
Proactive Detection of Phishing Kit
Traffic

Qian Cui1,2(B), Guy-Vincent Jourdan1,2(B), Gregor V. Bochmann1(B),
and Iosif-Viorel Onut2(B)

1 University of Ottawa, Ottawa, Canada
gjourdan@uottawa.ca, bochmann@uottawa.ca

2 IBM Centre for Advanced Studies, Ottawa, Canada
vioonut@ca.ibm.com

Abstract. Current anti-phishing studies mainly focus on either detect-
ing phishing pages or on identifying phishing emails sent to victims. In
this paper, we propose instead to detect live attacks through the mes-
sages sent by the phishing site back to the attacker. Most phishing attacks
exfiltrate the information gathered from the victim by sending an email
to a “drop”, throwaway email address. We call these messages exfil-
trating emails. Detecting and blocking exfiltrating emails is a new tool
to protect networks in which a number of largely unmonitored websites
are hosted (universities, web hosting companies etc.) and where phishing
sites may be created, either directly or by compromising existing legit-
imate sites. Moreover, unlike most traditional antiphishing techniques
which require a delay between the attack and its detection, this method
is able to block the attack as soon as it starts collecting data.

It is also useful for email providers who can detect the presence of
drop mailbox in their service and prevent access to it. Gmail deployed
a simple rule-based detection system and detected over 12 million exfil-
trating emails sent to more than 19,000 drop Gmail addresses in one
year [52].

In this work, we look at this problem from a new perspective: we
use a Recurrent Neural Network to learn the structure of exfiltrating
emails instead of their content. We compare our implementation, called
DeepPK, against word-based and pattern-based methods, and tested
their robustness against evasion techniques. Although all three mod-
els are shown to be very effective at detecting unmodified messages,
DeepPK is the overall more resistant and remains quite effective even
when the messages are altered to avoid detection. With DeepPK, we also
introduce a new message encoding technique which facilitates scaling of
the classifier and makes detection evasion harder.

Keywords: Phishing kit · Exfiltrating emails · Network traffic
detection

c© Springer Nature Switzerland AG 2021
K. Sako and N. O. Tippenhauer (Eds.): ACNS 2021, LNCS 12727, pp. 257–286, 2021.
https://doi.org/10.1007/978-3-030-78375-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78375-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-78375-4_11

258 Q. Cui et al.

1 Introduction

A so-called “phishing attack” is a cyber crime in which an attacker (the phisher)
deploys a website that mimics another site in order to induce victims to pro-
vide sensitive information. Although significant efforts to the defend against
phishing attacks have been made both in academia and in industry, the fight
between attackers and defenders keeps going on. The Anti-Phishing Working
Group (APWG) reports having detected 266,387 phishing sites during the third
quarter of 2019, the highest number in three years, with more than two third
using SSL, the highest percentage seen since this is being tracked [5]. Phishers
keep improving their techniques to avoid detection, for example using SSL or
adding multiple redirections [6].

Most of the literature on anti-phishing focuses either on detecting phishing
emails sent to the victims (e.g. [11,22,26,36,49,53] and many more) or on detect-
ing phishing web pages(e.g. [2,12,13,18,23,32,44,45,59] and many more). These
solutions are centered around the victims, the goal is to protect the victims
from the attacks, that is, to cut off the channel between victims and attacks.
However, very little work has been done focusing on the channel between the
attackers and the attacks. However, that channel is as critical as the other ones:
breaking it defeats the attack. This is the topic of this paper, and more specifi-
cally the channel through which the attacker collects the stolen information from
the phishing site. This approach helps web hosting provider and network owner
to combat phishing by detecting immediately that an attack is being deployed
on their network. It is a new idea that is not centered around the actual vic-
tims (most victims have no connection to the network on which the attack is
being deployed) and thus this is a new tool which can work in combination with
existing ones.

In most phishing attacks, the stolen information is exfiltrated back to the
phisher by email: the code of the phishing site simply sends an email to a “drop
address” each time someone submits something to the phishing site. Each email
contains the data submitted by one victim. In the case of a multi-page phishing
site, it is even often the case that several emails are sent for a single victim.
Therefore, detecting and blocking these emails is a different and complementary
means to combat phishing attacks. In the following, we call these emails sent by
the phishing site to the phisher “exfiltrating emails”.

In this paper, we evaluate three different machine learning technique to detect
exfiltrating emails: word-based, pattern-based and structure-based detection. We
test the robustness of our three models against potential attacks. Although all
three models are shown to be very effective at detecting these messages, the
model using a deep-learning approach, which is called DeepPK, is the one that
is the overall best since it remains quite effective even when the messages are
altered to avoid detection. The key idea of DeepPK is to deal with the email
structure as a sequence of components that follows specific grammar rules. The
key component of DeepPK is a bidirectional Long Short-Term Memory (LSTM)
network [46]. It allows DeepPK to automatically learn the difference between
the structural grammar rules of exfiltrating emails and regular emails. In order

Proactive Detection of Phishing Kit Traffic 259

to effectively represent email structure, we propose a new encoding method, the
structure token, which uses a small corpus containing only 14 symbols.

We train and test our models on a realistic database of exfiltrating emails.
These emails are built from the combination of two real datasets: a database
of exfiltrating emails generated by actual “phishing kits”, which gives us the
patterns of the exfiltration emails, but not the data provided by the victims,
and a database of values that have been submitted to real phishing sites. By
meshing up these two databases, we end up with a system that can generate
a large number of exfiltrating emails. In this paper, we use almost 65,000 such
messages to train and test our models.

The solution described in this paper has a key advantage over most of the
existing ones: it does not require the attack to be first reported, or to be somehow
actively discovered. Instead, it is the attack’s own network traffic that is being
detected and stopped. Therefore, this technique can be used to stop a phishing
attack immediately, preventing a single delivery of stolen information to the
phisher.

The paper is organized as follows: In Sect. 2 we explain what detecting exfil-
trating email achieves that current phishing detection method do not. In Sect. 3,
we present our exfiltrating emails database. Then in Sect. 4, we introduce our
machine learning-based approaches. In Sect. 5, we present the evaluation of our
models, which is followed by the robustness test in Sect. B. We provide an
overview of the literature in Sect. 6 before concluding in Sect. 7. All of the source
code and some of the non-sensitive data used in this paper will be made available
after the anonymous review.

2 Motivations

As already mentioned, most of the antiphishing efforts are directed at protecting
victims, either by preventing the attacker’s message from reaching its target, or
by detecting that a site is not genuine. However, not every potential victim uses
these mechanisms, and even when they do, these mechanisms are not perfect: for
instance, Hu et al. [29] have shown that even email providers that do apply anti-
spoofing detection techniques fail to always prevent forged emails from reach-
ing the victims. It is therefore also important to help network administrators
to proactively detect that a phishing site has been deployed on their network,
without being notified of the URL fist. Such a phishing site can be deployed on
a network because the attacker has compromised one of the servers, or because
the attacker as a legitimate right to deploy a website there. Very little work
has been done in this area. Of course, one could use any phishing site detection
method and scan the network to look for such sites, but this can be difficult due
to the network’s size and the lack of control over what is being deployed there.
More importantly, scanning would probably yield limited success without first
somehow knowing the actual URL of the phishing site on the server. Waiting to
be notified about the attack has the obvious disadvantage of being out of the
control of the network’s administrator, and of opening a window of time during

260 Q. Cui et al.

which the attack is live on the network. Closing that gap is necessary to prevent
victims from providing data to the phishing site, and to preserve the reputation
of the network, which may otherwise end up being blacklisted.

Detecting exfiltrating emails is a new tool which provides a web hosting
providers a new way to learn that a phishing attack is hosted on their network
and stop it immediately, by monitoring outgoing emails instead of scanning
their own network. It addresses the problem of having to find out or to be
informed of the exact URL of the phishing attack, since that is instead the
network traffic of the phishing site itself that triggers the detection. Another
considerable advantage of such a system is that it can detect and block the
attack as soon as someone submits data to the site, preventing the attackers
from collecting any information. In addition, drop email addresses are uncovered
and can be reported to the email providers and suitable authorities.

This tool will be useful to web hosting companies, but also to any entities
managing a large and relatively open network, such as a university for example.

As already demonstrated in [52], our work can also be useful to email
providers: it is possible to reliably and rapidly detect that one of the mailboxes
is the recipient of such exfiltrating emails and block its access immediately, also
completely preventing the attacker from accessing the data. This is of particular
interest to free email providers, which are used extensively by phishers to create
dedicated drop email addresses.

