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Preface

We are pleased to present the proceedings of the 19th International Conference on
Applied Cryptography and Network Security (ACNS 2021).

ACNS 2021 was planned to be held in Kamakura, Japan. Due to the ongoing
COVID-19 crisis, we decided to have a virtual conference again to ensure the safety of
all participants. The organization was in the capable hands of Chunhua Su (University
of Aizu, Japan) and Kazumasa Omote (University of Tsukuba, Japan) as general
co-chairs, and Ryoma Ito (NICT, Japan) as local organizing chair. We are deeply
indebted to them for their tireless work to ensure the success of the conference even in
such complex conditions.

For the second time, ACNS had two rounds of submission cycles, with deadlines in
September 2020 and January 2021, respectively. We received a total of 186 submis-
sions from authors in 43 countries. This year’s Program Committee (PC) consisted of
69 members with diverse backgrounds (among them, 27% female experts) and broad
research interests. The review process was double-blind and rigorous, and papers were
evaluated on the basis of research significance, novelty, and technical quality. 539 re-
views were submitted in total, with at least 3 reviews for most papers.

Some papers submitted in the first round received a decision of major revision. The
revised version of those papers were further evaluated in the second round and most
of them were accepted. After the review process concluded, a total of 37 papers were
accepted to be presented at the conference and included in the proceedings, repre-
senting an acceptance rate of around 20%.

Among those papers, 27 were co-authored and presented by full-time students. From
this subset, we awarded the Best Student Paper Award to Angèle Bossuat (IRISA,
France) for the paper “Unlinkable and Invisible c-Sanitizable Signatures” (co-authored
with Xavier Bultel). The reviewers particularly appreciated its clear and convincing
motivation and explanation of the intuition behind the approach, and the strong
properties achieved by the proposed sanitizable signature scheme. The monetary prize
of 1,000 euro was generously sponsored by Springer.

We had a rich program including eight satellite workshops in parallel with the main
event, providing a forum to address specific topics at the forefront of cybersecurity
research. The papers presented at those workshops were published in separate
proceedings.

This year we had three outstanding keynote talks: “Privacy-Preserving Authenti-
cation: Concepts, Applications, and New Advances” by Prof. Anja Lehmann (Hasso
Plattner Institute, Germany), “Digital Being” presented by Nat Sakimura (OpenID
Foundation, Japan), and “Cryptography and the Changing Landscape of Payment
Fraud” by Prof. Ross Anderson (University of Cambridge and University of
Edinburgh, UK). To them, our heartfelt gratitude for their outstanding presentations.

In this very unusual year, the conference was made possible by the untiring efforts
of many individuals and organizations. We are grateful to all the authors for their



submissions. We sincerely appreciate the outstanding work of all the PC members and
the external reviewers, who selected the papers after reading, commenting, and
debating them. Finally, we thank all the people who volunteered their time and energy
to put together the conference, speakers and session chairs, and everyone who con-
tributed to the success of the conference.

Last, but certainly not least, we are very grateful to Mitsubishi Electric for spon-
soring the conference, and Springer for their help in assembling these proceedings.

June 2021 Kazue Sako
Nils Ole Tippenhauer
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Breaking and Fixing Third-Party
Payment Service for Mobile Apps

Shangcheng Shi, Xianbo Wang, and Wing Cheong Lau(B)

The Chinese University of Hong Kong, Hong Kong, China
{ss016,xianbo,wclau}@ie.cuhk.edu.hk

Abstract. Riding on the widespread user adoption of mobile payment,
a growing number of mobile apps have integrated the service from third-
party payment service providers or so-called Cashiers. Despite its preva-
lence and critical nature, no existing standard can guide the secure
deployment of mobile payment. Thus, the protocol designs and imple-
mentations from different Cashiers are diverse. Given the complicated
multi-party interactions in mobile payment, either the Cashiers or the
apps may not fully consider various threat models, which enlarges the
attack surface and causes the exploits with severe consequences, ranging
from financial loss to privacy violations. In this paper, we perform an
in-depth security analysis of real-world third-party payment services for
mobile apps. Specifically, we examine the mobile payment systems from
five top-tier Cashiers that serve over one billion users globally. Leverag-
ing insecure protocol designs and practical implementation flaws, e.g.,
vulnerable backend SDKs for mobile apps, we have discovered six types
of exploits. These exploits enable the attacker to violate user privacy and
shop for free in the victim apps, affecting millions of users. Finally, we
propose the fixings to defend against these exploits. We have shared our
findings with the affected Cashiers and got their positive responses.

Keywords: Mobile security · Mobile payment · Protocol analysis

1 Introduction

Mobile payment service is becoming globally popular in recent years, whose
overall transaction value reaches $1.18 trillion in 2019 [4]. This service enables
end-users to pay for the order in a mobile app through third-party Cashiers
without presenting other physical tokens, e.g., a credit card or cash. Driven by
the boom of mobile payment, an increasing number of mobile apps, including
both native apps and mobile web apps, have integrated the services from the
Cashiers. Meanwhile, the Cashiers provide different solutions for these two types
of mobile apps, namely in-app payment and web app payment (WAP). To ease
the deployment of mobile payment1, the Cashiers release Software Development
Kits (SDKs) for both frontend mobile apps and backend app servers and publish
1 For the rest of the paper, we use mobile payment to denote the third-party payment

services for mobile apps, if not specified otherwise.

c© Springer Nature Switzerland AG 2021
K. Sako and N. O. Tippenhauer (Eds.): ACNS 2021, LNCS 12727, pp. 3–26, 2021.
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their technical documents online. Some Cashiers also offer demo app accounts
or separate sandbox environments to the developers for testing.

In spite of the broad adoption, it is noteworthy that there is no unified
standard for the mobile payment service like other well-defined protocols, e.g.,
OAuth [5,13], such that the protocol designs and implementations from the
Cashiers are heterogeneous. Therefore, each Cashier defines different proto-
col flows and credentials to secure payment-related messages. Considering the
sophisticated multi-party authentication and authorization process in mobile
payment, average app developers are prone to misinterpret the protocol and
deploy the insecure service. Moreover, the mobile payment protocols from the
Cashiers are usually not fool-proofing by design. In other words, the attacker
can exploit the flawed implementations directly to harm the apps and their end-
users.

The literature [3,25] has discovered several vulnerabilities in practical mobile
payment systems in recent years, which all bring about serious security threats,
including both privacy violations and financial loss. For example, [25] finds that
some developers customize the server-side logic, e.g., signing payment order, in
the frontend, and thus expose the credentials in their mobile apps. On the other
hand, some app servers fail to verify the digital signature within the instant
payment notifications from the Cashiers. Nevertheless, all the existing works
focus on specific implementation flaws, while little effort has been spared to
study the designs of mobile payment protocols from the Cashiers, especially their
differences, underlying security implications, and the consequent drawback.

To bridge the gap, we conduct a comprehensive security analysis of mobile
payment services from five mainstream third-party Cashiers in this paper. These
Cashiers provide online payment services for websites, mobile apps, as well as
Point-of-Sale terminals, serving over one billion users and tens of millions of
merchants worldwide. To be specific, we investigate and compare the mobile
payment systems from these Cashiers. Consequently, we discover six types of
exploits that are caused by additional implementation flaws from either the
Cashiers or their (merchant) apps, e.g., vulnerable backend SDKs. These exploits
enable the attacker to cheat the app to shop for free or violate user privacy, which
affect millions of users. Based on the lessons learned, we propose the fixings on
current practices to secure the apps and their end-users. We summarize our
contributions as follows.

– We study and examine the mobile payment systems from five top-tier
Cashiers.

– Combining the insecure protocol designs and other implementation flaws, we
find six types of exploits with serious security consequences.

– We conclude the best practice and propose the fixings to mitigate the discov-
ered exploits.

The rest of the paper is organized as follows. Section 2 gives the background
of mobile payment, while Sect. 3 introduces the cryptographic primitives. We
present practical mobile payment systems in Sect. 4 and discuss the potential
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(a) Cashiers studied in this work (b) Apple Pay & Google Pay

Fig. 1. Workflow of existing mobile payment services

exploits in Sect. 5. Section 6 proposes the fixings to mitigate these exploits. We
review the related work in Sect. 7 and conclude the paper in Sect. 8.

2 Mobile Payment System Overview

An e-payment system consists of three entities, including the third-party pay-
ment service provider, i.e., Cashier, the Merchant, and the User (or User-Agent).

In the mobile payment systems under study, the Cashier and Merchant are
represented by their backend servers, namely Cashier Server (CS ) and Mer-
chant Server (MS ). Meanwhile, the User-Agent becomes the frontend mobile
apps, namely Cashier App (CA) and Merchant App (MA). Besides, unlike the
native apps, e.g., Android apps, within the in-app payment, the MA in WAP is
accessed through the web browser in the smartphone. We use the notations in
the parentheses to denote these four related parties if not specified otherwise.

The goal of the mobile payment service is to convince the Merchant that the
user has paid the order (in the Merchant App) with his balance in the Cashier.

2.1 Workflow of Mobile Payment System

As there is no unified standard for mobile payment, the systems from the
Cashiers differ. After reviewing the official technical documents, we get its gen-
eral workflow depicted in Fig. 1a. It is noteworthy that some Cashiers customize
their payment protocols, which will be discussed in detail in Sect. 4.

In short, the workflow in Fig. 1a consists of the following three phases:

1. Ordering & Payment Phase.
In Step 1, the end-user makes an ordering and chooses a third-party Cashier
to check out in the MA. Then, the CA processes the payment order from the
MS in Step 2 and presents the payment details for user consent. Once the
user authorizes the payment, the CA will send the payment request to its
server in Step 3, which completes the first phase.

2. Settlement Phase.
In this phase, the Cashier acknowledges the Merchant about the payment
result. Specifically, the CS will send two payment notifications, namely, the
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synchronous notification (Step 4a) and asynchronous notification (Step 4b).
Notably, the former is the immediate response to the payment request in Step
3, which arrives at the MS from MA via Step 5. In contrast, the CS sends
the asynchronous notification to the MS directly based on a parameter, i.e.,
backURL, that pre-specified in the Ordering & Payment Phase. Finally, after
validating the notifications, the Merchant can update the order status.

3. Management Phase.
The studied Cashiers also provide other management interfaces. Thus, the
Merchant can invoke them to refund paid orders or obtain its transaction
record, namely, Step 6 in Fig. 1a. Given their critical nature, the Cashiers set
different authentication requirements on the Merchant (i.e., MS ) to secure
these interfaces. We will discuss more details in Sect. 4.4.

The Cashiers under study have a dual role and also act as the Payment Gate-
way, which can operate on the cash accounts of end-users. Thus, these Cashiers
can complete the transaction by themselves and return the payment result to
the Merchants directly, leaving space for the attacker to cheat the Merchants by
forging payment notifications (Sect. 5.3). In contrast, Apple Pay and Google Pay
need to work with a separate Payment Gateway. Consequently, the Merchants
in Apple Pay and Google Pay need to actively submit the payment token, in the
form of a random string, to the Payment Gateway to complete the transaction,
i.e., Step 6 and 7 in Fig. 1b. Due to the same reason, the management interfaces
are not available in Apple Pay and Google Pay.

2.2 Threat Model

In our threat model, the target of the attacker includes:

– Tricking victim users into paying for the attacker by substituting with his
payment order (i.e., Step 2 in Fig. 1a) in the Ordering & Payment Phase

– Shopping for free in the victim Merchant App by crafting fake payment noti-
fications (i.e., Step 4 in Fig. 1a) for deception in the Settlement Phase

– Impersonating the Merchant for privileged operations like refunding by forg-
ing requests to the CS (i.e., Step 6 in Fig. 1a) in the Management Phase

– Violating the privacy of end-users by misusing the services from the Cashiers

We consider two types of attackers in this paper:

– App Attacker: This type of attackers can decompile the frontend apps of
the Cashier or Merchant for analysis, repackage MAs, and lure the victims
into using them. Meanwhile, they can send requests to either the CS or MS .

– Malicious Merchant: The Merchants are not trusted in our threat model.
These malicious ones may misuse the services from Cashiers to violate user
privacy or harm another Merchant (App).

3 Cryptographic Primitives

Most of the messages in the mobile payment systems are protected cryptograph-
ically. We introduce the related credentials and other necessary details here.
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Table 1. Summary of payment credentials

Cashier Credential type Usage Merchants share the same

cashier’s public key?

Cashier1(a) Secret key HMAC N/A

RSA key Digital signature �
Cashier1(b) RSA key Digital signature �

RSA’ key Digital signature ×
Cashier1(c) Secret key HMAC N/A

RSA Key Digital signature �
RSA’ key Digital signature ×

Cashier2 Secret key HMAC N/A

Client cert SSL client authentication N/A

Cashier3 Secret key HMAC N/A

PFX cert Digital signature �
Cashier4 Secret key HMAC N/A

Cashier5 RSA key Digital signature �
Encryption key Symmetric encryption N/A

†Cashier1 provides three sets of payment services, i.e., Cashier1(a), Cashier1(b), and

Cashier1(c)

3.1 Payment Credentials

Table 1 summarizes various credentials defined by the Cashiers, including:
Secret Key Some Cashiers use the hash-based message authentication code

(HMAC) to secure protocol messages. Thus, both the MS and CS will use the
identical secret key as the salt of a hash function, e.g., MD5, to generate the
HMAC of payment messages.

Signing Key Most Cashiers, except Cashier2 , support the digital signature.
Then, both the Cashier and Merchant need to hold a separate pair of asymmetric
keys and share their public keys. In runtime, either party signs the request with
its own private key and validates the response with the other party’s public key.

Since Cashier1 adopts two cryptographic hash functions in generating the
digital signature, it also defines two types of signing keys, namely, RSA key and
RSA’ Key. On the other hand, the private key of the Merchant in Cashier3 is
issued by the Cashier and packaged in a PFX certificate. Last but not least, as
shown in Table 1, the Cashier’s public key tends to be shared among the
Merchants. The only exception is the RSA’ key in Cashier1 .

Client Certificate [23] Cashier2 issues this credential to its Merchants for
extra authentication on SSL. Then, the Merchant, namely, MS , must present it
when invoking money-related management interfaces, e.g., refund.

Encryption Key For confidentiality, Cashier5 shares this type of key with
its Merchants to support symmetric encryption. Then, all the protocol messages
in Cashier5 are encrypted with the same key by either the MS or CS . In contrast,
the other Cashiers under study do not encrypt their payment messages.

3.2 Other Details

1. Cashier1 and Cashier3 support both HMAC and digital signature. However,
only one method will be used in one payment session , which is spec-
ified by the Merchant in the payment order, i.e., Step 2 in Fig. 1a.
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2. All the Cashiers take the same method to organize the payment-related
parameters, which are converted into key = value format, alphabetically
sorted, and linked using & symbol, before signing or computing the HMAC.

Unfortunately, this customized method introduces ambiguity in pars-
ing payment messages. Figure 2 gives a concrete example. To be specific,
by mixing up the key with value, the attacker may manipulate the value of
order num to introduce a new parameter, i.e., status, in the re-formulated
message. It is also feasible to hide a parameter from the original message,
e.g., trade amount, by merging it into another parameter value, i.e., subject.

{"order_num":"5&status=1", "trade_amount":100, "subject":"test"}
// parameters in a payment-related message
order_num=5&status=1&subject=test&trade_amount=100
// constructed string before signing / calculating HMAC
{"order_num":5, "status":1, "subject":"test&trade_amount=100"}
// another possible parsing output

Fig. 2. Ambiguity in parsing payment-related messages

4 Demystifying Practical Mobile Payment Systems

The Cashiers under study tend to customize their systems. In this section, we
introduce the current practices and discuss their underlying security implica-
tions.

4.1 Our Approach

We take both static and dynamic approaches to study practical mobile payment
systems. Specifically, we manually examine the SDKs from the Cashiers at first.
These SDKs are provided to the Merchants for integrating the payment services
in their frontend mobile apps, i.e., MAs, and backend servers, i.e., MS s. We also
analyze the mobile apps of the Cashiers, i.e., CAs, with reverse engineering.

As to the dynamic testing, we use these official SDKs to set up dummy Mer-
chants. Notably, the studied Cashiers all provide the demo (Merchant) accounts
or separate sandbox environment. Thus, we configure the related payment cre-
dentials (Sect. 3.1) to deploy our Merchant Server. Then, we can monitor and
modify the related protocol messages during the mobile payment process.

4.2 Ordering and Payment Phase

Figure 3 details the workflow of mobile payment, where the dashed part rep-
resents customized operations by Cashiers. Table 2 summarizes their protocol
differences in the Ordering & Payment Phase, and we explain the related con-
cepts here.
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Fig. 3. Detailed workflow of mobile payment services

Preordering. This operation maps to Step 3 and Step 4 in Fig. 3, which hap-
pens between the two servers before the generation of payment order in Step
5. Specifically, the preordering request in Step 3 contains app information and
order information. The former includes the app identifier, i.e., retailer, and back-
URL that specifies the address in the MS for receiving asynchronous notification
in Step 11b. Besides, the response from the Cashier in Step 4 only includes an
opaque parameter, preorder id, which is a random ID for the payment order.

As shown in Table 2, not all the Cashiers support preordering in their pay-
ment protocols. Once the preordering is not enabled, the app information and
order information mentioned above will be included in the payment order in
Step 5 instead, which also becomes visible to the user-controlled smartphone.

SSO Involvement. Other than payment, some Cashiers offer the Single Sign-
On (SSO) service to mobile apps. As such, the user can log into the MA with
his account in the Cashier, i.e., Step 1 in Fig. 3, without creating a new one in
the Merchant. Thus, these two user accounts/identities, in the Cashier and Mer-
chant, are automatically associated. In other words, through the same Cashier,
the user can perform both login and payment in the MA. Consequently, the MS
may involve the related SSO user information in payment, e.g., Step 3 in Fig. 3.

Then, from the payment order in Step 6, CA can infer the user identity who
makes the ordering in Step 2 based on the associated SSO user information. By
comparing it with the current user identity, the Cashier can check whether the
payment order has been replaced. Cashier2 conducts the checking above, while
Cashier1 does not. However, as indicated in Table 2, the related SSO user infor-
mation is optional in the in-app payment service of Cashier2 . In contrast, the
(mobile) web apps in Cashier2 are only accessible through the built-in browser
in its CA, where the Cashier can enforce the SSO process and its involvement.
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Table 2. Differences in ordering & payment phase

Cashier Type Preordering SSO

involvement

Client-side

verification

Identity

federation

Cashier1(a) In-App × × × ×
WAP × ? × ×

Cashier1(b) In-App × × × ×
WAP × × × ×

Cashier1(c) In-App × × × ×
WAP × × × ×

Cashier2 In-App � ? � ×
WAP � � � ×

Cashier3 In-App � N/A × ×
WAP × N/A × ×

Cashier4 In-App × × � ×
WAP × × × ×

Cashier5 In-App � N/A × ×
WAP × N/A × �

* ? means optional operations.

In summary, involving SSO in mobile payment is not a general defense due
to the following reasons: (1) Some Cashiers do not provide SSO service. (2) It is
hard to enforce the paying users to always log into the MA via the same Cashier.

Client-Side Verification. Once receiving the payment order, i.e., Step 6 in
Fig. 3, some Cashiers check the integrity of MA. For in-app payment, Cashier2
and Cashier4 compare its package signature with the pre-configured value by
the developers. In WAP, only Cashier2 checks the HTTP referer header against
the whitelist. Nevertheless, most Cashiers do not perform a proper verification of
their MAs. Specifically, these Cashiers only check the digital signature or HMAC
within the received payment order. As a result, the attacker may repackage a
MA (in Sect. 2.2) and trick victim users into paying for his order in it.

On the other hand, Cashiers may not always implement the client-side ver-
ification properly and securely. As we will present in Sect. 5.1, the practical
verification can be flawed and bypassed under some conditions.

Identity Federation. The mobile payment system involves two user identities
in the Cashier and Merchant. For a better user experience, Cashier5 deploys the
identity federation mechanism in its WAP service. To be specific, this Cashier
requires the Merchant to include its user identifier in the payment order, i.e.,
Step 6 in Fig. 3. Thus, the Cashier can establish the mapping of the two user
identities and bind them together after one payment. Then, in the next payment,
the user can use his Merchant account to skip the authentication in Cashier5 ,
i.e., Step 8 in Fig. 3, which is opposite to the SSO service mentioned above. As
such, Cashier5 will return all the user account details directly in Step 9, which
includes the balance in the user’s Cashier account and card binding information.

In short, Cashier5 makes two assumptions when deploying the identity fed-
eration mechanism: (1) It is the same user that initiates new payment sessions
after he paid to the Merchant once. (2) The Cashier user is the same one in the
Merchant so that these two identities can be associated.
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Table 3. Differences in settlement phase

Cashier Notification

checking

Backward

order query

Protected sync.

notification

Cashier1(a) � × �
Cashier1(b) × × �
Cashier1(c) � × �
Cashier2 × � ×
Cashier3 × ? �
Cashier4 × ? �
Cashier5 × × �
* ? means suggested options.

However, as we will discuss in Sect. 5.2, these two assumptions can be broken
under some scenarios. Consequently, the attacker can misuse this function and
steal the account information of the victim users from the Cashier.

4.3 Settlement Phase

In this phase, the Cashier confirms to the Merchant the payment result with two
types of notifications (in Sect. 2.1). Given the crucial nature of these notifications,
the Cashiers design different mechanisms to ensure their authenticity.

Notification Checking. Some Cashiers use HMAC to secure the messages
(Sect. 3.1). Since the related secret key is shared between the Merchant and
Cashier, the property of non-repudiation is missing. Thus, the attacker can forge
payment notifications to the MS to shop for free once the secret key is leaked [25].

To make up for this limitation, Cashier1 designs the notification checking
mechanism. Specifically, the asynchronous notification, i.e., Step 11b in Fig. 3,
contains a parameter, anotify num (short for asynchronous notification num-
ber). By sending it back to the Cashier, the Merchant can validate the received
notification, which helps to defend the potential exploit of notification forgery.

However, such protection is not implemented by the other Cashiers using
HMAC, e.g., Cashier2 . Worse still, the notification checking mechanism does
not apply to the synchronous notification in Cashier1 , leaving space for the
attacker to cheat the Merchants. We will give more details in Sect. 5.3.

Backward Order Query. As the network delay is unpredictable during pay-
ment, the Merchant may not receive the two notifications in a fixed order. In
other words, the synchronous notification, i.e., Step 11a in Fig. 3, may reach the
MS before the asynchronous one, although it goes through the smartphone first.

In this situation, some Cashiers require the Merchant, i.e., MS , to actively
query the Cashier about the order status with order num in Step 15. The
underlying reason is that the asynchronous notification is sent from the Cashier
directly and thus more trustable.

Besides, as indicated in Table 3, the synchronous notification in Cashier2 is
not protected cryptographically. Thus, Cashier2 enforces the backward order
query, while Cashier3 and Cashier4 only suggest this operation.
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Table 4. Management services from Cashiers

Extra requirements Refunding Money transferring Transaction record

Cashier1 (a) × Merchant’s login id ×
Cashier1 (b) × × ×
Cashier1 (c) × N/A IP whitelist

Cashier2 Client cert Client cert ×
Cashier3 × N/A ×
Cashier4 × × IP whitelist

Cashier5 × N/A IP whitelist

* N/A means the related service does not exist in the Cashier.

4.4 Management Phase

The studied Cashiers provide management interfaces. Therefore, the MS can
request the CS to refund the paid order, transfer money into the user account,
or download its transaction record. Since these interfaces involve critical money
transactions or user privacy, some Cashiers set other authentication requirements
to their Merchants besides checking the digital signature or HMAC. As presented
in Table 4, these additional requirements differ among the interfaces, even in the
same Cashier. For example, the Merchant can obtain the transaction record from
Cashier4 only if it uses a pre-registered IP address, which is unnecessary in the
money transferring interface, although it is more sensitive than the former.

Unfortunately, the attacker can escape some of these extra security checks.
For example, the Merchant’s login id, namely, the email or phone number used
to login Cashier1 , is always visible to the end-user from the synchronous noti-
fication, i.e., Step 11a in Fig. 3. Meanwhile, as we will present in Sect. 5.5, the
Merchant, i.e., MS , can leak its client certificate (in Sect. 3.1) inadvertently
due to the insecure SDK from Cashier2 . Worse still, exploiting these vulnerable
backend SDKs, the attacker may even unauthorizedly access the management
interfaces with zero knowledge of payment credentials (in Sect. 5.6).

5 Exploiting Mobile Payment System

In this section, we talk about the potential exploits on mobile payment. These
exploits leverage both the insecure protocol designs discussed in Sect. 4 and
flawed implementations by either the Cashier or Merchant. All of them bring
about serious consequences, ranging from financial loss to privacy violations.

5.1 Order Replacement

As identified by [25], many MAs use HTTP to interact with their servers, despite
the warnings by the Cashiers. Then, by intercepting the network traffic, the
attacker can replace the payment order, i.e., Step 5 in Fig. 3, so that the victim
users will be tricked into paying for his order. Although involving SSO in payment
mitigates the exploit, this solution is not general, as discussed in Sect. 4.2.
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Meanwhile, most of the Cashiers fail to validate the MAs (in Table 2), so that
this exploit is also feasible for the repackaged MA (Sect. 2.2), which replaces the
payment order to the CA, i.e., Step 6 in Fig. 3, instead. Besides, we decompile
the mobile apps of Cashier2 and Cashier4 to study how they validate the MA.
Beyond our expectations, we find the verification by Cashier2 ’s mobile app to be
flawed in its in-app payment service and can be bypassed under some conditions.
More details about the related exploit can be found in Appendix A.

5.2 Identity Federation Misuse

The identity federation mechanism (Sect. 4.2) enables the user to skip the authen-
tication by Cashier5 , i.e., Step 8 in Fig. 3. However, the attacker can break the
assumptions behind the mechanism and misuse it to violate user privacy.

First of all, the Malicious Merchant (in Sect. 2.2) may generate the payment
order without involving the end-user and send it to the Cashier, i.e., Step 7 in
Fig. 3. Then, the attacker can get the response from Cashier5 , i.e., Step 9, which
contains the desired user privacy. It is noteworthy that the attacker can apply
this trick to keep tracking the victim’s Cashier account.

Even if the Merchant is trusted, the App Attacker can conduct the Order
Replacement (in Sect. 5.1) and lure the victim user into paying for the attacker
for once. As such, the victim’s Cashier account is associated with the attacker’s
Merchant account. Thus, the attacker can persistently track the victim’s Cashier
account information by creating new orders. Notably, according to our empirical
testing, Cashier5 allows one user account to be associated with multiple accounts
in the same Merchant, such that the exploit can be launched silently.

5.3 Payment Notification Forgery

This type of exploit enables the attacker to craft fake payment notifications to
deceive the Merchant, i.e., MS , and shop for free. Due to the preordering (in
Sect. 4.2) or symmetric encryption (in Sect. 3.1), backURL, namely, the address
for the MS to receive asynchronous notification (Step 11b in Fig. 3), may be invis-
ible to the attacker to send the forged notifications. Nevertheless, many official
backend SDKs from the Cashiers define the handler for synchronous notification,
e.g., “frontURL.php” in Fig. 5, such that the backURL can be inferred from its
location, i.e., Step 14 in Fig. 3. For example, the attacker can infer the URL
endpoint, “https://www.example.com/payment/backURL.php”, from “https://
www.example.com/payment/frontURL.php”. In summary, this type of exploits
can be classified into three subtypes. We will illustrate them here.

Order-to-Notification Forgery. Yang et al. [25] show that the leaked secret
key in the MA enables the attacker to forge payment notifications with valid
HMAC for deception. Despite this known exploit, we find the attacker may cheat
the Merchants with zero knowledge of their secret key. In short, the attacker
leverages the shared secret key in HMAC and the ambiguity in parsing payment

https://www.example.com/payment/backURL.php
https://www.example.com/payment/frontURL.php
https://www.example.com/payment/frontURL.php
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https://merchant.com/pay/demo.php?
order_num=abc%26status%3Dsuccess&trade_amount=10
// crafted request to the demo script in the Merchant Server
order_num=abc%26status%3Dsuccess&...&trade_amount=10&HMAC=x
// responded payment order from the Merchant Server
https://merchant.com/pay/backURL.php?
order_num=abc&status=success&...&trade_amount=10&HMAC=x 
// replaying the re-formulated payment order as the payment notification 
to the Merchant Server
// %26 and %3D stand for & and = in URL encoding. 

(a) Order-to-Notification Forgery

https://cashier.com/pay?
backURL=https%3A%2F%2Fattacker.com&order_num=abc%26r
etailer%3Dr2%26sa%3D&retailer=r1&...&signature=x
// crafted payment request to the Cashier Server by the attacker
https://attacker.com?order_num=abc%26retailer%3Dr2%26sa%
3D&retailer=r1&...&status=success&signature=x 
// signed payment notification to the attacker
http://merchant.com/pay/backURL.php?order_num=abc&retailer
=r2&sa=%26retailer%3Dr1&...&status=success&signature=x
// replaying the re-formulated notification to the victim Merchant

(b) Cross-Merchant Notification Forgery

Fig. 4. Order-to-Notification Forgery

messages, e.g., Fig. 2, in the discovered exploit. Specifically, he can manipulate
the payment order from the Merchant, i.e., Step 5 in Fig. 3. Then, he may re-
formulate this payment order to be a fake payment notification.

Notably, for mobile web apps, the Cashiers always include a demo script
in their backend SDKs, e.g., “demo.php” in Fig. 5. This script accepts exter-
nal requests and returns the payment order to the sender. As shown in Fig. 4,
the request parameters appear in the responded payment order such that the
attacker can manipulate their values to forge payment notifications. Specifically,
the attacker can craft the value of order num and introduce a new parame-
ter status in the re-formulated message. In other words, the attacker takes the
Merchant, i.e., MS , as the oracle to get the desired message with a legitimate
HMAC, which is then replayed as the notification.

Meanwhile, the existing protection mechanisms in the Settlement Phase, dis-
cussed in Sect. 4.3, are not comprehensive. For example, the backward order
query occurs under certain conditions. Besides, the notification checking mech-
anism in Cashier1 only applies to the asynchronous notification. Then, the
attacker may escape such a checking by sending the synchronous notification
only to cheat the Merchant. Therefore, the attacker can always construct an
appropriate scenario to bypass the protections from the Cashiers.

Remark: We have done the Proof-of-Concept (PoC) tests with the
SDKs from Cashier1, Cashier3 , and Cashier4 . As Cashier2 adopts
preordering, its payment order only contains the preorder id , making
this exploit infeasible. Besides, we collect and examine 100 mobile
web apps that use third-party payment services. The result shows 5
of these apps keep the demo script in their servers and are vulnerable.

Cross-merchant Notification Forgery. The notification forgery is also fea-
sible when the digital signature is used. In this exploit, the attacker leverages
the shared public key of the Cashier among the Merchants (in Table 1).

To be specific, the attacker may control another Merchant, e.g., official demo
(Merchant) accounts, to get signed notifications from the Cashier for free, which
share the same trade amount and order num with the target order. Then, he can
inject them into the payment session of the victim Merchant. Once this Merchant
Server overlooks the app identifier within the notification, e.g., retailer in Fig. 4b,
it will be cheated and enable the attacker to shop for free. For interesting readers,
the detailed workflow and explanation are given in Appendix B.
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Besides, we find one of the studied Cashiers allows special characters, e.g., &
and =, in the payment request, i.e., Step 7 in Fig. 3. Exploiting the parsing ambi-
guity mentioned in Sect. 3.2, the attacker can manipulate his payment request
to overwrite the benign app identifier in the forged notification. Figure 4b gives
an example, where the original app identifier, i.e., retailer, is taken over by a
non-existent parameter sa injected by the attacker. Thus, all the Merchants in
this Cashier will be affected, even if they verify payment notifications properly.

Remark: For ethical considerations, we cannot attack real Merchants
to quantify the impact of this exploit. However, we have identified an
open-source framework for Merchant Servers to be vulnerable. This
framework integrates the services from the studied Cashiers and has
over 100,000 downloads. Towards this end, we set up our dummy
Merchant with this framework and complete a PoC test on it.

On the other hand, we have notified the aforementioned vulnerable
Cashier about our finding. This Cashier has acknowledged the poten-
tial security threat and fixed the issue in its backend server rapidly
after our responsible disclosure.

Null Key Exploit. Cashier3 serves over 100 million users globally. Despite
the prevalence of Cashier3 , we have identified a zero-day vulnerability in its
SDK in PHP, enabling the attacker to forge payment notifications to deceive the
Merchant, i.e., MS , with no knowledge of payment credentials.

In Cashier3 , the Merchants can choose either digital signature or HMAC to
secure the messages (Sect. 3.2), including the payment notifications. Besides, the
digital signature is the de facto protection method.

1 static function validate($params) {

2 // 11 indicates the usage of HMAC

3 if($params[’signMethod ’]==’11’) {

4 $isSuccess = AcpService :: validateBySecureKey (

$params , getSDKConfig ()->secureKey);}

5 ...

6 return $isSuccess ;}
7

8 static function getSDKConfig () {

9 $this ->secureKey = array_key_exists ("secureKey",

$sdk_array)?$sdk_array["secureKey"]: null;

10 ...}

11

12 static function validateBySecureKey ($params , $secureKey) {

13 ...

14 $key = hash(’sha256 ’, $secureKey);
15 ...}

Listing 1.1. Vulnerable code in Cashier3 ’s backend SDK
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Fig. 5. Structure of an official backend SDK

Listing.1.1 presents the snippet of the vulnerable code, where the func-
tion “validate()” checks the signature or HMAC within the received payment
notifications. Notably, this function dynamically extracts the “signMethod” field
from the notification on line 3 to determine the protection method. Therefore, by
controlling the “signMethod”, the attacker can send an HMAC-protected noti-
fication to the Merchant that adopts the digital signature. Then, the server
will read the “secureKey” from the local configuration on line 4. Since the
“secureKey” is not set by default, the SDK will return null on line 9. Never-
theless, “validateBySecureKey()” fails to check if the “secureKey” is null or not
and instead passes it to the hash function on line 14, which expects two string-
type variables as input [16]. Then, due to the automatic type conversion in PHP,
the “secureKey” will be converted to an empty string if it is null. As a result, the
attacker can forge payment notifications using the null key to pass the checking.

Remark: Due to strong typing, this exploit does not apply to the SDKs
in Java or C#, where the null key will trigger Null Pointer Exception
in both cases. Nevertheless, PHP is still the most prevalent program-
ming language used for web application development [11], while the
script with the vulnerability has not been modified for over two years.
Thus, there should still be many vulnerable Merchant Servers in the
wild. We have completed a PoC test for this exploit and reported
our finding to Cashier3. The Cashier confirms the vulnerability and
immediately updates its SDK.

5.4 Payment Notification Misuse

The payment notifications in Cashier1 are over-informative and leak user pri-
vacy. To be specific, these notifications contain the login ids of both the Mer-
chant and user, whose value is an email address or phone number. In other words,
the Cashier provides personally identifiable information (PII) of its users to the
Merchants without permission, while the latter may not be trusted (in Sect. 2.2).
Worse still, Cashier1 maintains a social network, where each user is searchable
based on his login id. As such, the Malicious Merchant can misuse this private
data to get the victim’s identity in Cashier1 and get more user privacy.
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Table 5. Summary of official backend SDKs

Inaccessibility Credential files Control scripts Log files

PHP Java C# PHP Java C# PHP Java C#

Cashier1 (a) × � � N/A N/A N/A × � ×
Cashier1 (b) � � � × × × × � �
Cashier1 (c) × � × N/A N/A N/A × � ×
Cashier2 × � × × N/A × × � ×
Cashier3 × � � × × × � � �
Cashier4 × � � N/A N/A N/A × � �
Cashier5 × � � × � × � � �

Meanwhile, the SDKs from the Cashiers log the payment notifications in
static files, e.g., “log.txt” in Fig. 5. Nonetheless, some SDKs do not restrict the
access to log files by default, as indicated in Table 5. Once the Merchant fails
to set proper access control on these files, the attacker can infer their locations
from the addresses of the payment notification handlers, e.g., “backURL.php”
and “frontURL.php” in Fig. 5, and crawl them. Then, the attacker can recover
the transaction records based on the log files, which also include the login ids.

Remark: We examine 100 top-ranked Android apps that use third-
party payment services. Specifically, we extract their backURLs point-
ing to their backend servers to apply the approach above. However,
we do not directly download the exposed log files but use the HTTP
HEAD method to check their existence and metadata, e.g., file size.
The result shows that 8 of the tested servers (8%) expose their logs to
the wild, where the maximum file size exceeds 500 MB. Remarkably,
these vulnerable apps have over 6.5 million downloads on average.

5.5 Merchant Impersonation Attack

Some Merchant Apps embed payment credentials [25]. For Android apps, their
installation packages are public online, e.g., APKPure [1], so that the attacker
can use the existing tool like Apktool [20] to recover the included credentials.

On the other hand, we find that the Merchant Servers can be another leaking
source of payment credentials. Figure 5 presents the structure of an SDK, where
“payment config.php” stores the local configuration and sets the client certifi-
cate (Sect. 3.1) to a static file, i.e., “client cert.pem”. Although some Cashiers
like Cashier2 suggest changing the filename and blocking the access to these
files, some Merchants fail to do so. Thus, based on the SDK structure (e.g.,
Fig. 5) and payment notification handler address (e.g., Step 14 in Fig. 3), the
attacker can guess the location of payment credential files in the MS . For example,
he may infer “https://www.example.com/payment/credential/client cert.php”
from “https://www.example.com/payment/frontURL.php”. Most Cashiers make

https://www.example.com/payment/credential/client_cert.php
https://www.example.com/payment/frontURL.php
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the same mistake (in Table 5), while some other SDKs lay payment credentials in
inaccessible scripts or directories and are thus secure in normal cases.

With the leaked payment credentials, the attacker can impersonate the Mer-
chants to access the management interfaces from the Cashiers. Even though some
Cashiers use other factors to strengthen the authentication on the Merchants,
the attacker may still bypass them, as discussed in Sect. 4.4.

Remark: We analyze the 100 most popular Android apps supporting
the mobile payment function. The result turns out that 11 of these
apps (11%) embed payment credentials. Moreover, we use the HTTP
HEAD method to probe the backend servers behind another set of
100 apps, where 7 of their servers (7%) use the flawed SDKs and do
not restrict access to the stored payment credential files. Notably, the
average downloads of these vulnerable apps exceed 3.1 million.

5.6 Hidden Control Scripts

Some backend SDKs from the Cashiers include the control scripts for demo
usage, e.g., “refunding.php” and “transaction record.php” in Fig. 5. Notably,
these scripts accept the external request and accordingly use the stored payment
credentials, e.g., “client cert.pem”, to generate a separate request to the Cashier.

Despite their critical nature, most of these official SDKs do not set access
control on the control scripts, as indicated in Table 5. Using the approach for
stealing credentials or logs, the attacker may uncover the URL endpoints of these
control scripts. Then, he can craft requests to these scripts and take them as
the backdoor to access the management services without knowing any payment
credentials, deactivating all the protections by the Cashiers (in Sect. 4.4).

Remark: We test the backend servers behind 100 top-ranked Android
apps. According to the result, six of these Merchant Apps (6%) are
vulnerable, which have 3.96 million downloads on average.

6 Suggested Fixings to Mobile Payment

In this section, we talk about the fixings to mitigate the exploits in Sect. 5.

6.1 Modifications on Protocol Design

Figure 6 depicts the revised workflow for mobile payment. In short, we have made
three main changes, which are elaborated as follows.

One-Time Ticket Mechanism. The current mobile payment system is sus-
ceptible to flawed implementations by the Merchants, i.e., unencrypted HTTP
network interactions, in most cases, which lead to the Order Replacement Attack
(Sect. 5.1). Therefore, we introduce the one-time ticket mechanism to fix the
issue, which corresponds to Step 2 to 5 in Fig. 6.
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Fig. 6. Revised workflow of mobile payment service

Specifically, we move the authentication in the Cashier ahead to Step 3. At
the beginning of each payment, the MA needs to apply for a one-time ticket in
Step 2 with the user identifier of the payer in the Merchant as input. Then, the
Cashier can establish a temporary binding of the two involved user identities (in
the Merchant and Cashier) and encode it into the ticket, which is returned to
the Merchant through Step 4 and Step 5. Afterward, the Merchant is required
to include the received ticket in the preordering request in Step 7, while the
Cashier will associate it with the generated preorder id before Step 8.

From the payment order in Step 10, the Cashier can then get the identity of
the user who makes the ordering in Step 6. Thus, by comparing it with the cur-
rent user identity in the CA, the Cashier manages to check whether the current
payment session is corrupted or not. As long as the MA (in the victim’s smart-
phone) is benign, the attacker cannot bind his account in the Merchant to the
victim’s identity in the Cashier in the first stage, making the Order Replacement
Attack unfeasible. Notably, this assumption holds once the Cashier authenti-
cates the MA properly, which will be discussed later. Besides, in contrast to the
existing identity federation mechanism in Sect. 4.2, the proposed scheme is not
persistent and always launched by the end-user through the MA in Step 2 so
that the attacker cannot misuse it to violate user privacy (Sect. 5.2).

Adoption of Secure Payment Key. The existing mechanisms in the Set-
tlement Phase (Sect. 4.3) are designed to make up for the imperfection of the
payment credentials. For example, when the secret key is adopted, the non-
repudiation property is missing in HMAC so that Cashier1 designs the notifica-
tion checking mechanism as remediation at the cost of extra network interactions
between the servers. Since the Cashier’s public key tends to be shared among the
Merchants (in Table 1), the same issue remains in the digital signature, where
the Cashiers count on the Merchants to validate the payment notifications prop-
erly. However, as presented in Sect. 5.3, the existing protection mechanisms are
not comprehensive, while the verifications from the Merchants can be flawed.
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Among the existing payment credentials in Sect. 3.1, the RSA’ keys in
Cashier1 are the most secure choice, where the Cashier’s public key is not shared
among the Merchants and the attacker cannot forge payment notifications. Thus,
we suggest using this type of key, which also helps to reduce the unnecessary
interactions between the servers, as shown in Fig. 6.

Proper Verification of the Merchant The root cause of the Merchant Imper-
sonation Attack (Section. 5.5) is the insufficient verification of the Merchant
Server. As indicated in Table 4, in many cases, the Cashiers authenticate the
Merchant Server by checking the digital signature or HMAC only.

Then, the related management interfaces suffer a single point of failure
(SPOF). In other words, the attacker can cheat the Cashier to access these
services once he steals the payment credentials. Even though the Cashiers use
other factors to strengthen the authentication on their Merchants, most of them
can be bypassed (Sect. 4.4). Given the importance of these management services,
the Cashier should set more strict authentication requirements, e.g., IP whitelist,
to the Merchants. Then, the attacker cannot consume the leaked payment cre-
dentials.

Similarly, the proper verification of the MA is also necessary. Otherwise, the
attacker may repackage malicious apps to harm the victim users (in Sect. 5.1).

6.2 Other Operational Issues

Some operational or software issues contribute to the exploits in Sect. 5, so we
propose the following fixings.

Removing Redundant Information. The Cashiers should review their sys-
tems to avoid leaking redundant information in the protocol messages. Other-
wise, the attacker may steal related information, enabling other exploits, and
causing privacy violations. For example, in Cashier1 , the payment notifications
contain the privacy of both the Merchant and end-users, i.e., login id. Notably,
this private data acts as the identity proof of the Merchant and is required in
the money transferring interface (in Table 4). Thus, the attacker can obtain its
value to exploit the stolen payment credentials, i.e., Merchant Impersonation
in Sect. 5.5. Meanwhile, the attacker may also recover the login ids of end-users
from the exposed logs from the Merchants (Sect. 5.4) to find their identities.

Providing Secure SDKs to Merchants. The backend SDKs from the
Cashiers also give rise to the exploits in Sect. 5. As indicated in Table 5, these
SDKs usually miss the access control on the critical credential and log files. Some
of the SDKs also include the control scripts but do not forbid public access to
them by default. Then, the attacker can uncover their locations in the Merchant
Server to conduct the exploits. Thus, Cashiers must remove these control scripts
from their SDKs and set strict access control on the sensitive credentials and
logs.
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Meanwhile, the official SDKs can be vulnerable by themselves (Sect. 5.3).
However, fingerprinting the backend SDK in the Merchant Servers remains an
open question, so that it is tricky for the Cashiers to recall the vulnerable SDKs
once they are distributed to the Merchants. According to previous experiences,
e.g., [14], the Cashiers can only alert their Merchants passively.

On the other hand, the frontend SDKs can also be problematic. Specifically,
two of the Cashiers under study include the payment credential in their demo
projects. Although these codes are claimed for illustration only, many Merchants
directly reuse them, which enables the exploit in Sect. 5.5. In short, the Cashiers
must provide secure SDKs to their Merchants. After all, the Merchants are usu-
ally not knowledgeable, while it is unreliable to count on their security awareness
to deploy secure mobile payment service.

Using JWT to Secure the Messages. As mentioned in Sect. 3.2, all the
Cashiers adopt the same customized approach to process the payment-related
messages. However, this approach introduces ambiguity in parsing. Conse-
quently, the attacker can take either the Merchant or Cashier as the oracle to
get the desired message for payment notification forgery (Sect. 5.3).

To prevent these exploits, we suggest the Cashiers use the existing mature
solution to secure the messages in payment. Toward this end, the JSON Web
Token (JWT) can be a good option, which is an Internet standard and has
detailed documents [7] to follow. Notably, this technique has been widely applied
in the Single Sign-On (SSO) services that involve similar multi-party interac-
tions.

Fixing the Value of backURL. The Cashiers use two types of payment noti-
fications to confirm the payment result to the Merchants (Sect. 2.1). Since the
asynchronous notification is directly sent to the Merchant, i.e., MS , it is more
trustable. Notably, in each session, the Merchant needs to specify the address in
its server, namely, backURL, for the Cashier to send the asynchronous notifica-
tion. Thus, by controlling this variable, the attacker can use the demo account to
forge cryptographically-correct notifications and use them to cheat other Mer-
chants (Sect. 5.3). Compared to a similar concept, i.e., redirect url in OAuth [5]
for SSO service, it is strange that all the Cashiers allow the dynamic setting of
backURL, while the other is defined as a constant. In Cashier1 , the backURL
is even set to be optional. Then, the Cashier will not send the asynchronous
notification if the Merchant ignores the parameter. Given the critical role of the
asynchronous notification, we suggest fixing the value of backURL.

7 Related Work

Motivated by the prevalent adoption of e-payment services in web and mobile
applications, its security analysis has aroused increasing attention during the
past decade. Wang et al. [21] manually study the third-party payment services
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for web applications and construct several practical attacks. Combining symbolic
execution and taint analysis, Sun et al. [19] propose an automated approach and
detect 12 logic flaws in 22 PHP modules for payment service. As the defense,
Xing et al. [24] develop InteGuard to detect exploit attempts toward the pay-
ment service, which protects the vulnerable integration of payment services by
the websites. Notably, all the studies mentioned above only work on web applica-
tions, while we focus on the third-party payment service for mobile applications.

Meanwhile, some other works concentrate on the security of digital wallets
or banking apps. Haupert et al. [6] evaluate the security of N26, a pan-European
banking app, and present several exploits against it. Reaves et al. [17] study 7
Android apps for branchless banks in developing countries and detect 28 signif-
icant vulnerabilities. Kumar et al. [10] use a principled methodology to analyze
the unpublished payment protocol for digital wallet apps in India and get 11
CVEs. Kaur et al. [9] propose security recommendations for digital wallet apps
and assess three leading e-wallet Android apps in Canada. Following these works,
Chen et al. [2] conduct a large-scale empirical study on 693 banking apps across
over 80 countries and collect 2,157 security weaknesses from them. However,
compared to the third-party payment service for mobile apps under our study,
most of the digital wallets or banking apps only work for Point-of-Sale (PoS)
terminals and peer-to-peer money transfers.

As to the third-party payment service for mobile apps, [8] is the first work to
study its security schemes. Following this work, Liu et al. [12] make a compre-
hensive survey on mainstream service providers, i.e., Cashiers, and their mobile
payment security technology framework. Wang et al. [22] summarize the security
services desired in mobile payment systems. Mulliner et al. [15] study the OS-
provided in-app billing service within 85 first-tier Android apps and find 60%
of them are vulnerable. Reynaud et al. [18] present the FreeMarket attack to
automatically identify and exploit the insecure in-app billing coding practices in
Android. Ye et al. [26] find several non-trivial hidden assumptions and bugs in
the payment SDKs from PayPal and Visa Checkout. Chen et al. [3] use a suite
of NLP techniques to analyze the documents from fourth-party payment syndi-
cators and identify 5 logic flaws. Nevertheless, this work [3] trusts the payment
systems from the Cashiers and supposes them to be secure, which has instead
been proven wrong.

The most relevant work to ours is [25], where Yang et al. analyze the third-
party payment services integrated by Android apps and discover four types of
exploits. Although this work formulates a set of security rules for mobile pay-
ment, most of them are specific to certain implementation flaws by the Merchants
and thus incomplete. For example, [25] asks the Merchant Servers to verify the
signature in received payment notifications from the Cashiers. Nonetheless, we
find that the attacker may still deceive the Merchants with cryptographically-
correct notifications or even without any knowledge of payment credentials
(Sect. 5.3). Similarly, the previous work [25] requires the Merchants not to
embed their payment credentials in the frontend apps as one of the rules, while
the credentials can still be leaked from their backend servers (in Sect. 5.5).
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In comparison, we spare more effort on understanding the various system designs
by the Cashiers and their underlying security implications (in Sect. 4) so that we
manage to construct more novel attack scenarios (in Sect. 5). Besides, Yang et
al. [25] do not propose comprehensive defenses against the discovered exploits.
For instance, they count on the security awareness of end-users to detect the
Order Replacement Attack (Sect. 5.1), which is not a reliable solution as the
human is the weakest link in cybersecurity. On the contrary, we propose the
fixings based on the current practice, which are also fault-tolerant to the flawed
implementations by the Merchants, e.g., credential leaks (in Sect. 6.1).

8 Conclusion

In this paper, we perform a security analysis of real-world third-party payment
services for mobile apps from five top-tier Cashiers, which serve more than one
billion end-users over the world. We conduct a comprehensive study of their
payment systems and discover six types of exploits, including a zero-day vul-
nerability in the official backend SDK. All of these exploits bring about severe
security consequences, ranging from financial loss to privacy violation of the
Merchants and their users. Moreover, we summarize the best practice and pro-
pose the fixings to mitigate these exploits. We have reported our findings to the
affected Cashiers and got their positive feedback.

Acknowledgements. This research is supported in part by the CUHK Project
Impact Enhancement Fund (Project# 3133292), the CUHK Direct Grant #4055155,
and the CUHK MobiTeC R&D Fund.

A More Details on Order Replacement

Figure 7 shows a snippet of the log during the verification process within
Cashier2 ’s Android app, which consists of two steps:

1. getAppInfo: the CA extracts the app identifier, i.e., retailer, from the received
payment order and requests for the related app information from its backend
server.

2. verifyAppInfo: the CA compares the package name and signature of the MA
against the received app information.

Notably, getAppInfo will only occur for once because the CA will locally store
the mapping between retailer and the related app information. Nevertheless, we
find that the CA in Cashier2 suffers a software bug in getAppInfo. Consequently,
this bug will enable the repackaged MA to bypass the checking from the Cashier
in the first payment attempt, even if it does not have a benign signature.

Remark: This exploit can be persistent once the repackaged MA
injects the order from a new Merchant, with an unknown retailer ,
in each payment. We have done the Proof-of-Concept (PoC) experi-
ment, reported the issue to Cashier2 , and got its confirmation.
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retailer: ***930ea5d5a258f4f // app identifier in the payment order
appName: Cashier2 SDK Demo // app name from the Cashier2’s server
server sig: ak187ed67e05c2***   // package signature from Cashier2’s server
pkd: com.source*** // package name from Cashier2’s server
gen sig: ak187ed67e05c2***    // package signature generated locally

Fig. 7. Running log from Cashier2 ’s app

B More Details on Cross-merchant Notification Forgery

Figure 8 details the Cross-Merchant Notification Forgery mentioned in Sect. 5.3,
which works as follows.

Fig. 8. Cross-merchant notification forgery

1–4 The attacker purchases products in the victim Merchant, namely, MA, until
Step 4. Then, the attacker suspends the payment session and identifies nec-
essary information, namely order num, trade amount, and backURL, from
the payment order.

5. Using the payment credentials from another app, i.e., MS’ , the attacker
forges a payment request with the same order num and trade amount.
Besides, the backURL is set to the host controlled by the attacker.

6. After paying for the forged order in MS’ , the attacker receives the signed
payment notifications from the Cashier, which contain the app identifier of
the MS’ , order num, and trade amount.

7. The attacker refunds the order to get the money back.
8. The attacker resumes the payment session in the MA and injects the forged

synchronous notification (from Step 6) into the CA. Meanwhile, he sends
the asynchronous one to the MS according to the backURL in Step 4.

9. The CA propagates the forged notification to the MA.
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10. The MA sends the forged notification back to the MS and queries the pay-
ment status of the related order.

Finally, the victim Merchant verifies the digital signatures in the forged noti-
fications and extracts the order num and trade amount. Then, it compares their
values with the local record (generated before Step 3) and passes the checking
due to the setting in Step 5. Nonetheless, the MS overlooks the app identifier,
i.e., retailer, inside the received payment notifications, trusts the settlement of
order payment, and delivers the products to the attacker.
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Abstract. Industrial Control System (ICS), as the core of the criti-
cal infrastructure, its vulnerabilities threaten physical world security.
Mutation-based black-box fuzzing is a popular method for vulnerability
discovery in ICS, and the diversification of seeds is crucial to its perfor-
mance. However, the ICS devices are dedicated devices whose programs
are challenging to get, protocols are unknown, and execution traces are
hard to obtain in real-time. These restrictions impede seed selection,
thereby reducing the efficiency of fuzzing. Therefore, it has become our
primary goal to select a high-quality seed set containing as few seeds as
possible with extensive triggered traces.

In this paper, we present a novel automatic seed selection method
called DSS, selecting high-quality seeds for improving fuzzing efficiency.
The method is based on the observation that dissimilar response mes-
sages are generated by different device execution processes in most cases,
which helps us build the connection of messages discrepancy and exe-
cution traces discrepancy to guide DSS. Expressly, we point out that
dissimilar messages are effective indicators of different execution paths.
Therefore, choosing ICS messages with high discrepancy as seeds can
bring more initial execution traces and fewer seeds with the same seman-
tic, which are essential to black-box fuzzing. Our experiments show that
the quantity of seeds selected by DSS is significantly less than the tradi-
tional method when achieving the same trace coverage.

Keywords: ICS protocol · Fuzzing · Seed selection

1 Introduction

Industrial Control System (ICS) is a system that combines software and hard-
ware, and is widely used in critical infrastructure, such as critical manufacturing,
energy, and other fields. If the security risks are not adequately handled, it will
pose a severe threat to the real world. ICS protocol is a set of special rules
used for the interaction between industrial software in supervisory control layer
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and industrial devices in control layer. It works on monitoring remote physical
devices’ status and controlling remote physical devices. ICS protocols include
open protocols and proprietary protocols. The former includes IEC 61850 and
Modbus, etc.; the latter includes S7comm and FINS, etc. The ICS protocol
has high control authority over the device, but the limited security protection
puts the industrial device at risk. In recent years, the frequency and severity of
attacks on industrial control systems have increased [18]. For example, national
power grids of Venezuela [19] and Ukraine [2] were attacked causing widespread
power outages, and the Stuxnet virus [11] attacked Iran’s nuclear facilities. These
events have shown how essential is the security of ICS devices to the real world.
Therefore, ensuring the correct implementation of the protocols in the device is
of great significance for protecting critical infrastructure.

Many traditional vulnerability discovery methods (such as static analysis and
fuzzing) have achieved good results. However, ICS device security analysis has
some restricted conditions, including industrial device programs are challenging
to get, protocols are unknown, and execution traces are hard to obtain in real-
time. Due to limited conditions, most traditional methods fail, except for black-
box fuzzing. However, as a pointless method, black-box fuzzing needs information
as a guide to test enough code traces in a limited time.

Rebert [16] points out that the quality of seeds is one of the decisive factors for
the effect of mutation-based fuzzing. While more seeds can trigger more internal
execution processes of the device, the resulting high cost of computing resources
is disproportionate to improved effectiveness. Considering this contradiction, we
define high-quality seeds as seeds with small quantities and extensive triggered
traces. Accordingly, it is our goal to select high-quality seeds from messages with
unknown semantics.

To achieve this goal, we propose DSS, a method to select high-quality seeds
for fuzzing proprietary ICS protocols. DSS reduces redundant test cases by
excluding seeds with repeated meanings, thereby improving the efficiency of
black-box fuzzing. We find that similar messages correspond to similar program
execution paths. Conversely, messages with large differences correspond to dif-
ferent program execution paths. Based on this observation, DSS select dissimilar
messages as high-quality seeds, which contains different triggered traces.

The experiment shows that our method can select high-quality seeds from
ICS messages with repeated meanings. Moreover, when the same amount of
execution paths is reached, the quantity of seeds provided by our method is
significantly less than the random method, and the proportion is only 0.7% in
the optimal situation.

Contributions. In summary, we make the following main contributions.

– We point out that dissimilar messages are effective indicators of different
execution paths. This observation provides information to reduce duplicate
seeds, thereby reducing similar test cases.
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– We propose a seed selection method by analyzing the discrepancy between
messages. A small number of seeds with different characteristics are obtained,
which can be used as a fuzzing corpus.

– We evaluate the effect of seed selection on Modbus and S7comm protocols.
The seeds selected by our method is significantly less than the traditional
method.

Roadmap. The remainder of this paper is organized as follows. In Sect. 2, we
provide background on the industrial control system, ICS protocol, and related
work. Then we propose our approach based on messages discrepancy in Sect. 3.
We evaluate our method and verified its effectiveness in Sect. 4. Finally, we intro-
duce how to apply our method to security analysis in Sect. 5.

2 Background

2.1 Industrial Control System

A typical industrial control system includes two parts: industrial software in
supervisory control layer and industrial devices in control layer, as shown in
Fig. 1. The industrial software sends a network request to the industrial device to
control it and requires the industrial device to return information, such as start-
stop status, current I/O value. The industrial device executes the instructions
sent by the industrial software, converts the request message into a series of
operations, and sends the response message back through the network.

Supervisory
Control Layer

Control
Layer

Physical
Layer

Read Sensors
Control Actuators

HMI
Engineering
Workstation

ICS
Protocol

Network

Read I/O

Write I/O

Motion Light Water
Temperature Electricity

Industrial
device

Software for
monitor / control

Fig. 1. Industrial control system framework.

The ICS protocol is used for the communication between industrial software
and industrial devices, and it specifies the mapping of messages to functions.
Apart from the standard protocol defined functions, many industrial manufac-
turers have expanded their products’ functions, which exceed the established
scope of the original protocol. Specifically, though some public and standard
protocols such as Modbus and IEC 61850 are widely used, many proprietary
protocols are proposed for customized features (such as controlling the start
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and stop, connection management, file transfer, firmware update). As a result of
being defined by various manufacturers separately, these implementations lack
the support of well-tested underlying libraries. Furthermore, some manufacturers
firmly believe that their products are only used in a network-isolated environ-
ment. Therefore, security issues are not considered well in implementation, and
the implementation has not undergone adequate safety testing. The intellec-
tualization of industrial control systems requires breaking the isolation of the
network. It is possible to expose the communication interface of the industrial
device, which brings opportunities to the attacker.

2.2 Obstacles in ICS Protocol Vulnerability Discovery

Industrial device is a kind of dedicated device, so that the vulnerability discovery
of ICS devices often faces the following situations: some internal programs of the
devices are challenging to get, protocols are unknown, and execution traces are
hard to obtain in real-time. These restricted conditions cause traditional software
vulnerability discovery methods to fail for industrial devices.

Static Binary Analysis Methods. First, static binary analysis methods, such
as static symbolic execution and static taint analysis, analyze binary programs to
find vulnerabilities. Some firmware are hard to obtain through official channels,
although some ICS manufacturers provide device firmware (such as Schneider).
Some even need to be read from flash using JTAG, which is also challenging
for industrial device. Second, the firmware needs to be decompressed to get the
binary program. Some tools can analyze standard file systems, such as binwalk
[7]. However, the extracting difficulty has increased because of the emergence of
encrypted firmware and private format firmware (such as the Schneider Modicon
series). These problems lead to the inability to guarantee the acquisition of the
program in the device. In this case, the static analysis method is not suitable.
Besides, path explosion is also one of the limitations of static analysis methods.

Generation-Based Fuzzing. Generation-based fuzzers, such as Peach [4], and
Sulley [1], need expert knowledge about protocol information, including field
structure division, range of possible values, and data dependence among fields.
Some works use automated or manual methods to analyze traffic and reverse the
protocol, such as PULSAR [5], which uses the Markov model representing the
state machine of the protocol. However, these approaches may introduce new
problems. If the protocol reverse is not comprehensive enough, the template’s
expression ability will be limited, and some input space will be missed. If there
is a misunderstanding in the reverse engineering result, it will lead to error
accumulation, resulting in many invalid mutations. Comprehensive and accurate
protocol reverse requires manual analysis, which leads to the high cost.
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Gray-Box Fuzzing. A gray-box fuzzer obtains the program execution paths
triggered by the current input in real-time, thereby guiding the mutation with
high efficiency. However, because it is difficult to obtain the industrial device
program’s execution paths in real-time, gray-box fuzzing methods, such as AFL
[20], cannot be used directly unless the firmware image is emulated correctly.
Some works emulate the firmware of embedded devices, such as Firmadyne [3].
Furthermore, some works combine emulation and fuzzing, such as FirmAFL [22],
BaseSAFE [15] and Frankenstein [17]. However, these works are mainly focused
on Linux and some specific RTOS systems, but not ICS devices. Emulating some
system-independent tasks functions rather than the whole system is simpler and
enough for fuzzing. The emulation needs function addresses to hook system
functions. But for VxWorks, the commonly used ICS operating system, it is
difficult to automatically get system function addresses because of the mixing
of task code and kernel code. Therefore, the correct emulation of the ICS device
requires manual analysis of the function address.

Some works use path coverage information to guide a gray-box fuzzing, focus-
ing on ICS protocol code libraries. Polar [13] based on static code analysis and
dynamic taint analysis technique, locates the function code processing state-
ments and some security-sensitive points. And then use the knowledge of these
key locations to guide the fuzzing of the ICS protocol code libraries. Peach* [14]
identifies valuable data covering the new code area based on the path informa-
tion collected during the fuzzing and then constructs a puzzle corpus to optimize
the input generation process based on cracked packet pieces. The above methods
are based on the execution path coverage for fuzzing. These methods apply to
ICS protocol libraries, but not to black-box devices. As a result, coverage-guided
gray-box fuzzing is not yet applicable.

Black-Box Fuzzing. Original black-box fuzzer generates test cases by mutating
existing messages. Due to its wide application range and low cost, this method
is often used in ICS scenarios. Because pointless mutation generates a high per-
centage of invalid test cases, it is necessary to analyze existing information to
improve efficiency.

Some emerging black-box fuzzers for the ICS protocol generate test cases
based on learning existing messages. SeqFuzzer [21] extracts format informa-
tion of the EtherCAT protocol based on deep learning and generates EtherCAT
test cases. GANFuzz [8] uses Generative Adversarial Network (GAN) to train a
generative model on Modbus protocol data, learn protocol syntax and generate
Modbus test cases. The above methods use machine learning to analyze traffic,
learn protocol knowledge, and automatically generate test cases. These methods
are suitable for black-box fuzzing, but these methods’ versatility needs to be
evaluated when applied to proprietary protocols. In addition, the above meth-
ods have potential problems. When the data distribution is unbalanced, some
information hidden in the less frequent messages can be easily missed, although
it may represent some essential special functions.
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Also, Kim [9] put forward a fuzzing tool for Modbus protocol. It updates the
seeds pool during the test in two conditions. The first is that the number of the
changed bytes in requests is not equal to that of responses. The second is that
response time has a significant change. However, this condition is not applicable
in some situations. For example, when reading two registers and eight registers
in Modbus, the request has only a one-byte difference in value, but the response
changes more. The two messages are considered to have passed different program
areas in the method, but they have the same function and execution process.

Table 1. Comparison of vulnerability discovery methods for ICS device

Method Requirement Challenge

Static binary analysis Acquisition of firmware/program 1© 2©
Generation-based fuzzing Expert knowledge about ICS protocol 3©
Gray-box fuzzing Acquisition of firmware/program, emulation 1© 4©
Black-box fuzzing Messages between software and device 5©
1© Non-public firmware or program. 2© Path explosion. 3© High cost of
comprehensive and accurate protocol reverse. 4© Difficulty of emulation
for ICS device. 5© Low efficiency without guidance.

In Table 1 we summarize the vulnerability discovery methods, their require-
ments when applied to ICS device, and the main challenges.

2.3 Seed Selection for Improving Fuzzing Efficiency

Black-box fuzzer is suitable for ICS test scenarios but lacks information guidance,
resulting in low efficiency. Rebert [16] studied the influencing factors of the effect
of mutation-based fuzzing, in which the quality of seeds is one of the decisive
factors. While more seeds can trigger more internal execution processes of the
device, the resulting high cost of computing resources is disproportionate to
improved effectiveness. Moreover, compared with traditional software testing,
since network-based testing is slow, there are higher requirements for fuzzing
efficiency. To ensure that, black-box fuzzers need a small number of seeds that
retain high execution path coverage.

Seeds selection in gray-box fuzzers such as AFL tools generates the seed set
using software instrumentation technique to obtain the execution traces and use
the greedy algorithm to select the optimal set. Since the program is inside the
industrial device, it is challenging to obtain instrumentation information except
for emulating firmware. Considering that the industrial device emulation is still
difficult, but the network traffics are easy to get, it is feasible to select seeds by
analyzing the relationship of message and execution trace.
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3 Approach

In this section, we describe our observation and method. In Sect. 3.1, we elaborate
our observation on the relationship between ICS messages and execution paths.
In Sect. 3.2, we propose calculation methods to measure the difference between
messages. In Sect. 3.3, we design a seed selection method based on the comparison
of message discrepancy.

Fig. 2. Discrepancy-aware seed selection method.

In order to facilitate subsequent explanations, the combination of a response
message and its request message is named an RR (request-response). 1©Selecting
Typical RRs. Choose typical RRs and distribute the others to the most similar
typical RR. In the Fig. 2, different letters mean different types. A darker circle
represents a typical RR, and the other lighter circles of the same color series
are similar RRs of the typical RR. 2©Scoring all RRs. For each typical RR,
score its similar RRs by comprehensively considering the discrepancy between
requests and the discrepancy between responses in the same type. In the Fig. 2,
the number in the circle means the score of the RR. The larger the number, the
lower the similarity within the same type. 3©Sort RRs. Sort RRs in descending
order of score and take out RRs one by one from the list until the expected
number is reached.

3.1 Technique Foundation

Key Observation. Our key observation is that dissimilar response messages
are generated by different device execution processes in most cases. Our strategy
is choosing dissimilar response messages for a greater probability of triggering
non-repetitive execution traces based on this observation. It should be noted that
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dissimilar response messages are not a sufficient condition for different execution
traces. Dissimilar messages may also trigger the same execution process.

In more detail, we divide the situation into the following four categories
according to whether the response messages in the ICS protocol are similar and
whether the traces corresponding to the messages are the same.

Same Trace with Similar Response. This type includes reading values mul-
tiple times, such as reading I/O or time. Except for a small number of changes,
the response messages of the same function remain similar. Selecting dissimilar
responses can exclude responses with the same function and ensure that the seed
set size is small.

Different Trace with Dissimilar Response. This type includes establishing
a connection, reading time, reading I/O value, writing I/O value, etc. Differ-
ent functions correspond to dissimilar responses, which means that this type of
response is bound to its function. Selecting dissimilar responses can select mes-
sages with different functions, ensuring that more original input execution paths
are covered.

Same Trace with Dissimilar Response. This type includes the function of
reading a large amount of data at one time, such as reading the value of multiple
consecutive addresses or downloading programs from the device. Because the
data part in protocol is easy to change and the structure part is relatively stable.
Taking Modbus as an example, when the request messages contain different
reading bytes, industrial devices will give back responses with different lengths.
The similarity of these responses is low, but the execution traces are basically the
same. However, in this case, request messages with the same function are similar.
Moreover, the dissimilar response is often caused by long messages, which are
rare because industrial devices need to ensure real-time performance, and most
of the packets are small in length.

Different Trace with Similar Response. This type includes some control-
ling commands and writing operations. Although the functions are different, the
response messages only contain similar and simple confirmation information.
In this case, only choosing dissimilar response messages may result in missing
response with different functions. However, if there are discernible differences
between the request messages of different functions, we can get different execu-
tion paths by selecting dissimilar requests. Otherwise, some functions may be
ignored, in the rare case where the request message and the received message
are both very similar to other messages, but the function is unique.

Statistical Results. We have counted the average execution path differences
corresponding to response messages with different similarities. In the S7comm
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protocol, the top 20% most dissimilar response messages have an average execu-
tion path difference of 58.18%, and the top 20% most similar response messages
have an average execution path difference of 29.28%. In the Modbus protocol,
the top 20% most dissimilar response messages have an average execution path
difference of 69.23%, and the top 20% most similar response messages have an
average execution path difference of 33.80%.

