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Abstract. The Secure Remote Password protocol is a password-based
authenticated key-exchange between two parties. One advantage is to
prevent offline dictionary attacks from an adversary eavesdropping the
communication. We present how such an attack is feasible if the modular
exponentiation at the heart of the protocol is vulnerable and leaks some
data related to the password.

In the case of a fixed exponent, adding randomness during the exe-
cution is a classical protection mechanism, and such a mechanism is
present in Apple’s cryptographic library to randomize the exponent.
Despite being intended to protect against complex side-channel attacks,
we show that its usage makes the implementation vulnerable to simple
side-channels such as power analysis.

This leakage observed in the library is mild but is useful for the attack
we propose on the Secure Remote Password protocol.
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1 Introduction

The Secure Remote Password (SRP) protocol [21,24] allows two parties to
securely establish a session key. It belongs to the class of augmented Password-
based Authenticated Key-Exchange (PAKE), attributing an asymmetric role to
the two parties. One is a client and knows a secret password, and the other is a
server that only stores a verifier of the password. The advantages over a Diffie-
Hellman key-exchange protocol are that its design ensures mutual authentication
of the parties and protection against a Man in the Middle that eavesdrops or
even interferes with the communication between the client and the server.

Calculations in the SRP protocol require several modular exponentiations
in a finite field defined by a large prime. The exponents are secret, and one of
them is specifically derived from the password. The knowledge of this value is
sufficient to impersonate a client. An open question is whether partial knowledge
of it could be enough.
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Recently, it has been shown that implementations of a similar PAKE proto-
col can lead to a timing difference related to the password [4,22]. The authors
used this leak as a distinguisher to filter passwords in a dictionary that do not
correspond. While it is not a secret exponent that is derived from the password,
a similar approach could be applied to the SRP protocol if the exponentiation
algorithm is vulnerable to side-channels.

Many methods have been proposed to attack implementations of exponentia-
tion algorithms. One category of those is passive attacks, consisting of observing
the executions [15], either remotely by measuring the time taken for the cal-
culation, or with physical access using probes to capture power consumption
or electromagnetic emanations. Targets of these attacks are mainly algorithms
whose behavior is dependent on the secret exponent, revealing the whole expo-
nent or partial knowledge of it. These attacks remain relevant as recent research
shows [1,2,14].

To protect against these side-channel attacks, several methods have been
designed over the years. Timing attacks and simple power analysis can be avoided
using algorithms with regular behavior to assure a constant-time flow of opera-
tions independent of the secret exponent. One example is the Montgomery ladder
algorithm [17] that processes each bit of the exponent with the same operations.
In the case of a fixed exponent, such as the SRP protocol, the exponentiation
is vulnerable to more complex attacks that require the capture of many traces
of execution [16]. Mechanisms relying on randomization were introduced as a
protection against those attacks. One of the most known is exponent blind-
ing by adding a random multiple of the order of the base element [9]. Another
one central to this paper consists of splitting the exponent randomly in several
shares [7].

However, these countermeasures do not necessarily protect from all attacks.
For instance, the blinding of the exponent on NIST elliptic curves might not
mask the exponent entirely due to the particular nature of the sparse order of
the curves [10,20]. Concerning the exponent splitting, it was shown a correlation
between the shares in the additive version of the splitting [18], and a template
attack was applied on the Euclidean version of the splitting [12].

It is of interest to look at the choices made to achieve security of exponen-
tiation algorithms in widely used cryptographic libraries, in particular for use
with the SRP protocol. The source code of Apple’s cryptographic library is made
available to allow for “verification of its security characteristics and correct func-
tioning”.1 This library implements the low-level implementations of primitives
that can be used by developers through high-level APIs for security operation for
operating systems iOS and macOS, in particular through the CommonCrypto
interface for cryptographic operations or the Security Framework. Several pro-
tection mechanisms are implemented in the modular exponentiation used in
the SRP protocol, including the Euclidean splitting technique, and analysis has
shown the presence of a variation in its execution.

1 https://developer.apple.com/security/ (bottom of the page).

https://developer.apple.com/security/
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In this paper, we introduce an attack on the SRP protocol when the underly-
ing exponentiation algorithm is vulnerable to side-channels. This allows running
an offline dictionary attack with two variants. The first where the attacker only
observes the communication and the vulnerable exponentiation, while the other
assumes an attacker that interferes as a Man in the Middle similar to the Drag-
onblood attack on the Dragonfly handshake [22]. We also present a vulnerability
in the modular exponentiation of Apple’s cryptographic library. We found that
randomization of the exponent with the Euclidean splitting technique of [7] has
been added in the most recent version of the library.2 We show that it leads to a
small leakage that can be measured with simple side-channels. While it is mild,
it becomes much more significant from many measurements with a fixed expo-
nent, making it possible to approximate the exponent by placing it in a smaller
range. This is useful for the attack on SRP, in particular for the first variant.
Although not present in the core of the paper, we found the same vulnerability
in the exponentiation algorithm used with elliptic curves in the library.

The paper is organized as follows. We start in Sect. 2 with a general descrip-
tion of the SRP protocol. We introduce in Sect. 3 our attack on the protocol in
the situation where the client uses a vulnerable exponentiation algorithm, even
in the case of a small leak. Section 4 describes the modular exponentiation in
Apple’s cryptographic library and the leakage we found due to the Euclidean
splitting of the exponent that leads to an approximation of the secret exponent.
In Sect. 5, we present a simulation of a power trace of the modular exponentia-
tion, and experiments to illustrate the effectiveness of the attack on SRP using
the leak from Apple’s library. We present countermeasures to avoid the leak with
the Euclidean splitting in Sect. 6, and a conclusion in Sect. 7.