In this research, we focus on phishing attacks that are using clear-text drop
emails as exfiltration techniques. It is always surprising to the academic com-
munity that such a basic and vulnerable exfiltration technique could be used in
practice. A vast array of other techniques are of course possible to exfiltrate the
data, including but not limited to simple email encryption, pushing the data out
using another protocol such as http(s) or (s)ftp, more covert methods such as
DNS-based exfiltration [38], or storing the data on the server and switching from
a push-based model to a pull-based model. Several easy-to-find implementations
of phishing-kit proof-of-concepts do in fact provide alternate ways of exfilter-
ing data. In practice, the almost exclusive reliance on plain-text emails is well
documented by practitioners [20,31,34,39,42,52,57]. Most recently, in [52] it is
reported that all of the 10,000 kits analyzed in that study use the PHP mail()
command to exfiltrate data. In [31] an analysis of 1,000 Phishing Kits done in
2018 found that “the vast majority of kits (98%) used email to exfiltrate stolen
data to attackers”. Another study from 2018, [39], does not mention any other
mean of data exfiltration. This is certainly also our empirical evidence having
worked with well over 10,000 live attacks over the past couple of years: attackers
today use almost exclusively clear-text drop emails for data exfiltration. Even
when the phishing kit offers other alternative (usually some level of encryption),
these alternatives are almost never enabled in live attacks. One explanation for
this is that phishing attacks are very low-skill attacks, and any complication
would negatively impact the model (see Sect. 7 for some more discussion about
this). It is also possible that only some of the attacks are using clear-text drop

Proactive Detection of Phishing Kit Traffic 261

emails, and for some reasons these are the attacks that we discover.1 Even if
that is the case, it remains that a large number of attacks are using clear-text
drop emails as exflitration techniques and stopping these ones is a step in the
right direction.

Our tool is not meant to replace existing ones. Detecting classical phishing
emails is still necessary but serves a different purpose: it prevents email users
of the domain from being victimized by phishing sites that are usually hosted
somewhere else. Our tool is as a new and effective mechanism to secure networks
against hosting phishing attacks themselves. Classical phishing email detection
does not provide any direct protection against that.

We believe that there are two main contributions in this paper: first, we
provide a new direction for detecting exfiltrating emails using neural networks
trained on the structural information of the message. We introduce a encod-
ing method which effectively extracts that structural information with only 14
characters. Second, we identify a missing piece in the fight against phishing.
The hosting mechanism and the data exfiltration techniques are an essential
and somewhat overlooked part of the equation. The detection models that we
present here do work very effectively on current phishing attacks. Other detection
models might be as effective, and attackers will certainly take countermeasure
to prevent detection in the future. Nevertheless, it remains that web hosting
providers must now be included in the defense against phishing, and that proac-
tive techniques such as the one presented here must be developed and maintained
as the situation evolves.

3 Exfiltrating Emails Generations

One difficulty with this research is to access to exfiltrating emails to train and
test the models. We are not aware of any such database prior to this work. Some
prior work could have indirectly access to some exfiltrating emails (e.g. using
honeypots [27]) but in limited quantity.

In this work, the starting point for the generation of exfiltrating emails is two
datasets that the forensic teams of our industry partners have collected from real
attacks:

1. A set of 3,162 distinct Phishing Kits which are actual phishing websites
written in the PHP language,

2. and a collection of 370 files containing various amount of data collected by
real phishing sites.

The generation process involves three stages: Phishing Kit Deployment, Files
Parsing, and Email Generation described in the next subsections.

1 Maybe because these are low-skill attacks, and some higher-skill attacks are evading
our detection.

262 Q. Cui et al.

3.1 Phishing Kit Deployment

Each phishing kit is deployed in a custom sandbox environment. By redefining
functions and certain global objects of the standard library (PHP language) used
by the phishing kits, it is arranged that the calls requesting values for HTTP
GET/POST request variables and cookies will return special placeholder values
which we can later use to identify the value which is requested e.g. a POST
request variable named “username”.

Any email messages sent are captured. These messages are parsed, identifying
all special placeholder values in addition to a small number of special patterns
including IP address, date/time and user agent, with the end result being a
sequence of static strings and dynamic value specifications termed an email
template. A sample is shown in Fig. 1. A total of 6,448 unique email templates
acceptable for use in subsequent steps are generated from the data. As previously
noted, phishing kits often send more than one message, either because the attack
is done in several steps and each step triggers a separated message, or because
the phishing kit contains more than one phishing sites.

———=F3dreport 2018=———
Em@il: <EMAIL>
pass: <PASSWORD>
pass2: <PASSWORD>
———=IP Address & Date=———
IP Address: <IP>
Country: <COUNTRY>
Date: <DATE>

Fig. 1. Sample exfiltrating email template extracted from a phishing kit (manually
modified for obfuscation)

3.2 Data File Parsing

Our data files contain sets of values that have been collected during phishing
attacks and recovered by forensics teams. These values correspond to what the
victims provide to the phishing site (and thus what is then exfiltrated in the
emails). The type of data found in this dataset is what one expects from a
phishing site: mostly credentials for websites and other systems, but also credit
cards information and other personal information. In addition, the IP address
of the victim, time of access, type of browser etc. is often collected by phishers.

It is worth noting that in a typical phishing attack, the majority of the values
submitted to the site are not genuine. Instead, the majority of the inputs seem
to come from users attempting to “get back” at the phishers by submitting a
flurry of random data, insults and denial-of-service attempts. Nevertheless, these
are the values that a typical phishing attack will receive and exfiltrate, and thus
all of these values are valid and indeed necessary for our purpose.

Proactive Detection of Phishing Kit Traffic 263

We did parse all of our data files to extract the individual values and match
them to the values requested by the phishing kits. The end result of this process
is the population of an Exfiltration Database with data for 115,713 entries
comprising 332,224 values.

3.3 Email Generation

The general idea is to generate emails from each email template by filling in
placeholders using data from the exfiltration database. For each of the 6,448
email templates, we generate 10 email messages randomly filling in placeholders
using data from the exfiltration database. When doing so, we require that all
template values are populated, although we do not insist that the data all belongs
to a single entry or even to data from the same file. This resulted in 64,480
exfiltration emails, two examples are provided in Fig. 2.2 To ensure that our
models are trained and tested on different datasets, email messages coming from
the same template are either all used for training or all used for testing.

———=F3dreport 2018=———
Em@il: victim1@gmail.com
pass: victim1pass
pass2: victim1pass2
———=IP Address & Date=——
—
IP Address: 123.123.123.222
Country: Unknown
Date: 2018-12-14 04:16:11

———=F3dreport 2018=———
Em@il: victim2@hotmal.com
pass: victim2test11
pass2: victim2test11
———=IP Address & Date=——
—
IP Address: 123.123.12.12
Country: Unknown
Date: 2018-12-12 01:23:19

Fig. 2. Two instances of exfiltrating emails generated from the template of Fig. 1,
values manually obfuscated.

4 Methodology

We have trained three different models to recognize exfiltrating emails. In this
Section, we first introduce two approaches that are commonly used in email
classification: word-based and pattern-based detection model. We then introduce
our structure-based model.

2 Because these files do contain some sensitive data, we cannot publish this database
as is. We will however make available the encoded version of the emails on which
our deep learning algorithm works upon request and after verification.

264 Q. Cui et al.

4.1 Word-Based Detection Model

Naive Bayes approaches have been shown to be very successful in text clas-
sification task [8,58]. Therefore, we included one such implementation in our
exfiltrating email classifiers.

Specifically, the model learns the conditional probability and the independent
probability of each word from the training set, and uses these probabilities to
predict the probability that a new text belongs to a certain category. Formally, we
work from a set of documents consisting of n unique word tokens [w1, w2, . . . , wn].
These documents are classified into p categories [C1, C2, . . . , Cp]. Each document
can be represented as a vector x = (x1, ..., xn), where xi represents the relative
weight of wi in that document.

In our case, to effectively represent word features, we first extract consecutive
alphanumeric characters using the regexp [0-9A-Za-z] to get a “word” list. We
then apply 1-gram and 2-gram to create word tokens. The corpus of the model is
built using the 5,000 most frequent tokens. We apply a “scaled term frequency”
to calculate the frequency of the token. Formally, the scaled term frequency of
the word token wi in the document dj is

1 + log(# of occurrences of wi in the document dj).

We then apply tf-idf using the scaled tf to vectorize the tokens. For vector normal-
ization, we apply an “L2” normalization: the sum of squares of vector elements is
1. Finally, for each document (email), we end up with a 5,000-dimension vector.

The probability that a document of vector (x1, ..., xn) belongs to the category
Ck is p(Ck|x1, ..., xn) = p(Ck)

∏n
i=1 p(xi|Ck)

p(x1,...,xn)
.

