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Abstract. A flash crowd attack (FCA) floods a service, such as a Web
server, with well-formed requests, generated by numerous bots. FCA
traffic is difficult to filter, since individual attack and legitimate service
requests look identical. We propose robust and reliable models of human
interaction with server, which can identify and block a wide variety of
bots. We implement the models in a system called FRADE, and evaluate
them on three Web servers with different server applications and con-
tent. Our results show that FRADE detects both naive and sophisticated
bots within seconds, and successfully filters out attack traffic. FRADE
significantly raises the bar for a successful attack, by forcing attackers to
deploy at least three orders of magnitude larger botnets than today.

1 Introduction

Application layer DDoS attacks or flash-crowd attacks (FCAs) are on the rise [23,
25,30]. The attacker floods a popular service with legitimate-like requests, using
many bots. This usually has a severe impact on the server, impairing its ability
to serve legitimate users. The attack resembles a “flash crowd”, where many
legitimate clients access popular content. Distinguishing between a flash-crowd
and a FCA is hard, as the attack uses requests whose content is identical to
a legitimate user’s content, and each bot may send at a low rate [24,27,44].
Thus, typical defenses against volumetric attacks, such as looking for malformed
requests or rate-limiting clients, do not help against FCAs.

We propose FRADE, a server-based FCA defense, which aims to identify
and block malicious clients, based on a wholistic assessment of their interaction
with the server. FRADE views the problem of distinguishing between legitimate
and attack clients, as distinguishing between humans and bots. Thus, FRADE
is well-suited to protect applications where legitimate service requests are issued
by humans, such as Web servers.

FRADE leverages three key differences between humans and bots. First,
humans browse in a bursty manner, while bots try to maximize their request rate
and send traffic continuously. FRADE learns the dynamics of human interaction
with a given server over several time scales, and builds its dynamics models.
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Second, humans follow popular content across pages, while bots cannot identify
popular content. FRADE learns patterns of human browsing over time, and
builds its semantics model. Third, humans only click on visible hyperlinks, while
bots cannot discriminate between hyperlinks based on their visibility. FRADE’s
deception module embeds invisible hyperlinks into the server’s replies. When
the load on the server is high, FRADE labels as “bot”, and blocks clients whose
behavior mismatches its dynamics or semantics model, or clients that access
deception hyperlinks.

FRADE does not make FCAs impossible, but it successfully mitigates a
large range of attack strategies. Our evaluation with real traffic, servers and
attacks, shows that FRADE identifies and blocks naive bots after 3–5 requests,
and stealthy bots after 15–19 requests, thus significantly raising the bar for
attackers. To perform a successful, sustained attack, an attacker must employ
more sophisticated bots, and deploy them in waves, retiring old ones as they are
blocked by FRADE and enlisting new ones. The attacker needs at least three
orders of magnitude more bots than used in today’s attacks.

Our prior work by Oikonomou and Mirkovic [39] proposed the high-level ideas
of differentiating humans from bots using dynamics and semantics models, and
decoy hyperlinks. We refer to this work as OM. We build upon the basic ideas
in OM, but significantly modify and improve them, to make the system robust
against sophisticated adversaries, and practical to implement. Our contributions
are (also summarized in Table 1):

Sophisticated Attack Handling: OM cannot handle attacks by an attacker
familiar with the defense, while FRADE can (Sect. 3.3).

Stealthier Decoy Hyperlinks: FRADE uses stealthier deception hyperlinks
than OM (Sect. 2.6), which cannot be detected via automated Web page analysis.

Improved Models: FRADE has simpler and more robust dynamics and seman-
tics models (Sect. 2.4 and 2.5), which only require legitimate clients’ data to
train. OM also required attack data for training, which is hard to obtain and
may impair detection of new attacks. FRADE is much more accurate than OM
in differentiating bots from humans (Sect. 3.5).

Implementation and Evaluation: FRADE is implemented as a complete sys-
tem and evaluated with real traffic and server content, while OM was evaluated
in simulation only. FRADE’s implementation-based evaluation helped us dis-
cover and solve major real-time processing issues, such as enabling the defense to
receive and analyze requests during FCAs, and dealing with missed and reordered
client requests (Sect. 2.7). FRADE as a complete system, mitigates FCAs about
ten times faster than OM.

Section 2.8 provides a detailed explanation of the novelties and improvements
that FRADE offers over OM. Our code and data are accessible at the link [47].
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2 FRADE

We next give an overview of FRADE’s goals and operation.

Attacker Model. In our work we consider two attacker models. A naive attacker
launches FCAs that are observed today and is not familiar with FRADE. A
sophisticated attacker is familiar with FRADE and actively tries to bypass it.

Design Goals. We aim to design an FCA defense that mitigates both naive
and sophisticated attacks. Our design rests on two premises. First, FRADE’s
models are based on features that are difficult, albeit not impossible, for an
attacker to learn, because they are only observable at the server. Second, if
an attacker does successfully learn and mimic our models, it drastically lowers
the usefulness of each bot and forces the attacker to employ many more bots
to achieve a sustained attack. In our evaluation, FRADE raises the bar for a
successful FCA from just a single bot to 8,000 bots. Extrapolating from the
botnet sizes observed in contemporary FCAs, FRADE would raise the bar from
3–6 K to 24–48 M bots—far above the size of botnets available today.

Anomaly detection methods regularly learn feature thresholds from training
data, and apply them in production. Our contribution lies in (a) selecting which
features to learn, to be effective against both naive and sophisticated attacks,
(b) implementing and evaluating our approach in three different Web servers,
with different content.

2.1 Feature Selection

FRADE aims to differentiate human users from bots during FCAs, and to do
so transparently to the human users. Differentiating humans from bots is chal-
lenging in an FCA, since legitimate and attack requests can be identical. Our
key insight is that while individual requests are identical, the behavior of traf-
fic sources (humans and bots), observed over sequences of requests differs with
regard to dynamics and semantics of interaction with the server, and how they
identify content of interest.

Dynamics: Human users browse server content following their interest, and
occasionally pause to read content or attend to other, unrelated tasks (e.g.,
lunch). Their rate is therefore bursty – it may be high in a small time window,
but not sustained over time. Bots are incentivized to generate requests more
aggressively, generating a sustained rate of requests over long time. To capture
these differences we develop models that encode the dynamics of human user
interaction with the server over multiple time windows.

The main challenge lies in how to properly model various types of requests
to make it hard for bots to avoid detection. Because requests may be generated
in different ways and may consume different resources at the server, we develop
three dynamics models: (a) main-page requests are generated through human
action, such as clicking on a hyperlink or scrolling to the bottom of a page – we
model their rate directly over multiple time windows, (b) requests for embedded
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content, such as images, are automatically generated by a Web browser, and
their rate will vary depending on the browser configuration and the number of
embedded objects per page – instead of modeling request rate for embedded
objects, we associate each object with its parent page, and allow only those
objects to load that belong to a recently loaded parent page, (c) requests for
dynamic pages can consume many server resources, even at low rate – we model
the demand for server resources over different time windows.

Semantics: Since humans follow their interests and understand content, they
tend to click on popular content more often than not. Bots, on the other hand,
must either hard-code a sequence of pages to visit, fabricate requests for non-
existing pages, or choose at random from hyperlinks available on the pages, which
they previously visited. The main challenge lies in building a model that properly
leverages popularity measures to detect random, fake or hard-coded sequences of
bot requests, while being able to handle user sequences that were not seen in
training.

FRADE models sequences of human user’s requests, and learns the proba-
bilities of these sequences over time. Clients whose request sequences have low
probabilities according to the model will be classified as bots. FRADE has a
special fall-back mechanism to handle sequences not seen in training.