Responsible Disclosure. The vulnerability has been disclosed to Apple Prod-
uct Security following their procedure. A security update has been made available
in iOS 14.5 and macOS 11.3.

2 The Secure Remote Password Protocol

The Secure Remote Password (SRP) was introduced in [25] and is described as
SRP-3 in RFC 2945 [24], and SRP-6 for use in TLS authentication is described in
RFC 5054 [21]. The difference between the two versions is minor and addresses
vulnerabilities that are not relevant to the paper, and we will describe the pro-
tocol using versions SRP-6 and SRP-6a. It is a password-based protocol whose
main goal is to establish a key agreement between two parties in a client/server
model. The password is known only from the client, while the server stores a
verifier. They authenticate themselves by sending ephemeral data similar to a
Diffie-Hellman exchange. As a result of successful authentication, the two parties
share a cryptographically strong secret.

2 No version number is indicated, but copyright notice and last file update refer to
late 2019.
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The protocol is designed such that the password cannot be derived from the
communication between the parties. Therefore, an eavesdropper is unable to run
an offline dictionary attack, making the protocol secure against weak passwords
(e.g., a 4 or 6-digit passcode). Furthermore, if the server is compromised, the
leaked data is insufficient to impersonate the client if the password is strong
enough.

The protocol is described below and summarized in Fig. 1.

Public parameters: safe prime p, base element g, parameter k
password: x = H(salt, id, pw)

Client
secret: pw

random a in [1, q)
A ← ga

Server
secret: v := gx

other: salt

random b in [1, q)
B ← kv + gb

x ← H(salt, id, pw)
u ← H(A,B)
sk ← H((B − kgx)a+ux)
M1 ← H(p, g, id, salt, A,B, sk)

u ← H(A,B)
sk ← H((Avu)b)

Verify M1

M2 ← H(A,M1, sk)

Verify M2

A, id

B, salt

M1

M2

Fig. 1. Secure Remote Password (SRP) protocol, version SRP-6(a).

2.1 Description

Initialization. All calculations are performed in a finite field defined by a large
prime p, and a base element g that generates a large multiplicative subgroup of
order q. In particular, it is recommended that p is a safe prime (i.e., p = 2q + 1
with q a prime) for maximal security. Such parameters are defined in [21] to be
used with the protocol for TLS authentication.

Before any authentication, a password pw and a salt must be chosen by the
client, and a secret exponent x is derived as follows:

x = H(salt | H(id | “:” | pw)),
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where H is a secure hash function and | is a concatenation. For simplicity, we
will omit the specific construction of the input of the hash function and specify
only the values that influence the output. The client computes v := gx mod p,
and the server stores the verifier v and the salt. The client does not need to store
the value x. The matter of how the server gets the verifier and the salt depends
on the application that uses the protocol and is not a part of the description.

Start of Authentication. The first phase consists of the client that sends their
identity and a public value A := ga mod p where a is an ephemeral exponent
randomly generated. From the client’s identity, the server retrieves the corre-
sponding verifier and salt, then sends the salt and a public value B := kv + gb

where b is an ephemeral exponent randomly generated, and k a public parameter
of the protocol (k = 3 in SRP-6, while it is deterministically generated from the
other parameters in the SRP-6a variant).

Challenge Processing and Key Agreement. The two parties can compute
a value u derived from the public outputs A and B. Then we have the following
equality:

(B − kgx)a+ux mod p = (Avu)b mod p.

Using the salt to calculate x, the client can compute the expression on the left,
and the server the one on the right. From this shared secret, a session key sk

is derived. A final step is necessary to prove to each other that their keys are
identical. Both client and server exchange a value that each can verify. In case
of a disagreement, the authentication is aborted.

2.2 Security

To impersonate a client, it is necessary to learn the exponent x for the challenge
processing phase and construct a shared secret with the server. This value is
neither exchanged nor stored, and cannot be derived from the public outputs
exchanged. In the case the server is compromised, an attacker learns v := gx mod
p and x can be recovered only by dictionary attack if the password is weak (the
attacker finds candidates x′ for x until gx′

mod p is equal to v), or by solving a
discrete logarithm problem. The latter is a hard problem if the group parameters
are secure (the record as of the writing of this paper is a discrete logarithm in
a 795-bit finite field [3]). This is equivalent to a breach of database password
hashes and is not in the security scope of the SRP protocol.

On the client’s side, the value x is reconstructed when the client enters the
password, using the salt sent by the server, and needs to compute the exponenti-
ation gx mod p. Therefore, this operation is susceptible to be done several times
and is the main topic of the paper.
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3 Attack on the SRP Protocol

In this section, we present the attack on the SRP protocol. The goal is to run an
offline dictionary attack against weak passwords using partial knowledge of the
secret exponent obtained from a vulnerable exponentiation. While everything is
described using the SRP protocol, we point out that the attack could be adapted
for similar protocols involving an exponentiation related to a password.

3.1 Attack Model

The target of the attack is the client’s side implementation of the protocol on
the part relevant to the exponentiation with the secret exponent x derived from
the password. The attack consists of three main steps:

1. Obtention of the salt and client’s identity (once for each salt);
2. Observe through side-channels the vulnerable implementation (might be nec-

essary to repeat this step depending on the vulnerability);
3. Run a dictionary attack using the side-channel leakage.

The first step is necessary since those values are the other entries outside of the
password for the exponent derivation. The second allows the attacker to collect
data related to the exponent x that is leaked by the implementation.

When those conditions are met, the attacker creates a distinguisher of the
secret exponent from the side-channel leakage. Then, from the salt and the
client’s identity previously obtained, a dictionary attack can be performed as
summarized in Algorithm 1. The distinguisher acts as an indicator to filter out
wrong passwords. Indeed this value is derived from the correct exponent, so the
correct password will satisfy the verification against the distinguisher. However,
it does not mean the correct password has been found, and unless great preci-
sion, many other passwords will pass the test. The performance of filtering out
wrong passwords depends heavily on the precision given by the distinguisher.