3.2 Calculation of Discrepancy

In this part, we propose a normalized discrepancy calculation formula between
messages based on text distance. Levenshtein distance [12] refers to the minimum
number of editing operations (replacing, inserting, and deleting a character)
required to convert two strings from one to the other. The hamming distance [6]
refers to the number of different bytes at the same position in two equal-length
strings.

First, we propose a general discrepancy calculation method based on text
distance.

discrepancy = distance(str1, str2) (1)

Second, discrepancylev and discrepancyham are designed based on leven-
shtein distance and hamming distance. The range of discrepancylev is between 0
and the maximum length of two strings. Hamming distance requires two strings
to be equal in length so that the longer string needs to be curtailed to the same
length as the other before calculating. The range of discrepancyham is between
0 and the minimum length of two strings.

discrepancylev = distancelev(str1, str2) (2)

discrepancyham = distanceham(str1, str2) (3)

Third, due to the considerable value of the distance between long messages,
our method normalizes the distance to eliminate the influence of long messages.
The discrepancy ranges from 0 to 1.

discrepancylev =
distancelev(str1, str2)

len(str1) + len(str2) + 1
(4)

discrepancyham =
distanceham(str1, str2)
min(len(str1), len(str2))

(5)

3.3 Seed Selection Method Based on Discrepancy Comparison

We propose a seed selection method based on discrepancy comparison.
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Preprocessing. The preprocessing process generates RRs from existing net-
work traffic by completing the following steps. 1©Divide traffic into different
streams according to IP address and port. 2©Remove duplicate request messages
and their response. 3©If there are a huge number of messages with basically
repeated content, these are heartbeat packets used to confirm the survival sta-
tus of the device in the ICS protocol. These packets are deleted and will not be
analyzed later. 4©By binding the request message with its response, a series of
RRs are obtained for subsequent selection.

Selecting Typical RRs. Our method calculates and compares discrepancy
between response messages and constructs a typical-set containing RRs which
have typical responses. Each typical RR in the typical-set has a similar-list con-
taining RRs similar to this typical RR. Similar-list will be used to score RRs
later.

Algorithm 1: Constructing typical RR set
Input: Total set containing all RRs, Discrepancy threshold
Output: Typical set containing typical RRs

1 initialize p = first element of total set;
2 initialize typical set = empty set;
3 add p to typical set;
4 p = Next(p);
5 while p is not the last element of total set do
6 initialize q = first element of typical set;
7 initialize t = False;
8 while q is not the last element of typical set do
9 d = discrepancy of q.response message and p.response message;

10 if d < discrepancy threshold then
11 add p to similar list of q;
12 else
13 t = True;
14 break;

15 q = Next(q);

16 if t is True then
17 add p to typical set;
18 initialize similar list of p = empty list;

19 p = Next(p);

20 return typical set;

In Algorithm 1, add the first RR to the typical-set and traverse the remain-
ing elements. During the traversal, for each element p, calculate the minimum
difference between it and all typical-set elements. The difference is calculated by
using Eq. 4 in Sect. 3.2. If the difference is greater than the threshold parame-
ter, p is added to the typical-set, and the similar-list of p is initialized to empty.
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Otherwise, find the element q in the typical-set that makes the difference smaller
than the threshold, and add p to the similar-list of q.

Calculating the Optimal Threshold. In selecting typical RRs, input param-
eters include a discrepancy threshold used to control the minimum discrepancy
of typical RRs’ response messages. The minimum discrepancy determines the
number of typical RRs. An excessively high threshold will divide RRs with dif-
ferent functions into the same typical RR, causing some omissions of functions.
On the contrary, a too low threshold will divide RRs with the same function into
different typical RRs, causing repeated selection of the same function.

A smaller threshold will get more typical RRs. 1©Use random annealing
method to find the threshold that makes the number of RRs approach 100.
2©As the threshold decreases by 0.01 each time, Algorithm 1 is called repeat-
edly, and the number of typical RRs is recorded until the number of typical RRs
reaches 300. 3©Calculate the proportion of the increase in the number of typical
RRs caused by each threshold reduction, and the optimal threshold is the one
with the largest increase ratio.

Scoring All RRs. For each typical RR, calculate its minimum difference with
other typical RRs as its score. For RRs in similar-lists, our method scores them
in Algorithm 2, considering both requesting and responding information.

Algorithm 2: Scoring RRs in similar-lists
Input: Typical set containing typical RRs, Similar list of each typical RR
Output: Scores of each RR in similar-lists

1 initialize t = first element of typical set;
2 while t is not the last element of typical set do
3 initialize similar list = similar list of t;
4 initialize p = first element of similar list;
5 while p is not the last element of similar list do
6 initialize other l = similar list t without p;
7 p.score response = min response discrepancy of p and RRs in other l;
8 p.score request = min request discrepancy of p and RRs in other l;
9 p = Next(p);

10 response l = similar list sorted in descending order of score response;
11 request l = similar list sorted in descending order of score request;
12 p = first element of similar list;
13 while p is not the last element of similar list do
14 if response l.index(p) < request l.index(p) then
15 p.score = p.score response;
16 else
17 p.score = p.score request;

18 t = Next(t);
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For each RR, in Algorithm 2, calculate the minimum discrepancy between
the RR and the others in the same similar list. The discrepancy includes the dis-
crepancy between request messages and between response messages. And then,
sort the similarity list in descending order to generate request-list/response-list
by the minimum discrepancy of request/response messages. Finally, the score
is equal to the minimum discrepancy of the request messages if the RR index
in the request-list is smaller than the index in the response-list. Otherwise, the
minimum discrepancy of the response messages is used as the score. If any of the
RR’s request or response message is unique, the RR will get a high score through
the above steps. Otherwise, our method considers the RR has a low possibility
to trigger new execution traces.

Sort RRs. The higher the score of RR is, the more likely it is to be unique. Sort
typical RRs in descending order by scores, and do the same for RRs in similar-
lists so that RRs with different execution paths are placed first. Concatenate
two sorted lists, with typical RRs first, and then our method can take out RRs
one by one from the list until the expected number is reached. Choosing more
messages can get higher coverage before reaching full coverage. In actual use, the
selected number depends on the estimated computing resources and allowable
time consumption.

4 Evaluation

4.1 Experiment Setup

Analysis Target. Since the device’s program cannot be directly used for analy-
sis, we choose common industrial protocol code libraries for analysis. The public
library used here is only to evaluate the effectiveness of our method and does not
limit the scope of the application of our method. The ICS protocol library used for
the experiment has the requirements, including the library implements a server
program, and the server can normally work under instrumentation. For the Mod-
bus protocol, our analysis is based on the unit-test-server provided by the libmod-
bus library. And for the S7comm protocol, we use the server in the snap7 library.

Legitimate Messages Acquisition. The messages need to match the server
software. Otherwise, the requests may look legitimate, but the server cannot parse
and respond them correctly. For example, in the Modbus protocol, the used I/O
addresses need to be defined in the server; otherwise, an error will be notified.
Therefore, many packets that can be correctly parsed by the mentioned software
are needed for experiments. To emulate these packets in an industrial control sys-
tem, we obtain notwork traffic by expanding the original input. 1©Perform byte-
by-byte mutation on the original industrial control data packet to generate legiti-
mate and illegitimate data packets. 2©Send these packets to the server and record
the response. 3©Mark packets which are parsed as legitimate by Wireshark. Use
thesemarked packets as subsequent candidates, and discard those illegitimate data
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packets. The basis for the above operation is that if the device response to our
request with a non-abnormal response, it means that the device has correctly exe-
cuted the request, which also means that the request is legitimate.

Besides, some ICS protocols need to maintain communication status. For
example, the S7comm protocol requires “Setup communication” before reading
and writing, and the Modbus protocol defines a serial number. For this kind
of protocol, we need to send predecessor messages before sending a mutated
message to ensure the test case can be parsed correctly. The status may be
defined in some protocols but not mandatory to implement in code. For example,
the server provided by libmodbus does not handle the serial number; that is, the
test case can be sent directly without considering its predecessor data.

For the unit-test-client and unit-test-server provided by the libmodbus
library, the experiment mutates the original traffic to expand the execution space.
The number of edges before the expansion is 133, and after the expansion is 185,
an increase of 38.1%. For the snap7 library, the number of edges changes from
199 to 734, an increase of 268.8%. Table 2 provides a comparison between the
original message function and the expanded function. It is worth noting that
because the original input “Start upload” function was not implemented in the
server, the request for this function returned an error, which was detected by
Wireshark and filtered out.

Table 2. Summary of functions under testing

Modbus S7comm

Function Change Function Change

Read Coils Unchanged Setup communication Unchanged

Read Discrete Inputs Unchanged CPU→Read SZL Unchanged

Read Holding Registers Unchanged Start upload Disappear

Read Input Registers Emerge Read Var Unchanged

Write Single Coil Unchanged CPU→Message service Emerge

Write Single Register Unchanged Write Var Emerge

Write Multiple Coils Unchanged Time→Read clock Emerge

Write Multiple Registers Unchanged PLC Stop Emerge

Report Slave ID Emerge Block→List blocks Emerge

Mask Write Register Unchanged Security→PLC password Emerge

Read Write Register Unchanged

Binary Instrumentation. The execution path triggered by the network
request needs to be obtained to evaluate the seed selection method’s effective-
ness. The instrumentation of ICS protocol libraries is only for the experiment.
When faced with real industrial control devices, it is too challenging to achieve.

First, we limit the recorded address to the code segment of the target pro-
gram. This limitation is to prevent instrumentation of the code of system library
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functions. These functions will generate many execution paths with low relevance
to ICS protocols, and their security has been extensively studied. If these system
library functions are not precluded, irrelevant information will be introduced,
which will confuse subsequent analysis.

Second, the industrial control server often has multiple threads working
simultaneously, including accepting network requests, running industrial con-
trol functions, and sending data packets. Therefore, we instrument all threads
and record them separately. For each thread, the execution path is obtained by
sequentially recording the basic block’s first address.

Third, due to protection measures such as ASLR, the addresses obtained by
the instrumentation are random and cannot be directly compared. In order to
align these instrumentation results, we process each execution as follows: Take
the first address of the first basic block of the first thread as the base address,
and record the offset of each address executed to the base address.

Finally, every two consecutive basic blocks’ addresses are combined as an
edge, and all edges executed this time are added to a set. This set represents
the code execution path of this message. Remove edges that can be triggered in
all messages, which are not related to the function.

Evaluation Setting. As mentioned earlier, each path is transformed into a
set, with internal elements as edges. To measure the quality of the selected
seeds, we propose edge coverage as a measurement standard, which refers to
the proportion of edges provided by the selected seeds. The higher the coverage,
the more representative the seeds we choose; the lower the coverage, the more
functions we have missed.

Besides, we compare the effectiveness of the methods by comparing the num-
ber of seeds required between different methods to achieve the same coverage.
Use the ratio of the quantity required by Method A to the quantity of Method
B as the measurement standard when reaching the same coverage. If the ratio
exceeds 1, the performance of method A is better than method B. On the con-
trary, it shows that the B method is better. When the ratio is close to 1, the
performance of the two methods is similar.

4.2 Message Similarity and Trace Similarity

We use the following steps to verify whether dissimilar messages indicate dif-
ferent execution paths. 1©Select dissimilar messages by Algorithm 1 and use
discrepancylev as the discrepancy. Giving RR sequences in different orders and
random thresholds, many message combinations, whose internal messages are
dissimilar to each other, can be obtained. Calculate the number of non-repeated
edges corresponding to each combination; the higher the number, the less similar
the execution path. 2©Randomly select messages and count the number of corre-
sponding edges. Random sampling is performed with different selection numbers,
respectively. 3©Compare the corresponding edge coverage of dissimilar messages
and random messages.
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Fig. 3. Coverage of dissimilar messages and random messages in Modbus.

Fig. 4. Coverage of dissimilar messages and random messages in S7comm. (Color figure
online)

As shown in Fig. 3 and Fig. 4, dissimilar message combinations correspond to
a higher number of edges, meaning divergent execution path combinations are
selected. More specifically, because the Modbus protocol is relatively simple, a
combination of 250 dissimilar messages is sufficient to correspond to 95% of the
execution path. At the same number of messages, random combinations that
close to the same execution path just account for a small proportion. When
the coverage is the same, the points corresponding to dissimilar packets are
clustered on the figure’s left edge, which means that fewer packets are needed.
In the S7comm protocol, the effect is more significant. When the number of
elements of the combination is about 100, the edge coverage of dissimilar packets
has reached 80%, while the highest coverage of random packets is less than 50%.
Besides, it can be drawn from the figure that it is difficult to obtain high coverage
for random messages unless using a vast number of messages.
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There is an apparent separation between the blue dots in each figure, and a
small part of the dots are in the position where the number of packets is higher
than most dots. This separation is because the minimal degree of discrepancy
discrimination brings a significant increase in the number of messages in the
combination.

Table 3. Average coverage in dissimilar messages and random messages

Modbus S7comm

Range Dissimilar Random ↑ratio Range Dissimilar Random ↑ratio

0–100 0.81 0.69 16.6% 0–100 0.49 0.36 34.7%

100–200 0.96 0.79 20.4% 100–200 0.80 0.42 89.7%

200+ 0.96 0.83 15.6% 200+ 0.83 0.45 84.6%

As shown in the Table 3, in each range, the average edge coverage of dissimilar
messages is more than that of random messages. Furthermore, due to the slow
rise of the Random method ’s effect, it must choose a disproportionate number
of messages to achieve the same effect. In summary, this experiment shows that
dissimilar messages are effective indicators of different execution paths.

4.3 Comparing with Traditional Method

A seed selection experiment is performed from the data packets obtained during
the experiment preparation process in 4.1. Evaluate the performance of seed
selection methods compared with Random method.

Seed selection methods include Hamming method (based on discrepancyham)
and Levenshtein method (based on discrepancylev). The Random method counts
the average, maximum, and minimum values of edge coverage of randomly
selected message for 100 times each number. The experiment evaluated the effec-
tiveness of the seed selection method on Modbus and S7comm protocols. The
edge coverage here refers to the proportion of edges triggered by the selected
seed to the edges triggered by all to-be-selected messages.

Fig. 5. Edge coverage in Modbus.
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Fig. 6. Edge coverage in S7comm.

Figure 5 and Fig. 6 show that when the number of seeds is the same, the
method based on discrepancy comparison can get more edges than the Random
method, no matter which distance algorithm is based on. Each small picture
represents an independent experiment based on different data, showing that the
effect is robust.

Table 4. Compare with traditional method in Modbus

Levenshtein Hamming Random

Coverage-0.75 48(41,58) 67(27,145) 64(38,94)

Coverage-0.80 49(42,59) 107(29,147) 143(81,215)

Coverage-0.85 49(42,59) 111(40,147) 314(209,390)

Coverage-0.90 49(42,59) 113(44,150) 648(336,838)

Coverage-0.95 61(42,96) 201(158,227) 3722(870,5720)

Table 5. Compare with traditional method in S7comm

Levenshtein Hamming Random

Coverage-0.75 66(62,70) 197(193,200) 8676(8242,9055)

Coverage-0.80 146(64,306) 773(202,1848) 10781(10259,11187)

Coverage-0.85 797(188,1940) 2273(1364,2733) 13619(12982,14142)

Coverage-0.90 3193(1760,5658) 5188(3548,6043) 17433(17100,17655)

Coverage-0.95 9039(8371,9899) 14272(9029,20051) 22371(22238,22485)

The experiment also evaluates the number of seeds required by different
methods when the same coverage is reached. Among them, the smaller the num-
ber, the better the seed selection performance. As Shown in Table 4 and Table 5,
in both Modbus and S7comm protocol experiments, the order of the effects of
methods is Levenshtein method > Hamming method � Random method. Specif-
ically, when achieving the same effect, the Levenshtein method provides about
60 seeds, which is only 0.76% to 1.64% of the traditional method.
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4.4 Comparing with Guiding Method

In this part, we evaluate the effect by comparing the Levenshtein method (with-
out protocol information) and the Guiding method (using the protocol function
code information). The Guiding method emulates the situation of obtaining the
protocol function code correctly by manual or automatic protocol reverse engi-
neering. Owing to this method is guided by function code information, it is called
the Guiding method. The Guiding method classifies the messages according to
the function code specified by Wireshark and then selects messages from differ-
ent functions each time. It should be noted that this method is only designed for
comparison with our method and cannot be directly applied to real situations.
As proprietary protocols cannot be parsed in Wireshark, obtaining information
about function codes in the real world requires much extra work.

In the Modbus experiment, both Levenshtein method and Guiding method
are significantly better than the Random method, and the Guiding method is
slightly better than Levenshtein method. This small gap shows that our method
adaptively learns the function code information of Modbus. As shown in Fig. 7,
the effect of the Guiding method is very significant, indicating that for the Mod-
bus protocol, function code information can distinguish functions well. Under the
same function code, there are relatively few different traces. The average number
of trace types for each function code is 3.4, so that the information provided by
the function code is sufficient for efficient seed selection. The function-code-based
Guiding method can quickly achieve complete coverage of the original edges.

Fig. 7. Comparison of Levenshtein method and Guiding method in Modbus.

In the S7comm experiment, as shown in Fig. 8, the Levenshtein method and
Guiding method have similar effects when coverage less than 0.7, which signifi-
cantly better than theRandommethod. But when the coverage is higher, theGuid-
ing method ’s effect begins to deteriorate until it is close to the Random method.
However, our method is still significantly better than those methods. This is
because the S7comm protocol is more complicated so that the function code pro-
vides insufficient information. There are relatively more different traces under the
same function code, and the average trace type number of each function code is
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Fig. 8. Comparison of Levenshtein method and Guiding method in S7comm.

30.8. This leads to the fact that only using function code information is not enough
to select seeds with high coverage. The experiment also shows that our method can
learn more complex protocol information than function codes. Therefore, it is also
effective for more complex protocols and has universality for ICS protocols.

5 Discussion

In the previous sections, we propose the seed selection method DSS and evaluated
it. In this part, we will introduce how DSS is applied to security analysis. It
has been verified that DSS can provide high-quality seeds for mutation-based
fuzz testing. Besides, the core algorithm of DSS can also be applied to other
proprietary protocol security analysis because of its ability to extract messages
with different meanings. We will introduce three application scenarios, including
the main application: mutation-based fuzzing, and two other scenarios: test case
reduction and protocol reverse engineering.

Fig. 9. Framework of fuzzing prototype using seed selection method
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5.1 Mutation-Based Fuzzing

To show how our method can be applied to fuzzing, we briefly describe the
workflow, as shown in Fig. 9, there are two main steps in fuzzing: selecting seeds
and testing a seed.

In selecting seeds stage, there are the following three processes. 1©Record the
IP, port, and message information of each interaction in real work scenarios in
the Network traffic collection module. 2©Combine each request message and its
response message to generate RRs in the Initialization module. 3©Using method
elaborated in Sect. 3.3 to select high-quality seeds in the Seed selection module.
The detailed steps have been elaborated in Sect. 3.

In testing a seed stage, there are the following four processes. 1©Mutate
the seed to generate test cases in Mutation module. 2©Establish a connection
with the industrial device in the Communication module so that the fuzzer can
interact with the device. 3©Monitor the ICS device’s status to determine whether
it is working correctly in the Monitoring module. 4©Record messages and events
during the fuzzing in the Logging module. Since this fuzzer is based on a small
number of seeds with high coverage, it will explore more program execution
paths in a shorter time, and then efficiently discover vulnerabilities.

5.2 Reduction of Test Cases

Our method can also be used in another security testing process: reduce test
cases, shown in Fig. 10. 1©Fuzz an ICS device that using a proprietary protocol
and record all the messages in this process as test cases. 2©Transform these
request and response messages to RRs and use the method proposed in Sect. 3.3
to select test cases with different meanings. 3©Use these chosen test cases to test
other devices using the same proprietary protocol.

Fig. 10. Framework of reducing test cases

Devices using the same proprietary protocol generally have similar execution
processes and similar causes of vulnerabilities. Therefore, if some previously used
messages can efficiently test a device’s code area, these messages can also effi-
ciently trigger another device’s logic, which uses the same protocol. We use
Algorithm 1 to select representative messages for testing, reducing many
repeated test cases to improve efficiency.
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5.3 Protocol Reverse Engineering

There is a step in protocol reverse engineering called message type identification
[10], which aims at dividing the message into different categories for next step,
analyzing each category’s specific protocol format. Our method also has the
ability to classify messages, as shown in Fig. 11. The following will introduce
how it assists in protocol reverse engineering. 1©Convert the messages to RRs.
2©Use Algorithm 1 to process all RRs to get the typical-set and the similar-list
of each typical RR. 3©The classification is completed by treating the packets in
the same similar-list as the same type.

Fig. 11. Application in message type identification for protocol reverse engineering

6 Conclusion

We introduce DSS, a discrepancy-aware seeds selection method for ICS protocol
fuzzing. DSS compares ICS messages to determine whether they trigger the
same execution path, thereby selecting a high-quality seed set containing a small
number of seeds but obtaining high edge coverage. The DSS is suitable for black-
box industrial devices and proprietary protocol scenarios, where many methods
cannot be applied.

When achieving the same trace coverage, the seeds selected by the Leven-
shtein method is significantly less than the traditional Random method, and the
proportion is only 0.7% in the optimal situation. Fuzzing based on the high-
quality seeds selected by the Levenshtein method can test core code traces in a
limited time.
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system and key technology verification” (Grant No. 5700-202058379A-0-0-00).
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Abstract. The Secure Remote Password protocol is a password-based
authenticated key-exchange between two parties. One advantage is to
prevent offline dictionary attacks from an adversary eavesdropping the
communication. We present how such an attack is feasible if the modular
exponentiation at the heart of the protocol is vulnerable and leaks some
data related to the password.

In the case of a fixed exponent, adding randomness during the exe-
cution is a classical protection mechanism, and such a mechanism is
present in Apple’s cryptographic library to randomize the exponent.
Despite being intended to protect against complex side-channel attacks,
we show that its usage makes the implementation vulnerable to simple
side-channels such as power analysis.

This leakage observed in the library is mild but is useful for the attack
we propose on the Secure Remote Password protocol.

Keywords: Apple · Dictionary attack · Euclidean splitting ·
Exponentiation · Secure Remote Password

1 Introduction

The Secure Remote Password (SRP) protocol [21,24] allows two parties to
securely establish a session key. It belongs to the class of augmented Password-
based Authenticated Key-Exchange (PAKE), attributing an asymmetric role to
the two parties. One is a client and knows a secret password, and the other is a
server that only stores a verifier of the password. The advantages over a Diffie-
Hellman key-exchange protocol are that its design ensures mutual authentication
of the parties and protection against a Man in the Middle that eavesdrops or
even interferes with the communication between the client and the server.

Calculations in the SRP protocol require several modular exponentiations
in a finite field defined by a large prime. The exponents are secret, and one of
them is specifically derived from the password. The knowledge of this value is
sufficient to impersonate a client. An open question is whether partial knowledge
of it could be enough.
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Recently, it has been shown that implementations of a similar PAKE proto-
col can lead to a timing difference related to the password [4,22]. The authors
used this leak as a distinguisher to filter passwords in a dictionary that do not
correspond. While it is not a secret exponent that is derived from the password,
a similar approach could be applied to the SRP protocol if the exponentiation
algorithm is vulnerable to side-channels.

Many methods have been proposed to attack implementations of exponentia-
tion algorithms. One category of those is passive attacks, consisting of observing
the executions [15], either remotely by measuring the time taken for the cal-
culation, or with physical access using probes to capture power consumption
or electromagnetic emanations. Targets of these attacks are mainly algorithms
whose behavior is dependent on the secret exponent, revealing the whole expo-
nent or partial knowledge of it. These attacks remain relevant as recent research
shows [1,2,14].

To protect against these side-channel attacks, several methods have been
designed over the years. Timing attacks and simple power analysis can be avoided
using algorithms with regular behavior to assure a constant-time flow of opera-
tions independent of the secret exponent. One example is the Montgomery ladder
algorithm [17] that processes each bit of the exponent with the same operations.
In the case of a fixed exponent, such as the SRP protocol, the exponentiation
is vulnerable to more complex attacks that require the capture of many traces
of execution [16]. Mechanisms relying on randomization were introduced as a
protection against those attacks. One of the most known is exponent blind-
ing by adding a random multiple of the order of the base element [9]. Another
one central to this paper consists of splitting the exponent randomly in several
shares [7].

However, these countermeasures do not necessarily protect from all attacks.
For instance, the blinding of the exponent on NIST elliptic curves might not
mask the exponent entirely due to the particular nature of the sparse order of
the curves [10,20]. Concerning the exponent splitting, it was shown a correlation
between the shares in the additive version of the splitting [18], and a template
attack was applied on the Euclidean version of the splitting [12].

It is of interest to look at the choices made to achieve security of exponen-
tiation algorithms in widely used cryptographic libraries, in particular for use
with the SRP protocol. The source code of Apple’s cryptographic library is made
available to allow for “verification of its security characteristics and correct func-
tioning”.1 This library implements the low-level implementations of primitives
that can be used by developers through high-level APIs for security operation for
operating systems iOS and macOS, in particular through the CommonCrypto
interface for cryptographic operations or the Security Framework. Several pro-
tection mechanisms are implemented in the modular exponentiation used in
the SRP protocol, including the Euclidean splitting technique, and analysis has
shown the presence of a variation in its execution.

1 https://developer.apple.com/security/ (bottom of the page).

https://developer.apple.com/security/
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In this paper, we introduce an attack on the SRP protocol when the underly-
ing exponentiation algorithm is vulnerable to side-channels. This allows running
an offline dictionary attack with two variants. The first where the attacker only
observes the communication and the vulnerable exponentiation, while the other
assumes an attacker that interferes as a Man in the Middle similar to the Drag-
onblood attack on the Dragonfly handshake [22]. We also present a vulnerability
in the modular exponentiation of Apple’s cryptographic library. We found that
randomization of the exponent with the Euclidean splitting technique of [7] has
been added in the most recent version of the library.2 We show that it leads to a
small leakage that can be measured with simple side-channels. While it is mild,
it becomes much more significant from many measurements with a fixed expo-
nent, making it possible to approximate the exponent by placing it in a smaller
range. This is useful for the attack on SRP, in particular for the first variant.
Although not present in the core of the paper, we found the same vulnerability
in the exponentiation algorithm used with elliptic curves in the library.

The paper is organized as follows. We start in Sect. 2 with a general descrip-
tion of the SRP protocol. We introduce in Sect. 3 our attack on the protocol in
the situation where the client uses a vulnerable exponentiation algorithm, even
in the case of a small leak. Section 4 describes the modular exponentiation in
Apple’s cryptographic library and the leakage we found due to the Euclidean
splitting of the exponent that leads to an approximation of the secret exponent.
In Sect. 5, we present a simulation of a power trace of the modular exponentia-
tion, and experiments to illustrate the effectiveness of the attack on SRP using
the leak from Apple’s library. We present countermeasures to avoid the leak with
the Euclidean splitting in Sect. 6, and a conclusion in Sect. 7.

Responsible Disclosure. The vulnerability has been disclosed to Apple Prod-
uct Security following their procedure. A security update has been made available
in iOS 14.5 and macOS 11.3.

2 The Secure Remote Password Protocol

The Secure Remote Password (SRP) was introduced in [25] and is described as
SRP-3 in RFC 2945 [24], and SRP-6 for use in TLS authentication is described in
RFC 5054 [21]. The difference between the two versions is minor and addresses
vulnerabilities that are not relevant to the paper, and we will describe the pro-
tocol using versions SRP-6 and SRP-6a. It is a password-based protocol whose
main goal is to establish a key agreement between two parties in a client/server
model. The password is known only from the client, while the server stores a
verifier. They authenticate themselves by sending ephemeral data similar to a
Diffie-Hellman exchange. As a result of successful authentication, the two parties
share a cryptographically strong secret.

2 No version number is indicated, but copyright notice and last file update refer to
late 2019.
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The protocol is designed such that the password cannot be derived from the
communication between the parties. Therefore, an eavesdropper is unable to run
an offline dictionary attack, making the protocol secure against weak passwords
(e.g., a 4 or 6-digit passcode). Furthermore, if the server is compromised, the
leaked data is insufficient to impersonate the client if the password is strong
enough.

The protocol is described below and summarized in Fig. 1.

Public parameters: safe prime p, base element g, parameter k
password: x = H(salt, id, pw)

Client
secret: pw

random a in [1, q)
A ← ga

Server
secret: v := gx

other: salt

random b in [1, q)
B ← kv + gb

x ← H(salt, id, pw)
u ← H(A,B)
sk ← H((B − kgx)a+ux)
M1 ← H(p, g, id, salt, A,B, sk)

u ← H(A,B)
sk ← H((Avu)b)

Verify M1

M2 ← H(A,M1, sk)

Verify M2

A, id

B, salt

M1

M2

Fig. 1. Secure Remote Password (SRP) protocol, version SRP-6(a).

2.1 Description

Initialization. All calculations are performed in a finite field defined by a large
prime p, and a base element g that generates a large multiplicative subgroup of
order q. In particular, it is recommended that p is a safe prime (i.e., p = 2q + 1
with q a prime) for maximal security. Such parameters are defined in [21] to be
used with the protocol for TLS authentication.

Before any authentication, a password pw and a salt must be chosen by the
client, and a secret exponent x is derived as follows:

x = H(salt | H(id | “:” | pw)),
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where H is a secure hash function and | is a concatenation. For simplicity, we
will omit the specific construction of the input of the hash function and specify
only the values that influence the output. The client computes v := gx mod p,
and the server stores the verifier v and the salt. The client does not need to store
the value x. The matter of how the server gets the verifier and the salt depends
on the application that uses the protocol and is not a part of the description.

Start of Authentication. The first phase consists of the client that sends their
identity and a public value A := ga mod p where a is an ephemeral exponent
randomly generated. From the client’s identity, the server retrieves the corre-
sponding verifier and salt, then sends the salt and a public value B := kv + gb

where b is an ephemeral exponent randomly generated, and k a public parameter
of the protocol (k = 3 in SRP-6, while it is deterministically generated from the
other parameters in the SRP-6a variant).

Challenge Processing and Key Agreement. The two parties can compute
a value u derived from the public outputs A and B. Then we have the following
equality:

(B − kgx)a+ux mod p = (Avu)b mod p.

Using the salt to calculate x, the client can compute the expression on the left,
and the server the one on the right. From this shared secret, a session key sk

is derived. A final step is necessary to prove to each other that their keys are
identical. Both client and server exchange a value that each can verify. In case
of a disagreement, the authentication is aborted.

2.2 Security

To impersonate a client, it is necessary to learn the exponent x for the challenge
processing phase and construct a shared secret with the server. This value is
neither exchanged nor stored, and cannot be derived from the public outputs
exchanged. In the case the server is compromised, an attacker learns v := gx mod
p and x can be recovered only by dictionary attack if the password is weak (the
attacker finds candidates x′ for x until gx′

mod p is equal to v), or by solving a
discrete logarithm problem. The latter is a hard problem if the group parameters
are secure (the record as of the writing of this paper is a discrete logarithm in
a 795-bit finite field [3]). This is equivalent to a breach of database password
hashes and is not in the security scope of the SRP protocol.

On the client’s side, the value x is reconstructed when the client enters the
password, using the salt sent by the server, and needs to compute the exponenti-
ation gx mod p. Therefore, this operation is susceptible to be done several times
and is the main topic of the paper.
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3 Attack on the SRP Protocol

In this section, we present the attack on the SRP protocol. The goal is to run an
offline dictionary attack against weak passwords using partial knowledge of the
secret exponent obtained from a vulnerable exponentiation. While everything is
described using the SRP protocol, we point out that the attack could be adapted
for similar protocols involving an exponentiation related to a password.

3.1 Attack Model

The target of the attack is the client’s side implementation of the protocol on
the part relevant to the exponentiation with the secret exponent x derived from
the password. The attack consists of three main steps:

1. Obtention of the salt and client’s identity (once for each salt);
2. Observe through side-channels the vulnerable implementation (might be nec-

essary to repeat this step depending on the vulnerability);
3. Run a dictionary attack using the side-channel leakage.

The first step is necessary since those values are the other entries outside of the
password for the exponent derivation. The second allows the attacker to collect
data related to the exponent x that is leaked by the implementation.

When those conditions are met, the attacker creates a distinguisher of the
secret exponent from the side-channel leakage. Then, from the salt and the
client’s identity previously obtained, a dictionary attack can be performed as
summarized in Algorithm 1. The distinguisher acts as an indicator to filter out
wrong passwords. Indeed this value is derived from the correct exponent, so the
correct password will satisfy the verification against the distinguisher. However,
it does not mean the correct password has been found, and unless great preci-
sion, many other passwords will pass the test. The performance of filtering out
wrong passwords depends heavily on the precision given by the distinguisher.

Algorithm 1. Password filtering given a distinguisher.
Require: salt, id, dictionary, distinguisher
Ensure: list of password candidates
1: list ← {}
2: for pw’ in dictionary do
3: x′ ← H(salt, id, pw’)
4: if check(x′, distinguisher) then
5: list ← list ∪ {pw’}
6: return list
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3.2 Passive Attacker

In this version, the attacker only observes the execution on the client’s side. From
the observation of one or several executions, a single distinguisher is created. The
password filtering is limited when the leak is identical in each execution. The
main problem being one cannot improve the distinguisher precision with more
observations. Nonetheless, it is more interesting with a vulnerability that leaks
more data at each execution, as is the case in Apple’s cryptographic library.

One possibility to make this attack more effective is to compare the list of
password candidates of two users. If the number of password candidates in each
list is low enough, only a few wrong passwords will appear on both lists. Then,
a common password can be found in the intersection of the two lists.

3.3 Active Attacker

The previous attacker is limited to one distinguisher and its precision. In the
Dragonblood attack [22], it was noticed that the modification of a MAC address
allowed the acquisition of fresh measurements from an identical password, i.e., a
new distinguisher. The same idea can be applied in the SRP protocol using the
salt which influences the output of the hash function. An alteration of this value
with a Man in the Middle attack results in a new exponent derived from the
same password. A distinct distinguisher can be created from the side-channel
leakage, and the password filtering of Algorithm 1 can be used to reduce even
further the number of candidates iteratively.

This variant implies that the session key computed by the client is incorrect,
and this could be detected with many attempts. To prevent detection on the
server’s side, an alternative would be an attacker that poses as the server and
sends directly the chosen value for the salt. It would still imply failed authenti-
cation for the client.

Another possibility would be a service or product that changes the salt value
for an identical password.

3.4 Practical Considerations

Obtention of the Client’s Identity and Salt. The client’s identity (email
address, username, identification number, etc.) can be easily guessed when the
target is identified. As for the salt, it is exposed to an eavesdropper when the
communications are sent in plaintext.

However, the communication could be encrypted using a certificate-based
TLS, preventing the exposure of the salt. A bypass of this added security is
possible if the attacker initializes an authentication with the server by posing
as the client. The attacker would receive an ephemeral public output B and
the salt that corresponds to the client. An accessible example is the ProtonMail
service that uses SRP for authentication since version 3.6 [19]. The data of the
SRP protocol are exchanged in JSON format and can be extracted using a web
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browser inspector. Then it is easy to get the salt of any user by attempting an
authentication.

Another layer of security could be present in the application that uses SRP,
such as a second factor of authentication before the start of the SRP protocol.
This would make it more difficult to pose as a client and retrieve the salt. We
give details in Sect. 3.5 of the case of the Apple iCloud Keychain recovery service.

Side-Channel Observation. A leakage that can be observed at distance such
as timing attacks is difficult to obtain in this protocol: calculations involving the
secret exponent are only a part of the whole process, so timing analysis could be
hard or impossible to exploit. Other means of attacks require physical access to
the client’s device, whether it is a smartphone or a personal computer. This is a
limit to the application of the attack since the observation follows the entering
of a password.

However, the authors of [11] have shown how a side-channel attack can be
mounted using a magnetic probe near a device, or a power probe on the phone’s
USB charger in a discreet manner. In particular, their experiments were on an
Apple iPhone.

Man in the Middle. The main problem for the second variant of the attack is
that certificate-based TLS communication between client and server may harden
the possibility to modify transmitted values such as the salt. So the Man in the
Middle attacker would require to impersonate the server. A salt modification
implies a failed authentication, and the client might take this as a mistyped
password. Since it only needs to be done a few times, the attacker can space out
the attack over time to pass unnoticed.

There are other possible leads to make the second variant possible such as
a fault injection in the salt or the user’s identity on the client device. Those
solutions come with their difficulties; the one of importance here is that the effect
must be controlled so the modified salt (or user’s identity) must be predictable
by the attacker.

Distinguishers and Efficiency of Dictionary Attack. To estimate the effi-
ciency of the dictionary attack, we illustrate with the distinguisher that the
paper focuses on: the exponentiation leaks data revealing that the exponent lies
in a small interval of width w. The smaller this value is, the more effective the
filtering.

The explanation lies in the construction of the exponent in the SRP proto-
col where it is the integer representation of the output of a cryptographic hash
function. Let � the maximum bit length possible of a hash function (e.g., � = 256
for SHA-256), then their outputs are expected to be evenly distributed so the
exponent can be any integer in the interval [0, 2� − 1]. Under the same salt and
user’s identity, running through all passwords in a dictionary will result in expo-
nents uniformly distributed, so around w/2� of the exponents are expected to
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satisfy the distinguisher. If D is the dictionary size, then the number of password
candidates is close to

D · w

2�
.

In the context of the paper, this distinguisher is made possible by a leak
explained in Sect. 4.1, and present in Apple’s cryptographic library. The width
w of the interval is related to the number of measurements of the exponentiation.
That makes the first variant of the attack interesting in practice since the only
lever to reduce the number of password candidates is to refine the distinguisher.

However, the use of several distinguishers in the second variant makes the
filtering very effective. Indeed, a modification of the salt implies a fresh exponent
and distinguisher that are independent of the original values thanks to the hash
function. Then the list of password candidates can be reduced significantly by
each distinguisher of width wi:

D ·
∏

i

wi

2�
.

In particular, the case where two users share the same password is equivalent to
the possession of two distinguishers of widths w1 and w2.

If the distinguisher is the bit length n of the exponent, then the exponent
lies in an interval of width w = 2n−1. Thus, around 1/2�−n+1 of the passwords
correspond, and in the worst case, it means half the passwords are expected
to be filtered out. A few dozens bit length distinguishers are generally enough
depending on the dictionary size. We refer to the Dragonblood paper [22] for
this particular case. While not related to the bit length of an exponent, the leak
also follows a geometric distribution.

Remark 1. The reliability of the distinguisher is important. For instance, it is not
guaranteed that the exponent lies in the subinterval obtained with the analysis of
the leak in the modular exponentiation in Apple’s cryptographic library, which
could filter out the correct password.

3.5 iCloud Keychain Recovery

The iCloud ecosystem is the heart of Apple’s online services and can be shared
across devices from one account, and the SRP protocol is used in several places.
One of the services is iCloud Keychain Recovery that allows users to escrow their
keychain with Apple (that contains sensitive data such as passwords or credit
cards). This service has a supplementary layer of protection through the SRP
protocol (with the 2048-bit group of RFC 5054, SHA-256 as the hash function,
and 64 bytes salts) using a separate password from the iCloud account: for each
device, iCloud stores a backup of the keychain as a record protected with the
device’s password (the default when the iCloud account has a second factor of
authentication activated). Thus, the keychain is secured if the iCloud account
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is compromised, and the content stays inaccessible from Apple. More details on
the iCloud Keychain services are given in the Apple Platform Security guide.3

Our investigation has shown the following HTTP requests when a user signs
out and back into iCloud on their device:

1. A request get records is transmitted, and the server answers with a list of
records associated with the iCloud account;

2. A request srp init initiates the first phase of the SRP protocol containing
the client’s ephemeral value to access a record, and the server answers with
the corresponding data: DSID (unique identifier of the iCloud account used
as identity in SRP), the server’s ephemeral value, and the salt;

3. A request recover for the second phase with the client’s proof, and the
servers replies with its proof and the record;

4. The client sends a request enroll with a new record protected with the same
password, but with a different salt.

We have seen two situations where the recovered record is either the old one
corresponding to the device or one corresponding to another enrolled device.
The first case is interesting for the variant of the attack that uses several distin-
guishers.

Though, the realization of the attack requires the obtention of the salt and
identifier. Monitoring the encrypted communications between the target’s device
and Apple’s servers could overcome this issue, but our attempts by setting up
a proxy server failed on a MacBook Pro. An alternative would be to run the
srp init request, but a password-based token is necessary on 2FA protected
iCloud accounts (which has become mandatory for new accounts and cannot
be deactivated). This token is acquired after successful authentication on the
iCloud account.

In the case an attacker has already compromised an iCloud account and
can bypass the second factor of authentication once, then the device can be
enrolled as a trusted device. By doing so, it might happen the keychain will be
synchronized directly with the other enrolled devices if the keychain option is
checked in system preferences. This synchronization does not use SRP, so that
makes our attack useless if the goal is to retrieve a keychain, but it could still
be used to recover the target’s device password.

The attack to recover a weak password on an Apple device can be realized
under the following assumptions:

– Compromise the iCloud password of the targeted user;
– Bypass the second factor of authentication at least once;
– Force the user to disconnect their iCloud account on their device several

times;
– Observe the side-channel leakage when the user reconnects during the execu-

tion of the SRP protocol in iCloud Keychain recovery.

Every time a new leak and salt are obtained, the dictionary attack can be
performed as given in Algorithm 1.
3 https://support.apple.com/guide/security/welcome/web.

https://support.apple.com/guide/security/welcome/web
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4 Modular Exponentiation in Apple’s Library

This section presents the modular exponentiation in Apple’s cryptographic
library and the leakage from the exponent randomization with the Euclidean
splitting technique.

4.1 Exponent Randomization

Let x an exponent of n bits whose binary representation is

x =
n−1∑

i=0

xi2i.

This value is randomized by choosing a random integer m of λ bits and compute
the Euclidean division of x by m. The quotient is a = �x/m� and the remainder
is b = x mod m, then the exponentiation gx is rewritten as

gx = (ga)mgb,

with three exponentiations.
This technique is called the Euclidean splitting and was introduced in [7] as an

alternative to other exponent blinding methods. The authors proposed to com-
pute simultaneously the exponentiation with the quotient a and the remainder b
with Strauss-Shamir double exponentiation [8, Algorithm 9.23] for efficiency. In
the case of Apple, it is computed as three successive individual exponentiations.

Quotient Bit Length Variation. A variation regarding the quotient bit length
and related to the exponent was found: when divided by an integer of a fixed
bit length, then the quotient bit length has two possible values. The probability
that each of them is produced depends on the position of the exponent in the
interval [2n−1, 2n).

The definition and theorem below give the details on the partitioning of the
interval and the associated probabilities.

Definition 1. Let n, λ and β three non-negative integers with λ ≤ n and β ∈
[0, 2λ−1). We note

I(n, λ, β) = [2n−λ(2λ−1 + β), 2n−λ(2λ−1 + β + 1)),

a subinterval of [2n−1, 2n) of width 2n−λ.

Theorem 1. Let d the bit length of the quotient of the Euclidean division of an
integer x by an integer m chosen uniformly at random in [2λ−1, 2λ). Then d is
either n − λ or n − λ + 1 and we have

Pr[d = n − λ + 1 | x ∈ I(n, λ, β)] =
β + 1
2λ−1

. (1)
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Proof. Suppose x ∈ I(n, λ, β) and let x = am + b the Euclidean division of x by
an integer m of λ bits. The lower and upper bounds on the quotient a are

2n−1 − b

2λ
≤ a =

x − b

m
<

2n − b

2λ−1
,

and since b < 2λ and a is an integer, we have a ≥ 2n−λ−1. Overall, only the bit
length n − λ and n − λ + 1 are possible.

Now, if m ≤ 2λ−1 + β, then we have

a =
x − b

m
≥ 2n−λ(2λ−1 + β) − b

m
≥ 2n−λ − b

m
,

and since b < m and a is an integer, we have a ≥ 2n−λ so the bit length of a is
n − λ + 1. In this case there are β + 1 possible values for m out of 2λ−1, hence
the probability.

The other case is when m > 2λ−1 + β, then we have

a <
2n−λ(2λ−1 + β + 1) − b

m
≤ 2n−λ,

and the bit length of a is n − λ. ��
The consequence is that if m is randomly generated at uniform and its bit

length is λ, then the probability that the quotient bit length is n − λ + 1 depends
on which interval I(n, λ, β) contains the exponent x. It is represented in Fig. 2
for λ = 4 as an illustration, to make the staircase apparent, and λ = 32 the use
case in Apple’s library, where the intervals are too small and close to a linear
correlation between an exponent and the probability.
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Fig. 2. Correlation between an exponent of n bits, and the probability that the bit
length of the quotient of the Euclidean division with a λ-bit divisor is (n−λ+1) (left:
λ = 4, right: λ = 32).
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Exponent Approximation. An oracle that reveals d = 	log2(x/m)
 for a
fixed unknown integer x and N random integers m of an identical bit length λ
follows a binomial distribution of parameters N and probability (β + 1)/2λ−1

according to Theorem 1. This oracle acts as binomial trials to construct a con-
fidence interval on the unknown probability when only the number of repeated
experiments N and the number of successes nobs that d takes the value n−λ+1
are known. Since this probability is a characteristic of the interval I(n, λ, β),
then an approximation of x is deduced.

The steps are straightforward. A binomial proportion confidence interval
[p1, p2] on the probability is made observing the number of outcomes nobs of
successes (quotient bit length observed is d = n − λ + 1) out of N outcomes.
Then, β can be estimated too by

p12λ−1 − 1 ≤ β ≤ p22λ−1 − 1,

and since β is an integer, let βmin = 	p12λ−1 − 1
 and βmax = �p22λ−1 − 1�.
Finally, the approximation on x is made by the concatenation of the contiguous
intervals I(n, λ, βmin) to I(n, λ, βmax):

[2n−λ(2λ−1 + βmin), 2n−λ(2λ−1 + βmax + 1)).

This interval is likely to contain the secret exponent x depending on the confi-
dence level.

This approximation makes it possible to construct a distinguisher for the
attack on the SRP protocol.

4.2 Exponentiation Algorithm

There are several exponentiation algorithms in the library. The blinded mod-
ular exponentiation is implemented in the function ccdh power blinded4. The
overall process consists of three individual successive exponentiations, with other
blinding techniques, and is summarized in Algorithm 2 with a random divisor
of λ = 32 bits.

The exponentiation algorithm used from line 5 to line 7 is a 2-bit window-
ing method presented in Algorithm 3 called square-square-multiply-always. The
number of iterations is dependent on the input bit length: if the input bit length
is d, there are 	d/2
 iterations of the loop. This can be revealed by side-channels
by counting the number of patterns on power consumption or electromagnetic
trace (see Sect. 5.1). The divisor bit length is fixed and known in advance, but
those of the quotient and the remainder are variable.

4 In the file ccdh/src/ccdh power blinded.c.
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Algorithm 2. Blinded modular exponentiation in Apple’s CoreCrypto library
Require: x, g, p
Ensure: gx mod p

Modulus, exponent, and base blinding
1: p� ← blinding(p) � p� = p · random
2: g� ← blinding(g) � g� = g + p · random
3: m ← random integer in [231, 232)
4: a ← �x/m�, b ← x mod m

Exponentiation
5: t1 ← g�a mod p�

6: t2 ← t1
m mod p�

7: t3 ← g�b mod p�

8: return (t2 · t3) mod p � (g + p · random)am+b mod p = gx mod p

Algorithm 3. Square-square-multiply always exponentiation.
Require: g, a = (ad−1, . . . , a0)2 with ad−1 = 1
Ensure: ga

1: for i = 0 to 3 do
2: tab[i] ← gi

3: r ← 1
4: for i = �d/2� − 1 down to 0 do
5: r ← r2

6: r ← r2

7: r ← r · tab[2a2i+1 + a2i]

8: return r

For a fixed exponent of bit length n, we have seen that there are two possible
bit lengths d for the quotient and can be used to make an approximation on
the exponent. Both can happen using different values for m, but it is not always
possible to distinguish them with the square-square-multiply-always. If n − λ is
odd, then ⌈

n − λ

2

⌉
=

⌈
n − λ + 1

2

⌉
=

n − λ + 1
2

, (2)

so the quotient bit length is not leaked, but n can still be deduced from the
formula. On the contrary, if n − λ is even, then

⌈
n − λ + 1

2

⌉
=

⌈
n − λ

2

⌉
+ 1, (3)

so the algorithm runs with a different number of iterations for each of the possible
quotient bit lengths, and the bit length n of the exponent x can also be deduced.
Though, it requires several observations of exponentiations to be sure if we are
situated in one or the other case. As a consequence, one measure is not sufficient
to know exactly the bit length n, but the remark below can make it possible in
the SRP protocol.
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Remark 2. On the client’s side in the SRP protocol, the exponentiation involving
the exponent derived from the password is computed in the call of the function
in line 4 of Fig. 3 using the blinded exponentiation. But we noticed it is also
computed with a different algorithm in line 1, but the result stored in the variable
v is never used thereafter (only to be cleared from memory). This algorithm is
Montgomery ladder [17] and starts the process at the most significant bit, leaking
the bit length of x. Therefore, the bit length can be known from one measure.

1 cczp_power(ccsrp_ctx_zp(srp), v, ccsrp_ctx_gp_g(srp), x);

2

3 /* Client Side S = (B - k*(g^x)) ^ (a + ux) */

4 ccsrp_generate_client_S(srp , S, k, x, u, B);

Fig. 3. Dummy exponentiation gx mod p on the client side in the SRP protocol in
Apple’s cryptographic library.

5 Experimental Results

In this section, we present the captures of power consumption of the modular
exponentiation to observe the leak from Apple’s library, and experiments to
illustrate the effectiveness of the attack on SRP with this leak.

5.1 Power Trace Capture

This part has been made in collaboration with Cyril Delétré, a member of the
author’s team.

The variation of the quotient bit length can be revealed by side-channel
by counting the number of patterns on power consumption or electromagnetic
trace. We have selected the Raspberry Pi Zero SoC as it offers a good compro-
mise between computing performances, hardware complexity, and power supply
configuration. First, to get a constant computing capacity and minimize the
noise on the power line the CPU frequency has been fixed to 700 MHz and the
HDMI/TV output has been turned off (this allowed cleaner traces). Starting
with a fresh Raspberry Pi OS setup we have built and installed the CoreCrypto
library from the sources. Then we have written in C language a program that
toggles a GPIO line on the SoC before and after the function from CoreCrypto
has been called. This way the oscilloscope can:

– Measure the power consumption with a first probe connected to a resistor
(3.3Ω in our case) in series on the 5 V power line;

– Trigger the start of the computing on a second probe connected to the GPIO
line (Figs. 4 and 5).
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Fig. 4. Measurement of power consumption on a Raspberry Pi Zero.

Finally, we have automated the batch of measurements with a script written
in Python 3 that:

– Launches the calculation on the Raspberry Pi Zero using the UART serial
console (less disturbance compared to a USB or SSH/telnet console);

– Downloads after each run the data from the oscilloscope using its TCP remote
console.

We chose the 2048-bit group of RFC 5054 [21] for the experiment, and the
exponent

x = d3afa905fededc64bc907b809da3dcb
484763c25c3b4728bb081a97cf9f0a5

(4)

in hexadecimal format. For each execution, the pseudo-random number generator
of CoreCrypto used in the function ccdh power blinded was initialized with a
random seed and was repeated 10000 times.

We give two sample traces in Fig. 6 where we see that the major part of
each trace corresponds to the exponentiation with the quotient (a vertical line
indicates the beginning of the individual exponentiations), and a zoom on the
end of this part in Fig. 7 reveals that it is shorter on the first trace than the
second one by one pattern of square-square-multiply.

It is interesting to note that we do not necessarily need to count the patterns
square-square-multiply every time since the approximation only needs to distin-
guish between the two cases. However, it is important to do it at least once to find
the bit length of the exponent. In this example, we found that there are respec-
tively 108 and 109 loop iterations on the quotient exponentiation. According to
Eq. (3), we deduce that the exponent is a 248-bit integer which is consistent
with the given value in Eq. (4).
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Fig. 5. Configuration of the experimental setup of the oscilloscope and Raspberry Pi
Zero.

We remark that this can still be found even when the patterns are hard to
distinguish if the noise is too high, as long as the beginnings of the individual
exponentiations are exposed. Indeed, using the fact that the random divisor is
always a 32-bit integer, then there are always 16 iterations of the loop. There-
fore, the number of iterations with the exponentiation with the quotient can be
deduced from the length between the two first dashed lines (taking into account
the square and multiply of the precomputation).

We can find easily the start of the exponentiations in the captures thanks
to the presence of a valley that corresponds to the first loop of the square-
square-multiply-always algorithm. Because the exponentiation is initialized with
the value p − 1, the second squaring is 12 followed by a multiplication by 1.
Both operations manipulate very low Hamming weight values, and this has a
significant impact on power consumption.

We used this to classify the traces in the two expected groups using the
position of the valley corresponding to the first loop of the exponentiation with
the random divisor. Many traces had major disruptions, but this method proved
to work well enough for 9356 traces, with 6099 corresponding to the “109” group.
Then the observed frequency was 0.6519 which is close to the probability we tried
to estimate around 0.6538 for the exponent x.
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Fig. 6. Two power trace captures of an exponentiation blinded with the Euclidean
splitting with an identical exponent (vertical lines represent the start of each of the
three exponentiations).

Fig. 7. Zoom on the end of the exponentiation with the quotient, and the start of the
one with the random divisor. The second trace has one more pattern of square-square-
multiply (SSM).

5.2 Dictionary Attack on SRP

The case of several bit length distinguishers known to the attacker has been well
established in [4,22], so we focus on the distinguisher given by the Euclidean
splitting of the exponent as implemented in Apple’s library.

We ran the experiment with the following parameters for the SRP protocol:

– SHA-256 as the hash function (exponents are in the interval [0, 2256));
– 2048-bit group of RFC 5054;
– Salt of 16 bytes;
– 6-digit password.
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Given a random password and salt, the secret exponent x was derived accord-
ing to the SRP protocol (using “id” as the client’s identity). We simulated the
leak for N = 1000 exponentiations following the description of the modular
exponentiation in Apple’s library, then an approximation was made in the form
[xmin, xmax] using the Wilson score interval [23] and a confidence level of 95%,
as described in Sect. 4.1. It has the advantage over a normal approximation to
be more suited for a small sample size N or when the probability to estimate is
close to 0 or 1. All guessed passwords whose derived exponent fell in the interval
were kept as candidates.

We repeated the experiment for 10000 different passwords and collected the
exponent values, the number of password candidates found, and if the password
was correctly included amongst the candidates. The results are given in Fig. 8.

An approximation on the exponents of odd bit length cannot be made as we
have seen in Sect. 4.2, so the number of password candidates for those is way
higher and does not appear (except for exponents of odd bit length less than
251 represented by the isolated dots on the left).

As a result, there were only 6846 cases with less than 32000 password can-
didates, and the correct password was included in the list for 95.5% of them,
which is consistent with the confidence level.

We see that the number of candidates is way lower for exponents near a
power of 2. This is a consequence of the Wilson score interval that gives a better
approximation when the probabilities are near 0 or 1. Therefore there is a concave
curve between each power of 2 for exponents of even bit length.

The best result was a password with a corresponding exponent around 2243.17

and was successfully included amongst a list of 8 candidates.
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Fig. 8. Number of password candidates with N = 1000 measures as a function of the
secret exponent x.
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In a second experiment, we looked at the effects of the number N of measures
on the number of password candidates. We kept the same settings as the previous
with the two following changes:

– Exponents have bit length n = 256;
– The number of measures N ranged from 102 to 105.

The results are given in Fig. 9, where we can see that when the sample size is
increased by a factor of 10, the number of password candidates is decreased by
a factor around

√
10 due to the binomial approximation.
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Fig. 9. Number of password candidates as a function of the secret exponent (from top
to bottom: N = 100, N = 1000, N = 10000, and N = 100000).

6 Countermeasures

In this section, we present our proposition to make the Euclidean splitting pro-
tected against our attack, followed by the countermeasure proposed by Apple
developers.

6.1 Our Proposition

It is necessary to hide the bit length of the exponent to prevent the attack
on SRP using a bit length distinguisher. This can be done using the padding
proposed in [5] where x is padded with the group order q so the result of the
exponentiation is unchanged. Combined with an exponentiation algorithm with
a regular behavior, nothing on the exponent is leaked from simple side-channels.

However, in the context of SRP, the group order can be much higher than
the exponents, so the above technique adds a large cost to the execution. We
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present an alternative using a precomputed value. If the exponent x can have a
maximum bit length �, then it can be replaced by

xpad = x + 2�.

Let y := g−2�

mod p a precomputed value, then gx mod p can be calculated as
follows:

gxpad · y mod p.

The extra cost is moderate since it adds one multiplication, and the exponentia-
tion involves an exponent with one bit longer than the largest exponent possible.

The Euclidean splitting can be used, but it is necessary to take care of the
quotient bit length. We suppose the exponent has been replaced by the padded
value xpad with one of the two techniques above, and the Euclidean splitting
technique is applied with a random divisor m of λ bits:

a = �xpad/m�, b = xpad mod m.

From the padding technique we know the bit length n of xpad in advance, so the
two possible quotient bit lengths are n − λ and n − λ + 1. We can replace the
quotient a by

apad = a + 2n−λ+1

to hide the bit length, and use the precomputed value z := gλ−n−1 to compute
gxpad mod p as:

(gapad · z)m · gb mod p.

Again, the extra cost is moderate since it adds one multiplication and only 1 or
2 bits on one exponent.

Remark 3. In the case where the exponentiation algorithm is the 2-bit window-
ing method of Algorithm 3 used in Apple’s library, the quotient bit length can
be directly hidden with a padding on x only. With exponents less than 2� for �
even, the padded value xpad = x + 2� is an integer of odd bit length � + 1. In
Sect. 4.2 we saw that the number of iterations of the loop with the quotient as
an exponent is always the same in this situation (when λ is even).

6.2 Apple’s Proposition

The solution retained by Apple is to replace the exponentiation by the Mont-
gomery ladder algorithm [17] given in Fig. 10, while still using the Euclidean
splitting.

The algorithm works even if the leading bits of the exponent are set to 0.
However, this case would imply a multiplication by 1 and a squaring of 1 which
is easy to detect on a power trace as we proved in Sect. 5.1. To avoid this pitfall,
the modular arithmetic has been replaced with the Montgomery representation
so the unity does not have a low Hamming weight representation. This is done
by the function cczp to ws before the loop in Fig. 10.

When used for iCloud Keychain, we have confirmed that the loop bounds are
fixed with 225, 32, and 32 loop iterations respectively for the exponentiations
with the quotient, random divisor, and remainder.
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1 ccn_set(n, r1, s);

2 ccn_seti(n, r, 1);

3 cczp_to_ws(ws, zp, r, r);

4

5 cc_unit ebit = 0;

6 for (int bit = (int)ebitlen - 1; bit >= 0; --bit) {

7 ebit ^= ccn_bit(e, bit);

8 ccn_cond_swap(n, ebit , r, r1);

9 cczp_mul_ws(ws, zp, r1, r, r1);

10 cczp_sqr_ws(ws, zp, r, r);

11 ebit = ccn_bit(e, bit);

12 }

13

14 // Might have to swap again.

15 ccn_cond_swap(n, ebit , r, r1);

Fig. 10. Excerpt of the Montgomery ladder for modular exponentiation in the updated
version of CoreCrypto.

7 Conclusion

We showed an attack on the SRP protocol when the modular exponentiation is
vulnerable to side-channels, so an attacker can perform a dictionary attack to
find a weak password. Then, we presented a leak we found in Apple’s crypto-
graphic library that comes from the presence of a protection mechanism that
randomizes exponents through Euclidean divisions. We analyzed it and showed
that a passive attacker can approximate the secret exponent from several mea-
sures, and run an offline dictionary attack on SRP. It is not negligible from a few
thousand observations of the exponentiation and can produce a list of hundreds
of candidates from a dictionary containing millions of passwords.

Our findings were shared with Apple in responsible disclosure and the vul-
nerability was patched in iOS 14.5 and macOS 11.3.

Like other works, this paper highlights that insecure exponentiations are
still deployed in cryptographic libraries and that a small leak can be enough to
diminish the security of a protocol such as SRP.

Acknowledgments. The author would like to thanks the anonymous reviewers for
their comments, Apple Product Security for their collaboration, and finally his col-
league Cyril Delétré who provided the power trace captures.

A SRP Requests and Responses in iCloud Keychain
Recovery

In this appendix, we present the HTTP request srp init in the context
described in Sect. 3.5.
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The captures were made on a secondary device using Wireshark5 and Frida6

to export the TLS session keys for decryption.

1 POST /escrowproxy/api/srp_init HTTP /1.1
2 Host: p49 -escrowproxy.icloud.com :443
3 (...)
4 Authorization: Basic Y29 (...) BFVA==
5 (...)
6

7 <?xml version ="1.0" encoding ="UTF -8"?>
8 <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0// EN" "http :// www.apple.com/

DTDs/PropertyList -1.0. dtd">
9 <plist version ="1.0" >

10 <dict >
11 <key >blob </key >
12 <string >pIC8heH+SbClHjnugsfBBc (...) +2+ CM8q8hItheOscqwA ==</string >
13 <key >command </key >
14 <string >SRP_INIT </string >
15 <key >label </key >
16 <string >com.apple.icdp.record.et3n (...) 8HqM </string >
17 (...)
18 </dict >
19 </plist >

Fig. 11. Client’s side of the initialization phase of the SRP protocol in iCloud Keychain
recovery.

In Fig. 11, the ephemeral value A is base64 encoded and corresponds to 256
bytes, consistent with the 2048-bit group. The server’s answer is given in Fig. 12,
and contains the salt and ephemeral value B at the end of the data in the base64
string respBlob, each preceded by their length in bytes: 64 and 256.

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="yes"?>
2 <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0// EN" "http :// www.apple.com/

DTDs/PropertyList -1.0. dtd">
3 <plist version ="1.0" >
4 <dict >
5 <key >status </key >
6 <string >0</string >
7 <key >message </key >
8 <string >Success </string >
9 <key >version </key >

10 <integer >1</integer >
11 <key >dsid </key >
12 <string >28 (...) </string >
13 <key >ClubTypeID </key >
14 <integer >0</integer >
15 <key >respBlob </key >
16 <string >AAABiAAAAKQAAAAAPbZQrX (...) jsxg48nknPybRNHkTM =</string >
17 </dict >
18 </plist >

Fig. 12. Server’s side of the initialization phase of the SRP protocol in iCloud Keychain
recovery.

5 https://www.wireshark.org.
6 https://frida.re.

https://www.wireshark.org
https://frida.re


72 A. Russon

We confirmed on the first device that the SRP protocol is executed to retrieve
the same record and salt after signing in and out. The new record created for the
first device is the one that is used on the secondary device when the experiment
is repeated.

B Elliptic Curve and SPAKE2+

In this appendix, we present briefly the implementation of the exponentiation
(scalar multiplication) with elliptic curves where the Euclidean splitting tech-
nique is also used. We first present the differences of the algorithm implemen-
tation, and the consequence on the password-based authenticated key-exchange
protocol SPAKE2+, which can be attacked similarly as with SRP.

B.1 Elliptic Curve Scalar Multiplication

The elliptic curves named secp192r1, secp224r1, secp256r1, secp384r1, and
secp521r1 share the same exponentiation algorithm that is implemented in the
function ccec mult.7

The whole exponentiation is given with generic group notations in Algo-
rithm 4. It is randomized with the Euclidean splitting, but we note differences
with the previous case of modular exponentiation:

– A padding to hide the bit length of the exponent x with the group order is
applied [5];

– A padding is applied on the remainder of the Euclidean division, so the bit
length of the remainder is hidden;

– The individual exponentiations are executed with the Montgomery ladder
algorithm that leaks the bit length of the exponents.

With a padding on the remainder, the only variation in the execution of the
ccec mult function is the exponentiation with the quotient. As a consequence,
the timing execution of the whole exponentiation leaks the bit length of the
quotient. An approximation of the secret exponent can be done with timing
analysis if the auxiliary processing before and after the call of the function can
be controlled.

This issue has been addressed in the updated version of the library. The
Montgomery ladder algorithm has been tweaked to make it work when leading
bits are set to 0 using characteristics of the algorithm and the point addition
formulas from co-Z arithmetic [13].

7 In the file ccec/src/ccec mult.c.
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Algorithm 4. Blinded elliptic curve scalar multiplication with NIST elliptic
curves in Apple’s cryptographic library
Require: x, g of order q
Ensure: gx

1: x1 ← x + q − 232

2: x2 ← x + 2q − 232

3: if �log2(x1)� = �log2(q)� + 1 then
4: xpad ← x1

5: else
6: xpad ← x2

7: m ← random integer in [231, 232)
8: a = �xpad/m�, b ← xpad mod m
9: t1 ← ga

10: t2 ← t1
m

11: t3 ← gb+232

12: return t2 · t3 � gam · gb+232 = gx

B.2 SPAKE2+

The SPAKE2+ protocol [6] is another PAKE protocol similar to the SRP proto-
col and shares properties such as protection against an eavesdropper or a Man
in the Middle. In Apple’s library, it is solely used with elliptic curves.

The attack on SRP can be adapted to work with this protocol, and there are
a few differences. The first is that two exponents are derived from the password,
and, according to the source code of the library, the client computes two distinct
exponentiations with these values. Since the exponentiation is vulnerable, it gives
two distinguishers to run an offline dictionary attack. In the situation of the first
variant, where the attacker is only an observer, this makes the filtering more
effective.
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Abstract. Privacy-preserving data aggregation protocols have been
researched widely, but usually cannot guarantee correctness of the aggre-
gate if users are malicious. These protocols can be extended with zero-
knowledge proofs and commitments to work in the malicious model, but
this incurs a significant computational cost on the end users, making
adoption of these protocols less likely.

We propose a privacy-preserving data aggregation protocol for cal-
culating the sum of user inputs. Our protocol gives the aggregator
confidence that all inputs are within a desired range. Instead of zero-
knowledge proofs, our protocol relies on a probabilistic hypergraph-based
detection algorithm with which the aggregator can quickly pinpoint mali-
cious users. Furthermore, our protocol is robust to user dropouts and,
apart from the setup phase, it is non-interactive.

Keywords: Privacy · Data aggregation · Applied cryptography ·
Hypergraphs

1 Introduction

Data aggregation gives us many valuable insights into the real world in the form
of machine learning [1], participatory sensing [2], software telemetry [3,4], and
smart metering [5]. Although the usefulness of these methods depends on the
amount of available data, privacy concerns make users reluctant to share their
sensitive data with a third party [6,7]. This poses a significant threat to the
viability of large-scale data analysis.

To overcome this problem, privacy-preserving data aggregation (PDA) pro-
tocols have been proposed which allow an aggregator to calculate statistics on
privacy-sensitive data without being able to determine private values. There are
various ways to achieve this. For example, several proposals use techniques such
as homomorphic encryption [6,8] and secret sharing [9,10] to guarantee that
user contributions cannot be decrypted unless they have been aggregated. Other
proposals use differential privacy [11–13] to ensure that the connection between
the observed value and the actual value is perturbed. Either way, PDA protocols
provide the same expressiveness as non-PDA protocols, but without sacrificing
user privacy. These guarantees usually come at the cost of increased computa-
tional complexity, increased bandwidth usage, or decreased accuracy.
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A shortcoming of many existing proposals is that they assume that all users
are honest-but-curious, for example as in [8,14,15]. As a result, these propos-
als cannot be used to defend against dishonest users that want to invalidate the
aggregate or nudge it in their favour. This means that dishonest users could tam-
per with their smart meter to reduce their reported electricity consumption [16]
or inject false data to increase their score in a ranking system [17]. The aggrega-
tor would have been able to detect these attacks by looking at the users’ private
values, but the privacy-preserving properties of the PDA protocol prevent this.

Transitioning from the honest-but-curious model to the malicious model can
be achieved using zero-knowledge proofs and commitments, as suggested in pro-
posals such as [8,13,14]. In particular, range proofs [18] can be used to prove in
zero knowledge that a committed value is within a given range. However, range
proofs—and zero-knowledge proofs in general—often either require a trusted
setup or a significant amount of resources from the user [19]. This makes these
approaches unappealing or even infeasible for resource-constrained users.

In this paper, we present an efficient PDA protocol for finding the sum of all
private user values at a regular interval. The protocol lets an aggregator proba-
bilistically identify private values that are not within a desired range without the
need for zero-knowledge proofs. First, the aggregator divides all users into mul-
tiple overlapping groups such that every user is in a unique set of groups. Then,
in each interval, each user sends their encrypted values to the aggregator, who
determines the sum of private values per group. Finally, the aggregator pinpoints
malicious users by looking at the intersection of groups that violate the range.
By memorising which groups have out-of-range aggregates, the aggregator can
combine detections from different rounds to further enhance its detection rate.

Our protocol boasts several important properties. Firstly, the scheme can be
configured to customise the balance between privacy, complexity, and detection
rate. For example, one can increase the work the aggregator needs to perform
per round to increase the protocol’s resistance to user collusions. Secondly, our
protocol does not require a trusted setup and is non-interactive apart from the
registration phase: Users simply send their encrypted values to the aggregator,
who then aggregates and validates asynchronously. Thirdly, our protocol is an
efficient solution for aggregators relying on resource-constrained users; users are
subject to O(log n) complexity per round in the number of users n. Fourthly, the
grouping structure of our protocol gives the protocol robustness as the aggregator
can continue to operate even when users fail to submit their measurements.
Finally, our protocol can be used as a primitive to build complex algorithms such
as principal component analysis, singular-value decomposition, and decision tree
classifications by writing the inputs as aggregate-sum queries, like in [20].