Note that xi is a TF-IDF value of the word token wi, which is only related
to the set of documents. In other words, given a set of documents, p(x1, ..., xn)
is a constant for each category Ck. Therefore, p(Ck|x1, ..., xn) is proportional
to p(Ck)

∏n
i=1 p(xi|Ck). We apply the Gaussian Naive Bayes algorithm to esti-

mate the likelihood of features, p(xi|Ck) = 1√
2πσCk

2
exp

(
− (xi−μCk

)2

2σCk
2

)
, where

the parameters σCk
and μCk

are learnt by the model during training. p(Ck) is
also a learnable parameter, which is equal to

of documents in kth category
of documents

Once the model is trained, it is used to assign a new document of vector x′
1, ..., x

′
n

to the category Ci which maximizes p(Ck|x′
1, ..., x

′
n). In the following sections,

we name this model NB.

4.2 Pattern-Based Detection Model

In addition to using different set of words (when compared to regular emails),
exfiltrating emails also tend to use singular patterns. For instance, they are often
organized following the format: <header> + <field name> + <delimiter> +

Proactive Detection of Phishing Kit Traffic 265

<value>. Therefore, we also trained a classifier to look for patterns. We first
encode the content of the messages using only five character classes: letters (L),
digits (D), punctuation (P), newline (N) and whitespace other than newline
(W). Each email is first encoded using these five classes. We then compute all
n-grams of lengths 10 to 16 on the encoded email sets, exfiltrating emails and
regular emails, and we keep only the n-grams that appear only in one of the
two sets, that is, n-grams that are found at least once in the exfiltrating (resp.
regular) training set but never appear in the regular (resp. exfiltrating) training
set. A greedy set cover algorithm is applied to obtain a token cover set, which
only covers the same set of documents. We derive a classifier using only the
token cover set for the class of exfiltrating emails which classifies a document as
exfiltrating if and only if its token set contains one of the tokens in the exfiltrating
token cover set.

Formally, let t be a tokenizer function and A and B be email classes. Let
D(A,B) =

⋃
t(A)\⋃

t(B) and similarly let D(B,A) =
⋃

t(B)\⋃
t(A). Finally,

using a set cover algorithm, select a small subset C(A,B) ⊆ D(A,B) such that
{m ∈ A | t(m)∩D(A,B) �= ∅} = {m ∈ A | t(m)∩C(A,B) �= ∅} and similarly for
C(B,A). Let C0 be the set of clean messages, and C1 be the exfiltrating emails.
Define a classifier c by

c(M) =

{
1 if t(M) ∩ C(C1, C0) �= ∅
0 otherwise

In the following sections, we name this model Set-cover.

4.3 Structure-Based Detection Model

As discussed in Sect. 4.2, exfiltrating emails tend to follow a specific format that
is rarely used in regular emails. If we look at the structure of the document as a
grammar, exfiltrating emails and regular emails follow two different grammars.
Deep learning algorithms are known to be effective at learning underlying gram-
mars of text documents [7,14,51], therefore we also include a deep learning-based
classifier.

As we did in Sect. 4.2, we first encode the message using using a new struc-
ture token using 14 symbols. The details of that encoding is provided in
Appendix A.1. In addition to the structure token, our model also include two
“semantic” features: the content entropy and the text proportion, which
are detailed in Appendix A.2.

Recurrent Neural Networks (RNN) are often used for problems with sequen-
tial information as input and have been shown to be effective in a variety of
natural language processing problems [9,35]. For this model, we use a Long
Short-Term Memory (LSTM) RNN, which has been proved to perform well in
dealing with complex patterns and long sequences [28,50]. The details of our use
of LSTM, which we call DeepPK, are provided in Appendix A.3.

266 Q. Cui et al.

5 Experiment

We now report our basic results, starting with a description of our experiment
environment.

5.1 Experiment Environment

We have developed DeepPK using Keras3 with Tensorflow as the back end. For
HTML emails preprocessing, we use Beautifulsoup4 to extract the text from
the HTML emails. Our models NB and Set-cover are implemented using Scikit-
learn5. Our experiments are performed on a Windows-based system with an
Intel i5 CPU at 3.5 Ghz and 16 GB RAM. DeepPK is trained and tested on a
NVIDIA Geforce GTX 1060 with 6 GB RAM. Our source code can be found on
our website, http://ssrg.site.uottawa.ca/phishing kit/.

5.2 Exfiltration Email and Regular Email Database

We obtained our regular emails database from the Enron email dataset6,
which was collected and prepared by a third party organization, and con-
tains about 0.5 million messages coming from 150 users. Our exfiltrating emails
database, which consists of 64,480 messages from 6,448 unique exfiltration email
templates are generated by the approach discussed in Sect. 3.

To ensure that training and testing data is separated, we first split our 6,448
unique exfiltration email templates into two sets at a ratio of 4:1: 5,158 templates
are randomly selected for training, and the remaining 1,290 are used for testing.
This yield 51,580 email instances for training, and 12,900 email instances are
for testing. For the regular email database, we create a balanced training set
by randomly sampling 51,580 messages from the Enron email dataset. For the
regular email test set, we use 5 times the number of test exfiltrating emails, for
a total of 64,500 regular emails. This unbalance is to mimic a real-life scenario
in our tests, since exfiltration emails would be a fraction of the mail traffic in
reality.

As described in Appendix A.3, we inject into some of the (encoded) exfiltra-
tion emails some length of tokens taken from regular emails in order to avoid
learning only the prefix of these messages. Specifically, we inject into 8 of the
10 instances generated from the each template a token segment randomly sam-
pled from the regular training set. The size of the segment is randomly selected
between 1 and 50 characters.

In order to avoid overfitting during training, we further split our training set:
80% is used for the actual training, while 20% is used for validation. Accordingly,
we end up with 41,260 messages in each exfiltration email set and regular email

3 https://keras.io/.
4 https://www.crummy.com/software/BeautifulSoup/bs4/doc/.
5 https://scikit-learn.org/stable/.
6 http://www.cs.cmu.edu/∼enron/.

http://ssrg.site.uottawa.ca/phishing_kit/
https://keras.io/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://scikit-learn.org/stable/
http://www.cs.cmu.edu/~enron/

Proactive Detection of Phishing Kit Traffic 267

set used for training, and 10,320 messages in each set used for validation. During
training, we store the model which yields the best performance on the validation
set and then evaluate it on the test set.

5.3 Model Evaluation

In order to evaluate the effectiveness of our models, we compared them on sim-
ilar experiments and report here the results. By default, we use the following
parameters for DeepPK: input length is 600 and number of memory units is
128. Since DeepPK uses tumbling windows to process the data, to ensure a fair
comparison, we also test the NB model with tumbling windows (that model is
noted NB-Window below). We tried window sizes of 5 to 10 lines and report
only the one with the best performance.

We apply five standard metrics to evaluate the performance of the models:
false positive7 (FP), false negative (FN), precision (pre)= TP

TP+FP (TP stands for
true positive), recall (rec)= TP

TP+FN and f-score= 2∗pre∗rec
pre+rec . The results are shown

Table 1.

Table 1. Performance comparison between models

Performance comparison

Model # false positive (%) # false negative (%) Precision Recall F1 score

NB 728 (1.13%) 115 (0.89%) 94.61% 99.11% 96.81%

NB-window 2,596 (4.02%) 99 (0.77%) 83.14% 99.23% 90.48%

Set-cover 261 (0.40%) 285 (2.21%) 97.97% 97.79% 97.88%

Single LSTM 626 (0.97%) 37 (0.29%) 95.36% 99.71% 97.49%

Bidirectional LSTM

w/o content feature

343 (0.53%) 65 (0.50%) 97.40% 99.50% 98.44%

Bidirectional LSTM

with content feature

221 (0.34%) 63 (0.49%) 98.31% 99.51% 98.91%

For the NB model, we note that using a tumbling window improves the false
negatives rate but at the expense of the false positives rate. For DeepPK, the
model that only uses a single LSTM yields the best false negative rate (0.29%)
but the worst false positive rate (0.97%). Through manual inspection of these
false positives, we found that most of them are very short regular emails. The
model that uses bidirectional LSTM fixes this issue thanks to the additional
information provided by the backward direction. The performance is further
improved by using our semantic features, which help the model correctly classify
regular emails with a structure similar to that of the exfiltrating emails (e.g. the
case shown in Fig. 3). In general, the model which uses bidirectional LSTM and
semantic feature yields the best false positive rate (0.34%) and the best F1 score
(98.91%) across all models.
7 Here, a “positive” classification means that the message is flagged as exfiltrating

email.