Deception: We expect human users to visit only those hyperlinks that they
can see and that are interesting to them, in the rendered content. The main
challenge in leveraging this difference lies in developing ways to automatically
insert decoy hyperlinks in pages, which humans will not visit, and to make it hard
for bots to identify them via page source parsing. FRADE dynamically inserts
decoy hyperlinks [46], into Web pages, which are linked to anchors invisible to
human eye (hidden, small or transparent). FRADE leverages page analysis and
CSS files to make these anchors hard to identify by automated analysis. Clients
that click on decoy anchors are identified as bots.

We discuss novelty in Sect. 2.8 and demonstrate effectiveness in Sect. 3.

Table 1. Comparison between OM [39] and FRADE.

Feature OM [39] FRADE Section

Web req. FCA Yes Yes Sect. 3.2

Embd. obj. FCA No Yes, DYNe mod Sect. 3.3

Costly req. FCA No Yes, DYNc mod Sect. 3.3

Accuracy fp ≥ 0, fn ≥ 0 fp = 0, fn = 0 Sect. 3.5

Models DYNh & sem. mod. improved Sect. 2

Honeytokens Simple Sophisticated Sect. 2.6

Training Leg. & attack data Leg. data Sect. 2

Evaluation Simulation Real traffic/servers Sect. 3
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2.2 Overview

FRADE runs in parallel with the server and not inline. It includes an attack
detection module and three bot identification modules—dynamics, semantics
and deception. It interfaces with a firewall (e.g., iptables) to implement attack
filtering. FRADE learns how human users interact with the Web server that it
protects. It builds the semantics and dynamics models by monitoring Web server
access logs (WAL) in absence of FCAs. Deception objects, invisible to humans
in rendered content, are also automatically inserted into each Web page on the
server. When a potential FCA is detected, FRADE enters the classification mode.
FRADE loads its learned models into memory, and begins tracking each user’s
behavior. When a user’s behavior deviates from one of the learned models, the
user is put on the filter list and all their requests are dropped. When attack
stops, the detection module deactivates classification. A filtering rule is removed
when the traffic matching it declines.

main 
request?

Web request yes

no

DYNh
decoy 
target?

no

yes

DYNe

DYNc

Semantics

Block
Block

mismatch

mismatch

mismatch

mismatch

Fig. 1. Overview of FRADE’s processing of a Web request.

FRADE uses some customizable parameters for its operation. The parame-
ters and values we used in evaluation are shown in Table 2 and explained below.
We perform sensitivity analysis over these parameters in Sect. 3.6.

2.3 Attack Detection

The attack detection module runs separately from the rest of FRADE, and acti-
vates and deactivates other modules by starting and stopping processes. Our
detection module is intentionally simple, since our focus was on bot identifica-
tion. We focus on detecting increase in incoming requests, regardless of whether
they are due to legitimate flash-crowd event or due to FCA. We then rely on
our, very accurate, identification of bots to handle the event. A deploying net-
work can replace our detection module with other mechanisms, such as the Bro
Network Security Monitor [40].

Learning. FRADE’s attack detection module monitors incoming service
requests rate, and learns its smoothed historical mean. If the current incoming
rate of requests exceeds the historical mean multiplied by the parameter attack-
High, this module raises the alert. Otherwise, the module updates the mean. The
update interval, intDet, and the parameter attackHigh, are configurable (we use
intDet = 1 s and attackHigh = 10).
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Table 2. FRADE’s parameters and the values we used.

Parameter Meaning Value

intDet Monitoring int 1 s

attackHigh Incoming req high thresh 10 * avg

attackLow Incoming req low thresh 2 * avg

windows Time int. for dyn. models 1 s, 10 s, 60 s, 300 s, 600 s

ρ Ratio of dec. to vis. obj 1

ThreshPerc High perc. of a modeled quantity 100

Classification. During an FCA, the detection module continues to collect and
evaluate the incoming request rate, but does not update its historical mean.
When the current rate falls below the pre-attack historical mean, multiplied
by a configurable parameter attackLow (we use attackLow = 2), FRADE signals
the end of the FCA and turns off bot classification modules. Figure 1 shows
FRADE’s processing of a Web request during attack. In the rest of this section
we describe each processing step.

2.4 Request Dynamics

The dynamics module models the rate of a user’s interaction with a server within
a given time interval, and consists of three sub-modules. DYN h models the
rate of main-page requests, such as clicking on a hyperlink or scrolling to the
bottom of a page. DYN e models embedded-object requests, such as loading an
image. DYN c models the rate of a user’s demand for server resources, where
the demand is represented as the total time it took to serve the given user’s
requests in a given time period.

Learning. DYN h and DYN c learn the expected range of the quantity they
model (e.g., request rate, processing time, etc.) over all users, by analyzing
WAL. We group requests by their source IP address, and assume that each IP
address represents one user or a group of users. FRADE classifies each request
as either a main-page or embedded. Section 2.10 describes how to detect these
two types of requests. DYNh and DYNc model the main-page requests and use
a high percentile of the range (controlled by ThreshPerc, e.g., 99%) as their
learned threshold for the quantity they model. In our evaluation we use Thresh-
Perc = 100%. The number and sizes of windows are configurable parameters. As
humans browse in a bursty manner, having multiple windows allows monitor-
ing at different time scales, and drastically raises the bar for a successful FCA.
It enables us to correctly classify legitimate bursts and distinguish them from
sustained attack floods, even when their peak request rates are equal. We use
windows of 1, 10, 60, 300 and 600 s.

DYNc models the processing time spent to serve a user’s requests. This time
depends both on the complexity of the user’s request, and the current server
load. DYNc models the time to serve a user’s request on lightly loaded server to
capture only that cost to the server that the user can control – the “principal
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cost”. During an attack, we use this principal cost, rather than the actual pro-
cessing time (inflated cost), to calculate a user’s demand on server’s resources.
This allows us to avoid false positives, where legitimate users hitting a heavily
loaded server, experience a large inflated cost through no fault of their own. Dur-
ing learning, each request and its processing time are recorded in a hashmap,
called the ProcessMap. DYNc looks up the principal cost for each request in the
ProcessMap, and adds it to the running total for the given user. It then learns
the ThreshPerc value over these totals and for each window.

DYNe learns which embedded objects exist on each Web page and records
this in a hashmap, called the ObjectMap.

Classification. During classification, DYNh and DYNc collect the same mea-
sures of user interaction, per each user, as they did during learning. These mea-
sures are continuously updated as new requests arrive. After each update, the
module compares the updated measure against its corresponding threshold. If
the measure exceeds a threshold, the client’s IP is communicated to the fil-
tering module. Whenever a client issues a main-page request, DYNe loads all
the embedded objects related to this request from ObjectMap into this user’s
ApprovedObjectList (AOL). DYNe checks for the presence of the embedded
object requests made by the same user in his AOL. If found, the object is deleted
from the AOL. If not found, DYNe treats this request as a main page request,
and forwards it to DYNh and semantic modules. We do this because a user may
bookmark an embedded object, e.g., an image, and request it separately at a
future time. Our design allows such requests to be served, while preventing FCAs
that create floods of embedded requests.

2.5 Request Semantics

The semantics module models the probability of a sequence of requests generated
by human users.

Learning. We consider only requests classified as main-page requests. In the
learning phase, we compute transition probabilities between each pair of pages
(e.g., A to B) on the server using Eq. (1), where NA→B is the number of transi-
tions from page A to page B, and NA→∗ is the number of transitions from page
A to any page. We learn NA→B and NA→∗ from WAL. We define the probability
of sequence S = {u1, .. , un} as compound probability of dependent events, which
are page transitions, using Eq. (2).