The remainder of this paper is structured as follows. In Sect. 2 we look at
related work. Then, in Sect. 3 we present our protocol in detail, and in Sect. 4 we
analyse its security, privacy, complexity, and detection rate. Finally, in Sect. 5
we present our conclusions.
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2 Related Work

We discuss various protocols for range validation of malicious inputs. First, we
consider PDA protocols that have range validation built in. Then, we consider
several alternative approaches not inherent to PDA protocols.

Kursawe [9] proposes a scheme in which the aggregator verifies that all private
values are valid by checking that the sum of inputs approximates the true aggre-
gate. However, it cannot identify which user sent the invalid value and requires
knowledge of the true aggregate beforehand, which is not always feasible.

Sun et al. [21] present APED, a PDA protocol that detects defective smart
meters using a method similar to ours. In APED, a trusted third party divides all
users into w random sets of disjoint pairs such that each user is in w pairs at once,
and creates a random key ki for each user i. Then, for each pair of users (i, j),
the third party sends ki,j = −(ki + kj) to the aggregator. In each round, each
user i sends a ciphertext of their measurement, encrypted with the key ki. After
receiving the ciphertexts for that round, the aggregator decrypts the product of
the ciphertexts of each pair in one of the w pairing sets of users using that pair’s
combined key ki,j . If a pair cannot be decrypted, at least one of the two users
must be defective, and the aggregator will use a different pairing set in the next
round. After some rounds, the aggregator infers from the overlap of invalid pairs
which users are defective. An extension of the protocol, DG-APED [22], uses
groups of arbitrary size. Both protocols have two drawbacks. Firstly, they rely
on a trusted third party to create groups and generate key material. Secondly,
because the protocols are tailored to defective users, the detection algorithms
are unsuitable for users that do not always send invalid users.

Ahadipour, Mohammadi, and Keshavarz-Haddad [23] propose a protocol that
reduces the amount of private data the aggregator has access to. Users are divided
into disjoint groups, and the aggregator obtains the sum of each group’s values in
addition to a random subset of the users’ private values. The aggregator then looks
at the collected private values to determine which users sent invalid values. While
this reduces the privacy impact on its users, giving the aggregator access to even
a single private value is not tolerable for sensitive data.

Yang and Li [15] propose a protocol that can identify out-of-range values
using re-encryption. The aggregator divides users into disjoint groups, and when
it finds that the aggregate of a group is out of range, it re-encrypts and shuffles
the values of the violating group and sends them to a random user in that
group. The random user decrypts the values and reports which values are out
of range. The main drawback of this scheme is that it is especially vulnerable
to collusions, as a single collusion between the aggregator and the random user
suffices to reveal all private values of an entire group to the aggregator.

Finally, there is a multitude of proposals that assume that users are honest-
but-curious, but note that zero-knowledge proofs could be used to perform
input validation [8,13,14]. With zero-knowledge proofs, users can mathemati-
cally prove that their value is within a particular range without having to reveal
their value. Generic zero-knowledge proofs such as SNARKs require a trusted
setup, which is often not a realistic assumption. Its cousin, the STARK [24],
resolves this problem, but this comes at the cost of increased communication
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complexity. Corrigan-Gibbs and Boneh [25] introduce SNIPs to allow users to
prove that input is valid according to an arbitrary circuit, but this solution
requires a multitude of cooperating servers, of which all must be honest to guar-
antee correctness and at least one must be honest to guarantee privacy for the
user; furthermore, client-side communication costs grow linearly with the com-
plexity of the validation circuit. Range proofs [18] are a specific form of zero-
knowledge proof specific to range checking. Even though range proofs such as
Bulletproofs [26] are more efficient than generic zero-knowledge proofs, they still
incur a relatively high complexity for the users (i.e. the provers) [19], and must
also be used in addition to the privacy-preserving data aggregation protocol and
a cryptographic link between the two such as a commitment scheme.

3 Probabilistically Range-Limited Private Data
Aggregation

We consider a setting with n users and a single aggregator, similar to related
work in Sect. 2. Users continuously submit new privacy-sensitive measurements
to the aggregator at regular intervals called rounds; we assume that users and the
aggregator have access to a synchronised clock. We work in the standard model
under the assumption that the discrete log problem is intractable. Some users
are malicious and may deviate from the protocol; these are exactly the users
the aggregator wants to identify. All other users are honest-but-curious (also
known as semi-honest). We assume that the aggregator is honest-but-curious, an
assumption made in several other related works including [8,10]. This assumption
makes sense in a business-driven setting, in which a malicious aggregator would
be faced with negative publicity and a loss in consumer trust if its behaviour were
discovered. Still, we allow for collusions between users and the aggregator. We
assume that the sets of malicious and colluding users do not change throughout
the protocol. Finally, we assume that the security, integrity, and authenticity of
all messages is guaranteed. The notation used to describe our protocol is shown
in Table 1. Our protocol broadly works as follows.

1. Registration: Each user sends a message to the aggregator indicating that
they want to register. Once all users have registered, the aggregator divides
the users into overlapping groups. It then sends information such as the public
parameters and the group configuration to all registered users.

2. Submission: Every round, each user creates a new secret share of the value 0
for each group they are in. The user takes copies of their private value and
blinds each copy with a different secret share. The user sends the blinded
copies in addition to commitments to the secret shares to the aggregator.

3. Aggregation: The aggregator verifies that the secret shares of each group sum
to 0 and verifies that each user used copies of a single private value, remember-
ing which users and groups failed verification. Next, the aggregator computes
the sum of private values of each group, and remembers which groups have
aggregates that are out of bounds. Finally, the aggregator combines all group
aggregates to find the sum of all private values.
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4. Detection: Eventually, the aggregator looks back at which groups exhibited
malicious activity over the past several rounds, and derives from their overlap
which users caused the malicious behaviour. As the protocol progresses, the
aggregator is able to identify more and more malicious users.

Table 1. The notation used in the description of our protocol

Symbol Meaning

n Number of users

b Grouping base/radix = users per group

� Grouping dimensionality = groups per user

[min,max ] Valid range of a single private value

g Generator for commitments

pp Public parameters, contains all of the above

U Set of all user identifiers

G Set of all group identifiers

Gi Set of identifiers of groups of user i

Uj Set of identifiers of users of group j

Ni Set of identifiers of neighbours of user i

(sk i, pk i) User i’s key pair

t Round number

mi,t User i’s private value in round t

ci,j,t User i’s encryption of mi,t for group j

Mj,t Sum of private values of users in group j in round t

Mt Sum of all private values in round t

ri→j,t User i’s random value for neighbour j in round t

si,j,t User i’s secret share for group j in round t

di,j,t User i’s commitment to si,j,t

V Set of group identifiers aggregator marked as malicious

W Set of user identifiers aggregator marked as malicious

3.1 Registration

The goal of the registration phase is to determine the parameters under which
the protocol will run and to exchange the necessary information for subsequent
rounds. Firstly, the honest-but-curious aggregator chooses a random generator g
of an algebraic structure in which the discrete log problem is hard, such as a
specific elliptic curve. Additionally, the aggregator chooses application-specific
values for n and min < max . Then, each user sends a message to the aggregator
indicating the desire to participate in the protocol. Once n users have registered,
the aggregator sends the public parameters pp and some additional information
to all users. The remaining public parameters and additional information are
chosen based on the following grouping algorithm and secret sharing scheme.
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Fig. 1. Examples of hypermeshes

Parameters for the Grouping Algorithm. The grouping algorithm divides
users into groups such that the aggregator can pinpoint malicious users based on
which groups exhibit malicious behaviour. We base our algorithm on the struc-
ture of a hypermesh [27]. A b-ary �-dimensional hypermesh is a hypergraph with
b� nodes, where each node is assigned an �-digit identifier d�−1d�−2 . . . d0 such that
di ∈ [0, b) for all 0 ≤ i < �. Two nodes are neighbours if and only if their iden-
tifiers differ in exactly one digit. Nodes are connected by b-edges, i.e. edges with
b endpoints. Edge identifiers have the same format as node identifiers, except that
exactly one digit is replaced by the wildcard symbol �. Every edge then connects
the b nodes of which the identifier matches that of the edge, ignoring the digit in the
wildcard’s position. Identifiers can be considered coordinates in an �-dimensional
Euclidean space, with b�−1 edges aligned along each dimension for a total of �b�−1

edges. We give some examples of hypermeshes in Fig. 1.
In our protocol, the aggregator generates a b-ary �-dimensional hypermesh

after all n users have registered, with the requirements that n = b�, b ≥ 2,
and � ≥ 2. The edges in the hypermesh are then exactly the groups that users
are in. Generating such a hypermesh constitutes choosing values for b and �, and
assigning to each user a unique identifier in [0, b�), which can be converted to a
unique �-digit b-ary identifier. These three variables are sufficient for a user to
reconstruct the hypermesh and determine their own position. The � groups that
user i is in, denoted Gi, can be found by replacing the respective � digits in i
by the wildcard symbol �. The b users in group j, denoted Uj , can be found by
replacing the wildcard symbol � with the respective values [0, b). The neighbours
of user i, denoted Ni, can be found by taking the union of {j ∈ Ui | Gj}, minus i.

Parameters for Secret Sharing. Our scheme uses secret sharing to prevent
the aggregator from decrypting ciphertexts unless all ciphertexts of a group have
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been aggregated. We apply the procedure for creating 0-sum additive secret
shares used in [8] to each group in G. We avoid direct communication between
users by forwarding messages through the (honest-but-curious) aggregator, but
use public-key encryption to ensure that the aggregator cannot see the actual
random values being transmitted. Our goal is to obtain secret shares si,j,t for
each user i ∈ U in each group j ∈ Gi in each round t such that

∀j ∈ G :
∑

i∈Uj

si,j,t = 0. (1)

While the following description assumes that users exchange random numbers
each round, such excessive communication can be avoided by having users
exchange seeds for random number generators once during registration.

First, each user i generates an asymmetric key pair (sk i, pk i), and includes
pk i when sending the registration message to the aggregator. Once all n users
have registered, the (honest-but-curious) aggregator sends to each user i the
public keys {pkk | k ∈ Ni}. These key pairs can be reused and do not need to
be exchanged again in future rounds. Then, in each round t, user i generates
a random number ri→k,t for each neighbour k ∈ Ni, encrypts it with pkk, and
sends this value to the aggregator, who forwards the message to user k. Once
user i has obtained rk→i,t for each neighbour k, user i creates the secret share

si,j,t =
∑

k∈Gj

(ri→k,t − rk→i,t) (2)

for each j ∈ Gi. We consider the privacy of this construction in Sect. 4.2. We
present a communication diagram that includes registration in Fig. 2.

3.2 Submission

In round t, each user i submits the private value mi,t such that the aggregator
can obtain the group aggregates without seeing mi,t. We use encryption function
ci,j,t = mi,t + si,j,t to have each user i send {ci,j,t | j ∈ Gi} to the aggregator,
with the secret share si,j,t as described in Sect. 3.1. To prevent malicious users
from avoiding detection by using a different mi,t in different groups, users must
additionally send commitments to their secret shares. We use a simple homomor-
phic commitment scheme that is computationally binding and computationally
hiding: To commit to a value x, a user sends gx. Then, each user i computes
commitments di,j,t = gsi,j,t and sends {(ci,j,t, di,j,t) | j ∈ Gi} to the aggregator.

3.3 Aggregation

The aggregation phase is asynchronous to user submissions and may be invoked
by the aggregator at any time. Before aggregating the submissions for round t,
the aggregator verifies for each group j ∈ G of which all users have submitted
their values by checking that

∏

i∈Uj

di,j,t =
∏

i∈Uj

gsi,j,t = g
∑

i∈Uj
si,j,t = g0 = 1 (3)
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Registration pk i

wait for all users

pp, i, {pkk | k ∈ Ni}

{encpkk
(Ri→k) | k ∈ Ni}

wait for all users

{encpki
(Rk→i) | k ∈ Ni}

Round t {(ci,j,t, di,j,t) | j ∈ Gi}

Round t + 1 {(ci,j,t+1, di,j,t+1) | j ∈ Gi}

etc.
...

User i Aggregator

Fig. 2. An overview of the communication in our protocol. To reduce per-round commu-
nication, users exchange seeds Ri→k during registration to generate ri→k,t in round t.

to ensure that users committed to secret shares of the value 0. If a group j
fails this check, at least one user in this group must have been malicious, so the
aggregator adds j to V . Next, the aggregator constructs for each user i the set

{gci,j,t(di,j,t)−1 | j ∈ Gi} = {gmi,t+si,j,tg−si,j,t | j ∈ Gi} = {gmi,t | j ∈ Gi} (4)

and checks that all values in the set are equal. This ensures that each ci,j,t for
user i uses the same mi,t. If user i fails this check, all groups in Gi are added
to V , effectively marking this user as malicious once the detection algorithm
runs. Users that fail to submit measurements similarly have their groups added
to V . If desired, a level of lenience can be introduced by only adding these groups
once a user fails to submit in multiple rounds.

After the aggregator has completed its verifications, aggregation can start.
For each group j ∈ G, the aggregator calculates

Mj,t =
∑

i∈Uj

ci,j,t =
∑

i∈Uj

(mi,t + si,j,t) =
∑

i∈Uj

mi,t. (5)
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If an aggregate Mj,t is not in the range [b · min, b · max ], at least one user must
have sent a value that is not in [min,max ], so the aggregator adds j to V . This
check can be adjusted to support use cases in which ranges differ per user or per
round by checking that the aggregate is in the sum of the users’ current ranges.

The sum of all private values can be calculated by taking the sum of all
group aggregates. However, the aggregator should refrain from including invalid
groups. Therefore, the aggregator calculates

Mt =

∑
j∈G\V Mj,t

�
, (6)

which is the average of the total sums along each of the hypermesh’s � dimensions,
excluding groups in V . This approximates the sum of only the honest-but-curious
users; if all users behave honestly this approximation is perfect. If desired, the
aggregator can estimate the sum of all users by including a fake group aggregate
for each group in V based on the average of {Mj,t | G \ V }.

3.4 Detection

The detection algorithm lets the aggregator identify which users are malicious.
Throughout the protocol and across rounds, the aggregator adds groups that
exhibit malicious behaviour to the set V . In particular, the set V contains all
groups in which at least one user sent a wrongly constructed secret share or
sent different private values to different groups in the same round, and contains
a subset of groups in which at least one user sent an out-of-bounds value. By
looking at the overlaps of groups in V , the aggregator can infer which users
caused the malicious behaviour; users that are in exactly � different groups in V
are malicious and are added to W . Over time, the set V becomes more and
more complete until all groups containing malicious users have been detected.
We prove that this method does not result in false-positive detections in Sect. 4.1,
even if some malicious users collude. We analyse the detection rate in Sect. 4.4.

4 Analyses

4.1 Security Analysis

In this section we prove that the aggregator does not incorrectly identify users,
we prove that malicious users cannot submit different measurements to different
groups, and we analyse the impact of missing users to the aggregate.

Proof of No False Positives. It is important that the aggregator correctly
identifies which users are malicious. We prove that malicious users cannot frame
an honest-but-curious user, even if they coordinate the values they send.

Theorem 1. In our protocol, the aggregator will never identify an honest-but-
curious user as a malicious user if there are fewer than � malicious users.
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Proof. For the sake of contradiction, let there be an honest-but-curious user
whom the aggregator falsely identifies as malicious. Then this user must be in
� groups of V , so this user shares � groups with malicious users. Because a group
contains those users that differ by exactly one digit, two users can at most share
a single group. The wrongly-identified user must therefore share groups with
� different malicious users. However, by assumption of the theorem’s antecedent,
there are strictly fewer than � malicious users. Therefore, the honest-but-curious
user could not have been identified as a malicious user. ��

Proof of Aggregate Consistency. Users blind their private measure-
ments mi,t using secret shares si,j,t to obtain ci,j,t. It is important that the aggre-
gator verifies that a user’s ci,j,t values use the same underlying mi,t, malicious
users could avoid detection by causing inconsistencies between aggregates other-
wise. We show that it is infeasible for users to do this under our security model,
regardless of how many users are malicious. Working in the standard model,
every user i sends (ci,j,t, di,j,t) for each j ∈ Gi to the aggregator, constructed in
any way the users want. Let si,j,t = dlogg(di,j,t) and mi,j,t = ci,j,t − si,j,t for all
users i and for all j ∈ Gi, regardless of whether values are constructed honestly.

Theorem 2. In our protocol, a malicious user i cannot send messages in
round t to the aggregator such that mi,j,t �= mi,j′,t for any two groups j, j′ ∈ Gi

such that the aggregator’s verification does not fail, assuming that the discrete
log problem is intractable in the group generated by g.

Proof. Firstly, if either user i or any neighbour k ∈ Ni fails to send their mes-
sages, the aggregator’s verification fails right away and the malicious user does
not succeed. Now, it follows from the aggregator’s verification of Eq. 3 that∑

i∈Uj
si,j,t = 0. Subsequently, we know from the verification of Eq. 4 that,

for fixed i ∈ U and t ∈ N, all ci,j,t − si,j,t for j ∈ Gi are equal. Therefore, by
definition of mi,j,t, all mi,j,t for fixed i ∈ U and t ∈ N are also equal. ��

Impact of Missing User Values. The influence of malicious users on Mt

decreases as the aggregator adds more groups to V . At the same time, groups
in V contain honest-but-curious users. We quantify the effect that malicious
users have on the correctness of the total aggregate.

Each user effectively contributes their measurement � times, and, by Theo-
rem 2, each contribution is the same. An ideal protocol would remove only the
� contributions of each malicious user. Our protocol also removes the (b−1)� con-
tributions of each malicious user’s neighbours. The total impact of any set of
fewer than � malicious users is greatest when these malicious users do not share
any groups, in which case V contains (� − 1)� groups. The aggregator then
removes b(�−1)� contributions instead of the optimal (�−1)�; a factor of b more
than optimal. With a total of �b� contributions amongst all users, the effect of
malicious users on Mt therefore diminishes as � increases.
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4.2 Privacy Analysis

We argue that our protocol is a secure data summation protocol in the set-
ting described in Sect. 3. In particular, we argue that when executing the pro-
tocol using a b�-hypermesh, both the joint view of any set of users and the
joint view of the aggregator and a set of fewer than (b − 1)� users do not
leak any information about honest-but-curious users’ inputs, besides what can
be inferred from the group aggregates. We should note that we assume that
each group with an honest-but-curious user also contains at least one other
non-colluding honest-but-curious user so as to prevent trivial attacks on the
aggregates. This assumption is naturally present in many group-based aggrega-
tion schemes, including [8,10,14]. Also recall that the aggregator is honest-but-
curious and will therefore assign users to random positions honestly.

Firstly, we consider the joint view of any set of users UA ⊂ U . The view
consists only of the public parameters pp, the users’ private data, and the public
keys pk i and random seeds ri→k,t other users have sent to users in UA. Confi-
dentiality is trivial because the view does not contain any data derived from the
private values mi,t of any user i �∈ UA.

Next, we consider the joint view of the honest-but-curious aggregator and any
set UA ⊂ U of fewer than (b − 1)� users. The view consists of the same data as
before, now in addition to the aggregator’s private information and the data that
are sent to the aggregator. We proceed to dissect the implications of this view.
Firstly, malicious users in UA differ only from honest-but-curious users in UA in
that they can interact dishonestly with other users, but this does not give them
an advantage. If a malicious user refuses to interact with or sends malformed
data to a user, then this user halts and privacy is maintained. Otherwise, if a
malicious user sends non-random data to user i, then this is no worse than an
honest-but-curious user in UA sharing their data with the aggregator. Secondly,
users that are not in UA receive sensitive information through the aggregator,
but privacy is ensured by encrypting data such that the decryption key is not in
the adversary’s view. Thirdly, the private values mi,t of user i �∈ UA are masked
using the secret shares si,j,t constructed from values ri→k,t. Because at least one
user k �= i of each group j ∈ Gi is not in UA, both ri→k,t and rk→i,t are chosen
honestly and remain unknown to the adversary. Because additive secret sharing
is trivially secure, the secret shares si,j,t properly mask mi,j,t. Finally, we observe
that each submission occurs in multiple linearly dependent aggregates, which is
equivalent to a system of linear equations. We prove that it is infeasible for the
adversary to solve this system because it is not full rank.

Theorem 3. The rank of the incidence matrix of a b�-hypermesh is b�−(b−1)�.
(Equivalently, the number of unknowns in the incidence matrix is (b − 1)�.)

Proof. We model the incidence matrix such that each row describes a group and
each column describes a user. We construct the incidence matrix recursively, sim-
ilar to how the hypermesh itself can be constructed. Given a b-ary 1-dimensional
hypermesh, its incidence matrix Cb,1 is a (1×b)-matrix containing only 1s. Then,
a b-ary �-dimensional hypermesh can be constructed from b copies of the b-ary
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(� − 1)-dimensional hypermesh, where all nodes are additionally connected to
their counterparts in the other copies using b-edges. This allows us to construct
the incidence matrix Cb,� for � > 1 as

⎡

⎢⎢⎢⎢⎢⎣

Cb,�−1 0 . . . 0
0 Cb,�−1 . . . 0
...

...
. . .

...
0 0 . . . Cb,�−1

Ib�−1 Ib�−1 . . . Ib�−1

⎤

⎥⎥⎥⎥⎥⎦
, (7)

where each 0 represents a matrix of the same size as Cb,�−1 containing only 0s,
and Ix denotes an identity matrix of size x × x.

We now use complete induction on � to prove that rank(Cb,�) = b� − (b− 1)�.
For the base case, we take � = 1 and find that rank(Cb,1) = 1, which matches
our theorem:

b� − (b − 1)� = b − (b − 1) = 1. (8)

For the recursive case, take as our induction hypothesis that r = rank(Cb,�−1) =
b�−1 − (b − 1)�−1. We write Cb,� in column echelon form as follows to determine
its rank. Firstly, consider the column operations necessary to write Cb,�−1 in
column echelon form, and apply them to each instance of Cb,�−1 in Cb,�. Note
that this also transforms the Ib�−1s located beneath the Cb,�−1s. After applying
these steps, each instance of Cb,�−1 has b�−1 − r empty columns on the right,
while each instance of Ib�−1 has no zero columns because it is full rank. The
rightmost b�−1 − r columns of each Ib�−1 are now identical, however, and have
nothing but 0s above them. As such, we cancel out these columns except in the
rightmost instance of Ib�−1 using simple column operations. This cancels out
(b − 1)(b�−1 − r) columns, while all other columns are non-zero. After moving
these zero columns to the right of the matrix, Cb,� is in column echelon form.
The rank of Cb,� is then the number of non-zero columns, which is

b� − (b − 1)
(
b�−1 − r

)
= b� − (b − 1)

(
b�−1 − (

b�−1 − (b − 1)�−1
))

(9)

= b� − (b − 1)(b − 1)�−1 = b� − (b − 1)�, (10)

proving our theorem. ��
With fewer than (b − 1)� users in the view, the adversary always has at least

one unknown in this system. To give an intuition into the growth of (b − 1)�,
consider Fig. 3, where we show the maximum ratio of users that may collude
with the aggregator as a function of b and � without breaking confidentiality.
For example, a system with b = � = 2 could not tolerate a single colluding
user, while a system with b = � = 5 could tolerate up to 45

55 ≈ 33% of all
users colluding. As the number of groups per user grows, the collusion resistance
decreases. This can be compensated for by increasing the number of users per
group, but, as we discuss in Sect. 4.4, this decreases the detection rate.
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Fig. 3. Maximum proportion of users that can collude with the aggregator as a function
of b (users per group) and � (groups per user)
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Fig. 4. Per-user communication during registration. We assume 4 bytes per (masked)
private value and 256-bit EC-cryptography. With point compression, this results in
33-byte keys, ciphertexts (for seeds), and commitments.

4.3 Complexity Analysis

We quantify the complexity of our protocol in terms of the number of users n.
Then, we compare our protocol to a selection of related PDA protocols. We
express complexity in terms of the amount of encryptions, decryptions, mul-
tiplications, exponentiations, additions, subtractions, and outgoing messages,
separately for each user and the aggregator, similar to the analysis in [10].

Complexity of Our Protocol. Firstly, note that in our protocol, b = n
1
� .

This amount is maximal when � = 2, so we say that b is O (
√

n). Meanwhile,
� = logb(n) is O(log n). We show a time diagram of our protocol in Fig. 2.

During the registration, each user sends one encrypted seed for each neighbor
and a fixed-size key to the aggregator, resulting in an outgoing communication
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complexity of O (
√

n log n) per user. Meanwhile, each user receives one key and
one encrypted seed per neighbor, for an incoming communication complexity
of O (

√
n log n) per user. We visualize registration communication complexity in

Fig. 4. Later, in each round, each user sends for each group it is in a constant-size
message containing a masked plaintext and a commitment, for a communication
complexity of O(log n). Users do not receive anything during rounds. Creating
a submission requires one commitment and one masked private value for each of
the user’s groups, for a total of O(log n) exponentiations and O(log n) additions
per user per round.

Table 2. Complexity analysis of several privacy-sensitive data aggregation protocols,
separated by party: User (U) or Aggregator (A), given total number of users n and
range size 2r.

Protocol [15] [25] [26] Ours

Aggregation � � �
Detection � � � �
Robust � � �
Topology Tree Arbitrary Arbitrary Hypermesh

Group ElGamal FFT field EC EC

Party U A U A U A U A

Enc O(1) O(1) – – – – – –

Dec O(1) O(1) – – – – – –

Mult O(1) O(1) O(r log r) O(r log r) – – – O(n log n)

Exp O(1) O(1) – – O(r) O(nr) O(log n) O(n log n)

Add – – – – – – O(log n) O(n log n)

Sub – – – – – – – –

Com O(1) O(1) O(log r) O(1) O(r) O(nr) O(
√

n log n) O(n
√

n log n)

The aggregator forwards each user message during the registration, result-
ing in a factor of n more communication. After the registration, however, the
aggregator does not need to communicate with users other than sending acknowl-
edgements. During aggregation, the aggregator verifies user inputs, requiring one
exponentiation and one multiplication for each group for each user, for a total
of n�b�−1 of either operation. The calculation of the aggregate itself requires only
that the aggregator sums together all n�b�−1 submissions. The detection phase
does not require complex operations, as the aggregator need only find which
users are in � groups of V .

Comparison to Related Protocols. We compare our protocol to a selection
of related PDA protocols, as shown in Table 2. Our analysis is subject to sev-
eral limitations. Firstly, because our protocol is tailored to identifying malicious
users, we restrict our analysis to detection protocols for malicious users, thus also
excluding APED [21] and DG-APED [22]. Secondly, in our analysis of the pro-
tocol in [25], we assume that the number of multiplication gates is linear in the
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size of the range, which corresponds to the size of an integer comparison circuit.
Finally, for the protocol in [15], we assume a binary tree topology for simplicity,
and include operations related to the detection sub-protocol for fairness.

The protocol in [15] provides by far the lowest complexity by validating in
a decentralised fashion, but requires long periods of interactivity and has the
weakest security model: An honest-but-curious aggregator and any single user
can collude to obtain all private values. Prio [25] and Bulletproofs [26] have
a complexity that depends on the size r of the valid range; meanwhile, our
complexity is independent of r. Additionally, with Bulletproofs, the size of the
range must be of the form [0, 2r) for some natural number r, whereas our protocol
supports arbitrary ranges, as does Prio. Finally, Bulletproofs can verify user
submissions in bulk, but only if all users have the same valid range. Otherwise,
the verification complexity grows linearly with the number of different ranges.
While an alternative would be to verify the widest range in bulk, this is not
practical. Our protocol supports different ranges for all users without an increase
in complexity, instead affecting the detection rate, as we discuss in Sect. 4.4.

We conclude that the complexities of these protocols must be considered in
the context of the application. If users have different, personalised use cases, the
computation and communication complexities of our protocol scale better than
competing protocols.

4.4 Detection Rate Analysis

Values submitted by honest-but-curious users in the same group as a malicious
user may coincidentally compensate for the malicious transgression. As a result,
our detection algorithm is probabilistic. In this section we analyse how the detec-
tion rate varies as a function of the protocol’s parameters. In our analysis we
model each honest-but-curious user’s value as a truncated binomial distribu-
tion X with μ = min+max

2 and a support of [min,max ]. For the sake of illustra-
tion, we use σ = 2, min = 5, and max = 15. We model the sum of n indepen-
dent honest-but-curious users’ values, denoted Xn, by approximating X with
a non-truncated binomial distribution, multiplying the distribution by n, and
truncating this distribution to the range [n · min, n · max ].

Detection Rate of a Single Malicious User. Consider a system with a
single malicious user i who submits the out-of-range measurement m. We assume
that m > max , without loss of generality because X and Xb−1 are symmetrical.
Recall that user i is detected only once all � groups in Gi are in V .

First, we consider the detection rate of an individual group. The aggregate of
a group j ∈ Gi does not exceed its upper bound if and only if Mj,t = Xb−1+m ≤
b ·max , or, equivalently, if Xb−1 ≤ b ·max −m. We illustrate the probability that
this relation holds as a function of m and b in Fig. 5a. The figure shows that
fixing a particular detection rate results in the corresponding malicious value
growing linearly with the group size. Note that the detection rate is exactly 0%
at m = max and exactly 100% at m = b(max − min) + min.
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Fig. 5. Detection rate of a single malicious user

We can thus model the detection rate of a group as a geometric variable to
express the expected number of rounds until it is detected. Because the groups Gi

overlap only in user i, their detection rates are independent for fixed m. The
expected number of rounds until all � groups have been detected at least once is
then the expected maximum of � iid geometric variables, which is [28]

f(�, p) =
n∑

k=0

((
�

k

)
pk(1 − p)�−k(1 + f(� − k, p))

)
, (11)

where � is the number of groups and p is the per-round detection probability
of each group. Figure 5b shows f(�, p) for various combinations of � and p. We
conclude that increasing the number of groups per user necessitates a higher
per-group detection rate to retain the number of expected rounds, which can be
done by reducing the group size, for example.

Detection Rate of Multiple Malicious Users. When a group contains mul-
tiple malicious users, these users can either intensify or diminish the sum effect
they have on their group’s aggregate. This means that, depending on the usage
scenario, multiple malicious users either become harder to detect (if malicious
users have equal reason to transgress the range in either direction) or easier to
detect (if malicious users have more reason to transgress the range in a particu-
lar detection). Therefore, our protocol is best suited for applications where users
are most likely to transgress in a particular direction.

We can reuse our results from Sect. 4.4 to quantify the detection rate of a
group with multiple malicious users. Given a group of size b with n malicious
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Fig. 6. The correlation of the detection rate of two groups, each with a different mali-
cious user and overlapping in one honest-but-curious user. Simulated in Matlab by sam-
pling honest values from truncated normal distribution N (10, 9) with support [8,19].
Malicious users send 10 + 5b, which ensures the groups are not always detected. Cor-
relation was calculated with 5000 trials per group size.

users, the detection rate of the sum of malicious values m is

Pr[Xb−n+m ≤ b·max ] = Pr[Xb−n+m−(n−1)·max ≤ (b−(n−1))·max ]. (12)

That is, this detection rate is the same as that of a single malicious user that
sends the value m − (n − 1) · max in a group with only b − (n − 1) users.

Users may coordinate the malicious values they send to avoid being detected
by the aggregator in some groups. However, it follows from Eq. 12 that complete
avoidance is possible only if the sum of their values is valid. Because values
are consistent between groups by Theorem 2, this type of avoidance detection
requires that the sum effect on the total aggregate is valid, so malicious users do
not gain any significant advantages by working together.

An important observation regarding the interplay of group aggregates is that
malicious users that do not share a group may still have an overlap in the users
that they share groups with. In this case, the detection rates of these groups
become covariant because of the common user. As shown in Fig. 6, the impact
of this covariance depends on the group size b and quickly becomes negligible.
Therefore, the expected number of rounds until detection as expressed in Eq. 5b
holds for multiple users up to covariance.

5 Conclusion

Data aggregation is an immensely useful tool for various applications, but intro-
duces a number of privacy concerns. Existing privacy-preserving data aggrega-
tion protocols tend to assume that the users are honest-but-curious rather than
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malicious, or use zero-knowledge proofs, which impose significant computational
requirements on the users. Either way, adoption of these much-needed protocols
is difficult. We present a data aggregation protocol that probabilistically detects
out-of-range user values without giving the aggregator access to these values.
Our protocol imposes only O(log n) per-round computational complexity on its
users without relying on expensive cryptography. The protocol is also robust to
missing data because it can exclude any number of groups that have exhibited
malicious behaviour. Furthermore, given b� users for positive integers b and �, the
aggregator will not misidentify an honest-but-curious user as malicious as long
as there are strictly fewer than � malicious users. Finally, our protocol continues
to guarantee privacy even when up to (b−1)� users collude with the aggregator.
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smart-grid. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol.
6794, pp. 175–191. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22263-4 10

15. Yang, L., Li, F.: Detecting false data injection in smart grid in-network aggre-
gation. In: 2013 IEEE International Conference on Smart Grid Communications,
SmartGridComm 2013, pp. 408–413. IEEE, October 2013. ISBN 9781479915262.
https://doi.org/10.1109/SmartGridComm.2013.6687992

16. McLaughlin, S., Holbert, B., Fawaz, A., Berthier, R., Zonouz, S.: A multi-sensor
energy theft detection framework for advanced metering infrastructures. IEEE J.
Sel. Areas Commun. 31(7), 1319–1330 (2013). ISSN 07338716. https://doi.org/10.
1109/JSAC.2013.130714

17. Lie, D., Maniatis, P.: Glimmers: resolving the privacy/trust quagmire. In: Pro-
ceedings of the Workshop on Hot Topics in Operating Systems - HOTOS, vol-
ume Part F1293, New York, New York, USA, 2017, pp. 94–99. ACM Press. ISBN
9781450350686. https://doi.org/10.1145/3102980.3102996

18. Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Pre-
neel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Hei-
delberg (2000). https://doi.org/10.1007/3-540-45539-6 31

19. Morais, E., Koens, T., van Wijk, C., Koren, A.: A survey on zero knowledge range
proofs and applications. SN Appl. Sci. 1(8), 1–17 (2019). ISSN 2523–3963. https://
doi.org/10.1007/s42452-019-0989-z

20. Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: the SulQ frame-
work. In: Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pp. 128–138 (2005). https://doi.org/10.1145/
1065167.1065184

21. Sun, R., Shi, Z., Lu, R., Lu, M., Shen. , X.: APED: an efficient aggregation protocol
with error detection for smart grid communications. In: GLOBECOM - IEEE
Global Telecommunications Conference, pp. 432–437 (2013). https://doi.org/10.
1109/GLOCOM.2013.6831109

22. Shi, Z., Sun, R., Lu, R., Chen, L., Chen, J., Shen, X.S.: Diverse grouping-based
aggregation protocol with error detection for smart grid communications. IEEE
Trans. Smart Grid 6(6), 2856–2868 (2015). ISSN 19493053. https://doi.org/10.
1109/TSG.2015.2443011

https://doi.org/10.1109/WIFS.2015.7368584
https://doi.org/10.1145/1807167.1807247
https://doi.org/10.1145/1807167.1807247
https://doi.org/10.1007/978-3-642-24178-9_9
https://doi.org/10.1007/978-3-642-24178-9_9
https://doi.org/10.1007/978-3-642-22263-4_10
https://doi.org/10.1007/978-3-642-22263-4_10
https://doi.org/10.1109/SmartGridComm.2013.6687992
https://doi.org/10.1109/JSAC.2013.130714
https://doi.org/10.1109/JSAC.2013.130714
https://doi.org/10.1145/3102980.3102996
https://doi.org/10.1007/3-540-45539-6_31
https://doi.org/10.1007/s42452-019-0989-z
https://doi.org/10.1007/s42452-019-0989-z
https://doi.org/10.1145/1065167.1065184
https://doi.org/10.1145/1065167.1065184
https://doi.org/10.1109/GLOCOM.2013.6831109
https://doi.org/10.1109/GLOCOM.2013.6831109
https://doi.org/10.1109/TSG.2015.2443011
https://doi.org/10.1109/TSG.2015.2443011


98 F. W. Dekker and Z. Erkin

23. Ahadipour, A., Mohammadi, M., Keshavarz-Haddad, A.: Statistical-based privacy-
preserving scheme with malicious consumers identification for smart grid, pp. 1–9,
April 2019

24. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. IACR Cryptol. ePrint Arch., 2018:46
(2018). URL https://eprint.iacr.org/2018/046.pdf

25. Corrigan-Gibbs, H., Boneh, D.: Prio: private, robust, and scalable computation of
aggregate statistics. In: Proceedings of the 14th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2017, pp. 259–282, March 2017. ISBN
9781931971379

26. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: Proceedings - IEEE Sym-
posium on Security and Privacy, volume 2018-May, pp. 315–334. IEEE, May 2018.
ISBN 9781538643525. https://doi.org/10.1109/SP.2018.00020

27. Szymanski, T.: “Hypermeshes”: optical interconnection networks for parallel com-
puting. J. Parall. Distrib. Comput. 26(1), 1–23 (1995). ISSN 07437315. https://
doi.org/10.1006/jpdc.1995.1043

28. Eisenberg, B.: On the expectation of the maximum of IID geometric random vari-
ables. Stat. Probabil. Lett. 78(2), 135–143 (2008). ISSN 01677152. https://doi.
org/10.1016/j.spl.2007.05.011

https://eprint.iacr.org/2018/046.pdf
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1006/jpdc.1995.1043
https://doi.org/10.1006/jpdc.1995.1043
https://doi.org/10.1016/j.spl.2007.05.011
https://doi.org/10.1016/j.spl.2007.05.011


LLVM-Based Circuit Compilation
for Practical Secure Computation

Tim Heldmann, Thomas Schneider, Oleksandr Tkachenko,
Christian Weinert(B), and Hossein Yalame

Technical University of Darmstadt, Darmstadt, Germany
tim.heldmann@stud.tu-darmstadt.de,

{schneider,tkachenko,weinert,yalame}@encrypto.cs.tu-darmstadt.de

Abstract. Multi-party computation (MPC) allows two ormore parties to
jointly and securely compute functions over private inputs. Cryptographic
protocols that realize MPC require functions to be expressed as Boolean
or arithmetic circuits. Deriving such circuits is either done manually, or
with hardware synthesis tools and specialized MPC compilers. Unfortu-
nately, such existing tools compile only from a single front-end language
and neglect decades of research for optimizing regular compilers.

In this paper, we make MPC practical for developers by automating
circuit compilation based on the compiler toolchain LLVM. For this, we
develop an LLVM optimizer suite consisting of multiple transform passes
that operate on the LLVM intermediate representation (IR) and gradu-
ally lower functions to circuit level. Our approach supports various front-
end languages (currently C, C++, and Fortran) and takes advantage of
powerful source code optimizations built into LLVM. We furthermore
make sure to produce circuits that are optimized for MPC, and even
offer fully automated post-processing for efficient post-quantum MPC.

We empirically measure the quality of our compilation results
and compare them to the state-of-the-art specialized MPC com-
piler HyCC (Büscher et al. CCS’2018). For all benchmarked HyCC exam-
ple applications (e.g., biomatch and linear equation solving), our highly
generalizable approach achieves similar quality in terms of gate count
and composition.

Keywords: MPC · Circuit compilation · LLVM · Hardware synthesis

1 Introduction

Multi-party computation (MPC) allows two or more parties to jointly com-
pute functions over their respective inputs, while the privacy of the inputs is
ensured and nothing but the functions’ output is revealed. First cryptographic
protocols to realize MPC were proposed already in the 1980’s by Yao [63] and
Goldreich, Micali, and Widgderson [23]. However, it took until 2004 for MPC to
be implemented efficiently [41] and see adoption for privacy-preserving applica-
tions, e.g., private set intersection [28,49] and privacy-preserving machine learn-
ing (PPML) [7,20,46,48].
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The widespread adoption of MPC is unfortunately compromised by the
requirement to implement the functions to be computed as Boolean or arith-
metic circuits. This process is tedious and error-prone when done by hand, and
additionally requires an extensive understanding of the underlying cryptographic
protocols to build circuits that can be evaluated efficiently.

To address this issue, previous works tried to develop toolchains for automatic
compilation of high-level code to circuit representations. Most notably, the special-
ized MPC compiler HyCC [13] compiles ANSI C to optimized Boolean and arith-
metic circuits. However, works like HyCC allow compilation only from a very lim-
ited subset of a single front-end language and more importantly neglect decades of
research that went into building and optimizing conventional compilers like GCC
and the versatile LLVM toolchain [38], which we leverage in this paper.

Other works like TinyGarble [17,56] rely on logic synthesis tools (e.g., Syn-
opsis Design Compiler [57] or Yosys-ABC [1,62]) to generate net lists of Boolean
circuits. However, logic synthesis tools require knowledge of hardware description
languages like Verilog or VHDL, and were built to optimize electronic circuits
in terms of clock cycle usage, routing, and placing [58]. To match the cost met-
rics relevant for efficient MPC and restrict circuit generation to the supported
basic gate types, it is nevertheless possible to re-purpose such tools by providing
custom constraints and technology libraries.

Our Contributions. In this paper, we aim at making MPC practical for
software developers by automating circuit compilation based on the compiler
toolchain LLVM [38]. For this, we design and implement an LLVM optimizer
suite consisting of multiple transform passes that gradually lower functions to
circuit level. For example, the passes remove conditional branching and array
accesses, eliminate constant logic, and replace low-level instructions with opti-
mal building blocks that we obtain via logic synthesis tools.

Our LLVM optimizer suite operates entirely on the level of the LLVM inter-
mediate representation (IR). Thus, we naturally facilitate compilation from
numerous existing front-ends for a wide range of programming languages. We
currently support a subset of C, C++, and Fortran, and give a road map for
extensions to additional high-level languages like Rust. Furthermore, our app-
roach takes advantage of powerful source code optimizations built into LLVM,
which can swiftly deliver significant improvements in terms of resulting circuit
sizes and therefore MPC performance.

To bridge the gap from LLVM-IR to MPC frameworks, we provide a con-
verter to the widely known Bristol circuit format [59] that can be evaluated, e.g.,
by ABY [18] and MOTION [11]. Instead of converting LLVM-IR to Bristol, it
is also possible to further compile via LLVM back-ends to a conventional archi-
tecture like x86. Besides testing for functional correctness, such circuit-based
binaries have further applications in mitigating cache side-channel attacks [42].

Even though we construct our circuits from optimal building blocks, the assem-
bled result might not be overall optimal. Therefore, to compete with sophisticated
circuit-level optimizations delivered by specialized MPC compilers like HyCC [13],
we add fully automated post-processing. For this, we convert Bristol to Verilog
net lists, apply optimization passes of synthesis tools [1,57,62], and convert back
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to Bristol. By defining different constraint sets and technology libraries, we not
only support size-optimized Boolean circuits considering the free-XOR [35] and
half-gates technique [65], but also cost metrics for post-quantum secure MPC [12].
Our approach is generic and can easily be adjusted for further cost metrics that
might be of interest, e.g., garbling under standard assumptions [24].

Finally, we empirically measure the quality of our compilation results and com-
pare them to the specialized MPC compiler HyCC [13]. For this, we benchmark
example applications similar as in the HyCC repository (e.g., biomatch and linear
equation solving via Gaussian elimination) as well as additional implementations.
Our LLVM-based approach achieves similar or even better quality in terms of gate
count and composition, while also providing a richer feature set and the benefits
of extensibility to other high-level languages as well as MPC cost metrics.

In short, we summarize our contributions as follows:

1. Design and implementation of an LLVM-based toolchain for circuit compi-
lation from various high-level languages (currently a subset of C, C++, and
Fortran) publicly available at https://encrypto.de/code/LLVM.

2. Fully automated post-processing of Bristol circuits via logic synthesis tools
to optimize for (post-quantum) MPC-relevant cost metrics [12,35,65].

3. Empirical performance evaluation showing similar or better quality compared
to the specialized MPC compiler HyCC [13].

Outline. We introduce the necessary MPC as well as compiler background in
Sect. 2 and discuss related works in Sect. 3. In Sect. 4, we present our LLVM-
based circuit compilation toolchain and propose fully automated post-processing
in Sect. 5. We evaluate our results in Sect. 6 before concluding with a compre-
hensive outlook in Sect. 7.

2 Preliminaries

We introduce the necessary background on MPC (cf. Sect. 2.1), LLVM (cf.
Sect. 2.2), and logic synthesis (cf. Sect. 2.3).

2.1 Multi-party Computation

Multi-party computation (MPC) allows N mutually distrusting parties to jointly
compute functions over their respective inputs. In addition to the correctness
of the function output, MPC guarantees privacy of the inputs as nothing but
the function output is revealed. Two seminal cryptographic protocols that real-
ize MPC and are still highly relevant are Yao’s garbled circuits [63] and the pro-
tocol by Goldreich, Micali, and Wigderson (GMW) [23]. The work by Beaver,
Micali, and Rogaway (BMR) [5] extends the idea of Yao from the two- to the
multi-party case. All these protocols obliviously evaluate Boolean circuit rep-
resentations of the desired functionality. While Yao/BMR evaluate the circuit
in a constant-round protocol, the number of communication rounds for GMW
depends on the multiplicative depth of the circuit. In this work, we for now

https://encrypto.de/code/LLVM
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focus on the compilation of size-optimized Boolean circuits for the first app-
roach (Yao/BMR), while an extension to depth-optimized circuits for GMW is
straightforward.

Yao’s Garbled Circuits/BMR. In Yao’s protocol [63], one party (the gar-
bler) generates a garbled circuit corresponding to a Boolean circuit by encrypt-
ing the truth table of each gate. The other party (the evaluator) then evalu-
ates (decrypts) the circuit received from the garbler. Transferring the required
keys corresponding to the chosen inputs is done via a cryptographic protocol
called oblivious transfer (OT) [30]. Today’s most efficient solution for garbled
circuits is a combination of free-XOR [35] and half-gates [65]. With these opti-
mizations, each AND gate requires the transfer of two ciphertexts, whereas XOR
gates are essentially free (no communication necessary). BMR [5] is an extension
of Yao’s protocol to the multi-party case, where all parties garble and evaluate
the circuit such that no subset of parties learns anything about the intermediate
values.

Post Quantum Yao. A post-quantum version of Yao’s protocol was recently
proposed in [12], where the adversary has access to a quantum computer. The
authors proved Yao’s protocol in the quantum world under the assumption that
the used encryption scheme is PQ-IND-CPA. They assume the quantum adver-
sary has only access to a quantum random oracle and does not make queries
to the encryption oracle in superposition. Since the free-XOR optimization [35]
was established under a weaker assumption, it cannot be applied in the quantum
world, and thus the cost of XOR is the same as for AND gates.

Bristol Circuit Format. Circuit descriptions specify either the transfer of data
on register level (RTL) or a list of gates, wires, and their connections (net list).
The most commonly used circuit format for MPC is the Bristol format [3,59],
which is a plain text net list format. Each line in a Bristol file represents a
single INV, AND or XOR gate. Each gate can have one or two inputs and has
exactly one output, all of which are specified via IDs. Every output ID is unique,
in static single assignment (SSA) form, and all IDs are in ascending order. The
number of input as well as output wires is specified in the header of the file.

Frameworks. There exist many MPC frameworks [52] implementing different
protocols and considering different adversaries w.r.t. the ratio of honest/dishon-
est parties (honest/dishonest majority or full threshold) and the behaviour (semi-
honest, covert, malicious). MPC frameworks take either a (subset) of a high-level
language language, a domain specific programming language, or a net list as
input. Our approach generates circuits in the Bristol net list format, which we
empirically evaluate using the state-of-the-art framework MOTION [11].

2.2 LLVM

LLVM started as a research project in 2004 with the goal to enable lifelong pro-
gram analysis and transformation for arbitrary software [38]. While originally
being an acronym for low-level virtual machine, the LLVM project now spans
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different sub projects including, e.g., the specification for the LLVM intermedi-
ate representation (LLVM-IR), the LLVM-IR optimizer, and the Clang C/C++
front-end. The intended LLVM workflow to generate binaries is as follows:

1. Compile source code with a compatible front-end to LLVM-IR.
2. Use the LLVM optimizer to optimize the LLVM-IR.
3. Use a back-end to compile the optimized LLVM-IR to an executable binary.

Due to the strict separation between the toolchain steps, LLVM is highly
extensible. Especially the default optimization passes can be extended with
custom language- or hardware-specific passes. In the following, we introduce
the LLVM-IR and optimization passes in more detail.

LLVM Intermediate Representation (LLVM-IR). The LLVM-IR is the
connection between the front- and back-ends. It exists in three forms: as (i) in-
memory IR used by the compiler, (ii) bytecode for just-in-time compilers,
and (iii) a human readable assembly language. While all of them are equiva-
lent, and can be converted losslessly, all further mentions of LLVM-IR refer to
the assembly language.

LLVM-IR is a static single assignment (SSA)-based, strictly typed representa-
tion of the translated source code. For translating to LLVM-IR, features common
in non-SSA-based languages must to be transformed. One typical problem here is
the differing state of variables depending on previously run parts of the program,
as occurs with branching. The solution for SSA restrictions in LLVM-IR are so-
called ϕ-nodes. Such nodes are instructions that evaluate differently depending
on which part of the program was executed last. The same problem occurs when
dealing with loops, which often can also be resolved via loop unrolling.

LLVM Optimizer. The LLVM optimizer is intended to perform LLVM-IR
to LLVM-IR transformations. It utilizes optimizer passes that run on specific
parts of the LLVM-IR. The optimizer comes with a set of language independent
optimizations [40], but can be extended with additional passes. Passes can be
categorized as analysis and transform passes. Analysis passes generate additional
information about LLVM-IR code without any modifications. Transform passes,
on the other hand, are allowed to modify the LLVM-IR, possibly invalidating
previously run analyses in the process.

2.3 Logic Synthesis for MPC Circuit Compilation

Logic synthesis tools take a function description in a hardware description lan-
guage (HDL) such as Verilog or VHDL as input, and transform it to the respec-
tive target technologies, e.g., look-up tables (LUTs) for field programmable
gate arrays (FPGAs) or Boolean gates for application-specific integrated cir-
cuits (ASICs). Since creating hand-optimized Boolean circuits for MPC is an
error-prone and time-consuming task, it is a promising and natural approach
to utilize existing logic synthesis tools. However, software developers are rarely
familiar with HDLs and re-purposing such tools for performing MPC-specific
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optimizations requires the development of custom ASIC technology libraries. In
this work, we utilize the open-source Yosys-ABC synthesis tool [1,62]. In contrast
to previous works [17,19], we not only create optimized building blocks, but pro-
vide a fully automated compilation and MPC-optimization workflow from sev-
eral high-level programming languages. Furthermore, we are the first to develop
a custom ASIC technology library for post-quantum MPC [12].

3 Related Work

Our LLVM-based circuit compilation toolchain allows software developers to use
multiple different general-purpose programming languages to produce circuits
for MPC. To the best of our knowledge, we are the first to utilize LLVM for
such an endeavour. The recently initiated CIRCT project [39] instead aims at
replacing HDLs like Verilog with IR as a portable format between hardware
design tools and utilizes the LLVM infrastructure for offering transform passes
between different abstractions as well as architectures. On the other hand, there
exist multiple tools that allow developers to generate circuits from a single high-
level or domain-specific language. In the following, we first give an overview of
and comparison between these tools. Then, we briefly review MPC frameworks
that evaluate such generated circuits or can be programmed with custom MPC-
specific languages, and choose one of them for benchmarking circuits generated
via our LLVM toolchain (cf. Sect. 6.2).

3.1 Circuit Generation

The following approaches generate circuits from high-level code, but
like our LLVM-based circuit compilation approach abstract away the circuit eval-
uation.

Dedicated Compilers for MPC. TinyGarble [17,56] uses logic synthesis to
generate efficient Boolean circuits for MPC from Verilog net lists. However,
since TinyGarble’s optimization process requires a Verilog net list, it is reliant on
an external high-level synthesis (HLS) tool to compile high-level code. Our app-
roach is designed to be compatible with various LLVM front-ends for compiling
high-level languages, and focuses on the generation of circuits from LLVM-IR.
Since many programmers are unfamiliar with HDLs, we target a much larger
community of software developers.

CBMC-GC is an extension of CBMC [15]. It converts ANSI C to a Boolean
circuit [27] and proves that the generated circuit is equivalent to the input pro-
gram. While being compatible with ANSI C, CBMC-GC has limitations in terms
of variable naming and is restricted to inputs from two parties. Not only is our
approach input and variable name agnostic, as the circuit’s inputs are generated
depending on the function’s signature, but it is also not limited to ANSI C. Fur-
thermore, we make use of the source code optimization suite of LLVM. Starting
circuit synthesis from optimized code can be very advantageous (cf. Sect. 4.1).
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Although our implementation does not have a formal verification proof, the cor-
rectness of our compiler can be tested easily, e.g., by running a test suite after
compiling the transformed LLVM-IR code via LLVM back-ends to x86 binaries.

HyCC [13] is a compiler that extends CBMC-GC for hybrid circuits that
contain Boolean and arithmetic parts for efficient mixed-protocol evaluation.
For this, it partitions an ANSI C program into modules using a heuristic and
then assigns the most suitable MPC protocol in terms of runtime and/or commu-
nication. Furthermore, HyCC applies sophisticated circuit-level optimizations to
increase efficiency. Currently, our toolchain generates only Boolean circuits and
does not support automatic protocol selection. Manual switching of protocols
can be implemented in the “gateify” pass (cf. Sect. 4.3), and automated proto-
col selection can be added by developing an optimization pass based on the work
of [31] (cf. Sect. 7). Instead of transform passes that perform circuit-level opti-
mizations, we optimize circuits via post-processing by utilizing logic synthesis
tools (cf. Sect. 5).

The portable circuit format (PCF) compiler [36] generates circuits in the PCF
format using bytecode generated by LCC [22] from ANSI C. This allows for
optimizations on the bytecode level such as dead gate removal and constant
propagation. Then, it uses an internal language to translate instructions from
the bytecode to a Boolean circuit. In comparison to net list formats, PCF features
loops and recursion, removing the need for recursive function inlining as well as
loop unrolling. We also make use of bytecode-level optimizations and additionally
feature circuit-level post-processing. In contrast to our toolchain, PCF relies on
the LCC compiler, which supports only ANSI C.

High-Level Synthesis. High-level synthesis (HLS) is an approach for design-
ing circuits in a high-level language by specifying the desired behavior. The
exact translation into a chip design is controlled by a compiler. HLS systems
usually require expert knowledge, as they rely on domain-specific programming
languages like Verilog [16,60] instead of C, C++, or Fortran.

Another difference between HLS tools and our approach is that their goal is
to create electrical circuits, which have different cost metrics than MPC. In HLS,
much thought is given to routing and placement algorithms, which is of limited
use for optimizing circuits for MPC. Being designed with MPC applications in
mind, our approach leads to better extensibility and less overhead.

Domain-Specific Languages. PAL [45] compiles a domain-specific lan-
guage (DSL) into a size-optimized Boolean circuit. The scalable KSS com-
piler [37] generates Boolean circuits from a DSL by employing a constant prop-
agation optimization method. SMCL [47], L1 [55], and Wysteria [50] are custom
high-level languages for describing MPC that support the combination of differ-
ent MPC protocols. Wysteria additionally provides a tool for circuit compilation.
However, it is based on functional programming and therefore tedious to learn
by developers who are trained in imperative programming.

Obliv-C [64] and EzPC [14] extend a general-purpose programming lan-
guage with MPC-specific functionality descriptions, e.g., secret/public variables
and oblivious if, and automatically compile executables. Also, EzPC supports
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automatic protocol assignment for mixed-protocol computation and uses
the ABY framework [18] to compile executable binaries.

3.2 MPC Frameworks for Circuit Evaluation

There exist many MPC frameworks that allow users to run MPC protocols. They
take as input a circuit description or a domain-specific language for MPC. For a
comprehensive overview, we refer to [25]. Here, we briefly describe popular MPC
frameworks and justify the choice for our benchmarks (cf. Sect. 6.2).

Fairplay [41] was the first framework for secure two-party computation
and FairplayMP [6] is its extension to multiple parties. Both use the secure
function description language (SFDL) to describe functions and convert to the
secure hardware description language (SHDL). Sharemind [8] implements 3-
party additive secret sharing with honest majority and is a proprietary soft-
ware programmed with SecreC. TASTY [26] is a framework for two parties that
allows to mix garbled circuits with homomorphic encryption for applications
implemented using a subset of Python. FastGC [29] is a two-party framework
that is implemented in Java and uses garbled circuits. It allows gate-level pipelin-
ing of the circuit, which reduces the memory overhead. Frigate [44] consists of
an efficient compiler and an interpreter. The compiler takes a custom C-style
language and ensures the correctness of the generated circuits.

ABY [18] and ABY3 [43] are mixed-protocol MPC frameworks written
in C++ for two- and three-party computation, respectively. FRESCO is
a Java MPC framework that implements additive secret sharing schemes. EMP
toolkit [61] implements a few MPC protocols and oblivious transfer in C++,
and provides a low-level API for cryptographic primitives. PICCO [66] com-
piles an input description written in a custom extension of C to C and runs
it using N -party threshold MPC. JIFF [9] is a framework for information-
theoretically secure MPC written in JavaScript, which allows to use it in web
applications. MPyC [54] is a Python framework for N -party computation based
on secret sharing protocols. MP-SPDZ [33] implements multiple MPC protocols
and cryptographic primitives in different security models. SCALE-MAMBA [2]
is a framework for N -party mixed-protocol maliciously secure MPC that com-
piles a Python-like language to bytecode that is parsed by a “virtual machine”
that runs MPC protocols.

In this work, we use the MOTION framework [11] for benchmarking the
circuits generated by our LLVM toolchain (cf. Sect. 6.2). MOTION is an N -party
mixed-protocol MPC framework implemented as a C++ library. It supports
the BMR [5] as well as the GMW protocol [23] (cf. Sect. 2.1). It guarantees semi-
honest security against all but one corrupted parties (full threshold). MOTION
provides a user-friendly API for evaluating circuits in the Bristol format [3,59],
which is also the format our toolchain produces.
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4 LLVM-Based Circuit Compilation

We now present our LLVM-based circuit compilation approach. For this, we
first give an intuitive overview of our optimizer suite of LLVM transform passes
that ultimately compile high-level programs to Bristol circuit representations.
Afterwards, each transform pass is described in detail.

4.1 Overview

In this section, we give an intuition for our transformation pipeline that consists
of a suite of LLVM-IR transform passes.

Using a compatible LLVM front-end (e.g., Clang for C and C++, or Flang
for Fortran), we first compile the given code to LLVM-IR code. At this point,
we can apply all source code optimizations shipped by LLVM and additionally
perform loop unrolling. For example, the control flow simplifying pass “simplify-
cfg” removes unused branches and pre-computes constant branching logic. The
instruction combine pass “instcombine” simplifies Boolean or arithmetic instruc-
tions. For example, the function return b^(a*b/a); operating on integers a and b
always returns 0. The LLVM optimizer detects this in 117 ms , while HyCC [13]
takes 25 s to generate a circuit with 6416 gates. The output of this stage is the
basis for circuit generation and will be referred to as the “base function”.

As branching is not trivially supported on circuit level, we then proceed
with eliminating all branches. This is done by our so-called “phi remove”
pass, described in Sect. 4.2. For this, we have to inline all basic blocks (i.e.,
blocks of sequentially executed instructions), and swap ϕ-nodes to select instruc-
tions (the LLVM-IR representation of a ternary expression).

Now that all code is contained in one basic block, our “gateify” pass,
described in 4.3, replaces all instructions with “circuit-like” functions. A circuit-
like function is a function that first disassembles the inputs into single bits,
evaluates the function exactly as a circuit consisting of primitive gates, and
reassembles the result to the required datatype.

Next in line is the “array to multiplexer” pass. Its basic concept is similar
to the gateify pass as it swaps arrays for calls to functions that behave like
multiplexers and thus enable oblivious data accesses on circuit level. The exact
differences are described in Sect. 4.4.

Since at this point the program’s code is distributed over various external
functions, we now apply the “merge function” pass (cf. Sect. 4.5). It takes all
the different external function calls, merges their content into a single function,
and wires the outputs to inputs accordingly. The resulting function behaves
very similar to a circuit consisting of primitive gates that represents the same
function.

To further reduce the size of the generated function, and therefore the cir-
cuit, a final pass is applied. The “constant logic elimination” pass, described in
Sect. 4.6, simplifies logic instructions, by either pre-computing the result in case
of two constant operands, or passing the corresponding value or constant in case
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of one constant operand, or both operands being the same. Lastly, if the result
of an instruction is never used, it is removed entirely.

The LLVM-IR code consisting of only gate-like instructions can then be triv-
ially converted to the Bristol format, using our LLVM-to-Bristol converter (cf.
Sect. 4.7). Then, we convert Bristol to a Verilog net list and apply our post-
processing using logic synthesis tools (cf. Sect. 5). This results in an even smaller
circuit that we convert back to Bristol. The latter constitutes the final result of
our toolchain.

4.2 Phi Remove Pass

The LLVM-IR is in static single assignment (SSA) form (cf. Sect. 2.2). Therefore,
conditional branching is difficult to represent, as variables can have different
values depending on COMPthe evaluation of condition statements. The LLVM-
IR solution for this problem are ϕ-nodes that take different values depending
on the COMPpreviously evaluated basic block. While the basic premise of SSA
holds true for circuits, ϕ-nodes must be replaced. Instead of calculating only one
path depending on the branch condition and generating the value in the ϕ-node
depending on the source basic block, we evaluate both branches regardless of
the condition and replace ϕ-nodes with a multiplexer. The selection bit of the
multiplexer is the result of the branching condition.

This approach works flawlessly for two-way branching, e.g., regular if/else
instructions. The LLVM-IR specification, however, allows for an arbitrary num-
ber of values to be taken by a ϕ-node, as a basic block can be branched to by
any number of other basic blocks. This can be especially useful when trying to
represent switch/case instructions. It requires analysis of the conditions leading
to the branch, as well as a multiplexer tree instead of a single multiplexer.

To summarize, the phi remove pass identifies two-way branches, recur-
sively descends the basic blocks, replaces ϕ-nodes with ternary select instruc-
tions (which are handled later), and splices the instruction lists of the basic block
together with the goal to ultimately achieve a function that only has one basic
block.

4.3 Gateify Pass

The “gateify” pass iterates through every function of the module and identifies
supported instructions. Once such an instruction is found, the pass creates a
new “circuit-like” function with the same behavior. The exact instructions of
this new function are defined by our building blocks. In AppendixA we elaborate
on how we utilized hardware synthesis tools similar to [17,56] in order to obtain
optimal circuits for primitive instructions that can serve as building blocks.

As Boolean MPC circuits rely on bitwise operations while LLVM-IR uses
static types larger than one bit, it is necessary to disassemble the static com-
pound types like i8 or i32 into 8 or 32 i1 types, respectively. This disassembly
process is done as a prephase inside the new function. The computation of the
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result is then done by applying the instructions specified in the circuit descrip-
tion of the building block. Once all circuit instructions have been copied, the
result is then given as i1 types that have to be reassembled to a compound type.
This reassembly process is the postphase of the building block.

The newly created function signature and return value are matched to be
equal to the operands and result of the replaced instruction. The original instruc-
tion is then deleted and all uses of the calculated result are replaced with the
result returned by the newly created function. Internally, the new function is
assigned the attribute “gate” to mark it as a circuit-like function. This will be
important to identify mergeable functions later.

4.4 Array to Multiplexer Pass

The “array to multiplexer” pass is required for source languages that support
arrays as a construct and corresponding front-ends use the LLVM-IR array con-
struction to represent them. For example, LLVM-IR code generated by Clang
for C and C++ will use the LLVM-IR array construct. On the other hand, For-
tran instead of arrays has the concept of multidimensional fields, which behave
similar but are not represented as arrays in LLVM-IR.

The pass first analyzes the array usage of a given function. During this anal-
ysis, all stores to constant positions are mapped out. If the same position is
written multiple times, the updated values are saved as well.

However, if a value should be stored to a position unknown at compile time,
every single position could be affected. To support stores to variable positions,
every position of the array can be updated with the result of a ternary instruc-
tion, similar to this: i == unkownPos ? newValue : array[i]. This updates every
position with its own value, except the one position where the condition evaluates
to true, leading to this position being updated to the new value.

Once all stores are mapped out, the analysis result is used to replace all reads
from a constant position with the value that is at the corresponding position at
the time the read occurs. This value is the last update that happened to that
position before the read occurred. If a value is loaded from a position that is not
known during the compilation, the whole array is given to a multiplexer tree,
with the position disassembled to bits as the decision bits of the multiplexer tree
in the corresponding layer.

4.5 Merge Pass

The “merge” pass creates a single circuit from all circuit-like functions. It first
creates its own prephase, disassembling every parameter of the base function to
provide as primitives for the merged function. Then, it clones the instructions
of all circuit-like functions in the new merged function, excluding the pre- and
postphase. As the instructions of the base function were topologically sorted,
it is guaranteed that the first instruction to clone will only access primitives or
constants. Following functions will either reference primitives or intermediate
results that have already been disassembled.
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After successfully cloning every instruction of a building block, it is necessary
to map the cloned instructions such that their references match the context of
the function they got cloned into. The output bits of every instruction are saved
and mapped to the corresponding inputs of any instruction that references them.
Once the return statement is reached, a postphase is added that reassembles the
output bits to match the return type of the base function.

4.6 Constant Logic Elimination Pass

The “constant logic elimination” pass cleans up the merged function. It iterates
through every instruction in the merged function. Due to the gateify pass, every
instruction is either an AND, XOR, or INV instruction. In case both operands
for an AND or XOR instruction are constants, the result is computed, and every
instruction referencing the result updated to use the pre-computed value instead.
The original instruction is then removed. In case one operand is a constant, a
lookup table determines whether to keep the instruction or replace it with a con-
stant or the operand. Once all logic gates with constant operands are eliminated,
a last pass is done to remove instructions with unused results.

4.7 Export to Bristol Format

After all passes are executed, the resulting LLVM-IR file contains a fully merged
function with exactly one basic block. This file can then be passed to our “LLVM-
IR to Bristol” converter. The converter will skip past the disassembly phase and
locate the gate operations. Each line is then converted to a line in the Bristol
file, until the end of the gate section is reached. As it is idiomatic to the Bristol
format to state the amount of gates and wires in the beginning of the file, as well
as the amount of parameters and the bit width of the result, they are calculated
and prepended. Finally, the unique references between LLVM-IR instructions
are mapped to wire identifiers in ascending order while ensuring that result bits
are mapped to the highest numbered wire identifiers.

5 Post-processing Circuits for MPC

In Sect. 4, we described our LLVM-based circuit compilation approach that grad-
ually lowers high-level implementations to circuit level. Specifically, our “gateify”
transform pass (cf. Sect. 4.3) replaces all low-level LLVM-IR instructions with
functionally equivalent building blocks. We designed these building blocks to
be optimal according to MPC-relevant cost metrics, as was previously done
in [17,19,32,56] (cf. Appendix A). However, we did not develop a transform pass
that performs optimizations on the overall circuit, i.e., across building blocks.
Therefore, our generated circuits are likely larger than those generated by spe-
cialized MPC compilers like HyCC [13] that include such optimizations, e.g., to
replace highly redundant circuit parts.
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To not reinvent the wheel, we instead propose to utilize HDL synthesis tool
on the output of our LLVM-based circuit compilation for global optimizations.
For this, we create a fully automated pipeline that first converts Bristol circuit
descriptions to Verilog net lists, applies optimization passes of logic synthesis
tools [1,57,62], and converts back to Bristol. By defining different constraint
sets and technology libraries, we not only support size-optimized Boolean circuits
considering the free-XOR [35] and half-gates technique [65], but also cost metrics
for post-quantum secure MPC [12] (cf. Sect. 6). Additionally, this approach is
generic and can easily be adjusted for further cost metrics that might be of
interest, e.g., garbling under standard assumptions [24].

The conversion from Bristol to Verilog net lists is trivial due to their similar-
ity in terms of structure and abstraction level. Yosys-ABC [1,62] then generates
a net list output under synthesis objectives, which are provided by the devel-
oper to optimize the parameters like minimizing the delay or limiting the area
of a synthesized circuit. We therefore develop customized technology libraries of
basic gates, which include synthesis parameters like timing and area to guide
the mapping. Concretely, we want to output a functionally equivalent yet opti-
mized Boolean circuit net list consisting of only 2-input AND and XOR as well
as INV gates. For the conversion back to Bristol, we utilize existing tooling
from SCALE-MAMBA [2], which we extend to parse custom Verilog modules.

In the following, we detail our custom constraints and technology libraries.
The performance (both in terms of runtime and circuit quality improvement) is
evaluated in Sect. 7.

5.1 Customized Logic Synthesis for MPC

Regarding MPC protocols, we focus on Yao and BMR in this work (cf. Sect. 2.1),
and therefore Boolean circuits. The relevant cost metric for both protocols is the
multiplicative size, i.e., the number of AND gates in the circuit. In contrast, the
cost of XOR evaluation is negligble [35]. We configure Yosys-ABC to minimize
the multiplicative size by setting the XOR and INV gate area to 0 and for AND
gates to a high non-zero value.