Algorithm 1. Password filtering given a distinguisher.
Require: salt, id, dictionary, distinguisher
Ensure: list of password candidates
1: list ← {}
2: for pw’ in dictionary do
3: x′ ← H(salt, id, pw’)
4: if check(x′, distinguisher) then
5: list ← list ∪ {pw’}
6: return list
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3.2 Passive Attacker

In this version, the attacker only observes the execution on the client’s side. From
the observation of one or several executions, a single distinguisher is created. The
password filtering is limited when the leak is identical in each execution. The
main problem being one cannot improve the distinguisher precision with more
observations. Nonetheless, it is more interesting with a vulnerability that leaks
more data at each execution, as is the case in Apple’s cryptographic library.

One possibility to make this attack more effective is to compare the list of
password candidates of two users. If the number of password candidates in each
list is low enough, only a few wrong passwords will appear on both lists. Then,
a common password can be found in the intersection of the two lists.

3.3 Active Attacker

The previous attacker is limited to one distinguisher and its precision. In the
Dragonblood attack [22], it was noticed that the modification of a MAC address
allowed the acquisition of fresh measurements from an identical password, i.e., a
new distinguisher. The same idea can be applied in the SRP protocol using the
salt which influences the output of the hash function. An alteration of this value
with a Man in the Middle attack results in a new exponent derived from the
same password. A distinct distinguisher can be created from the side-channel
leakage, and the password filtering of Algorithm 1 can be used to reduce even
further the number of candidates iteratively.

This variant implies that the session key computed by the client is incorrect,
and this could be detected with many attempts. To prevent detection on the
server’s side, an alternative would be an attacker that poses as the server and
sends directly the chosen value for the salt. It would still imply failed authenti-
cation for the client.

Another possibility would be a service or product that changes the salt value
for an identical password.

3.4 Practical Considerations

Obtention of the Client’s Identity and Salt. The client’s identity (email
address, username, identification number, etc.) can be easily guessed when the
target is identified. As for the salt, it is exposed to an eavesdropper when the
communications are sent in plaintext.

However, the communication could be encrypted using a certificate-based
TLS, preventing the exposure of the salt. A bypass of this added security is
possible if the attacker initializes an authentication with the server by posing
as the client. The attacker would receive an ephemeral public output B and
the salt that corresponds to the client. An accessible example is the ProtonMail
service that uses SRP for authentication since version 3.6 [19]. The data of the
SRP protocol are exchanged in JSON format and can be extracted using a web
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browser inspector. Then it is easy to get the salt of any user by attempting an
authentication.

Another layer of security could be present in the application that uses SRP,
such as a second factor of authentication before the start of the SRP protocol.
This would make it more difficult to pose as a client and retrieve the salt. We
give details in Sect. 3.5 of the case of the Apple iCloud Keychain recovery service.

Side-Channel Observation. A leakage that can be observed at distance such
as timing attacks is difficult to obtain in this protocol: calculations involving the
secret exponent are only a part of the whole process, so timing analysis could be
hard or impossible to exploit. Other means of attacks require physical access to
the client’s device, whether it is a smartphone or a personal computer. This is a
limit to the application of the attack since the observation follows the entering
of a password.

However, the authors of [11] have shown how a side-channel attack can be
mounted using a magnetic probe near a device, or a power probe on the phone’s
USB charger in a discreet manner. In particular, their experiments were on an
Apple iPhone.

Man in the Middle. The main problem for the second variant of the attack is
that certificate-based TLS communication between client and server may harden
the possibility to modify transmitted values such as the salt. So the Man in the
Middle attacker would require to impersonate the server. A salt modification
implies a failed authentication, and the client might take this as a mistyped
password. Since it only needs to be done a few times, the attacker can space out
the attack over time to pass unnoticed.

There are other possible leads to make the second variant possible such as
a fault injection in the salt or the user’s identity on the client device. Those
solutions come with their difficulties; the one of importance here is that the effect
must be controlled so the modified salt (or user’s identity) must be predictable
by the attacker.

Distinguishers and Efficiency of Dictionary Attack. To estimate the effi-
ciency of the dictionary attack, we illustrate with the distinguisher that the
paper focuses on: the exponentiation leaks data revealing that the exponent lies
in a small interval of width w. The smaller this value is, the more effective the
filtering.

The explanation lies in the construction of the exponent in the SRP proto-
col where it is the integer representation of the output of a cryptographic hash
function. Let � the maximum bit length possible of a hash function (e.g., � = 256
for SHA-256), then their outputs are expected to be evenly distributed so the
exponent can be any integer in the interval [0, 2� − 1]. Under the same salt and
user’s identity, running through all passwords in a dictionary will result in expo-
nents uniformly distributed, so around w/2� of the exponents are expected to
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satisfy the distinguisher. If D is the dictionary size, then the number of password
candidates is close to

D · w

2�
.

In the context of the paper, this distinguisher is made possible by a leak
explained in Sect. 4.1, and present in Apple’s cryptographic library. The width
w of the interval is related to the number of measurements of the exponentiation.
That makes the first variant of the attack interesting in practice since the only
lever to reduce the number of password candidates is to refine the distinguisher.

However, the use of several distinguishers in the second variant makes the
filtering very effective. Indeed, a modification of the salt implies a fresh exponent
and distinguisher that are independent of the original values thanks to the hash
function. Then the list of password candidates can be reduced significantly by
each distinguisher of width wi:

D ·
∏

i

wi

2�
.

In particular, the case where two users share the same password is equivalent to
the possession of two distinguishers of widths w1 and w2.