Pt(A → B) =
NA→B

NA→∗
, (1); P (S) =

n−1∏

i=1

Pt(ui → ui+1), (2)

During learning, the semantics model calculates sequence probabilities for
each user. Since sequence probability declines with length, we learn the proba-
bility for a given range of sequence length (e.g., 5–10 transitions), grouped into a
bin. We also ensure that bins are of balanced size. When learning the threshold
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for each bin, we sort probabilities of all sequences in our training set that fall
into that bin and take a low percentile (1-ThreshPerc) to be the threshold.

In practice, if a server has very dynamic content, the semantics module may
not see all the transitions during learning, leading to false positives in classi-
fication. To handle incomplete training data, semantics module has a fall-back
mechanism. It views Web pages as organized into groups of related content.
During learning, it learns transitions from pages to groups, groups to pages,
and groups to other groups. We define a group as all the pages that cover the
same topic. On some Web sites, the page’s topic can be inferred from its file
path, while others require analyzing each Web page content to determine the
topic (Sect. 2.9). The probability of transition from a page/group to a group, is
calculated as the average probability of transition to any file within the group:

Pt(A → group(b)) =

∑
f∈group(b) Pt(A → f)

NA→group(b)
, (3)

Classification. FRADE processes the request sequence for each client in the
active session list (ASL). When a new request arrives, the module updates the
client’s sequence probability, just like it did during learning. If a transition from
page A → B is not found, FRADE falls back to using groups instead of pages.
It attempts to find transitions A → group(B), group(A) → B and group(A) →
group(B) in that order. When the first transition is found, its probability is used
to multiply the current sequence probability, according to Eq. 2. If no transitions
are found, FRADE multiplies the current sequence probability with a constant
called noFileProb � 1. After each update, it compares the current sequence’s
probability against the corresponding threshold for the sequence’s length. Values
lower than the threshold lead to blocking of the client.

2.6 Deception

The deception module follows the key idea of honeytokens [46], special objects
meant to be accessed only by attackers. The module embeds decoy objects, such
as overlapping/small images, into Web pages. In websites with mainly textual
content, like Wikipedia, we insert hyperlinks around random pieces of text, but
do not highlight them. This makes the hyperlink invisible to humans. In web-
sites with mainly media content, like Imgur, we embed hyperlinks around small
images, or small-font text. We insert these decoy objects away from existing
hyperlinks, to minimize the chance that they are accidentally visited by humans.

We automatically insert decoy objects into a page’s source code so that they
do not stand out among other embedded objects in that page. The number of
decoy objects to be inserted is guided by the parameter ρ – the ratio of the
decoy to original objects on the same page. We make decoy hyperlinks hard to
identify from the page’s source code by creating separate styles for them in the
site’s CSS file. We automatically craft the names of the pages, pointed to by
decoy hyperlinks, similar to the names of other, non-decoy pages on the server.
We introduce some randomness into the deception object’s placement, to make
it harder to identify them programmatically.
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2.7 Using a Proxy to Speed up Servers
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FRADE
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(a) Server-only

backend
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client

1. SYN

2. SYNACK
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backend

log

FRADE

client

1. SYN

2. SYNACK
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4. LOG

proxy
5. RST

(c) Take-a-break proxy

Fig. 2. Illustration of high-rate attack han-
dling, (a) by the server itself, (b) by Trans
approach and (c) by TAB approach

FRADE mines data about user pay-
load from WAL, to classify users as
humans/ bots, as shown in Fig. 2(a).
A server may be so overwhelmed
under FCA, that it cannot accept
new connections, slowing down log-
ging and delaying FRADE’s action.

We explored two approaches to
boost the number of requests a server
is able to receive and log during
FCAs. Our first approach, trans-
parent proxy (Trans), shown in
Fig. 2(b), uses a lightweight proxy
between clients and the server. It com-
pletes the 3-way handshake with the
client, receives and logs Web page
requests. It then recreates the connec-
tion with the backend server. This can
speed up logging, but ultimately the
target server may overload before we
block all bots, and this will back up
the Trans server as well. We use http-
proxy-middleware [14] as our trans-
parent proxy. It lets us log requests as
soon as they arrive, and forward them
to the backend server.

Our second approach, take-a-break proxy (TAB), shown in Fig. 2(c), uses
a dropping proxy between clients and the backend server. FRADE runs on the
dropping proxy, which logs and drops all the requests, until our blocking manages
to reduce the request rate. Logging requests and dropping them immediately
allows for faster blocking, as immediate closure of a connection frees the port
and socket on the proxy for reuse. Dropping all requests hurts legitimate clients,
but it ensures the fastest bot identification, helping us serve users well for the
remaining (possibly lengthy) duration of the FCA. We implement the proxy in
http-proxy-middleware [14].

To improve the speed of bot detection, we further stop building the Approve-
dObjectList (AOL) once TAB proxy is active. Since no replies are returned to
users while the TAB proxy is active, a human user will not issue embedded
object requests, while a bot may. This helps us identify bots faster.

2.8 Improvements over OM

We now detail improvements of FRADE over OM – these improvements enable
FRADE to be robust against sophisticated attacks, while OM only handles naive
attacks.
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Stealthier Decoy Hyperlinks: FRADE uses stealthier decoy targets and
anchors, and makes the placement of decoy anchors more robust against false
positives than OM. FRADE learns the page naming structure from Web server
logs, and automatically crafts the names of the target pages for decoy hyperlinks.
OM creates target pages with random names, which can be detected by bots.

FRADE inserts the decoy anchors away from the existing, visible anchors to
reduce the chance that they are accidentally visited by humans. OM does not
address such concerns, and is prone to false positives.

FRADE makes decoy anchors invisible by adding new styles to the site’s CSS
file, while OM manipulates the anchors in the Web page source, making them
small or changing their color or z-index. OM’s anchors can be detected more
easily by bots.

Improved Dynamics Model: OM models the request dynamics only for main-
page requests, while FRADE models it for main-page and embedded requests,
and also models each request’s principal cost. This helps FRADE handle a variety
of sophisticated attacks (see Sect. 3.3) that OM cannot handle.

OM uses decision trees to capture request dynamics, grouping requests into
sessions and using four features per session. This makes OM’s model more com-
plex than FRADE’s, which uses just one feature – the threshold rate of requests
per time window. OM further requires both legitimate and attack data for train-
ing. Attack data is hard to obtain and overfitting can impair detection of new
bot variants. FRADE only requires legitimate data for training.

Improved Semantics Model: Both OM and FRADE build the request graph
to encode transition probabilities from one Web page to another. But OM focuses
only on pages, while FRADE also models transitions between page groups. This
fall-back mechanism enables FRADE to handle transitions in production that
were not seen in training. Further, OM computes the sequence probability as the
average of probabilities on the request graph, while FRADE computes it as a
product (compound probability of dependent events), which ensures fast decline
with sequence size.

Implementation and Evaluation: FRADE is implemented as a complete
system and evaluated in a realistic setting, while OM was evaluated in simulation.

2.9 Deployment Considerations

Customization. To use FRADE, the Web site administrators must (1) cat-
egorize their Web pages into groups for the semantics module, and (2) insert
decoy hyperlinks into Web pages. This may in some cases require minor human
effort, depending on the server’s content. Table 3 shows how we classified pages
into groups. For Wikipedia, we leveraged its existing categorization of pages into
topics. Imgur and Reddit have a folder-based Web site structure, with related
files grouped into the same folder. In absence of both, a Web site could use a topic
identification tool, such as [2]. We have automated decoy hyperlinks insertion
(around 100 lines of code), which can be customized for a new Web site.
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User Identification. FRADE currently blocks IP addresses, but this can lead
to collateral damage when clients share a NAT. FRADE could use cookies and
block users at the application level, but when a server is under FCA, it is too
overloaded to process each request and mine its cookie. We thus view IP-based
filtering as necessary to relieve the load at the server.