268 Q. Cui et al.

5.4 Model Robustness

Our results in the Sect. 5.3 show that all three proposed models perform well in
detecting exfiltrating emails. In this section, we discuss several possible ways an
attacker could modify exfiltrating emails to evade detection, and we evaluate how
resilient the models are to these modifications. When looking at these potential
detection evasion techniques, we specifically focus on solutions that would be
relatively easy to implement for the attacker and would modify the exfiltrat-
ing emails without preventing automatic processing at the receiving end. More
advanced evasion techniques are of course possible, but they would likely impact
negatively the “business model” of phishing by requiring more advanced techni-
cal skills from attackers (see Sect. 7). Here, we consider two potential attacks:

– Injection attack. In this attack, the phisher injects additional noise into
the exfiltrating email, which is otherwise unchanged. In practice, the injected
text can be random strings, or pieces of text extracted from regular emails.
The latter is a more effective attack because it introduces “negative” noise
(segments possibly matching what the model has learned from the regular
emails), which is more likely to result in misclassification. In our study, we
consider a worst case scenario and use actual text segments from our regular
email database to increase the chances of defeating the models. We test four
different ways of injecting “negative” noise : injecting at the top of the mes-
sage, at the bottom of the message, in the middle of the message, and finally
scattering the injected text throughout the exfiltrating email.
We run several experiments. When injecting top, middle or bottom of the
message, we injected a size of text ranging from 10% to 100% of the original
exfiltration email, measured by the length of the resulting structure token. So
in the worst case, 50% of the resulting structure token comes from injected
text. When scattering the injection throughout the text, the injection is mea-
sured in terms of number of lines in the original text. In our experiment, we
increase the number of injected lines, going from one line randomly inserted
in the original text to one line inserted between each line of the original text.

– Replacement attack. In this attack, the phisher replaces the text of the
structure of the exfiltrating emails with strings that the model has rarely or
never seen. The purpose of the attack is to eliminate “positive” indicators.
An easy way to perform such an attack is to systematically replace existing
field names with other strings. Note that because DeepPK detects exfiltrating
emails based on our structure token and not on the message itself, this model
is not impacted by this attack if the strings used for replacement are of the
same length as the strings they replace (since it would yield the same structure
token). In order to have an effective attack against our model, we apply what
we have called “incremental injection”, where the size of the injected stings
is gradually increased.
We run several experiments with this attack as well. First, as mentioned we
change the length of consecutive tokens, trying various increments from 17 to
101. This ensures that each experiment produces a different structure token

Proactive Detection of Phishing Kit Traffic 269

Table 2. Attack test sets

Injection attack (injection proportion: from 0.1 to 1.0 by steps of 0.1)

Label Description

Inject header Injection of “negative” noise at the top

Inject middle Injection of “negative” noise in the middle

Inject tail Injection of “negative” noise at the bottom

Inject line Injection of “negative” noise scattered throughout the

message

Replacement attack (incremental injection length: [17, 20, 33, 45, 52, 64, 78, 89, 96, 101])

Replace word Replace words (continuous alphabetical characters)

with randomly generated ones

Replace non word Replace non-words with randomly generated non-words

Replace all Word and non-word replacement

fragments. For each length, we try three different types of replacements: we
try to replace only “words” (that is, sequences encoded as C in the structure
token). We then try to replace only “non-words” (that is, sequences encoded
as N , L or S in the structure token), and finally, we try to replace everything.

In these experiments we use the model trained on the original database, so
the modified exfiltration messages have never been seen by the models before.
We do not report the results on the regular emails again, since these would not
be impacted by these experiments. We use the test set discussed in Sect. 5.2.
Instead of using 10 instances per template, we randomly choose one instance
from each template, and end up with 1,290 exfiltrating emails that we modify for
the experiments. As explained, the injected text segments are randomly sampled
from the regular test set. In order to facilitate the comparison, we use the same
random seed for all our experiments (Table 2).

When faced with injection attacks, in general, DeepPK performs well, with
an error rate of at most 5%, except with the test set inject line. On that test,
the error rate increases with the proportion of injected text, to reach 28% at
the top. This is because, as expected, this injection destroys the sequence of
structure tokens, eliminating some key tokens. The Set-cover model is stable
in the injection test, with an error rate of at most 6%. This is not surprising
since the Set-cover model only looks for learned “bad” token in the message.
Injecting noise does not impact the presence of these tokens and the noise is
just ignored by this model. Still, except for the test set inject line, the Set-cover
model performs worse than DeepPK even with a relatively high proportion of
injected text (up to 70 to 90% of the original message depending on the test).
The NB model does not perform well in the injection test. The model breaks
down significantly as more “negative” content is injected. The use of tumbling
windows does help, but the performance is still worse than the other two models.
More details are available in Fig. 9 of Appendix B.

The word replacement attacks has almost no effect to the performance of
DeepPK, with an error rate peaking at 5%. On the other hand, the performance
of DeepPK on the test sets replace non word and replace all is quite inconsis-
tent: it sometimes performs very well with an error rate of less than 2%, but

270 Q. Cui et al.

in some cases the error rate goes above 80% (Fig. 10 of Appendix B). To better
analyze this phenomenon, we have conducted a complete set of tests on the test
set replace all, ranging the injection proportion from 1 to 100, step by step. Out
of these 100 tests, the error rate is below 10% 42 times, and below 5% 31 times.
The explanation might be that “non-words” in the template are important indi-
cators of exfiltrating email for DeepPK. However, to successfully conduct such
an attack, the attacker needs to successfully break up the part of the structure
that happens to have been learned by DeepPK, which is quite challenging and
a process of trial and error. Generating such exfiltrating emails would be signif-
icantly more difficult than what is currently done. What is more, interpreting
these emails once that are received would also be orders of magnitude harder
than the current situation. Therefore, this attack, however effective, seems of
limited practicality. Set-cover and NB are basically defeated by this attack, see
Appendix B for more details.

6 Related Works

Most of studies on phishing attack detection focus on identifying phishing pages
and phishing emails that are used to spread phishing links.

Most proposed phishing sites detection techniques look for some intrinsic
characteristics of the attack. For instance, [16,24,33,37,40,54,55] use an array
of machine learning models to train a binary classifier. Some work has also been
done to compare these approaches [1,36]. But as mentioned in Sect. 2, detecting
that a site is a phishing site does not address the needs of a network administrator
if, as is the case in these papers, the site’s exact URL is needed for the detection.

The main general approach for detecting phishing emails is to apply machine
learning techniques to detect the characteristics of a content that is designed
to deceive the victim. Fette et al. [22] propose such as method. The feature of
their model mainly focus on the phishing link embedded in the email, such as
the number of dots and the number of domains in URL, rather than the email
content. They report a 99.5% accuracy and 0.13% false positive on a dataset of
860 phishing emails and 6,950 regular emails. In [48,53], the authors suggest to
combine natural language processing techniques and contextual information to
identify phishing emails. In [53], the authors report a 98% true positive rate and
0.7% false positive rate on a dataset of 2,000 phishing emails and 1,000 regular
emails. In [48], the authors report an accuracy of 92.2% and a 4.9% false positive
rate on a dataset of 14,370 phishing emails and 14,370 regular emails. Some
researchers suggest to also use delivery information to detect phishing emails.
In [11,26], sets of features such as the consistency between sender domain and
the embedded link are used. Stringhini et al. [49] propose a detection model for
spear phishing attacks by profiling the email sender: writing habits, composing
habits, and interaction habits. Such behavioral-based detection would not be
directly suitable for our purpose, since in our case no impersonation is taking
place. However, none of these techniques would probably be very effective at
detecting exfiltrating emails because exfiltrating emails do not contain URLs or

Proactive Detection of Phishing Kit Traffic 271

deceptive text, and are sent to the attacker’s drop email address and from the
header’s viewpoint are not different from regular emails.

The work most related to ours is [52], in which a large scale analysis on
credential theft is conducted. The author work on a source of about 10,000 kits,
and propose a method to extract phishing templates by parsing the kits source
code. They then look for instances of these templates on Gmail, using Gmail’s
built-in anti-abuse detection system. They detect over 12 millions exfiltration
emails between March 2016 and March 2017. This works confirms that most
phishing attackers (who use Gmail 75% of the time for drop email address)
simply use plain-text when exfiltrating emails and thus detecting and blocking
these messages at the hosting site would currently be extremely effective. The
detection method that they use is however based on text matching; as we have
shown in the Sect. 5.4, attacker could simply evade detection merely by using
different keywords. Our method is more resistant and is aimed primarily at
hosting provider.

One general problem with the above methods is that the attacks need to be
first discovered and reported, and this means some delay between the attack and
its detection (about 10 h according to the report from APWG [25]). Our method
can identify a phishing attack as soon as it starts to collect information. It
basically prevents the attack to succeed at all if exfiltrating emails are scanned in
real time, at the source or at the receiving end. In [17], two “zero delay” phishing
attack detection methods are presented: one uses domain names to infer that a
site will host an attack, and the other does proactive “blind” scanning of the
network. By contrast, the method proposed here works regardless of the domain
name used (in particular it works even when the domain name is not related to
the attack) and will work without knowing nor guessing the URL of the attack.