If the distinguisher is the bit length n of the exponent, then the exponent
lies in an interval of width w = 2n−1. Thus, around 1/2�−n+1 of the passwords
correspond, and in the worst case, it means half the passwords are expected
to be filtered out. A few dozens bit length distinguishers are generally enough
depending on the dictionary size. We refer to the Dragonblood paper [22] for
this particular case. While not related to the bit length of an exponent, the leak
also follows a geometric distribution.

Remark 1. The reliability of the distinguisher is important. For instance, it is not
guaranteed that the exponent lies in the subinterval obtained with the analysis of
the leak in the modular exponentiation in Apple’s cryptographic library, which
could filter out the correct password.

3.5 iCloud Keychain Recovery

The iCloud ecosystem is the heart of Apple’s online services and can be shared
across devices from one account, and the SRP protocol is used in several places.
One of the services is iCloud Keychain Recovery that allows users to escrow their
keychain with Apple (that contains sensitive data such as passwords or credit
cards). This service has a supplementary layer of protection through the SRP
protocol (with the 2048-bit group of RFC 5054, SHA-256 as the hash function,
and 64 bytes salts) using a separate password from the iCloud account: for each
device, iCloud stores a backup of the keychain as a record protected with the
device’s password (the default when the iCloud account has a second factor of
authentication activated). Thus, the keychain is secured if the iCloud account
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is compromised, and the content stays inaccessible from Apple. More details on
the iCloud Keychain services are given in the Apple Platform Security guide.3

Our investigation has shown the following HTTP requests when a user signs
out and back into iCloud on their device:

1. A request get records is transmitted, and the server answers with a list of
records associated with the iCloud account;

2. A request srp init initiates the first phase of the SRP protocol containing
the client’s ephemeral value to access a record, and the server answers with
the corresponding data: DSID (unique identifier of the iCloud account used
as identity in SRP), the server’s ephemeral value, and the salt;

3. A request recover for the second phase with the client’s proof, and the
servers replies with its proof and the record;

4. The client sends a request enroll with a new record protected with the same
password, but with a different salt.

We have seen two situations where the recovered record is either the old one
corresponding to the device or one corresponding to another enrolled device.
The first case is interesting for the variant of the attack that uses several distin-
guishers.

Though, the realization of the attack requires the obtention of the salt and
identifier. Monitoring the encrypted communications between the target’s device
and Apple’s servers could overcome this issue, but our attempts by setting up
a proxy server failed on a MacBook Pro. An alternative would be to run the
srp init request, but a password-based token is necessary on 2FA protected
iCloud accounts (which has become mandatory for new accounts and cannot
be deactivated). This token is acquired after successful authentication on the
iCloud account.

In the case an attacker has already compromised an iCloud account and
can bypass the second factor of authentication once, then the device can be
enrolled as a trusted device. By doing so, it might happen the keychain will be
synchronized directly with the other enrolled devices if the keychain option is
checked in system preferences. This synchronization does not use SRP, so that
makes our attack useless if the goal is to retrieve a keychain, but it could still
be used to recover the target’s device password.

The attack to recover a weak password on an Apple device can be realized
under the following assumptions:

– Compromise the iCloud password of the targeted user;
– Bypass the second factor of authentication at least once;
– Force the user to disconnect their iCloud account on their device several

times;
– Observe the side-channel leakage when the user reconnects during the execu-

tion of the SRP protocol in iCloud Keychain recovery.

Every time a new leak and salt are obtained, the dictionary attack can be
performed as given in Algorithm 1.
3 https://support.apple.com/guide/security/welcome/web.

https://support.apple.com/guide/security/welcome/web
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4 Modular Exponentiation in Apple’s Library

This section presents the modular exponentiation in Apple’s cryptographic
library and the leakage from the exponent randomization with the Euclidean
splitting technique.

4.1 Exponent Randomization

Let x an exponent of n bits whose binary representation is

x =
n−1∑

i=0

xi2i.

This value is randomized by choosing a random integer m of λ bits and compute
the Euclidean division of x by m. The quotient is a = �x/m� and the remainder
is b = x mod m, then the exponentiation gx is rewritten as

gx = (ga)mgb,

with three exponentiations.
This technique is called the Euclidean splitting and was introduced in [7] as an

alternative to other exponent blinding methods. The authors proposed to com-
pute simultaneously the exponentiation with the quotient a and the remainder b
with Strauss-Shamir double exponentiation [8, Algorithm 9.23] for efficiency. In
the case of Apple, it is computed as three successive individual exponentiations.

Quotient Bit Length Variation. A variation regarding the quotient bit length
and related to the exponent was found: when divided by an integer of a fixed
bit length, then the quotient bit length has two possible values. The probability
that each of them is produced depends on the position of the exponent in the
interval [2n−1, 2n).

The definition and theorem below give the details on the partitioning of the
interval and the associated probabilities.

Definition 1. Let n, λ and β three non-negative integers with λ ≤ n and β ∈
[0, 2λ−1). We note

I(n, λ, β) = [2n−λ(2λ−1 + β), 2n−λ(2λ−1 + β + 1)),

a subinterval of [2n−1, 2n) of width 2n−λ.

Theorem 1. Let d the bit length of the quotient of the Euclidean division of an
integer x by an integer m chosen uniformly at random in [2λ−1, 2λ). Then d is
either n − λ or n − λ + 1 and we have

Pr[d = n − λ + 1 | x ∈ I(n, λ, β)] =
β + 1
2λ−1

. (1)
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Proof. Suppose x ∈ I(n, λ, β) and let x = am + b the Euclidean division of x by
an integer m of λ bits. The lower and upper bounds on the quotient a are

2n−1 − b

2λ
≤ a =

x − b

m
<

2n − b

2λ−1
,

and since b < 2λ and a is an integer, we have a ≥ 2n−λ−1. Overall, only the bit
length n − λ and n − λ + 1 are possible.