Training Data. FRADE requires training data of legitimate clients and needs
to be trained per server. Each server needs to tune the frequency of their training
and decoy hyperlink insertion to match the frequency of their content updates.
Attackers may introduce adversarial data before the attack to dilute the learned
models. One could address this issue by: (1) sampling training data over multiple
days, (2) excluding outliers by adopting lower values for ThreshPerc parameter,
(3) using techniques such as machine unlearning [13].

Dynamic Content and Misclassification. If a server does not update its
models on new content, FRADE may miss some transitions in the semantics
model, or embedded objects in the AOL. Our fall-back mechanisms for the
semantics model and treating embedded requests not found on AOL as main
requests, help minimize this effect. We used the data from Internet Archive
[34] to measure the daily updates on some frequently-updated Web sites, CNN,
NY Times, Imgur and Amazon. On the average, a small percentage of the
Web site’s content (0.17–0.31%) is added daily, around 6 K–54 K objects and
pages. FRADE’s models can be incrementally updated this often, without full
re-training.

Load Balancers. Larger sites deploy load balancers in front of server farms;
we would have to periodically gather web access logs to a central location and
run FRADE there to learn models and classify bots. FRADE could then block
bot IPs by inserting filtering rules into the load balancer.

2.10 Implementation

FRADE’s core engine is written in C++, and runs on the Web server/proxy.
Filtering is achieved by interfacing with a host-specific mechanism. We use
iptables with ipset extension, which scale well with large filter lists. We clas-
sify each request as either main-page or embedded in the following way. We crawl
the full Web site using the Selenium-based [43] crawler. This helps us identify
both static and dynamically generated HTML content. We extract main requests
by finding elements with tag “a” and attribute “href”. We label other requests
as embedded. These steps are fully automated.

3 Evaluation

Ideally, we would evaluate FRADE with operational servers, real logs, human
users and real FCAs. Unfortunately there are many obstacles to such evaluation:
(1) there are no publicly available WAL from modern servers, (2) paying real
users to interact with a server during evaluation can get costly and prevent
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repeatable experiments, (3) there are no publicly-available logs of real FCAs.
We test FRADE in emulated experiments on the Emulab testbed [50], using
replayed human user traffic and real FCAs. We try to make our experiments as
realistic and representative as possible, given the obstacles listed above.

3.1 Emulation Evaluation Setup

We mirror dynamic content for three popular Web sites: Imgur, Reddit and
Wikipedia. All content is generated dynamically by pulling page information
from the server’s database, using the original site’s scripts. This content is
copyright-free and server configuration files were publicly available. We down-
load each full site, modify it by automatically inserting decoy hyperlinks, and
deploy the site’s original configuration and scripts on our server within Emulab
testbed. While we wanted to replicate more servers in our tests, this was impos-
sible because their implementation was either private (e.g., Facebook, YouTube,
etc.) or their content was not copyright-free (e.g., major news sites).

We engage human users to browse our Web sites and gather data to train
and test FRADE’s models. We replay human user data in a controlled environ-
ment and launch FCAs, with real traffic, targeting our servers from an emulated
botnet. We launch repeated FCAs with various botnet sizes and bot behavior,
and measure the time it takes to identify and block bots.

Our chosen Web sites had server software diversity. Imgur runs on Apache,
Reddit runs on haproxy, and we deployed Wikipedia on nginx.

Human User Data. We obtained human user data using Amazon Mechanical
Turk workers. This study was reviewed and approved by our IRB. In the study
we presented an information sheet to each worker, paired the worker with a server
at random, and asked the worker to browse naturally. We intentionally did not
create specific tasks for workers, as we wanted them to follow their interests and
produce realistic data for our semantic models. We also asked each worker to
browse at least 20 pages so that we would have sufficient data for training and
testing. To keep engagement high, and discourage workers who just click through
as fast as possible, we asked each worker to rate each page’s loading speed on
a 1–5 scale. These ratings were not used in our study. Human behavior may
become more aggressive during FCAs (e.g., more attempts to refresh content),
which may lead to misclassification. However, QoS studies show that users tend
to click less and not more when the server’s replies are slow [6]. Our dataset does
not capture any adaptation of users to speed of server replies. Each server had
243 unique users for training and 107 users for testing in our dataset.

Legitimate Traffic Generator. During each experiment, we replay user traffic
from testing logs. We wrote a custom traffic generator, which extracts timing and
URL sequences from logs, and then chooses when to start each sequence based
on the desired number of active users. The generator uses many different source
IPs. Our replay maintains timing between requests in a sequence, and traffic
is replayed at the application level. When a user sequence completes, another
sequence is selected and another IP becomes active. If we run out of sequences
to replay, we reuse the old ones.
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Attack Traffic Generator. Our attack traffic generator is a modified httperf
tool [37]. We added the ability to choose source IPs from a pool, and to select
requests for each IP from a given sequence, in order. Before building our own
attack tool, we have investigated popular attack tools, such as HULK [1],
LOIC [22] and HOIC [8]. These tools do not allow us to use multiple IP addresses
when running on the same physical machine. This feature is important as one
can mimic large botnets using few machines. Our tool can generate all attacks
generated by HULK, LOIC and HOIC tools, and more.

Table 3. Group assignment for our
three Web sites.

Server Groups

Wikipedia Topic-based categories

Imgur Folder-based groups

Reddit Folder-based groups

Table 4. Time to block all bots

Windows Time to block all bots

Botnet size

8 bots 800 bots 8,000 bots

Non-unif-5 (current) 3 s 8 s 16 s

Uniform-5 4 s 15 s 47 s

Uniform-10 3 s 10 s 38 s

Uniform-20 3 s 7 s 23 s

Experiment Topology and Scenarios. Our experiment topology is shown in
Fig. 3. It has 8 physical attack nodes (each emulating 1–1,000 virtual attackers
each), 1 node emulating 100 legitimate clients, and 3 nodes for mirrored servers.
All nodes are of type d430 on Emulab, with 32 cores and the Ubuntu 14.04 OS.
We fine-tuned the nodes to maximize the request rate that each client could
generate, and to maximize the request rate that our servers could handle. While
having a larger topology would have helped us perform larger-scale tests, Emulab
is a shared resource and we were limited in how many nodes we could request.
Our tests suffice to illustrate trends in FRADE’s effectiveness as botnet size
increases.

Fig. 3. Attackers: A1–A8 (up to 8,000
virtual bots), Legitimate: L (100
clients), the proxy and 3 Web servers.

To identify an effective attack rate,
we measured the request rate required to
slow down each server’s processing below
1 request per second. For all the Web sites,
this rate was around 1,000 rps. We chose
to generate 8 times this rate during an
attack – 8,000 rps. We test one server per
run. Legitimate clients start sending traf-
fic to the server following the timing and
sequences from the testing logs. We main-
tain 100 active, parallel virtual clients throughout the run, each with a separate
IP address. After a minute, our virtual attackers (1–1,000 per physical machine)
start sending requests to the server at the aggregate rate of 8,000 rps. After
10 min we stop the attackers, and a minute later we stop the clients.

We illustrate FRADE’s handling of an FCA in Fig. 4, which shows legitimate
and FCA traffic (sent to the server, and allowed by FRADE), and the blocked
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bots. Legitimate traffic declines at first, until FRADE manages to identify most
bots. After 20 s, FRADE blocks all bots and legitimate traffic returns to its
pre-attack levels. At that point, although the attacker keeps sending the attack
traffic (the actual attack area in Fig. 4), the attack requests cannot reach the
server, as the bot IP addresses are blocked at the proxy.

3.2 Today’s (Naive) Attacks

Fig. 4. FRADE’s handling of an FCA.

