying number of parties, evaluated using Shamir SS-based MPC. Each
value is a tuple a/b where a is the preprocessing time and b is the time it takes to
evaluate the circuit.

Depth Protocol 3 5 7 9

20 Ours � = 64 1.56/0.18 2.12/0.28 2.46/0.37 2.70/0.47

Ours � = 128 2.79/0.52 4.28/0.74 4.73/0.91 5.10/1.11

[14] 0.43/0.18 0.63/0.22 0.93/0.45 1.03/0.28

100 Ours � = 64 1.50/0.23 1.97/0.30 2.30/0.37 2.76/0.41

Ours � = 128 2.80/0.51 3.78/0.61 4.15/0.77 5.02/0.95

[14] 0.42/0.42 0.64/0.22 0.90/0.52 1.04/1.27

1, 000 Ours � = 64 1.58/0.67 1.95/1.08 2.23/1.43 2.62/1.84

Ours � = 128 2.80/1.23 3.68/1.81 4.23/2.08 5.03/2.47

[14] 0.41/0.96 0.63/0.68 0.89/0.95 1.05/1.17

10, 000 Ours � = 64 1.50/3.85 2.01/8.55 2.41/13.41 2.65/16.76

Ours � = 128 2.81/4.43 3.71/8.07 4.38/13.31 5.03/16.43

[14] 0.38/7.30 0.61/7.32 0.89/8.40 1.05/12.88

that an operation in Z2128 is around 2–3 times as expensive compared to an
operation in Z264 .9

As a more general conclusion, we observe that working over these Galois ring
extensions does indeed incur an overhead—even for small extensions such as the
one we use.

7.3 Results: Replicated-Based Instantiation

We also compare our replicated secret-sharing based instantiation with the pro-
tocols of [21], and present the results in Fig. 1a and Fig. 1b.10 As we do not have
access to the code of all the protocols considered in [21], we run our protocol in
the same setup. With the exception of the Sharemind postprocessing protocol,
we observe that we outperform all protocols of [21]. We may attribute this to
the fact that both Sharemind and MP-SPDZ are more mature codebases and
thus it is likely that a greater effort has been put into optimizations.

9 Indeed, while a multiplication in Z264 is one unsigned 64-bit multiplication, a multi-
plication on 128-bit types compile to three Z264 multiplications. That the overhead
is less than ×3 can be attributed to the compiler being able to easier vectorize 64-bit
multiplications in the Z2128 case.

10 We thank the authors of [21] for giving us the tikzcode of their graph, as well as their
raw experimental data which allows us to make a fair comparison in this section.

An Efficient Passive-to-Active Compiler for Honest-Majority MPC 149

100 101 102 103 104 105 106 107

103

104

105

106

Multiplications

M
ul
ti
pl
ic
at
io
ns
/s

Ours (RSS)
CDE+18-style MP-SPDZ
Postprocessing MP-SPDZ
DOS18 (batch) Sharemind
Postprocessing Sharemind

(a) Throughput in LAN

100 101 102 103 104 105 106 107

101

102

103

104

105

106

Multiplications

M
ul
ti
pl
ic
at
io
ns
/s

Ours (RSS)
CDE+18-style MP-SPDZ
Postprocessing MP-SPDZ
DOS18 (batch) Sharemind
Postprocessing Sharemind

(b) Throughput in WAN

Fig. 1. Throughput benchmarks for replicated secret-sharing with 3 parties.

Table 2. LAN times in seconds for circuits with 106 multiplications and varying depth
with three parties.

Protocol 20 100 1,000 10,000

RSS Ours � = 64 0.23 0.23 0.49 2.36

Ours � = 128 0.4 0.41 0.56 2.47

[14] 0.26 0.33 0.59 2.53

However, when we consider our protocol running in a WAN, we see that we
outperform all protocols in [21]. This concurs with the fact that our protocol
only needs to send 2 ring elements per multiplication, while the postprocessing
protocols of [21] needs to send 3 (Table 2).