Now, if m ≤ 2λ−1 + β, then we have

a =
x − b

m
≥ 2n−λ(2λ−1 + β) − b

m
≥ 2n−λ − b

m
,

and since b < m and a is an integer, we have a ≥ 2n−λ so the bit length of a is
n − λ + 1. In this case there are β + 1 possible values for m out of 2λ−1, hence
the probability.

The other case is when m > 2λ−1 + β, then we have

a <
2n−λ(2λ−1 + β + 1) − b

m
≤ 2n−λ,

and the bit length of a is n − λ. ��
The consequence is that if m is randomly generated at uniform and its bit

length is λ, then the probability that the quotient bit length is n − λ + 1 depends
on which interval I(n, λ, β) contains the exponent x. It is represented in Fig. 2
for λ = 4 as an illustration, to make the staircase apparent, and λ = 32 the use
case in Apple’s library, where the intervals are too small and close to a linear
correlation between an exponent and the probability.

exponent
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0

1

2n−1 2n
exponent
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ty

0

1

2n−1 2n

Fig. 2. Correlation between an exponent of n bits, and the probability that the bit
length of the quotient of the Euclidean division with a λ-bit divisor is (n−λ+1) (left:
λ = 4, right: λ = 32).
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Exponent Approximation. An oracle that reveals d = 	log2(x/m)
 for a
fixed unknown integer x and N random integers m of an identical bit length λ
follows a binomial distribution of parameters N and probability (β + 1)/2λ−1

according to Theorem 1. This oracle acts as binomial trials to construct a con-
fidence interval on the unknown probability when only the number of repeated
experiments N and the number of successes nobs that d takes the value n−λ+1
are known. Since this probability is a characteristic of the interval I(n, λ, β),
then an approximation of x is deduced.

The steps are straightforward. A binomial proportion confidence interval
[p1, p2] on the probability is made observing the number of outcomes nobs of
successes (quotient bit length observed is d = n − λ + 1) out of N outcomes.
Then, β can be estimated too by

p12λ−1 − 1 ≤ β ≤ p22λ−1 − 1,

and since β is an integer, let βmin = 	p12λ−1 − 1
 and βmax = �p22λ−1 − 1�.
Finally, the approximation on x is made by the concatenation of the contiguous
intervals I(n, λ, βmin) to I(n, λ, βmax):

[2n−λ(2λ−1 + βmin), 2n−λ(2λ−1 + βmax + 1)).

This interval is likely to contain the secret exponent x depending on the confi-
dence level.

This approximation makes it possible to construct a distinguisher for the
attack on the SRP protocol.

4.2 Exponentiation Algorithm

There are several exponentiation algorithms in the library. The blinded mod-
ular exponentiation is implemented in the function ccdh power blinded4. The
overall process consists of three individual successive exponentiations, with other
blinding techniques, and is summarized in Algorithm 2 with a random divisor
of λ = 32 bits.

The exponentiation algorithm used from line 5 to line 7 is a 2-bit window-
ing method presented in Algorithm 3 called square-square-multiply-always. The
number of iterations is dependent on the input bit length: if the input bit length
is d, there are 	d/2
 iterations of the loop. This can be revealed by side-channels
by counting the number of patterns on power consumption or electromagnetic
trace (see Sect. 5.1). The divisor bit length is fixed and known in advance, but
those of the quotient and the remainder are variable.

4 In the file ccdh/src/ccdh power blinded.c.
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Algorithm 2. Blinded modular exponentiation in Apple’s CoreCrypto library
Require: x, g, p
Ensure: gx mod p

Modulus, exponent, and base blinding
1: p� ← blinding(p) � p� = p · random
2: g� ← blinding(g) � g� = g + p · random
3: m ← random integer in [231, 232)
4: a ← �x/m�, b ← x mod m

Exponentiation
5: t1 ← g�a mod p�

6: t2 ← t1
m mod p�

7: t3 ← g�b mod p�

8: return (t2 · t3) mod p � (g + p · random)am+b mod p = gx mod p

Algorithm 3. Square-square-multiply always exponentiation.
Require: g, a = (ad−1, . . . , a0)2 with ad−1 = 1
Ensure: ga

1: for i = 0 to 3 do
2: tab[i] ← gi

3: r ← 1
4: for i = �d/2� − 1 down to 0 do
5: r ← r2

6: r ← r2

7: r ← r · tab[2a2i+1 + a2i]

8: return r

For a fixed exponent of bit length n, we have seen that there are two possible
bit lengths d for the quotient and can be used to make an approximation on
the exponent. Both can happen using different values for m, but it is not always
possible to distinguish them with the square-square-multiply-always. If n − λ is
odd, then ⌈

n − λ

2

⌉
=

⌈
n − λ + 1

2

⌉
=

n − λ + 1
2

, (2)

so the quotient bit length is not leaked, but n can still be deduced from the
formula. On the contrary, if n − λ is even, then

⌈
n − λ + 1

2

⌉
=

⌈
n − λ

2

⌉
+ 1, (3)

so the algorithm runs with a different number of iterations for each of the possible
quotient bit lengths, and the bit length n of the exponent x can also be deduced.
Though, it requires several observations of exponentiations to be sure if we are
situated in one or the other case. As a consequence, one measure is not sufficient
to know exactly the bit length n, but the remark below can make it possible in
the SRP protocol.
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Remark 2. On the client’s side in the SRP protocol, the exponentiation involving
the exponent derived from the password is computed in the call of the function
in line 4 of Fig. 3 using the blinded exponentiation. But we noticed it is also
computed with a different algorithm in line 1, but the result stored in the variable
v is never used thereafter (only to be cleared from memory). This algorithm is
Montgomery ladder [17] and starts the process at the most significant bit, leaking
the bit length of x. Therefore, the bit length can be known from one measure.