5.2 Customized Logic Synthesis for Post-quantum MPC

In the post-quantum setting, the previously discussed free-XOR optimization [35]
is not applicable (cf. Sect. 2.1). Therefore, the relevant cost metric shifts from
multiplicative size to the total gate count.

In order to meet our goal in post-quantum MPC, we design a customized
library containing 2-input XOR as well as non-XOR gates. We set the area of
all gates to an equal non-zero value and synthesize circuits considering area
optimization as the main restriction. By doing so, we provide highly optimized
circuits for post-quantum MPC that can moreover be conveniently compiled
from various high-level languages.
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6 Evaluation

We evaluate our LLVM-based approach to MPC circuit compilation in two
aspects. First, we provide a complexity analysis of our transform passes. Then, we
measure the quality of the generated circuits with respect to MPC cost metrics
in comparison with HyCC [13] and provide concrete runtime as well as commu-
nication overheads when executing such circuits with the recent MPC frame-
work MOTION [11]. The implementation of our toolchain is publicly available
at https://encrypto.de/code/LLVM.

6.1 LLVM Transform Passes Complexity Analysis

The runtime of our transform passes depends on the number of instructions,
basic blocks, and the size of the required building blocks. A summary of all
complexities analyzing the worst case for each pass can be found in Table 1. Note
that it is impossible for the worst case to occur simultaneously in all passes.

Let I be the number of instructions in the base function, B the number of
basic blocks, N the size of the biggest utilized building block, and A the largest
number of elements in an array.

Table 1. Complexity of our passes. I is the number of instructions, B the number of
basic blocks, A the number of array slots, and N the size of the largest building block.

Pass ϕ-Remove Gateify Array2MUX Merge C. Log. Elim. Total

Complexity O(I + B) O(I · N) O(I · A) O(I2 · N2) O(I · N) O(I2 · N2)

Phi Remove Pass. The phi remove pass’s runtime mainly depends on the size
and the number of basic blocks in the function. It recursively descends through
all B basic blocks, replacing each ϕ-instruction with a ternary one. Once all
the ϕ-instructions are replaced, the basic block merging is linear in complexity,
as all instructions are saved in a doubly linked list, where we can splice the
instructions of any basic block into any other basic block. Since in the worst
case all I instructions are ϕ-instructions, this leads to a complexity of O(I +B).

Gateify Pass. The gateify pass’s runtime depends on the number of instruc-
tions and the size of the building blocks replacing them. Once an instruction
has been replaced at least once, we can reference the building block for all iden-
tical instructions later on. But since we cannot universally assume duplicate
instructions, the complexity class is O(I · N).

Array to Multiplexer Pass. The array to multiplexer pass iterates through
all I instructions to identify getelementptrinstructions. The modification step
can then either forward constant reads with a complexity of O(1), or create a
multiplexer tree. For arrays with A elements, this tree has size 2�log2(A)�−1 ≈ A.
The total complexity is therefore O(I · A).

https://encrypto.de/code/LLVM
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Merge Pass. The merge gate function pass copies all instructions from the
building blocks into a single function. While all other passes operate on the base
function, this pass copies and re-maps every instruction in the building block
functions. It can also not rely on the same splicing technique as the phi remove
pass as the splice instruction is moving and not copying the instructions, and we
might need to reference the building block again later. This leads to a complexity
of O(I2 · N2), which makes the merge pass the bottleneck.

Constant Logic Elimination Pass. The constant logic elimination pass goes
through all now O(I ·N) instructions and pre-computes as well as propagates the
logic if possible. Then, all unused computations are removed. This means O(I ·N)
instructions are inspected/modified.

6.2 LLVM Compilation Performance and Quality Analysis

We now measure the quality of the circuits generated by our LLVM-based
toolchain (cf. Sect. 4) with respect to MPC cost metrics, and especially the
benefits of our fully automated post-processing (cf. Sect. 5). Furthermore, we
benchmark these circuits with the recent MPC framework MOTION [11] to
analyze concrete runtime as well as communication overheads.

All these aspects we also compare to the HyCC compiler [13] to demonstrate
that our very extensible approach can compete with or even outperform spe-
cialized MPC tools. Therefore, we mainly base our evaluation on applications
written in C from the HyCC repository that we detail below.

Table 2. Compile time of different programs in seconds, compiled with HyCC [13] and
LLVM, and with post-processing for minimizing the number of AND gates (LLVM+)
and the total number of gates for more efficient post-quantum MPC (LLVM PQ+).

Program HyCC [13] LLVM LLVM+ LLVM PQ+

Euclid 1.34 0.68 5.59 5.26

Dummy 2.20 1.32 10.73 10.88

Gauss 11.81 11.08 127.76 125.14

Biomatch 12.20 14.11 152.16 147.80

Benchmark Applications. The “Euclid” benchmark calculates the squared
Euclidean distance between two points. This is a small and simple program,
which shows basic translation capabilities.

The “biomatch” benchmark is similar to Euclid, but additionally calculates
the square root of the result using Heron’s method [21] with a cutoff at 20
iterations. This benchmark is used to show loop unroll handling and how highly
repetitive functions can be greatly optimized with our post-processing approach.
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The “Gauss” benchmark is a linear equation solver for up to 4 variables. It
implements a forward elimination and backward substitution. This shows the
difference if non-repetitive loops are unrolled and translated.

Additionally, we implement a “dummy” application that showcases as many
supported features as possible in a comprehensive manner. The code for this
application is attached in Appendix B.

Compile Time. In Table 2, we provide the runtime of the compilation for HyCC
and our LLVM toolchain as well as the post-processing steps, measured on four
cores of an Intel Xeon Gold 6144 CPU @ 3.50 GHz and 32 GB of RAM.

The compilation times of both approaches are comparable. For smaller appli-
cations (Euclid, dummy), LLVM is about twice as fast as HyCC. On the other
hand, for a larger application (biomatch), HyCC is slightly faster. This is due
to the comparatively high complexity of our merge pass (cf. Sect. 6.1) when
handling large and redundant circuits, which is currently the bottleneck in our
optimizer suite. Finally, we observe that the respective post-processing steps add
a significant overhead of factor 10x on top of the basic compilation. However, we
note that this is a one-time cost that occurs only before deployment when the
development of an application is finalized.

Circuit Size and Composition. In Table 3, we show the circuit sizes and the
composition of the compilation results. The basic compilation step with LLVM
based on our transform passes already delivers circuits in the same order of
magnitude as HyCC. However, they are concretely less efficient for MPC in
terms non-free AND gates (by factor 1.3x to 2.1x). Especially the biomatch
circuit is only half the size when compiled with HyCC. This is due to the fact
that HyCC has circuit-level optimizations, making it possible to remove the
highly redundant instructions coming from loop unrolling.

However, our fully automatic post-processing significantly lowers this disad-
vantage, making the Gauss application even more efficient than when compiled
with HyCC. In terms of post-processing for post-quantum MPC, we have to
compare the total number of gates (cf. Sect. 2.1). There, our post-quantum
post-processing manages to reduce the size by up to factor 1.7x compared to the
regular LLVM output and improves up to factor 1.3x upon the already post-
processed version for MPC considering free-XOR [35].

Concrete Efficiency. In Table 4, we present the performance measurements
when executing the circuits with the BMR protocol (cf. Sect. 2.1) in the
recent MOTION framework [11] for up to N = 5 parties. The goal of this eval-
uation is to determine how the differences in circuit quality effect concrete per-
formance, especially in comparison with the circuits generated by HyCC [13]. All
benchmarks were performed on machines with an Intel Core i9-7960X CPU @ 2.80
GHz and 128 GB of RAM. Each party has a dedicated machine, communicating
via 10 Gbit/s Ethernet with 1.25 ms RTT. Additionally, we simulate a 100 Mbit/s
WAN connection with 100 ms RTT to model secure computation over the Internet.
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Table 3. Circuit size of different programs compiled with HyCC and LLVM, and
with post-processing for minimizing the number of AND gates (LLVM+) and the total
number of gates for more efficient post-quantum MPC (LLVM PQ+).

Number of gates in thousands formatted as “non-XOR/total”

Program HyCC [13] LLVM LLVM+ LLVM PQ+

Euclid 1.47 / 5.24 1.99 / 6.46 1.47 / 6.97 1.47 / 5.26

Dummy 1.59 / 5.30 2.19 / 6.05 1.74 / 7.40 1.74 / 5.78

Gauss 39.15 / 114.18 39.40 / 114.33 38.91 / 133.49 38.91 / 113.42

Biomatch 22.67 / 67.93 47.14 / 135.99 27.66 / 81.72 27.69 / 78.23

Table 4. Communication and runtime for running our applications using the BMR
protocol [5] in the MOTION framework [11] with N parties.

Program N
Communication [MB] Runtime LAN [s] Runtime WAN [s]

HyCC [13] LLVM LLVM+ HyCC [13] LLVM LLVM+ HyCC [13] LLVM LLVM+

2 0.88 1.17 0.88 0.18 0.22 0.19 1.14 1.20 1.17

3 0.97 1.29 0.97 0.24 0.26 0.22 1.32 1.37 1.26

4 1.06 1.41 1.06 0.27 0.33 0.28 1.38 1.56 1.40
Euclid

5 1.15 1.54 1.15 0.34 0.36 0.31 1.57 1.86 1.58

2 0.95 1.29 1.03 0.19 0.23 0.20 1.13 1.26 1.20

3 1.04 1.42 1.14 0.24 0.26 0.26 1.22 1.31 1.32

4 1.14 1.55 1.24 0.29 0.30 0.29 1.37 1.59 1.43
Dummy

5 1.24 1.69 1.35 0.35 0.37 0.33 1.57 1.84 1.76

2 22.45 22.59 22.31 1.79 1.92 1.80 3.97 3.98 3.90

3 24.84 24.99 24.68 1.86 1.90 1.90 7.44 7.67 7.65

4 27.23 27.40 27.06 2.16 2.19 2.16 12.14 11.65 10.95
Gauss

5 29.62 29.80 29.43 2.47 2.51 2.56 15.79 16.24 15.48

2 13.01 27.01 15.86 1.97 3.69 1.79 3.81 6.43 4.00

3 14.39 29.88 17.55 1.94 3.73 2.04 6.20 10.32 6.30

4 15.78 32.76 19.24 2.15 4.05 2.14 8.35 15.53 9.23
Biomatch

5 17.16 35.64 20.93 2.50 4.57 2.46 11.34 19.67 12.23

As expected, the performance strongly correlates with the size of the gen-
erated circuit. We can observe that while the runtime and communication
for LLVM-generated circuits is already in the same ballpark as HyCC, our post-
processing diminishes the additional overhead such that our circuits perform
almost equally (Euclid, dummy, biomatch), and sometimes even better (Gauss).
The biggest impact of post-processing can again be seen for the biomatch appli-
cation, where we are able to cut runtime and communication almost by half by
removing highly redundant parts of the circuit.

7 Conclusion and Outlook

Our LLVM-based approach to MPC circuit compilation is promising, especially
in terms of extensibility, usability, and circuit quality. Supporting different non-
domain specific programming languages (currently C, C++, and Fortran), we
make MPC practical for various software developer communities.
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In the following, we give a comprehensive outlook by discussing remaining
limitations regarding LLVM-IR language support, extensions to other front-ends,
and the generation of hybrid circuits for mixed-protocol MPC.

Language Support. Our LLVM optimizer-based approach currently does not
support structs and recursive functions. Struct support can be added as part
of the gateify pass (cf. Sect. 4.3), or a dedicated struct remove pass. Partial
inlining of recursive functions has been a field of interest of the LLVM community
since 2015 [4] as it can increase performance of recursive programs [53]. With
exception of tail call optimized recursion, however, no optimization pass has
been developed until now.

Extension to Other Front-Ends. The highlight of our approach is its inde-
pendence of the compiled high-level language, as we only operate on LLVM-IR,
which is shared among all front-ends. Unfortunately, front-ends for different pro-
gramming languages compile to vastly different LLVM-IR code. For example, a
simple program that returns the addition of two integers compiles to ∼17 kB
of LLVM-IR code when written in Rust, while a C version is only ∼2 kB. This is
because Clang almost directly translates C code to LLVM-IR, while Rust makes
heavy use of LLVM’s intrinsic functions (e.g., llvm.sadd.with.overflow.*).
In case of errors like overflow, underflow, type errors, out of bounds memory
accesses, or similar, probably unwanted behavior, the code tries to recover or
terminate the program with a meaningful error message. Translating all these
extra steps in a circuit would lead to massive circuits.

We suggest to develop a transform pass that tries to remove most of the
checks and error states. Thus, only circuit logic for essential parts of the program
is generated, while keeping the program and circuit equivalent for valid inputs.

Hybrid Circuits. HyCC [13] generates Boolean and arithmetic circuits for
mixed-protocol MPC. In contrast, our work only studies size-optimized Boolean
circuits. A first step for achieving parity in this regard would be to equip
the gateify pass with suitable building blocks (e.g., depth-optimized Boolean
circuits for GMW [23]) and to allow direct translation of arithmetic LLVM-IR
operations like add. As for finding the optimal protocol selection, we propose to
implement a suitable heuristic that gathers and analyzes all relevant information
during an immutable pass and divides/annotates the program in a module/anal-
ysis pass. Any of this would also require a significant extension of the Bristol
format to support arithmetic operations and annotations for protocol conver-
sions.
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A Optimized Building Blocks

We provide details of the building blocks used by our LLVM toolchain during
the gateify pass (cf. Sect. 4.3). To obtain these building blocks, we utilize logic
synthesis tools [1,57,62] with our custom technology libraries (cf. Sect. 5.2) to
optimize (multiplicative) size and restrict the types of basic gates. The most
common building blocks are addition, subtraction, multiplication, and (integer)
division, multiplexer for array accesses, and comparator, which we detail in the
following. Table 5 shows a summary of the circuit size complexities, i.e., the
number of non-linear (AND) gates. Moreover, we show the actual circuit sizes
for standard 32 bit integers generated by the synthesis tool.

Table 5. Multiplicative complexity of building blocks for bit length l. Concrete sizes
for l = 32 as used in Sect. 4.3.

Building block ADD SUB MULT DIV MUX CMP

Multiplicative complexity (# non-XOR) l − 1 l − 1 l2 − l l2 + 2l + 1 l l

Concrete size (l = 32) 31 31 993 1264 32 32

Addition/Subtraction. To perform addition of two l-bit values, the traditional
ripple carry adder (RCA), in which the carry out of one stage is fed directly to the
carry-in of the next stage, has a multiplicative size of l−1 [10,34]. The subtractor
can be viewed as a special case of adder as the subtraction of two values a
and b can be represented as a − b̄ + 1 where b̄ denotes the two’s complement
representation of b.

Multiplication. In classic logic synthesis, a multiplier outputs a 2l-bit product
of two l-bit inputs. The best approach for this multiplier is the textbook method
with the size of 2l2− l [34]. However, in many programming languages and MPC
protocols, multiplication is defined as a l → l operation, where the product of
two l unsigned integers is l-bit. Generating a l → l multiplication with logic
synthesis tools give us a circuit size of l2 − l [27,44].

Division. The division operation computes the quotient and remainder of two
binary integer numbers. The standard approach for the division is similar to the
text-book multiplication, where the divisor is iteratively shifted and subtracted
from the remainder. By doing so, one division operation can be built with com-
plexity of 2l2 AND gates. Restoring division can help us in hardware synthesis
to have a complexity of l2 + 2l + 1 [51].

Multiplexer. A 2-to-1 MUX was proposed in [35] with a size of l. The tree
architecture for an m-to-1 MUX has size (m − 1)l.

Comparator. The standard comparator circuit checks whether one l-bit num-
ber is greater than another with a size of l. We implement this comparator as
described in [35].
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B Dummy Application

In Listing 1 we provide the C++ code for our dummy application that we use for
benchmark purposes in addition to applications from the HyCC repository (cf.
Sect. 6.2). It showcases as many supported features as short as possible.

Listing 1. Dummy application that covers many supported features.

1 #include <stdio.h>

2

3 int dummy (int a, int b, int c) {

4 int array [8];

5 for (int i=0; i<8; i++) {

6 array[i] = a + b * i;

7 }

8 int ret =0;

9 if (c < array[c]) {

10 ret = array [2] + array [3];

11 }

12 else {

13 ret = array [0] * array [1];

14 }

15 return ret;

16 }

17

18 int main(){

19 int a, b, c;

20 scanf("%d\n%d\n%d", &a, &b, &c);

21 printf("DummyFunction: %d\n", dummy(a, b, c));

22 }
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Abstract. Multiparty computation (MPC) over rings such as Z232 or
Z264 has received a great deal of attention recently due to its ease of
implementation and attractive performance. Several actively secure pro-
tocols over these rings have been implemented, for both the dishonest
majority setting and the setting of three parties with one corruption.
However, in the honest majority setting, no concretely efficient protocol
for arithmetic computation over rings has yet been proposed that allows
for an arbitrary number of parties.

We present a novel compiler for MPC over the ring Z2k in the hon-
est majority setting that turns a semi-honest protocol into an actively
secure protocol with very little overhead. The communication cost per
multiplication is only twice that of the semi-honest protocol, making the
resultant actively secure protocol almost as fast.

To demonstrate the efficiency of our compiler, we implement both an
optimized 3-party variant (based on replicated secret-sharing), as well as
a protocol for n parties (based on a recent protocol from TCC 2019). For
the 3-party variant, we obtain a protocol which outperforms the previous
state of the art that we can experimentally compare against. Our n-party
variant is the first implementation for this particular setting, and we show
that it performs comparably to the current state of the art over fields.

1 Introduction

Multiparty computation (MPC) is a cryptographic tool that allows multiple
parties to compute a given function on private inputs whilst revealing only its
output; in particular, parties’ inputs and the intermediate values of the compu-
tation remain hidden. MPC has by now been studied for several decades, and
different protocols have been developed throughout the years.

Most MPC protocols are “general purpose”, meaning that they can in prin-
ciple compute any computable function. This generality is typically obtained by
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representing the function as an arithmetic circuit modulo some integer p. Note
that implied in this representation, is a set of integers on which computation can
be performed. Traditionally, MPC protocols are classified as being either boolean
or arithmetic, where the former have p = 2 and the latter has p > 2. However,
most of the existing arithmetic MPC protocols, independently of their security,
require the modulus to be a prime (and for some protocols this prime must be
large) [5,6,14,18,22,29,31].

1.1 Secure Computation over Rings

It was only recently that practical protocols in the arithmetic setting for a non-
prime modulus were developed. The SPDZ2k protocol securely evaluates func-
tions in the dishonest majority case [15], while several other works focus on hon-
est majority case for small number of parties [2,14,21,22]. Computation over Z2k

is appealing as it is generally more natural than computation modulo a prime,
especially for powers like 232, 264 or 2128. This type of computation has the poten-
tial to lead to more efficient protocols with respect to computation over fields, as
in practical settings it avoids a software implementation of a modular reduction
operation by using native data-types existing in modern architectures. For exam-
ple, computing fast reductions modulo an n-bit Mersenne prime requires com-
puting a product of two n-bit numbers without overflow.1 Thus, for a ≈128-bit
prime, this requires arithmetic on 256-bit numbers. In contrast, arithmetic inZ2128

is supported by most modern compilers. Furthermore, many MPC applications
require bitwise operations, like secure comparison to be able to perform branch-
ing, or secure truncation to be able to handle fixed-point data. This is particularly
relevant for machine learning applications, for example. Protocols based on com-
putation modulo 2k have the potential to execute these operations much more
efficiently, given the existing compatibility between binary computation, that is,
computation modulo 2, and operations modulo a larger power of 2.

The improvement in performance of ring-based protocols was observed exper-
imentally for the aforementioned SPDZ2k protocol in [17]. More recently, the
work by Dalskov et al. [16] demonstrated that the same applies for honest major-
ity protocols, where the protocols over rings presented in that work outperform
similar ones over fields by a factor of around 2.

1.2 Our Contributions

As discussed above, it is a natural and well-motivated question to study the
efficiency of MPC protocols over Z2k . In spite of the benefits that this algebraic
structure may provide, protocol design becomes much harder due to the unde-
sired properties of this ring, like the existence of zero-divisors. For example, to
date, no concretely-efficient protocol over Z2k that works for any number of par-
ties has been proposed in the honest majority setting. This is particular critical
when active adversaries are considered, as techniques to ensure security in this

1 This reduction uses the identity x · y = a2n + b ≡ a + b mod 2n − 1 for some a, b.
However this requires computing and storing the product x · y without overflow.
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case typically rely on properties of fields. In this work, we push the knowledge
barrier on this area by presenting a generic compiler that transforms a passively
secure protocol for computation over Z2k+s in the honest majority setting, to a
protocol over the ring Z2k that is actively secure with abort and provides roughly
s bits of statistical security. Summarizing our contributions:

– Our compiler simplifies protocol design by only requiring that the underlying
passively secure protocol is secure up to an additive attack, which is a con-
dition that is much easier to ensure. For example, this was shown to hold for
multiple well-known protocols over fields in [24], a result which we extend in
our paper to recent protocols over rings.

– Our compiler is highly efficient and the overhead is essentially just twice that
of the passively secure protocol. More precisely, each multiplication just needs
to be evaluated twice.

– Our compiler preserves all the properties of the passively secure protocol. In
particular, we obtain the first actively secure protocols where the cost of dot
products is independent of their length without relying on expensive function
dependent preprocessing such as is the case for prior work [13,21,22,34].

– Finally, we provide two instantiations and show through experiments that
they are concretely efficient:
1. Our first instantiation is for 3 parties and is based on replicated secret

sharing. We show experimentally as well as theoretically that it outper-
forms other 3 party protocols both over the ring Z2k+s and over fields
Zp with log(p) ≈ k + s. This gap of s bits for the field case is necessary
when considering applications that require more complex primitives like
secure comparison or truncation, as traditional techniques for these tasks
(e.g. [12]) require such a gap to guarantee privacy.

2. Our second instantiation is for an arbitrary number n of parties, and
is based on the work by Abspoel et al. [2]. It is the first practical (in
the sense of having been experimentally demonstrated to be concretely
efficient) example of such a protocol for Z2k with active security and an
honest majority. The protocol from [2] requires 3(k + s) log n bits per
multiplication in the online phase; however we describe a novel optimiza-
tion that removes the log n factor that might be of independent interest.
Although our protocol does not outperform its field counterpart from [14]
(it is merely comparable), our results illustrate that the a priori benefits
of working over Z2k may be outweighed by the complexity of computing
over the so-called Galois ring extensions, which are required to make these
protocols work. This observation is relevant as many recent works, such
as [8,9,34], rely on Galois ring extensions of large degree without taking
into account their computational overhead.

Outline. Section 2 introduces some of the definitions we will be needing and
Sect. 3 introduces the building blocks we need in our compiler. In Sect. 4 our
main protocol (i.e., our compiler) is presented, as well as the formal statements
of security and security proofs. We then present the n party instantiation in
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Sect. 5, and a three party instantiation in Sect. 6. Finally, in Sect. 7 we present
our experimental results and compare our results with prior works.

1.3 Related Work

The only previous general compiler with concrete efficiency over rings, to the
best of our knowledge, is the compiler of [20], which was improved by [21].
However, their compiler does not preserve the adversary threshold when moving
from passive to active security. In addition, in [20] and [21] the compiler was
instantiated for the 3-party case only.

The only concretely efficient protocol for arithmetic computation over rings
that works for any number of parties is the SPDZ2k protocol [15] which was
proven to be practical in [17]. This protocol is for the dishonest majority and
thus requires the use of much heavier machinery, which makes it orders of mag-
nitudes slower than ours. However, they deal with a more complicated setting
and provide stronger security.

The work of [30] provides a method for working over small fields (e.g., F2)
which improves upon the Chida et al. protocol [14]. However, their method is
not suited for the rings that we consider in our work.

In the three-party setting with one corruption, there are several works which
provide high efficiency for arithmetic computations over rings. The Sharemind
protocol [7] is being used to solve real-world problems but provides only passive
security. The actively secure protocol of [22], which was optimized and imple-
mented in [3], is based on the “cut–and–choose” approach and will be favorable
when working over small rings. The actively secure three-party protocol of [21]
is the closest to our protocol in the sense that they also focus on efficiency for
large rings. The overall communication per multiplication gate of their protocol
is 3(k + s) bits sent by each party, which is higher than ours by (k + s) bits.
We provide a detailed empirical comparison with [21] in Sect. 7.3. Finally, a new
promising direction was presented by [9], but their verification step takes sev-
eral seconds for a 1-million gate over fields, and this is expected to be orders of
magnitude worse for rings due to the need of large-degree Galois ring extensions.
The protocols of [13,34] have a slightly higher bandwidth overall than [3], but
they focus on minimizing online (input-dependent) cost and they tailor their
protocols to specific applications for machine learning. Also, [34] uses the tech-
niques from [9] for the preprocessing, so it is unlikely to provide any efficiency
in practice.

Finally, it is important to mention that the techniques from [9], which work
for 3 parties, can be generalized to multiple parties as a passive-to-active com-
piler. This has been done in [28] over fields, and it is not hard to see that these
techniques can be made to work over Z2k by considering large-degree Galois ring
extensions, as done in [9]. However, this method is not practical as even a small
degree extension can be quite expensive, as shown in this work. Furthermore,
the round complexity of the passively secure protocol is not preserved by this
transformation.
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2 Preliminaries and Definitions

Notation. Let P1, . . . , Pn denote the n parties participating in the computation,
and let t denote the number of corrupted parties. In this work, we assume an
honest majority, hence t < n

2 . Throughout the paper, we use H to denote the
subset of honest parties and C to denote the subset of corrupted parties. We use
[n] to denote the set {1, . . . , n}. ZM denotes the ring of integers modulo M , and
the congruence x ≡ y mod 2� is denoted by x ≡� y.

We use the standard definition of security based on the ideal/real model
paradigm [10,25], with security formalized for non-unanimous abort. This means
that the adversary first receives the output, and then determines for each honest
party whether they will receive abort or receive their correct output. It is easy
to modify our protocols so that the honest parties unanimously abort by run-
ning a single (weak) Byzantine agreement at the end of the execution [26]. For
simplicity, we omit this step from the description of our protocols. Our protocol
is cast in the synchronous model of communication, in which it is assumed that
the parties share a common clock and protocols can be executed in rounds.

2.1 Linear Secret Sharing and Its Properties

Let � be a positive integer. A perfect (t, n)-secret-sharing scheme (SSS) over
Z2� distributes an input x ∈ Z2� among the n parties P1, . . . , Pn, giving shares
to each one of them in such a way that any subset of at least t + 1 parties
can reconstruct x from their shares, but any subset of at most t parties cannot
learn anything about x from their shares. We denote by share(x) the sharing
interactive procedure and by open([[x]]) the procedure to open a sharing and
reveal the secret. The share procedure may take also in addition to x, a set
of shares {xi}i∈J for J ⊂ [n] and |J | ≤ t, such that share(x, {xi}i∈J) satisfies
[[x]] = (x1′ , . . . , xn′), with xi′ = xi for i ∈ J . The open procedure may take an
index i as an additional input. In this case, the secret is revealed to Pi only. In
case the sharing [[x]] is not correct as defined below, open([[x]]) will output ⊥. An
SSS is linear if it allows the parties to obtain shares of linear combinations of
secret-shared values without interaction.

Our compiler applies to any linear SSS over Z2k that has a multiplication
protocol that is secure against additive attacks, as defined in Sect. 2.2. The only
extra, non-standard properties required by our compiler are the following (for a
formalization of the requirements of the SSS, see the full version of this work):

Modular Reduction. We assume that the open procedure is compatible with
modular reduction, meaning that for any 0 ≤ �′ ≤ � and any x ∈ Z2� ,
reducing each share in [[x]]� modulo 2�′

yields shares [[x mod 2�′
]]�′ . We denote

this by [[x]]� → [[x]]�′ .
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Multiplication by 1/2. Given a shared value [[x]]�, we assume if all the shares
are even then shifting these shares to the right yields shares [[x′]]�−1, where
x′ = x/2.2

Throughout the entire paper, we set the threshold for the secret-sharing
scheme to be 	n−1

2 
, and we denote by t the number of corrupted parties. Now we
define what it means for the parties to have correct shares of some value. Let J be
a subset of honest parties of size t + 1, and denote by val([[v]])J the value obtained
by these parties after running the open protocol, where no corrupted parties or
additional honest parties participate, i.e. open([[v]]J ). Note that val([[v]])J may
equal ⊥ and in this case we say that the shares held by the honest parties are
not valid. Informally, a secret sharing is correct if every subset of t + 1 honest
parties reconstruct the same value (which is not ⊥).

2.2 Secure Multiplication up to Additive Attacks [23,24]

Our construction works by running a multiplication protocol (for multiplying two
values that are shared among the parties) that is not fully secure in the pres-
ence of a malicious adversary and then running a verification step that enables
the honest parties to detect cheating. In order to achieve this, we start with a
multiplication protocol with the property that the adversary’s ability to cheat
is limited to carrying out a so-called “additive attack” on the output. Formally,
we say that a multiplication protocol is secure up to an additive attack if it real-
izes the functionality Fmult, which receives input sharings [[x]] and [[y]] from the
honest parties, and an additive error value d from the adversary, and outputs a
sharing of x · y + d. Since the corrupted parties can determine their own shares
in the protocol, the functionality allows the adversary to provide the shares of
the corrupted parties, but this reveals nothing about the secret-shared value.

The requirements defined by this functionality can be met by several semi-
honest multiplication protocols over Z2� . In this work we focus on two of them in
particular: one based on replicated secret sharing, and the other a more recent
protocol of Abspoel et al. [2], which extends Shamir’s secret sharing to the setting
of Z2� .

In addition to the above, we consider a similar functionality FDotProduct that,
instead of computing one single multiplication, allows the parties to securely
compute the dot product of two vectors of shares, where the adversary is allowed
to inject an additive error to the final output. As in [14], we will show that the
functionality can be realized at almost the same cost as Fmult.

2 If all the shares [[x]]� are even then these shares may be written as [[x]]� = 2 · [[y]]�,
which, by the homomorphism property, are shares of 2 · y. Since these are shares of
x as well, this shows that x ≡� 2 · y, so x is even.
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3 Building Blocks and Sub-protocols

Our compiler requires a series of building blocks in order to operate. These
include generation of random shares and public coin-tossing, as well as broadcast.
Furthermore, a core step of our compiler is checking that a secret-shared value
is zero, leaking nothing more than this binary information. This is not easy
to instantiate over Z2k , and we discuss this in Sect. 3.1. We stress that our
presentation here is very general and it assumes nothing about the underlying
secret-sharing scheme beyond the properties stated in Sect. 2.1.

Frand – Generating Random Coins. We define the ideal functionality Frand to
generate a sharing of a random value unknown to the parties. The function-
ality lets the adversary choose the corrupted parties’ shares, which together
with the random secret chosen by the functionality, are used to compute the
shares of the honest parties. The way to compute this functionality depends
on the specific secret-sharing scheme that is being used, and we discuss con-
crete instantiations later on.

Fcoin – Generating Random Coins. Fcoin(�) is an ideal functionality that
chooses a random element from Z2� and hands it to all parties.

Fbc – Broadcast with Abort. With this functionality, a given party sends a
message to all other parties, with the guarantee that all the honest parties
agree on the same value. Furthermore, if the sender is honest, the agreed-
upon value is precisely the one that the sender sent. The protocol may abort,
and can be instantiated using the well-known echo-broadcast protocol, where
the parties echo the message they received and send it the other parties.

Finput – Secure Sharing of Inputs. This is a functionality that allows a party
to distribute consistent shares of its input. This can be instantiated generi-
cally by sampling [[r]] using Frand, reconstructing this value to the party who
will provide input x, and letting this party broadcast the difference x − r.
The parties can then compute the shares [[x]] = (x − r) + [[r]].

3.1 Checking Equality to 0

For our compiler we require a functionality FCheckZero(�), which receives [[v]]H�
from the honest parties, uses them to compute v and sends accept to all parties
if v ≡� 0. Else, if v �≡� 0, the functionality sends reject.

A simple way to approach this problem when working over a field is sampling
a random multiplicative mask [[r]], multiply [[r ·v]] = [[r]] · [[v]], open r ·v and check
that it is equal to zero. Clearly, since r is random then r · v looks also random
if v �= 0. However, this technique does not work over the ring Z2� : for example,
if v is a non-zero even number then r · v is always even, which reveals too much
about v. In this section we present a generic protocol to solve the problem of
checking equality of zero over the ring, which is unfortunately more expensive
and complicated than the protocol over fields described above. On the upside,
this check is only called once in a full execution of the main protocol and so the
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complexity of this technique is amortized away. Furthermore, for 3 parties for
example, one can get a much more efficient solution, as we show in Sect. 6.

Our general protocol to compute FCheckZero is described in Protocol 1. We
consider two functionalities, FCorrectMult and FrandBit, that compute correct mul-
tiplications and sample shared random bits, respectively.

We have the following proposition.

Proposition 1. Protocol 1 securely computes FCheckZero with abort in the
(FrandBit,FCorrectMult)-hybrid model in the presence of malicious adversaries who
control t < n/2 parties.

Protocol 1 Checking Equality to 0

Input: The parties hold a sharing [[v]]�.

The protocol:

1. The parties call FrandBit to get � random shared bits [[r0]]�, . . . , [[r�−1]]�.
2. The parties bit-decompose v:

(a) The parties compute [[r]]� =
∑�−1

i=0 2i · [[ri]]�.
(b) The parties call c = open([[v]]� + [[r]]�) and bit-decompose this value as (c0, . . . , c�−1).
(c) The parties locally convert [[ri]]� → [[ri]]1 for i = 1, . . . , � − 1.

3. The parties check that all the bits of v mod 2� are zero:

(a) The parties use FCorrectMult(1) to compute
∨�−1

i=0 ([[ri]]1 ⊕ ci) and open this result.
(b) If the opened value above is equal to 0 then the parties output accept. Otherwise they

output reject.

Correct Multiplication. We consider a functionality FCorrectMult, that is sim-
ilar to Fmult, except it does not allow additive errors. Our protocol to instantiate
this functionality is based on a technique known as “sacrificing”. The idea is
to generate correct random multiplication triples, which are then consumed to
multiply the inputs. This is done by calling Frand three times to obtain random
shares [[a]], [[b]], [[a′]], calling Fmult twice to obtain [[a · b]] and [[a′ · b]], and using one
triple to check the correctness of the other. Some modifications are needed in
order to make this work over the ring Z2� for which we use the “SPDZ2k trick”
from [15]. This requires us to perform the check over the ring Z2�+s , thereby
achieving a statistical error of 2−s. The construction is presented in detail in
Protocol 2.

Note that the protocol can be divided into two stages: an offline phase where
the multiplication triple is generated, and an online phase where the triple is used
to compute the product of the given shares. Thus, an efficient implementation
would batch all the preprocessing together, and then proceed to consume these
triples when the actual multiplication is required.

We remark that other approaches to produce random triples, such as “cut–
and–choose”, would work here as well. However, the “cut–and–choose” method
becomes efficient only when many triples are being generated together—much
more than what is needed by our protocol (for example, in [22], to achieve good
parameters for the “cut–and–choose” process which yield low bandwidth, 220
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triples are generated together). Thus, the sacrificing approach is favorable in our
setting.

It can be easily checked that w in the protocol equals d′ − r · d, where d′ and
d are the additive errors from the two calls to Fmult. The following lemma shows
that d cannot be non-zero with non-negligible probability, which shows that
the triple ([[a]]�+s, [[b]]�+s, [[c]]�+s) is correct modulo 2k. From this, the security of
Protocol 2 follows.

Lemma 1 ([15]). If the check at the end of the first step in Protocol 2 passes,
then the additive error d ∈ Z2�+s that A sent to Fmult is zero modulo 2� with
probability at least 1 − 2−s.

Protocol 2 Correct Multiplication

Inputs: Two shares [[x]]� and [[y]]� to be multiplied.

The protocol:

1. Generate a multiplication triple via sacrificing.
(a) The parties call Frand(� + s) three times to obtain sharings [[a]]�+s, [[a′]]�+s, [[b]]�+s.
(b) The parties call Fmult(� + s) on input [[a]]�+s and [[b]]�+s to obtain shares [[c]]�+s, and

on input [[a′]]�+s and [[b]]�+s to obtain shares [[c′]]�+s.
(c) The parties call Fcoin(s) to obtain a random element r ∈ Z2s .
(d) The parties execute open(r · [[a]]�+s − [[a′]]�+s) = a′′.
(e) The parties execute open(a′′ ·[[b]]�+s −r ·[[c]]�+s+[[c′]]�+s) = w and check that w ≡�+s 0.
(f) If the check in the previous step has failed, the parties abort. Otherwise they compute

[[π]]�+s → [[π]]� for π ∈ {a, b, c}, take ([[a]]�, [[b]]�, [[c]]�) as a valid triple and continue to
the next step.

2. Use the generated triple to multiply the input shares.
(a) The parties execute open([[x]]� − [[a]]�) = u and open([[y]]� − [[b]]�) = v.
(b) The parties locally compute [[z]]� = [[c]]� + u · [[b]]� + v · [[a]]� + u · v.

Outputs: The parties output the shares [[z]]�.

Proof: Since Fmult is used in the first step, we have that c = a · b + d and
c′ = a′ · b + d′, where d, d′ ∈ Z2�+s are the additive attacks chosen by the
adversary in the first and second call to Fmult respectively. It follows that a′′ ·
b − r · c + c′ ≡�+s d′ − r · d. Hence, if 2v is the largest power of 2 dividing d, it
holds that if w ≡�+s 0 then r

2v ≡�+s−v

(
d
2v

)−1 d′
2v , which holds with probability

at most 2−(�+s−v). If d �≡� 0, then v > � and therefore this probability is upper
bounded by 2−s, which concludes the proof. �

Generating Random Shared Bits. We also consider a functionality FrandBit

that operates in a similar way to Frand, but ensures the random shared value is
in {0, 1}. We instantiate this functionality essentially by showing that the bit-
generation procedure from [17], which is presented in the setting of SPDZ-type
of shares, also extends to more general secret-sharing schemes. The main tool
needed here is the “multiplication by 1/2” property presented in Sect. 2.1, which
states that parties can locally divide their shares of a secret x mod 2� by 2 to
obtain shares of x/2 mod 2�−1, as long as the shares and the secret are even.
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Proposition 2. Protocol 3 securely computes functionality FrandBit with abort
in the (Frand,FCorrectMult)-hybrid model in the presence of malicious adversaries
controlling t < n/2 parties.

Proof: First, observe that simulation here is straightforward. Since the protocol
has no inputs, the simulator S can perfectly simulate the honest parties in the
execution (including aborting the protocol if the honest parties output ⊥ when
running the open procedure). In addition, S receives the corrupted parties’ shares
when playing the role of Frand and FCorrectMult and thus it can compute locally
[[b]]C� and hand it to FrandBit.

Next, we show that the honest parties’ output is identically distributed in
both the real and ideal executions. In the simulation, the honest parties’ output
is random shares of a random bit (computed given the corrupted parties’ shares).
We now show that this is the same for the real world execution.

To see this, first observe that c ≡�+2 a2 (with no additive errors), since
FCorrectMult was used. Furthermore, using Lemma 4.1 in [17], we obtain that
d =

√
c
−1 · a mod 2�+2 satisfies d ∈ {±1,±1+2�+1}, so in particular d ≡�+1 ±1,

with each one of these cases happening with equal probability. This implies that
b = b′/2 mod 2� satisfies b ≡� 0 or b ≡� 1, each case with the same probability.

The final observation is that all the shares of b′ = d + 1 mod 2�+1 are even,
which is required to ensure that the parties can execute the right-shift operation
in step 5. This is implied by the following argument. First of all, notice that
[[d]]�+2 + 1 = 2 · √

c
−1[[r]]�+2 + (

√
c
−1 + 1). Now, the shares 2 · √

c
−1[[r]]�+2 are

even since these are obtained by multiplying the constant 2. Furthermore, the
constant (

√
c
−1 + 1) is even since

√
c
−1 is odd, and by the assumptions of the

secret-sharing scheme each canonical share of it is either 0 or the constant itself
(see the “shares of a constant” property in Sect. 2.1), so in particular all of its
shares are even.

The above implies that at the end of the protocol, the parties hold a sharing
of a random bit, exactly as in the simulation. This concludes the proof. �

Protocol 3 Random Shared Bits Generation

The protocol:

1. The parties call Frand(�+2) to obtain a shared value [[r]]�+2. Then, the parties set [[a]]�+2 =
2 · [[r]]�+2 + 1.

2. The parties call FCorrectMult(� + 2) on input [[a]]�+2 and [[a]]�+2 to obtain shares [[c]]�+2 =

[[a2]]�+2. Then, they run open([[c]]�+2) to obtain c.

3. The parties compute [[d]]�+2 =
√

c−1 · [[a]]�+2, where
√

c is a fixed square root of c modulo

2�+2, and the inverse is taken modulo 2�+2.
4. The parties locally convert [[d]]�+2 → [[d]]�+1, and compute [[b′]]�+1 = [[d]]�+1 + 1.
5. The parties locally shift their shares of b′ one position to the right to obtain shares [[b]]�,

where b ≡�
b′
2 .

Outputs: The parties output [[b]]�.
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4 The Main Protocol for Rings

In this section, we present our construction to compute arithmetic circuits over
the ring Z2k . A formal description appears in Protocol 4. Our protocol follows
the paradigm of [14], which roughly works by running a “redundant” copy of the
circuit where each shared wire value [[w]] is accompanied by [[r ·w]] for some global
uniformly random r. In [14] it was shown that such a “dual” execution allows
the parties to perform a simple check to ensure that no additive errors were
introduced in the multiplication gates. However, such check does not directly
work over Z2k , given that it relies on the fact that every non-zero element must
be invertible, which only holds over fields.

In order to reduce the cheating success probability, we borrow the idea of [15]
of working on the larger ring Z2k+s . As we will show below, this ensures that a
similar check to that in [14] over fields can be carried out over Z2k+s , ensuring no
additive attacks over Z2k are carried out, except with probability at most 2−s.

At the core of the security of our protocol lies the following lemma, which
shows that an additive attack that is non-zero modulo 2k in any multiplication
gate leads to failure in the final check to zero, with overwhelming probability.

Protocol 4 Computing Arithmetic Circuits Over the Ring Z2k

Inputs: Each party Pj (j ∈ {1, . . . , n}) holds an input xj ∈ Z
L

2k .

Auxiliary Input: The parties hold the description of an arithmetic circuit C over Z2k that
computes f on inputs of length M = L · n. Let N be the number of multiplication gates in C.
In addition, the parties hold a parameter s ∈ N.

The protocol:

1. Secret sharing the inputs:
(a) For each input xj held by party Pj , party Pj represent it as an element of ZL

2k+s and

sends xj to Finput(k + s).

(b) Each party Pj records its vector of shares (xj
1, . . . , xj

M ) of all inputs, as received from
Finput(k+s). If a party received ⊥ from Finput, then it sends abort to the other parties
and halts.

2. Generate randomizing shares: The parties call Frand(k + s) to receive [[r]]k+s, where r ∈R

Z2k+s .
3. Randomization of inputs: For each input wire sharing [[vm]]k+s (where m ∈ {1, . . . , M})

the parties call Fmult on [[r]]k+s to receive [[r · vm]]k+s.
4. Circuit emulation: The parties traverse over the circuit in topological order. For each gate

G� the parties work as follows:
– G� is an addition gate: Given tuples ([[x]]k+s, [[r · x]]k+s) and ([[y]]k+s, [[r · y]]k+s)

on the left and right input wires respectively, the parties locally compute
([[x + y]]k+s, [[r · (x + y)]]k+s).

– G� is a multiplication-by-a-constant gate: Given a constant a ∈ Z2k

and tuple ([[x]]k+s, [[r · x]]k+s) on the input wire, the parties locally compute
([[a · x]]k+s, [[r · (a · x)]]k+s).

– G� is a multiplication gate: Given tuples ([[x]]k+s, [[r · x]]k+s) and ([[y]]k+s, [[r · y]]k+s)
on the left and right input wires respectively:
(a) The parties call Fmult on [[x]]k+s and [[y]]k+s to receive [[x · y]]k+s.
(b) The parties call Fmult on [[r · x]]k+s and [[y]]k+s to receive [[r · x · y]]k+s.

5. Verification stage: Let {([[zi]]k+s, [[r · zi]]k+s)}N
i=1 be the tuples on the output wires of all

multiplication gates and let {[[vm]]k+s, [[r · vm]]k+s}M
m=1 be the tuples on the input wires of

the circuit.
(a) For m = 1, . . . , M , the parties call Frand(k + s) to receive [[βm]]k+s.
(b) For i = 1, . . . , N , the parties call Frand(k + s) to receive [[αi]]k+s.
(c) Compute linear combinations:
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i. The parties call FDotProduct on ([[α1]]k+s, . . . , [[αN ]]k+s, [[β1]]k+s, . . . , [[βM ]]k+s) and
([[r · z1]]k+s, . . . , [[r, ·zN ]]k+s, [[r · v1]]k+s, . . . , [[r · vM ]]k+s) to obtain

[[u]]k+s = [[
∑N

i=1 αi · (r · zi) +
∑M

m=1 βm · (r · vm)]]k+s.
ii. The parties call FDotProduct on ([[α1]], . . . , [[αN ]], [[β1]], . . . , [[βM ]]) and

([[z1]]k+s, . . . , [[zN ]]k+s, [[v1]]k+s, . . . , [[vM ]]k+s) to obtain

[[w]]k+s = [[
∑N

i=1 αi · zi +
∑M

m=1 βm · vm]]k+s.
(d) The parties run open([[r]]k+s) to receive r.
(e) Each party locally computes [[T ]]k+s = [[u]]k+s − r · [[w]]k+s.
(f) The parties call FCheckZero(k + s) on [[T ]]k+s. If FCheckZero(k + s) outputs reject, the

parties output ⊥ and abort. If it outputs accept, they proceed.
6. Output reconstruction: For each output wire of the circuit with [[v]]k+s, the parties locally

convert to [[v]]k. Then, they run v mod 2k = open([[v]]k, j), where Pj is the party whose
output is on the wire. If Pj received ⊥ from the open procedure, then it sends ⊥ to the
other parties, outputs ⊥ and halts.

Output: If a party has not aborted, then it outputs the values received on its output wires.

Lemma 2. If A sends an additive value d �≡k 0 in any of the calls to Fmult in
the execution of Protocol 4, then the value T computed in the verification stage
of Step 5 equals 0 with probability bounded by 2−s+log(s+1).

Proof: Suppose that ([[xi]]k+s, [[yi]]k+s, [[zi]]k+s) is the multiplication triple corre-
sponding to the i-th multiplication gate, where [[xi]]k+s, [[yi]]k+s are the sharings
on the input wires and [[zi]]k+s is the sharing on the output wire. We note that
the values on the input wires may not actually be the appropriate values as when
the circuit is computed by honest parties. However, in the verification step, each
gate is examined separately, and all that is important is whether the randomized
result is [[r · zi]]k+s for whatever zi is here (i.e., even if an error was added by the
adversary in previous gates). By the definition of Fmult, a malicious adversary
is able to carry out an additive attack, meaning that it can add a value to the
output of each multiplication gate. We denote by δi ∈ Z2k+s the value that is
added by the adversary when Fmult is called with [[xi]]k+s and [[yi]]k+s, and by
γi ∈ Z2k+s the value added by the adversary when Fmult is called with the shares
[[yi]]k+s and [[r · xi]]k+s. However, it is possible that the adversary has attacked
previous gates and so [[yi]]k+s is actually multiplied with [[r · xi + εi]], where the
value εi ∈ Z2k+s is an accumulated error from previous gates.3 Thus, it holds
that val([[zi]])H = xi · yi + δi and val([[r · zi]])H = (r · xi + εi) · yi + γi. Similarly,
for each input wire with sharing [[vm]], it holds that val([[r · vm]])H = r · vm + ξm,
where ξm ∈ Z2k+s is the value added by the adversary when Fmult is called with
[[r]]k+s and the shared input [[vm]]k+s. Thus, we have that

3 Although attacks in previous gates may be carried out on both multiplications, the
idea is here is to fix xi which is shared by [[xi]]k+s at the current value on the
wire, and then given the randomized sharing [[xi′ ]]k+s, define εi = xi′ − r · xi as the
accumulated error on the input wire.
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val([[u]])H =
N∑

i=1

αi · ((r · xi + εi) · yi + γi)

+
M∑

m=1

βm · (r · vm + ξm) + Θ1

val([[w]])H =
N∑

i=1

αi · (xi · yi + δi) +
M∑

m=1

βm · vm + Θ2

where Θ1 ∈ Z2k+s and Θ2 ∈ Z2k+s are the values being added by the adversary
when FDotProduct is called in the verification step, and so

val([[T ]])H = val([[u]])H − r · val([[w]])H =

=
N∑

i=1

αi · ((r · xi + εi) · yi + γi) +
M∑

m=1

βm · (r · vm + ξm) + θ1

− r ·
(

N∑

i=1

αi · (xi · yi + δi) +
M∑

m=1

βm · vm + Θ2

)

=
N∑

i=1

αi · (εi · yi + γi − r · δi) (1)

+
M∑

m=1

βm · ξm + (Θ1−r · Θ2),

where the second equality holds because r is opened and so the multiplication
r · [[w]]k+s always yields [[r · w]]k+s. Let Δi = εi · yi + γi−r · δi.

Our goal is to show that val([[T ]])H , as shown in Eq. (2), equals 0 with prob-
ability at most 2−s+log(s+1). We have the following cases.

– Case 1: There exists m ∈ [M ] such that ξm �≡k 0. Let m0 be the smallest such
m for which this holds. Then val([[T ]])H ≡k+s 0 if and only if

βm0 · ξm0 ≡k+s

⎛

⎜
⎝−

N∑

i=1

αi · Δi −
M∑

m=1
m 
=m0

βm · ξm − (Θ1−r · Θ2)

⎞

⎟
⎠ .

Let 2u be the largest power of 2 dividing ξm0 . Then we have that

βm0 ≡k+s−u

⎛

⎝
−∑N

i=1 αi · Δi − ∑M
m=1

m 
=m0

βm · ξm − (Θ1−r · Θ2)

2u

⎞

⎠·
(

ξm0

2u

)−1

.

By the assumption that ξm �≡k 0 it follows that u < k and so k + s − u > s
which means that the above holds with probability at most 2−s, since βm0 is
uniformly distributed over Z2k+s .
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– Case 2: All ξm ≡k 0. By the assumption in the lemma, some additive value
d �≡k 0 was sent to Fmult. Since none was sent for the input randomization,
there exists some i ∈ {1, . . . , N} such that δi �≡k 0 or γi �≡k 0. Let i0 be the
smallest such i for which this holds. Note that since this is the first error added
which is �≡k 0, it holds that εi0 ≡k 0. Thus, in this case, val([[T ]])H ≡k+s 0 if
and only if αi0 · Δi0 ≡k+s Y , where

Y =

⎛

⎜
⎝−

N∑

i=1
i
=i0

αi · Δi −
M∑

m=1

βm · ξm − (Θ1−r · Θ2)

⎞

⎟
⎠ .

Let q be the random variable corresponding to the largest power of 2 dividing
Δi0 , where we define q = k + s in the case that Δi0 ≡k+s 0. Let E denote the
event αi0 · Δi0 ≡k+s Y . We have the following claims.

• Claim 1: For k < j ≤ k + s, it holds that Pr[q = j] ≤ 2−(j−k).
To see this, suppose that q = j and j > k. It holds then that Δi0 ≡j 0, and
so Δi0 ≡k 0. We first claim that in this case it must hold that δi0 �≡k 0.
Assume in contradiction that δi0 ≡k 0. In addition, by our assumption
we have that γi0 �≡k 0, εi ≡k 0 and Δi0 = εi0 · yi0 + γi0 − r · δi0 ≡k 0.
However, εi · yi0 ≡k 0 and r · δi0 ≡k 0 imply that γi0 ≡k 0, which is a
contradiction.
We thus assume that δi0 �≡k 0, and in particular there exists u < k,
such that u is the largest power of 2 dividing δi0 . It is easy to see then

that q = j implies that r ≡j−u

(
εi0 ·yi0+γi0

2u

)
·
(

δi0
2u

)−1

. Since r ∈ Z2k+s

is uniformly random and u < k, we have that this equation holds with
probability of at most 2−(j−u) ≤ 2−(j−k).

• Claim 2: For k < j < k + s it holds that Pr[E | q = j] ≤ 2−(k+s−j).
To prove this let us assume that q = j and that E holds. In this case

we can write αi0 ≡k+s−j
Y
2j ·

(
Δi0
2j

)−1

. For k < j < k + s it holds that
0 < k + s − j < s and therefore this equation can be only satisfied with
probability at most 2−(k+s−j), given that αi0 ∈ Z2s is uniformly random.

• Claim 3: Pr[E | 0 ≤ q ≤ k] ≤ 2−s.
This is implied by the proof of the previous claim, since in the case that
q = j with 0 ≤ j ≤ k, it holds that k + s − j ≥ s, so the event E implies

that αi0 ≡s
Y
2j ·

(
Δi0
2j

)−1

, which holds with probability at most 2−s.
Putting these pieces together, we thus have the following:

Pr [E] = Pr [E | 0 ≤ q ≤ k] · Pr[0 ≤ q ≤ k]

+
k+s∑

j=k+1

Pr [E | q = j] · Pr[q = j]

≤ 2−s + s · 2−s = (s + 1) · 2−s = 2−s+log(s+1). (2)

To sum up the proof, in the first case we obtained that T = 0 with probability
of at most 2−s whereas in the second case, this holds with probability of at
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most 2−s+log(s+1). Therefore, we conclude that the probability that T = 0 in
the verification step is bounded by 2−s+log(s+1) as stated in the lemma. This
concludes the proof. �

The security of Protocol 4 now follows as Lemma 2 shows that additive errors
that are non-zero modulo 2k cannot take place without leading to abort. How-
ever, one non-trivial issue lies in handling additive attacks that are zero modulo
2k, but not modulo 2k+s, as these do not affect correctness but may lead to
selective failure attacks, in which an abort signal can be generated depending
on the inputs from honest parties. Our protocol deals with this potential attack
by using secret coefficients for the random linear combination taken in the veri-
fication step. If we take public coefficients, as done in [14], the following attack
can be carried out.

Assume that the adversary has attacked exactly one gate, indexed by i0, in
the following way. When multiplying xi0 with yi0 , the adversary acted honestly,
but when multiplying r ·xi0 with yi0 , it added the value di0 . Thus, on the output
wire, the parties hold a sharing of the pair (xi0 · yi0 , r · xi0 · yi0 + di0). Now,
assume that this wire enters another multiplication gate, indexed by j0 with
input shares on the second wire being (wj0 , r · wj0) and that the output of this
second gate is an output wire of the circuit. Thus, on the output of this gate,
the parties will hold the sharing (xi0 · yi0 · wj0 , (r · xi0 · yi0 + di0)wj0) (assuming
the adversary does not attack this gate as well). In this case, we have that
T = αi0s · di0 + αj0 · (di0 · wj0) = di0(αi0 + αj0 · wj0). Now, if di0 = 2k+s−1 then
it follows that T ≡k+s 0 if and only if αi0 + αj0 · wj0 is even.

The attack presented above does not change the k lower bits of the values on
the wires, and thus has no effect on the correctness of the output. However, if αi0

and αj0 are public and known to the adversary, then by FCheckZero’s output the
adversary may be able to learn whether wj0 is even or not. In contrast, when αi0

and αj0 are kept secret, learning whether αi0 + αj0 · wj0 is even or odd does not
reveal any information about wj0 since it is now perfectly masked by αi0 and αj0 .
Therefore, to prevent this type of attack, we are forced to use random secrets
for our random linear combination. Here is where the functionality FDotProduct

becomes handy, as it allows to compute the sum of products of sharings in an
efficient way which is exactly what we need to compute

∑N
i=1[[αi]] · [[zi]].

We state the security of our protocol below. A full simulation-based proof
appears in the full version of this work.

Theorem 1. Let f be an n-party functionality over Z2k and let s be a sta-
tistical security parameter. Then, Protocol 4 securely computes f with abort in
the (Finput,Fmult,Fcoin,Frand,FCheckZero,FDotProduct)-hybrid model with statistical
error 2−s+log(s+1), in the presence of a malicious adversary controlling t < n

2
parties. The communication complexity in bits of the resulting protocol is

M · (
2 · Crand(k + s) + Cmult(k + s) + Copen(i)(k + s) + (k + s)

)

+N · (Crand(k + s) + 2 · Cmult(k + s)) + O · Copen(i)(k),
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where M is the number of inputs, N is the number of multiplication gates in the
circuit, O is the number of output wires of the circuit and C∗ represents the cost
(in bits) of calling the functionality F∗.

5 Instantiation for n Parties

In this section, we present our instantiation based on Shamir’s secret sharing
over rings, using the techniques from [2]. This technique works for any number
of parties, although for 3 parties one can obtain more efficient solutions, such
as the one we describe in Sect. 6 that uses replicated secret sharing. Over finite
fields, Shamir’s scheme requires a distinct evaluation point for each player, and
one more for the secret. This is usually not a problem if the size of the field is
not too small. However, over commutative rings R the condition on the sequence
of evaluation points α0, . . . , αn ∈ R is that the pairwise difference αi − αj is
invertible for each pair of indices i �= j. For our ring of interest Z2� , the largest
such sequence the ring admits is only of length 2 (e.g., (α0, α1) = (0, 1)).

The solution from [2] is to embed inputs from Z2� into a large enough Galois
ring R that has Z2� as a subring. This ring is of the form R = Z2� [X]/(h(X)),
where h(X) is a monic polynomial of degree d = �log2 n� such that h(X) mod 2 ∈
F2[X] is irreducible. Elements of R thus correspond uniquely to polynomials with
coefficients in Z2� that are of degree at most d − 1. Note the similarity between
the Galois ring and finite field extensions of F2: elements of the finite field F2d

correspond uniquely to polynomials of at most degree d − 1 with coefficients
in F2.

There is a ring homomorphism π : R → Z2� that sends a0 + a1X + · · · +
ad−1X

d−1 ∈ R to the free coefficient a0, which we shall use later on.4 For more
relevant structural properties of Galois rings, see [2].

We adopt the above-mentioned version of Shamir’s scheme over R, but
restrict the secret space to Z2� . The share space will be equal to R. Let 1 ≤ τ ≤ n
be the privacy parameter of the scheme. Then, the set of correct share vectors
is

Cτ =
{

(f(α1), . . . , f(αn)) ∈ Rn

∣
∣
∣
∣
f ∈ R[X], deg(f) ≤ τ,
and f(α0) ∈ Z2� ⊂ R

}
. (3)

With the restriction that the secret is in Z2� , we have that Cτ is an Z2�-module,
i.e., the secret-sharing scheme is Z2�-linear. Since it is based on polynomial inter-
polation, the properties from Sect. 2.1 can be easily seen to hold. This includes
division by 2 if all the shares are even.

In this section, we denote a sharing under Cτ as [[x]]τ = (x1, . . . , xn). We call
τ the degree of the sharing. The reason we are explicit about τ is that we will
use sharings of two different degrees. This stems from the critical property of
this secret-sharing scheme that enables us to evaluate arithmetic circuits: this
secret-sharing scheme is multiplicative. This means there is a Z2� -linear map
Rn → Z2� that for sharings [[x]]τ , [[y]]τ sends (x1y1, . . . , xnyn) �→ x · y.
4 Technically, an element of R is a residue class modulo the ideal (h(X)), but we omit

this for simplicity of notation.
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Put differently, (x1y1, . . . , xnyn) ∈ C2τ is a degree-2τ sharing with secret x·y.
We denote it [[x ·y]](2τ) = (x1y1, . . . , xnyn)—in particular note the parenthesized
subscript refers to the degree of the sharing, as opposed to the modulus. Note
that Ci ⊆ Cj for 0 < i < j; in particular every degree-2τ sharing is also a sharing
of degree n − 1. A sharing of degree n − 1 is related to additive secret sharing,
where the secret equals the sum of the shares x =

∑
i xi. The difference is that

here there are constants, i.e. we may write x =
∑

i λixi, for λ1, . . . , λn ∈ R. We
shall make use of this in our multiplication protocol, ensuring that parties only
need to communicate an element of Z2� instead of an element of R. However, note
that [[·]](2τ) does not meet the definition of a secret-sharing scheme in Sect. 2.1, in
particular because the corrupted parties shares are not well defined and cannot
be computed from the honest parties’ shares.

5.1 Generating Randomness

We efficiently realize Frand by letting each player Pi sample and secret-share
a random element si, and then multiplying the resulting vector of n random
elements with a particular5 Vandermonde matrix [19].6 Of the resulting vector,
τ entries are discarded to ensure the adversary has zero information about the
remaining ones. Thus, n − τ random elements are outputted, resulting in an
amortized communication cost of O(n) ring elements per element. A priori the
adversary can cause the sharings to be incorrect; this is remedied with Protocol 6
by opening a random linear combination of the sharings and verifying the result.

Since our secret-sharing scheme [[·]]τ is Z2� -linear, we would like to choose our
matrix with entries in Z2� . Unfortunately, the Vandermonde matrix we need does
not exist over Z2� , for the same reason secret sharing does not work. However,
the secret-sharing scheme which consists of d parallel sharings of [[·]]τ be inter-
preted as an R-linear secret-sharing scheme [2,11]. This secret-sharing scheme,
which we denote as 〈·〉, has share space Sd (since the scheme is identical to shar-
ing d independent secrets in S in parallel using [[·]]τ ), and secret space Rd. The
scheme is R-linear because the module of share vectors, which is (Cτ )d, is an R-
module via the tensor product (Cτ )d ∼= Cτ ⊗S Sd ∼= Cτ ⊗S R. In practice, a single
secret-shared element 〈x〉 may be interpreted as a secret-shared column vector
([[x1]]τ , . . . , [[xd]]τ )T . To compute the action of an element r ∈ R on 〈x〉 in this rep-
resentation, we first need to fix a basis of R over S. Recall R = Z2� [X]/(h(X)),
so we may pick the canonical basis 1,X, . . . ,Xd−1 ∈ R. This allows us to repre-
sent an element a ∈ R as a column vector (a0, . . . , ad−1)T ∈ Sd, i.e., explicitly:
a = a0 + a1X + · · · + ad−1X

d−1. Multiplication by r ∈ R is an S-linear map of
vectors Sd → Sd, i.e., it can be represented as a d × d matrix Mr with entries in
S. The product r 〈x〉 = 〈rx〉 is then equal to Mr([[x1]]τ , . . . , [[xd]]τ )T . If a single
party P has a vector of shares (s1, . . . , sd) ∈ R for 〈x〉 = ([[x1]]τ , . . . , [[xd]]τ )T ,
then Mr(s1, . . . , sd)T is their vector of shares corresponding to 〈rx〉.
5 Over fields this can be a general Vandermonde matrix, but this is not sufficient over

R.
6 In general, any R-linear code with good distance and dimension suffices to get O(n)

complexity in the protocol, but the Vandermonde construction is optimal.
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In our protocol, the parties compute (〈r1〉 , . . . , 〈rn−τ 〉)T = A(〈s1〉 , . . . ,
〈sn〉)T , where A has entries in R. This can be computed by writing out the R-
linear combinations 〈ri〉 =

∑n
k=1 aik 〈sk〉 =

∑n
k=1 Maik

〈sk〉, with 〈sk〉 =
([[sk1]]τ , [[skd]]τ )ᵀ. Fix a sequence β1, . . . , βn ∈ R such that for each pair of indices
i �= j we have that βi − βj is invertible.7 We let A be the (n − τ) × n matrix such
that the j-th column is (1, βj , βj2 , . . . , βn−τ−1

j )T . This matrix is super-invertible,
i.e. any square submatrix obtained by sampling a subset of n−τ columns is invert-
ible [2].

Protocol 5 Generating random sharings of [[·]]τ
The protocol:

1. Each party Pi samples an element si ← (Z2� )
d and secret-shares it as 〈si〉 among all

parties.
2. The parties locally compute the linear matrix-vector product to obtain

(〈r1〉 , . . . , 〈rn−τ 〉)T := A(〈s1〉 , . . . , 〈sn〉)T .
3. The parties execute Protocol 6 �κ/d� times in parallel on 〈r1〉 , . . . , 〈rn−τ 〉 If any exe-

cution fails, they abort. Otherwise, for each j = 1, . . . , n − τ they interpret 〈rj〉 =
([[rj1]]τ , . . . , [[rjd]]τ ) and output [[r11]]τ , . . . , [[r1d]]τ , [[r21]]τ , . . . , [[r(n−τ)d]]τ .

Lemma 3. Protocol 5 securely computes (n − τ)d parallel invocations of Frand

for [[·]]τ with statistical error of at most 2−κ in the presence of a malicious adver-
sary controlling t < n/2 parties.

Proof: Let A be the real-world adversary. The simulator S interacts with A
by simulating the honest parties in an execution of the protocol. In doing so, S
obtains honest parties’ shares 〈r1〉H , . . . , 〈rn−τ 〉H .

We distinguish three cases:

1. If at least one of the simulated honest parties aborts in any of the executions
of Protocol 6, then S sends abort to Frand.

2. If the checks pass but the honest parties’ shares are inconsistent, S outputs
fail. By Lemma 4 this only happens with probability at most 2−κ, allowed
by the claim.

3. In the remaining case, the checks of Protocol 6 pass and the honest
parties’ shares are consistent. S calculates the corrupted parties’ shares
〈r1〉C , . . . , 〈rn−τ 〉C from the honest parties’ shares, and sends them to Frand.

Before the invocation of Frand, the honest parties have no private inputs,
hence S simulates them perfectly and A’s view will be identical to the real
execution. Thus, the simulated honest parties will abort in the ideal execution
precisely when they would in the real execution.

The only thing it remains to prove is that if the parties do not abort, the
output shares are identically distributed in the real and ideal executions. In par-
ticular, we need to prove that in the real execution, the sharings are independent
and uniformly sampled from 〈·〉.
7 We may just use (β1, . . . , βn) = (α1, . . . , αn).
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Let H ⊆ H be a subset of honest parties of size n − τ , and let C :=
{1, . . . , n}\H denote its complement. Let AH , AC denote the submatrices of A
corresponding to the columns indexed by H and C respectively. Let 〈sH〉 denote
the vector 〈si〉i∈H of length n − τ , and correspondingly 〈sC〉 := 〈si〉i∈C . Then
(〈r1〉 , . . . , 〈rn−τ 〉)T = AH 〈sH〉+AC 〈sC〉. Since 〈sH〉 is wholly generated by the
honest parties, it consists of n − τ independent and uniformly random sharings
of 〈·〉. AH is invertible (since A is super-invertible), hence we also have that
〈sH〉 consists of independent and uniformly random sharings. Adding a fixed
AC 〈sC〉 will not affect the distribution, hence the sharings 〈r1〉 , . . . , 〈rn−τ 〉 are
independent and uniformly random sharings. �

5.2 Checking Correctness of Sharings

We check whether sharings are correct by taking a random linear combination
of the sharings, masking it with a random sharing, and opening the result to all
parties.

This protocol does not securely compute an ideal functionality, because pri-
vacy is not preserved if the sharings are incorrect. The way we use it this does
not matter, since we only verify correctness of sharings of random elements.

Protocol 6 Checking correctness of sharings of 〈·〉

Inputs: possibly incorrect sharings 〈x1〉 , . . . , 〈xN 〉, and a possibly incorrect sharing 〈r〉 ←
(Z2� )

d of a random element.

The protocol:

1. The parties call Fcoin N times to get a1, . . . , aN ← (Z2� )
d.

2. The parties compute 〈u〉 := a1 〈x1〉 + · · · + aN 〈xN 〉 + 〈r〉.
3. The parties run open(〈u〉). If it returns ⊥, output ⊥. Else, output correct.

Lemma 4. If at least one of the input sharings 〈x1〉 , . . . , 〈xN 〉 is incorrect, Pro-
tocol 6 outputs correct with probability at most 1

2d .

To show correctness, we use the following consequence from [2, Lemma 3].

Lemma 5. Let C ⊆ Rn be a free R-module. Then for all x /∈ C and u ∈ Rn,
we have that

Pr
r←R

[rx + u ∈ C] ≤ 1
2d

where r is chosen uniformly at random from R.

Proof: [Proof of Lemma 4]. Let C denote the R-module of correct share vectors
(such as in (3)). One of the input sharings is incorrect; without loss of generality
assume it is 〈x1〉. The protocol open(〈u〉) returns a value not equal to ⊥ if and
only if 〈u〉 = a1 〈x1〉 + (a2 〈x2〉 + · · · + an 〈xn〉 + 〈r〉) is in C. By Lemma 5 this
probability is bounded by 1/2, since a1 was chosen uniformly at random. Since
〈u〉 is masked with 〈r〉, the protocol is private. �
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5.3 Secure Multiplication up to Additive Attacks

Multiplication follows the outline of the passively secure protocol of [19]. The
protocol begins with a preprocessing phase, where random double sharings are
produced, i.e. a pair of sharings ([[r]]τ , [[r]](2τ)) of the same uniformly random
element r shared using polynomials of degree τ and degree 2τ , respectively.