First, we test FCAs, that resemble
today’s attacks as noted by [16]. Our
attackers repeatedly request: (t1) non-
existing URLs, or (t2) the base
URL. In the case (t1), we tailor the
URL’s syntax for it to be identified
as main requests. Figures 5(a) and 5(b)
show the time that FRADE took to
block all the bots, in these FCAs, for
each server, and for 8 and 800 bots.
Both attacks show similar trends, with
the smaller botnet being blocked sooner
(around 4 s instead of 8–10 s). All bot
classification is done by the DYNh

module.

3.3 Sophisticated Attacks

An attacker familiar with FRADE could attempt to launch a sophisticated FCA,
where bots mimic humans to evade detection. To evade DYNh, bots would send
at a lower rate, necessitating a larger botnet. Bots could also attempt to gen-
erate requests mimicking a human’s semantics, i.e., trying to guess or learning
popular sequences. Finally, bots could leverage knowledge of FRADE’s different
processing pipelines to engage in embedded or costly request floods.

We first explore fully automated FCAs. An attacker has previously engaged a
crawler to learn about the target server’s Web site graph, i.e., which pages point
to which other pages and to match pages to embedded objects. The attacker
knows that lower request rates per bot mean longer detection delays, but does
not know each page’s popularity and which hyperlinks are decoy links. We only
show results for Imgur. FCAs on other servers show a similar trend.

Fully-Automated: Larger Botnet and Smarter Sequences: These FCAs
include a larger botnet—8,000 bots. The first two FCAs are using the same
(s1) non-existing and (s2) base URLs as described in Sect. 3.2, with a larger
botnet to evade DYNh detection. The third FCA performs a (s3) random walk
on the Web site graph, making only main page requests (we investigate FCAs
that use embedded links in Sect. 3.3). It cannot differentiate between decoy and
non-decoy links.
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Figure 6(a) illustrates the time it takes to block all 8,000 bots in s1–s3 attacks,
using the TAB proxy approach. The non-existing URL attack (s1) is fully han-
dled within 16 s, with each bot blocked after ≈5.8 requests, by the semantics
module. The random walk (s3) is handled within 16 s, with each bot blocked
after 3.8 requests on average by the deception module. For the base URL attack
(s2) it takes 36 s to block 8,000 bots, with each bot blocked after ≈15 requests
by the DYNh module.

Fig. 5. Today’s (Naive) attacks and per-
formance comparison for sophisticated
attacks.

Fully-Automated: Embedded and
Costly Request Floods: Attackers
could attempt to flood with embedded
or costly requests. The non-existing-
object attack (s4) requests made-up
URLs, which end up treated as main
page requests by FRADE. Figure 6(b)
shows the time to block all 8,000 bots
in this FCA. Within a few seconds
the FCA is fully handled. Each bot
is blocked within 2–3 requests. The
semantics module blocks all bots. The
costly attack (s5) sends the most
expensive main page request repeat-
edly to the server. All bots are blocked
by the DYNc module, within a few sec-
onds.

An attacker could collaborate
with some human users to learn
popular pages on a server, and
decoy objects, and then launch semi-
automated attacks. The attacker then
leverages what they learned to craft
sequences of requests, which may
evade detection by FRADE’s seman-
tics and deception modules. The
requests are sent automatically by bots
at predetermined timing.

Semi-Automated: Floods that
Avoid Deception. The smart walk
attack (s6) performs a random walk
on the Web site graph avoiding
decoy links. The smart-walk-object
(s7) performs a smart walk among
all embedded objects on the site,
and smart-walk-site (s8) performs a
smart walk on the site, and requests all
non-decoy embedded objects for each



Defending Web Servers Against Flash Crowd Attacks 353

main page request. A replay attack [52], where the attacker records and replays
legitimate users’ requests, is a special example of the smart-walk-site attack.
Figure 6(c) shows the time it takes to block all 8,000 bots in these FCAs. In
a smart-walk attack (s6), FRADE takes 38 s to block all 8,000 bots. Each bot
is blocked after 19 requests on the average, by the DYNh module. Figure 5(c)
illustrates benefits of using a proxy. Without a proxy, it would take around 6 min
to block all the bots. With Trans, it takes under 3 min, and with TAB it takes
38 s—almost 10-fold speed-up compared to the server-only approach!

Fig. 6. The time to block 8,000 bots in
sophisticated attacks.

In the smart-walk-object attack
(s7), all bots are blocked within a few
seconds. Each bot is blocked within
2–3 requests, as it requests embed-
ded objects that are not on the AOL
during FCA. All bots are blocked by
DYNe module. The smart-walk-site
attack interleaves main page and their
corresponding embedded requests, and
it avoids decoy links. It thus man-
ages to slip under the radar of DYNh

(main page requests come at a low
rate), DYNc (requests are not costly)
and deception (asking for non-decoy
links only) modules. All 8,000 bots
are blocked within 22 s. Each bot
is blocked on the average after 6
requests. The complete blocking is
done by the semantics module. Since
no replies are returned to users while
the TAB proxy is active, a human
user will not issue embedded object
requests. Hence, FRADE does not
keep embedded objects on the AOL
while TAB is active. Instead, embed-
ded object requests are treated as
main-page requests, and forwarded to
DYNh and semantic modules, which
model only main-page requests. The
semantics module blocks all the bots,
due to the random walk created, lead-
ing to low-probability sequences.

Semi-Automated: Floods that
Use Popular Sequences. An attacker
may learn which sequences are popu-
lar among humans and generate main
page requests for them. They need to
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distribute the rate among many bots to evade detection by DYNh. We evaluate
this FCA analytically, using the WAL of a large public network testbed, that
serves thousands of users. The logs covered three months of data and around 5 K
users. Few users were obvious outliers, making thousands of requests. If we prune
the most aggressive 5% of the users and analyze the rest of the user sequences,
95% were shorter than 17 requests. To evade FRADE, the attacker would need
to retire each bot after 17 requests. For a 10-min, 1,000 rps FCA, the attacker
would need to recruit 35 K bots to attack this specific server. Today, a single
server can be brought down by a single, aggressive bot. FRADE thus raises the
bar for this specific server’s FCA 35,000 times.

3.4 Evasion Attacks

It may still be possible to evade FRADE and launch a successful FCA. This
would require: (1) Recruiting very large botnets, so each bot is used inter-
mittently. As per our evaluation, FRADE raises the bar from 1 bot to more
than 8,000 bots, so at least three orders of magnitude. (2) Leveraging humans
instead of bots and instruct users to click on visible, popular content, following
their interests. Then, FRADE would not be able to identify malicious (human)
clients, but the attacker would need thousands of humans for a sustained FCA.
The attacker could combine these two approaches, learning popular sequences
from human collaborators, then encoding them in stealthy, low-rate bots. This
attack would not be detected by FRADE, but it would require at least 3 orders
of magnitude more bots than are in use today (see discussion above of floods
that use popular sequences).

3.5 FRADE Outperforms OM

We experimentally compare the accuracy of FRADE versus OM for DYNh and
semantics models. These models exist in both solutions and FRADE improves
on OM’s design. We use the same legitimate traffic as in Sect. 3.2, interleaved
with synthetically generated FCA bot traffic, exploring a range of request rates
as suggested in [39]. For OM, we train decision trees using Weka on the training
data and test on the testing data. When testing DYNh we run base-URL FCA,
and use 8–8,000 bots. When testing semantics models we run the smart-walk
FCA, and also use 8–8,000 bots. A false positive means that the defense clas-
sified a human user as a bot. A false negative means that the defense failed to
identify a bot. For space reasons we summarize our findings. While FRADE
had no false positives or false negatives in our tests, OM had many
false positives (7–76%) for the DYNh model, for Wikipedia and Red-
dit, due to high dimensionality [51] of its models and overfitting. OM also had
some false negatives (5–13%) for the semantics model and the 8,000-bot
FCAs, because OM cannot handle transitions not seen in training data, while
FRADE can using its fallback mechanism. FRADE’s models thus outperform
those of OM.
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In addition to this comparison on attacks they both handle, FRADE also
outperforms OM by handling a wider range of attacks (embedded and costly
request floods).