The main difference between our work and all the above methods is that the
goal of these methods is to protect a victim from an attack. Although it could
indirectly help network administrators to detect a phishing site on their network,
it usually requires the URL of the attack to be known, which usually means that
someone needs to first report the attack to the administrator. In contrast, the
goal of our work is to directly help the administrator to detect a phishing site
on their network, and it does it automatically and without delay. In [27], a sys-
tem is presented in which honeypots are safely deployed and phishing kit are
monitored. This is probably the closest work to ours, but the aim is quite dif-
ferent. That system does not provide a way to detect an attack being deployed
on a live network. It is however one possible way to learn new email exfiltration
patterns and thus it can work and combination to our system. In [43,56], the
authors propose to monitor spam botnets and infer regular expressions match-
ing the messages sent by these botnets. A similar approach may also achieve
good performance in our context. However, as explained before, in our case the
attacker controls the entire channel, from the message creation to the message
consumption, and thus simple rule-based systems would be easier to be defeated
by simply changing the messages body, as we did in Sect. B. As we showed, the

272 Q. Cui et al.

models that we propose, in particular our deep learning-base model, can be quite
resistant to simple pattern modifications of the messages.

In addition to phishing detection, there is a significant body of academic work
focusing on email classification for several purposes, such as spam detection. For
instances, Blanzieri et al. [10] present a survey of supervised machine learning
algorithms for spam detection in 2008. These methods treat the email content
either as a set of word tokens, or as a text in natural language. A binary classifier
is then trained based on the extracted features to identify spam. Some methods
also combine other information, such as attachments, headers and embedded
images to improve the performance. Elssied et al. [21] apply a k-means clustering
technique to identify spam. Not all solutions rely on machine learning-based
classifier, e.g. Pérez-Dı́az et al. [41] propose a method using a set of rules.

In general, all these spam detection methods mainly focus on email content
and use semantic features to build classifiers. To the best of our knowledge, we
are the first to propose a machine learning method which uses structural features
of the messages to classify emails.

7 Limitations and Conclusion

One clear limitation of our empirical evaluation is that the attacker does control
the entire exfiltration system and therefore can in theory very easily change
it to avoid detection. As previously mentioned, using simple email encryption
or switching to a completely different exfiltration technique would defeat the
detection methods evaluated in this paper. Such a switch would not be terribly
difficult to achieve from the attacker viewpoint. We argue that forcing phisher
to step-up their game and implement more advanced exfiltration techniques is a
good thing that will hurt the business of phishing attacks. The main reason for
this is that phishing attacks are very low-skill attacks. In [15], 15 phishing attack
“vendors” are surveyed. In general, these individuals have very low technical
skills, and are only claiming the most basic web-programming abilities. Their
clients, who are the actual attackers, presumably have even lower technical skills.
Empirically, we can confirm that the code that we have seen in thousands of
phishing kits is of very low quality and does not suggest any kind of programming
understanding. In [19], an analysis of the evolution of phishing attacks over time
also shows that only the most basic updates are performed on live attacks by
the attackers. Raising the technical bar even slightly will likely exclude many of
the current players. Another reason is the low return that phishing attacks yield,
and the poor quality of the data collected. In [15], it is reported that the cost of
a tailor-made phishing site ranges from 15$ to 250$. As mentioned in Sect. 3.2,
in our experience the vast majority of the data sent to a phishing site is bogus8

and thus processing the data to identify usable information is a time consuming
process. Adding a decryption step, or using less structured exfiltration format
8 Anecdotally, the more advanced technical steps that we regularly see in phishing kits

are techniques to prevent returning visitors from submitting data again, presumably
in an attempt to limit the amount of fake data submission.

Proactive Detection of Phishing Kit Traffic 273

will complicate data processing further and reduce profitability even more. We
can report that in practice, we have almost never seen an attack in which the
phisher bothered encrypting the content of the exfiltration emails.

Of course, if our system or a similar one becomes widely adopted, this will
force attackers to step up their game and e.g. start encrypting their messages. As
explained, we think that this will hurt their business. Nevertheless, when that
time comes, new detection techniques will have to be found, depending on the
new exfiltration trends. For example, several approaches have been proposed to
work on encrypted traffic by comparing the traffic pattern ending to the same
destination [3,4,30]. If the main exfiltration technique remains email-based, then
some protection could be expected from a wide adoption of standards such as
SPF9 and DKIM10, which will limit the ability to successfully send email from
hacked servers that are not meant to send emails.

Another possible criticism to our work is that we will not be able to detect
exfiltrating emails that follow a completely different pattern. This criticism is
mitigated by the fact that this new pattern can simply be added to our training
set once known, and that we see much fewer patterns than there are attacks,
suggesting a vast amount of code-sharing among phishers. It is in practice likely
that our current model would catch many actual exfiltrating emails sent in North
America and Europe at the time of writing. System such as the one described
in [27] could also be used to discover new patterns as they are introduced.

We also acknowledge that our database is heavily biased toward North-
American and European attacks. This is not a limitation of our method but
a limitation of our database. Training our model on a larger database should
address this issue.

The solution proposed here is, as far as we know, the first one that suggests
to detect exfiltrating emails using structural information. This method has the
advantage of working very well in our experiments, and being robust against
evasion techniques trying to avoid detection by modifying the email content. We
also introduce a new “structure token” which proves to be very effective when
combined with our deep learning algorithm. Our work is also the first one to
our knowledge to be tested on synthetic but realistic exfiltration emails, using a
combination of two real datasets.

Unlike usual solutions that can be deployed at the end-user end, our solu-
tion needs to be deployed by host providers, where the phishing sites are being
deployed, or by email providers, where the exfilrating emails are being received.
This can be seen as a limitation, but also as a strength, since a handful of very
large scale players could deploy our system and have a significant and immediate
impact on phishing activities.

9 https://tools.ietf.org/html/rfc7208.
10 https://tools.ietf.org/html/rfc6376.

https://tools.ietf.org/html/rfc7208
https://tools.ietf.org/html/rfc6376

274 Q. Cui et al.

A Details About DeepPK

A.1 Structure Tokens

In order to compare the “structure” of the body of emails, we introduce what
we call the structure token, which is a symbolic representation of that email
structure. Formally, we encode the text of the message using four categories: let-
ters ([a-zA-Z]), encoded as C, digits ([0–9]), encoded as N , line breaks ([\n\r]),
encoded as L, and finally any character that does not belong to the previous
categories, encoded as S. In addition, we count consecutive occurrences of char-
acters in the same category and append the number of occurrences to the cat-
egory symbol. For compactness, we do not append that number if it is 1. For
instance, the text “Hi Yvonne\n This is John, please call me back.” is repre-
sented as the structure token “C2SC6LSC4SC2SC4S2C6SC4SC2SC4S” (where
single instances of a category where the number 1 is omitted are underlined).

There are several advantages to using such a structure token. First, it does not
capture the actual text (the words) used in the message, and instead captures the
structure of the content. For instance, in the example above, if some words are
changed (e.g., greetings or names are modified), we still get a similar structure
token. The number of consecutive occurrences of a particular category might
change a little bit when a word is changed, but the sequence of categories will
remain relatively stable. This adds significant value in our context because in
exfiltrating emails, what will change between messages is the part containing
the victim’s data. The remaining content is the template, which doesn’t change
across messages sent by the same phishing attack. Figure 2 shows two instances
of the same template. The “template” part (separators, fields name, line breaks)
remains identical in both messages, and the corresponding structure tokens will
match. In addition, it is often the case that the structure token will still be quite
similar across messages in the parts containing victim’s data. For instance, all
IP addresses end up with the structure token “NXSNXSNXSNX” where X ∈
[‘’, 2, 3]. It is also true that using a structure token makes is more difficult for
the attacker to evade detection, since it is not enough to modify the text of the
template. A new template needs to be introduced to significantly change the
structure token. Finally, last but not least, using a structure token insures that
model learns patterns from one-way encoded inputs rather than directly from
data containing sensitive information. This protects users data privacy both
during training and at run time, since actual email content is never sent to the
system.

But a very important practical consequence of using structure token instead
of traditional encoding methods, such as using words as encoding units, is that
our method uses a very small corpus containing only 14 symbols11 which allows
our tokens to be applied to large datasets. In order to vectorize structure tokens,
we apply the so-called “one-hot encoding”, which is a vector of bits of the same
size as the encoding corpus, 14 bits in our case. Each bit corresponds to the

11 Our four categories, C, N , L and S, and the 10 digits, 0 to 9.

Proactive Detection of Phishing Kit Traffic 275

index of one of the symbols in the corpus, and each character is being encoded
with a vector in which only one bit is set to 1. As an example, given a corpus
{a,b,c}, ‘a’ could be encoded [1, 0, 0], ‘b’ encoded [0, 1, 0] and ‘c’ encoded [0,0,1].
The one-hot encoding string of the text “aacb” would then be [[1, 0, 0], [1, 0, 0],
[0, 0, 1], [0, 1, 0]].

A.2 Semantic Feature of Email

Our initial intent was to use only structure tokens to identify exfiltrating emails.
However, we noticed that this resulted in a handful of false positives in the
odd cases where regular emails follow a structure similar to exfiltrating emails.
Figure 3 shows one such example.