We denote a double sharing as [[r]](τ,2τ) := ((r1, r′
1), . . . , (rn, r′

n)). It is a Z2� -
linear secret-sharing scheme with secret space Z2� and share space R ⊕ R. The
set of correct share vectors is the Z2� -module

⎧
⎨

⎩
((f(α1), g(α1)), . . . , (f(αn), g(αn)))

∣
∣
∣
∣
∣
∣

f, g ∈ R[X],
f(α0) = g(α0) ∈ Z2� ,

deg(f) ≤ τ, deg(g) ≤ 2τ

⎫
⎬

⎭
.

Secret-sharing an element r under [[·]](τ,2τ) involves selecting two uniformly ran-
dom polynomials of degrees at most τ and 2τ respectively.

To generate sharings in [[·]](τ,2τ), we essentially use Protocol 5. However, this
protocol does not securely realize Frand, since in Lemma 3 we use the fact that
the simulator can compute the corrupted parties’ shares from the honest parties’
shares, which is not the case for the degree-2τ part (hence why [[·]](2τ), therefore
also [[·]](τ,2τ), does not meet the definition of a secret-sharing scheme in Sect. 2.1).
This will only lead to an additive attack in the online phase, which is why we
can still use the protocol.

Protocol 7 Secure multiplication up to an additive attack

Inputs: Parties hold correct sharings [[x]]τ , [[y]]τ .

Preprocessing: The parties execute Protocol 5 for [[·]](τ,2τ) instead of [[·]]τ . They only check
correctness for the [[·]]τ part, and not for the [[·]](2τ) part. They obtain a random double sharing
([[r]]τ , [[r]](2τ)).

The protocol:

1. The parties locally calculate [[δ]](2τ) := [[x]]τ · [[y]]τ − [[r]](2τ).

2. Each Pi for i = 1, . . . 2τ+1 sends ui := π(λiδi) to P1 (recall π(a0+a1X+· · ·+ad−1Xd−1) =
a0 ∈ Z2� , and the λi are constants such that

∑n
i=1 λiδi = δ)

3. P1 can now reconstruct δ as δ =
∑n

i=1 ui.
4. P1 broadcasts δ.
5. The parties locally compute [[x · y]]τ = [[r]]τ + δ.

The reason each party sends ui instead of δi to P1 is two-fold. It saves band-
width, since only an element of Z2� needs to be communicated instead of an
element of R. More importantly though, if the inputs [[x]]τ , [[y]]τ are not guaran-
teed to be correct, then sending full shares δi can compromise privacy.

Note that it is important that the random double sharing [[r]](τ,2τ) is guar-
anteed to be correct. I.e., the shares are degree τ and 2τ respectively.

Lemma 6. Protocol 7 securely computes Fmult with statistical error ≤2−κ in the
Frand-hybrid model in the presence of a malicious adversary controlling t < n/2
parties.
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Proof: Without loss of generality, assume 2τ +1 = n (recall that τ is the secret
sharing threshold and not the number of corrupted parties, and so the proof still
holds for any t < n/2).

For the offline phase, the simulator acts as in Lemma 3. By the proof, we have
that [[r]]τ is a correct sharing. The sharing [[r′]](2τ) is not well-defined, because
the adversary can change its mind about its shares at any time. However, the
adversary always knows the additive error r′ − r that it introduces by changing
its shares.

For the online phase, S simulates the honest parties towards A.
We distinguish two cases:

– Case 1: P1 is not corrupt. The simulated P1 receives {ui}i∈C from A. If it
receives ⊥ for any value ui, it sends abort to Fmult and simulates P1 aborting.
Otherwise, it calls Fmult and receives {xi}i∈C , {yi}i∈C . For any i ∈ C, since
S knows xi, yi, r

′
i, it may calculate δi = xiyi − r′

i and thus the value π(λiδi)
the adversary is supposed to send if it behaves honestly. The simulator can
therefore extract d =

∑
i∈C ui − π(λiδi). S does not know the true value of

δ, however it may sample δ ← Z2� , send it to the corrupted parties, and
calculate the corrupted parties’ shares as zi = ri + δ + d.
It then simulates the broadcast of δ. If the broadcast aborts, S simulates the
parties aborting and sends abort to Fmult. Otherwise, it sends d, {zi}i∈C to
Fmult, and outputs whatever A outputs.
In the ideal execution, A receives a random δ. It cannot distinguish this from
the real value x · y − r, since r is uniformly random and by privacy of the
secret-sharing scheme it does not have any information on it.

– Case 2: P1 is corrupt. S samples [[δ]](2τ) ← [[·]](2τ). For i ∈ H it sends ui =
π(λiδi) to the corrupted P1. The simulated honest parties receive an identical
broadcasted value δ′, otherwise the broadcast protocol aborts.
Since S knows δ, it can extract d := δ′ − δ, and calculate the corrupted
parties’ shares as zi = ri + δ′. It then sends d, {zi}i∈C to Fmult, and it outputs
whatever A outputs.

As mentioned above, the adversary cannot distinguish whether it is talking
to a simulator or the real parties, hence its output will be identical.

In the ideal execution where no abort took place, the actual (non-simulated)
parties receive their shares {zi}i∈H directly from Fmult. The shares are consistent
and will reconstruct to the secret z = x · y +d. In the ideal execution, the shares
are generated by the probabilistic function share(z, {zi}z∈C), such that the shares
are uniformly random subject to the constraints on the shares.8 In the real
execution, the shares also correspond to z. The sharing in the real execution is
calculated as [[r]]τ + δ, where [[r]]τ is a uniformly random sharing. Therefore, the
outputs are identical in both executions. �

When evaluating a circuit gate-by-gate using Protocol 7, we consider an
optimization in which we do not need to execute the broadcast (which might

8 Depending on the privacy threshold the constraints may fully determine the shares.
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be expensive) for each multiplication, but instead they will perform a broadcast
just before opening the values. In the multiplication protocol, P1 will just send a
value (not guaranteed to be the same) to all other parties. Each party Pi keeps
track of a hash value hi of all received values in step 4 of the protocol far. Before
opening their outputs, each party Pi sends its hash hi to all other parties. If any
party detects a mismatch, they abort. Note that security up to additive attack is
guaranteed only after this procedure succeeds, which is executed before opening
the output.

In doing so, we lose the invariant that all secret-shared values are guaranteed
to be correct. In other scenarios, as for example the t < n/3 setting, this com-
pletely breaks the security of the protocol as shown in [27]. However, this is not
a problem in our case since the degree-2τ sharings have no redundancy in them.
As shown in [27], this is enough to guarantee the security of the protocol with
the deferred check, and the reason is essentially that the shares that the poten-
tially corrupt party P1 receives are now uniformly random and independent of
each other.

5.4 Reducing Communication Using Pseudo-Randomness [8,33]

Our protocol as described so far is information-theoretically secure. We can
reduce communication by using a pseudo-random generator in the following
way. Assume that each pair of parties hold a joint random seed. Then, when
party Pi shares an element with degree t, it is possible to derive t shares from
the seed known to Pi and the corresponding party, and set the remaining t + 1
shares (including the dealer’s own share) given the pseudo-random shares and
the value of the secret. Thus, only t shares need to be transmitted, thereby
reducing communication by half. Using the same reasoning, it is possible to
share a secret using degree 2t without any interaction. Here n − 1 = 2t shares
are computed using the seed known to the dealer and each party, and then the
dealer sets its own share such that all shares will reconstruct to the secret. We
can use this idea to also reduce communication in the multiplication protocol.
Instead of broadcasting δ, party Pi can share it to the parties with degree t, and
use the above optimization, so that P1 will have to send t elements instead of
n−1. We note that here instead of comparing δ (to ensure correctness of output
sharings), the parties can perform a batch correctness check (Protocol 6) for all
sharings dealt by P1 before the verification step in the main protocol.

6 Instantiation for 3 Parties

We now present in detail the efficient three party instantiation of our compiler
from replicated secret sharing. Sharing a value x ∈ Z2� is done by picking at
random x1, x2, x3 ∈ Z2� such that

∑
i xi ≡� x. Pi’s share of x is the pair (xi, xi+1)

and we use the convention that i+1 = 1 when i = 3. To reconstruct a secret, Pi

receives the missing share from the two other parties. Note that reconstructing
a secret is robust in the sense that parties either reconstruct the correct value x
or they abort.
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Replicated secret sharing satisfies the properties described in Sect. 2.1, and
one can efficiently realize the required functionalities described in the same
section. Below we discuss some of these properties/functionalities.

6.1 Generating Random Shares

Shares of a random value can be generated non-interactively, as noted in [31,32],
by making use of a setup phase in which each party Pi obtains shares of two
random keys ki, ki+1 for a pseudorandom function (PRF) F . The parties generate
shares of a random value for the j-th time by letting Pi’s share to be (ri, ri+1),
where ri = Fki

(j). These are replicated shares of the (pseudo)random value
r =

∑
i Fki

(j). Proving that this securely computes Frand is straightforward and
we omit the details.

6.2 Secure Multiplication up to an Additive Attack

To multiply two secret-shared values, we use the protocol from [4,32], which is
described in 8. The shares of 0 that this protocol needs can be obtained by using
correlated keys for a PRF, in similar fashion to the protocol for Frand sketched
above.

Protocol 8 Secure multiplication up to an additive attack.

Inputs: Parties hold sharings [[x]], [[y]] and additive sharings (α1, α2, α3) where
∑3

i=1 αi = 0.

The protocol:

1. Pi computes zi = xiyi + xi+1yi + xiyi+1 + αi and sends zi to Pi−1.
2. Pj , upon receiving zj+1, defines its share of [[x · y]] as (zj , zj+1).

The above protocol is secure up to an additive attack as noted in [31]. We
note that this can be extended to instantiate FDotProduct at the communication
cost of one single multiplication, as shown in [14].

6.3 Efficient Checking Equality to 0

Checking that a value is a share of 0 can be performed very efficiently in this
setting by relying on a random oracle H. The observation we rely on is that, if∑

i xi ≡� 0, then xi−1 ≡� −(xi + xi+1) and so Pi can send zi = H(−(xi + xi+1))
which will be equal to xi−1 which is held by Pi+1 and Pi−1. Since only one party
is corrupted, it suffices that each Pi will send it only to Pi+1. Upon receiving zi

from Pi, Pi+1 checks that zi = H(xi−1) and aborts if this is not the case.
This protocol is formalized in Protocol 9 in the FRO-hybrid model. The FRO

functionality is described in Functionality 1. We remark that this protocol does
not instantiate FCheckZero exactly. In order for the proof of security to work, we
need to allow the adversary to cause the parties to reject also when v = 0. We
denote this modified functionality by FCheckZero

′. This is minor change since the
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main requirement from FCheckZero in our compiler is that the parties won’t accept
a value as 0 when it is not, which is still satisfied by the modified functionality.

Functionality 1 FRO – Random Oracle functionality

Setup: Let M be an initially empty map.

The protocol:

– On input x from a party P , if (x, y) ∈ M for some y, return y. Otherwise pick y at random
and set M = {(x, y)} ∪ M and return y.

– On (x, y) from S and if (x, ·) 
∈ M set M = {(x, y)} ∪ M .

Protocol 9 Checking Equality to 0 in the FRO-Hybrid Model

Inputs: Parties hold a sharing [[v]].

Protocol:

1. Party Pi queries βi ← FRO(−(vi + vi+1)) and sends βi to Pi+1.
2. Upon receiving βi−1 from Pi−1, each party Pi checks that βi−1 = FRO(vi+1). If this is not

the case, then Pi outputs reject. Otherwise, it outputs accept.

We have the following proposition.

Proposition 3. Protocol 9 securely computes FCheckZero in the FRO-hybrid
model in the presence of one malicious corrupted party.

Proof: Let A be the real adversary who corrupts at most one party and S the
ideal world simulator. Let Pi be the corrupted party. The simulation begins with
S receiving the shares of Pi, i.e., (vi, vi+1). Then, S proceed as follows:

– If S receives accept from FCheckZero
′, then it knows that v ≡� 0 and so it can

compute the share vi−1 = −(vi + vi+1) and so it knows the honest parties’
shares and can perfectly simulate the execution, while playing the role of
FRO. If A cause the parties to reject by using different shares, then S sends
reject to FCheckZero

′.
– If S receives reject, then it chooses a random vi−1 ∈ Z2�\{−(vi + vi+1)} and

defines the honest parties’ shares accordingly. Then, it plays the role of FRO

simulating the remaining of the protocol. By the definition of FRO, the view
of A is distributed identically in the simulated and the real execution. �

7 Implementation and Evaluation

We implement both protocols in C++ and rely on uint64 t and unsigned
int128 types for arithmetic over Z2� , where the former is used when � = 64
and the latter when � = 128. This choice allows us to investigate two sets of
parameters: � = 64 can be viewed as 32 bit computation with 32 bits of statistical
security, while � = 128 gives us 64 bits of computation with 64 bits of statistical
security. We rely on libsodium for hashing and the PRG we use is based on AES.
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For the Galois-ring variant our implementation uses the ring R =
Z2� [X]/(h(x)) with h(X) = X4 + X + 1 and denote this by GR(2�, d = 4).
This ring supports 24 −1 = 15 parties and the act of hard-coding the irreducible
polynomial allows us to implement multiplication and division in the ring using
lookup tables. It is worth remarking that operations in GR(2�, d) are more expen-
sive than certain prime fields (in particular, Mersenne primes as the ones used
in [14]). Concretely, a multiplication in GR(264, 4) requires 20 uint64 t multi-
plications and 18 additions, while a multiplication in Z264 requires only a couple
of uint64 t multiplications as well as a few bitwise operations. So while some
MPC primitives in Z2� may be cheaper (for example, masking a value in Z2� is
cheaper), this gain in efficiency is greatly reduced by the complexity of operating
over the Galois ring.

Experimental Setup. We run our experiments on AWS c5.9xlarge machines,
which have 36 virtual cores, 72 GB of memory and a 10 Gbps network. We utilize
3 separate machines and so for experiments with n > 3, some parties run on the
same machine. However, the load on each machine is distributed evenly (e.g.,
with 5 parties, the first two machines each run 2 parties each while the last run
only 1 party).

7.1 Experiments

For our experiments, we focus on two instantiations.
First we compare our Shamir based instantiation (cf. Sect. 5) against the

field protocol of [14]. For this, we use the implementation at [1]. We perform the
same benchmarks as reported on in [14]; that is, circuits of varying depth with
a fixed number of parties. Each experiment is repeated for n set to 3, 5, 7 and
9. The main goal here is to understand the overhead of working with GR(2�, d)
as opposed to working over Zp. As [1] supports different choices of the prime p
we set p to be a 61-bit Mersenne prime, as this is the most efficient field that
also allows for a reasonable expressive computations.

Our second set of experiments will compare our replicated secret-sharing
based instantiation (cf. Sect. 6) against the protocols for computation over rings
presented in [21]. In these experiments we measure the throughput of multi-
plications in our protocol; that is, how many multiplications our protocol can
compute per second. Since we do not have access to the implementations of [21],
we opt instead to use the same experimental setup as theirs in order to obtain
a fair comparison. We report here on benchmarks run in a LAN setting. Sec-
ondly, we compare our 3-party protocol against the 3-party instantiation from
[14]. The 3-party protocol in [14] can be considered state-of-the-art, and thus a
comparison against our protocol is in order.

While the protocol of [14] is the natural choice for comparing our n-party
instantiation, a number of efficient specialized 3 party protocols exist which we
briefly mention here. We choose the protocols of [21] for comparison as their
experiments and setup is straightforward to replicate with our protocol, thus
allowing us to make a fair comparison. Concurrently with [21], several other
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proposals for 3 party protocols have been published, such as [13] or [34]. How-
ever, no public implementation exists for these works, and the nature of the
experiments they perform makes it very hard to perform a fair comparison (as
we do later with the results from [21]). More precisely, both [13] and [34] eval-
uate their protocols relative to an implementation of ABY3 [32] that was also
implemented by the authors themselves (as no public implementation of ABY3
was available at that time).

While [34] have better amortized communication cost, we estimate that their
concrete running time (when considering end-to-end times, as we do in this
work) will be worse. We base this conjecture on the fact that [34] uses the
interpolation based check from [8]. For the case of fields, this check was shown
in [9] to take several seconds in order to check 1 million multiplications (which
is the benchmark we use). Running the same check, but over a ring, requires
computation over a fairly large extension of Z2k , which we have no reason to
expect would be significantly faster than the field based check. Concluding, we
would not be surprised if [34] is faster in the online phase; however, preprocessing
the triples needed to get this would be much slower than our protocol. We stress
that our protocol (for the 3 party case) has no preprocessing, so we expect our
protocol to perform much better when measuring end-to-end times.

7.2 Results: Shamir Instantiation

The results of our experiments can be seen in Table 1. Across the board, we see
that preprocessing is more expensive in our protocol than in [14]. However, the
overhead is in line with the observation made above that operating in GR(2�, d)
is about 4 times as expensive than in Zp when � = 64 and p is a 61-bit Mersenne
prime. This motivates a line of research in improving the efficiency of comput-
ing over Galois rings, given the relevance of these structures as highlighted in
Sect. 1.2. This is in particular true when the number of parties is small, as here
local computation is the dominant factor. Moving to a larger number of parties,
the overhead decreases, which we attribute to differences in the efficiency of the
communication layer between our protocol and the one in [14].

Interestingly, we see that for a lower number of parties combined with very
deep circuits, our protocol performs better in the online phase. E.g., [14] takes
7.3 s, while both of our version is below 4.5 s. This could again be explained by
differences in the communication layer (since both our protocols communicate
roughly the same amount of information due to the fact that we only need
to send a Z2� element during reconstruction). However, our protocol is again
less efficient when the number of parties increases, which would be due to the
fact that the king needs to send more data during a reconstruction, as well as
broadcast being more costly when more parties are involved. We remark that it
is possible to distribute the broadcast load of the king among several parties,
which may close the gap to some extent.

We see an expected overhead of roughly ×2 between � = 64 and � = 128
(consider the depth 20 row in Table 1, as this is the setting where differences in
local computation is most prominent). This more or less confirms the intuition
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Table 1. LAN running times in seconds for circuits with 106 multiplications, different
depth and for varying number of parties, evaluated using Shamir SS-based MPC. Each
value is a tuple a/b where a is the preprocessing time and b is the time it takes to
evaluate the circuit.

Depth Protocol 3 5 7 9

20 Ours � = 64 1.56/0.18 2.12/0.28 2.46/0.37 2.70/0.47

Ours � = 128 2.79/0.52 4.28/0.74 4.73/0.91 5.10/1.11

[14] 0.43/0.18 0.63/0.22 0.93/0.45 1.03/0.28

100 Ours � = 64 1.50/0.23 1.97/0.30 2.30/0.37 2.76/0.41

Ours � = 128 2.80/0.51 3.78/0.61 4.15/0.77 5.02/0.95

[14] 0.42/0.42 0.64/0.22 0.90/0.52 1.04/1.27

1, 000 Ours � = 64 1.58/0.67 1.95/1.08 2.23/1.43 2.62/1.84

Ours � = 128 2.80/1.23 3.68/1.81 4.23/2.08 5.03/2.47

[14] 0.41/0.96 0.63/0.68 0.89/0.95 1.05/1.17

10, 000 Ours � = 64 1.50/3.85 2.01/8.55 2.41/13.41 2.65/16.76

Ours � = 128 2.81/4.43 3.71/8.07 4.38/13.31 5.03/16.43

[14] 0.38/7.30 0.61/7.32 0.89/8.40 1.05/12.88

that an operation in Z2128 is around 2–3 times as expensive compared to an
operation in Z264 .9

As a more general conclusion, we observe that working over these Galois ring
extensions does indeed incur an overhead—even for small extensions such as the
one we use.

7.3 Results: Replicated-Based Instantiation

We also compare our replicated secret-sharing based instantiation with the pro-
tocols of [21], and present the results in Fig. 1a and Fig. 1b.10 As we do not have
access to the code of all the protocols considered in [21], we run our protocol in
the same setup. With the exception of the Sharemind postprocessing protocol,
we observe that we outperform all protocols of [21]. We may attribute this to
the fact that both Sharemind and MP-SPDZ are more mature codebases and
thus it is likely that a greater effort has been put into optimizations.

9 Indeed, while a multiplication in Z264 is one unsigned 64-bit multiplication, a multi-
plication on 128-bit types compile to three Z264 multiplications. That the overhead
is less than ×3 can be attributed to the compiler being able to easier vectorize 64-bit
multiplications in the Z2128 case.

10 We thank the authors of [21] for giving us the tikzcode of their graph, as well as their
raw experimental data which allows us to make a fair comparison in this section.
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Fig. 1. Throughput benchmarks for replicated secret-sharing with 3 parties.

Table 2. LAN times in seconds for circuits with 106 multiplications and varying depth
with three parties.

Protocol 20 100 1,000 10,000

RSS Ours � = 64 0.23 0.23 0.49 2.36

Ours � = 128 0.4 0.41 0.56 2.47

[14] 0.26 0.33 0.59 2.53

However, when we consider our protocol running in a WAN, we see that we
outperform all protocols in [21]. This concurs with the fact that our protocol
only needs to send 2 ring elements per multiplication, while the postprocessing
protocols of [21] needs to send 3 (Table 2).

We also run our 3-party protocol against the similar field based one from
[14]. Given the similarities between the 3-party instantiation in that work and
ours, it is not surprising that the two protocols perform very similar. Similar to
our Shamir based instantiation, we observe the largest difference (in our favor)
with deeper circuits, which we can again attribute to slight differences in the
communication layer. On the other hand, the difference is smaller for the more
shallow circuits where local computation matters more. For this case, our pro-
tocol with � = 64 is comparable in terms of speed to [14], which uses a 64-bit
prime. On the other hand, our protocol with � = 128 is slightly slower. However,
as highlighted in the introduction, the need of an s-gap in field-based protocols
to support more complex primitives like secure comparison or truncation implies
that comparing a 64-bit prime with � = 64 is fair.
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Abstract. In light of more data than ever being stored using cloud ser-
vices and the request by the public for secure, privacy-enhanced, and easy-
to-use systems, Searchable Encryption schemes were introduced. These
schemes enable privacy-enhanced search among encrypted documents yet
disclose (encrypted) queries and responses. The first query recovery attack,
the IKK attack, uses the disclosed information to (partly) recover what
plaintext words the client searched for. This can also leak information on
the plaintext contents of the encrypted documents. Under specific assump-
tions, the IKK attack has been shown to potentially cause serious harm to
the security of Searchable Encryption schemes.

We empirically review the IKK query recovery attack to improve the
understanding of its feasibility and potential security damage. In order to
do so, we vary the assumed query distribution, which is shown to have
a severe (negative) impact on the accuracy of the attack, and the input
parameters of the IKK attack to find a correlation between these param-
eters and the accuracy of the IKK attack. Furthermore, we show that
the recovery rate of the attack can be increased up to 10% points, while
decreasing the variance of the recovery rate up to 78% points by combin-
ing the results of multiple attack runs. We also show that the including
deterministic components in the probabilistic IKK attack can increase the
recovery rate up to 21% points and decrease its variance up to 57% points.

Keywords: Searchable Encryption · IKK · Query recovery

1 Introduction

The use of currently available encryption schemes allows users to securely upload
and retrieve documents anywhere in the world using cloud services. A user
encrypts a set of documents and sends these encrypted documents to a server for
storage. The server can return documents upon request by the user, which the
user can decrypt to obtain the original documents, while the server is not capa-
ble of reading the contents of the documents. A downside of using encryption
schemes is that they, in general, limit the functionalities of the cloud service. One
such functionality is the possibility to search for word occurrences among docu-
ments. To overcome this loss in functionality, while also taking into regard data
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confidentiality, Song et al. [15] introduced the notion of Searchable Encryption
(SE).

In general, SE schemes provide a client with a way to search for the occurrence
of a certain (plaintext) word, a keyword, among a set of encrypted documents,
while neither the client nor the server has to decrypt all documents which the
client wants to search among. A client generates a search token, a query, which
it sends to a server hosting a set of (encrypted) documents. The server uses the
query to find a subset of the encrypted documents corresponding with the search
token and returns this subset to the client.

Nearly all of these SE schemes leak at least some information, usually in the
form of data access patterns [8,9,15]. This means that an adversary can observe
the issued queries from the client and the document identifiers of documents cor-
responding to said queries in the response by the server. This allows the client to
make a connection between the queries and the corresponding documents. Some
schemes were proposed [8,10] that hide these access patterns. However, these
schemes are quite inefficient as they require an extensive number of computa-
tions after each query. Other schemes propose to obfuscate the access patterns
which can both lead to inconsistencies in the search results (false positives or
false negatives) and an increase in communication and storage overhead [7].

Islam et al. [12] elaborate on the implications of the leakage of access patterns
by proposing the first query recovery attack, dubbed IKK attack in subsequent
research after the first initials of the authors of the paper. Their attack is a
statistical attack which tries to map queries to their corresponding real-world
keywords. This mapping process is dubbed query recovery. A correctly ‘recov-
ered’ query tells an adversary what the client searched for and possibly even tells
something about the contents of (encrypted) documents stored on the server. In
their attack Islam et al. use the relative co-occurrence counts of queries, which
denotes the number of documents a certain number of queries occur in together,
relative to the total number of documents. These counts can be calculated from
leaked access patterns. The IKK attack also assumes the adversary has access to
(a close approximation of) the co-occurrence counts of the plaintext (key)words
in these documents, dubbed background knowledge. Islam et al. show that a large
percentage of queries is recoverable, expressed as the (query) recovery rate, if the
adversary has perfect background knowledge, meaning that the co-occurrence
counts of keywords exactly match the co-occurrence counts of their correspond-
ing queries. They also briefly show that the recovery rate drops significantly in
simulations with non-perfect background knowledge.

We revisit the IKK attack and empirically evaluate assumptions Islam et al.
make in their proposal of the IKK attack. Additionally, we research correlations
between certain parameters and the accuracy/recovery rate of the IKK attack
and propose improvements to the attack that increase the recovery rate of the
attack.
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Our Contributions

– We show that assumptions on the (Zipfian) distribution of queries/natural
search behavior Islam et al. made positively influences the accuracy of the
IKK attack.

– We show that there is a correlation between input parameters of the IKK
attack and the accuracy of attack runs, independent of the (email) dataset
used in the targeted Searchable Encryption scheme, potentially allowing an
adversary to reuse the same values of parameters across different datasets.

– We show that the accuracy of the IKK attack can be increased significantly
when combining multiple runs using a majority voting scheme as the median
recovery rate is increased up to 10% points, whereas the variance of the
recovery rate is decreased up to 78% points.

– We show that a more deterministic approach to select new states in the
IKK attack, inspired by the Count attack [6], increases the accuracy of the
attack, while decreasing the average number of states visited. The median
recovery rate is increased up to 21% points and the variance of recovery rates
is decreased up to 57% points, while the average visited number of states is
decreased by 28%.

2 The IKK Query Recovery Attack

2.1 Searchable Encryption (SE)

The first SE scheme was proposed by Song et al. [15] to provide a client with a
way to search for the occurrence of a plaintext word among a set of encrypted
documents stored on a server without an adversary being able to learn the (plain-
text) contents of these documents.

The server stores a set of encrypted documents, for example email files.
The client wants to retrieve emails that contain information on an upcoming
merger and thus requests all emails that contain the (plaintext) word merger.
It does so by generating a so-called query using a keyed trapdoor function,
Trapdoorsk (merger), for example, a keyed hash function. Only users with key sk
can generate valid queries. More formally, a user knowing key sk can generate
query token qi for a keyword ki. We assume, just like Islam et al. [12], that
queries are deterministic, i.e. Trapdoorsk(ki) = Trapdoorsk(kj) if ki = kj .

In order to retrieve the corresponding documents, the client sends the query
to the server, which on its turn, performs a matching algorithm. Most proposed
SE schemes either encrypt every single word in a document (In-place SE [6]) to
encrypt a document or encrypt every document using a traditional encryption
scheme, such as AES, while also generating an encrypted inverted index of doc-
uments and trapdoors (Encrypted-index SE [6]) to allow the server to perform
the search query. No matter the SE scheme, the server returns all the documents
that match the search query, which can be decrypted by the client.



158 R. Groot Roessink et al.

2.2 Access Pattern Disclosure

Just like Cash et al. [6], we deem the server the most likely adversary as it
has access to the most information. Nonetheless, any adversary with access to
the communication channels is able to connect a query to the identifiers of the
documents that were returned and thus is able to see which documents were
accessed upon the query of the client. This has been dubbed (data) access pattern
disclosure in the literature [12]. Almost all SE schemes, except schemes that re-
encrypt the documents or the encrypted index stored on the server after each
query [8,10], disclose access patterns of particular queries, and thus each query
gives an adversary more information on which queries are connected to which
documents. Some schemes propose to obfuscate access patterns which can lead
to inconsistencies in the search results (false positives or false negatives) or an
increase in communication and storage overhead [7]. In our research, we assume
no such inconsistencies were added to the search results.

Although we note that different SE schemes leak different levels of infor-
mation, we only research the disclosure of access patterns and assume that the
adversary is able to get 〈query , response〉 pairs, where response is a list of doc-
uments that matched the issued query. The leaked 〈query , response〉 pairs allow
the adversary to construct an inverted index from queries/trapdoors and docu-
ments. Each cell in the matrix contains a 1 if the document matched the query,
i.e. the plaintext keyword occurs at least once in said document, or a 0 if not.
An example of an (observed) query inverted index is shown in Table 1.

Table 1. Example of a query inverted index

Query Documents

Doc1 Doc2 Doc3

q1 = Trapdoorsk(merger) 1 1 0

q2 = Trapdoorsk(corporate) 1 1 0

q3 = Trapdoorsk(report) 0 1 1

2.3 Statistical Processing

The IKK attack is grounded on the assumption that some words are more likely
to occur together in any piece of natural language than others. Islam et al. [12]
give the example of the words New, York and Yankees, where the words New
and York are more likely to occur together than New and Yankees or York and
Yankees because they are also used to refer to the city and the state and not
only the baseball team. Islam et al. propose a model where the co-occurrence
counts of 2 queries are used to recover which plaintext words correspond to
which queries. The authors use a so-called co-occurrence matrix to express all
co-occurrence counts of the queries in an attack run, as an co-occurrence matrix
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lists the (relative) co-occurrence count for each of the queries with all other
queries and with itself. The probability that two words appear together in a
given document is expressed using the following formula by Islam et al.:

β =
RQs · RQt

n
(1)

In this formula, Qs and Qt are two queries, and RQx
denotes a vector with

ones and zeros indicating whether the word corresponding to the query occurs
at least once in the document corresponding with the place in the vector (1) or
not (0). The co-occurrence count is calculated by taking the dot product of RQs

and RQt
. To get the relative co-occurrence count this value is simply divided

by n, which denotes the total number of documents in the dataset. A query co-
occurrence matrix simply lists all the co-occurrences of queries, is symmetric by
nature and is easily generated using an inverted index as every row in the index,
corresponding to query Qx, is already represented as vector RQx

. The relative
co-occurrence count of a query with itself is the total number of documents said
query occurs in divided by n. The example inverted index in Table 1 gives us the
co-occurrence matrix in Table 2.

Table 2. Example of a query co-
occurrence matrix

Queries q1 q2 q3

q1 0.67 0.67 0.33

q2 0.67 0.67 0.33

q3 0.33 0.33 0.67

Table 3. Example of a (perfect) back-
ground knowledge co-occurrence matrix

Keywords Corporate Merger Report

corporate 0.67 0.67 0.33

merger 0.67 0.67 0.33

report 0.33 0.33 0.67

2.4 Background Knowledge Assumptions

In most of their simulations Islam et al. [12] assume the adversary has perfect
background knowledge of the co-occurrence counts of plaintext words in the doc-
uments stored encrypted on the server. They mention that it is difficult, if not
impossible, to obtain perfect background knowledge and briefly experiment on
the accuracy of their attack in simulations with non-perfect background knowl-
edge by adding various degrees of Gaussian noise to a co-occurrence matrix
corresponding to perfect background knowledge.

Cash et al. [6] further research the effect of non-perfect background knowl-
edge, but instead of adding various degrees of Gaussian noise to a perfect repre-
sentation of the background knowledge (of the adversary) the authors assume the
adversary (server) has access to a fraction of the plaintext documents and thus
the adversary is capable of calculating both inverted indices and co-occurrence
matrices from the documents it knows. The authors report that the IKK attack
performs quite poorly if the background knowledge is made up of less than 99%
of the documents. An example of a background knowledge co-occurrence matrix
is shown in Table 3.



160 R. Groot Roessink et al.

2.5 Simulated Annealing

Islam et al. [12] use two algorithms to recover queries from a query co-occurrence
matrix and a background knowledge co-occurrence matrix: Their Optimizer
(Algorithms 1 and 2) algorithm assigns a random 1-to-1 mapping for each
query to a random keyword in the background co-occurrence matrix as the ini-
tial state variable. The mapping corresponds to a mapping between the query
co-occurrence matrix and a subset of the background knowledge co-occurrence
matrix which is equal in its dimensions to the query co-occurrence matrix. Each
cell in the query co-occurrence matrix is therefore mapped to a single cell in the
background knowledge co-occurrence matrix. The initial state is given as input
to their ANNEAL (Algorithms 3 and 4) algorithm. This algorithm is a Simulated
Annealing algorithm [13], which first copies the initial state to a current state
variable and enters a while loop. Each iteration the algorithm randomly selects
both a mapping (of a single query to a single keyword, i.e. q1 �→ k1) and a key-
word (k2) from the list of potential keywords. If the selected keyword is already
mapped to another query, i.e. q2 �→ k2 is in current state, the mappings are
simply interchanged, i.e. q1 �→ k2 and q2 �→ k1, otherwise the selected mapping
is changed to q1 �→ k2 to obtain the next state.

The algorithm determines whether it should accept or reject next state in
favor of or against current state respectively. The algorithm calculates the sum
of the squared Euclidean distance of the co-occurrence counts of each of the
mappings with other mappings for both current state and next state. Depending
on the calculated squared Euclidean distance either next state is accepted (and
becomes current state in the iteration of the while loop) or is rejected. If the
Euclidean distance of next state is lower than that of current state next state
is accepted. A next state with a higher Euclidean distance is not necessarily
rejected, but might be accepted with a small probability, depending how close
the Euclidean distance is to 0. This is included to decrease the possibility of the
algorithm finishing its run in a local optimum state as opposed to finding the
global optimum state.

The ANNEAL algorithm takes three input parameters, next to the co-
occurrence matrices. These input parameters initial temperature, cool down rate
and rejection rate are used to ensure the algorithm has a finite run time. The
initial temperature initializes the internal current temperature variable of the
algorithm. Each iteration in the while loop current temperature is decreased
by multiplying it with cool down rate (a value between 0 and 1, close to 1).
The algorithm returns current state as the final mapping if the system freezes,
i.e. current temperature becomes 0. initial temperature and current temperature
therefore together determine the maximum number of loops the algorithm goes
through. The algorithm can also finish before it freezes if no next state has been
accepted for a certain (consecutive) number of iterations, which is determined
by the value of rejection rate. The current temperature variable is also used also
in deciding whether to accept a worse next state with a small probability.
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2.6 Simulations

Datasets Used. Both Islam et al. [12] and Cash et al. [6] use the sent mail
data folder of the ENRON dataset [2] (containing 30109 emails) as the dataset
to run simulations on. Additionally, Cash et al. use the Apache Lucene project’s
java-user mailing list [1] (containing 50116 emails) in their simulations.

Tokenization/Stemming Algorithm. Both papers tokenize all emails in the
dataset to specific words before they are able to stem individual words, but
neither elaborate on the tokenization algorithm used in their simulations. Stem-
ming is done using Porter’s stemming algorithm [14] to get the stem of each
word, meaning that words like ‘has’ and ‘have’, which in principle have the same
meaning, are stemmed to the same word.

Keyword Generation. The stemmed keywords are sorted in decreasing order
of overall occurrence. The 200 most occurring (stemmed) words in a dataset,
that are likely to occur in every file (for example ‘a’ and ‘the’), are removed
as they are not deemed useful in a Searchable Encryption scheme. The next x
words are regarded as the keyword set.

Query Generation. Both Islam et al. and Cash et al. simulate a certain number
of queries by using the Zipfian distribution on the keyword set. Due to the nature
of the Zipfian distribution words with a higher occurrence count are more likely
to be simulated as a query.

Reported Results. Islam et al. report recovery rates ranging from 60%–100%
depending on the number of keywords, number of queries and the % of queries
‘known’ before the attack run. With different levels of Gaussian noise added to
the background knowledge, the accuracy of the attack ranges between 40% and
85%. Cash et al. report recovery rates of the IKK attack ranging between 0%
and 100% and show an exponentially decreasing correlation between the size of
the input matrices (query and background knowledge co-occurrence matrices)
and the recovery rate. Cash et al. also report recovery rates ranging between 0%
and 60% for different percentages of documents ‘known’ to the adversary.

3 Revisiting the IKK Attack

Islam et al. [12] introduced the study on query recovery attacks by proposing
the IKK query recovery attack. The authors report high query recovery rates
that would allow an adversary to determine what a user searched for. More
importantly, as Cash et al. [6] note in their paper, correctly recovered queries
are inherently a part of the plaintext of encrypted documents and thus disclose
part of the plaintext of the document stored on the server. We therefore stress
that it is important to get a more broad understanding of query recovery attacks.
In this research we revisit the following facets of the IKK attack:
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– We evaluate the assumption on query distribution following the Zipfian distri-
bution made by Islam et al. while simulating runs of the IKK attack (Sect. 4).

– We look at the correlation between the initial temperature, cool down rate
and the rejection rate input parameters and the accuracy of the IKK attack
(Sect. 5).

Furthermore, we propose and research the following improvements to the
IKK attack:

– We propose to use a majority voting scheme to increase the accuracy of the
IKK attack by combining the results of multiple runs (Sect. 6).

– We propose to (more) deterministically choose the next state of the ANNEAL
algorithm to increase the accuracy of and decrease the number of visited states
by the IKK attack. This method incorporates the (relative) word occurrence
method, as proposed by Cash et al. in their Count attack (Sect. 6).

In order to run simulations of the IKK attack to address the points above
we implemented the IKK attack as proposed by Islam et al. in Python3 and
published it on Github [3]. The implementation allows the user to select:

– the distribution used to simulate queries (Zipfian, reverse Zipfian, Uniform)
– values for the parameters of the ANNEAL algorithm (initial temperature, cool
down rate, rejection rate)

– sizes of the query and background knowledge co-occurrence matrices (resp.
number of queries, number of keywords)

– datasets/email folders to use in the simulation (ENRON/ sent mail,
ENRON/inbox, ApacheLucene-java-user (Apache))

– different methods to simulate non-perfect background knowledge (Gaussian
noise addition, using a fraction of the keywords, using a fraction of the doc-
uments)

– the number of consecutive runs with exactly the same input parameters
– whether to more deterministically select new states using word occurrences

as also proposed in the Count attack by Cash et al.

To give the reader an idea of the input parameters used in our simulations
we mention the standard values for the different parameters of the IKK attack
in Table 4.

We briefly capture our generalized method below. Simulation specific method-
ologies are elaborated upon in their correlated sections (Sects. 4, 5 and 6).

1. Tokenize and stem the words in all documents in a specific dataset. Tokeniza-
tion is done by splitting the document on whitespaces. Stemming is done using
Porter’s stemming algorithm [14].

2. Sort all unique (stemmed) words in decreasing order of occurrence (count)
(the total number of times a word occurs in the dataset, not the number of
matching documents).
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Table 4. Standard parameter values in the IKK attack simulations

Variable Value Variable Value Variable Value

initial temperature 1.0 nr of keywords 1500 dataset / ENRON /

cool down rate 0.999 nr of queries 150 email folder sent mail

rejection rate 50000

nr of runs 1 keyword percentage 1.0

Gaussian
0.0

document percentage 1.0

noise scaling factor distribution Zipfian

3. Disregard the first 200 most occurring words, just like Islam et al., and take
the subsequent x words as keyword set. x is equal to the number of keywords
input variable in our simulations.

4. Simulate y queries from the x selected keywords using a specified query dis-
tribution as the query set. y is equal to the number of queries input variable
in our simulations.

5. Generate the query and background knowledge inverted indices from the
selected queries and keywords, and the list of documents.

6. Generate the query and background knowledge co-occurrence matrices from
the inverted indices.

7. Input the co-occurrences matrices and the input parameters initial tempera-
ture, cool down rate and rejection rate in the ANNEAL algorithm.

8. Calculate the (query) recovery rate by dividing the number of correctly
mapped queries, where query = keyword , by the total number of queries.

Islam et al. also use a known queries variable in their experiments, a method
also adopted by Cash et al. This variable denotes 〈query , keyword〉 pairs that
the adversary knows to be mapped correctly before the attack run. We argue
that the actual value of this variable is likely to be (close to) 0 and we therefore
excluded this variable from our experiments.

4 Assumptions Evaluation

In their simulations, Islam et al. [12] make an assumption on distribution of
queries in a real-world SE scheme in order to estimate real-world search behavior
of users. They assume natural search behavior can be estimated by simulating
queries using the Zipfian distribution as they argue that search behavior might
follow a Zipfian distribution as the simulations are run on a natural language
corpus. In their paper, the authors state that ‘according to Zipf’s law, in a corpus
of natural language utterances, the frequency of appearance of an individual
word is inversely proportional to its rank’ [17]. The Zipfian distribution is also
used by Cash et al. [6] to simulate queries for their simulations.

In order to simulate queries, from the simulated keyword set (of size x),
Islam et al. first sort the words in the keyword set in decreasing order of overall
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occurrence. For the word in the jth position in this list (rank j ) the following
formulas are used to determine the probability the word is selected as a query:

Prj =

1
j

Nx
=

1

j × Nx
, Nx =

x∑

i=1

1

i
(2)

A word with a higher total occurrence count is therefore more likely to be
simulated as a query. Islam et al. also note that duplicate queries are removed.
We argue that the assumption that search behavior follows a Zipfian distribution
is counter-intuitive in the sense that users are more likely to search for a specific
email in their mail archive and thus issue a (single word) query that is likely to
return the sought after document while also not returning too much other emails
(false positives). We therefore argue that search behavior might instead follow a
reverse Zipfian distribution and thus a word that has a lower occurrence count
has a higher chance of being selected as a query. The reverse Zipfian distribution
can be calculated using the same formulas as the Zipfian distribution, but the
list of word occurrences is sorted in ascending order of occurrence as opposed to
descending order.

To compare the effect of the distribution used to simulate the queries we
conducted three different simulations for the Zipfian distribution, reverse Zipfian
Distribution and Uniform distribution respectively. The Uniform distribution
denotes the setting where queries are simulated from the keyword set uniformly
at random. The results of our simulations are shown in Fig. 1, where each box
plot is the aggregation of 20 simulations.
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It can be seen that the distribution chosen to simulate queries influences the
results of the IKK attack quite a lot and that simulations where the queries were
simulated using the Zipfian distribution in general have a much higher recovery
rate than simulations where a different distribution was used. Unfortunately, we
simply do not know what distribution real-world search behavior follows in a
Searchable Encryption scheme as, to the best of our knowledge, there exists no
dataset which contains query search behavior of real-world users in an SE setting.
We can only conclude that the actual distribution determines the accuracy of
the IKK attack and therefore whether using a Searchable Encryption scheme
poses a risk for search privacy and potentially data confidentially. These results
are in line with a similar notion (high-selectivity keywords vs. low-selectivity
keywords) as made in [4], which was published during our research.

5 Recovery Rate Quantification

Islam et al. [12] show that their IKK attack allows an adversary to recover
(most of the) queries in a simulated setting. Their ANNEAL algorithm
(Algorithms 3, 4), which is part of their attack algorithm, takes three input
parameters initial temperature, cool down rate and rejection rate to ensure the
algorithm has a finite run time. These parameters are further explained in
Sect. 2.5.

The values of these parameters have a significant influence on the number of
visited states of the IKK attack as the initial temperature and cool down rate
together determine the maximum number of states the algorithms visits, whereas
the value of rejection rate determines whether the algorithm finishes before the
current temperature reaches 0 or not. We argue that the accuracy of the IKK
attack is therefore dependent on the values of these input parameters. This means
that a proven correlation between these three input parameters, independent of
the underlying dataset, and the recovery rate might allow an adversary to use
simulations on another dataset to find the optimal input parameters for the IKK
attack.

To answer the question whether there is a correlation between the three input
parameters and the recovery rate, independent of the dataset, we used the same
datasets as used by Islam et al. and Cash et al. as these datasets are most com-
mon in literature. The first dataset is the ENRON dataset [2], specifically its
sent mail data folder which contains 30109 emails. Cash et al. also experiment
on the java-user mailing list of the Apache Lucene project (henceforth Apache)
[1] (reportedly containing about 38.000 emails). However, the exact dataset they
used was unavailable and thus we crawled the archive site of the java-user mailing
list and retrieved 50116 emails. The crawled Apache dataset is included in our
Python3 implementation of the IKK attack on Github [3]. In order to test our
hypothesis we conducted three different experiments. In all of the experiments
we kept one of the input parameters (initial temperature, cool down rate, rejec-
tion rate) constant while varying the other two. The experiments were repeated
for both the Apache and ENRON dataset, with both the query and background
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knowledge co-occurrence matrix from the same dataset and with perfect back-
ground knowledge. Each point in Figs. 2, 3 and 4 is the average of 5 simulations
of the IKK attack.
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Figure 2 shows the aggregation of simulation results with a constant initial
temperature. The results of simulations on the ENRON dataset and the Apache
dataset are roughly the same. The only exceptions are the simulations with a
rejection rate of 50000 and a cool down rate of 0.9999 respectively 0.99999, which
we attribute to the relatively low number of simulations (5) aggregated in each
data point. With more simulations these results might become more similar.
Furthermore, the recovery rate increases with both the cool down rate and the
rejection rate. This makes sense as the maximum number of loops is increased
with a cool down rate closer to 1 and a higher rejection rate increases the likeli-
hood of finding the best mapping as the algorithm does not halt prematurely.

Figure 3 shows the aggregation of simulations with a constant rejection rate.
We see that the value of recovery rate is only dependent on the value of cool
down rate as the correlation between initial temperature and recovery rate is
relatively constant. The recovery rate is also not dependent on the underlying
dataset used as the results for both the ENRON and Apache dataset are roughly
the same.

Figure 4 shows the aggregation of simulations with a constant cool down rate.
We see that the value of recovery rate is dependent on the value of rejection rate
and not on the value of initial temperature as we again see a constant correlation
between initial temperature and recovery rate. We can also see that the value of
recovery rate is not dependent on the underlying dataset used as the results are
quite similar for both the ENRON and Apache datasets.
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We conclude that the values of rejection rate and cool down rate significantly
influence the recovery rate of the IKK attack. Furthermore, we conclude that
it is possible for an adversary to find the optimal values for cool down rate
and recovery rate using simulations on a different dataset as the recovery rate is
independent of the underlying dataset used. This means that it is possible to use
simulations on the ENRON dataset to select the optimal input parameter values
for runs on the Apache dataset and vice versa. We argue that email datasets are
quite similar due to the nature of the files they contain as emails are structured
in a certain way, are limited in length and are used for specific purposes and
thus might contain similar data. More research should be conducted to find out
whether our findings hold true for completely different datasets as well.

6 Improvements

6.1 Combining Multiple Runs

The IKK attack returns a 1-to-1 mapping between queries and keywords. An
adversary cannot, from the mapping alone, determine which queries were recov-
ered correctly and which were not, as even with perfect background knowledge
the IKK attack shows a lot of variance. For example, Fig. 5 shows that the recov-
ery rates of 20 simulations of the IKK attack with equal input parameters and
perfect background knowledge return recovery rates ranging between 0.1 and
0.98, which almost spans the entire range of possible recovery rates.

The IKK attack is a probabilistic algorithm in the sense that the algorithm
uniformly at random selects a new mapping to change in the current state to
determine the next state to explore. We argue that the IKK attack shows a large
variance in the recovery rate as the algorithm merely approximates the optimal
state yet does not necessarily always return it. A deterministic algorithm that
simply visits every possible mapping is less likely to show a large variance, but
the single attack runs will have to evaluate far more different states in order to
be successful, making such an algorithm quite inefficient as the total number of
potential states is given using the following equation:

nr. of states =
(nr. of keywords)!

(nr. of keywords − nr. of queries)!
. (3)

For 50 observed queries and 500 keywords in the background knowledge this
would mean that there are already 7.039 ∗ 10133 potential states to explore.

As every single run of the IKK attack still approximates the optimal mapping,
we argue that it is possible to combine the results of different attack runs using
a simple majority voting scheme to better approximate the optimal solution.
We conducted 20 simulations each consisting of 20 attack runs on the same
query co-occurrence matrix and background knowledge co-occurrence matrix
(representing perfect knowledge) per simulation. In each of the simulations, we
combined a certain number of runs by selecting the most prevalent keyword
mapped to each of the queries. If no prevalent keyword could be found (two or
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more keywords are most prevalent) the majority voting scheme did not assign a
most prevalent keyword to a query and instead assigned the None value.
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Fig. 5. Aggregation of a number of different runs of the same simulation using a major-
ity voting scheme

Figure 5 shows the results of combining multiple runs on the same query
and background co-occurrence matrices. It can be seen that the accuracy of
the attack significantly decreases the variance that is observed with single runs
of the IKK attack. When combining 5 runs per simulation (#5) the results
are already very promising, which is even more the case when the aggregation
contains either 10 or 20 runs per simulation. Our proposed aggregation method
also has the advantage that the single attack runs can executed in parallel and
then aggregated, ensuring the execution time overhead is limited. The median
recovery rate between 1 run per simulation (#1) and 20 runs per simulation
(#20) is increased with more than 10% points, whereas the variance is decreased
with 78% points.

6.2 Deterministic IKK Attack

As the IKK attack is a probabilistic algorithm, it does not necessarily return the
optimal query-to-keyword mapping. We argue a more deterministic approach to
finding the right mapping might increase the recovery rates of the IKK attack.

The Count attack, as proposed by Cash et al. [6], takes a more determin-
istic approach to map queries to keywords, by eliminating candidate mapping
keywords using the relative document occurrence count of keywords. Cash et al.
assume the adversary has access to not only the co-occurrence counts of queries
and keywords, but is also in possession of the (relative) document occurrence
counts from queries and keywords, i.e. the number of documents a query or key-
word occurs in (relative to the total number of documents in the dataset). The
theory behind this is that, while assigning a keyword to a query, a lot of poten-
tial keywords can already be eliminated as their relative document occurrence
count is not within a certain range of the relative document occurrence count
of the query. These keywords therefore are not likely to be the right keyword
corresponding to the query and thus can be disregarded.
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The Count attack incorporates eliminating candidate keywords using their
document occurrence count ‘and brute-forces all possible mappings for a small
number of queries and returns the mapping which maximizes the number of dis-
ambiguated queries’. Cash et al. report much higher recovery rates from their
deterministic Count attack as opposed to the probabilistic IKK attack. We pro-
pose to incorporate the candidate keyword elimination method of the Count
attack while selecting new mappings in the IKK attack to both decrease the
number of potential states to visit as well as increase its accuracy. We also argue
that the accuracy of the attack will increase as the algorithm is likely to visit
better states on average as the worst potential states are eliminated. Our method
still differs from the method as used by Cash et al. as they propose a determin-
istic algorithm, whereas our algorithm still makes use of the probabilistic nature
of the IKK attack.

In order to eliminate candidate keywords Cash et al. construct a confidence
interval for the document occurrence count of each of the keywords using Hoeffd-
ing’s inequality [11]. The lowerbound (LB) and upperbound (UB) of the confi-
dence interval per keyword k are calculated using the following formula(s):

LBk, UKk =
csk
ppk

∓
√

0.5 n log 40 (4)

In this formula ck computes the document occurrence count of keyword k in
the background knowledge dataset and ppk denotes the size relativity between
the query and background knowledge dataset. ck

ppk
therefore denotes the expected

document occurrence count of k in the query dataset. ε =
√

0.5 n log 40 is used
by Cash et al. to ensure the confidence interval has a confidence level of 95%.
n denotes the number of documents in the query dataset. After calculating a
confidence interval for each of the keywords the candidate keywords for a query
can be calculated as Sq = {k′ ∈ K|LBk′ ≤ cq ≤ UBk′}. Sq denotes the candidate
keyword set, K the keyword set and cq denotes the document occurrence count
of query q.

The Original IKK attack maps queries to keywords in two places in the
algorithm, namely when selecting the initial state (Algorithms 1 and 2) and
while selecting a next state (Algorithms 3, 4 and 5). We therefore incorporated
the method of Cash et al. in two places in our Deterministic IKK attack:

While selecting the initial state we first assign a None value to queries of
which Sq is an empty set, meaning that no keywords are in range. These queries
are left unchanged throughout the entire algorithm run and thus are assigned
None in the final mapping as well. This also allows an adversary to determine
which queries were not mapped to a keyword. Then all queries with a non-empty
candidate set Sq are ordered in ascending order of the size of Sq and each of the
queries, starting at the query with the lowest size of Sq, is assigned a random
keyword in Sq that was not yet assigned to another query. As we enforce the
1-to-1 mapping property of the IKK attack this potentially creates the edge
case where all keywords in Sq of a query are already assigned to other queries.
The algorithm tries, with a depth of one, whether it is possible to re-assign
one of the other queries to ‘free up’ a keyword in Sq. If it succeeds the ‘freed’
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keyword is assigned to the query, otherwise the query is assigned None and is
thus disregarded during the rest of the algorithm run.

While selecting a new state we choose a random query, keyword mapping,
e.g. q1 �→ k1, from the queries in the current state that were not assigned None
and we select a random keyword k2 from Sq1 as opposed to the full keyword set,
while ensuring k1 
= k2. Then, just like in the Original IKK attack there are two
possibilities:

If k2 was mapped to a query q2 we try whether keyword k1 is in range of
query q2 and interchange the mapping if so. If not, we keep (uniformly at random)
selecting a new keyword k2 and checking whether the new k2 adheres to the right
properties. If we cannot find a satisfactory candidate k2 for a certain number
of loops (2 times the size of the keyword set in our simulations) the algorithm
returns the current state as the next state, which is rejected as the Euclidean
distance is not better than the old current state (as they are the same). If k2
was not mapped to any query in the current state we change the next state so
that q1 �→ k2.

In order to compare our deterministic version of the IKK attack to the Orig-
inal IKK attack, especially in cases where the adversary does not have full back-
ground knowledge, we defined a metric that captures the correlation between the
similarity between the co-occurrence matrices and the recovery rate as we argue
that it is important to research the effect of our improvements on simulations
with different levels of background knowledge to get a broad understanding of
the effects of our improvements. We have used four different methods to sim-
ulate non-perfect background knowledge (omitting a percentage of the selected
keywords, omitting a percentage of the documents in a dataset, adding Gaussian
noise and using a different dataset as background knowledge). These methods,
the defined metric and the results with the original IKK attack are included in
Appendix A.

Table 5. Nr. of states visited by the IKK and Deterministic IKK attack

Parameters IKK version Min. Max. Avg.

# Total loops Original 531,733 737,741 733,213

Deterministic 196,790 737,741 526,038

# Accepted loops Original 7783 9535 8533

Deterministic 7287 101,145 14,252
# Accepted loops
# Total loops

Original 0.0105 0.0159 0.0117

Deterministic 0.0099 0.1371 0.0263

Table 5, the aggregation of 500 simulations of both algorithms, shows that
the Deterministic IKK algorithm visits much less total states on average than
the Original IKK attack. Additionally, the average number of iterations where
the next state is accepted is much higher and the ratio between the number of
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accepted loops and total loops is more than twice as high for the Deterministic
IKK attack. It is useful to note that both attacks at most visit 737,741 different
states and then return their current state as the final mapping. This is due to the
chosen values of the input parameters of the ANNEAL algorithm and explains
the values in the Max. column of the # Total loops row.
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Fig. 6. Original/Deterministic IKK recovery rates and recovery rate, simulating non-
perfect background knowledge by regarding a percentage of keywords

In Fig. 6 we compare recovery rate of the Original and Deterministic IKK
attack when only a fraction of the actual keywords simulates background knowl-
edge. The recovery rates of the Original IKK attack and methods to generate
non-perfect background knowledge are the same as expressed in Fig. 8 and each
bucket in the figure is the aggregation of 20 simulations. We see the same linear
correlation for the Deterministic IKK attack as we saw before for the Original
IKK attack, however, recovery rates of the Deterministic IKK attack show much
less variance as well as a higher median value.
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Fig. 7. Original/Deterministic IKK recovery rates and recovery rate, simulating non-
perfect background knowledge using other methods
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Figure 7 shows the comparison of the Original and Deterministic IKK attack
when non-perfect background knowledge is simulated using other methods than
using a percentage of all keywords. Figure 7 therefore also contains the same
information as Figs. 9 and 10. The (non-percentage) numbers between brackets
denote the number of simulations aggregated in that box plot. Due to the way
in which we generate non-perfect background knowledge these are not the round
number of 20 simulations per box plot as is the case in Fig. 6.

In simulations where we took a different, but similar dataset as background
knowledge (ENRON/inbox ) we see that both attacks have recovery rates close to
0 and in simulations where we added Gaussian noise to the background knowl-
edge we see that the Deterministic IKK attack again shows less variance and
higher recovery rates.

In simulations where a percentage of user folders in a dataset was used to
simulate background knowledge we see the same exponential correlation between
co-occurrence similarity and the recovery rate as we see for simulations using the
Original IKK attack. Additionally, we see that the Deterministic IKK attack
achieves higher recovery rates on average, but we do not see the drop in variance
that we saw in simulations using the other methods to simulate non-perfect
background knowledge.

All in all, we conclude that using components of the Count attack by Cash et
al. [6], that make the IKK attack more deterministic, is a promising method to
both decrease the number of states visited in a single attack run (28% decrease)
and increase the recovery rate, as the median recovery rate is increased up to
21% points (Fig. 7, 100% box plot) and the variance is decreased up to 57%
points (Fig. 6, 100% box plot).

7 Related Work

The first Searchable Encryption scheme was introduced by Song et al. [15] to
allow for (plaintext) search among a set of encrypted documents. Their paper
introduces the first In-place SE scheme which uses a stream cipher to scan for the
occurrence of a plaintext word as well as introduces the notion of the potentially
more efficient Encrypted-Index SE schemes. Song et al. already note that these
schemes leak access patterns and that statistical attacks might disclose infor-
mation of encrypted documents, but do not research this further. The notion
of Oblivious RAM (ORAM) [10], introduced before the first SE scheme, is fre-
quently mentioned as a method to not disclose access patterns. Oblivous RAM,
however, in a Searchable Encryption scheme is computationally quite expensive.
A less expensive version specifically targeted for encrypted search, proposed by
Curtmola et al. [8], still is computationally inefficient. Other papers propose to
obfuscate access patterns by introducing inconsistencies in the search results by
modifying the internal encrypted index of the SE scheme [7] or by using Bloom
filters [5,9]. These schemes are reportedly computationally expensive as well.

The first statistical attack, the IKK attack, on Searchable Encryption
schemes that leak access patterns was proposed by Islam et al. [12]. This
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attack uses co-occurrence counts of observed queries to determine what plaintext
word(s) the client searched for. Cash et al. [6] recognize that a recovered query
inherently discloses part of the plaintext of encrypted documents and propose
their Count attack as a response to the IKK attack. The Count attack uses
the (relative) document occurrence counts next to the co-occurrence counts of
queries to deliver better results faster as opposed to the IKK attack. Cash et al.
also define different levels of leakage of SE schemes and coin the term leakage-
abuse attacks to more broadly describe attacks that are intended to disclose
information on the contents of encrypted documents in SE schemes as opposed
to attacks that only disclose what the client searched for. Leakage-abuse attacks
were further researched by Blackstone et al. [4].

Both the IKK attack and the Count attack are passive attacks, meaning
that the adversary acts according to the protocol of the SE scheme, but tries
to additionally obtain as much information and potentially runs calculations in
parallel. Zhang et al. [16] show that an adversary capable of injecting files into
a Searchable Encryption scheme that leaks access patterns ‘is devastating for
query privacy’.

Blackstone et al.[4], which was published during our research, deserves a spe-
cial mention. This paper focuses on new attacks, but also includes experiments
using the IKK and Count attacks as these experiments are used for the compar-
ison to newer attacks. Our paper, instead, studies the IKK attack in-depth to
shed more light on its assumptions and practicality. The reported IKK recovery
scores align with the results in this paper.

8 Conclusion

In this paper, we revisited the IKK query recovery attack on Searchable Encryp-
tion schemes as proposed by Islam et al. [12].

We show that the assumption that queries in a Searchable Encryption scheme
follow a Zipfian (query) distribution, as Islam et al. made while simulating
queries, positively influences the recovery rate of the IKK attack. Furthermore,
we show a correlation between input parameters of the IKK attack, of which
the values were left unexplained by Islam et al. and the recovery rate of the
IKK attack, independent of the underlying dataset used in the SE scheme. This
potentially allows the adversary to optimize the parameter values using a differ-
ent dataset before executing the actual attack.

We also propose improvements to the IKK attack by showing that the accu-
racy of the attack can be improved significantly by combining multiple attack
runs, as we show that median recovery rates can be increased up to 10% points,
whereas the variance of recovery rates of simulation can be decreased up to
78% points. In addition, we show that the accuracy of the IKK attack can
be increased, while the number of states visited can be decreased by incorpo-
rating deterministic components, based on notions made by Cash et al. [6] in
their Count attack, to the IKK attack. The average number of states visited
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is decreased by 28%, the median recovery rate is shown to be increased up to
21% points in different simulations, whereas its variance is decreased up to 57%
points.

In recent literature, e.g. [7], obfuscation methods have been proposed to
combat the effectiveness of the IKK attack. We leave research into the effects of
these obfuscation methods on the effectiveness of our Deterministic IKK open
for the reader.

Appendices

A Co-occurrence Matrix Correlation (Partial Background
Knowledge)

Both Islam et al. [12] and Cash et al. [6] both briefly elaborate on the recovery
rate of the IKK attack in the case where the adversary only has partial back-
ground knowledge. Islam et al. add various degrees of Gaussian noise to individ-
ual cells in the co-occurrence matrix representing perfect background knowledge
to simulate this setting, whereas Cash et al. simulate non-perfect background
knowledge co-occurrence matrix by taking a fraction of all documents in the
dataset. Both papers show that the accuracy of the attack is greatly dependent
on the level of background knowledge the adversary has. We therefore argue that
it is important to get a better understanding of the correlation between the level
of background knowledge the adversary has and the recovery rate of the IKK
attack. We also argue that the level of background knowledge can be expressed as
a similarity between the query and background knowledge co-occurrence matri-
ces, i.e. the co-occurrence matrix similarity.

In order to express co-occurrence matrix similarity we propose a metric that
returns a similarity score between 0 (no similarity) and 1 (equivalent matrices)
between two co-occurrence matrices of the same dimensions. For two matrices
M1 and M2 and arbitrary words a, b (corresponding to a row and column) the
following formulas are used:

Δ2
a,b =

{
(M1[a, b] − M2[a, b])2, if a, b ∈ M1 and a, b ∈ M2

0, otherwise
(5)

Δ2
total =

∑

∀a,b∈M1

Δ2
a,b (6)

εa,b =

{
1, if a, b ∈ M1 and a, b ∈ M2

0, otherwise
(7)

εtotal =
∑

a,b∈M1

εa,b (8)

Co − ocsim. =

(
1 − Δ2

total

εtotal

)
∗

(
Koverlap

Ktotal

)
(9)

Equations 5 and 6 are used to calculate the total squared Euclidean distance
of cells that occur both in M1 and M2.
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Table 6. Example co-occurrence matrices

M1 a b c

a 1 1 1

b 1 1 1

c 1 1 1

M2 a b c

a 1 1 1

b 1 1 1

c 1 1 1

M3 a b c

a 0 0 0

b 0 0 0

c 0 0 0

M4 a b d

a 1 1 1

b 1 1 1

d 1 1 1

Equations 7 and 8 are used to calculate the number of cells that occur in
both M1 and M2.

In Eq. 9 we calculate the average squared Euclidean distance of cells that
occur in both matrices and multiply this by the ratio of row identifiers that
occur in both matrices (Koverlap) to the total number of rows in both matrices
(Ktotal).

In Table 6 matrices M1 and M2 are exactly the same. Δ2
total is 0 as the

squared Euclidean distance between each of the cells is (1 − 1)2 = 0. The aver-
age is therefore also 0. As all keywords in both matrices also occur in the other
matrix, Koverlap

Ktotal
= 3/3 = 1. The similarity between the matrices is calculated

as co − ocsim. = (1 − 0) ∗ 1 = 1 meaning that the matrices are exactly the
same. The calculation for the similarities between matrices M1 and M3, and
M1 and M4 gives the values 0 and 2/3 respectively. In our simulations we cal-
culate the co-occurrence matrix similarity using the perfect background knowl-
edge co-occurrence matrix MF (which corresponds with an unquerified query
co-occurrence matrix) and a non-perfect background knowledge co-occurrence
matrix MP . Both matrices have the same dimensions. In order to simulate par-
tial background co-occurrence matrix MP we use the following methods:

Gaussian noise addition - We use the method by Islam et al. to add
Gaussian noise in various degrees to the cells in MF to obtain MP .

Document percentage - In this setting we use 10% to 100% of the user
folders in a dataset to generate MP . This method differs a bit from the method
by Cash et al. as we argue that the adversary is more likely to obtain a percentage
of the mail boxes of users (and all documents that are in these folders) than a
percentage of all documents, selected uniformly at random, in a dataset. We
believe that this choice might influence the results as different users are likely to
use specific language in (all of) their emails.

Keyword percentage - In this setting we, uniformly at random, select 10%
to 100% of the keywords in MF to obtain MP . To keep the dimensions of MP

consistent throughout all our simulations we supplement the selected keywords
with words with a lower occurrence count in the dataset used, i.e. that were not
in the keyword set.

Different input folder - In this setting we use a different, but similar
dataset to generate MP . In our simulations we use the inbox folder (containing
44859 emails) of the ENRON dataset.

The results of the different methods are shown in Figs. 8, 9 and 10. In these
figures we group the values into certain buckets to group similarity scores. If a
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co-occurrence similarity score is between 0 and 0.1 it is put in the 10% similarity
bucket, a value between 0.1 and 0.2 is put in the 20% bucket and so on.
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Fig. 8. Correlation between co-occurrence matrix similarity and recovery rate, simu-
lating non-perfect background knowledge by regarding a percentage of keywords

Figure 8 shows the correlation between the co-occurrence similarity and the
recovery rate in the setting where we use a certain percentage of the keywords
in the keyword set to simulate partial background knowledge. Each bucket rep-
resents 20 simulations. Due to the nature of our similarity score using 90% of
keywords from the keyword set will result in a similarity score of exactly 90%.
The figure shows a clear linear correlation between the co-occurrence similar-
ity score and the recovery rate. This makes sense as in this setting entire rows
(and thus also columns) that are present in MF are changed while simulating
MP . The highest possible percentage of recoverable queries therefore is linearly
dependent on the percentage of keywords regarded. As the individual cell values
are not changed while simulating MP (as opposed to the other methods) the
algorithm is likely to recover (most of the) queries of which the corresponding
keywords were selected in MP as these have the optimal Euclidean distance of 0.
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Fig. 9. Correlation between co-occurr-
ence matrix similarity and recovery
rate, simulating non-perfect background
knowledge by regarding a percentage of
user folders in the dataset
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Fig. 10. Correlation between co-occurr-
ence matrix similarity and recovery
rate, simulating non-perfect background
knowledge by using the ENRON/inbox
data or by adding Gaussian noise
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Figure 9 shows the correlation between the co-occurrence matrix similarity
and the recovery rate in simulations where non-perfect background knowledge
is simulated by taking a percentage of user folders in a dataset to generate MP .
We ran 20 simulations for each percentage ranging from 10%, 20% to 100%
each. The first thing that we notice is that the buckets do not contain the same
number of simulations per bucket, which is shown in the figure as the number
between brackets. This is due to the fact that we uniformly at random select a
percentage of all user folders in a dataset and these user folders do not contain
the same number of documents. Different writing styles can also be of influence
to the overall co-occurrence similarity. The results in Fig. 9 show a different
correlation than the results in Fig. 8. This makes sense as in these simulations
both row/column identifiers as well as individual cell values are changed. The
algorithm is less likely to correctly map queries to keywords that do occur in
MP as the changed individual cell values, in Fig. 9, make it less likely to find the
optimal mapping. We note that the results in the 40%-60% bucket do not give
much information, as each bucket consists of a single simulation. We conclude
from the rest of the results that the co-occurrence matrix similarity and the
recovery rate show an exponential correlation in Fig. 9.

The results in Fig. 10 show the correlation between the co-occurrence
matrix similarity and the recovery rate of simulations where MP was gener-
ated using a similar, but different dataset (ENRON/inbox ) and when we add
Gaussian noise to various degrees. First of all, if we generate MP using the
ENRON/inbox data folder we obtain a similarity score of approximately 70%
to the ENRON/ sent mail dataset. The recovery rate of almost 0 is consistent
with our results in Fig. 9.

With the addition of various degrees of Gaussian noise (with C values 0.0,
0.2, ..., 1.0) the similarity of the co-occurrences matrices is always between 0.999
and 1.0. This can be explained as this method does not change the row/column
identifiers, but only changes the individual cell values (co-occurrence counts). As
only a little noise is added most of these cell values stay relatively the same. The
recovery rate distribution among 120 simulations is relatively high as opposed
to other methods to generate non-perfect background knowledge.