3.6 Sensitivity

FRADE uses multiple parameters in its operation, as shown in Table 2. We focus
here on analyzing sensitivity of parameters that influence classification accuracy.
DYNh and DYNc currently use 5 window sizes as time intervals, during which
they learn thresholds for their models. These window sizes follow a non-uniform,
exponential-like pattern, with increasing gaps between windows. We also tested
3 different uniform distributions: uniform-5, uniform-10 and uniform-20 with 5,
10 and 20 windows in the 0–600 s range, respectively. We tested non-existing URL
FCAs on Imgur with these alternative windowing approaches, and compared the
speed of FRADE’s response. Results are shown in Table 4. Non-uniform window
sizes perform better than uniform sizes, especially for bots that send at a low
rate.

Fig. 7. Memory and CPU cost vs #
bots.

Both dynamics and semantics modules
use ThreshPerc to find the percentage of
the quantities they model. In our eval-
uation, we use 100% as ThreshPerc. We
chose this value to achieve zero false posi-
tives since we had small training data. In
reality, a large server would have logs of
millions of clients, some of which could be
outliers. We have evaluated values of 99%,
95% and 90% for ThreshPerc with non-
existing URL FCAs on Imgur. For DY Nh

model false positives were 3%, 5% and 9%
with ThreshPerc values of 99%, 95% and
90% respectively. This is mainly because
our training data is small and does not have outliers, so removing some per-
centage of aggressive behaviors from training will lead to the similar amount
of misclassifications on test data. Semantic model did not generate any false
positives with tested ThreshPerc values. Another parameter is the decoy object
density ρ—the ratio of decoy objects to visible objects on the same page. In our
experiments we use ρ = 1. The higher the ρ, the faster a bot’s identification, but
the higher chances that a human user could accidentally access a decoy object
and visible distortion to the original page’s layout. In our MTurk experiments
no humans have clicked on our decoy objects. We also observed no visible distor-
tion. Around ρ = 1.5 we observe distortion in Imgur’s Web pages, and around
ρ = 5 distortion becomes severe.
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3.7 Operational Cost and Scalability

We tested FRADE with attacks of up to 0.5 M bots to evaluate its scalability.
FRADE’s operational cost is modest. The CPU load never exceeded 5% and
the memory grew linearly to around 1.5 GB for 0.5 M bots (Fig. 7), or around
3 KB per bot or client. Extremely active Web sites like Amazon can see about
4 M active clients per hour [3,4], and would need 12 GBs of memory, which is
feasiable today. It takes on the average 0.05 ms to process a Web log request in
FRADE. Thus, FRADE could easily process around 20,000 rps on a single core.
Since FRADE does not operate in line, it does not add any user-visible delay to
request processing.

Table 5. Page serve time in ms

Number of IPs 0 100 1K 10K 100K 1 M

iptables 4.5 4.5 4.5 4.7 4.9 N/A

ipset 4.8 4.8 4.9 4.9 4.9 5.3

We evaluate scalability of
FRADE’s filtering using iptables
and ipset. We artificially insert
a diverse set of IP-rules and send
packets matching these rules at a
high rate. This emulates the situ-
ation when a server is under FCA

by numerous bots. We issue Web page requests and measure the time it takes to
receive the reply. Table 5 shows the averages over ten runs. iptables’s process-
ing time grows modestly until 100 K IPs, but then explodes. We were not able
to complete the tests with 1 M IPs. However, ipset imposes only a small delay
of 8% as the rules table grows from 100 K to 1 M, and no measurable delay for
fewer than 100 K rules. Thus, FRADE can block a million IPs using ipset.

4 Related Work

Clouds are a common solution for DDoS. They may offer “attack scrubbing” ser-
vices, but the details of such services are proprietary. Clouds handle volumetric
attacks well, but FCAs may fly under their radar. They also use Javascript-
based cookies [17,41], to detect if a client is running a browser. These challenges
are transparent to humans, and good for detecting automated bots. However,
attackers can use the Selenium engine to generate requests. Since Selenium inter-
prets Javascript, it would pass the cookie challenge. FRADE can complement
cloud defenses, enabling server-based solutions for FCAs.

Table 6. Rel. work comparison, showing the absence or
presence of human Web server interaction features, even
if present at the very basic level.

Detection mech. Dyn Sem Dec

Jung et al. [28] ✓ ✗ ✗

Ranjan et al. [42] ✓ ✗ ✗

Liao et al. [33] ✓ ✗ ✗

Wang et al. [48] ✗ ✓ ✗

Xie and Yu [54] ✗ ✓ ✗

Beitollahi et al. [9] ✓ ✓ ✗

FRADE ✓ ✓ ✓

CAPTCHAs [7,29] are
another popular defense
against FCAs. Users, who
correctly solve a graphi-
cal puzzle have their IPs
placed on “allow” list.
While a deterrent,
CAPTCHAs have some
issues. Multiple on-line
services offer bulk
CAPTCHA solving, using
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automated and semi-automated methods (e.g. [32]). CAPTCHAs also place a
burden on human users, while FRADE does not. Google’s reCAPTCHAs [20]
and similar approaches for human user detection are transparent to humans, but
can still be defeated using deep learning approaches [5,11,45]. These approaches
are complementary to FRADE, as they model complementary human user
features.

Jan et al. [26] propose a stream-based bot detection model [49] and augment
it with a data synthesis method, using Generative Adversarial Networks [36], to
synthesize unseen bot behavior distributions. While we lack the data they have,
and cannot compare our systems directly, we can comment on their expected rel-
ative performance based on their design. Jan et al. system focuses on eventually
detecting advanced bots, and is well-suited for click bot or chat bot detection.
Authors show that it can adapt to new bot behaviors with small re-training, and
that it is robust to adversarial attacks. FRADE focuses on quickly detecting bots
involved in an FCA. Such bots are likely to exhibit specific, aggressive behaviors,
since they seek to maximize request rate at the server. When FRADE misses a
bot, such bot has a low yield to the attacker, necessitating a large botnet for a
sustained attack. Thus FRADE could miss some bots that Jan et al. approach
detects, but these bots would not be very useful for flash-crowd attacks.

Comparing reported performance, Jan et al. require long request sequences
(30+ requests in a month) to classify a user as benign or bot. This means that
new bots will not be detected for at least 30 requests. FRADE can identify and
block most bots within 3–6 requests, and sophisticated bots with less than 20
requests. FRADE also achieves higher accuracy – it identifies all bots in our
tests and does not misidentify any benign users as bots. Finally, Jan et al. use a
small fraction of bot data in training, while FRADE uses only benign user data.

Rampart [35] and COGO [18] build models of resource consumption over
time to detect and handle resource exhaustion states. Such defense mechanisms
could handle FCAs that employ costly requests, but not other FCA variants.