CALENDAR ENTRY: APPOINTMENT

Description: Cleveland Cliffs Mtg/Bob Stevens 4180

Date: 7/19/2000
Time: 1:00 PM - 4:30 PM (Central Standard Time)

Chairperson: Outlook Migration Team

Detailed Description:

Fig. 3. One example of false positives

In order to correctly classify these messages, we enhance our method by
introducing two “semantic” features: the content entropy and the text pro-
portion.

Entropy is a commonly used metric in information theory. It measures the
uncertainty of a piece of information produced by a source of data [47]. Formally,
given a string S consisting of n characters {c1, c2, ..., cn} that are generated
by a corpus of k unique symbols, the entropy of S, ent(S) = −∑m

i=1 p(si) ∗
log(p(si)), where m is the number of symbols used in the string S, and p(si) is the
probability of symbol si appearing in S. The higher the value of entropy, the more
disordered or uncertain the string generated by the corpus. However, entropy has
a tendency to generate greater values for the string that uses a large variety of
symbols. In order to alleviate this tendency, we divide the initial number by the
logarithm of the number of symbols in the string. Finally, we end up with a
normalized entropy in the range [0,1]: entnormal(s) = −∑m

i=1
p(si)∗log(p(si))

log(m) .
In our case, we use the above normalized entropy and a corpus of 26 English

letters ([a–z]) and 10 digits ([0–9]) to build what call the content entropy.
Specifically, we first convert email text into lowercase. We then calculate the
normalized entropy for the processed content and get the content entropy. Since
a regular email is mainly composed of English words, which has a higher certainty

276 Q. Cui et al.

than the content of an exfiltrating email (e.g. username and password), it yields
a lower content entropy.

Another difference between exfiltrating emails and regular emails is that exfil-
trating emails tend to use a greater proportion of non-numeric and non-letter
symbols. In order to quantify this difference, we propose another context fea-
ture, the text proportion. Formally, given a string S consisting of n characters
{c1, c2, ..., cn}, the text proportion TP (S) is defined with the following for-
mula:

TP (S) =
∑n

i=1 LN(ci)
n

where LN(c) =

{
1 if c ∈ [a-zA-Z0-9]
0 otherwise

As an example, the text proportions of the exfiltrating emails in Fig. 2 are
0.7065 (left) and 0.7097 (right), while the text proportion of the regular email
in Fig. 3 is 0.7703, higher than Fig. 2.

Fig. 4. LSTM cell and its unrolled form

A.3 Long Short-Term Memory Model

A Recurrent Neural Network (RNN) is a neural network where cells are con-
nected in a round-robin fashion. Long Short-Term Memory (LSTM) is a type if
RNN. As shown in Fig. 4, an LSTM cell has three inputs: Xt, Ct−1 and ht−1.
Xt is the tth character in the input sequence X. Ct−1 is the state passed from
the previous step, which stores the “memory” of what has been learned from
the previous sequence. ht−1 is the output of the LSTM cell in the previous step,
representing the latest prediction based on the previous sequence. The LSTM
cell uses these values to calculate outputs, which are taken as the input in the
next step.

Formally, Ct = ft ∗ Ct−1 + it ∗ C̃t, where ft = sigmoid(Wf · [ht−1, xt] + bf),
it = sigmoid(Wi · [ht−1, xt] + bi) and C̃t = tanh(WC · [ht−1, xt] + bC). It can
be seen that the new cell state Ct is equal to the partial previous status Ct−1

plus the scaled update candidate C̃t, and controlled by two gating components

Proactive Detection of Phishing Kit Traffic 277

ft and it, that are the functions of the current element xt and the output in
the previous step ht−1. In our context, these two gating components control the
memory focus of the model during training: it keeps the memory of the key
sequence and ignores the parts that do not contribute meaningful indicators for
the model.

The output of the LSTM cell ht is a function of the new cell state Ct. For-
mally, ht = ot ∗ tanh(Ct), where ot = sigmoid(Wo · [ht−1, xt] + bo). The gating
component ot controls the output scale of the cell status. In our context, ht is
a vector indicator that identifies whether the currently processed token comes
from an exfiltrating email.

Fig. 5. System design of DeepPK

Detection Model. In order to construct our detection model, we pass the
structure token through the LSTM cell and combine the LSTM output in the
final step with the content features to yield the final prediction. A problem
with using a single LSTM cell is that the output of the LSTM cell in the final
step may not provide complete information of email structure. To overcome this
issue, we apply a variant of LSTM: the Bidirectional LSTM, which uses a
reversed copy of the input sequence to train an additional LSTM cell. There-
fore, the model is able to know the complete information of the input in both

278 Q. Cui et al.

directions [46]. We call this detection model DeepPK. The complete overview is
shown Fig. 5. Additional information about DeepPK’s parameters are provided
Appendix A.4.

– Preprocessing Model. When an email is classified, the first step is the
preprocessing model. In this model, we first parse the text of the email body.
If it is a HTML email, we scan all HTML tags and extract the text from
each tag. We then generate the structure token and the semantic features
based on the text content. Different message bodies yield structure tokens
of different lengths. However, LSTM cell requires fixed-length input. By trial
and error, we have selected a “reasonable” size as the input length (the details
of the selection of the input length is discussed in the Appendix A.5). For the
structure tokens that are longer than this input length, we use a tumbling
window of the input length to create several non-overlapping token segments
for that message. For the structure token that are shorter than the input
length (or for the last token segment when several are created), we simply
pad them with placeholders. Finally, the token segments are encoded into
one-hot vectors and used as the input of our LSTM model.

– Bidirectional LSTM. A Bidirectional LSTM model consists of two LSTM
cells. The output of the forward LSTM cell (LSTM output) and the backward
LSTM cell (LSTM reversed output) are joint together with the semantic fea-
tures to form a new feature vector, which is later used as the input of the
sigmoid output layer to yield the final prediction. The output of Sigmoid
indicates the probability that the given email is an exfiltrating email.

Training Stage and Testing Stage. As mentioned above, we use a tumbling
window of the input length to split each message into multiple non-overlapping
token segments, and pad the last one. During training, each token segment is
treated as an individual ground-truth sample. In other words, the model only
knows if the token segments are from exfiltrating emails and cannot link segments
of the same message back together. On the test set, multiple token segments from
the same message are treated as a complete identifier. A message is classified as
exfiltrating email if and only if one of its token segments is detected as such.

Injection on Training Set. As discussed in Sect. A.3, the function of the
LSTM cell is to extract and learn key structure tokens from exfiltrating emails.
However, when the training set is not sufficiently diverse, the model may fail
to learn useful token sequences and instead may only remember some sequence
or symbols at a specific position. For instance, exfiltrating emails often contain
some series of dashes at the beginning. As a consequence, the structure token
of these exfiltrating emails starts with the symbol S. In contrast, regular emails
normally start with greetings, so the structure token of most regular emails starts
with C. If such a training set is used to train the model, it causes the model to
only use the first symbol as a strong indicator of exfiltrating emails and ignore
the subsequent sequence. It causes the model to be very vulnerable in practice

Proactive Detection of Phishing Kit Traffic 279

because an attacker can easily fool it, e.g. by embedding the exfiltrating email
into a regular email.

In order to solve this issue, we randomly inject structure token fragments of
different lengths, that are sampled from regular emails. To prevent learning these
injected fragments, we inject the fragments that are sampled from the regular
training set.

A.4 Analysis of DeepPK

In this section, we discuss the impact of various parameters in DeepPK’s per-
formance.

Our results are shown Fig. 6. In general, we can see that the precision
increases but the recall decreases with the number of memory cells and the size
of the input. The recall is still quite stable and stays above 99% across the board.
The input length plays an important role: a shorter input allows the model to
recognize more exfiltrating emails (higher recall), but increases the false positive
rate. This indicates that the model requires enough structural information to
accurately classify the messages.

The model is less sensitive to the number of memory units (the precision
remains above 94% across the board). The model with 128 memory units and
an input length of 600 yields the highest F1 score.

A.5 Analysis of Structure Token Length

As discussed in Sect. A.3, we needed to select a “reasonable” length for the
structure token, since the LSTM cell requires fixed-length input. A reasonable
length is the length that is able to cover “enough” context for the model to learn
the required information from the structure token. To determine that, we first
look at the length distribution of the structure token length in the exfiltrating
email database, as shown in the Fig. 7.