We conclude that it is not possible to use our matrix similarity metric to find
a single correlation between the similarity of co-occurrence matrices and the
recovery rate. The different methods change non-perfect background knowledge
MP in different manners and this influences the results of the IKK attack a lot.
The IKK attack correctly recovers queries if the co-occurrence counts in MP

exactly match (or are close to) those in MF , which is shown in Figs. 8 and 10
(Gaussian noise addition). If the co-occurrence counts in MP are further away
from those in MF , which is the case in Figs. 9 and 10 (Inbox folder) the accuracy
of the IKK attack decreases drastically.

We argue that the scenario where the background knowledge, represented as
MP , is generated by taking a percentage of the user folders in a dataset is the
most realistic one in a real-world scenario. It is not unlikely that an adversary,
somehow, gets access to a certain set of the plaintext contents of the email boxes
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of specific users. The IKK attack proves to be a powerful attack which can
break the privacy of queries as well as data confidentially of documents stored
encrypted of the server, yet it is only exploitable by a powerful adversary, which
has access to a dataset which results in background knowledge that is at least
90% similar the actual dataset encrypted on the server, as can be seen in Fig. 9.

B IKK Algorithms

In this section, we cite (part of) the Simulated Annealing (SA) algorithms as
proposed by Islam et al.[12] as well as formalize our proposed algorithms for the
Deterministic version of the IKK attacks. In short:

– Algorithm Optimizer (Algorithms 1 and 2) is used to select the initial state
of the ANNEAL algorithm.

– Algorithm ANNEAL (Algorithms 3 and 4) is the heart of the IKK attack and is
the actual algorithm that maps queries to keywords (apart from setting the
initial state). The algorithms displayed are a simplified version of the ANNEAL
algorithm as presented by Islam et al. and are mainly included to illustrate
changes we made to more deterministically select the nextState.

Algorithm 1: Optimizer
input

V : variable list
// List of all (non-mapped) queries

D : domain list
// List of all (non-mapped) keywords

K : known assignments
// Known query-keyword mappings

Mc // Query co-occurrence matrix

Mp // Background knowledge co-oc matrix

Q = {q: Sq} // Queries and their candidate keywords

1 initState ← {} // Initial state

2 valList ← copy D
// Copies values in D to variable valList

3 foreach var ∈ V do
4 val ← random.choice(valList)

// Randomly selects a keyword from valList

5 add {var �→ val} to initState
// Adds mapping to initState

6 remove val from valList
// As query to keyword mappings are 1-to-1

end
7 nonAssignableQueries ← {}
// Var. containing None-assigned queries

8 sortedQ ← sort(Q, key=len(Sq), ascending=True)
// Sorts Q on number of candidate keywords
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Algorithm 2: Optimizer (cont.)
9 foreach var, Svar ∈ sortedQ do

10 candKeywords ← Svar

// Gets candidate keywords for query v
11 if len(candKeywords) == 0 then

12 add v to nonAssignableQueries
// Query v added to nonAssignable Queries

else

13 assignedKWs = []
// Every candidate keyword per query is

14 nonAssignedKWs = []
// already assigned to another query or not

15 foreach cand ∈ candKeywords do

16 if cand ∈ valList then

17 add cand to nonAssignedKWs
// cand not assigned to another query

else

18 add cand to assignedKWs
// cand assigned to another query

end

end
19 if len(nonAssignedKWs) �= 0 then

20 val ← random.choice(nonAssignedKWs)
// Selects keyword from nonAssignedKWs

21 add {var �→ val} to initState
// Adds mapping to initState

22 remove val from valList
// Query/keyword mappings are 1-to-1

else

23 foreach k ∈ assignedKWs do

24 q ← initState.getByValue(k)
// Get query q, mapped to keyword k

25 if k ∈ Sq then

26 remove { q �→ k } from initState
// Removes old mapping from initState

27 add { q �→ val } to initState
// Adds new mapping to initState

28 add { var �→ k } to initState
// Adds new mapping to initState
break

end

end

29 if initState.get(var) == None then
add var to nonAssignableQueries
// If no suitable mapping could be found

end

end

end

end
30 add K to initState

// Adds known mappings to initState
31 return ANNEAL(initState, D, Mp, Mc)

// Returns result of function ANNEAL()
32 return ANNEAL(initState, D, Mp, Mc, nonAssignableQueries, Q)
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Algorithm 3: ANNEAL
input // Simulated Annealing parameters

initState
D
Mc, Mp
initTemperature
// initial temperature variable

coolingRate // cool down rate variable

rejectThreshold
// rejection rate variable

nonAssignableQueries
// List of None assigned queries

Q = {q: Sq} // Queries and their candidate keywords

1 currentState ← initState
// Search continues until temp. reaches 0

2 succReject ← 0 // or the system is frozen (no new state

3 currT ← initTemperature
// is accepted for large number of times)

Algorithm 4: ANNEAL (cont.)
1 while (currT �= 0 and succReject < rejectThreshold) do
2 currentCost, nextCost ← 0, 0
3 nextState ← findNextState(currentState, D)

// Selects nextState using the method by Islam et al.

4 nextState ← findNextStateDet(currentState, D, Q)
// Selects nextState deterministically

5 E ← costCalculation(nextState, currentState)
// Calculates cost difference of two states,

6 probability = exp(-E/currT)
// using the method by Islam et al.

7 acceptNewState = (E < 0) or (random.choice ¡ probability)
//nextState accepted if E < 0 or with prob. exp(-E/currT)

8 if acceptNewState then
9 succReject, currentState ← 0, nextState

else
10 succReject++

end
11 currT = coolingRate*currT

// temperature is decremented each loop

end
12 foreach query ∈ nonAssignableQueries do
13 add {query �→ None} to currentState

// Maps non-assignable queries to None

end
14 return currentState
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Algorithm 5: findNextStateDet
input

currentState // 1-to-1 mapping of all queries to keywords

Q = {q: Sq} // Queries and their candidate keywords

D
1 nextState ← copy currentState
2 {x �→ y} ← random.choice(nextState)
3 Sx ← Q.get(x) // Gets candidate keywords for query x

4 cands ← Sx.remove(y)
// Keyword y cannot be selected again

5 y’ ← None // Initializes y’

6 if len(cands) �= 0 then
y’ = random.choice(cands)
// Selects random keyword from candidates

else
return currentState
// No new mapping could be found

end
7 count ← 0 // Initializes count variable

8 while {z �→ y’} ∈ currentState and y /∈ Sz do
9 y’ = random.choice(cands)

// Selects a new candidate keyword y’

if len(count) ≤ 2 ∗ len(D) then
return currentState
// No new mapping could be found

end
10 count += 1

end
11 remove {x �→ y} from nextState
12 add {x �→ y’} to nextState
13 if {z �→ y’} ∈ currentState then
14 remove {z �→ y’} from nextState

// If y’ is already mapped to query z

15 add {z �→ y} to nextState
// Map query z to y instead of y’

end
16 return nextState

– Algorithm findNextStateDet (Algorithm 5) is our proposed sub algorithm
of the ANNEAL algorithm which selects a new state of the algorithm more
deterministically.

In order to easily annotate differences between the Original IKK attack (as
proposed by Islam et al.) and our proposed Deterministic IKK attack we use the
following colors:

– Black annotates lines that are present in both the Original and Deterministic
IKK attack.
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– Red annotates lines that are present in the Original IKK attack, but not in
the Deterministic IKK attack. Red lines are replaced by blue lines.

– Blue annotates lines that are not present in the Original IKK attack, but are
in the Deterministic IKK attack. Blue lines replace red lines.

The Original IKK attack and the Deterministic IKK attack are elaborated
upon in Sects. 2.6 and 6 respectively.

We note that the pseudo code in the algorithms as shown below does not fully
match with our implementation of the Original/Deterministic IKK attack [3].
First of all, we used Python3 specific methods to easily implement both attacks
and, in order to reduce the number of lines we re-used as much of the code of
the Original IKK attack as possible to implement our Deterministic IKK attack.
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Abstract. Evaluating resistance of ciphers against differential crypt-
analysis is essential to define the number of rounds of new designs and
to mount attacks derived from differential cryptanalysis.

In this paper, we propose automatic tools to find the best differential
characteristics on the SKINNY block cipher. As usually done in the liter-
ature, we split this search in two stages denoted by Step 1 and Step 2.
In Step 1, we aim at finding all truncated differential characteristics
with a low enough number of active Sboxes. Then, in Step 2, we try to
instantiate each difference value while maximizing the overall differen-
tial characteristic probability. We solve Step 1 using an ad-hoc method
inspired from the work of Fouque et al. whereas Step 2 is modelized for
the Choco-solver library as it seems to outperform all previous methods
on this stage.

Notably, for SKINNY-128 in the SK model and for 13 rounds, we
retrieve the results of Abdelkhalek et al. within a few seconds (to com-
pare with 16 days) and we provide, for the first time, the best differen-
tial related-tweakey characteristics up to 14 rounds for the TK1 model.
Regarding the TK2 and the TK3 models, we were not able to test all
the solutions Step 1, and thus the differential characteristics we found
up to 16 and 17 rounds are not necessarily optimal.

Keywords: Differential cryptanalysis · Automatic tools · SKINNY

1 Introduction

Differential cryptanalysis [5] evaluates the propagation of an input difference
δX = X ⊕ X ′ between two plaintexts X and X ′ through the ciphering process.
Indeed, differential attacks exploit the fact that the probability of observing a
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specific output difference given a specific input difference is not uniformly dis-
tributed. Today, differential cryptanalysis is public knowledge, and block ciphers
such as AES have proven bounds against differential attacks. A classical exten-
sion of differential cryptanalysis is the so called related-key differential crypt-
analysis [4] that allows an attacker to inject differences not only between the
plaintexts X and X ′ but also between the keys K and K ′ (even if the secret key
K stays unknown from the attacker). This attack has been recently extended
to tweakable block ciphers [3]. Those particular ciphers allow in addition to the
key, a public value called a tweak. Thus, related-tweakey differential attacks
allow related-key differences but also related-tweak differences (i.e. differences
in a pair of tweaks (T, T ′)). In differential attacks, two notions are considered:
first, differentials where only the input and the output differences are known;
and differential characteristics where each difference after each round is com-
pletely specified. A classical approach to evaluate the resistance against differen-
tial attacks is to compute the probability of the best differential characteristic
of the cipher.

Finding optimal (related-tweakey) differential characteristics is a highly com-
binatorial problem that hardly scales. To limit this explosion, a common solution
consists in using a truncated representation [16] for which cells are abstracted by
single bits that indicate whether sequences contain differences or not. Typically,
each cell (i.e. byte or nibble) is abstracted by a single bit (or, equivalently, a
Boolean value). In this case, the goal is no longer to find the exact input and out-
put differences, but to find the positions of these differences, i.e., the presence or
absence of a difference for every cell. When a difference is present at the input of
an S-box, we talk about an active S-box or an active byte/nibble. However, some
truncated representations may not be valid (i.e., there do not exist actual byte
values corresponding to these difference positions) because some constraints at
the byte level are relaxed when reasoning on difference positions.

Hence, the optimal (related-tweakey) differential characteristic problem is
usually solved in two steps [1,6]. In the first one, every differential byte is
abstracted by a Boolean variable, denoted by Δ, that indicates whether there is a
difference or not at this position, and we search for all truncated representations
of low weight as the less differences passing through S-boxes there are, the more
the probability is increased. Then, for each of these low weight truncated repre-
sentations, the second step aims at deciding whether it is valid (i.e., whether it
is possible to find actual cell values, denoted δ, for every Boolean variable) and,
if it is valid, at finding the actual cell values that maximize the probability of
obtaining the output difference given the input difference.

Related Work. Many techniques have been proposed to search for the Step 1
solutions using automatic tools such as Boolean satisfiability (SAT) [21,26,27] or
Mixed Integer Linear Programming (MILP) [3,24,30] and Satisfiability Modulo
Theories (SMT) [17]. Dedicated solutions have also been proposed [20].

Regarding the search of the best instantiation of a truncated characteristic,
most of the approaches were ad-hoc and dedicated to a precise cipher [6,9–
11,18,28]. Concerning the use of SAT solvers, [28] implements a SAT model for
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differential cryptanalysis based on Cryptominisat5 [26] for Midori64 and LED64.
This model implies a sufficiently small number of clauses to model the non-zero
values of the DDT and to be applicable. However, no result concerning 8-bit S-
boxes are given. As SAT uses Boolean formulas, it seems that the same problem
than for MILP appears for modeling S-box: a huge number of Boolean formulas
will be necessary to correctly model this step even if dedicated tools as Logic
Friday or the Expresso algorithm [1] are used. In [1], 16 days are needed to find
the best related tweakey differential characteristics on SKINNY-128 for the SK
model. Recently, in [11,12], the authors introduce Constraint Programming (CP)
models for Step 2 and the performance results are really promising regarding
AES-192 and AES-256.

Our Contribution. In this paper, we refine the security bounds on the SKINNY-
n tweakable block cipher regarding differential cryptanalysis for the four follow-
ing attack models according to the size of the tweakey: the SK model focuses
on single-key attack, the TK1 model considers related-tweakey attack when the
tweakey has only one component, the TK2 model in the related-tweakey settings
considers 2 components and the TK3 model, 3 components.

To do so, we implement Step 1 using an ad-hoc method inspired from [10]. We
also propose a CP model for Step 2 taking as input the solutions outputted by
Step 1. Thus, we provide, for the first time, the best differential related-tweakey
characteristics up to 14 rounds for the TK1 model. We also consider the TK2
and TK3 models and we were able to found some differential characteristics
up to 16 rounds for the TK2 model and up to 17 rounds for the TK3 model of
SKINNY-128. However, we were not able to test all the solutions Step 1, and thus
these differential characteristics are not necessarily optimal. This is an important
improvement compared to previous results. For instance, in [19] Liu et al. could
only find the best differential characteristics up to 7 and 9 rounds for TK1 and
TK2. Finally we also show there is no differential characteristic with probability
higher than 2−128 against 15 rounds in the TK1 model, 19 rounds for TK2 and
23 rounds for TK3. All those results clearly show that SKINNY is much more
resistant to differential cryptanalysis than one would expect while counting the
number of active S-boxes.

As a feedback, we also provide the time results we obtain when implementing
the Step 1 using another tool, a MILP model for the 4 attack settings. As a result
we show that MILP is not always the best choice. First, for Step 1, the ad-hoc
method is able to surpass the MILP model. Second, the CP model proposed for
Step 2 is incomparably much faster than the MILP model proposed in [1] that
requires 16 days according their paper.

All the codes to reproduce these results can be found at [7].

Organization of the Paper. Section 2 gives a short description of SKINNY-n;
Sect. 3 presents our Ad-Hoc tool and gives performance results comparing our
Ad-Hoc model with a MILP one; Sect. 4 presents our dedicated modeling for
Step 2 based on CP and analyzes the obtained results. Finally, Sect. 5 concludes
this paper.
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2 Cipher Under Study: SKINNY-n

In this section, we briefly review the tweakable block cipher SKINNY-n where n
denotes the block size and can be equal to 64 or 128 bits. All the details that
have been overlooked can be found in [3].

As its name indicates, it enciphers blocks of length 64 or 128 bits seen as a
4 × 4 matrix of cells (nibbles for n = 64 or bytes for n = 128). We denote xi,j,k

the cell at row i and column j of the internal state at the beginning of round k
(i.e. 0 ≤ i, j ≤ 3 and 0 ≤ k ≤ r + 1 where r is the number of rounds depending
on the tweak length and on the key length). SKINNY-n follows the TWEAKEY
framework from [15]. SKINNY-n has three main tweakey size versions: the tweakey
size can be equal to t = 64 or 128 bits, t = 128 or 256 bits and t = 192 or 384 bits
and we denote z = t/n the tweakey size to block size ratio. Then, the number
of rounds is directly derived from the z value: between 32 rounds for the 64/64
version up to 56 for the 128/384 version.

The tweakey state is also viewed as a collection of z 4 × 4 square arrays of
cells (nibbles for n = 64 or bytes for n = 128). We denote these arrays TK1
when z = 1, TK1 and TK2 when z = 2, and finally TK1, TK2 and TK3 when
z = 3. We also denote by TKki,j the nibble or the byte at position [i, j] in TKk.
Moreover, we define the associated adversarial model SK (resp. TK1, TK2 or
TK3) where the attacker cannot (resp. can) introduce differences in the tweakey
state.

One encryption round of SKINNY is composed of five operations applied
in the following order: SubCells (SC), AddConstants (AC), AddRoundTweakey
(ART), ShiftRows (SR) and MixColumns (MC) (see Fig. 1).

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Fig. 1. The SKINNY round function with its five transformations [14].

SubCells. A 4-bit (n = 64) or an 8-bit (n = 128) S-box is applied to each cell
of the state. See [3] for the details of the S-boxes.

AddConstants. A 6-bit affine LFSR is used to generate round constants c0 and c1
that are XORed to the state at position [0, 0] and [1, 0] whereas the constant
c2 = 0x02 is XORed to the position [2, 0].

AddRoundTweakey. The first and second rows of all tweakey arrays are extracted
and bitwise exclusive-ored to the cipher internal state, respecting the array
positioning. More formally, we have:

– xi,j = xi,j ⊕ TK1i,j when z = 1,
– xi,j = xi,j ⊕ TK1i,j ⊕ TK2i,j when z = 2,
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– xi,j = xi,j ⊕ TK1i,j ⊕ TK2i,j ⊕ TK3i,j when z = 3.
Then, the tweakey arrays are updated. First, a permutation PT is applied on
the cells positions of all tweakey arrays: if � = 4 ∗ i + j where i is the row
index and j is the column index, then the cell � is moved to position PT (�)
where PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7]. Second, every cell of
the first and second rows of TK2 and TK3 are individually updated with an
LFSR on 4 bits (when n = 64) or on 8 bits (when n = 128) with a period
equal to 15.

ShiftRows. The rows of the cipher state cell array are rotated to the right. More
precisely, the second (resp. third and fourth) cell row is rotated by 1 position
(resp. 2 and 3 positions).

MixColumns. Each column of the cipher internal state array is multiplied by the
4 × 4 binary matrix M :

⎛
⎜⎜⎝

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

⎞
⎟⎟⎠

Since 2016 and the birth of SKINNY-128, the cryptographic world never
stopped trying to attack it. Among all the cryptanalysis results, we could cite the
following ones in the related-tweakey settings and classified according the type
of attacks. First, in [19,25,31], boomerang and rectangle related-tweakey attacks
are considered. The best result is on 28 rounds with a complexity of 2315 in time
based on a boomerang distinguisher of 23 rounds in the TK3 scenario. Con-
cerning impossible related-tweakey attack [19,29], the best attack has 23 rounds
using a distinguisher with 15 rounds in the TK2 scenario. Even if the distin-
guishers presented here have less rounds, they do not look at the same attack
scenario. This paper essentially goes further than [1] concerning the search of
the best related-tweakey differential trails and aims at refining the best security
bounds of SKINNY in this attack model.

3 Models and Results for Step 1

As explained in the introduction, in a first step called Step 1, we abstract each
possible difference at cell (nibble or byte) level by a binary variable which sym-
bolizes the presence/absence of a difference value at a given position of the cipher.
The main concern regarding this step is the combinatorial explosion induced by
the abstract XOR operation for which the sum of two non-zero values can lead
to the presence or the absence of a difference.

3.1 Possible Transitions

Since the S-box is bijective and the ShiftRows operation only permutes
cells, both those operations do not affect truncated differences. But for the
AddRoundTweakey and MixColumns transformations we need to take care of the
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XOR operation. More precisely, given two truncated differences a and b we know
that the possible values of (a, b, a ⊕ b) are:

(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)

However we have to pay attention to uninstantiable solutions. For instance,
given three truncated differences a, b and c, (1, 1, 1, 0, 0, 1) is a possible value
for (a, b, c, a⊕ b, a⊕ c, b⊕ c) but it is impossible to instantiate it because if a = b
and a = c then b = c.

Hence we rewrite the equation y = MixColumns ◦ AddRoundTweakey(x, k) to
avoid such patterns:

– y[1] = x[0] ⊕ k[0],
– y[3] = y[1] ⊕ x[2],
– y[0] = y[3] ⊕ x[3],
– y[2] = x[1] ⊕ k[1] ⊕ x[3]

We experimentally verified that each truncated solution of this system can be
instantiated.

Keyschedule. When looking at the key schedule of SKINNY at the cell level and
for truncated differential characteristics it is mostly a simple cell permutation.
In the model SK, there are no differences in the round keys. In the TKx models,
differences in the round keys are possible. If the number of rounds targeted is
at most 30, the rule for active cells on the round keys is quite simple: either the
cell is inactive for all round keys, either it is active for all round keys but one
(TK2) or two (TK3).

3.2 Ad-hoc Models for Step 1

To the best of our knowledge, the most efficient algorithm to search for trun-
cated differential characteristics on SPN ciphers is the one described in [10] by
Fouque et al. which was applied on the 3 versions of AES. It is mostly dynamic
programming as Round i is independent of the paths of rounds 0, 1, . . . , i − 1
and at each step we only have to save, for each truncated state, the minimal
number of active S-boxes to reach it. Hence, the complexity of this algorithm is
exponential in the state size but linear in the number of rounds. The algorithm is
specified in Algorithm 1. At the end of the algorithm we obtain an array C such
that C[r][s] contains the minimal number of active S-boxes required to reach
state s after r rounds. Retrieving the truncated representations is then done
quite easily using C, starting from the last state to the first. Let say we want
to exhaust all truncated differential characteristics on R rounds with at most b
active S-boxes ending with state s. From C[R − 1][s], we know whether such
characteristic exists or not. If C[R − 1][s] ≤ b we exhaust all states s′ such that
the transition s′ → s through one round is possible and, for each of them, we
now need to exhaust all truncated differential characteristics on R − 1 rounds
with at most b − |s| active S-boxes ending with state s′.
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Algorithm 1: Search for the best truncated representation (SK).
foreach state s do

M [s] ←− list of states s′ reachable from s through one round
end
foreach state s do

C [0] [s] ←− number of active cells of s
end
for 1 ≤ r < R do

foreach state s do C [r] [s] ←− ∞
foreach state s do

foreach state s′ in M [s] do
c ←− C [r − 1] [s] + number of active cells of s′

if c < C [r] [s′] then C [r] [s′] ←− c

end

end

end
return C

The complexity of the algorithm in the single key model is very low, and we
experimentally counted around (R − 1) × 220 simple operations for R rounds.
A naive solution to search for truncated representations in the TK1, TK2 and
TK3 models would be to apply the previous algorithm for each possible configu-
ration of the key. While for TK1 this would only increase the overall complexity
by a factor 216, the search would not be practical for both the TK2 and TK3
models. Indeed, because of the possible cancellations occurring in the round keys,
the number of configurations is very high:

⎛
⎝

8∑
k=0

(
8
k

)(
tk−1∑
i=0

(�(R − 1)/2�
i

))k
⎞
⎠

⎛
⎝

8∑
k=0

(
8
k

)(
tk−1∑
i=0

(	(R − 1)/2

i

))k
⎞
⎠ .

For instance, for R = 30, there are more than 264 configurations in the TK2
model.

In the following we present the first practical algorithm which tackles down
the problem for the TK models without relying on a black box solver as MILP,
SAT or CP solvers. Actually this is the only algorithm fast enough to gener-
ate all the Step 1 solutions required to perform the Step 2. Indeed, the best
differential characteristic is rarely based on the truncated differential character-
istics minimizing the number of active S-boxes and thus we need to generate a
large number of truncated characteristics to find the one instantiating with the
best probability. As we will explain in Sect. 3.4, all other approaches we tried to
generate them failed.

The idea of our ad-hoc method is quite similar to the one used in the single
key model. Actually, to compute the minimal number of active S-boxes at round
r + 1 we only need to know the minimal number of active S-boxes for each
possible state at round r together with the number of cancellations for each
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key cell occurred so far. Indeed, we do not need to know at which rounds the
cancellations occurred but only how many times they did. A simplified version
of this algorithm is described in Algorithm 2. The most important part is related
to the variable cancelled which count how many times each key cell is cancelled
through the encryption. It is a vector of 16 cells, each cell taking values among
{0, 1, . . . , x − 1, r} for the TKx model. The main advantage of our representation
is that at each step of the algorithm, C[r][s] contains at most (x+1)16 elements
for the TKx model which is much lower than the number of possible sequences
of round keys.

Algorithm 2: Search for the best truncated representation (TK).
foreach state s, round key k do

M [k] [s] ←− list of states s′ reachable from s and k through one round
end
foreach state s do

C [0] [s] ←− {(number of active cells of s, 0)}
end
for 1 ≤ r < R do

foreach state s do C [r] [s] ←− ∅
foreach state s do

foreach (cost, cancelled) ∈ C [r − 1] [s] do
foreach round key k compatible with cancelled do

foreach state s′ in M [k] [s] do
c ←− cost + number of active cells of s′

C [r] [s′] ←− C [r] [s′] ∪ {(c, update(cancelled, k))}
end

end

end

end
foreach state s do keepOptimals(C [r] [s])

end
return C

Finally we introduce a new improvement which greatly speeds up the search
procedure. It is based on the so-called early abort technique principle and the
idea is to handle the key cell by cell. Indeed, we expect that the best truncated
differential characteristics do not involve many active cells in the round key and
so we want to quickly cut those branches during the search. To do so we first
pick a key cell and guess whether it is active or not. At this step we have not
decided yet if any cancellations occur nor their positions but only if it is always 0
or at least once 1. Then we apply the algorithm partially and guess another key
cell if and only if it seems possible to find a truncated differential characteristic
with a small enough number of active S-boxes. More precisely, along the search
we have the relation y = x ⊕ k where k is the round key. We introduce a new
16-bit variable g such that gi = 0 if we made a choice for bit i of k and 1
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otherwise. To compute the possible truncated transitions from x to y through
k for all the possible key (according to g) we can restrict ourself at looking at
the possible truncated transitions from (x|g) to y through (k|g) where | is the
bitwise OR. Indeed, we use the fact that in truncated setting 1 ⊕ 1 is 0 or 1 and
thus our technique allows to handle all the possible keys by looking only at few
transitions.

3.3 Results for Step 1

For Step 1, we run our ad-hoc tool on the four attack scenarios (SK, TK1, TK2,
and TK3) when varying the number of rounds between 3 and 20. We conducted
all our experiments on our server composed of 2× AMD EPYC 7742 64-Core
and 1TB of RAM. In particular, we were able to complete the security analysis
made in [2,3] and claim that the minimal number of active S-boxes in TK1 for
28, 29 and 30 rounds are 105, 109 and 113 respectively (as shown in Table 1).

Table 1. Lower bounds on the number of active S-boxes in SKINNY.

# Rounds 28 29 30

TK1 105 109 113

However, the optimal solution of Step 2, in terms of differential characteristic
probability, could be obtained for a number of active S-boxes which is not the
optimal one. Hereafter, we denote ObjStep1 the number of active S-boxes we
consider when solving the problems. For example, assume that, when processing
Step 2, one obtains a differential characteristic with the best probability equal to
2−3×6 = 2−18 with ObjStep1 = 6 and whereas the optimal differential probability
of the S-box is 2−2. It means that one has to test all solutions outputted by
Step 1 until ObjStep1 < 18/2 = 9 to be sure that none has a better differential
characteristic probability. This is exactly what happened for the case of SKINNY-
128 in the TK models. We only want to stress here that computing the optimal
bounds is often not enough and we need to go further. However, increasing the
value of ObjStep1 induces an increase of the possible number of Step 1 solutions as
illustrated in the third column of Table 4. As one can see, this number of solutions
tends to grow exponentially when we increase v. For example, for SKINNY-128
with 14 rounds in the TK1 model, for the optimal value v∗ = 45, Step 1 outputs
only 3 solutions; whereas we have 897 solutions for v = v∗ + 5 = 50; 137 019
solutions for v = v∗ + 10 = 55 and finally 7 241 601 solutions for v = 59. So,
the time required to output all those Step 1 solutions and the time required
for the Step 2 computations on 1 solution outputted by the Step 1 become the
bottleneck of the overall process.
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3.4 Other Approaches

We tried different approaches to solve the Step 1 problem, including MILP, SAT
and CP models.

Our SAT model is encoded through the high level modeling language MiniZ-
inc while our CP model is based on the Choco-solver. Unfortunately, the results
of both the SAT and the CP models are really bad: for example, for all instances
greater than 16 rounds we were unable to obtain the solutions in reasonable time.
This is mainly due to the need to enumerate solutions for SAT, which implies to
prohibit all solutions previously found. For CP, on the other hand, this has to do
with the nature of the Boolean variables themselves where the Choco-solver can
not efficiently propagate lower bounds and upper bounds on Boolean variables.

Our MILP model was much better than our SAT and CP ones. We started
from the original model presented in [3] but made several optimizations. First,
we added constraints in the SK model to obtain all solutions up to column shifts
in order to remove symmetries. Moreover, as the original model only describes
the way to find the minimal number of active S-boxes, we added a constraint in
each model to set a lower bound on the number of active S-boxes and thus, be
able to enumerate all the Step 1 solutions given a particular lower bound for the
number of active S-boxes. Then, in the original MILP model all xor operations
were modeled using dummy variables which is known to be inefficient. Thus
we replaced the corresponding inequalities, using that x ⊕ y ⊕ z = 0 can be
described with the three inequalities:

{x + y ≥ z}, {x + z ≥ y}, {y + z ≥ x}.

Finally, regarding the resolutions of the MILP models, the parallelization were
left to the Gurobi solver.1

We compared the MILP model to our ad-hoc tool and we found that our
MILP model is much slower in most cases and actually too slow to output all
the Step 1 solutions needed to perform Step 2. Running times are given in
Table 2.

Table 2. Comparison of the running times required to generate all Step 1 solutions
between our MILP and ad-hoc approaches.

Rounds Model ObjStep1 MILP Ad-hoc

14 TK1 45 → 59 >6 h 5m

19 TK2 52 → 63 >6 h 19m

20 SK 96 342 m 16 s

20 TK1 70 38 m 28 s

20 TK2 57 745 s 193 s

20 TK3 45 998 s 326 s

1 see: https://www.gurobi.com/documentation/9.0/refman/threads.html .

https://www.gurobi.com/documentation/9.0/refman/threads.html
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Note that while our ad-hoc tool gave very good running times, it may require
a lot of memory to store the array C. For instance, for 30 rounds in TK3 mode,
our tool required up to 500 GB of RAM to finish the search. It is also important
to note that it did not take fully advantage of the 128 cores of our server, and
most often used less than 40 cores.

4 Modeling Step 2 with CP

The aim of Step 2 is to try to instantiate the abstracted solutions provided
by Step 1 while maximizing the probability of the differential characteristic.
Thus, Step 2 takes as input a solution of Step 1 with the objective function
of maximizing the probability of the differential characteristic. However, some
solutions of Step 1 could not be instantiated in Step 2 as refining the abstraction
level of Step 2 will induce non-consistent solutions. In the literature, this step
has been modeled using ad-hoc methods [6], MILP [1], SAT [28] or CP [12]. As
MILP [1] and SAT [28] seem to hardly scale due to prohibitive computational
times (linked with the size of the 8-bit S-boxes that must be represented in
the form of linear inequalities or of clauses), we focus here on a dedicated CP
method implemented using the Choco solver [22]. We also provide, in the second
part of this section, the results we obtain when instantiating the differential
characteristics in the 4 attack scenarios.

4.1 Constraint Programming

Although less usual than MILP to tackle cryptanalytic problems, CP has already
been used in e.g. [9,13]. We recall some basic principles of CP and we refer the
reader to [23] for more details.

CP is used to solve Constraint Satisfaction Problems (CSPs). A CSP is
defined by a triple (X,D,C) such that X = {x1, x2, . . . , xn} is a finite set of
variables, D is a function that maps every variable xi ∈ X to its domain D(xi)
and C = {c1, c2, . . . , cm} is a set of constraints. D(xi) is a finite ordered set of
integer values to which the variable xi can be assigned to, whereas cj defines
a relation between some variables vars(cj) ⊆ X. This relation restricts the set
of values that may be assigned simultaneously to vars(cj). Each constraint is
equipped with a filtering algorithm which removes from the domains of vars(cj),
the values that cannot satisfy cj .

In CP, constraints are classified in two categories. Extensional constraints,
also called table constraints, explicitly define the allowed (or forbidden) tuples
of the relation. Intentional constraints define the relation using mathematical
operators. For instance, in a CSP with X = {x1, x2, x3} such that D(x1) =
D(x2) = D(x3) = {0, 1}, a constraint ensuring that the sum of the variables in X
is different from 1 can be either expressed in extension (1) or in intention (2):

1. Table(〈x1, x2, x3〉 , 〈(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)〉)
2. x1 + x2 + x3 �= 1
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Actually, any intentional constraint can be encoded with an extensional one
provided enough memory space, and conversely [8]. However, they may offer
different performances.

The purpose of a CSP is to find a solution, i.e. an assignment of all vari-
ables to a value from their respective domains such that all the constraints are
simultaneously satisfied. When looking for a solution, a two-phase mechanism
is operated: the search space exploration and the constraint propagation. The
exploration of the search space is processed using a depth-first search. At each
step, a decision is taken, i.e. a non-assigned variable is selected and its domain
is reduced to a singleton. This modification requires to check the satisfiability
of all the constraints. This is achieved thanks to constraint propagation which
applies each constraint filtering algorithm. Any application may trigger modifi-
cations in turn; the propagation ends when either no modification occurs and
all constraints are satisfied or a failure is thrown, i.e., at least one constraint
cannot be satisfied. In the former case, if all variables are assigned, a solution
has been found. Otherwise a new decision is taken and the search is pursued. In
the latter case, a backtrack to the first refutable decision is made and the search
is resumed.

Turning a CSP into a Constrained Optimisation Problem (COP) is done by
adding an objective function. Such a function is defined over variables of X, the
purpose is then to find the solution that optimizes the objective function. Finding
the optimal solution is done by repeatedly applying the two-phase mechanism
above, and by adding a cut on the objective function that prevents from finding
a same cost solution in the future.

4.2 Modeling Step 2 with CP

Given a Boolean solution for Step 1, Step 2 aims at searching for the byte-
consistent solution with the highest (related-tweakey) differential characteristic
probability (or proving that there is no byte-consistent solution). In this section,
Model 1 describes the CP model we used for SKINNY-128 (SK). Actually, the
ones used to model the other variants, as well as SKINNY-64 are rather similar.

For each Boolean variable ΔXr,i,j of Step 1, we define an integer variable
δXr,i,j . The domain of this integer variable depends on the value of the Boolean
variable in the Step 1 solution: If ΔXr,i,j = 0, then the domain is D(δXr,i,j) =
{0} (i.e., δXr,i,j is also assigned to 0); otherwise, the domain is D(δXr,i,j) =
[1, 255]. For each byte that passes through an S-box, we define an integer variable
δSBr,i,j which corresponds to the difference after the S-box. Its domain is {0}
if ΔXr,i,j is assigned to 0 in the Step 1 solution; otherwise, it is D(δSBr,i,j) =
[1, 255]. This is expressed in (3) of Model 1.

Finally, as we look for a byte-consistent solution with maximal probability,
we also add an integer variable Pr,i,j for each byte in an S-box: this variable
corresponds to the absolute value of the base 2 logarithm of the probability
of the transition through the S-box. Actually, a factor 10 has been applied to
avoid considering floats. Thus we define a Table constraint (4) composed of
valid triplets of the form (δXr,i,j , δSBr,i,j , Pr,i,j). Note that these triplets only
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Minimize

ObjStep2 =

R∑

r=1

4∑

i=1

4∑

j=1

Pr,i,j (1)

subject to

20 × n ≤
R∑

r=1

4∑

i=1

4∑

j=1

Pr,i,j ≤ min(70 × n, O∗) (2)

∀r ∈ 1..R, ∀i ∈ 1..4, ∀j ∈ 1..4
{

δXr,i,j = 0 ∧ δSBr,i,j = 0 ∧ Pr,i,j = 0 if ΔXr,i,j = 0

δXr,i,j ≥ 1 ∧ δSBr,i,j ≥ 1 ∧ Pr,i,j ≥ 20 otherwise

(3)

∀r ∈ 1..R, ∀i ∈ 1..4, ∀j ∈ 1..4

Table(〈δXr,i,j , δSBr,i,j , Pr,i,j〉 , 〈SBox〉) if ΔXr,i,j 	= 0
(4)

∀r ∈ 1..R − 1, ∀j ∈ 1..4 δSBr,0,j = δXr+1,1,j

(5)

∀r ∈ 1..R − 1, ∀j ∈ 1..4
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δSBr,2,(2+j)%4 = δXr+1,2,j if ΔSBr,1,(3+j)%4 = 0

δSBr,1,(3+j)%4 = δXr+1,2,j if ΔSBr,2,(2+j)%4 = 0

δSBr,1,(3+j)%4 = δSBr,2,(2+j)%4 if ΔXr+1,2,j = 0

Table(
〈
δSBr,1,(3+j)%4, δSBr,2,(2+j)%4, δXr+1,2,j

〉
, 〈XOR〉) otherwise

(6)

∀r ∈ 1..R − 1, ∀j ∈ 1..4
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δSBr,2,(2+j)%4 = δXr+1,3,j if ΔSBr,0,j = 0

δSBr,0,j = δXr+1,3,j if ΔSBr,2,(2+j)%4 = 0

δSBr,0,j = δSBr,2,(2+j)%4 if ΔXr+1,3,j = 0

Table(
〈
δSBr,0,j , δSBr,2,(2+j)%4, δXr+1,3,j

〉
, 〈XOR〉) otherwise

(7)

∀r ∈ 1..R − 1, ∀j ∈ 1..4
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δXr+1,0,j = δXr+1,3,j if ΔSBr,3,(1+j)%4 = 0

δSBr,3,(1+j)%4 = δXr+1,3,j if ΔXr+1,0,j = 0

δSBr,3,(1+j)%4 = δXr+1,0,j if ΔXr+1,3,j = 0

Table(
〈
δSBr,3,(1+j)%4, δXr+1,0,j , δXr+1,3,j

〉
, 〈XOR〉) otherwise

(8)

where ∀r ∈ R..n, ∀i ∈ 1..4, ∀j ∈ 1..4,

δXr,i,j ∈ 0..255, δSBr,i,j ∈ 0..255, Pr,i,j ∈ {0, 20, .., 70},

and 〈XOR〉 encodes ⊕ relation and 〈SBox〉 the S-box constraint.

Model 1: Formulation of SK Step2.
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contain non-zero values and that Pr,i,j takes only 2 different values for the 4-
bit S-box (SKINNY-64) and 7 different values for the 8-bit S-box (SKINNY-128).
There are roughly 214 triplet elements in the Table constraint for the SKINNY-
128 case. As the S-box layer is the only non-linear layer, the other operations
could be directly implemented in a deterministic way at the cell level. The asso-
ciated constraints thus follow the SKINNY-128 linear operations. When possible,
i.e. when one element is known to be zero, we replace XOR constraints (encoded
using Tableconstraints) by a simple equality constraint. This corresponds to
Table constraints (5), (6), (7) and (8) in Model 1.

The overall goal is finally to find a byte-consistent solution which maxi-
mizes differential characteristic probability. Thus, we define an integer variable
ObjStep2 to minimize the sum of all Pr,i,j variables (1). This value mainly depends
on the number of S-boxes outputted by Step1 ObjStep1 and can be bounded to
[[20 · ObjStep1, 70 · ObjStep1]] (2).

The differences for the models TK1, TK2 and TK3 are the modeling of
the XORs induced by the lanes of the tweakey through XOR table constraints.
Each XOR constraint depicted in Model 1 provides high quality filtering but
requires 65536 tuples to be stored which results in prohibitive memory usage.
This may limit the number of threads that can be used for the resolution, which
was the case for TK2 and TK3. To get around this issue, we encoded the XOR
constraint in intention (by defining filtering rules), providing a more memory
efficient algorithm, at the expense of filtering strength. This last choice was
applied for TK2 and TK3 (SKINNY-128 only). We also rely on Tableconstraints
to model the LFSRs applied on TK2 and TK3.

Concerning the search space strategy, for the TK2 and the TK3 attack
settings, the Step 1 only outputs the truncated value of the sum of the TKi.
Thus, the search space strategy first looks at the cancellation places of the sum
of the TKi and then instantiates the TKi values according to those positions.
For the TK1 setting, we simply apply the default Choco-solver strategy.

Concerning the parallelization, we affect one solution outputted by Step 1
per thread and we share between the threads the value of ObjStep2.

4.3 Step 2 Performance Results

We run our Step 2 model on the two versions of SKINNY (SKINNY-64 and SKINNY-
128) using our CP models written in Choco-solver. We conduct all our exper-
iments on our server composed of 2× AMD EPYC 7742 64-Core and 1TB of
RAM. All the reported times are real system times.

Up to our knowledge, we only found [1] that gives time results concerning
finding the best SK differential characteristic probability on SKINNY-128 using
a MILP tool based on Gurobi.

More precisely, the authors say: “In our experiments, we used Gurobi Opti-
mizer with Xeon Processor E5-2699 (18 cores) in 128 GB RAM.” and, for 13
rounds, “in our environment, the test of 6 classes [Step 1 solutions with 58
active S-boxes without symmetries] finished in 16 days. Finally, it is proven that
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the tight bound on the probability of differential characteristic for 13 rounds is
2−123” in the SK model.

Regarding the TK models, the best known results were obtained by Liu
et al. also using MILP models [19]. They could only find the best differential
characteristics up to 7, 9 and 13 rounds for TK1, TK2 and TK3 respectively.

Results for SKINNY-64. We sum up in Table 3 all the results we obtain for
SKINNY-64 in the four different attack models (SK,TK1,TK2 and TK3). The
overall time, in this case, is not a bottleneck. We only give results concerning
number of rounds that are at the limit (just under and just upper) when regard-
ing the number of active S-boxes which is equal to 32 in the case of SKINNY-64
as the state size is 64 bits and as the best differential probability of the S-box is
equal to 2−2. Thus, the best overall differential characteristic probability must
be under 2−64.

Note that sometimes, we need to browse several ObjStep1 bounds to find
the optimal differential characteristic probability when the number of rounds is
fixed. Indeed, we need to proactively adapt the probability bound we found. For
example, in the case of TK2 SKINNY-64 with 13 rounds, the optimal ObjStep1 is
equal to 25 and when providing the Step 2 process with this ObjStep1 bound, we
find a best differential characteristic probability equal to 2−55. Thus, we need to
enumerate all the Step 1 solutions with ObjStep1 = 26 and ObjStep1 = 27 to be
sure that the previous probability is really the best one. Then, before running
again Step 2 on those new results we adapt the best probability to the new
bound equal to 2−55 instead of the old bound equal to 2−64.

We also provide in Appendix A the details of the best found differential
characteristics.

Table 3. Overall results concerning SKINNY-64 in the four attack models. Step 2 time
corresponds to the Step 2 time taken over all Step 1 solutions when Objstep1 takes the
values precise in the first column. Best Pr corresponds to the best found probability
of a differential characteristic.

Nb Rounds ObjStep1 Nb sol. Step 1 Step 2 time Best Pr

SK 7 26 2 1 s 2−52

SK 8 36 17 1 s <2−64

TK1 10 23 1 1 s 2−46

TK1 11 32 2 1 s =2−64

TK2 13 25 → 27 10 1 s 2−55

TK2 14 31 1 1 s <2−64

TK3 15 24 → 26 46 2 s 2−54

TK3 16 27 → 31 87 4 s =2−64

TK3 17 31 2 1 s <2−64
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Results for SKINNY-128. In the same way, we provide in Table 4 the best
differential characteristic probability with the total time required for this search
for the 4 different attack models. As one can see, we also verify all the possible
values for ObjStep1 for a given number of rounds, depending on the probability
value previously found. Thus, this time, the number of solutions outputted by
Step 1 could be huge when we move away from the optimal Step 1 value v∗.
However, as the time spent to solve one solution is reasonable (at least when
considering SK and TK1), our model scales reasonably well: the worst case
requires 25 days of real time on our server on 8 threads and 31 GB of RAM2.

Table 4. Overall results concerning SKINNY-128 in the four attack models. Step 2 time
corresponds to the Step 2 time taken over all solutions of Step1-enum when Objstep1

takes the values precise in the first column. Best Pr corresponds to the best found
probability of a differential characteristic.

Nb Rounds Objstep1 Nb sol. Step 1 Step 2 time Best Pr

SK 9 41 → 43 52 16 s 2−86

SK 10 46 → 48 48 11 s 2−96

SK 11 51 → 52 15 4 s 2−104

SK 12 55 → 56 11 6 s 2−112

SK 13 58 → 61 18 2m 27 s 2−123

SK 14 61 → 63 6 21 s ≤2−128

TK1 8 13 → 16 14 4 s 2−33

TK1 9 16 → 20 6 3 s 2−41

TK1 10 23 → 27 6 4 s 2−55

TK1 11 32 → 36 531 37 s 2−74

TK1 12 38 → 46 186 482 213m 2−93

TK1 13 41 → 53 2 385 482 2 days 2−106.2

TK1 14 45 → 59 11 518 612 20 days 2−120

TK1 15 49 → 63 7 542 053 25 days ≤2−128

TK2 9 9 → 10 7 3 s 2−20

TK2 10 12 → 17 132 11 s 2−34.4

TK2 11 16 → 25 4203 6m 2−51.4

TK2 12 21 → 35 1 922 762 512m 2−70.4

TK2 19 52 → 63 530 693 280m ≤2−128

TK3 10 6 3 3 s 2−12

TK3 11 10 3 10 s 2−21

TK3 12 13 → 17 373 1 h 2−35.7

TK3 13 16 → 25 34 638 85 h 2−51.8

TK3 23 55 → 63 47 068 11 h ≤2−128

2 It seems that the use of the 128 threads was prohibited by the memory usage of
XOR tables (i.e. XOR in extension).
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Table 5. Overall results concerning SKINNY-128 with exactly one active cell in the
tweakey.

Nb Rounds Objstep1 Best Pr

TK2 13 25 → 44 2−86.2

TK2 14 31 → 54 ≥2−105.8

TK2 15 35 → 56 ≥2−113.8

TK2 16 40 → 63 ≥2−127.6

TK3 14 19 → 33 2−67

TK3 15 24 → 40 2−81

TK3 16 27 → 48 2−98

TK3 17 31 → 54 2−110

TK3 19 43 → 63 ≤2−128

TK3 20 45 → 63 ≤2−128

TK3 21 48 → 63 ≤2−128

TK3 22 51 → 63 ≤2−128

Our TK2 and TK3 models are based on XOR constraints encoded in intention
(and not using tables) and these experiences have been launched using the 128
threads of our server.

Concerning TK2 and TK3, we were not able to perform all the computations
due to the huge number of Step 1 solutions. Hence we decided to handle only the
Step 1 solutions with exactly one active byte in the round keys in order to limit
the number of truncated characteristics to instantiate. Those results are given in
Table 5. We provide in Appendix B the best TK2 differential characteristic we
found for 16 rounds, and the best TK3 differential characteristic we found for 17
rounds. Note that we do not know if these differential characteristics are optimal
in terms of probability as we were not able to test all the solutions Step 1.

Lessons Learnt. The overall gap is not to find the optimal value of ObjStep1 =
v∗ for a given number of rounds and to enumerate the corresponding overall
solutions if the Step 1 model is sufficiently tight. The real gap is if the value
obtained for ObjStep2 (here equal to 2 × v∗ as the best differential probability
for the S-box is equal to 2−2) is far from the optimal bound then we have to
increase ObjStep1 up to the bound �ObjStep2/2�. Further we are from v∗ in the
Step 1 resolution, more numerous are the Step 1 solutions (in fact this number
grows exponentially as could be seen in Table 4). Thus, the time for the Step 2
resolution becomes the bottleneck.

5 Conclusion

In this paper, we improve the security bounds regarding differential character-
istics search on the block cipher SKINNY. As usually done, we have divided the
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search procedure into two steps: Step 1 which abstracts the difference values
into Boolean variables and finds the truncated characteristics with the smallest
number of active S-boxes; and Step 2 which inputs the results of Step 1 to output
the best possible probability instantiating the abstract solutions outputted by
Step 1. Of course, each solution of Step 1 could not always be instantiated in
Step 2.

For Step 1, an ad-hoc method which heavily uses the structure of the
problem is proposed. For solving Step 2, we have implemented a Choco-solver
model. Regarding Step 2, our Choco-solver model is much faster than any other
approaches. It allowed us to find, for the first time, the best (related-tweakey)
differential characteristics in the TK1 model up to 14 rounds for SKINNY-128
and to show there is no differential trail on 15 rounds with a probability better
than 2−128. Regarding the TK2 model, we were able to find the best differential
trails up to 16 rounds. For TK3, we are able to exhibit a differential charac-
teristic up to 17 rounds. Note that in [19] Liu et al. were only able to reach 7
and 9 rounds in the TK1 and TK2 model respectively. Our approach is thus
an important improvement.

A Best (Related-Tweakey) Differential Characteristics
for SKINNY-64

The best SK differential characteristics on 7 rounds of SKINNY-64 with proba-
bility equal to 2−52 is given in Table 6. The best TK1 differential characteristics
on 10 rounds of SKINNY-64 with probability equal to 2−46 is given in Table 7.
The Best TK2 differential characteristics on 13 rounds of SKINNY-64 with prob-
ability equal to 2−55 is given in Table 8. Best TK3 differential characteristics on
15 rounds of SKINNY-64 with probability equal to 2−54 is given in Table 9.

Table 6. The Best SK differential characteristics on 7 rounds of SKINNY-64 with
probability equal to 2−52. The four words represent the four rows of the state and are
given in hexadecimal notation.

Round δXi = Xi ⊕ X ′
i (before SB) δSBXi (after SB) Pr(States)

i = 1 0040 4444 4440 4400 0020 2222 2220 2200 2−2·10

2 0000 0020 0200 2002 0000 0010 0100 1001 2−2·4

3 0010 0000 0000 0001 0080 0000 0000 0008 2−2·2

4 0000 0080 0000 0080 0000 0040 0000 0040 2−2·2

5 0400 0000 0004 0000 0200 0000 0002 0000 2−2·2

6 0000 0200 0200 0000 0000 0100 0100 0000 2−2·2

7 0001 0000 0011 0001 0008 0000 0088 0008 2−2·4
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Table 7. The Best TK1 differential characteristics on 10 rounds of SKINNY-64 with
probability equal to 2−46. The four words represent the four rows of the state and are
given in hexadecimal notation.

Round δXi = Xi ⊕ X′
i (before SB) δSBXi (after SB) δTK1i Pr(States)

i = 1 0000 0002 0020 0200 0000 0001 0010 0100 1000 0000 0B80 0000 2−2·3

2 1000 1000 0000 0000 B000 8000 0000 0000 B000 8000 1000 0000 2−2·2

3 0000 0000 0000 0000 0000 0000 0000 0000 0010 0000 B000 8000 −
4 0010 0010 0000 0010 00B0 00A0 0000 00B0 00B0 0080 0010 0000 2−2·3

5 0B00 0000 0002 0000 0100 0000 0001 0000 0000 1000 00B0 0080 2−2·2

6 0000 0100 0000 0000 0000 0800 0000 0000 0000 B800 0000 1000 2−2·1

7 0000 0000 0B00 0000 0000 0000 0100 0000 0000 0010 0000 B800 2−2·1

8 0001 0000 0000 0001 0008 0000 0000 0008 0008 00B0 0000 0010 2−2·2

9 0080 0000 000B 0000 0040 0000 0001 0000 0000 0100 0008 00B0 2−2·2

10 0140 0040 0110 0140 0820 0020 0880 0820 0000 0B08 0000 0100 2−2·7

Table 8. The Best TK2 differential characteristics on 13 rounds of SKINNY-64 with
probability equal to 2−55. The four words represent the four rows of the state and are
given in hexadecimal notation.

Round δXi = Xi ⊕ X′
i (before SB) δSBXi (after SB) δTK1i δTK2i Pr(States)

i = 1 0000 8200 0080 0000 0000 4100 0040 0000 0000 0008 0502 0000 0000 000C 060C 0000 2−2·3

2 4000 0000 0410 4000 2000 0000 02A0 2000 5000 0002 0000 0008 D000 0008 0000 000C 2−2·4

3 0000 A000 0002 0002 0000 6000 0006 0003 0800 0000 5000 0002 0800 0000 D000 0008 2−2·3

4 0630 0000 0000 0600 03F0 0000 0000 0100 0250 0000 0800 0000 01A0 0000 0800 0000 2−3·3

5 1000 0000 0000 0000 9000 0000 0000 0000 8000 0000 0250 0000 1000 0000 01A0 0000 2−2

6 0000 0000 0000 0000 0000 0000 0000 0000 2000 5000 8000 0000 2000 5000 1000 0000 −
7 0000 0000 0000 0000 0000 0000 0000 0000 0080 0000 2000 5000 0020 0000 2000 5000 −
8 00A0 00A0 0000 00A0 0060 0050 0000 0050 0020 0050 0080 0000 0040 00B0 0020 0000 2−2·3

9 0500 0000 000B 0000 0C00 0000 000C 0000 0000 8000 0020 0050 0000 4000 0040 00B0 2−3·2

10 0000 0C00 0000 0000 0000 0200 0000 0000 0000 2500 0000 8000 0000 9700 0000 4000 2−2

11 0000 0000 0B00 0000 0000 0000 0100 0000 0000 0080 0000 2500 0000 0090 0000 9700 2−2

12 0001 0000 0000 0001 000A 0000 0000 0008 0005 0020 0000 0080 000F 0030 0000 0090 2−2·2

13 0080 0000 0001 0000 0040 0000 0008 0000 0000 0800 0005 0020 0000 0300 000F 0030 2−2·2
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Table 9. The Best TK3 differential characteristics on 15 rounds of SKINNY-64 with
probability equal to 2−54. The four words represent the four rows of the state and are
given in hexadecimal notation.

Round δXi = Xi ⊕ X ′
i

(before SB)
δSBXi (after SB) δTK1i δTK2i δTK3i Pr(States)

i = 1 0000 0001

4000 0004

0000 0008 2000 0002 0000 080D 0000 0800 0000 0408 0000 0500 0000 0E0D 0000 0C00 2−2·3

2 0000 0000

0000 0020

0000 0000 0000 0010 0008 0000 0000 080D 000B 0000 0000 0408 000E 0000 0000 0E0D 2−2

3 010D 000D

0000 000D

0A0E 0002 0000 0002 0D08 0000 0008 0000 0109 0000 000B 0000 060F 0000 000E 0000 2−2·32−3

4 0020 0000

2000 0000

0030 0000 3000 0000 0000 0008 0D08 0000 0000 0007 0109 0000 0000 000F 060F 0000 2−2·2

5 0000 0030

0030 0000

0000 00C0 00C0 0000 D000 0008 0000 0008 2000 0003 0000 0007 3000 0007 0000 000F 2−3·2

6 0000 C000

000C 0000

0000 2000 0002 0000 0800 0000 D000 0008 0F00 0000 2000 0003 0700 0000 3000 0007 2−2·2

7 0200 0000

0000 0200

0500 0000 0000 0300 08D0 0000 0800 0000 0640 0000 0F00 0000 0B90 0000 0700 0000 2−2·2

8 3000 0000

0000 0000

D000 0000 0000 0000 8000 0000 08D0 0000 E000 0000 0640 0000 B000 0000 0B90 0000 2−3

9 0000 0000

0000 0000

0000 0000 0000 0000 8000 D000 8000 0000 D000 9000 E000 0000 5000 4000 B000 0000 −

10 0000 0000

0000 0000

0000 0000 0000 0000 0080 0000 8000 D000 00C0 0000 D000 9000 0050 0000 5000 4000 −

11 0010 0010

0000 0010

0080 0090 0000 00A0 0080 00D0 0080 0000 00A0 0030 00C0 0000 00A0 0020 0050 0000 2−2·3

12 0A00 0000

0005 0000

0A00 0000 000A 0000 0000 8000 0080 00D0 0000 8000 00A0 0030 0000 A000 00A0 0020 2−22−3

13 0000 0A00

0000 0000

0000 0A00 0000 0000 0000 8D00 0000 8000 0000 5600 0000 8000 0000 D100 0000 A000 2−3

14 0000 0000

0000 0000

0000 0000 0000 0000 0000 0080 0000 8D00 0000 0010 0000 5600 0000 00D0 0000 D100 −

15 0000 0000

0004 0000

0000 0000 0002 0000 000D 0080 0000 0080 000D 00B0 0000 0010 0008 0060 0000 00D0 2−2

B Best (Related-Tweakey) Differential Characteristics
for SKINNY-128

Concerning the best SK differential characteristics on 13 rounds of SKINNY-128,
We obtain the same best SK differential characteristics on 13 rounds of
SKINNY-128 with probability equal to 2−123 given in Table 11 of Appendix D
of [1]. The best TK1 differential characteristics on 14 rounds of SKINNY-128
with probability equal to 2−120 is given in Table 10. The best TK2 differential
characteristics on 16 rounds of SKINNY-128 with probability equal to 2−127.6 we
found is given in Table 11. The best TK3 differential characteristics on 17 rounds
of SKINNY-128 with probability equal to 2−110 we found is given in Table 12.
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Table 10. The Best TK1 differential characteristics on 14 rounds of SKINNY-128 with
probability equal to 2−120. The four words represent the four rows of the state and are
given in hexadecimal notation.

Round δXi = Xi ⊕ X ′
i (before SB) δSBXi (after SB) δTK1i Pr(States)

i = 1 02000002 00000200 00020000 00020040 08000008 00000800 00080000 00080004 00000000 00000000 01000000 00000000 2−2·6

2 00000400 08000008 00000000 08000000 00000100 10000010 00000000 10000000 00000100 00000000 00000000 00000000 2−2·4

3 00000010 00000000 10100000 00000000 00000040 00000000 40400000 00000000 00000000 00000000 00000100 00000000 2−2·3

4 00004000 00000040 00004040 00004000 00000400 00000004 00000404 00000400 00000000 01000000 00000000 00000000 2−2·5

5 04000400 00000400 00050000 04040400 05000500 00000100 00050000 05050500 00000000 00000000 00000000 01000000 2−3·62−2

6 00050500 05000500 00000004 05000505 00050500 01000100 00000005 05000505 00000000 00000100 00000000 00000000 2−3·62−2·2

7 00050005 00050500 00040000 00000500 00050005 00050500 00050000 00000500 00000000 00000000 00000000 00000100 2−3·6

8 00000000 00050005 00000500 00050000 00000000 00010005 00000500 00050000 00000000 00010000 00000000 00000000 2−3·32−2

9 00000000 00000000 00000000 05000000 00000000 00000000 00000000 05000000 00000000 00000000 00000000 00010000 2−3

10 00000005 00000000 00000000 00000000 00000001 00000000 00000000 00000000 00000001 00000000 00000000 00000000 2−2

11 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 00000000 −
12 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 00000000 00000000 −
13 00000000 00000000 01000000 00000000 00000000 00000000 20000000 00000000 00000000 00000000 00000000 00000001 2−2

14 00002000 00000000 00002000 00002000 00008000 00000000 00008000 00008000 00010000 00000000 00000000 00000000 2−2·3

Table 11. The Best TK2 differential characteristics we found on 16 rounds of
SKINNY-128 with probability equal to 2−127.6. The four words represent the four rows
of the state and are given in hexadecimal notation.

Round δXi = Xi ⊕ X ′
i (before SB) δTK1i Pr(States)

δSBXi (after SB) δTK2i

i = 1 00000000 00404010 40400000 40000000 00000000 00000000 00000000 00007700 2−2·6

00000000 00040440 04040000 04000000 00000000 00000000 00000000 00003900

2 00000400 00000000 40000000 00000404 00000000 00770000 00000000 00000000 2−2·32−3

00000500 00000000 04000000 00000101 00000000 00730000 00000000 00000000

3 00010000 00000500 00000000 00000100 00000000 00000000 00000000 00770000 2−2·22−3

00200000 00000500 00000000 00002000 00000000 00000000 00000000 00730000

4 00000000 00200000 00000005 00200000 00000077 00000000 00000000 00000000 2−2·22−3

00000000 00800000 00000005 00800000 000000E7 00000000 00000000 00000000

5 80050090 00000090 00058000 00050090 00000000 00000000 00000077 00000000 2−2·8

03010002 00000002 00010200 00010003 00000000 00000000 000000E7 00000000

6 00010303 03010002 00000001 01010003 00000000 00000077 00000000 00000000 2−2·62−3·4

00202020 20200009 00000020 20200020 00000000 000000CE 00000000 00000000

7 20000000 00202020 B0002000 00002020 00000000 00000000 00000000 00000077 2−2·62−2.42−3

80000000 00808080 80008000 00009380 00000000 00000000 00000000 000000CE

8 00930000 80000000 00000080 00008000 00770000 00000000 00000000 00000000 2−2·32−6

00EA0000 03000000 00000003 00000300 009D0000 00000000 00000000 00000000

9 00000000 00000000 00000000 00030000 00000000 00000000 00770000 00000000 2−5

00000000 00000000 00000000 00BC0000 00000000 00000000 009D0000 00000000

10 BC000000 00000000 00000000 00000000 77000000 00000000 00000000 00000000 2−6

4C000000 00000000 00000000 00000000 3B000000 00000000 00000000 00000000

11 00000000 00000000 00000000 00000000 00000000 00000000 77000000 00000000 −
00000000 00000000 00000000 00000000 00000000 00000000 3B000000 00000000

12 00000000 00000000 00000000 00000000 00007700 00000000 00000000 00000000 −
00000000 00000000 00000000 00000000 00007700 00000000 00000000 00000000

13 00000000 00000000 00000000 00000000 00000000 00000000 00007700 00000000 −
00000000 00000000 00000000 00000000 00000000 00000000 00007700 00000000

14 0000000 00000000 00000000 00000000 00000000 77000000 00000000 00000000 −
00000000 00000000 00000000 00000000 00000000 EF000000 00000000 00000000

15 00000000 00000000 00980000 00000000 00000000 00000000 00000000 77000000 2−5

00000000 00000000 00420000 00000000 00000000 00000000 00000000 EF000000

16 00000042 00000000 00000042 00000042 − 2−2.4·3

00000008 00000000 00000008 00000008
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Table 12. The Best TK3 differential characteristics we found on 17 rounds of
SKINNY-128 with probability equal to 2−110. The four words represent the four rows of
the state and are given in hexadecimal notation.

Round δXi = Xi ⊕ X ′
i (before SB) δTK1i Pr(States)

δSBXi (after SB) δTK2i

δTK3i

i = 1 00000200 00320000 08000000 00000808 00000000 00BA0000 00000000 00000000 2−2·32−3·2

00000800 00920000 18000000 00001010 00000000 00430000 00000000 00000000

00000000 00730000 00000000 00000000

2 00100000 00000800 00000000 00001000 00000000 00000000 00000000 00BA0000 2−2·3

00400000 00001000 00000000 00004000 00000000 00000000 00000000 00430000

00000000 00000000 00000000 00730000

3 00000000 00400000 00000010 00400000 000000BA 00000000 00000000 00000000 2−2·3

00000000 00040000 00000040 00040000 00000086 00000000 00000000 00000000

00000039 00000000 00000000 00000000

4 04400005 00000005 00400400 00400005 00000000 00000000 000000BA 00000000 2−2·62−3·2

05040001 00000001 00040100 00040005 00000000 00000000 00000086 00000000

00000000 00000000 00000039 00000000

5 00040505 05040001 00000004 04040005 00000000 000000BA 00000000 00000000 2−2·92−3

00010101 01010028 00000001 01010001 00000000 0000000D 00000000 00000000

00000000 0000009C 00000000 00000000

6 01000000 00010101 03000100 00000101 00000000 00000000 00000000 000000BA 2−2·62−32−4

20000000 00202020 20002000 0000B320 00000000 00000000 00000000 0000000D

00000000 00000000 00000000 0000009C

7 00B30000 20000000 00000020 00002000 00BA0000 00000000 00000000 00000000 2−2·32−7

00EE0000 80000000 00000080 00008000 001A0000 00000000 00000000 00000000

004E0000 00000000 00000000 00000000

8 00000000 00000000 00000000 00800000 00000000 00000000 00BA0000 00000000 2−2

00000000 00000000 00000000 00030000 00000000 00000000 001A0000 00000000

00000000 00000000 004E0000 00000000

9 03000000 00000000 00000000 00000000 BA000000 00000000 00000000 00000000 2−4

29000000 00000000 00000000 00000000 34000000 00000000 00000000 00000000

A7000000 00000000 00000000 00000000

10 00000000 00000000 00000000 00000000 00000000 00000000 BA000000 00000000 −
00000000 00000000 00000000 00000000 00000000 00000000 34000000 00000000

00000000 00000000 A7000000 00000000

11 00000000 00000000 00000000 00000000 0000BA00 00000000 00000000 00000000 −
00000000 00000000 00000000 00000000 00006900 00000000 00000000 00000000

0000D300 00000000 00000000 00000000

12 00000000 00000000 00000000 00000000 00000000 00000000 0000BA00 00000000 −
00000000 00000000 00000000 00000000 00000000 00000000 00006900 00000000

00000000 00000000 0000D300 00000000

13 00000000 00000000 00000000 00000000 00000000 BA000000 00000000 00000000 −
00000000 00000000 00000000 00000000 00000000 D3000000 00000000 00000000

00000000 69000000 00000000 00000000

14 00000000 00000000 00000000 00000000 00000000 00000000 00000000 BA000000 −
00000000 00000000 00000000 00000000 00000000 00000000 00000000 D3000000

00000000 00000000 00000000 69000000

15 0000000 00000000 00000000 00000000 00000000 0000BA00 00000000 00000000 −
00000000 00000000 00000000 00000000 00000000 0000A700 00000000 00000000

00000000 00003400 00000000 00000000

16 00000000 00000000 00000029 00000000 00000000 00000000 00000000 0000BA00 2−3

00000000 00000000 00000030 00000000 00000000 00000000 00000000 0000A700

00000000 00000000 00000000 00003400

17 00300000 00000000 00300000 00300000 − 2−2·3

00400000 00000000 00400000 00400000
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11. Gérault, D., Lafourcade, P., Minier, M., Solnon, C.: Revisiting AES related-key
differential attacks with constraint programming. Inf. Process. Lett. 139, 24–29
(2018)

12. Gerault, D., Lafourcade, P., Minier, M., Solnon, C.: Computing AES related-key
differential characteristics with constraint programming. Artif. Intell. 278, 103183
(2020)

13. Gerault, D., Minier, M., Solnon, C.: Constraint programming models for chosen
key differential cryptanalysis. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp.
584–601. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1 37

14. Jean, J.: TikZ for cryptographers (2016). https://www.iacr.org/authors/tikz/
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Abstract. Due to the rapidly growing number of devices that need to
communicate securely, there is still significant interest in the development
of efficient encryption schemes. It is important to maintain a portfolio
of different constructions in order to enable a quick transition if a novel
attack breaks a construction currently in use. A promising approach is
to construct encryption schemes based on the learning parity with noise
(LPN) problem as these schemes can typically be implemented fairly effi-
ciently using mainly “exclusive or” (XOR) operations. Most LPN-based
schemes in the literature are asymmetric, and there is no practical eval-
uation of any LPN-based symmetric encryption scheme.

In this paper, we propose a novel LPN-based symmetric encryption
scheme that is more efficient than related schemes. Apart from analyz-
ing our scheme theoretically, we provide the first practical evaluation of
a symmetric LPN-based scheme, including a study of its performance in
terms of attainable throughput depending on the selected parameters. As
the encryption scheme lends itself to an implementation in hardware, we
further evaluate it on a low-end SoC FPGA. The measurement results
attest that our encryption scheme achieves high performance rates in
terms of throughput on such hardware, providing evidence that sym-
metric encryption schemes based on hard learning problems may be con-
structed that can compete with state-of-the-art encryption schemes.

Keywords: Symmetric encryption · Learning parity with noise ·
LPN · FPGA implementation

1 Introduction

There has been a substantial amount of work in recent years on the development
of encryption schemes whose security relies on the hardness of solving a difficult
learning problem. In fact, there is a strong connection between cryptography
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and learning problems as shown in the seminal work by Impagliazzo and Levin
who quite generally proved that cryptography is only possible if and only if
efficient learning is not [20]. A well studied example of such a learning problem
is learning parity with noise (LPN). In short, it is the problem of identifying an
unknown binary vector given only noisy scalar products of this vector and other
vectors chosen uniformly at random. Since computations are carried out in Z2,
the scalar product is a single bit. The scalar products are noisy in the sense that
the resulting bit is flipped with a certain probability.1

Building encryption schemes based on the LPN problem is appealing because
they are expected to achieve decent throughput measured in the number of
bytes processed per second. In recent years, several encryption schemes based
on LPN have been proposed; however, barring a few exceptions, the focus has
been primarily on asymmetric cryptography (see Sect. 6 for details on related
work). All proposed schemes have in common that they require fresh, crypto-
graphically strong random bits for the encryption of each piece of plaintext. This
requirement can be disadvantageous for multiple reasons: First, the generation of
secure random bits itself may be computationally expensive. Second, low-power
embedded devices often have a limited number of entropy sources, which makes
it challenging to produce random bits [17]. Moreover, extracting randomness
from sources with low entropy incurs a significant computational overhead [29].
Finally, if each invocation of the encryption process requires fresh randomness,
this additional randomness must either be appended to the encrypted data or
it is embedded in it. In the former case, the space complexity (or bandwidth
requirement) increases and in the latter case, we get a more complex decryption
routine and thus a lower throughput for decryption.