1 cczp_power(ccsrp_ctx_zp(srp), v, ccsrp_ctx_gp_g(srp), x);

2

3 /* Client Side S = (B - k*(g^x)) ^ (a + ux) */

4 ccsrp_generate_client_S(srp , S, k, x, u, B);

Fig. 3. Dummy exponentiation gx mod p on the client side in the SRP protocol in
Apple’s cryptographic library.

5 Experimental Results

In this section, we present the captures of power consumption of the modular
exponentiation to observe the leak from Apple’s library, and experiments to
illustrate the effectiveness of the attack on SRP with this leak.

5.1 Power Trace Capture

This part has been made in collaboration with Cyril Delétré, a member of the
author’s team.

The variation of the quotient bit length can be revealed by side-channel
by counting the number of patterns on power consumption or electromagnetic
trace. We have selected the Raspberry Pi Zero SoC as it offers a good compro-
mise between computing performances, hardware complexity, and power supply
configuration. First, to get a constant computing capacity and minimize the
noise on the power line the CPU frequency has been fixed to 700 MHz and the
HDMI/TV output has been turned off (this allowed cleaner traces). Starting
with a fresh Raspberry Pi OS setup we have built and installed the CoreCrypto
library from the sources. Then we have written in C language a program that
toggles a GPIO line on the SoC before and after the function from CoreCrypto
has been called. This way the oscilloscope can:

– Measure the power consumption with a first probe connected to a resistor
(3.3Ω in our case) in series on the 5 V power line;

– Trigger the start of the computing on a second probe connected to the GPIO
line (Figs. 4 and 5).
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Fig. 4. Measurement of power consumption on a Raspberry Pi Zero.

Finally, we have automated the batch of measurements with a script written
in Python 3 that:

– Launches the calculation on the Raspberry Pi Zero using the UART serial
console (less disturbance compared to a USB or SSH/telnet console);

– Downloads after each run the data from the oscilloscope using its TCP remote
console.

We chose the 2048-bit group of RFC 5054 [21] for the experiment, and the
exponent

x = d3afa905fededc64bc907b809da3dcb
484763c25c3b4728bb081a97cf9f0a5

(4)

in hexadecimal format. For each execution, the pseudo-random number generator
of CoreCrypto used in the function ccdh power blinded was initialized with a
random seed and was repeated 10000 times.

We give two sample traces in Fig. 6 where we see that the major part of
each trace corresponds to the exponentiation with the quotient (a vertical line
indicates the beginning of the individual exponentiations), and a zoom on the
end of this part in Fig. 7 reveals that it is shorter on the first trace than the
second one by one pattern of square-square-multiply.

It is interesting to note that we do not necessarily need to count the patterns
square-square-multiply every time since the approximation only needs to distin-
guish between the two cases. However, it is important to do it at least once to find
the bit length of the exponent. In this example, we found that there are respec-
tively 108 and 109 loop iterations on the quotient exponentiation. According to
Eq. (3), we deduce that the exponent is a 248-bit integer which is consistent
with the given value in Eq. (4).
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Fig. 5. Configuration of the experimental setup of the oscilloscope and Raspberry Pi
Zero.

We remark that this can still be found even when the patterns are hard to
distinguish if the noise is too high, as long as the beginnings of the individual
exponentiations are exposed. Indeed, using the fact that the random divisor is
always a 32-bit integer, then there are always 16 iterations of the loop. There-
fore, the number of iterations with the exponentiation with the quotient can be
deduced from the length between the two first dashed lines (taking into account
the square and multiply of the precomputation).

We can find easily the start of the exponentiations in the captures thanks
to the presence of a valley that corresponds to the first loop of the square-
square-multiply-always algorithm. Because the exponentiation is initialized with
the value p − 1, the second squaring is 12 followed by a multiplication by 1.
Both operations manipulate very low Hamming weight values, and this has a
significant impact on power consumption.

We used this to classify the traces in the two expected groups using the
position of the valley corresponding to the first loop of the exponentiation with
the random divisor. Many traces had major disruptions, but this method proved
to work well enough for 9356 traces, with 6099 corresponding to the “109” group.
Then the observed frequency was 0.6519 which is close to the probability we tried
to estimate around 0.6538 for the exponent x.
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Fig. 6. Two power trace captures of an exponentiation blinded with the Euclidean
splitting with an identical exponent (vertical lines represent the start of each of the
three exponentiations).

Fig. 7. Zoom on the end of the exponentiation with the quotient, and the start of the
one with the random divisor. The second trace has one more pattern of square-square-
multiply (SSM).

5.2 Dictionary Attack on SRP

The case of several bit length distinguishers known to the attacker has been well
established in [4,22], so we focus on the distinguisher given by the Euclidean
splitting of the exponent as implemented in Apple’s library.

We ran the experiment with the following parameters for the SRP protocol:

– SHA-256 as the hash function (exponents are in the interval [0, 2256));
– 2048-bit group of RFC 5054;
– Salt of 16 bytes;
– 6-digit password.
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Given a random password and salt, the secret exponent x was derived accord-
ing to the SRP protocol (using “id” as the client’s identity). We simulated the
leak for N = 1000 exponentiations following the description of the modular
exponentiation in Apple’s library, then an approximation was made in the form
[xmin, xmax] using the Wilson score interval [23] and a confidence level of 95%,
as described in Sect. 4.1. It has the advantage over a normal approximation to
be more suited for a small sample size N or when the probability to estimate is
close to 0 or 1. All guessed passwords whose derived exponent fell in the interval
were kept as candidates.

We repeated the experiment for 10000 different passwords and collected the
exponent values, the number of password candidates found, and if the password
was correctly included amongst the candidates. The results are given in Fig. 8.