Like FRADE’s dynamics model, several efforts use timing requests to detect
FCAs [33,42]. Ranjan et al. [42] use the inter-arrival of sessions, requests and the
cost profile of a session to assign a suspicion value and prioritize requests. Liao
et al. [33] look at the inter-arrival of requests within a window. They use custom
classification based on sparse vector decomposition and rely heavily on thresholds
derived from their dataset. These works have limited evaluation compared to ours
and rely only on modeling human requests, while we also deal with embedded and
costly requests, we build semantic models of request sequences and use decoys to
bait bots. Yatagai et al. [55] look for repetitive sequences of resources, and clients
which spend shorter than normal periods of time between requests. Bharathi
et al. [10] use fixed sized windows to examine which, and how many, resources
a client accesses and to detect repetitive patterns. Najafabadi et al. [38] use
PCA and fixed windows to examine which resources a client requests. Beitollahi
et al. [9] propose ConnectionScore, where connections are scored based on history
and statistical analysis done during the normal conditions. Models engaged in
connection scoring are coarser (e.g., 1 rps vs our rate per several time intervals)
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than FRADE models, and thus we believe that FRADE would outperform this.
Jung et al. [28] learn existing clients of a Web server, and perform network aware
clustering [31]. When the server is overloaded, they drop aggressive clients that
do not fit in the existing clusters. In comparison to these works, we evaluate
timing dynamics at a much finer granularity, and evaluate the strict order of
requests, allowing us to detect stealthier FCAs.

Multiple works are related to FRADE’s semantics model. Wang et al. [48]
examine requests over 30-min windows (sessions) and use a click-ratio (page pop-
ularity) model and Markov process to model clients. Their detection is highly
accurate for bot identification, but has a high false-positive rate, while we have
zero false positives. Similar to [48], Xie et al. [54] capture the transition proba-
bilities between requests in a session through a hidden semi-Markov model. Our
approach to training and modeling is simpler, while still very accurate.

Our deception model uses honeytokens [46], similar to [12,19,21]. We build
on ideas from these prior works (use of decoy links), but we use a variety of decoy
objects, configurable object density and automate object insertion code for each
site. To our knowledge, our work is the first to combine dynamics, semantics
of user requests, and the decoy objects in a single defense, and evaluate its
effectiveness using realistic traffic and real servers (Table 6). Our results show
that different modules are effective against different FCAs. Thus, a combination
is needed to fully handle FCAs. Software and datasets for these prior works are
not publicly available, and thus we could not directly compare FRADE to them.

Biometrics solutions (e.g., [15] or [53]) can distinguish bots from humans by
capturing mouse movements and keystrokes. These approaches are orthogonal
to FRADE, and may suffer from privacy issues.

5 Conclusions

FCAs are challenging to handle. We have presented a solution, FRADE, which
models how human users interact with servers and detects bots as they deviate
from this expected behavior. Our tests show that FRADE stops naive bots within
3–5 requests and sophisticated bots within 15–19 requests. A bot could modify
its behavior to bypass FRADE’s detection, but this forces the attacker to use
botnets at least three order of magnitude larger than today, to achieve sustained
attack. FRADE thus successfully fortifies Web servers against today’s FCAs.
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References

1. Hulk DDoS tool, May 2018. https://tinyurl.com/y49tze6w. Accessed 31 Mar 2021
2. Classification tools, May 2019. https://tinyurl.com/y6cdav26. Accessed 31 Mar

2021
3. Combined desktop and mobile visits to amazon.com from February 2018 to April

2019 (in millions), May 2019. https://tinyurl.com/y25d8ln8. Accessed 31 Mar 2021

https://tinyurl.com/y49tze6w
https://tinyurl.com/y6cdav26
https://tinyurl.com/y25d8ln8


Defending Web Servers Against Flash Crowd Attacks 359

4. Most popular retail websites in the United States as of December 2019, ranked
by visitors (in millions), September 2020. https://www.statista.com/statistics/
271450/monthly-unique-visitors-to-us-retail-websites/. Accessed 31 Mar 2021

5. Akrout, I., Feriani, A., Akrout, M.: Hacking google reCAPTCHA v3 using Rein-
forcement Learning (2019)

6. Arapakis, I., Bai, X., Cambazoglu, B.B.: Impact of response latency on user behav-
ior in web search. In: Proceedings of the 37th International ACM SIGIR Conference
on Research & Development in Information Retrieval, pp. 103–112. Association for
Computing Machinery, New York (2014)

7. Barna, C., Shtern, M., Smit, M., Tzerpos, V., Litoiu, M.: Model-based adaptive
DoS attack mitigation. In: Proceedings of the 7th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2012, pp.
119–128. IEEE Press, Piscataway (2012)

8. Barnett, R.: HOIC, January 2012. https://tinyurl.com/y6en34r3. Accessed 31 Mar
2021

9. Beitollahi, H., Deconinck, G.: Tackling application-layer DDoS attacks. Procedia
Comput. Sci. 10, 432–441 (2012)

10. Bharathi, R., Sukanesh, R., Xiang, Y., Hu, J.: A PCA based framework for detec-
tion of application layer DDoS attacks. WSEAS Trans. Inf. Sci. Appl. 9(12), 389–
398 (2012)

11. Bock, K., Patel, D., Hughey, G., Levin, D.: unCAPTCHA: a low-resource defeat
of reCAPTCHA’s audio challenge. In: 11th {USENIX} Workshop on Offensive
Technologies ({WOOT} 2017) (2017)

12. Brewer, D., Li, K., Ramaswamy, L., Pu, C.: A link obfuscation service to detect
webbots. In: 2010 IEEE International Conference on Services Computing, pp. 433–
440, July 2010

13. Cao, Y., Yang, J.: Towards making systems forget with machine unlearning. In:
2015 IEEE Symposium on Security and Privacy, pp. 463–480. IEEE (2015)

14. Chim, S.: Http proxy middleware, July 2016. https://tinyurl.com/y6td93p4
15. Chu, Z., Gianvecchio, S., Koehl, A., Wang, H., Jajodia, S.: Blog or block: detecting

blog bots through behavioral biometrics. Comput. Netw. 57(3), 634–646 (2013)
16. Cid, D.: Analyzing popular layer 7 application DDoS attacks. Sucuri blog. https://

tinyurl.com/y3p7mokb. Accessed 6 Dec 2020
17. Cloudflare. How can an HTTP flood be mitigated?, March 2020. https://www.

cloudflare.com/learning/ddos/http-flood-ddos-attack/. Accessed 6 Dec 2020
18. Elsabagh, M., Fleck, D., Stavrou, A., Kaplan, M., Bowen, T.: Practical and accu-

rate runtime application protection against DoS attacks. In: Dacier, M., Bailey,
M., Polychronakis, M., Antonakakis, M. (eds.) RAID 2017. LNCS, vol. 10453, pp.
450–471. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66332-6 20

19. Gavrilis, D., Chatzis, I., Dermatas, E.: Flash crowd detection using decoy hyper-
links. In: 2007 IEEE International Conference on Networking, Sensing and Control,
pp. 466–470, April 2007

20. Google. reCAPTCHA v3. https://www.google.com/recaptcha/intro/v3.html.
Accessed 31 Mar 2021

21. Han, X., Kheir, N., Balzarotti, D.: Evaluation of deception-based web attacks
detection. In: Proceedings of the 2017 Workshop on Moving Target Defense, MTD
2017, pp. 65–73. ACM, New York (2017)

22. Imperva. Low orbit ion cannon. https://tinyurl.com/y3wy32fo. Accessed 31 Mar
2021

23. Imperva. 2020 cyberthreat defense report (2020). https://tinyurl.com/y5jmjuzv.
Accessed 31 Mar 2021

https://www.statista.com/statistics/271450/monthly-unique-visitors-to-us-retail-websites/
https://www.statista.com/statistics/271450/monthly-unique-visitors-to-us-retail-websites/
https://tinyurl.com/y6en34r3
https://tinyurl.com/y6td93p4
https://tinyurl.com/y3p7mokb
https://tinyurl.com/y3p7mokb
https://www.cloudflare.com/learning/ddos/http-flood-ddos-attack/
https://www.cloudflare.com/learning/ddos/http-flood-ddos-attack/
https://doi.org/10.1007/978-3-319-66332-6_20
https://www.google.com/recaptcha/intro/v3.html
https://tinyurl.com/y3wy32fo
https://tinyurl.com/y5jmjuzv