We propose a synchronous stream cipher, called Firekite, which uses an LPN-
based pseudo-random number generator (PRNG) with a simple structure [3] to
generate its keystream. The PRNG used in Firekite differs from the PRNG
introduced by Blum et al. [3] in that it handles the noise vector differently and
uses a different noise distribution. Firekite further uses a Ring-LPN hardness
assumption to reduce the key size. Unlike other proposed encryption schemes
based on the LPN problem, our scheme only requires a source of cryptographi-
cally strong random bits for key generation but not for encryption. We further
discuss how to use our scheme in practice by proposing concrete sets of param-
eters to instantiate it. As an additional contribution, the attainable throughput
based on our software implementation is measured for various parameter sets.
While the potential for efficient LPN-based cryptography has been noted before,
this is the first work that measures the actual performance of such an encryption
scheme. Moreover, as our scheme can greatly benefit from dedicated hardware,
we implemented and evaluated it on a low-power field-programmable gate array
(FPGA). To the best of our knowledge, this is also the first time any LPN-based
encryption scheme is tested and evaluated on an FPGA.

1 Note that the problem is not difficult to solve without any noise, using Gaussian
elimination.
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Although it is unlikely that current symmetric encryption schemes such as
AES, which is nowadays employed ubiquitously, will be broken in the near future,
we believe that a portfolio of cryptographic constructions must be at our disposal
for multiple reasons. First, fallback solutions are required in case one construction
is broken. Second, encryption is used in devices with different capabilities and
constraints in a multitude of scenarios, which entails that different schemes are
appropriate depending on the use case. LPN-based cryptography may prove to
be a sensible approach for specific use cases.

The paper is structured as follows. Background on LPN is provided in Sect. 2.
Our encryption scheme is introduced in Sect. 3 and analyzed in terms of security
and performance in Sect. 4 and Sect. 5, respectively. A summary of related work
is provided in Sect. 6, and Sect. 7 concludes the paper.

2 Background

LPN is a well studied problem in cryptography and machine learning. It is appeal-
ing in cryptography as it is a strong candidate for post-quantum cryptography:
while efficient algorithms for quantum computers have been found to solve the
factorization and the discrete logarithm problem [28], which are the foundation
of asymmetric encryption schemes used in practice, no efficient quantum algo-
rithm that solves the LPN problem is known. Moreover, the LPN problem is
a promising candidate because only simple operations such as “exclusive or”
(XOR) and scalar products are required, which can be implemented efficiently.

Informally, the LPN problem is asking to solve a noisy binary system of
equations. We will now provide the formal definition, which uses an LPN oracle.
Let x

U←− X denote the event that x is drawn uniformly at random from the
domain X .

Definition 1. ( LPN Oracle). Let s
U←− Z

n
2 and Berτ be the Bernoulli distri-

bution with a noise parameter τ ∈ ]0, 1
2 [. Let Ds,τ further denote the distribution

defined as
{(u, c) | u

U←− Z
n
2 , c = uT s + d, d ← Berτ} ∈ Z

n+1
2 .

An LPN oracle OLPN
s,τ outputs independent random samples according to Ds,τ .

Given this definition, we are now in the position to define the LPN problem
and the notion of an LPN solving algorithm.

Definition 2. (Search LPN). Given access to an LPN oracle OLPN
s,τ , find the

vector s. Let n′ ≤ n. We say that an algorithm M (q, t, μ, θ, n′) -solves the search
LPN problem, where the secret has size n and the noise parameter is τ , if

Pr[MOLPN
s,τ (1n) = (s1 . . . sn′) | s

U←− Z
n
2 ] ≥ θ,

M runs in time t, uses memory μ, and queries the LPN oracle at most q times.
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In the decisional LPN problem, the objective is to distinguish between output
from the LPN oracle and uniformly distributed random vectors of size n + 1.
It has been proven that the search LPN and the decisional LPN problem are
equivalent [3,22].

Looking at the history of solving LPN, the first specific LPN solving algo-
rithm is BKW [4], which recovers the LPN secret bit by bit. An important
improvement was presented by Levieil and Fouque [25] whose algorithm uses
the Walsh-Hadamard transform, which makes it possible to recover several bits
of the secret at once and requires fewer initial queries. The use of covering codes,
introduced by Guo et al. [16], further improves the performance of LPN solving
algorithms [5,32]. An analysis of the best LPN solving algorithms for a wide
range of parameters can be found in the work of Bogos and Vaudenay [5].

All these algorithms are characterized by the fact that their time complexity

is sub-exponential, 2O
(

n
log(n)

)
, and they require a sub-exponential number of

queries, 2O
(

n
log(n)

)
, when the noise parameter τ is constant.2

Trading off the time complexity in favor of the number of queries, Lyuba-
shevsky [26] uses BKW as a black box and adds a processing phase at the begin-
ning of the LPN solving algorithm. With this modification, the LPN problem can
be solved requiring only a polynomial number of queries (n1+ε for a constant

ε > 0) at the expense of an increased time complexity of 2O
(

n
log(log(n))

)
.

3 PRNG and Firekite Construction

We first provide an overview of the LPN-based PRNG construction in Sect. 3.1.
It is important to note that the basic construction has been proposed before [3].
However, the level of detail provided in Sect. 3.1 should help the reader to better
understand how our PRNG differs from the general construction. Our PRNG
is introduced formally and in detail in Sect. 3.2. Subsequently, our encryption
scheme Firekite, which is based on this PRNG, is presented in Sect. 3.3.

3.1 Overview

The challenge of the LPN problem, as defined in Sect. 2, is to distinguish between
a source providing either random bit vectors of length n+1 or vectors containing
n random bits plus a single bit that is the noisy scalar product of these n bits
and a secret vector s of length n. This definition can naturally be extended to
matrices and vectors: the noisy scalar product of a secret m × n-matrix M and
a random vector v, i.e., MT v + e, where e denotes a sparse n-bit noise vector,
is hard to distinguish from a random n-bit vector. Note that addition is carried
out in Z2, i.e., addition corresponds to computing the XOR of the inputs.

2 A simple guessing strategy has a complexity of O
(
n3en1−δ

)
using O

(
nen1−δ

)

queries if τ = n−δ.
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The PRNG construction exploits the fact that noisy matrix-vector products
are indistinguishable from random vectors. In order to solve the problem that
LPN-based constructions require a source of randomness, we proceed as follows:
rather than having a separate mechanism, the output of a noisy matrix-vector
product is used iteratively as a source of randomness for the next noisy matrix-
vector multiplication. Concretely, given a secret matrix M and secret initial
vector v and e, the vector MT v + e can be used to generate the input for the
next iteration.

Obviously, simply iterating this process alone does not yield a PRNG because
there is no output. This problem is addressed as follows. If n � m, the noisy
matrix-vector product of length n can be split into three pieces: m bits are used
as the next vector v′, some bits are interpreted as a compact encoding ce′ of the
next noise vector e′, and the remaining bits, denoted by g, constitute the output.

While the length of the noise vector is n, a concise representation of the
noise vector e′ is possible because e′ is sparse. Formally, H(e′) bits are needed to
encode e′, where H(e′) denotes the entropy of the bit string e′ [3]. This process
is depicted in Fig. 1.

⎛
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⎞

⎠

T

·
⎛

⎝ v

⎞

⎠ +
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⎟
⎟
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⎟
⎟
⎟
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Fig. 1. The output of the noisy matrix-vector product is split into three components
g, v′, and ce′ . The vector g is the output of the PRNG, whereas v′ and ce′ are used
iteratively to compute the next noisy matrix-vector product.

3.2 PRNG

Having a basic understanding of the general PRNG construction, we proceed
by giving a formal specification of our PRNG. The state of the PRNG is the
pair (M,w), where M is a binary m × n-matrix, for some integer parameters
m and n, where n � m and n is a power of 2, and w is a vector of length
m + k · log(n) < n for some integer parameter k.3 The matrix M is called the
secret key, which never changes. Unlike the secret M , the vector w, which is
kept secret as well, is updated during the execution of the PRNG. Appropriate
choices for the parameters m, n, and k are discussed in Sect. 4.3.

Let ‖ denote concatenation of vectors, i.e., for two vectors v and v′ of lengths
� and �′, respectively, v‖v′ denotes the vector of length � + �′ for which

(v‖v′)[i] =

{
v[i] if i < �

v′[i − �] otherwise

3 Note that log(·) always denotes logarithm base 2 throughout this paper.
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for all i ∈ {0, . . . , � + �′ − 1}. We define w = v‖ce, where v and ce are vectors of
length m and k · log(n), respectively. The vector ce is to be understood as the
concise formulation of a sparse vector of length n. Let bi be the unit vector of
length n where only the bit at position i is set to 1 (and all other bits are 0). If
ce = i1‖i2‖ . . . ‖ik, the noise vector e is defined as e =

∨k
j=1 bij

, where ij denotes
the binary representation of a non-negative integer using log(n) bits. In other
words, ce encodes the positions in e where the bit is set to 1.4 As an illustrative
example, consider the case when n = 16, k = 3, and ce = (1001‖0100‖1100), i.e.,
the bits at indices 9, 4, and 12 are to be set (reading from left to right). Thus,
the decoded noise vector is e = (0001001000010000) (with the lowest-order bit
on the right). It is important to note that it is possible that the same index
occurs more than once, i.e., ij = ij′ , for some j, j′ ∈ {1, . . . , k}. Consequently,
the number of bits set in e is upper bounded by k.

We are now in the position to describe the PRNG algorithm. In the first step,
vector v is set to the first m bits in w, and the remaining k · log(n) bits of w
are interpreted as the concise formulation ce = i1‖i2‖ . . . ‖ik of the noise vector
e. Next, the noise vector is set to the decoded form of ce, i.e., e :=

∨k
j=1 bij

,
where each index ij is extracted from ce = i1‖i2‖ . . . ‖ik. In the main step, the
n-bit vector MT v + e is computed, which is interpreted as the concatenation of
vectors g and w′ of lengths n − (m + k · log(n)) and m + k · log(n), respectively.
Finally, the internal state (M,w) is updated to (M,w′) and the output of the
PRNG is simply the vector g.

From the description of the algorithm it follows that the algorithm can be
implemented using only XOR operations, except for the decoding of the noise
vector. The steps of the PRNG algorithm are summarized in Algorithm 1.

Algorithm 1. PRNG with state (M,w)
1: Parse v‖i1‖i2‖ . . . ‖ik := w
2: Set e :=

∨k
j=1 bij

3: Compute g‖w′ := MT v + e
4: w := w′

5: return g

3.3 Firekite

The PRNG described in Sect. 3.2 can theoretically be used as the basis of several
cryptographic constructions. Firekite is a synchronous stream cipher that uses
this PRNG, initialized with the secret state (M,w), to produce the keystream
directly. Formally, the encryption of a data item d of length n − (m + k · log(n))
is PRNG() + d, where PRNG() is to be understood as the invocation of the
PRNG returning the next random vector g of length n − (m + k · log(n)). Thus,
4 Intuitively, the length of ce is an approximation of the entropy H(e) of e.
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the plaintext vectors are processed sequentially, and the output g of the PRNG
depends on the internal vector w, which is updated for each invocation of the
PRNG. As for any synchronous stream cipher, a ciphertext can be decrypted by
simply applying Algorithm 1 again on the ciphertext to obtain the plaintext.

As we will see, when setting the parameters m, n, and k to appropriate values,
the matrix M becomes quite large. For the sake of a low memory footprint and
efficient key distribution and management, it is preferable to have short keys.
This problem can be addressed by moving from the LPN problem to a variant of
the Ring-LPN problem [18]: Consider the ring R of all polynomials in X over Z2

with binary coefficients reduced modulo Xb − 1 for a suitable parameter b > n,
i.e., a parameter b for which it holds that (Xb − 1)/(X − 1) is irreducible. Let
q1

U←− Z
b
2 and qi := Xi−1q1 for i ∈ {2, . . . , b}. The b × b-matrix Q consists of the

rows q1, . . . , qb. In other words, the ith row of Q can be constructed by rotating
the first row to the left by i − 1 positions. The Ring-LPN conjecture states that
the problem remains hard when using the matrix Q in place of a fully random
matrix, subject to the constraint that the polynomial is irreducible. Thus, the
key used in Firekite is the random b-bit vector q1. It is worth noting that an
attacker might obtain the parity of the secret due to the factor X − 1 but no
more information about the secret is revealed.

As described in Sect. 3.1, we require that m � n and for n to be a power
of 2. Thus, the matrix Q from the Ring-LPN instance cannot be used directly.
Instead, given desired parameters n and m and the b-bit key, the matrix M is
derived from the key by generating the first m rows of Q and dropping the last
b − n columns.

The security implications of this transformation and details on the security
of Firekite in general are provided in Sect. 4. Moreover, for the Ring-LPN con-
struction, we show in Sect. 4.3 that the key size is reduced from mn to n + c,
where c is a small constant, for suggested parameter sets.

As mentioned before, the internal state w has to be kept secret. If an attacker
can control the initialization of w as part of a chosen-ciphertext attack, the
attacker can mount a key recovery attack to obtain the secret matrix M . The
initial vector w can be derived from a public m-bit nonce N using a standard
technique: Let C0 = c‖c + 1‖ · · · ‖c + k − 1 be a vector of length k log(n), where
c := n − m − k log(n), and let w0 := N‖C0. Given the secret key M and the
vector w0 derived from the nonce N , we compute

1. v‖i1‖ . . . ‖ik := w�−1

2. e :=
∨k

j=1 bij

3. g‖w� := MT v + e

iteratively for � ∈ {1, . . . , r} for some constant r (defined below) and define
w := w�. Thus, the procedure essentially consists of r successive executions of
Algorithm 1, discarding the vector g in each iteration.

We set the value of r as follows: In each iteration, the noise vector contributes
k m

n bits on average to vector v because the length of v is m and the noise bits
are spread uniformly across n bits. The number of possibilities to choose k m

n



Towards Efficient LPN-Based Symmetric Encryption 215

positions in vector v (with replacement) is mk m
n . During r trials, we assume

that r−1 of the corresponding noise vectors look random, which implies that the
total number of combinations is mk m

n (r−1). Thus, the number of combinations
exceeds (2m)2 by setting r := 1 +

⌈
2n

k log(m)

⌉
. This heuristic argument suggests

that v is fully random for this choice of r.5

This nonce-based variant can also be utilized to turn Firekite into a non-
sequential stream cipher by providing a new nonce after a certain number of
invocations of the PRNG. It is worth pointing out, however, that the number
of invocations must be significantly larger than r to ensure that the cost of
processing the nonce does not introduce a substantial overhead.

4 Security Analysis

In order to solve Ring-LPN based on irreducible polynomials, we can apply the
same algorithms that solve LPN. It is intuitive that instances where the matrix M
is also secret, which is the case in Firekite, require more effort from an attacker
compared to the traditional LPN or Ring-LPN instances that are instantiated
with the same parameters. On the other hand, utilizing only the top m rows
of the Ring-LPN matrix Q as described in Sect. 3.2 to generate matrix M can
only have a negative impact on security. As there are no known techniques to
break Ring-LPN instances for irreducible polynomials faster than standard LPN
instances, we conjecture that using a secret matrix M derived from the b-bit key
Q1 does not result in a substantially reduced security compared to using a fully
random m × n-matrix M . Therefore, we do not distinguish between these two
constructions in the following and simply consider a secret matrix M .

However, we must analyze the implication of generating the noise vector as
described in Sect. 3.2. While the PRNG proposed in prior art [3] is based on
an LPN instance where the noise vector has a Hamming weight of k, the noise
vector has a Hamming weight of at most k in our case. In this section, we first
show that an LPN instance based on our distribution of noise bits is still hard.

In order to be able to study the performance of Firekite in practice, we need
to instantiate it with secure parameters. To this end, we transform the problem
of breaking our scheme into the LPN problem in Sect. 4.2. This transformation
allows us to find concrete parameters for our scheme based on the best known
attacks against the well-studied LPN problem. In Sect. 4.3, we then discuss how
to derive parameters for practical use and provide exemplary parameters.

4.1 Security Reduction for Noise Distribution

A well-known result about PRNGs states that it suffices to show the pseudo-
randomness of a single application of the PRNG (e.g., §3.3.2 in [15]). Hence, we
need to prove that it is hard to distinguish the output MT v +e from bits chosen
uniformly at random. We will now prove that we get an LPN variant that is hard
5 Note that the square in (2m)2 is a safety margin.
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when using the noise distribution of Firekite as opposed to setting each bit in
the vector e independently according to the noise parameter τ ∈ ]0, 1

2 [ as defined
in Definition 1.

Let Nτ denote the Hamming weight of the noise vector, i.e., the number of
bits that are set to 1 in the n-bit noise vector. In the standard LPN setting, it
holds that E

[
NLPN

τ

]
= τn. In Firekite (FK), the Hamming weight of the noise

vector corresponds to the number of distinct elements when picking k out of n
elements uniformly at random with replacement. Hence, we have that

E
[
NFK

τ

]
= n ·

(

1 −
(

1 − 1
n

)k
)

. (1)

Using the inequality

(1 + x)r ≤ 1 +
rx

1 − (r − 1)x
(2)

for x ∈ (−1, 1
r−1 ] and r > 1, we obtain that

E
[
NFK

τ

] (1)
= n ·

(

1 −
(

1 − 1
n

)k
)

(2)

≥ n · k

n + k − 1
. (3)

Furthermore, observing that k
n < 1

2 ,6 we obtain that

k > E
[
NFK

τ

] (3)
>

2
3
k. (4)

We assume for the sake of contradiction that an LPN instance with the
Firekite noise distribution can be broken, i.e., solved efficiently. Given a standard
LPN instance where the size of the secret is n and the noise parameter is τ , we
set k such that τn ≤ k, e.g., by setting k := 3

2τn.
Since NLPN

τ follows a binomial distribution, we have that Pr[NLPN
τ =

	E [
NLPN

τ

]
] ∈ Ω(1/n). For the chosen parameters, it is thus likely that the
number of noise bits set to 1 is less than k. If we assume that LPN with our
noise distribution can be solved efficiently, then LPN with noise parameter τ can
be solved efficiently too: the noise of any given LPN instance could come from
our noise distribution with probability at least Ω(1/n). Hence it follows that the
attacker can solve LPN with a complexity that is O(n) times larger than the
complexity needed to break LPN with the Firekite noise distribution.

Thus, we can use essentially the same proof as for a constant Hamming
weight [3] to show that the Firekite noise distribution is secure under the assump-
tion that LPN is a hard problem.

6 While this inequality is true for any LPN instance, the ratio k/n is much smaller for
parameters we propose in Sect. 4.3. Thus, tighter bounds on E

[
NFK

τ

]
can be derived

for recommended parameters.
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4.2 Transformation to LPN Problem

In the standard LPN problem, the goal is to reconstruct a secret vector s given
pairs of the form (u, c), where u is a random vector and c = uT s + e, with
e ∈ {0, 1}, is a noisy scalar product of u and s. The basic problem underlying
Firekite restricts the input provided to an attacker. Specifically, the attacker sees
only (parts of) c = MT v + e, i.e., both M and v are kept secret. We show in
this section that Firekite is based on a problem that can be transformed into
the LPN problem.

Let H = I‖X be a parity-check matrix of dimensions (n − m) × n, where I
is the (n − m) × (n − m)-identity matrix and X is a (n − m) × m-matrix such
that HMT = 0. Furthermore, let M1 and M2 denote the matrices comprising
the first (n − m) and last m columns of M , respectively. Thus, it holds that
M = M1‖M2 and X = MT

1 (MT
2 )−1. Since HMT = 0, we have that

(HMT )v = H(MT v) = H(c + e) = (I‖X)c + (I‖X)e = 0. (5)

Let c̄ and ē denote the subvectors consisting of the last m elements of c and e,
respectively. For the jth component cj of c it holds that

cj
(5)
= xT

j c̄ + ej + xT
j ē, (6)

where xj is the jth row of X, for any j ∈ {1, . . . , n − m}. By defining ηj :=
ej + xT

j ē, we get

cj
(6)
= xT

j c̄ + ηj .

Since cj and c̄ are known, xj is a secret, and ηj is a noise bit, this corresponds to
a standard LPN problem with the goal of recovering xj for all j ∈ {1, . . . n−m}.
The noise bit ηj consists of noise bit ej plus m

2 additional noise bits in expectation
because the expected number of bits set in xj is m

2 . Once all vectors x1, . . . , xn−m

(and thus X) are recovered, M can be recovered as well. Hence, the problem can
be transformed into an equivalent LPN problem with higher noise.

While this transformation merely shows that the problem underlying Firekite
is at most as hard as LPN, we believe the inverse to be true as well, i.e., we
conjecture that the two problems are equivalent. As the above transformation
is the best available method to attack the problem, we use it to derive secure
parameters based on the most efficient known attacks against the standard LPN
problem in the next section.

4.3 Parameters

The parameters n, m, and k must be carefully chosen to maximize security and
performance while keeping the size of the key and internal state small. In order to
determine a level of security for a specific set of parameters, we use the following
approach. Since the expected number of noise bits set in e is n

(
1 − (

n−1
n

)k
)

according to Eq. (1), we define the probability that any specific bit in e is set
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as τ := 1 − (
n−1

n

)k. Recall, however, that the noise bits are not set according to
a binomial distribution.7 Since the noise ηj is the combination of m

2 + 1 noise
terms in expectation, the bias is approximately (1 − 2τ)

m
2 +1, which is small

for a reasonably large m. Given that the bias is low, the most efficient method
to solve the LPN problem is the algorithm by Levieil and Fouque [25]. This
algorithm can be seen as a Gaussian elimination algorithm performed on blocks
of bits (instead of single bits) where at the end the Walsh-Hadamard transform
is applied to retrieve a block of the secret. Since τ approximately determines
the ratio of k over n, suitable parameters can easily be computed based on their
algorithm. Although the execution of the algorithm by Levieil and Fouque solely
retrieves a single vector xj , we use the resulting computational complexity as a
bound to derive the entire matrix M . This is a conservative estimate as it may
be possible to retrieve all n − m with the same amortized complexity.

Table 1. Parameters for 80-bit security and the resulting key sizes (corresponding to
parameter b), α and r values, and computed security levels.

Parameters Properties

m n k Key Size (b) α r Sec. Level

216 1024 16 1061 0.63 18 82.76

216 2048 32 2053 0.72 18 82.76

216 4096 54 4099 0.79 21 80.69

216 8192 112 8219 0.80 20 82.60

216 16,384 216 16,421 0.80 21 80.68

224 32,768 416 32,771 0.80 22 80.66

224 65,536 834 65,539 0.79 22 80.82

The fact that the choice of parameters has a direct impact on performance
must also be taken into account. Naturally, the larger the vector g is in relation
to n, the more bits are used directly for encryption and fewer invocations of
Algorithm 1 are needed. Let

α = α(m,n, k) :=
n − (m + k log n)

n

denote the fraction of the output of Algorithm 1 that is used for encryption. A
simple model of the amortized cost of Algorithm 1 in terms of the number of
instructions that need to be executed per bit is

I(m,n, k) :=
m

2p

1
α(m,n, k)

+ N(n, k), (7)

where p is the number of bits for which an XOR operation can be computed
in a single instruction and N(n, k) captures the amortized per-bit overhead to
7 In particular, the variance is substantially lower.
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compute and apply the noise vector. The factor m
2p is due to the fact that in

expectation m/2 bits in vector v are set and p bits are processed together. The
term N(n, k) is roughly proportional to k/n and thus only marginally increases
the amortized cost. Profiling of our implementation confirms that this model is
fairly accurate in that 95% of the computation is spent on the matrix-vector
multiplication, which corresponds to the first term in Eq. (7). Evidently, m
contributes directly to the amortized cost and must be minimized. However,
a reduction of m must be compensated with an increase of the number k of
noise bits in order to keep the same level of security. Since every increment
of k requires an additional log(n) bits, α becomes smaller, which negatively
affects the amortized cost according to Eq. (7). In practice, the search space can
be restricted quite well because an efficient implementation imposes additional
constraints, e.g., all vectors should fit into an integer number of bytes.

Table 2. Parameters for 128-bit security and the resulting key sizes (corresponding to
parameter b), α and r values, and computed security levels.

Parameters Properties

m n k Key Size (b) α r Sec. Level

352 1024 16 1061 0.50 17 129.07

352 2048 32 2053 0.66 17 129.07

352 4096 58 4099 0.74 18 128.95

352 8192 120 8219 0.77 18 128.99

352 16,384 228 16,421 0.78 18 128.93

352 32,768 456 32,771 0.78 18 128.93

352 65,536 906 65,539 0.77 19 128.92

Table 1 and Table 2 provide parameters for 80-bit and 128-bit security, respec-
tively, for an increasing length n. As mentioned before, the values in the table
are derived analytically, based on the algorithm by Levieil and Fouque. A first
observation is that the security level remains basically the same when scaling n
and k in the same manner while keeping m constant. This behavior is expected
because a constant ratio of n and k implies that the probability that any bit is
flipped remains constant as well. The effect of scaling the parameter n will be
examined more closely in Sect. 5.1. The tables further show that it is possible to
have keys lengths, which correspond to the length b of Q1 as defined in Sect. 3.2,
that are comparable to the lengths of keys in standard asymmetric encryption
schemes. However, it is impossible to have key lengths similar to the lengths of
standard symmetric encryption schemes because m must be in the order of hun-
dreds of bits, and it must hold that n is significantly larger than m to ensure that
α is not too small. Moreover, we see that increasing n only leads to an increase of
α up to a certain point because more bits are needed to encode a single noise bit
index as n grows larger. The tables also provide the number r of rounds needed
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to initialize vector w for the nonce-based variant for each set of parameters. We
see that r only varies slightly for the proposed sets of parameters. Finally, it is
important to note that increasing the security level does not affect the key size.
Still, the increase of m invariably leads to a larger computational cost. Hence it
follows that the right choice of parameters highly depends on the requirements
in terms of performance and memory constraints. A general recommendation
would be to use n = 4096 (i.e., b = 4099) and m and k as given in the two
tables for either 80-bit or 128-bit security. These parameters achieve a decent
trade-off between performance and space. As we will see in Sect. 5.2, the memory
requirements for these parameters are small enough for use on a standard low-
end FPGA. For certain architectures with plenty of memory and wide buses, the
last row in the two tables, i.e., the parameters for n = 65, 536 (i.e., b = 65, 539)
might be preferable for performance reasons. The actual performance for specific
parameter ranges is investigated in the subsequent section, which will provide
further justification for our choice of recommended parameters.

5 Performance Evaluation

The primary objective is to evaluate the performance in terms of throughput,
which is the number of bytes that can be encrypted or decrypted per second.
As discussed in Sect. 4, the choice of parameters crucially affects not only the
attained level of security but also the performance. Therefore, performance is
evaluated for a range of parameters corresponding to different security levels.

The procedure to obtain the desired measurement results is the same for all
experiments: Random input data is allocated in memory, which is then encrypted
and the time required for this encryption is measured. This process is repeated
20 times and all measured times are recorded. The reported throughput is simply
the ratio of the input size and the median of all recorded times in seconds required
to process the input. Note that we solely report the median value because the
variance is so small that the differences would hardly be visible in the figures.
Similarly, the input size was varied from tens of kilobytes up to one gigabyte
without any significant impact on performance on all considered platforms, sug-
gesting that the measured throughput reflects the throughput that would be
observed in real-world applications.

The impact of the parameters on performance is analyzed in Sect. 5.1 using
our software implementation. We further explore the potential of parallelization
and evaluate performance gains in a multi-threaded environment. It is impor-
tant to note that this implementation is neither tested nor analyzed sufficiently
for practical use. In particular, it might be susceptible to side-channel attacks
because the implementation uses direct memory access and executes XOR oper-
ations conditional on the bits in the secret state w. While an optimized, well-
tested implementation might yield somewhat different numbers, we believe that
the evaluation results capture the relative performance with respect to parame-
terization reasonably well. Since Firekite is better suited to be run on dedicated
hardware, we further implemented it on a low-power FPGA. The evaluation
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results on this platform are presented in Sect. 5.2. Unlike the software implemen-
tation, the constant-time FPGA implementation is significantly better protected
against side-channel attacks.

Naturally, a base of comparison is needed to put the performance numbers
into perspective. We chose to compare our software and hardware implemen-
tation against the Advanced Encryption Standard (AES) [8] due to its ubiq-
uity and high level of efficiency. This comparison is meant to illustrate how
close an LPN-based scheme can come to a state-of-the-art symmetric encryption
scheme in terms of performance on the given hardware. A thorough comparison
against multiple state-of-the-art stream ciphers on different hardware platforms
is beyond the scope of this work.

5.1 Performance on a Desktop Computer

The experiments to analyze the impact of the parameters on performance were
conducted on a quad-core Intel Core i5-4570 at 3.2 GHz with 8 GB of DDR3
memory (at 1.6 GHz). Our Firekite implementation is written in C++ and con-
sists of roughly 2000 lines of code. It is compiled using the optimization flags -O3
and -funroll-loops for most classes. The additional compilation flag -mavx2 is
added for the core classes that perform XOR operations in order to make use of
Advanced Vector Extensions (AVX),8 which add several SIMD instructions that
operate on 256 bit inputs. Thus, an XOR operation can be applied to p = 256
bits per cycle. Recall that the amortized number of instructions to encrypt a sin-
gle bit is roughly proportional to 1/p according to Eq. (7), i.e., any non-trivial
increase of p leads to a substantial improvement of throughput.

The level of security is raised primarily by increasing the number m of n-bit
vectors. Equation (7) states that the computational effort grows linearly with
m, which implies that a greater level of security results in a lower throughput.
In order to test this hypothesis, values for m and k have been chosen that
maximize throughput while achieving a security level of 80, 90, . . . , 150 for the
two recommended values for n, i.e., n = 4096 and n = 65, 536. As discussed in
Sect. 4.3, the algorithm by Levieil and Fouque is used to determine the security
level of a specific set of parameters m, n, and k based on the transformation to
the standard LPN problem (see Sect. 4.2).

The measured throughput for the chosen parameter sets is given in Fig. 2. It
is evident from this figure that the hypothesis is true in that the performance
degrades when increasing the security level. While the rate of degradation slightly
decreases for larger levels of security, the simplified model that assumes a linear
relationship between security level and throughput is fairly accurate.

An interesting observation is that there is a substantial gap in the attained
throughput for n = 4096 and n = 65, 536. A plausible explanation for this gap is
that a larger n is likely to result in fewer cache misses. The effect of increasing

8 Note that the flag -mavx can be used instead, in which case the PXOR instruction
is used in place of VPXORS, resulting in 256-bit operations but with fewer execution
ports.
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Fig. 3. The effect on the throughput
when increasing the vector length from
n = 210 to n = 218 is shown for the
security levels 80 and 128.

n is studied in a second experiment. Specifically, all valid values for n in the
range from n = 210 to n = 218 are tested. The parameters m and k have been
set to values that maximize throughput for the two security levels 80 and 128.
The result of this experiment is depicted in Fig. 3.

The figure shows that the vector length n considerably affects performance.
When n is small, there are frequent cache misses, leading to a low throughput.
The rate at which performance improves slows down when reaching n = 4096.
Thus, this value for n is a good choice when memory is limited. However, there is
a substantial improvement when increasing n from 215 to 216. This improvement
is due to the fact that 16 is a power of 2, which enables multiple optimizations:
First, the noise vector can be constructed efficiently as 16 bits can efficiently
be read sequentially. Moreover, when setting m and k to values so that αn is
divisible by 256, aligned memory access is possible for efficient use of the AVX
instructions. On the given test machine, throughput dropped significantly when
increasing n further for two reasons. First, the optimizations for n = 216 are
not possible for these vector lengths. Second, if the vectors become too long,
cache misses become more frequent and parts of the vectors need to be loaded
repeatedly. In fact, the drop is so steep that the throughput for n = 217 is lower
than for n = 212. Naturally, results may vary depending on the given hardware
architecture. In particular, the peak may occur for a different value of n.

Having discussed how the parameters affect performance in terms of through-
put, we proceed to analyze the potential for parallelization. It is easy to see that
the computation of MT v + e can be parallelized well. The basic principle is to
partition M into t matrices M1, . . . ,Mt of dimension m

t × n and assigning each
partition to one of t threads. Additionally, vector v and ce are also partitioned
into smaller vectors roughly of size m/t and k log(n)/t, respectively. Each thread
i ∈ {1, . . . , t} then computes MT

i vi and ei, which requires a fraction of 1/t of
the entire computational effort. Subsequently, the t matrix-vector products are
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added together and the logical or of all t noise vectors is computed. Finally, the
resulting noise vector is added to the computed matrix-vector product.

In reality, this process is slightly more complex because there are several
constraints that must be respected when partitioning M , v, and e. Obviously,
m/t may not be an integer number, therefore it must be guaranteed that the
partitioning uniquely assigns each bit in v to a thread. The splitting of ce is more
involved because care has to be taken that each partition consists of a multiple
of log(n) bits as these many bits encode a single index in the noise vector.
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Fig. 4. The effect of using multiple threads on throughput is shown. One, two, and
four threads (1T, 2T, 4T) are used for vector lengths n = 4096 (4K) and n = 65, 536
(64K). The results are provided for security levels 80 and 128.

In our next experiment, one, two, and four threads (denoted by 1T, 2T,
and 4T, respectively) are used to process the provided input and the processing
time is measured. Figure 4 summarizes the results for both recommended vector
lengths, n = 4096 (4K) and n = 65, 536 (64K), and security levels 80 and 128.
The measurement results indicate that spreading the computational task across
multiple threads indeed leads to a higher throughput. The improvement is more
substantial for vectors of larger size and for higher security levels, i.e., when
parameters n and m are larger. This is due to the fact that increasing these
parameters results in more work that can be partitioned among the threads. As
an example, throughput increases by merely 26% (21%) when using two threads
instead of one (four threads instead of two) for 80-bit security and a vector
length n of 4096. By contrast, for n = 65, 536 and 128-bit security, the through-
put improves by 70% and 48% when increasing the number of threads from one
to two and from two to four, respectively, resulting in an overall speed-up factor
of approximately 2.5. While a multi-threaded execution evidently improves per-
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formance, the overhead to synchronize the threads and the effort to merge the
partial results from all threads limits the potential of parallelization.

Finally, Table 3 compares the performance numbers against the performance
of the AES implementation of OpenSSL.

Table 3. The throughput of AES-128 in CBC and CTR mode with and without
hardware acceleration (HWA) are listed, as well as throughput of Firekite for the
configurations 4K/1T, 4K/4T, 64K/1T, and 64K/4T for 128-bit security.

Algorithm Mode HWA Throughput [MB/s]

AES-128 CBC � 738

AES-128 CTR � 2864

AES-128 CBC ✕ 357

AES-128 CTR ✕ 258

Firekite (128-bit) 4K/1T ✕ 115

Firekite (128-bit) 4K/4T ✕ 221

Firekite (128-bit) 64K/1T ✕ 165

Firekite (128-bit) 64K/4T ✕ 415

Hardware acceleration was disabled for some experiments to show the huge
effect of having hardware support in the form of the AES NI instruction. Firekite
only reaches a similar performance level when hardware acceleration is disabled,
n = 65, 536, and when using multiple threads. While Firekite makes use of
AVX/AVX2 instructions, we conjecture that support for operands the size of
n, e.g., n = 4096, would be required to become competitive. Naturally, Firekite
would further greatly benefit from hardware support for the decoding of the
noise vector. Thus, we conclude that hardware support is a general requirement
for high performance.

5.2 Performance on an FPGA

Both AES and Firekite have been implemented for execution on a Cyclone V
FPGA, which is a low-cost and low-power system on a chip with a dual-core
ARM Cortex-A9 MPCore processor at 925 MHz.9 It offers 41,910 adaptive logic
modules, 166,036 registers, and 553 RAM blocks. Even though 1GB of external
RAM is available and accessible through a dedicated controller, only on-chip
RAM is used in our implementation for performance reasons as the access latency
for on-chip RAM is lower. Encryption modules were added to the system with a
softcore NIOS II CPU instantiated in the FPGA fabric. Specifically, version f of
the CPU is used, which is characterized by high-speed pipelined data paths and
available on-board data and instruction caches. Each of the encryption modules

9 https://www.verical.com/datasheet/intel-fpga-5CSXFC6D6F31C6-N-5759991.pdf.

https://www.verical.com/datasheet/intel-fpga-5CSXFC6D6F31C6-N-5759991.pdf
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contains read and write direct memory access (DMA) units to minimize memory
access latencies. The frequency of the clock supplied to all units is 50 MHz.

The goal for the implementation of both AES and Firekite is to utilize the
available resources to the largest extent possible in order to maximize perfor-
mance in terms of the number of bytes that are encrypted per cycle. A custom
implementation of AES with the S-box implemented as a lookup table is used in
our experiments. We distinguish between single port (SP) and dual port (DP)
memory access: for SP memory access it is only possible to read from memory or
write to memory but not in the same cycle, whereas DP memory access uses two
ports to enable reading and writing at the same time. Consequently, the imple-
mentation for SP and DP memory access differ substantially, notably in that
only the DP implementation is pipelined, i.e., data is scheduled for encryption
(or decryption) as soon as it is fetched from memory.

For AES, we consider a parallelizable mode (CTR) and a non-parallelizable
mode (CBC). In non-parallelizable modes, batches of data must be encrypted
sequentially; moreover, the encryption of the next batch can only be started
after it has been fetched from memory. However, it is important to note that
both modes are pipelined for DP memory access. For the more complex version
with DP memory access, four stages can be executed in parallel on this FPGA,
whereas it is possible to execute 32 stages in parallel for the simpler version with
a single-port DMA component. Thus, the sole advantage of the parallelizable
modes is that more data can be fetched in parallel, resulting in larger bursts,
fewer memory accesses, and consequently higher memory performance. We there-
fore expect parallelizable modes to perform slightly better, in particular when
coupled with dual port memory access.
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Fig. 5. The number of encrypted bytes/cycle is shown for AES and Firekite using DP
(top) and SP (bottom) memory access, for a bus size of 32, 64, and 128 bit. Results
are provided for both sequential (S) and parallelized (P) AES executions.
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The parameters that are used for the Firekite implementation are m = 512,
n = 4096, and k = 64, which corresponds to a security level of 183. These
parameters have been chosen because parameters that are powers of 2 simplify
the design. The key advantage in comparison to AES is that all computations
can, in theory, be carried out in parallel. The top-level diagram is similar to the
diagram for AES and is omitted. The implementation uses numerous registers on
the datapath. In order to save space, the rows of matrix M are constructed when
needed as described in Sect. 3.2. The largest amount of space in the FPGA fabric
is consumed by the computational blocks that are used to perform the XOR
operations and decode the noise vectors. Since the resources on this FPGA do
not suffice to perform all operations of Algorithm 1 in one cycle, the computation
is executed in 32 cycles. In addition to an SP DMA version, a version with DP
memory access was developed as well, which introduces extra registers to enable
the parallelization of all operations.

As mentioned before, performance is measured in terms of the number of
bytes that are encrypted per cycle. The numbers are derived by encrypting a
payload of 48KB and dividing 49,152 by the number of used cycles. Figure 5
summarizes the results for AES, with and without parallelization, and Firekite
for SP and DP memory access. Furthermore, the effect of using different bus
sizes is presented as well.

The results are encouraging as Firekite encrypts more bytes per cycles when
using either DP or SP DMA components, except for SP memory access and a
bus size of 128 bits. The throughput of Firekite is higher by a factor of 1.64 to
2.54 (depending on the bus size) for DP memory access, and even 2.87 to 5.5
times larger for SP memory access. As far as resource consumption is concerned,
Firekite uses more registers than AES as expected (roughly 20–25K vs. 4–11K).
However, the versions of AES using parallelization (both DP and SP memory
access) actually use slightly more combinational logic elements (34K vs. 35–36K).

These numbers naturally do not imply that Firekite generally performs bet-
ter. First of all, it requires significantly more registers and would clearly not per-
form well when constrained to a small number of registers. Second, the results
might be quite different on a different platform. Finally, there are numerous light-
weight encryption schemes that would reach a considerably higher throughput
given the same resources. Nonetheless, the results demonstrate that an LPN-
based encryption scheme can reach decent performance levels, which means that
such schemes can potentially become viable alternatives to state-of-the-art sym-
metric encryption schemes for specific architectures in the future.

6 Related Work

One main application of LPN and variants of LPN is authentication, and a
plethora of LPN-based authentication protocols have been proposed: HB [19],
HB+ [21], HB++ [6], HB# [14], AUTH [24], and Lapin [18] among others [7,27].
Several encryption schemes also base their security on the hardness of LPN [1,9–
13,23,31]. Constructions of pseudo-random number generators [2,3] and pseudo-
random functions [30] based on LPN have been presented as well.
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Alekhnovich [1] proposed two constructions for public-key encryption
schemes that encrypt a given plaintext bit for bit. Improvements were intro-
duced by Damg̊ard et al. [9] and by Döttling et al. [11]. A more efficient scheme
building on top of the work of Döttling et al. was presented by Kiltz et al. [23].
HELEN [12] is another encryption scheme that bases its security on LPN and
the decisional minimum distance problem. More recently, Yu and Zhang [31]
illustrated how LPN can be used in a tag-based encryption scheme.

The work that is most closely related to ours presents the symmetric encryp-
tion scheme LPN-C [13]. The secret key in their scheme is a random matrix M .
It uses an error correcting code C with generator matrix G to encrypt a plaintext
vector d: the ciphertext is (v, y) for a random vector v and y := MT v + e+G ·d,
where e is a noise vector whose bits are sampled from a Bernoulli distribution. In
order to decrypt (v, y), y +MT v = e+G ·d is computed and then d is recovered
by running the decoding algorithm of C.

Clearly, there are similarities between LPN-C and Firekite: both schemes
use a random matrix M as the secret key and the computation of a ciphertext
includes a term of the form MT v + e. However, the two encryption schemes are
quite different in several respects. First of all, LPN-C uses an error-correcting
code C, which is not required for Firekite. Another differentiating factor is the
distribution of the bits in the noise vectors. It is a binomial distribution in
the case of LPN-C, whereas the distribution for Firekite has a lower variance,
and the hamming weight of the noise vector is upper bounded by k. Since the
error-correcting code can only successfully recover the plaintext if the number of
noise bits does not exceed a given threshold, it is possible that decryption fails
with a certain (small) probability. Alternatively, the authors suggest to truncate
the binomial distribution to ensure that the Hamming weight of noise vectors
does not exceed the correction capacity of C. However, this modification can
have a negative impact on the security of the scheme. By contrast, there are
no decryption failures for Firekite. What is more, unlike Firekite, LPN-C must
generate fresh random numbers for each messages.

While the work introducing LPN-C does not contain any measurement
results, it is evident from the specification that LPN-C is unlikely to reach the
same level of performance as Firekite for recommended parameters. The lower
performance is partly due to the use of an error-correcting code, which may
incur a substantial overhead. More importantly, LPN-C requires a much larger
m, e.g., m = 512 for a security level of 80, because the vector v is made public.
According to current knowledge, state-of-the-art attacks can exploit this addi-
tional information to recover the secret key more efficiently.

7 Conclusion

We introduced a novel LPN-based synchronous stream cipher, called Firekite,
that has a simple structure and is parallelizable, particularly when given hard-
ware support. This is the first work that presents performance numbers of any
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LPN-based scheme by benchmarking both a software and a hardware implemen-
tation. Moreover, it is the first LPN-based scheme that achieves decent through-
put numbers on dedicated hardware, albeit at the cost of higher resource usage
than state-of-the-art symmetric encryption schemes.

We hope that these results stimulate interest and trigger more research in this
direction in order to further explore the potential of practical encryption based
on LPN, which may lead to the development of viable alternatives to commonly
used symmetric encryption schemes.
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Rogério V. M. Rocha1(B) , Pedro P. Libório1 , Harsh Kupwade Patil2 ,
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Abstract. In recent years, privacy research has been gaining ground in
vehicular communication technologies. Collecting data from connected
vehicles presents a range of opportunities for industry and government
to perform data analytics. Although many researchers have explored
some privacy solutions for vehicular communications, the conditions to
deploy them are still maturing, especially when it comes to privacy for
sensitive data aggregation analysis. In this work, we propose a hybrid
solution combining the original differential privacy framework with an
instance-based additive noise technique. The results show that for typi-
cal instances we obtain a significant reduction in outliers. As far as we
know, our paper is the first detailed experimental evaluation of differ-
entially private techniques applied to traffic monitoring. The validation
of the proposed solution was performed through extensive simulations in
typical traffic scenarios using real data.

Keywords: Differential privacy · Smooth sensitivity · Hybrid
approach · Intelligent Transportation Systems (ITS)

1 Introduction

Mobility is a major concern in any city, and deploying Intelligent Transportation
Systems (ITS) can make cities more efficient by minimizing traffic problems [1].
The adoption of ITS is widely accepted in many countries today. Because of
its high potential, ITS has become a multidisciplinary field of connective work
and therefore many organizations around the world have developed solutions to
provide ITS applications to meet growing demand [2].
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Data collection in connected vehicles presents numerous opportunities
through aggregated data analysis for companies, industries, and governments.
Among these opportunities, one can highlight investigation of the driver behav-
ior, which helps vehicle manufacturers and insurers to improve and develop new
services. Another interesting application is the monitoring of traffic conditions
which allows transport departments to manage mobility and improve services [5].

Regarding traffic management, it is increasingly important to understand the
behavior of urban mobility. It includes presenting the travel profile of drivers for
future mobility planning and testing in new scenarios. A Traffic Data Center
(TDC) is a vital component in the mobility management. All collected data is
processed and analyzed by a TDC in order to manage traffic in real-time or
simply store it for additional operations [4]. A vehicle periodically sends beacons
collected by sensors to its neighbors, including base stations, which are then
sent directly to a TDC. The vehicle sensors collect data such as identification,
timestamp, position, speed (direction), acceleration, among other about 7700
signals, some of which are treated as sensitive [4,5].

It is undeniable that analyzing this volume of data brings substantial social
benefits, but also concerns about data breaches and leakage. Disclosure of this
data poses a serious threat to the privacy of contributors, and creates a liability
for industry and governments. In Europe, the General Data Protection Regula-
tion (GDPR) imposes stricter rules on the storage and management of personally
identifiable information, with non-compliance resulting in severe penalties [5].

To put it in context, it is worth mentioning that any type of monitoring
can lead to a privacy breach through tracking. The main privacy concerns for
drivers are disclosure, vehicle tracking and commercial use of personal data [5].
The speed, object of study in this paper, is a vector quantity which has a module
(numerical value) and direction. In this way, the speed is considered as confiden-
tial data, as it is possible to deduce the driver’s absolute value on a specific time
and, more importantly, what is the driver’s direction at that time and place.

In recent years, a strong mathematical definition of privacy in the context of
statistical databases became increasingly accepted as a standard privacy notion.
The original differential privacy framework was introduced by Dwork et al. in
2006 [3]. Since then, there was a lot of progress, including the sample and aggre-
gate framework developed by Nissim et al. [9]. Based on this framework, our
main research question is how to preserve the privacy of drivers while providing
accurate aggregated information to a TDC, such as the average speed?

This paper addresses the problem of calculating the average speed in a road
segment under a differentially private solution while maintaining the utility of
aggregated data. Our main contributions are the following:

– We propose a hybrid approach exploring the characteristics of the original
differential privacy [3] and the sample and aggregate frameworks [9].

– We present a formal proof showing that the proposed approach satisfies the
differential privacy definition.

– We validate the hybrid approach through extensive empirical evaluation in
some typical traffic scenarios, focusing on accuracy of the average speed.
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1.1 Related Work

In recent years, researchers have explored numerous solutions to the problem
of preserving privacy in the context of ITS. Pseudonym change strategies are
the main local privacy-preserving solutions found in the literature, where con-
tributors do not trust service providers. However, due to the precise space-time
information contained in beacons, these strategies are still vulnerable to trac-
ing, even supposedly anonymous [6]. In addition, due to safety applications,
which require availability and accurate information, the design of alternative
local privacy-preserving solutions is very restricted.

Regardless of local privacy-preserving solutions, our purpose is to focus on
centralized solutions for data aggregation analysis, where the database is held
by a trusted party. In this direction, the main contribution is due to Kargl et
al. [4] in 2013, which investigated how differential privacy can be applied to ITS.
Specifically, they propose an architecture that enables differential privacy when
using beacons for some ITS applications and services. This architecture inte-
grates a differentially private module through an extension of the PRECIOSA
PeRA policy enforcement framework. To illustrate the functioning of the pro-
posed module and how it addresses the accuracy and privacy requirements, Kargl
et al. designed a simple algorithm for average speed calculation, based on the
original framework of differential privacy.

A comprehensive survey on introduction of differential privacy in the auto-
motive domain is presented by Nelson and Olovsson [5], where they claim that
one of the main problems to introduce differential privacy in the automotive
domain is maintaining high utility for the analyses. Another important work in
this direction is due to Hassan et al. [7]. They survey differential privacy tech-
niques and their application to cyber-physical systems, including ITS, as basis
for the development of modern differential privacy techniques to address various
problems and data privacy scenarios. Both works claim that the most prominent
study relating differential privacy and vehicular domain is due to Kargl et al. [4].

Regarding data, most of collected signals by vehicle sensors are numeric and,
specially in traffic monitoring, the aggregation functions sum, count and average
capture many of calculations utilized in ITS applications [4]. These aggregation
functions tend to have high distortion for small databases, mainly, for the sum
and average due to variable global sensitivity that may not be diluted at a
small database [5]. ITS applications typically have defined accuracy standards
for reported values. For example, U.S. standardization determines that the dis-
tortion (error) presented at the reported average speed should be up to 20%,
depending on the application [4]. It represents an upper bound on the noise
introduced by a differentially private mechanism.

Given these surveys, our aim is to explore the peculiarities of the addressed
problem and associate them to the characteristics of differentially private tech-
niques, in order to obtain more accurate results while maintaining the same
level of privacy. Although in most situations the instances are misbehaved, our
hypothesis is that well-behaved instances are produced in some situations. This
is due to the fact that the addressed problem is dynamic. The main difference
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compared to [4] is that while they focus on a differentially private architecture
applied to ITS, this article aims to deepen in this architecture by proposing
a robust and effective differentially private algorithm to calculate the average
speed in a realistic scenario that meets privacy and accuracy requirements.

The remainder of this paper is organized as follows. In Sect. 2, we present the
theoretical foundations related to the differential privacy required to build our
approach. Section 3 describes the proposed solution. After that, the experimental
evaluation is presented in Sect. 4. Finally, we conclude and give direction to
future work in Sect. 5.

2 Background

Differential privacy emerged from the problem of performing statistical studies
on a population while maintaining the privacy of its individuals. The definition
models the risk of disclosing data from any individual belonging to a database
by performing statistical analyses on it.

Definition 1. Differential privacy [3]. A randomized algorithm A taking
inputs from the domain Dn gives (ε, δ)-differential-private analysis if for all data
sets D1,D2 ∈ Dn differing on at most one element, and all U ⊆ Range(A),
denoting the set of all possible outputs of A,

∣
∣
∣
∣
ln

{
Pr[A(D1) ∈ U ] − δ

Pr[A(D2) ∈ U ]

}∣
∣
∣
∣
≤ ε (1)

where the probability space is over the coin flips of the mechanism A and p
0 is

defined as 1 for all p ∈ R.

The parameters ε and δ, known respectively as privacy loss parameter and
relaxation parameter, control the level of privacy and, consequently, the level of
utility in the model. While ε determines the level of indistinguishability between
the two databases, δ allows negligible leakage of information from individuals
under analysis.

The protection of the individual’s privacy in a database is done by adding
carefully-crafted noise to the individual contribution or the aggregated data.
In this way, it is sufficient to mask the maximum possible contribution (upper
bound) in the database, which is the maximum difference between the analyses
performed over two databases differing only in one element. This difference is
known as global sensitivity, denoted by Δf .

One of the main models of computation is the centralized model (also known
as output perturbation). In this model, there is a trusted party that has access
to the raw individuals’ data and uses it to release noisy aggregate analyses. The
Laplace and exponential [8,11] mechanisms are two of the main primitives in the
differential privacy framework used to perturb the output analysis. The first, is
the most widely used mechanism and it is based on sampling continuous random
variables from Laplace distribution. In order to sample a random variable, one
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should calibrate the Laplace distribution by centering the location parameter at
either zero or the aggregated value and setting the scale parameter as the ratio
between Δf and ε.

On the other hand, the exponential mechanism is used to handle both numer-
ical and categorical analysis [8,16]. This mechanism outputs an element o ∈ O

with probability ∝ e

(
εq(D,o)

2Δq

)
, where O is a set of all possible outputs and Δq is

the sensitivity of the quality function.
McSherry and Talwar [16] observed that the Laplace mechanism can be

viewed as a special case of the exponential mechanism, by using the quality
function as q(D, o) = −|f(D) − o|, which provides Δq = Δf . In this way, we
can use the continuous exponential distribution and it is sufficient to assume
q(D, o) = −[f(D) − o], whereas the output o can be set as zero, which gives
the true value of the analysis. Li et al. [8] proves that if a quality function is
monotonic we can omit the constant two in the exponential mechanism.

Regarding the composability, the composition theorems are essential to
design differentially private solutions. It allows to combine multiple mechanisms
or perform multiple analyses over the same database by controlling the privacy
and relaxation parameters, that is, the privacy budget. The sequential and par-
allel composition theorems are the main ones present in the literature.

In sequential composition, the parameters will be accumulated according to
the number of performed analyses. On the other hand, in parallel composition,
the resulting differentially private analysis will take into account only the max-
imum values of the parameters.

In the original differential privacy framework [3], the noise magnitude
depends on the global sensitivity (Δf ) but not on the instance D. For many
functions, such as the median, this framework yields high noise compromising
the utility of the analysis. The smooth sensitivity framework [9] allows to add
significantly less noise than calibration with global sensitivity.

The smooth sensitivity is the smallest upper bound on the local sensitivity
(LS), which is a local measure of sensitivity, and takes into account only the
two instances involved in the analysis [9]. Nissim et al. proved that adding noise
proportional to this upper bound is safe.

Definition 2. Smooth sensitivity [9]. For β > 0, the β-smooth sensitivity
of f is:

S∗
f,β(D1) = max

k=0,...,n
e−kβ

(

max
D2:d(D1,D2)=k

LSf (D2)
)

. (2)

The following definition states that if a probability distribution that does
not change too much under translation and dilation it can be used to add noise
proportional to S∗

f,β .

Definition 3. Admissible Noise Distribution [9]. A probability distribution
h ∈ R is (α, β)-admissible for α(ε, δ) and β(ε, δ) if it satisfies the following
inequalities: ∣

∣
∣
∣
∣
ln

[

PrX∼h(X ∈ U) − δ
2

PrX∼h(X ∈ U + Δ)

]∣
∣
∣
∣
∣
≤ ε/2 (3)
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∣
∣
∣
∣
∣
ln

[

PrX∼h(X ∈ U) − δ
2

PrX∼h(X ∈ U · eλ)

]∣
∣
∣
∣
∣
≤ ε/2 (4)

for all ‖Δ‖ ≤ α, |λ| ≤ β and all subsets U ⊆ R.

The following lemma arises from Definitions 2 and 3.

Lemma 1. [9]. The Laplace distribution on R with scale parameter b is (α, β)-
admissible with α = b ε

2 and β = ε
2ln(1/δ) .

Proof. The proof can be found in the Appendix A. ��
Claim. [9]. In order to get an (ε, δ)-differentially-private algorithm, one can add
noise proportional to S∗

f,β(D)

α .

Let a database D = {d1, ..., dn} in non-decreasing order and fmed =
median(D) where di ∈ R, with di = 0 for i ≤ 0 and di = Δf for i > n.
Nissim et al. [9] proved that the β-smooth sensitivity of Median function is

S∗
f,β(D) = max

k=0,...,n

[

e−kβ max
t=0,...,k+1

(dm+t − dm+t−k−1)
]

, (5)

where m is the rank of median element and m = n+1
2 for odd n. It can be

computed in time O(n2).
The intuition behind the sample and aggregate framework [9] is to replace an

aggregate function f by f∗, a smoothed and efficient version of it. This framework
evaluates f over random partitions of the original database and releases f∗ over
the results by calibrating the noise magnitude with smooth sensitivity.

In this work, we deal with an unbounded stream of events as a database.
An event may be an interaction between a particular person and an arbitrary
term [10]. In this way, we focus on event-level privacy where the protection is cen-
tered on a single reported beacon. As the data set is dynamic, the attribute will
change for each interaction making an event unique where its ID (identification)
is the combination of timestamp and user ID.

3 Hybrid Approach

In this section, we describe the proposed approach to calculate the average speed
on a road segment satisfying the definition of differential privacy. This approach
combines the original differential privacy framework (ODP) [3] to the sample and
aggregate framework (SAA) [9]. The adoption of the latter was inspired by the
hypothesis that most speed values are close to the average when measured in a
short time interval and road segment yielding some well-behaved instances. The
hybrid approach is justified by the dynamism of the application, which yields
misbehaved instances leading to very high sensitivity in the SAA framework.

The noise magnitude from the original and smooth sensitivity techniques are
not related. While the differences among the instance and its neighbors are taken
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into account to get the noise magnitude in the smooth sensitivity, the original
technique considers only the global sensitivity without examining the instance
itself. The core of our contribution is to propose a formulation relating these
techniques in order to obtain the lowest noise magnitude, which results in more
accurate analyses.

From now on, we will refer to the collected set of beacons as a prefix, a
finite length chain from an unbounded stream of beacons. In our approach, we
calculate the noisy prefix size by using the exponential mechanism, since we are
not interested in negative values. To calculate the average speed, we use the
Laplace mechanism in both ODP and SAA frameworks.

A trivial procedure to calculate the differentially private average function
using the ODP framework is to add a random variable, sampled from the Laplace
distribution, to the true sum function, then divide it by the set size N to obtain
the average. In this case, the scale parameter is set as Δf

ε . The following algo-
rithmic construction illustrates this procedure.

Algorithm 1: Trivial-ODP (prefix, N , Δf , ε)

1 # Calculate the scale of Laplace distribution

2 b ← Δf

ε

3 # Calculate sum from prefix

4 sum ← 0
5 for e ∈ prefix do
6 sum ← sum + espeed

7 end
8 # Sample random variable from Laplace distribution

9 Ys ← Laplace(b)
10 # Calculate noisy sum

11 sumnoisy ← sum + Ys

12 # Calculate the noisy average speed

13 avgnoisy ← sumnoisy

N

14

15 return avgnoisy, b

On the other hand, using the SAA framework, we can divide the prefix into
random partitions and evaluate the average function over each partition. After
this process, we must sort the resulting data set where we will select the central
element (median) as the average speed. The main idea is to reduce the impact
of anomalies present in the prefix when calculating the aggregation. It allow us
to introduce less but significant noise to protect the maximum element in well-
behaved instances. This procedure is presented in more details in Algorithm 2.

The Hybrid approach is based in the following lemma and theorem.

Lemma 2. Let a prefix P = {x1, x2, ..., xn−1, xn} be a set of points over R,
such that xi ∈ [0,Δf ] for all i. Sampling a random variable from the Laplace
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Algorithm 2: SAA (prefix, N , M , Δf , ε, δ)

1 # Partition prefix into M random samples of size N/M
2 count ← 0
3 averagespeeds ← ∅
4 while count < M do
5 # Extract the partition using a uniformly random sample

6 partition ← RandomSample(prefix, N/M)
7 # Calculate average speed from partition adding to a list

8 avg ← Sum(partition)
N/M

9 averagespeeds ← Append(avg)
10 count ← count + 1

11 end
12 # Sort average speeds set in non-decreasing order

13 sortedaveragespeeds ← Sort(averagespeeds)

14 # Calculate the scale of Laplace distribution

15 b ← Δf

ε

16 # Calculate alpha and beta parameters

17 α ← b ε
2
; β ← ε

2ln(1/δ)

18 # Calculate smooth sensitivity of median function by Eq. (5)

19 smoothsensitivitymedian ← S∗
fmedian,β(sortedaveragespeeds , M, Δf )

20 # Get random variable from Laplace distribution

21 Ym ← Laplace
(

smoothsensitivitymedian
α

)

22 # Calculate noisy average speed

23 avgnoisy ← Median(sortedaveragespeeds) + Ym

24

25 return avgnoisy,
smoothsensitivitymedian

α

distribution with scale parameter set as Δf /N
ε and add it to the true average

function is equivalent to Algorithm 1, both performed over P .

Proof. Consider the cumulative distribution function of the Laplace distribution
with mean (μ = 0) [17]. Suppose S is the sum of P and rs = λ · S represents a
proportion of S. The probability of sampling any value greater than rs is given
by

ps(X > rs) =
1
2
e− rs

bs (6)

where bs = Δf

ε .
Now, suppose A is the average of P and ra = λ · A represents a proportion

of A. The probability of sampling any value greater than ra is given by

pa(X > ra) =
1
2
e− ra

ba (7)

In order to conclude the proof, we need to determine ba. So, it is a fact
that S = A · N . Thus, we have rs = λ · A · N , which results in rs = ra · N .
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By substituting it in Eq. (6) and equaling to Eq. (7), i.e., ps = pa, we obtain
ba = Δf /N

ε . ��
Based on Lemma 2, the following algorithmic construction is an alternative

to Algorithm 1.

Algorithm 3: ODP (prefix, N , Δf , ε)

1 # Calculate the scale of Laplace distribution

2 b ← Δf /N

ε

3 # Calculate sum from prefix

4 sum ← 0
5 for e ∈ prefix do
6 sum ← sum + espeed

7 end
8 # Calculate true average

9 avg ← sum
N

10 # Sample random variable from Laplace distribution

11 Ys ← Laplace(b)
12 # Calculate the noisy average speed

13 avgnoisy ← avg + Ys

14

15 return avgnoisy, b

Theorem 1. Let a prefix P = {x1, x2, ..., xn−1, xn} be a set of points over R,
such that xi ∈ [0,Δf ] for all i. Then, Algorithm 2 provides more accurate results
than Algorithm 3, if S∗

fmedian,β(D) < α · Δf /N
ε , both performed over P .

Proof. Let bSAA and bODP be the scale parameter of the Laplace distribution
in Algorithms 2 and 3, respectively. Then, we obtain

bSAA =
S∗

fmedian,β(D)
α

(8)

bODP =
Δf/N

ε
(9)

Rearranging Eq. (8) and setting bODP as an upper bound on bSAA, we get
S∗

fmedian,β(D) < α · bODP , which results in

S∗
fmedian,β(D) < α · Δf/N

ε
. (10)

In order to prove this theorem, assume for the sake of contradiction that
Algorithm 3 provides more accurate results than Algorithm 2, both performed
over P . Then, bODP is less than bSAA. By Eq. (10), it is a contradiction.

Therefore, if Eq. (10) holds, then Algorithm 2 provides more accurate results
than Algorithm 3. ��
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From Theorem 1 and Lemma 2, the noise magnitude of the Hybrid approach is
formulated as follows:

bHybrid =

{

bSAA, if S∗
fmedian,β(D) < α · Δf /N

ε

bODP , otherwise.
(11)

The algorithmic construction of the Hybrid approach is presented in Algo-
rithm 4. This algorithm calculates the average speed in a differentially private
way using all beacons reported in a short time interval in a specific road segment.
It gets as input a privacy budget ε related to each received event in the base
station, the prefix size N to calculate the average speed, the number of partitions
for SAA framework, the global sensitivity of the average function (speed limit in
the road segment), the privacy loss parameters for count and average functions,
and the relaxation parameter for average function (non-zero).

The algorithm starts by checking the privacy budget of the privacy loss and
relaxation parameters. After that, it initializes an empty list called beacons used
to store all beacons received through the base station. Next, the base station
starts collecting data (beacons/events) adding each of them to the list. The col-
lection control is made by a differentially private Count function which uses the
exponential mechanism, Algorithm 5. The event collection is performed by the
Receive Beacon function. Each beacon includes the vehicle speed (m/s) between
0 and Δf . It is worth mentioning that, in a realistic scenario, some values can
be above the speed limit Δf but these values are intentionally not protected in
proportion to their magnitude, since in our scenario they are reckless drivers.
After collecting enough data to compose the prefix, the algorithm selects the
most recent beacons to calculate the average speed. The next step is to calculate
the noisy average speed through the two frameworks, ODP and SAA. Then,
we choose the average noisy speed calculated with the lowest noise magnitude.
Finally, the privacy loss and relaxation parameters are deducted from the privacy
budget for each event in the prefix.

3.1 Security Analysis

A Threat Model. Differential privacy was designed considering a very strong
adversary, with an infinite computational power, who has the knowledge of the
entire data set, except a single element. It is considered that the adversary can-
not glean any additional information about this element beyond what it known
before interacting with the privacy mechanism. This assumption is not unreal-
istic since differential privacy is supposed to provide privacy given adversaries
with arbitrary background knowledge. Then, the adversary tries to obtain addi-
tional information about this element using the knowledge of the entire data set
except it and the auxiliary information about it before the data set analysis.

In our scenario, for simplicity, consider that there are two service providers
(carriers A and B) that provide aggregate information to customers (drivers),
such as average speed on a road segment. Also, we consider that all drivers on a
road segment are customers of both carriers except by a single customer e who is



A Differentially Private Hybrid Approach to Traffic Monitoring 243

a customer of only one of them, B, for example. As we are dealing with a strong
adversary, it is supposed that they have knowledge about all others customers
except by e. That is, the speed of all drivers which are customers of carrier A.
Then, from the entire data set (the selected prefix by carrier A) which has length
N , the adversary can obtain the sum of all speeds and calculate the difference
between this sum and the result of the product between the average speed from
B, which includes the driver es speed, multiplied by N +1. This procedure gives
the correct contribution of e.

Algorithm 4: Hybrid (ε, δ, N , M , Δf , εc, εa, δa)

1 if εc + εa ≤ ε and δa ≤ δ then
2 # Initialize beacon list

3 beacons ← ∅
4 # Receive first event and add it to the beacon list

5 e ← ReceiveBeacon()
6 beacons ← Append(e)
7 # Receive the remaining events and add them to the beacon list

8 while Count(beacons, εc) < N do
9 e ← ReceiveBeacon()

10 beacons ← Append(e)

11 end
12 # Select the N more recent events

13 prefix ← SelectLatestBeacons(beacons, N)
14 # Calculate the noisy average speed through ODP and SAA

15 avgODP , bODP ← ODP (prefix, N, Δf , εa)
16 avgSAA, bSAA ← SAA(prefix, N, M, Δf , εa, δa)
17 # Choosing the lowest noise magnitude

18 if bSAA < bODP then
19 avgnoisy ← avgSAA

20 end
21 else
22 avgnoisy ← avgODP

23 end
24 # Deduce count and average privacy loss parameter from each event

privacy budget in prefix

25 for e ∈ prefix do
26 ε ← ε − εc − εa

27 δ ← δ − δa

28 end
29

30 return avgnoisy

31 end
32 else
33 write “Privacy budget exceeded!”
34 end
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Algorithm 5: Count (beacons, ε)
1 # Calculate the scale of Exponential distribution

2 λ ← ε
3 # Calculate count from beacon list

4 count ← 0
5 for e ∈ prefix do
6 count ← count + 1
7 end
8 # Get random variable from exponential distribution

9 Yc ← Exponential(λ)
10 # Calculate noisy count

11 countnoisy ← count − Yc

12

13 return countnoisy

Privacy Analysis. The security of the Hybrid approach is supported by the
following lemmas and theorem. In Lemma 3, we prove that the randomized
Count function, presented in Algorithm 5, is differentially private. After that,
Lemma 4 shows that Algorithm 3 satisfies differential privacy. Next, we prove
through Lemma 5 by parallel composition that Algorithm 2 is differentially pri-
vate. Finally, in Theorem 2, we prove that the Hybrid approach presented in
Algorithm 4 satisfies differential privacy by sequential composition.

Lemma 3. From the beacon list, let B = {x1, x2, ..., xn−1, xn} be a set of points
over R such that xi ∈ [0,Δf ] for all i and |B| be the length of the beacon list.
Then, Algorithm 5 satisfies (ε, 0)-differential privacy.

Proof. Assume that, without loss of generality, A represents Algorithm 5. Let
B1 and B2 be two neighboring beacon lists differing at most one event, i.e.,
||B1| − |B2|| = 1. From Eq. (1) in the differential privacy definition, we must
evaluate two cases: when the ratio is greater than 1 and less or equal to 1. Since
the quality of the Count function is monotonic [11], we get:

– When Pr[A(B1)∈U ]
Pr[A(B2)∈U ] ≥ 1, we have

Pr[A(B1) ∈ U ]
Pr[A(B2) ∈ U ]

=
ε
∫ b

a
e−εxdx

ε
∫ b

a
e−ε(x+1)dx

=
e−(εa)−e−(εb)

ε
e−ε[e−(εa)−e−(εb)]

ε

≤ eε. (12)

– When Pr[A(B1)∈U ]
Pr[A(B2)∈U ] < 1, we have by symmetry that the ratio is ≥ e−ε.