An approximation on the exponents of odd bit length cannot be made as we
have seen in Sect. 4.2, so the number of password candidates for those is way
higher and does not appear (except for exponents of odd bit length less than
251 represented by the isolated dots on the left).

As a result, there were only 6846 cases with less than 32000 password can-
didates, and the correct password was included in the list for 95.5% of them,
which is consistent with the confidence level.

We see that the number of candidates is way lower for exponents near a
power of 2. This is a consequence of the Wilson score interval that gives a better
approximation when the probabilities are near 0 or 1. Therefore there is a concave
curve between each power of 2 for exponents of even bit length.

The best result was a password with a corresponding exponent around 2243.17

and was successfully included amongst a list of 8 candidates.

exponent
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0

32000

0 2253 2254 2255 2256

Fig. 8. Number of password candidates with N = 1000 measures as a function of the
secret exponent x.
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In a second experiment, we looked at the effects of the number N of measures
on the number of password candidates. We kept the same settings as the previous
with the two following changes:

– Exponents have bit length n = 256;
– The number of measures N ranged from 102 to 105.

The results are given in Fig. 9, where we can see that when the sample size is
increased by a factor of 10, the number of password candidates is decreased by
a factor around

√
10 due to the binomial approximation.

exponent
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0
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2255 2256

Fig. 9. Number of password candidates as a function of the secret exponent (from top
to bottom: N = 100, N = 1000, N = 10000, and N = 100000).

6 Countermeasures

In this section, we present our proposition to make the Euclidean splitting pro-
tected against our attack, followed by the countermeasure proposed by Apple
developers.

6.1 Our Proposition

It is necessary to hide the bit length of the exponent to prevent the attack
on SRP using a bit length distinguisher. This can be done using the padding
proposed in [5] where x is padded with the group order q so the result of the
exponentiation is unchanged. Combined with an exponentiation algorithm with
a regular behavior, nothing on the exponent is leaked from simple side-channels.

However, in the context of SRP, the group order can be much higher than
the exponents, so the above technique adds a large cost to the execution. We
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present an alternative using a precomputed value. If the exponent x can have a
maximum bit length �, then it can be replaced by

xpad = x + 2�.

Let y := g−2�

mod p a precomputed value, then gx mod p can be calculated as
follows:

gxpad · y mod p.

The extra cost is moderate since it adds one multiplication, and the exponentia-
tion involves an exponent with one bit longer than the largest exponent possible.

The Euclidean splitting can be used, but it is necessary to take care of the
quotient bit length. We suppose the exponent has been replaced by the padded
value xpad with one of the two techniques above, and the Euclidean splitting
technique is applied with a random divisor m of λ bits:

a = �xpad/m�, b = xpad mod m.

From the padding technique we know the bit length n of xpad in advance, so the
two possible quotient bit lengths are n − λ and n − λ + 1. We can replace the
quotient a by

apad = a + 2n−λ+1

to hide the bit length, and use the precomputed value z := gλ−n−1 to compute
gxpad mod p as:

(gapad · z)m · gb mod p.

Again, the extra cost is moderate since it adds one multiplication and only 1 or
2 bits on one exponent.

Remark 3. In the case where the exponentiation algorithm is the 2-bit window-
ing method of Algorithm 3 used in Apple’s library, the quotient bit length can
be directly hidden with a padding on x only. With exponents less than 2� for �
even, the padded value xpad = x + 2� is an integer of odd bit length � + 1. In
Sect. 4.2 we saw that the number of iterations of the loop with the quotient as
an exponent is always the same in this situation (when λ is even).

6.2 Apple’s Proposition

The solution retained by Apple is to replace the exponentiation by the Mont-
gomery ladder algorithm [17] given in Fig. 10, while still using the Euclidean
splitting.

The algorithm works even if the leading bits of the exponent are set to 0.
However, this case would imply a multiplication by 1 and a squaring of 1 which
is easy to detect on a power trace as we proved in Sect. 5.1. To avoid this pitfall,
the modular arithmetic has been replaced with the Montgomery representation
so the unity does not have a low Hamming weight representation. This is done
by the function cczp to ws before the loop in Fig. 10.

When used for iCloud Keychain, we have confirmed that the loop bounds are
fixed with 225, 32, and 32 loop iterations respectively for the exponentiations
with the quotient, random divisor, and remainder.
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1 ccn_set(n, r1, s);

2 ccn_seti(n, r, 1);

3 cczp_to_ws(ws, zp, r, r);

4

5 cc_unit ebit = 0;

6 for (int bit = (int)ebitlen - 1; bit >= 0; --bit) {

7 ebit ^= ccn_bit(e, bit);

8 ccn_cond_swap(n, ebit , r, r1);

9 cczp_mul_ws(ws, zp, r1, r, r1);

10 cczp_sqr_ws(ws, zp, r, r);

11 ebit = ccn_bit(e, bit);

12 }

13

14 // Might have to swap again.

15 ccn_cond_swap(n, ebit , r, r1);

Fig. 10. Excerpt of the Montgomery ladder for modular exponentiation in the updated
version of CoreCrypto.

7 Conclusion

We showed an attack on the SRP protocol when the modular exponentiation is
vulnerable to side-channels, so an attacker can perform a dictionary attack to
find a weak password. Then, we presented a leak we found in Apple’s crypto-
graphic library that comes from the presence of a protection mechanism that
randomizes exponents through Euclidean divisions. We analyzed it and showed
that a passive attacker can approximate the secret exponent from several mea-
sures, and run an offline dictionary attack on SRP. It is not negligible from a few
thousand observations of the exponentiation and can produce a list of hundreds
of candidates from a dictionary containing millions of passwords.