360 R. Tandon et al.

24. Imperva Incapsula’s. Q1 2017 global DDoS threat landscape report, May 2017.
www.incapsula.com. Accessed 6 Dec 2020

25. INDUSFACE (2019). https://tinyurl.com/y4c3ywry. Accessed 6 Dec 2020
26. Jan, S.T., et al.: Throwing darts in the dark? Detecting bots with limited data using

neural data augmentation. In: 2020 IEEE Symposium on Security and Privacy
(SP), pp. 1190–1206. IEEE (2020)

27. Jonker, M., King, A., Krupp, J., Rossow, C., Sperotto, A., Dainotti, A.: Millions
of targets under attack: a macroscopic characterization of the DoS ecosystem. In:
Internet Measurement Conference (IMC), November 2017

28. Jung, J., Krishnamurthy, B., Rabinovich, M.: Flash crowds and denial of service
attacks: characterization and implications for CDNs and web sites. In: Proceedings
of the 11th International Conference on World Wide Web, WWW 2002, pp. 293–
304. ACM, New York (2002)

29. Kandula, S., Katabi, D., Jacob, M., Berger, A.: Botz-4-sale: surviving organized
DDoS attacks that mimic flash crowds. In: Proceedings of the 2nd Conference on
Symposium on Networked Systems Design & Implementation, NSDI 2005, vol. 2,
pp. 287–300. USENIX Association, Berkeley (2005)

30. Kaspersky. Report finds 18% rise in DDoS attacks in Q2 2019 (2019). https://
tinyurl.com/y258rnpm. Accessed 31 Mar 2021

31. Krishnamurthy, B., Wang, J.: On network-aware clustering of web clients. ACM
SIGCOMM Comput. Commun. Rev. 30(4), 97–110 (2000)

32. Leyden, J.: Russian serfs paid three dollars a day to break CAPTCHAs, March
2008. https://tinyurl.com/y2czs7xd. Accessed 6 Dec 2020

33. Liao, Q., Li, H., Kang, S., Liu, C.: Application layer DDoS attack detection using
cluster with label based on sparse vector decomposition and rhythm matching.
Secur. Commun. Netw. 8(17), 3111–3120 (2015)

34. Wayback Machine. Internet archive (1996). https://archive.org/web. Accessed 31
Mar 2021

35. Meng, W., et al.: Rampart: protecting web applications from CPU-exhaustion
denial-of-service attacks. In: 27th USENIX Security Symposium (USENIX Security
2018) (2018)

36. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784 (2014)

37. Mosberger, D., Jin, T.: Httperf: a tool for measuring web server performance.
SIGMETRICS Perform. Eval. Rev. 26(3), 31–37 (1998)

38. Najafabadi, M., Khoshgoftaar, T., Calvert, C., Kemp, C.: User behavior anomaly
detection for application layer DDoS attacks. In: 2017 IEEE International Confer-
ence on Information Reuse and Integration (IRI), pp. 154–161, August 2017

39. Oikonomou, G., Mirkovic, J.: Modeling human behavior for defense against flash-
crowd attacks. In: 2009 IEEE International Conference on Communications, pp.
1–6. IEEE (2009)

40. Paxson, V.: Bro: a system for detecting network intruders in real-time. In: Pro-
ceedings of the 7th Conference on USENIX Security Symposium, SSYM 1998, vol.
7, p. 3. USENIX Association, Berkeley (1998)

41. Radware. JS cookie challenges, March 2020. https://tinyurl.com/y2bqmtac.
Accessed 6 Dec 2020

42. Ranjan, S., Swaminathan, R., Uysal, M., Knightly, E.: DDoS-resilient scheduling to
counter application layer attacks under imperfect detection. In: Proceedings IEEE
INFOCOM 2006, pp. 1–13 (2006)

43. Selenium. Selenium webdriver (2012). https://tinyurl.com/y6a4czhe. Accessed 6
Dec 2020

www.incapsula.com
https://tinyurl.com/y4c3ywry
https://tinyurl.com/y258rnpm
https://tinyurl.com/y258rnpm
https://tinyurl.com/y2czs7xd
https://archive.org/web
http://arxiv.org/abs/1411.1784
https://tinyurl.com/y2bqmtac
https://tinyurl.com/y6a4czhe


Defending Web Servers Against Flash Crowd Attacks 361

44. V. S. Services. Verisign DDoS trends report q2 2016, June 2016. https://verisign.
com/. Accessed 6 Dec 2020

45. Sivakorn, S., Polakis, I., Keromytis, A.D.: I am robot:(deep) learning to break
semantic image CAPTCHAs. In: 2016 IEEE European Symposium on Security
and Privacy (EuroS&P), pp. 388–403. IEEE (2016)

46. Spitzner, L.: Honeytokens, July 2003. https://tinyurl.com/y4gzbjqz
47. STEEL Lab. Frade: Flash crowd attack defense (2021). https://steel.isi.edu/

Projects/frade/
48. Wang, J., Yang, X., Long, K.: Web DDoS detection schemes based on measuring

user’s access behavior with large deviation. In: 2011 IEEE Global Telecommunica-
tions Conference - GLOBECOM 2011, pp. 1–5, December 2011

49. Wang, S., Liu, C., Gao, X., Qu, H., Xu, W.: Session-based fraud detection in
online e-commerce transactions using recurrent neural networks. In: Altun, Y.,
et al. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10536, pp. 241–252. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-71273-4 20

50. White, B., et al.: An integrated experimental environment for distributed sys-
tems and networks. In: Proceedings of the Fifth Symposium on Operating Systems
Design and Implementation, Boston, MA. USENIX Association, December 2002

51. Wikipedia. Curse of dimensionality. https://en.wikipedia.org/wiki/Curse of
dimensionality/. Accessed 6 Dec 2020

52. Wikipedia. Replay attack. https://en.wikipedia.org/wiki/Replay attack. Accessed
31 Mar 2021

53. Winslow, E.: Bot detection via mouse mapping, September 2009. https://tinyurl.
com/y3kbgwuw

54. Xie, Y., Yu, S.Z.: Monitoring the application-layer DDoS attacks for popular web-
sites. IEEE/ACM Trans. Netw. 17(1), 15–25 (2009)

55. Yatagai, T., Isohara, T., Sasase, I.: Detection of http-get flood attack based on
analysis of page access behavior. In: 2007 IEEE Pacific Rim Conference on Com-
munications, Computers and Signal Processing, pp. 232–235, August 2007

https://verisign.com/
https://verisign.com/
https://tinyurl.com/y4gzbjqz
https://steel.isi.edu/Projects/frade/
https://steel.isi.edu/Projects/frade/
https://doi.org/10.1007/978-3-319-71273-4_20
https://en.wikipedia.org/wiki/Curse_of_dimensionality/
https://en.wikipedia.org/wiki/Curse_of_dimensionality/
https://en.wikipedia.org/wiki/Replay_attack
https://tinyurl.com/y3kbgwuw
https://tinyurl.com/y3kbgwuw

	Defending Web Servers Against Flash Crowd Attacks
	1 Introduction
	2 FRADE
	2.1 Feature Selection
	2.2 Overview
	2.3 Attack Detection
	2.4 Request Dynamics
	2.5 Request Semantics
	2.6 Deception
	2.7 Using a Proxy to Speed up Servers
	2.8 Improvements over OM
	2.9 Deployment Considerations
	2.10 Implementation

	3 Evaluation
	3.1 Emulation Evaluation Setup
	3.2 Today's (Naive) Attacks
	3.3 Sophisticated Attacks
	3.4 Evasion Attacks
	3.5 FRADE Outperforms OM
	3.6 Sensitivity
	3.7 Operational Cost and Scalability

	4 Related Work
	5 Conclusions
	References