We also run our 3-party protocol against the similar field based one from
[14]. Given the similarities between the 3-party instantiation in that work and
ours, it is not surprising that the two protocols perform very similar. Similar to
our Shamir based instantiation, we observe the largest difference (in our favor)
with deeper circuits, which we can again attribute to slight differences in the
communication layer. On the other hand, the difference is smaller for the more
shallow circuits where local computation matters more. For this case, our pro-
tocol with � = 64 is comparable in terms of speed to [14], which uses a 64-bit
prime. On the other hand, our protocol with � = 128 is slightly slower. However,
as highlighted in the introduction, the need of an s-gap in field-based protocols
to support more complex primitives like secure comparison or truncation implies
that comparing a 64-bit prime with � = 64 is fair.

Acknowledgment. This work has been supported by the European Research Council
(ERC) under the European Unions’s Horizon 2020 research and innovation programme
under grant agreement No. 669255 (MPCPRO); and the Danish Independent Research
Council under Grant-ID DFF-6108-00169 (FoCC).

150 M. Abspoel et al.

References

1. Fast large-scale honest-majority MPC for malicious adversaries (2017). https://
github.com/cryptobiu/MPCHonestMajorityNoTriples

2. Abspoel, M., Cramer, R., Damg̊ard, I., Escudero, D., Yuan, C.: Efficient
information-theoretic secure multiparty computation over Z/pk

Z via Galois rings.
In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp. 471–501.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6 19

3. Araki, T., et al.: Optimized honest-majority MPC for malicious adversaries - break-
ing the 1 billion-gate per second barrier, pp. 843–862 (2017)

4. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority, pp. 805–817 (2016)

5. Beerliová-Trub́ıniová, Z., Hirt, M.: Efficient multi-party computation with dispute
control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 305–328.
Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 16

6. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure mul-
tiparty computation with a dishonest minority. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 39

7. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-88313-5 13

8. Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Zero-knowledge
proofs on secret-shared data via fully linear PCPs. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 67–97. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 3

9. Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Practical fully secure three-party compu-
tation via sublinear distributed zero-knowledge proofs, pp. 869–886 (2019)

10. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

11. Cascudo, I., Cramer, R., Xing, C., Yuan, C.: Amortized complexity of information-
theoretically secure MPC revisited. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10993, pp. 395–426. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96878-0 14

12. Catrina, O., de Hoogh, S.: Improved primitives for secure multiparty integer com-
putation. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp.
182–199. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-
4 13

13. Chaudhari, H., Choudhury, A., Patra, A., Suresh, A.: ASTRA: high throughput
3PC over rings with application to secure prediction. In: Proceedings of the 2019
ACM SIGSAC Conference on Cloud Computing Security Workshop, CCSW@CCS
2019, London, UK, November 11, 2019, pp. 81–92 (2019)

14. Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 34–64.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 2

15. Cramer, R., Damg̊ard, I., Escudero, D., Scholl, P., Xing, C.: SPDZ2k : efficient MPC
mod 2k for dishonest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10992, pp. 769–798. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96881-0 26

https://github.com/cryptobiu/MPCHonestMajorityNoTriples
https://github.com/cryptobiu/MPCHonestMajorityNoTriples
https://doi.org/10.1007/978-3-030-36030-6_19
https://doi.org/10.1007/11681878_16
https://doi.org/10.1007/978-3-642-32009-5_39
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-319-96878-0_14
https://doi.org/10.1007/978-3-319-96878-0_14
https://doi.org/10.1007/978-3-642-15317-4_13
https://doi.org/10.1007/978-3-642-15317-4_13
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-319-96881-0_26

An Efficient Passive-to-Active Compiler for Honest-Majority MPC 151

16. Dalskov, A.P.K., Escudero, D., Keller, M.: Secure evaluation of quantized neural
networks, vol. 2020, no. 4, pp. 355–375 (2020)

17. Damg̊ard, I., Escudero, D., Frederiksen, T.K., Keller, M., Scholl, P., Volgushev,
N.: New primitives for actively-secure MPC over rings with applications to private
machine learning, pp. 1102–1120 (2019)

18. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

19. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 32

20. Damg̊ard, I., Orlandi, C., Simkin, M.: Yet another compiler for active security or:
efficient MPC over arbitrary rings. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10992, pp. 799–829. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96881-0 27

21. Eerikson, H., Keller, M., Orlandi, C., Pullonen, P., Puura, J., Simkin, M.: Use your
brain! Arithmetic 3PC for any modulus with active security, pp. 5:1–5:24 (2020)

22. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-
party computation for malicious adversaries and an honest majority. In: Coron,
J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 225–255.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6 8

23. Genkin, D., Ishai, Y., Polychroniadou, A.: Efficient multi-party computation: from
passive to active security via secure SIMD circuits. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 721–741. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 35

24. Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to
additive attacks with applications to secure computation, pp. 495–504 (2014)

25. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

26. Goldwasser, S., Lindell, Y.: Secure multi-party computation without agreement. J.
Cryptol. 18(3), 247–287 (2005)

27. Goyal, V., Liu, Y., Song, Y.: Communication-efficient unconditional MPC with
guaranteed output delivery. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019. LNCS, vol. 11693, pp. 85–114. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-26951-7 4

28. Goyal, V., Song, Y., Zhu, C.: Guaranteed output delivery comes free in honest
majority MPC. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS,
vol. 12171, pp. 618–646. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-56880-1 22

29. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure
computation with oblivious transfer, pp. 830–842 (2016)

30. Kikuchi, R., et al.: Field extension in secret-shared form and its applications to
efficient secure computation. In: Jang-Jaccard, J., Guo, F. (eds.) ACISP 2019.
LNCS, vol. 11547, pp. 343–361. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-21548-4 19

31. Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic cir-
cuits with malicious adversaries and an honest-majority, pp. 259–276 (2017)

32. Mohassel, P., Rindal, P.: ABY3: a mixed protocol framework for machine learning,
pp. 35–52 (2018)

https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-319-96881-0_27
https://doi.org/10.1007/978-3-319-96881-0_27
https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1007/978-3-662-48000-7_35
https://doi.org/10.1007/978-3-030-26951-7_4
https://doi.org/10.1007/978-3-030-26951-7_4
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/978-3-030-21548-4_19
https://doi.org/10.1007/978-3-030-21548-4_19

152 M. Abspoel et al.

33. Nordholt, P.S., Veeningen, M.: Minimising communication in honest-majority
MPC by batchwise multiplication verification. In: Preneel, B., Vercauteren, F.
(eds.) ACNS 2018. LNCS, vol. 10892, pp. 321–339. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-93387-0 17

34. Patra, A., Suresh, A.: BLAZE: blazing fast privacy-preserving machine learning
(2020)

https://doi.org/10.1007/978-3-319-93387-0_17
https://doi.org/10.1007/978-3-319-93387-0_17

	An Efficient Passive-to-Active Compiler for Honest-Majority MPC over Rings
	1 Introduction
	1.1 Secure Computation over Rings
	1.2 Our Contributions
	1.3 Related Work

	2 Preliminaries and Definitions
	2.1 Linear Secret Sharing and Its Properties
	2.2 Secure Multiplication up to Additive Attacks ch6C:GenIshPol15,ch6STOC:GIPST14

	3 Building Blocks and Sub-protocols
	3.1 Checking Equality to 0

	4 The Main Protocol for Rings
	5 Instantiation for n Parties
	5.1 Generating Randomness
	5.2 Checking Correctness of Sharings
	5.3 Secure Multiplication up to Additive Attacks
	5.4 Reducing Communication Using Pseudo-Randomness ch6C:BBCGI19,ch6ACNS:NorVee18

	6 Instantiation for 3 Parties
	6.1 Generating Random Shares
	6.2 Secure Multiplication up to an Additive Attack
	6.3 Efficient Checking Equality to 0

	7 Implementation and Evaluation
	7.1 Experiments
	7.2 Results: Shamir Instantiation
	7.3 Results: Replicated-Based Instantiation

	References