Our findings were shared with Apple in responsible disclosure and the vul-
nerability was patched in iOS 14.5 and macOS 11.3.

Like other works, this paper highlights that insecure exponentiations are
still deployed in cryptographic libraries and that a small leak can be enough to
diminish the security of a protocol such as SRP.

Acknowledgments. The author would like to thanks the anonymous reviewers for
their comments, Apple Product Security for their collaboration, and finally his col-
league Cyril Delétré who provided the power trace captures.

A SRP Requests and Responses in iCloud Keychain
Recovery

In this appendix, we present the HTTP request srp init in the context
described in Sect. 3.5.
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The captures were made on a secondary device using Wireshark5 and Frida6

to export the TLS session keys for decryption.

1 POST /escrowproxy/api/srp_init HTTP /1.1
2 Host: p49 -escrowproxy.icloud.com :443
3 (...)
4 Authorization: Basic Y29 (...) BFVA==
5 (...)
6

7 <?xml version ="1.0" encoding ="UTF -8"?>
8 <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0// EN" "http :// www.apple.com/

DTDs/PropertyList -1.0. dtd">
9 <plist version ="1.0" >

10 <dict >
11 <key >blob </key >
12 <string >pIC8heH+SbClHjnugsfBBc (...) +2+ CM8q8hItheOscqwA ==</string >
13 <key >command </key >
14 <string >SRP_INIT </string >
15 <key >label </key >
16 <string >com.apple.icdp.record.et3n (...) 8HqM </string >
17 (...)
18 </dict >
19 </plist >

Fig. 11. Client’s side of the initialization phase of the SRP protocol in iCloud Keychain
recovery.

In Fig. 11, the ephemeral value A is base64 encoded and corresponds to 256
bytes, consistent with the 2048-bit group. The server’s answer is given in Fig. 12,
and contains the salt and ephemeral value B at the end of the data in the base64
string respBlob, each preceded by their length in bytes: 64 and 256.

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="yes"?>
2 <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0// EN" "http :// www.apple.com/

DTDs/PropertyList -1.0. dtd">
3 <plist version ="1.0" >
4 <dict >
5 <key >status </key >
6 <string >0</string >
7 <key >message </key >
8 <string >Success </string >
9 <key >version </key >

10 <integer >1</integer >
11 <key >dsid </key >
12 <string >28 (...) </string >
13 <key >ClubTypeID </key >
14 <integer >0</integer >
15 <key >respBlob </key >
16 <string >AAABiAAAAKQAAAAAPbZQrX (...) jsxg48nknPybRNHkTM =</string >
17 </dict >
18 </plist >

Fig. 12. Server’s side of the initialization phase of the SRP protocol in iCloud Keychain
recovery.

5 https://www.wireshark.org.
6 https://frida.re.

https://www.wireshark.org
https://frida.re
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We confirmed on the first device that the SRP protocol is executed to retrieve
the same record and salt after signing in and out. The new record created for the
first device is the one that is used on the secondary device when the experiment
is repeated.

B Elliptic Curve and SPAKE2+

In this appendix, we present briefly the implementation of the exponentiation
(scalar multiplication) with elliptic curves where the Euclidean splitting tech-
nique is also used. We first present the differences of the algorithm implemen-
tation, and the consequence on the password-based authenticated key-exchange
protocol SPAKE2+, which can be attacked similarly as with SRP.

B.1 Elliptic Curve Scalar Multiplication

The elliptic curves named secp192r1, secp224r1, secp256r1, secp384r1, and
secp521r1 share the same exponentiation algorithm that is implemented in the
function ccec mult.7

The whole exponentiation is given with generic group notations in Algo-
rithm 4. It is randomized with the Euclidean splitting, but we note differences
with the previous case of modular exponentiation:

– A padding to hide the bit length of the exponent x with the group order is
applied [5];

– A padding is applied on the remainder of the Euclidean division, so the bit
length of the remainder is hidden;

– The individual exponentiations are executed with the Montgomery ladder
algorithm that leaks the bit length of the exponents.

With a padding on the remainder, the only variation in the execution of the
ccec mult function is the exponentiation with the quotient. As a consequence,
the timing execution of the whole exponentiation leaks the bit length of the
quotient. An approximation of the secret exponent can be done with timing
analysis if the auxiliary processing before and after the call of the function can
be controlled.

This issue has been addressed in the updated version of the library. The
Montgomery ladder algorithm has been tweaked to make it work when leading
bits are set to 0 using characteristics of the algorithm and the point addition
formulas from co-Z arithmetic [13].

7 In the file ccec/src/ccec mult.c.
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Algorithm 4. Blinded elliptic curve scalar multiplication with NIST elliptic
curves in Apple’s cryptographic library
Require: x, g of order q
Ensure: gx

1: x1 ← x + q − 232

2: x2 ← x + 2q − 232

3: if �log2(x1)� = �log2(q)� + 1 then
4: xpad ← x1

5: else
6: xpad ← x2

7: m ← random integer in [231, 232)
8: a = �xpad/m�, b ← xpad mod m
9: t1 ← ga

10: t2 ← t1
m

11: t3 ← gb+232

12: return t2 · t3 � gam · gb+232 = gx

B.2 SPAKE2+

The SPAKE2+ protocol [6] is another PAKE protocol similar to the SRP proto-
col and shares properties such as protection against an eavesdropper or a Man
in the Middle. In Apple’s library, it is solely used with elliptic curves.

The attack on SRP can be adapted to work with this protocol, and there are
a few differences. The first is that two exponents are derived from the password,
and, according to the source code of the library, the client computes two distinct
exponentiations with these values. Since the exponentiation is vulnerable, it gives
two distinguishers to run an offline dictionary attack. In the situation of the first
variant, where the attacker is only an observer, this makes the filtering more
effective.
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