We can see that save a few instances that end up with a very long structure
token, most exfiltrating tokens have fewer than 600 characters. Through manual
inspection, we find that these instances with long structure tokens can be divided
into two categories: one category comes from instances produced by a specific
template that collects 70 fields, as shown in Fig. 8. It comes from a phishing
attack targeting a Brazilian bank https://www.bradescoseguranca.com.br. The
other category are instances of exfiltrating emails that are coming from end
users that have attacked back the phishing site: in these messages, the fields are
populated with extremely long dummy strings. We thus chose 600 as the input
length for DeepPK, since this length can cover most exfiltrating emails. In fact,
even for the instance that exceeds this length, the cropped part is often a repeat
of the previous part.

https://www.bradescoseguranca.com.br

280 Q. Cui et al.

[Input length with 128 memory units]

[# of memory units with 600 input length]

Fig. 6. DeepPK performance with different parameters

Fig. 7. Distribution of structure token length in the phishing database

Proactive Detection of Phishing Kit Traffic 281

========—B.r.a.d.e.s.c.o—========[XX]:**[
XX]:**[XX]:**[XX]:**[XX]:**[01]:**[02]:**[03]:**[04]:*
*[05]:**[06]:**[07]:**[08]:**[09]:**[10]:**[11]:**[12]:**[1
3]:**[14]:**[15]:**[16]:**[17]:**[18]:**[19]:**[20]:**[21]:
[22]:[23]:**[24]:**[25]:**[26]:**[27]:**[28]:**[29]:**[
30]:**[31]:**[32]:**[33]:**[34]:**[35]:**[36]:**[37]:**[38]
:**[39]:**[40]:**[41]:**[42]:**[43]:**[44]:**[45]:**[46]:**
[47]:**[48]:**[49]:**[50]:**[51]:**[52]:**[53]:**[54]:**[55
]:**[56]:**[57]:**[58]:**[59]:**[60]:**[61]:**[62]:**[63]:*
*[64]:**[65]:**[66]:**[67]:**[68]:**[69]:**[70]:**[00]:**=
==========

Fig. 8. Email template with long structure tag and its screenshot (In the actual exfil-
tration email, the data is where the “**” are in the figure.)

Fig. 9. Performance comparison on injection attack test sets

282 Q. Cui et al.

B Model Robustness

Set-cover does not fare well at all against replacement attacks, because this
attack removes the information that these models have learned.

The apparent success of the model NB and NB-windows against replacement
attack is misleading. It is because in these attacks, the model does not recognize
anything at all and ends up with a zero vector. Since the model can only provide
2 outputs (exfiltrating email or non exfiltrating emails), this simply indicates
that our model happens to defaults to an “exfiltrating email” output when the
input is completely unknown. It also indicates that this model would flag as
“exfiltrating emails” any message for which it knows none of the word.

It is noted that the replacement attack test we conduct is very strict: each
structure token fragment in the attack instance is totally different from the
original one, which may rarely occur in practice. Our results show that even
under this extreme test, DeepPK can still provide reasonable performances.

Fig. 10. Performance comparison on replacement attack test sets

References

1. Abu-Nimeh, S., Nappa, D., Wang, X., Nair, S.: A comparison of machine learning
techniques for phishing detection. In: Proceedings of the Anti-phishing Working
Groups 2nd Annual eCrime Researchers Summit, pp. 60–69. ACM (2007)

Proactive Detection of Phishing Kit Traffic 283

2. Afroz, S., Greenstadt, R.: Phishzoo: detecting phishing websites by looking at
them. In: 2011 Fifth IEEE International Conference on Semantic Computing
(ICSC), pp. 368–375. IEEE (2011)

3. Al-Obeidat, F., El-Alfy, E.S.: Hybrid multicriteria fuzzy classification of network
traffic patterns, anomalies, and protocols. Personal and Ubiquitous Computing,
pp. 1–15 (2017)

4. Alshammari, R., Zincir-Heywood, A.N.: Machine learning based encrypted traffic
classification: identifying SSH and skype. In: 2009 IEEE Symposium on Compu-
tational Intelligence for Security and Defense Applications, pp. 1–8. IEEE (2009)

5. Anti-Phishing Working Group: Phishing Activity Trends Report 3rd Quarter in
2019. docs.apwg.org/reports/apwg trends report q3 2019.pdf

6. Anti-Phishing Working Group: Phishing Activity Trends Report 4th Quarter in
2018. https://docs.apwg.org//reports/apwg trends report q4 2018.pdf

7. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

8. Behdad, M., Barone, L., Bennamoun, M., French, T.: Nature-inspired techniques
in the context of fraud detection. IEEE Trans. Syst. Man Cybernet. Part C (Appli-
cations and Reviews) 42(6), 1273–1290 (2012)

9. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language
model. J. Mach. Learn. Res. 3, 1137–1155 (2003)

10. Blanzieri, E., Bryl, A.: A survey of learning-based techniques of email spam filter-
ing. Artif. Intell. Rev. 29(1), 63–92 (2008)

11. Chandrasekaran, M., Narayanan, K., Upadhyaya, S.: Phishing email detection
based on structural properties. In: NYS Cyber Security Conference, vol. 3. Albany,
New York (2006)

12. Chang, E.H., Chiew, K.L., Sze, S.N., Tiong, W.K.: Phishing detection via identi-
fication of website identity. In: 2013 International Conference on IT Convergence
and Security, ICITCS 2013, pp. 1–4. IEEE (2013)

13. Chen, T.C., Dick, S., Miller, J.: Detecting visually similar web pages: application
to phishing detection. ACM Trans. Internet Technol. 10(2), 5:1–5:38 (2010)

14. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

15. ClearSky Cyber Security: The Economy Behind the Phishing Websites Creation.
https://www.clearskysec.com/wp-content/uploads/2017/08/The Economy
behind the phishing websites - White.pdf (2017)

16. Corona, I., et al.: DeltaPhish: detecting phishing webpages in compromised web-
sites. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS,
vol. 10492, pp. 370–388. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66402-6 22

17. Cui, Q.: Detection and Analysis of PhishingAttacks. Ph.D. thesis, University of
Ottawa (2019)

18. Cui, Q., Jourdan, G.V., Bochmann, G.V., Couturier, R., Onut, I.V.: Tracking
phishing attacks over time. In: Proceedings of the 26th International Conference
on World Wide Web, pp. 667–676. International World Wide Web Conferences
Steering Committee (2017)

19. Cui, Q., Jourdan, G.-V., Bochmann, G.V., Onut, I.-V., Flood, J.: Phishing attacks
modifications and evolutions. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS
2018. LNCS, vol. 11098, pp. 243–262. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-99073-6 12

20. EC-Council: How Strong is your Anti-Phishing Strategy? (2018). https://blog.
eccouncil.org/how-strong-is-your-anti-phishing-strategy/

https://docs.apwg.org//reports/apwg_trends_report_q4_2018.pdf
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1406.1078
https://www.clearskysec.com/wp-content/uploads/2017/08/The_Economy_behind_the_phishing_websites_-_White.pdf
https://www.clearskysec.com/wp-content/uploads/2017/08/The_Economy_behind_the_phishing_websites_-_White.pdf
https://doi.org/10.1007/978-3-319-66402-6_22
https://doi.org/10.1007/978-3-319-66402-6_22
https://doi.org/10.1007/978-3-319-99073-6_12
https://doi.org/10.1007/978-3-319-99073-6_12
https://blog.eccouncil.org/how-strong-is-your-anti-phishing-strategy/
https://blog.eccouncil.org/how-strong-is-your-anti-phishing-strategy/

284 Q. Cui et al.

21. Elssied, N.O.F., Ibrahim, O., Abu-Ulbeh, W.: An improved of spam e-mail classifi-
cation mechanism using k-means clustering. J. Theoret. Appl. Inf. Technol 60(3),
568–580 (2014)

22. Fette, I., Sadeh, N., Tomasic, A.: Learning to detect phishing emails. In: Proceed-
ings of the 16th international conference on World Wide Web, pp. 649–656. ACM
(2007)

23. Geng, G.G., Lee, X.D., Wang, W., Tseng, S.S.: Favicon - a clue to phishing sites
detection. In: eCrime Researchers Summit (eCRS), pp. 1–10, September 2013

24. Gowtham, R., Krishnamurthi, I.: A comprehensive and efficacious architecture for
detecting phishing webpages. Comput. Secur 40, 23–37 (2014)

25. Group, A.P.W.: Global Phishing Report 2H 2014 (2014). http://docs.apwg.org/
reports/APWG Global Phishing Report 2H 2014.pdf

26. A. Hamid, I.R., Abawajy, J.: Hybrid feature selection for phishing email detection.
In: Xiang, Y., Cuzzocrea, A., Hobbs, M., Zhou, W. (eds.) ICA3PP 2011. LNCS,
vol. 7017, pp. 266–275. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-24669-2 26

27. Han, X., Kheir, N., Balzarotti, D.: Phisheye: Live monitoring of sandboxed phishing
kits. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1402–1413. ACM (2016)

28. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

29. Hu, H., Wang, G.: End-to-end measurements of email spoofing attacks. In: 27th
{USENIX} Security Symposium ({USENIX} Security 2018), pp. 1095–1112 (2018)

30. Husák, M., Čermák, M., Jirśık, T., Čeleda, P.: Https traffic analysis and client iden-
tification using passive SSL/TLS fingerprinting. EURASIP J. Inf. Secur. 2016(1),
6 (2016)

31. Imperva: Our Analysis of 1,019 Phishing Kits (2018). https://www.imperva.com/
blog/our-analysis-of-1019-phishing-kits/

32. Liu, W., Liu, G., Qiu, B., Quan, X.: Antiphishing through phishing target discov-
ery. IEEE Internet Comput. 16(2), 52–61 (2012)

33. Ludl, C., McAllister, S., Kirda, E., Kruegel, C.: On the effectiveness of techniques
to detect phishing sites. In: M. Hämmerli, B., Sommer, R. (eds.) DIMVA 2007.
LNCS, vol. 4579, pp. 20–39. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-73614-1 2

34. McCalley, H., Wardman, B., Warner, G.: Analysis of back-doored phishing kits. In:
Peterson, G., Shenoi, S. (eds.) DigitalForensics 2011. IAICT, vol. 361, pp. 155–168.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24212-0 12

35. Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., Khudanpur, S.: Recurrent neu-
ral network based language model. In: Eleventh Annual Conference of the Inter-
national Speech Communication Association (2010)

36. Miyamoto, D., Hazeyama, H., Kadobayashi, Y.: An evaluation of machine learning-
based methods for detection of phishing sites. In: Köppen, M., Kasabov, N.,
Coghill, G. (eds.) ICONIP 2008. LNCS, vol. 5506, pp. 539–546. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-02490-0 66

37. Mohammad, R.M., Thabtah, F., McCluskey, L.: mohammad2014. Neural Computi.
Appl 25(2), 443–458 (2014)

38. Nadler, A., Aminov, A., Shabtai, A.: Detection of malicious and low throughput
data exfiltration over the DNS protocol. Comput. Secur. 80, 36–53 (2019)

http://docs.apwg.org/reports/APWG_Global_Phishing_Report_2H_2014.pdf
http://docs.apwg.org/reports/APWG_Global_Phishing_Report_2H_2014.pdf
https://doi.org/10.1007/978-3-642-24669-2_26
https://doi.org/10.1007/978-3-642-24669-2_26
https://www.imperva.com/blog/our-analysis-of-1019-phishing-kits/
https://www.imperva.com/blog/our-analysis-of-1019-phishing-kits/
https://doi.org/10.1007/978-3-540-73614-1_2
https://doi.org/10.1007/978-3-540-73614-1_2
https://doi.org/10.1007/978-3-642-24212-0_12
https://doi.org/10.1007/978-3-642-02490-0_66

Proactive Detection of Phishing Kit Traffic 285

39. Oest, A., Safei, Y., Doupé, A., Ahn, G., Wardman, B., Warner, G.: Inside a
phisher’s mind: Understanding the anti-phishing ecosystem through phishing kit
analysis. In: 2018 APWG Symposium on Electronic Crime Research (eCrime), pp.
1–12, May 2018. https://doi.org/10.1109/ECRIME.2018.8376206

40. Pan, Y., Ding, X.: Anomaly based web phishing page detection. In: null. pp. 381–
392. IEEE (2006)

41. Pérez-Dı́az, N., Ruano-Ordas, D., Mendez, J.R., Galvez, J.F., Fdez-Riverola, F.:
Rough sets for spam filtering: Selecting appropriate decision rules for boundary
e-mail classification. Appl. Soft Comput. 12(11), 3671–3682 (2012)

42. PhishLabs: How to Fight Back against Phishing (2013). https://info.phishlabs.
com/hs-fs/hub/326665/file-558105945-pdf/White Papers/How to Fight Back
Against Phishing - White Paper.pdf

43. Pitsillidis, A., et al.: Botnet judo: Fighting spam with itself. In: NDSS (2010)
44. Ramesh, G., Krishnamurthi, I., Kumar, K.S.S.: An efficacious method for detect-

ing phishing webpages through target domain identification. Decis. Support Syst.
61(1), 12–22 (2014)

45. Rosiello, A.P.E., Kirda, E., Kruegel, C., Ferrandi, F.: A layout-similarity-based
approach for detecting phishing pages. In: Proceedings of the 3rd International
Conference on Security and Privacy in Communication Networks, SecureComm,
pp. 454–463. Nice (2007)

46. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans.
Signal Process. 45(11), 2673–2681 (1997)

47. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),
379–423 (1948)

48. Smadi, S., Aslam, N., Zhang, L., Alasem, R., Hossain, M.: Detection of phishing
emails using data mining algorithms. In: 2015 9th International Conference on
Software, Knowledge, Information Management and Applications (SKIMA), pp.
1–8. IEEE (2015)

49. Stringhini, G., Thonnard, O.: That ain’t you: blocking spearphishing through
behavioral modelling. In: Almgren, M., Gulisano, V., Maggi, F. (eds.) DIMVA 2015.
LNCS, vol. 9148, pp. 78–97. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-20550-2 5

50. Sundermeyer, M., Schlüter, R., Ney, H.: LSTM neural networks for language model-
ing. In: Thirteenth Annual Conference of the International Speech Communication
Association (2012)

51. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112
(2014)

52. Thomas, K., et al.: Data breaches, phishing, or malware?: understanding the risks
of stolen credentials. In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pp. 1421–1434. ACM (2017)

53. Verma, R., Shashidhar, N., Hossain, N.: Detecting phishing emails the natural
language way. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS,
vol. 7459, pp. 824–841. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33167-1 47

54. Whittaker, C., Ryner, B., Nazif, M.: Large-scale automatic classification of phish-
ing pages. In: In Proceedings of the Network & Distributed System Security Sym-
posium (NDSS 2010), San Diego, CA, pp. 1–14 (2010)

55. Xiang, G., Hong, J., Rose, C.P., Cranor, L.: Cantina+: a feature-rich machine
learning framework for detecting phishing web sites. ACM Trans. Inf. Syst. Secur.
14(2), 21:1–21:28 (2011)

https://doi.org/10.1109/ECRIME.2018.8376206
https://info.phishlabs.com/hs-fs/hub/326665/file-558105945-pdf/White_Papers/How_to_Fight_Back_Against_Phishing_-_White_Paper.pdf
https://info.phishlabs.com/hs-fs/hub/326665/file-558105945-pdf/White_Papers/How_to_Fight_Back_Against_Phishing_-_White_Paper.pdf
https://info.phishlabs.com/hs-fs/hub/326665/file-558105945-pdf/White_Papers/How_to_Fight_Back_Against_Phishing_-_White_Paper.pdf
https://doi.org/10.1007/978-3-319-20550-2_5
https://doi.org/10.1007/978-3-319-20550-2_5
https://doi.org/10.1007/978-3-642-33167-1_47
https://doi.org/10.1007/978-3-642-33167-1_47

286 Q. Cui et al.

56. Xie, Y., Yu, F., Achan, K., Panigrahy, R., Hulten, G., Osipkov, I.: Spamming
botnets: signatures and characteristics. ACM SIGCOMM Comput. Commun. Rev.
38(4), 171–182 (2008)

57. Zawoad, S., Dutta, A.K., Sprague, A., Hasan, R., Britt, J., Warner, G.: Phish-net:
investigating phish clusters using drop email addresses. In: 2013 APWG eCrime
Researchers Summit, pp. 1–13, September 2013. https://doi.org/10.1109/eCRS.
2013.6805777

58. Zhang, H., Li, D.: Näıve Bayes text classifier. In: 2007 IEEE International Confer-
ence on Granular Computing (GRC 2007), p. 708. IEEE (2007)

59. Zhang, Y., Hong, J., Lorrie, C.: Cantina: a content-based approach to detecting
phishing web sites. In: Proceedings of the 16th International Conference on World
Wide Web, Banff, AB, pp. 639–648 (2007)

https://doi.org/10.1109/eCRS.2013.6805777
https://doi.org/10.1109/eCRS.2013.6805777

	Proactive Detection of Phishing Kit Traffic
	1 Introduction
	2 Motivations
	3 Exfiltrating Emails Generations
	3.1 Phishing Kit Deployment
	3.2 Data File Parsing
	3.3 Email Generation

	4 Methodology
	4.1 Word-Based Detection Model
	4.2 Pattern-Based Detection Model
	4.3 Structure-Based Detection Model

	5 Experiment
	5.1 Experiment Environment
	5.2 Exfiltration Email and Regular Email Database
	5.3 Model Evaluation
	5.4 Model Robustness

	6 Related Works
	7 Limitations and Conclusion
	A Details About DeepPK
	A.1 Structure Tokens
	A.2 Semantic Feature of Email
	A.3 Long Short-Term Memory Model
	A.4 Analysis of DeepPK
	A.5 Analysis of Structure Token Length

	B Model Robustness
	References