��
Lemma 4. Let P be a prefix from a beacon list B = {x1, ..., xn} such that
N = |P | ≤ |B| and xi ∈ [0,Δf ] for all i. Then, Algorithm 3 satisfies (ε, 0)-
differential privacy.
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Proof. Assume now, without loss of generality, that A represents Algorithm 3.
Let P1 and P2 be two neighboring prefixes differing at most one event, |A(P1)−
A(P2)| = Δf/N . From the definition of differential privacy, we obtain

– When Pr[A(P1)∈U ]
Pr[A(P2)∈U ] ≥ 1, we have

Pr[A(P1) ∈ U ]
Pr[A(P2) ∈ U ]

=
εsN
2Δf

∫

U
e
− εsN|x|

Δf dx

εsN
2Δf

∫

U
e
− εsN|x+Δf /N|

Δf dx

=

∫ b

a
e
− εsN|x|

Δf dx

∫ b

a
e
− εsN|x+Δf /N|

Δf dx

. (13)

We will solve this ratio in two parts. First, considering numerator of Eq. (16),
evaluating the cases when x ≥ 0 and x < 0, we obtain respectively

∫ b

a

e
∓ εsNx

Δf dx = ±Δf [e∓(εsaN)/Δf − e∓(εsbN)/Δf ]
εsN

. (14)

Now, considering denominator of Eq. (16), evaluating the cases when x ≥
−Δf/N and x < −Δf/N , we obtain respectively

∫ b

a

e
∓ εsN(x+Δf /N)

Δf dx = ±e−εsNΔf [e∓(εsaN)/Δf − e∓(εsbN)/Δf ]
εsN

. (15)

By replacing Eq. (14) and Eq. (15) in Eq. (16), we obtain

±Δf [e
∓(εsaN)/Δf −e∓(εsbN)/Δf ]

εsN

± e−εsN Δf [e
∓(εsaN)/Δf −e∓(εsbN)/Δf ]

εsN

≤ eεs . (16)

– When Pr[A(P1)∈U ]
Pr[A(P2)∈U ] < 1, we have by symmetry that the ratio is ≥ e−εs .

��
Lemma 5. Let P be a prefix from a beacon list B = {x1, ..., xn} such that
N = |P | ≤ |B| and xi ∈ [0,Δf ] for all i. Then, Algorithm 2 is ε-differentially
private with probability 1 − δ.

Proof. Our construction is based on uniformly distributed samples from the
prefix P . These random samples are extracted without replacement, producing
M partitions of size N/M . The M partitions form a set from which we can
calculate the average speed. In order to do it, we first need to sort this set of
partitions in a non-decreasing order and then calculate the smooth sensitivity
of Median function from Eq. (5). Thus, Algorithm 2 follows the sample and
aggregate framework.

The proof of this lemma follows directly by combination of Definition 3,
Lemma 1 and parallel composition theorem [8]. ��
Theorem 2. Let P be a prefix from a beacon list B = {x1, ..., xn} such that
N = |P | ≤ |B| and xi ∈ [0,Δf ] for all i. Then, Algorithm 4 satisfies (ε, δ)-
differential privacy.
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Proof. From Lemma 3, Lemma 4 and Lemma 5 we have that Algorithm 5, 3
and 2 are differentially private. By the sequential composition theorem [8], the
combination of Algorithm 5, 3 or 2 occurs when εc + εa ≤ ε and δa ≤ δ in
Algorithm 4. Therefore, Algorithm 4 satisfies (ε, δ)-differential privacy. ��

4 Empirical Evaluation

In this section, we present and discuss the results obtained from the evaluation
of the Hybrid approach for differentially private computation of average speed.
Since the evaluation focuses on the accuracy of the proposed solution, the two
fundamental parameters were fixed and calibrated as suggested in the litera-
ture [11]. In this evaluation, we set the privacy loss parameter as ln(2)−0.15 for
average function and 0.15 for count function. Since we have defined the prefix
size in this evaluation as 55, it is sufficient to calibrate the relaxation parameter
with 0.01, which allows negligible leakage information in the size of the prefix,
o(1/N). For the SAA approach, we partition the prefix into 11 random partitions
with 5 elements each.

In order to evaluate the approach, we adopted the open source traffic mobil-
ity (SUMO) [13] and the discrete event-based (OMNeT++) [15] simulators. In
addition, as a interface of the two simulators, we use the open source framework
for running vehicular network simulations (Veins) [14]. The evaluation was per-
formed on a realistic mobility scenario provided by Codeca et al. in [12], using
the SUMO simulator. The realistic mobility scenario is able to meet all basic
requirements in size, realism and duration of a real-world city (Luxembourg)
with a typical topology in mid-size European cities. From now on, we will refer
to the realistic mobility scenario as the Luxembourg scenario. This scenario is
available to industrial and scientific communities working on vehicular traffic
congestion, intelligent transportation systems and mobility patterns.

As a utility metric, we adopt the absolute deviation and create filters on the
reported original average speed. The values to calibrate the filters are in line
with US standardization (in Subsect. 1.1). The scenario of evaluation and the
numerical and graphical results are presented in following sections.

4.1 Luxembourg Scenario

As mentioned before, the realistic mobility scenario is based on the city of Lux-
embourg and contains residential or arterial roads and highways, see Fig. 1a.
The Luxembourg scenario has an area of 156 km2, 930 km of roads, 4, 500 inter-
sections, 200 traffic lights, and 290, 000 cars. This scenario works on two types
of mobility traces, which have duration of about 88, 000 s (24 h), and peaks of
traffic in about 8AM, 13PM and 6PM, as it can be seen in Fig. 1b.

DUA-T (Dynamic User Assigned Traces) is one of the mobility traces, which
provides the optimal path for each origin-destination pair in terms of time and
length. It is not very realistic because it does not take other vehicles and con-
gestion into account. DUE-T (Dynamic User Equilibrium Traces) is the other
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(a) Evaluation points in green.
(b) 24 hours demand.

Fig. 1. Luxembourg scenario and traffic demand. Source: (a) https://www.
vehicularlab.uni.lu/lust-scenario/ (b) https://github.com/lcodeca/LuSTScenario/
tree/master (Color figure online)

mobility trace that provides the approximated equilibrium for the scenario’s
traffic demand [12]. The latter can be combined with static or actuated traffic
light systems. The static case isolates the impact of routing, while the actuated
case would imply two independent optimization problems, the traffic light tim-
ing and the vehicular rerouting [12]. The combination of DUE-T and actuated
traffic lights seems more realistic. However, we opt by combination of DUA-T
and static traffic lights because this setting cause more traffic congestion and it
fits well with our problem.

We evaluate the Hybrid approach in four strategic points of the Luxembourg
scenario (green points in Fig. 1) in a rush period, between about 6AM and 10AM,
as it can be seen in Fig. 1b. The Road Side Units (RSU’s) or base stations were
positioned using the Geodetic (Longitude/Latitude) coordinate system. The first
and third points are located on a highway with low vehicle density. The first
point has an RSU with a range of 250 m monitoring traffic on the road with no
congestion. At the third point, we have a substantial traffic jam caused by a
maintenance on the road, which has an RSU with a range of 150 m. The second
and fourth points are located at the center of the city containing high vehicle
density and traffic lights. RSU’s are monitoring arterial roads with a respective
range of 75 and 42.5 m, all congested in different levels. The second point has a
regular traffic flow, with very little jam caused by traffic lights and the last point
has a lot of congestion because it is the main avenue in the city center where
several streets lead to it. The next subsection summarizes our numerical results.

4.2 Experimental Results

The filters were created with deviation tolerances (tol) of 5, 10 and 20% over the
reported original average speed (avgoriginal). The reported noisy average speed

https://www.vehicularlab.uni.lu/lust-scenario/
https://www.vehicularlab.uni.lu/lust-scenario/
https://github.com/lcodeca/LuSTScenario/tree/master
https://github.com/lcodeca/LuSTScenario/tree/master


248 R. V. M. Rocha et al.

(avgnoisy) is expected to remain within the respective range and any measure-
ment reported outside this range is considered an outlier. Thus, the reported
average noisy speed can be represented as

avgnoisy = avgoriginal · (1 ± tol) (17)

where tol is divided by 100.
As numerical result, we calculate the number of outliers obtained in the

simulation time window for each approach: ODP, SAA (all deviation tolerances)
and Hybrid (deviation tolerance of 10%). In addition, we calculate the number
of misbehaved (bad) instances, those that produce SAA scale parameters larger
than the expected SAA scale parameter, and also the number of SAA scale
parameters that are lower than the ODP scale parameter. The expected SAA
scale parameter is calculated based on Pr(−avgoriginal · tol ≤ X ≤ avgoriginal ·
tol) = 0.95, where the random variable X is the noise to be added to the original
average speed. Furthermore, in order to enrich our discussion, we present the
following graphic results: the behavior of the real average speed, the quality of
the instances by presenting the scale parameter for each instance and the relative
deviation between the results of the hybrid approach and the original average
speed. Table 1 summarizes the numerical results.

Table 1. Results of the Luxembourg scenario evaluation. The coordinates and speed
limits (m/s) of the points correspond respectively to (49.579464, 6.100917), limit
of 36.11; (49.617679, 6.132573), 13.89; (49.575654, 6.131255), 36.11; and (49.611492,
6.126152), 13.89.

Point Number of

events

Bad

instances

(%)

Lower

bSAA (%)

Outliers (%)

ODP SAA Hybrid

5% 10% 20% 5% 10% 20% 5% 10% 20%

1st 3,648 65.25 41.31 25.54 9.46 4.52 25.94 9.51 4.54 9.33 1.05 0.00

2nd 2,046 77.74 25.34 32.08 15.59 7.37 33.52 15.98 7.50 13.36 3.42 0.68

3rd 4,210 99.34 34.17 77.17 57.98 36.89 80.23 65.96 47.68 45.77 30.19 15.29

4th 5,068 99.70 62.23 96.01 87.24 84.78 90.53 77.13 75.13 87.89 72.37 70.35

We initiate our discussion by pointing out that the number of outliers is
decreasing when it varies among the deviation tolerances from 5% to 20% in all
points of evaluation. It is an expected behavior since we expand the tolerance
range. Although we are getting an improvement in the number of outliers in
all cases when moving among deviation tolerances, the rate of variation when
switching among the evaluation points are decreasing. For example, this rate
varies from about 8.88 in the 1st point (cell Hybrid 5% divided by cell Hybrid
10% in Table 1) until about 1.21 in the 4th point of evaluation (cell Hybrid
5% divided by cell Hybrid 10% in Table 1). This shows that the greater the
congestion, the lower the rate of variation among the deviation tolerances.
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(a) 1st point. (b) 2nd point.

(c) 3rd point. (d) 4th point.

Fig. 2. Average and limit speed behavior during the simulation time window.

At the first and second point of evaluation, which are respectively located in
a highway and an arterial road, we can see that ODP and SAA provide virtually
the same result (number of outliers) for all deviation tolerance. For instance, it is
about 9.5% and 16% in the 1st point and 2nd point, respectively, for a deviation
tolerance of 10%. The good result at these points is due to the ideal flow both
on the highway and on the arterial road, so that the ODP has the same behavior
as the SAA. Observe in Fig. 2a and 2b that the behavior of the average speed is
very close to the speed road limit. The results of the 2nd point are worse than
the 1st due to the traffic lights present in the second point yielding a small traffic
jam. Note that in the Fig. 2b there are measurements far below the speed limit.

Still in the 1st and 2nd evaluation points, the results related to the Hybrid
approach show that we obtain a significant reduction in outliers. At the 1st point,
in Table 1, the number of outliers is reduced from about 9.5% (ODP and SAA)
to about 1% (Hybrid) for a deviation tolerance of 10%, a reduction rate of more
than nine times. When we move to the deviation tolerance of 20% the number
of outliers is reset to zero (Hybrid) from about 4.5% (ODP and SAA). Figure 3a
shows the behavior of the relative deviation for all measurements and from it
we can see that all deviation are below 20%. Note, in Fig. 4a, that even with
more than 65% of badly behaved instances, we get about 41% of the SAA scale
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parameters (yellow dots) below the ODP scale parameter (solid red line), these
smaller obtained scale parameters is sufficient to obtain a significant reduction in
the outliers. Observe further that in Fig. 4a, the expected SAA scale parameter
(dashed green line) is slightly below the ODP scale parameter (solid red line)
and most of the 41% of the SAA scale parameters (yellow dots) below the ODP
scale parameter (solid red line) are also below the expected SAA scale parameter
(dashed green line).

In Table 1, at the 2nd point, the reduction rate related to the Hybrid approach
compared to ODP and SAA for the deviation tolerance of 10% is a bit lower than
at the 1st point, around 4.5 (15.59 ODP or 15.98 SAA divided by 3.42 Hybrid),
half of the 1st point but still a great result, especially when we consider the
results for the deviation tolerance of 20% which reaches a reduction rate of more
than 11 times. See in Fig. 3b that most deviation are below 15% which shows
a good performance of the Hybrid approach. Although 78% of instances are
misbehaved, more than 25% of all instances have SAA scale parameters (yellow
dots) smaller than the ODP scale parameter (solid red line), see Fig. 4b, these
smaller scale parameters are crucial to get this improvement.

The reason the Hybrid approach provides great results is because most out-
liers do not overlap between the ODP and SAA approaches.

Now, considering the 3rd evaluation point located in a highway, we can see
that the results of all approaches suffered a huge negative impact caused by a
substantial traffic jam. The number of outliers reached about 80% (ODP and
SAA) and almost half of it with the Hybrid approach for deviation tolerance of
5%. When moving to deviation tolerance of 20% the result of Hybrid approach is
less than a half of the ODP and SAA results. Figure 2c shows the behavior of the
average speed in this point. Observe that all the measurements are too far from
the speed limit (36.11). There are two declines in the average speed behavior,
one at the beginning of the simulation reaching about 6 m/s and another after
30000 s that reaches about 2 m/s. This is due to the high traffic demand at
around 8AM where vehicles will abruptly reduce their speed when they are very
close to road maintenance in order to avoid collisions, contributing to congestion.

Still in the 3rd evaluation point, the SAA result has a considerable worsening
in relation to the ODP result, about 8% points in the deviation tolerance of 10%
reaching until about 11% in the deviation tolerance of 20%. This is explained by
the traffic jam yielding misbehaved instances which directly impacts the good
performance of the SAA approach. From Table 1 we obtain about 99% of badly
behaved instances, this lead to very little measurements below the expected scale
parameter (dashed green line), see Fig. 4c. Even so, we get about 34% of the SAA
scale parameters (yellow dots) below the ODP scale parameter (solid red line),
sufficient to obtain a reduction rate of about 2 times in the number of outliers
for the deviation tolerance of 5% and 10% with Hybrid approach compared to
ODP and SAA, and reaching more than 3 times for the deviation tolerance of
20%.

Finally, in the 4th evaluation point, the growth in the number of outliers is
even more evident when compared to the 3rd evaluation point, reaching about
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(a) 1st point. (b) 2nd point.

(c) 3rd point. (d) 4th point.

Fig. 3. Relative deviation between the hybrid approach and the original average speed
for each instance during the simulation time window.

2.3 times more in the ODP approach and about 4.6 times in Hybrid approach
for the deviation tolerance of 20%. This worsening occurs because most of SAA
scale parameters when applied over an average speed very close to zero leads to
an outlier. See, in Fig. 2d, that most measurements are close to zero. We can
also see in Fig. 3d that the relative deviation is very high in most measurements
in the simulation time window.

The SAA result improves considerably compared to the ODP result at the 4th
valuation point, about 10% below in the deviation tolerance of 10%. Although
almost all (99.7%) instances are misbehaved, close to 63% of the SAA scale
parameters (yellow dots) are below the ODP scale parameter (solid red line) as
it can be seen in Fig. 4d, which explains this improvement. However, it was not
sufficient to help the Hybrid approach provide good results (significant reduction
in outliers), this is due to the huge number of average speed very close to zero.
We can conclude that all approaches are very sensitive to an average speed close
to zero.
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(a) 1st point. (b) 2nd point.

(c) 3rd point. (d) 4th point.

Fig. 4. Scale parameter for each instance during the simulation time window. (Color
figure online)

5 Conclusion

We proposed in this paper a hybrid privacy-preserving data aggregation solution
for traffic monitoring focusing on event-level privacy. This solution was designed
to calculate the average speed on a road segment combining the original differ-
ential privacy to the sample and aggregation frameworks.

Experimental results have shown that the Hybrid approach is superior to the
singular use of ODP and SAA approaches in situations that present none or at
most some congestion, following the hypothesis that vehicles will travel in the
same speed in a short period of time and space. The results of the first and second
points of evaluation confirm this statement. However, at points where there is a
lot of traffic jam, the performance of the Hybrid approach is negatively affected
by the misbehaved produced instances. This shows how dependent the Hybrid
approach is on the SAA approach.

As future work, we intend to propose a concurrent solution to this proposal by
looking for improvements on the smooth sensitivity framework or alternatives to
this one, or by using other techniques to get the median of a set with little noise,
such as combining the sample and aggregate framework with exponential mech-
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anism. Furthermore, we plan to evaluate the performance and security results of
proposed approaches against a solution in a local model of computation.

A Proof Lemma 1

The Laplace distribution on R with scale parameter b , is ( α, β )-admissible
with α = b ε

2 and β = ε
2ln(1/δ) .

Proof. From Definition 3, we can obtain parameters α and β. Since the Laplace
distribution is not a heavy tail distribution, then δ > 0.

– Considering Eq. 3, we have
• When PrX∼h(X∈U)− δ

2
PrX∼h(X∈U+Δ) ≥ 1, we have

PrX∼h(X ∈ U) − δ
2

PrX∼h(X ∈ U + Δ)
=

∫

U
1
2be

− |x|
b dx − δ

2
∫

U+Δ
1
2be

− |x|
b dx

=
1
2b

∫ d

c
e− |x|

b dx − δ
2

1
2b

∫ d

c
e− |x+Δ|

b dx
=

∫ d

c
e− |x|

b dx − δ
2

∫ d

c
e− |x+Δ|

b dx

(18)

Considering numerator of Eq. (18), we have to evaluate interval [c, d] in
two cases,

∗ when x ≥ 0:
∫ d

c

e− x
b dx = b(e−c/b − e−d/b), (19)

∗ and when x < 0:
∫ d

c

e
x
b dx = −b(ec/b − ed/b). (20)

Now, considering denominator of Eq. (18), we have
∗ when x ≥ −Δ:

∫ d

c

e− x+Δ
b dx = e−Δ/bb(e−c/b − e−d/b), (21)

∗ and when x < −Δ:
∫ d

c

e
x−Δ

b dx = −e−Δ/bb(ec/b − ed/b). (22)

By substituting Eq. (19) and Eq. (21) in Eq. (18) we obtain

b(e−c/b − e−d/b) − δ
2

e−Δ/bb(e−c/b − e−d/b)

= eΔ/b b(e−c/b − e−d/b) − δ
2

b(e−c/b − e−d/b)
≤ eε/2

⇔ eΔ/b ≤ eε/2 b(e−c/b − e−d/b)
b(e−c/b − e−d/b) − δ

2

.

(23)
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When δ tends to zero in Eq. (23), the ratio tends to 1. Thus, assuming a
negligible δ, we get

Δ ≤ b(ε/2) + ln

[

b(e−c/b − e−d/b)
b(e−c/b − e−d/b) − δ

2

]

≈ b(ε/2).

(24)

Similarly, by replacing Eq. (20) and Eq. (22) in Eq. (18) we get the same
result, Δ ≤ b(ε/2).

• When PrX∼h(X∈U)− δ
2

PrX∼h(X∈U+Δ) < 1, we have by symmetry that

PrX∼h(X ∈ U) − δ
2

PrX∼h(X ∈ U + Δ)
≥ e−ε/2

≈ e−Δ/b ≥ e−ε/2

≈ Δ ≤ b(ε/2).

(25)

Therefore, it is sufficient to admit α = b(ε/2), so that the translation property
is satisfied with probability 1 − δ

2 .
– Considering Eq. (4), we have

• When PrX∼h(X∈U)− δ
2

PrX∼h(X∈U ·eλ)
≥ 1, we have

PrX∼h(X ∈ U) − δ
2

PrX∼h(X ∈ U · eλ)
=

∫

U
1
2be

− |x|
b dx − δ

2
∫

U ·eλ
1
2be

− |x|
b dx

=

∫ d

c
e− |x|

b dx − δ
2

∫ d

c
e− |eλx|

b dx

(26)

Numerator of Eq. (26) is given by Eq. (19) and (20). On the other hand,
denominator of Eq. (26) is given by evaluating interval [c, d] in two cases,

∗ when x ≥ 0:
∫ d

c

e− eλx
b dx = e−λb[e−(eλc)/b − e−(eλd)/b], (27)

∗ and when x < 0:
∫ d

c

e
eλx

b dx = −e−λb[e(e
λc)/b − e(e

λd)/b]. (28)

By replacing Eq. (19) and Eq. (27) in Eq. (26) we obtain

b(e−c/b − e−d/b) − δ
2

e−λb[e−(eλc)/b − e−(eλd)/b]
≤ eε/2

eλ ≤ eε/2 b[e−(eλc)/b − e−(eλd)/b]
b(e−c/b − e−d/b) − δ

2

.

(29)
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From an analysis of Eq. (29), we can conclude that, regardless of values
of b, c and d, where d > c, the ratio tends to zero when we get high values
of λ. This is because the value of δ is negligible. When we get λ tending
to zero, the ratio tends to 1. Thus, an acceptable upper bound for λ, so
that Eq. (29) is satisfied with high probability, is ε/(2ln(1/δ)). This value
tends to zero when we get a very small value for δ.
Similarly, by replacing Eq. (20) and Eq. (28) in Eq. (26) we obtain the
same result, λ ≤ ε/(2ln(1/δ)).

• When PrX∼h(X∈U)− δ
2

PrX∼h(X∈U ·eλ)
< 1, we have by symmetry that

PrX∼h(X ∈ U) − δ
2

PrX∼h(X ∈ U · eλ)
≥ e−ε/2, (30)

which results in −λ ≥ −ε/(2ln(1/δ)).
Therefore, to satisfy the dilation property with probability 1− δ

2 , it is enough
to assume β = ε/(2ln(1/δ)).

��
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Abstract. Current anti-phishing studies mainly focus on either detect-
ing phishing pages or on identifying phishing emails sent to victims. In
this paper, we propose instead to detect live attacks through the mes-
sages sent by the phishing site back to the attacker. Most phishing attacks
exfiltrate the information gathered from the victim by sending an email
to a “drop”, throwaway email address. We call these messages exfil-
trating emails. Detecting and blocking exfiltrating emails is a new tool
to protect networks in which a number of largely unmonitored websites
are hosted (universities, web hosting companies etc.) and where phishing
sites may be created, either directly or by compromising existing legit-
imate sites. Moreover, unlike most traditional antiphishing techniques
which require a delay between the attack and its detection, this method
is able to block the attack as soon as it starts collecting data.

It is also useful for email providers who can detect the presence of
drop mailbox in their service and prevent access to it. Gmail deployed
a simple rule-based detection system and detected over 12 million exfil-
trating emails sent to more than 19,000 drop Gmail addresses in one
year [52].

In this work, we look at this problem from a new perspective: we
use a Recurrent Neural Network to learn the structure of exfiltrating
emails instead of their content. We compare our implementation, called
DeepPK, against word-based and pattern-based methods, and tested
their robustness against evasion techniques. Although all three mod-
els are shown to be very effective at detecting unmodified messages,
DeepPK is the overall more resistant and remains quite effective even
when the messages are altered to avoid detection. With DeepPK, we also
introduce a new message encoding technique which facilitates scaling of
the classifier and makes detection evasion harder.

Keywords: Phishing kit · Exfiltrating emails · Network traffic
detection
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1 Introduction

A so-called “phishing attack” is a cyber crime in which an attacker (the phisher)
deploys a website that mimics another site in order to induce victims to pro-
vide sensitive information. Although significant efforts to the defend against
phishing attacks have been made both in academia and in industry, the fight
between attackers and defenders keeps going on. The Anti-Phishing Working
Group (APWG) reports having detected 266,387 phishing sites during the third
quarter of 2019, the highest number in three years, with more than two third
using SSL, the highest percentage seen since this is being tracked [5]. Phishers
keep improving their techniques to avoid detection, for example using SSL or
adding multiple redirections [6].

Most of the literature on anti-phishing focuses either on detecting phishing
emails sent to the victims (e.g. [11,22,26,36,49,53] and many more) or on detect-
ing phishing web pages(e.g. [2,12,13,18,23,32,44,45,59] and many more). These
solutions are centered around the victims, the goal is to protect the victims
from the attacks, that is, to cut off the channel between victims and attacks.
However, very little work has been done focusing on the channel between the
attackers and the attacks. However, that channel is as critical as the other ones:
breaking it defeats the attack. This is the topic of this paper, and more specifi-
cally the channel through which the attacker collects the stolen information from
the phishing site. This approach helps web hosting provider and network owner
to combat phishing by detecting immediately that an attack is being deployed
on their network. It is a new idea that is not centered around the actual vic-
tims (most victims have no connection to the network on which the attack is
being deployed) and thus this is a new tool which can work in combination with
existing ones.

In most phishing attacks, the stolen information is exfiltrated back to the
phisher by email: the code of the phishing site simply sends an email to a “drop
address” each time someone submits something to the phishing site. Each email
contains the data submitted by one victim. In the case of a multi-page phishing
site, it is even often the case that several emails are sent for a single victim.
Therefore, detecting and blocking these emails is a different and complementary
means to combat phishing attacks. In the following, we call these emails sent by
the phishing site to the phisher “exfiltrating emails”.

In this paper, we evaluate three different machine learning technique to detect
exfiltrating emails: word-based, pattern-based and structure-based detection. We
test the robustness of our three models against potential attacks. Although all
three models are shown to be very effective at detecting these messages, the
model using a deep-learning approach, which is called DeepPK, is the one that
is the overall best since it remains quite effective even when the messages are
altered to avoid detection. The key idea of DeepPK is to deal with the email
structure as a sequence of components that follows specific grammar rules. The
key component of DeepPK is a bidirectional Long Short-Term Memory (LSTM)
network [46]. It allows DeepPK to automatically learn the difference between
the structural grammar rules of exfiltrating emails and regular emails. In order
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to effectively represent email structure, we propose a new encoding method, the
structure token, which uses a small corpus containing only 14 symbols.

We train and test our models on a realistic database of exfiltrating emails.
These emails are built from the combination of two real datasets: a database
of exfiltrating emails generated by actual “phishing kits”, which gives us the
patterns of the exfiltration emails, but not the data provided by the victims,
and a database of values that have been submitted to real phishing sites. By
meshing up these two databases, we end up with a system that can generate
a large number of exfiltrating emails. In this paper, we use almost 65,000 such
messages to train and test our models.

The solution described in this paper has a key advantage over most of the
existing ones: it does not require the attack to be first reported, or to be somehow
actively discovered. Instead, it is the attack’s own network traffic that is being
detected and stopped. Therefore, this technique can be used to stop a phishing
attack immediately, preventing a single delivery of stolen information to the
phisher.

The paper is organized as follows: In Sect. 2 we explain what detecting exfil-
trating email achieves that current phishing detection method do not. In Sect. 3,
we present our exfiltrating emails database. Then in Sect. 4, we introduce our
machine learning-based approaches. In Sect. 5, we present the evaluation of our
models, which is followed by the robustness test in Sect. B. We provide an
overview of the literature in Sect. 6 before concluding in Sect. 7. All of the source
code and some of the non-sensitive data used in this paper will be made available
after the anonymous review.

2 Motivations

As already mentioned, most of the antiphishing efforts are directed at protecting
victims, either by preventing the attacker’s message from reaching its target, or
by detecting that a site is not genuine. However, not every potential victim uses
these mechanisms, and even when they do, these mechanisms are not perfect: for
instance, Hu et al. [29] have shown that even email providers that do apply anti-
spoofing detection techniques fail to always prevent forged emails from reach-
ing the victims. It is therefore also important to help network administrators
to proactively detect that a phishing site has been deployed on their network,
without being notified of the URL fist. Such a phishing site can be deployed on
a network because the attacker has compromised one of the servers, or because
the attacker as a legitimate right to deploy a website there. Very little work
has been done in this area. Of course, one could use any phishing site detection
method and scan the network to look for such sites, but this can be difficult due
to the network’s size and the lack of control over what is being deployed there.
More importantly, scanning would probably yield limited success without first
somehow knowing the actual URL of the phishing site on the server. Waiting to
be notified about the attack has the obvious disadvantage of being out of the
control of the network’s administrator, and of opening a window of time during
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which the attack is live on the network. Closing that gap is necessary to prevent
victims from providing data to the phishing site, and to preserve the reputation
of the network, which may otherwise end up being blacklisted.

Detecting exfiltrating emails is a new tool which provides a web hosting
providers a new way to learn that a phishing attack is hosted on their network
and stop it immediately, by monitoring outgoing emails instead of scanning
their own network. It addresses the problem of having to find out or to be
informed of the exact URL of the phishing attack, since that is instead the
network traffic of the phishing site itself that triggers the detection. Another
considerable advantage of such a system is that it can detect and block the
attack as soon as someone submits data to the site, preventing the attackers
from collecting any information. In addition, drop email addresses are uncovered
and can be reported to the email providers and suitable authorities.

This tool will be useful to web hosting companies, but also to any entities
managing a large and relatively open network, such as a university for example.

As already demonstrated in [52], our work can also be useful to email
providers: it is possible to reliably and rapidly detect that one of the mailboxes
is the recipient of such exfiltrating emails and block its access immediately, also
completely preventing the attacker from accessing the data. This is of particular
interest to free email providers, which are used extensively by phishers to create
dedicated drop email addresses.

In this research, we focus on phishing attacks that are using clear-text drop
emails as exfiltration techniques. It is always surprising to the academic com-
munity that such a basic and vulnerable exfiltration technique could be used in
practice. A vast array of other techniques are of course possible to exfiltrate the
data, including but not limited to simple email encryption, pushing the data out
using another protocol such as http(s) or (s)ftp, more covert methods such as
DNS-based exfiltration [38], or storing the data on the server and switching from
a push-based model to a pull-based model. Several easy-to-find implementations
of phishing-kit proof-of-concepts do in fact provide alternate ways of exfilter-
ing data. In practice, the almost exclusive reliance on plain-text emails is well
documented by practitioners [20,31,34,39,42,52,57]. Most recently, in [52] it is
reported that all of the 10,000 kits analyzed in that study use the PHP mail()
command to exfiltrate data. In [31] an analysis of 1,000 Phishing Kits done in
2018 found that “the vast majority of kits (98%) used email to exfiltrate stolen
data to attackers”. Another study from 2018, [39], does not mention any other
mean of data exfiltration. This is certainly also our empirical evidence having
worked with well over 10,000 live attacks over the past couple of years: attackers
today use almost exclusively clear-text drop emails for data exfiltration. Even
when the phishing kit offers other alternative (usually some level of encryption),
these alternatives are almost never enabled in live attacks. One explanation for
this is that phishing attacks are very low-skill attacks, and any complication
would negatively impact the model (see Sect. 7 for some more discussion about
this). It is also possible that only some of the attacks are using clear-text drop



Proactive Detection of Phishing Kit Traffic 261

emails, and for some reasons these are the attacks that we discover.1 Even if
that is the case, it remains that a large number of attacks are using clear-text
drop emails as exflitration techniques and stopping these ones is a step in the
right direction.

Our tool is not meant to replace existing ones. Detecting classical phishing
emails is still necessary but serves a different purpose: it prevents email users
of the domain from being victimized by phishing sites that are usually hosted
somewhere else. Our tool is as a new and effective mechanism to secure networks
against hosting phishing attacks themselves. Classical phishing email detection
does not provide any direct protection against that.

We believe that there are two main contributions in this paper: first, we
provide a new direction for detecting exfiltrating emails using neural networks
trained on the structural information of the message. We introduce a encod-
ing method which effectively extracts that structural information with only 14
characters. Second, we identify a missing piece in the fight against phishing.
The hosting mechanism and the data exfiltration techniques are an essential
and somewhat overlooked part of the equation. The detection models that we
present here do work very effectively on current phishing attacks. Other detection
models might be as effective, and attackers will certainly take countermeasure
to prevent detection in the future. Nevertheless, it remains that web hosting
providers must now be included in the defense against phishing, and that proac-
tive techniques such as the one presented here must be developed and maintained
as the situation evolves.

3 Exfiltrating Emails Generations

One difficulty with this research is to access to exfiltrating emails to train and
test the models. We are not aware of any such database prior to this work. Some
prior work could have indirectly access to some exfiltrating emails (e.g. using
honeypots [27]) but in limited quantity.

In this work, the starting point for the generation of exfiltrating emails is two
datasets that the forensic teams of our industry partners have collected from real
attacks:

1. A set of 3,162 distinct Phishing Kits which are actual phishing websites
written in the PHP language,

2. and a collection of 370 files containing various amount of data collected by
real phishing sites.

The generation process involves three stages: Phishing Kit Deployment, Files
Parsing, and Email Generation described in the next subsections.

1 Maybe because these are low-skill attacks, and some higher-skill attacks are evading
our detection.
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3.1 Phishing Kit Deployment

Each phishing kit is deployed in a custom sandbox environment. By redefining
functions and certain global objects of the standard library (PHP language) used
by the phishing kits, it is arranged that the calls requesting values for HTTP
GET/POST request variables and cookies will return special placeholder values
which we can later use to identify the value which is requested e.g. a POST
request variable named “username”.

Any email messages sent are captured. These messages are parsed, identifying
all special placeholder values in addition to a small number of special patterns
including IP address, date/time and user agent, with the end result being a
sequence of static strings and dynamic value specifications termed an email
template. A sample is shown in Fig. 1. A total of 6,448 unique email templates
acceptable for use in subsequent steps are generated from the data. As previously
noted, phishing kits often send more than one message, either because the attack
is done in several steps and each step triggers a separated message, or because
the phishing kit contains more than one phishing sites.

———=F3dreport 2018=———
Em@il: <EMAIL>
pass: <PASSWORD>
pass2: <PASSWORD>
———=IP Address & Date=———
IP Address: <IP>
Country: <COUNTRY>
Date: <DATE>

Fig. 1. Sample exfiltrating email template extracted from a phishing kit (manually
modified for obfuscation)

3.2 Data File Parsing

Our data files contain sets of values that have been collected during phishing
attacks and recovered by forensics teams. These values correspond to what the
victims provide to the phishing site (and thus what is then exfiltrated in the
emails). The type of data found in this dataset is what one expects from a
phishing site: mostly credentials for websites and other systems, but also credit
cards information and other personal information. In addition, the IP address
of the victim, time of access, type of browser etc. is often collected by phishers.

It is worth noting that in a typical phishing attack, the majority of the values
submitted to the site are not genuine. Instead, the majority of the inputs seem
to come from users attempting to “get back” at the phishers by submitting a
flurry of random data, insults and denial-of-service attempts. Nevertheless, these
are the values that a typical phishing attack will receive and exfiltrate, and thus
all of these values are valid and indeed necessary for our purpose.
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We did parse all of our data files to extract the individual values and match
them to the values requested by the phishing kits. The end result of this process
is the population of an Exfiltration Database with data for 115,713 entries
comprising 332,224 values.

3.3 Email Generation

The general idea is to generate emails from each email template by filling in
placeholders using data from the exfiltration database. For each of the 6,448
email templates, we generate 10 email messages randomly filling in placeholders
using data from the exfiltration database. When doing so, we require that all
template values are populated, although we do not insist that the data all belongs
to a single entry or even to data from the same file. This resulted in 64,480
exfiltration emails, two examples are provided in Fig. 2.2 To ensure that our
models are trained and tested on different datasets, email messages coming from
the same template are either all used for training or all used for testing.

———=F3dreport 2018=———
Em@il: victim1@gmail.com
pass: victim1pass
pass2: victim1pass2
———=IP Address & Date=——
—
IP Address: 123.123.123.222
Country: Unknown
Date: 2018-12-14 04:16:11

———=F3dreport 2018=———
Em@il: victim2@hotmal.com
pass: victim2test11
pass2: victim2test11
———=IP Address & Date=——
—
IP Address: 123.123.12.12
Country: Unknown
Date: 2018-12-12 01:23:19

Fig. 2. Two instances of exfiltrating emails generated from the template of Fig. 1,
values manually obfuscated.

4 Methodology

We have trained three different models to recognize exfiltrating emails. In this
Section, we first introduce two approaches that are commonly used in email
classification: word-based and pattern-based detection model. We then introduce
our structure-based model.

2 Because these files do contain some sensitive data, we cannot publish this database
as is. We will however make available the encoded version of the emails on which
our deep learning algorithm works upon request and after verification.
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4.1 Word-Based Detection Model

Naive Bayes approaches have been shown to be very successful in text clas-
sification task [8,58]. Therefore, we included one such implementation in our
exfiltrating email classifiers.

Specifically, the model learns the conditional probability and the independent
probability of each word from the training set, and uses these probabilities to
predict the probability that a new text belongs to a certain category. Formally, we
work from a set of documents consisting of n unique word tokens [w1, w2, . . . , wn].
These documents are classified into p categories [C1, C2, . . . , Cp]. Each document
can be represented as a vector x = (x1, ..., xn), where xi represents the relative
weight of wi in that document.

In our case, to effectively represent word features, we first extract consecutive
alphanumeric characters using the regexp [0-9A-Za-z] to get a “word” list. We
then apply 1-gram and 2-gram to create word tokens. The corpus of the model is
built using the 5,000 most frequent tokens. We apply a “scaled term frequency”
to calculate the frequency of the token. Formally, the scaled term frequency of
the word token wi in the document dj is

1 + log(# of occurrences of wi in the document dj).

We then apply tf-idf using the scaled tf to vectorize the tokens. For vector normal-
ization, we apply an “L2” normalization: the sum of squares of vector elements is
1. Finally, for each document (email), we end up with a 5,000-dimension vector.

The probability that a document of vector (x1, ..., xn) belongs to the category
Ck is p(Ck|x1, ..., xn) = p(Ck)

∏n
i=1 p(xi|Ck)

p(x1,...,xn)
.

Note that xi is a TF-IDF value of the word token wi, which is only related
to the set of documents. In other words, given a set of documents, p(x1, ..., xn)
is a constant for each category Ck. Therefore, p(Ck|x1, ..., xn) is proportional
to p(Ck)

∏n
i=1 p(xi|Ck). We apply the Gaussian Naive Bayes algorithm to esti-

mate the likelihood of features, p(xi|Ck) = 1√
2πσCk

2
exp

(
− (xi−μCk

)2

2σCk
2

)
, where

the parameters σCk
and μCk

are learnt by the model during training. p(Ck) is
also a learnable parameter, which is equal to

# of documents in kth category
# of documents

Once the model is trained, it is used to assign a new document of vector x′
1, ..., x

′
n

to the category Ci which maximizes p(Ck|x′
1, ..., x

′
n). In the following sections,

we name this model NB.

4.2 Pattern-Based Detection Model

In addition to using different set of words (when compared to regular emails),
exfiltrating emails also tend to use singular patterns. For instance, they are often
organized following the format: <header> + <field name> + <delimiter> +
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<value>. Therefore, we also trained a classifier to look for patterns. We first
encode the content of the messages using only five character classes: letters (L),
digits (D), punctuation (P ), newline (N) and whitespace other than newline
(W ). Each email is first encoded using these five classes. We then compute all
n-grams of lengths 10 to 16 on the encoded email sets, exfiltrating emails and
regular emails, and we keep only the n-grams that appear only in one of the
two sets, that is, n-grams that are found at least once in the exfiltrating (resp.
regular) training set but never appear in the regular (resp. exfiltrating) training
set. A greedy set cover algorithm is applied to obtain a token cover set, which
only covers the same set of documents. We derive a classifier using only the
token cover set for the class of exfiltrating emails which classifies a document as
exfiltrating if and only if its token set contains one of the tokens in the exfiltrating
token cover set.

Formally, let t be a tokenizer function and A and B be email classes. Let
D(A,B) =

⋃
t(A)\⋃

t(B) and similarly let D(B,A) =
⋃

t(B)\⋃
t(A). Finally,

using a set cover algorithm, select a small subset C(A,B) ⊆ D(A,B) such that
{m ∈ A | t(m)∩D(A,B) �= ∅} = {m ∈ A | t(m)∩C(A,B) �= ∅} and similarly for
C(B,A). Let C0 be the set of clean messages, and C1 be the exfiltrating emails.
Define a classifier c by

c(M) =

{
1 if t(M) ∩ C(C1, C0) �= ∅
0 otherwise

In the following sections, we name this model Set-cover.

4.3 Structure-Based Detection Model

As discussed in Sect. 4.2, exfiltrating emails tend to follow a specific format that
is rarely used in regular emails. If we look at the structure of the document as a
grammar, exfiltrating emails and regular emails follow two different grammars.
Deep learning algorithms are known to be effective at learning underlying gram-
mars of text documents [7,14,51], therefore we also include a deep learning-based
classifier.

As we did in Sect. 4.2, we first encode the message using using a new struc-
ture token using 14 symbols. The details of that encoding is provided in
Appendix A.1. In addition to the structure token, our model also include two
“semantic” features: the content entropy and the text proportion, which
are detailed in Appendix A.2.

Recurrent Neural Networks (RNN) are often used for problems with sequen-
tial information as input and have been shown to be effective in a variety of
natural language processing problems [9,35]. For this model, we use a Long
Short-Term Memory (LSTM) RNN, which has been proved to perform well in
dealing with complex patterns and long sequences [28,50]. The details of our use
of LSTM, which we call DeepPK, are provided in Appendix A.3.
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5 Experiment

We now report our basic results, starting with a description of our experiment
environment.

5.1 Experiment Environment

We have developed DeepPK using Keras3 with Tensorflow as the back end. For
HTML emails preprocessing, we use Beautifulsoup4 to extract the text from
the HTML emails. Our models NB and Set-cover are implemented using Scikit-
learn5. Our experiments are performed on a Windows-based system with an
Intel i5 CPU at 3.5 Ghz and 16 GB RAM. DeepPK is trained and tested on a
NVIDIA Geforce GTX 1060 with 6 GB RAM. Our source code can be found on
our website, http://ssrg.site.uottawa.ca/phishing kit/.

5.2 Exfiltration Email and Regular Email Database

We obtained our regular emails database from the Enron email dataset6,
which was collected and prepared by a third party organization, and con-
tains about 0.5 million messages coming from 150 users. Our exfiltrating emails
database, which consists of 64,480 messages from 6,448 unique exfiltration email
templates are generated by the approach discussed in Sect. 3.

To ensure that training and testing data is separated, we first split our 6,448
unique exfiltration email templates into two sets at a ratio of 4:1: 5,158 templates
are randomly selected for training, and the remaining 1,290 are used for testing.
This yield 51,580 email instances for training, and 12,900 email instances are
for testing. For the regular email database, we create a balanced training set
by randomly sampling 51,580 messages from the Enron email dataset. For the
regular email test set, we use 5 times the number of test exfiltrating emails, for
a total of 64,500 regular emails. This unbalance is to mimic a real-life scenario
in our tests, since exfiltration emails would be a fraction of the mail traffic in
reality.

As described in Appendix A.3, we inject into some of the (encoded) exfiltra-
tion emails some length of tokens taken from regular emails in order to avoid
learning only the prefix of these messages. Specifically, we inject into 8 of the
10 instances generated from the each template a token segment randomly sam-
pled from the regular training set. The size of the segment is randomly selected
between 1 and 50 characters.

In order to avoid overfitting during training, we further split our training set:
80% is used for the actual training, while 20% is used for validation. Accordingly,
we end up with 41,260 messages in each exfiltration email set and regular email

3 https://keras.io/.
4 https://www.crummy.com/software/BeautifulSoup/bs4/doc/.
5 https://scikit-learn.org/stable/.
6 http://www.cs.cmu.edu/∼enron/.

http://ssrg.site.uottawa.ca/phishing_kit/
https://keras.io/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://scikit-learn.org/stable/
http://www.cs.cmu.edu/~enron/
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set used for training, and 10,320 messages in each set used for validation. During
training, we store the model which yields the best performance on the validation
set and then evaluate it on the test set.

5.3 Model Evaluation

In order to evaluate the effectiveness of our models, we compared them on sim-
ilar experiments and report here the results. By default, we use the following
parameters for DeepPK: input length is 600 and number of memory units is
128. Since DeepPK uses tumbling windows to process the data, to ensure a fair
comparison, we also test the NB model with tumbling windows (that model is
noted NB-Window below). We tried window sizes of 5 to 10 lines and report
only the one with the best performance.

We apply five standard metrics to evaluate the performance of the models:
false positive7 (FP), false negative (FN), precision (pre)= TP

TP+FP (TP stands for
true positive), recall (rec)= TP

TP+FN and f-score= 2∗pre∗rec
pre+rec . The results are shown

Table 1.

Table 1. Performance comparison between models

Performance comparison

Model # false positive (%) # false negative (%) Precision Recall F1 score

NB 728 (1.13%) 115 (0.89%) 94.61% 99.11% 96.81%

NB-window 2,596 (4.02%) 99 (0.77%) 83.14% 99.23% 90.48%

Set-cover 261 (0.40%) 285 (2.21%) 97.97% 97.79% 97.88%

Single LSTM 626 (0.97%) 37 (0.29%) 95.36% 99.71% 97.49%

Bidirectional LSTM

w/o content feature

343 (0.53%) 65 (0.50%) 97.40% 99.50% 98.44%

Bidirectional LSTM

with content feature

221 (0.34%) 63 (0.49%) 98.31% 99.51% 98.91%

For the NB model, we note that using a tumbling window improves the false
negatives rate but at the expense of the false positives rate. For DeepPK, the
model that only uses a single LSTM yields the best false negative rate (0.29%)
but the worst false positive rate (0.97%). Through manual inspection of these
false positives, we found that most of them are very short regular emails. The
model that uses bidirectional LSTM fixes this issue thanks to the additional
information provided by the backward direction. The performance is further
improved by using our semantic features, which help the model correctly classify
regular emails with a structure similar to that of the exfiltrating emails (e.g. the
case shown in Fig. 3). In general, the model which uses bidirectional LSTM and
semantic feature yields the best false positive rate (0.34%) and the best F1 score
(98.91%) across all models.
7 Here, a “positive” classification means that the message is flagged as exfiltrating

email.
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5.4 Model Robustness

Our results in the Sect. 5.3 show that all three proposed models perform well in
detecting exfiltrating emails. In this section, we discuss several possible ways an
attacker could modify exfiltrating emails to evade detection, and we evaluate how
resilient the models are to these modifications. When looking at these potential
detection evasion techniques, we specifically focus on solutions that would be
relatively easy to implement for the attacker and would modify the exfiltrat-
ing emails without preventing automatic processing at the receiving end. More
advanced evasion techniques are of course possible, but they would likely impact
negatively the “business model” of phishing by requiring more advanced techni-
cal skills from attackers (see Sect. 7). Here, we consider two potential attacks:

– Injection attack. In this attack, the phisher injects additional noise into
the exfiltrating email, which is otherwise unchanged. In practice, the injected
text can be random strings, or pieces of text extracted from regular emails.
The latter is a more effective attack because it introduces “negative” noise
(segments possibly matching what the model has learned from the regular
emails), which is more likely to result in misclassification. In our study, we
consider a worst case scenario and use actual text segments from our regular
email database to increase the chances of defeating the models. We test four
different ways of injecting “negative” noise : injecting at the top of the mes-
sage, at the bottom of the message, in the middle of the message, and finally
scattering the injected text throughout the exfiltrating email.
We run several experiments. When injecting top, middle or bottom of the
message, we injected a size of text ranging from 10% to 100% of the original
exfiltration email, measured by the length of the resulting structure token. So
in the worst case, 50% of the resulting structure token comes from injected
text. When scattering the injection throughout the text, the injection is mea-
sured in terms of number of lines in the original text. In our experiment, we
increase the number of injected lines, going from one line randomly inserted
in the original text to one line inserted between each line of the original text.

– Replacement attack. In this attack, the phisher replaces the text of the
structure of the exfiltrating emails with strings that the model has rarely or
never seen. The purpose of the attack is to eliminate “positive” indicators.
An easy way to perform such an attack is to systematically replace existing
field names with other strings. Note that because DeepPK detects exfiltrating
emails based on our structure token and not on the message itself, this model
is not impacted by this attack if the strings used for replacement are of the
same length as the strings they replace (since it would yield the same structure
token). In order to have an effective attack against our model, we apply what
we have called “incremental injection”, where the size of the injected stings
is gradually increased.
We run several experiments with this attack as well. First, as mentioned we
change the length of consecutive tokens, trying various increments from 17 to
101. This ensures that each experiment produces a different structure token
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Table 2. Attack test sets

Injection attack (injection proportion: from 0.1 to 1.0 by steps of 0.1)

Label Description

Inject header Injection of “negative” noise at the top

Inject middle Injection of “negative” noise in the middle

Inject tail Injection of “negative” noise at the bottom

Inject line Injection of “negative” noise scattered throughout the

message

Replacement attack (incremental injection length: [17, 20, 33, 45, 52, 64, 78, 89, 96, 101])

Replace word Replace words (continuous alphabetical characters)

with randomly generated ones

Replace non word Replace non-words with randomly generated non-words

Replace all Word and non-word replacement

fragments. For each length, we try three different types of replacements: we
try to replace only “words” (that is, sequences encoded as C in the structure
token). We then try to replace only “non-words” (that is, sequences encoded
as N , L or S in the structure token), and finally, we try to replace everything.

In these experiments we use the model trained on the original database, so
the modified exfiltration messages have never been seen by the models before.
We do not report the results on the regular emails again, since these would not
be impacted by these experiments. We use the test set discussed in Sect. 5.2.
Instead of using 10 instances per template, we randomly choose one instance
from each template, and end up with 1,290 exfiltrating emails that we modify for
the experiments. As explained, the injected text segments are randomly sampled
from the regular test set. In order to facilitate the comparison, we use the same
random seed for all our experiments (Table 2).

When faced with injection attacks, in general, DeepPK performs well, with
an error rate of at most 5%, except with the test set inject line. On that test,
the error rate increases with the proportion of injected text, to reach 28% at
the top. This is because, as expected, this injection destroys the sequence of
structure tokens, eliminating some key tokens. The Set-cover model is stable
in the injection test, with an error rate of at most 6%. This is not surprising
since the Set-cover model only looks for learned “bad” token in the message.
Injecting noise does not impact the presence of these tokens and the noise is
just ignored by this model. Still, except for the test set inject line, the Set-cover
model performs worse than DeepPK even with a relatively high proportion of
injected text (up to 70 to 90% of the original message depending on the test).
The NB model does not perform well in the injection test. The model breaks
down significantly as more “negative” content is injected. The use of tumbling
windows does help, but the performance is still worse than the other two models.
More details are available in Fig. 9 of Appendix B.

The word replacement attacks has almost no effect to the performance of
DeepPK, with an error rate peaking at 5%. On the other hand, the performance
of DeepPK on the test sets replace non word and replace all is quite inconsis-
tent: it sometimes performs very well with an error rate of less than 2%, but
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in some cases the error rate goes above 80% (Fig. 10 of Appendix B). To better
analyze this phenomenon, we have conducted a complete set of tests on the test
set replace all, ranging the injection proportion from 1 to 100, step by step. Out
of these 100 tests, the error rate is below 10% 42 times, and below 5% 31 times.
The explanation might be that “non-words” in the template are important indi-
cators of exfiltrating email for DeepPK. However, to successfully conduct such
an attack, the attacker needs to successfully break up the part of the structure
that happens to have been learned by DeepPK, which is quite challenging and
a process of trial and error. Generating such exfiltrating emails would be signif-
icantly more difficult than what is currently done. What is more, interpreting
these emails once that are received would also be orders of magnitude harder
than the current situation. Therefore, this attack, however effective, seems of
limited practicality. Set-cover and NB are basically defeated by this attack, see
Appendix B for more details.

6 Related Works

Most of studies on phishing attack detection focus on identifying phishing pages
and phishing emails that are used to spread phishing links.

Most proposed phishing sites detection techniques look for some intrinsic
characteristics of the attack. For instance, [16,24,33,37,40,54,55] use an array
of machine learning models to train a binary classifier. Some work has also been
done to compare these approaches [1,36]. But as mentioned in Sect. 2, detecting
that a site is a phishing site does not address the needs of a network administrator
if, as is the case in these papers, the site’s exact URL is needed for the detection.

The main general approach for detecting phishing emails is to apply machine
learning techniques to detect the characteristics of a content that is designed
to deceive the victim. Fette et al. [22] propose such as method. The feature of
their model mainly focus on the phishing link embedded in the email, such as
the number of dots and the number of domains in URL, rather than the email
content. They report a 99.5% accuracy and 0.13% false positive on a dataset of
860 phishing emails and 6,950 regular emails. In [48,53], the authors suggest to
combine natural language processing techniques and contextual information to
identify phishing emails. In [53], the authors report a 98% true positive rate and
0.7% false positive rate on a dataset of 2,000 phishing emails and 1,000 regular
emails. In [48], the authors report an accuracy of 92.2% and a 4.9% false positive
rate on a dataset of 14,370 phishing emails and 14,370 regular emails. Some
researchers suggest to also use delivery information to detect phishing emails.
In [11,26], sets of features such as the consistency between sender domain and
the embedded link are used. Stringhini et al. [49] propose a detection model for
spear phishing attacks by profiling the email sender: writing habits, composing
habits, and interaction habits. Such behavioral-based detection would not be
directly suitable for our purpose, since in our case no impersonation is taking
place. However, none of these techniques would probably be very effective at
detecting exfiltrating emails because exfiltrating emails do not contain URLs or
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deceptive text, and are sent to the attacker’s drop email address and from the
header’s viewpoint are not different from regular emails.

The work most related to ours is [52], in which a large scale analysis on
credential theft is conducted. The author work on a source of about 10,000 kits,
and propose a method to extract phishing templates by parsing the kits source
code. They then look for instances of these templates on Gmail, using Gmail’s
built-in anti-abuse detection system. They detect over 12 millions exfiltration
emails between March 2016 and March 2017. This works confirms that most
phishing attackers (who use Gmail 75% of the time for drop email address)
simply use plain-text when exfiltrating emails and thus detecting and blocking
these messages at the hosting site would currently be extremely effective. The
detection method that they use is however based on text matching; as we have
shown in the Sect. 5.4, attacker could simply evade detection merely by using
different keywords. Our method is more resistant and is aimed primarily at
hosting provider.

One general problem with the above methods is that the attacks need to be
first discovered and reported, and this means some delay between the attack and
its detection (about 10 h according to the report from APWG [25]). Our method
can identify a phishing attack as soon as it starts to collect information. It
basically prevents the attack to succeed at all if exfiltrating emails are scanned in
real time, at the source or at the receiving end. In [17], two “zero delay” phishing
attack detection methods are presented: one uses domain names to infer that a
site will host an attack, and the other does proactive “blind” scanning of the
network. By contrast, the method proposed here works regardless of the domain
name used (in particular it works even when the domain name is not related to
the attack) and will work without knowing nor guessing the URL of the attack.

The main difference between our work and all the above methods is that the
goal of these methods is to protect a victim from an attack. Although it could
indirectly help network administrators to detect a phishing site on their network,
it usually requires the URL of the attack to be known, which usually means that
someone needs to first report the attack to the administrator. In contrast, the
goal of our work is to directly help the administrator to detect a phishing site
on their network, and it does it automatically and without delay. In [27], a sys-
tem is presented in which honeypots are safely deployed and phishing kit are
monitored. This is probably the closest work to ours, but the aim is quite dif-
ferent. That system does not provide a way to detect an attack being deployed
on a live network. It is however one possible way to learn new email exfiltration
patterns and thus it can work and combination to our system. In [43,56], the
authors propose to monitor spam botnets and infer regular expressions match-
ing the messages sent by these botnets. A similar approach may also achieve
good performance in our context. However, as explained before, in our case the
attacker controls the entire channel, from the message creation to the message
consumption, and thus simple rule-based systems would be easier to be defeated
by simply changing the messages body, as we did in Sect. B. As we showed, the
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models that we propose, in particular our deep learning-base model, can be quite
resistant to simple pattern modifications of the messages.

In addition to phishing detection, there is a significant body of academic work
focusing on email classification for several purposes, such as spam detection. For
instances, Blanzieri et al. [10] present a survey of supervised machine learning
algorithms for spam detection in 2008. These methods treat the email content
either as a set of word tokens, or as a text in natural language. A binary classifier
is then trained based on the extracted features to identify spam. Some methods
also combine other information, such as attachments, headers and embedded
images to improve the performance. Elssied et al. [21] apply a k-means clustering
technique to identify spam. Not all solutions rely on machine learning-based
classifier, e.g. Pérez-Dı́az et al. [41] propose a method using a set of rules.

In general, all these spam detection methods mainly focus on email content
and use semantic features to build classifiers. To the best of our knowledge, we
are the first to propose a machine learning method which uses structural features
of the messages to classify emails.

7 Limitations and Conclusion

One clear limitation of our empirical evaluation is that the attacker does control
the entire exfiltration system and therefore can in theory very easily change
it to avoid detection. As previously mentioned, using simple email encryption
or switching to a completely different exfiltration technique would defeat the
detection methods evaluated in this paper. Such a switch would not be terribly
difficult to achieve from the attacker viewpoint. We argue that forcing phisher
to step-up their game and implement more advanced exfiltration techniques is a
good thing that will hurt the business of phishing attacks. The main reason for
this is that phishing attacks are very low-skill attacks. In [15], 15 phishing attack
“vendors” are surveyed. In general, these individuals have very low technical
skills, and are only claiming the most basic web-programming abilities. Their
clients, who are the actual attackers, presumably have even lower technical skills.
Empirically, we can confirm that the code that we have seen in thousands of
phishing kits is of very low quality and does not suggest any kind of programming
understanding. In [19], an analysis of the evolution of phishing attacks over time
also shows that only the most basic updates are performed on live attacks by
the attackers. Raising the technical bar even slightly will likely exclude many of
the current players. Another reason is the low return that phishing attacks yield,
and the poor quality of the data collected. In [15], it is reported that the cost of
a tailor-made phishing site ranges from 15$ to 250$. As mentioned in Sect. 3.2,
in our experience the vast majority of the data sent to a phishing site is bogus8

and thus processing the data to identify usable information is a time consuming
process. Adding a decryption step, or using less structured exfiltration format
8 Anecdotally, the more advanced technical steps that we regularly see in phishing kits

are techniques to prevent returning visitors from submitting data again, presumably
in an attempt to limit the amount of fake data submission.
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will complicate data processing further and reduce profitability even more. We
can report that in practice, we have almost never seen an attack in which the
phisher bothered encrypting the content of the exfiltration emails.

Of course, if our system or a similar one becomes widely adopted, this will
force attackers to step up their game and e.g. start encrypting their messages. As
explained, we think that this will hurt their business. Nevertheless, when that
time comes, new detection techniques will have to be found, depending on the
new exfiltration trends. For example, several approaches have been proposed to
work on encrypted traffic by comparing the traffic pattern ending to the same
destination [3,4,30]. If the main exfiltration technique remains email-based, then
some protection could be expected from a wide adoption of standards such as
SPF9 and DKIM10, which will limit the ability to successfully send email from
hacked servers that are not meant to send emails.

Another possible criticism to our work is that we will not be able to detect
exfiltrating emails that follow a completely different pattern. This criticism is
mitigated by the fact that this new pattern can simply be added to our training
set once known, and that we see much fewer patterns than there are attacks,
suggesting a vast amount of code-sharing among phishers. It is in practice likely
that our current model would catch many actual exfiltrating emails sent in North
America and Europe at the time of writing. System such as the one described
in [27] could also be used to discover new patterns as they are introduced.

We also acknowledge that our database is heavily biased toward North-
American and European attacks. This is not a limitation of our method but
a limitation of our database. Training our model on a larger database should
address this issue.

The solution proposed here is, as far as we know, the first one that suggests
to detect exfiltrating emails using structural information. This method has the
advantage of working very well in our experiments, and being robust against
evasion techniques trying to avoid detection by modifying the email content. We
also introduce a new “structure token” which proves to be very effective when
combined with our deep learning algorithm. Our work is also the first one to
our knowledge to be tested on synthetic but realistic exfiltration emails, using a
combination of two real datasets.

Unlike usual solutions that can be deployed at the end-user end, our solu-
tion needs to be deployed by host providers, where the phishing sites are being
deployed, or by email providers, where the exfilrating emails are being received.
This can be seen as a limitation, but also as a strength, since a handful of very
large scale players could deploy our system and have a significant and immediate
impact on phishing activities.

9 https://tools.ietf.org/html/rfc7208.
10 https://tools.ietf.org/html/rfc6376.

https://tools.ietf.org/html/rfc7208
https://tools.ietf.org/html/rfc6376
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A Details About DeepPK

A.1 Structure Tokens

In order to compare the “structure” of the body of emails, we introduce what
we call the structure token, which is a symbolic representation of that email
structure. Formally, we encode the text of the message using four categories: let-
ters ([a-zA-Z]), encoded as C, digits ([0–9]), encoded as N , line breaks ([\n\r]),
encoded as L, and finally any character that does not belong to the previous
categories, encoded as S. In addition, we count consecutive occurrences of char-
acters in the same category and append the number of occurrences to the cat-
egory symbol. For compactness, we do not append that number if it is 1. For
instance, the text “Hi Yvonne\n This is John, please call me back.” is repre-
sented as the structure token “C2SC6LSC4SC2SC4S2C6SC4SC2SC4S” (where
single instances of a category where the number 1 is omitted are underlined).

There are several advantages to using such a structure token. First, it does not
capture the actual text (the words) used in the message, and instead captures the
structure of the content. For instance, in the example above, if some words are
changed (e.g., greetings or names are modified), we still get a similar structure
token. The number of consecutive occurrences of a particular category might
change a little bit when a word is changed, but the sequence of categories will
remain relatively stable. This adds significant value in our context because in
exfiltrating emails, what will change between messages is the part containing
the victim’s data. The remaining content is the template, which doesn’t change
across messages sent by the same phishing attack. Figure 2 shows two instances
of the same template. The “template” part (separators, fields name, line breaks)
remains identical in both messages, and the corresponding structure tokens will
match. In addition, it is often the case that the structure token will still be quite
similar across messages in the parts containing victim’s data. For instance, all
IP addresses end up with the structure token “NXSNXSNXSNX” where X ∈
[‘’, 2, 3]. It is also true that using a structure token makes is more difficult for
the attacker to evade detection, since it is not enough to modify the text of the
template. A new template needs to be introduced to significantly change the
structure token. Finally, last but not least, using a structure token insures that
model learns patterns from one-way encoded inputs rather than directly from
data containing sensitive information. This protects users data privacy both
during training and at run time, since actual email content is never sent to the
system.

But a very important practical consequence of using structure token instead
of traditional encoding methods, such as using words as encoding units, is that
our method uses a very small corpus containing only 14 symbols11 which allows
our tokens to be applied to large datasets. In order to vectorize structure tokens,
we apply the so-called “one-hot encoding”, which is a vector of bits of the same
size as the encoding corpus, 14 bits in our case. Each bit corresponds to the

11 Our four categories, C, N , L and S, and the 10 digits, 0 to 9.
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index of one of the symbols in the corpus, and each character is being encoded
with a vector in which only one bit is set to 1. As an example, given a corpus
{a,b,c}, ‘a’ could be encoded [1, 0, 0], ‘b’ encoded [0, 1, 0] and ‘c’ encoded [0,0,1].
The one-hot encoding string of the text “aacb” would then be [[1, 0, 0], [1, 0, 0],
[0, 0, 1], [0, 1, 0]].

A.2 Semantic Feature of Email

Our initial intent was to use only structure tokens to identify exfiltrating emails.
However, we noticed that this resulted in a handful of false positives in the
odd cases where regular emails follow a structure similar to exfiltrating emails.
Figure 3 shows one such example.

CALENDAR ENTRY: APPOINTMENT

Description: Cleveland Cliffs Mtg/Bob Stevens 4180

Date: 7/19/2000
Time: 1:00 PM - 4:30 PM (Central Standard Time)

Chairperson: Outlook Migration Team

Detailed Description:

Fig. 3. One example of false positives

In order to correctly classify these messages, we enhance our method by
introducing two “semantic” features: the content entropy and the text pro-
portion.

Entropy is a commonly used metric in information theory. It measures the
uncertainty of a piece of information produced by a source of data [47]. Formally,
given a string S consisting of n characters {c1, c2, ..., cn} that are generated
by a corpus of k unique symbols, the entropy of S, ent(S) = −∑m

i=1 p(si) ∗
log(p(si)), where m is the number of symbols used in the string S, and p(si) is the
probability of symbol si appearing in S. The higher the value of entropy, the more
disordered or uncertain the string generated by the corpus. However, entropy has
a tendency to generate greater values for the string that uses a large variety of
symbols. In order to alleviate this tendency, we divide the initial number by the
logarithm of the number of symbols in the string. Finally, we end up with a
normalized entropy in the range [0,1]: entnormal(s) = −∑m

i=1
p(si)∗log(p(si))

log(m) .
In our case, we use the above normalized entropy and a corpus of 26 English

letters ([a–z]) and 10 digits ([0–9]) to build what call the content entropy.
Specifically, we first convert email text into lowercase. We then calculate the
normalized entropy for the processed content and get the content entropy. Since
a regular email is mainly composed of English words, which has a higher certainty
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than the content of an exfiltrating email (e.g. username and password), it yields
a lower content entropy.

Another difference between exfiltrating emails and regular emails is that exfil-
trating emails tend to use a greater proportion of non-numeric and non-letter
symbols. In order to quantify this difference, we propose another context fea-
ture, the text proportion. Formally, given a string S consisting of n characters
{c1, c2, ..., cn}, the text proportion TP (S) is defined with the following for-
mula:

TP (S) =
∑n

i=1 LN(ci)
n

where LN(c) =

{
1 if c ∈ [a-zA-Z0-9]
0 otherwise

As an example, the text proportions of the exfiltrating emails in Fig. 2 are
0.7065 (left) and 0.7097 (right), while the text proportion of the regular email
in Fig. 3 is 0.7703, higher than Fig. 2.

Fig. 4. LSTM cell and its unrolled form

A.3 Long Short-Term Memory Model

A Recurrent Neural Network (RNN) is a neural network where cells are con-
nected in a round-robin fashion. Long Short-Term Memory (LSTM) is a type if
RNN. As shown in Fig. 4, an LSTM cell has three inputs: Xt, Ct−1 and ht−1.
Xt is the tth character in the input sequence X. Ct−1 is the state passed from
the previous step, which stores the “memory” of what has been learned from
the previous sequence. ht−1 is the output of the LSTM cell in the previous step,
representing the latest prediction based on the previous sequence. The LSTM
cell uses these values to calculate outputs, which are taken as the input in the
next step.

Formally, Ct = ft ∗ Ct−1 + it ∗ C̃t, where ft = sigmoid(Wf · [ht−1, xt] + bf ),
it = sigmoid(Wi · [ht−1, xt] + bi) and C̃t = tanh(WC · [ht−1, xt] + bC). It can
be seen that the new cell state Ct is equal to the partial previous status Ct−1

plus the scaled update candidate C̃t, and controlled by two gating components
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ft and it, that are the functions of the current element xt and the output in
the previous step ht−1. In our context, these two gating components control the
memory focus of the model during training: it keeps the memory of the key
sequence and ignores the parts that do not contribute meaningful indicators for
the model.

The output of the LSTM cell ht is a function of the new cell state Ct. For-
mally, ht = ot ∗ tanh(Ct), where ot = sigmoid(Wo · [ht−1, xt] + bo). The gating
component ot controls the output scale of the cell status. In our context, ht is
a vector indicator that identifies whether the currently processed token comes
from an exfiltrating email.

Fig. 5. System design of DeepPK

Detection Model. In order to construct our detection model, we pass the
structure token through the LSTM cell and combine the LSTM output in the
final step with the content features to yield the final prediction. A problem
with using a single LSTM cell is that the output of the LSTM cell in the final
step may not provide complete information of email structure. To overcome this
issue, we apply a variant of LSTM: the Bidirectional LSTM, which uses a
reversed copy of the input sequence to train an additional LSTM cell. There-
fore, the model is able to know the complete information of the input in both
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directions [46]. We call this detection model DeepPK. The complete overview is
shown Fig. 5. Additional information about DeepPK’s parameters are provided
Appendix A.4.

– Preprocessing Model. When an email is classified, the first step is the
preprocessing model. In this model, we first parse the text of the email body.
If it is a HTML email, we scan all HTML tags and extract the text from
each tag. We then generate the structure token and the semantic features
based on the text content. Different message bodies yield structure tokens
of different lengths. However, LSTM cell requires fixed-length input. By trial
and error, we have selected a “reasonable” size as the input length (the details
of the selection of the input length is discussed in the Appendix A.5). For the
structure tokens that are longer than this input length, we use a tumbling
window of the input length to create several non-overlapping token segments
for that message. For the structure token that are shorter than the input
length (or for the last token segment when several are created), we simply
pad them with placeholders. Finally, the token segments are encoded into
one-hot vectors and used as the input of our LSTM model.

– Bidirectional LSTM. A Bidirectional LSTM model consists of two LSTM
cells. The output of the forward LSTM cell (LSTM output) and the backward
LSTM cell (LSTM reversed output) are joint together with the semantic fea-
tures to form a new feature vector, which is later used as the input of the
sigmoid output layer to yield the final prediction. The output of Sigmoid
indicates the probability that the given email is an exfiltrating email.

Training Stage and Testing Stage. As mentioned above, we use a tumbling
window of the input length to split each message into multiple non-overlapping
token segments, and pad the last one. During training, each token segment is
treated as an individual ground-truth sample. In other words, the model only
knows if the token segments are from exfiltrating emails and cannot link segments
of the same message back together. On the test set, multiple token segments from
the same message are treated as a complete identifier. A message is classified as
exfiltrating email if and only if one of its token segments is detected as such.

Injection on Training Set. As discussed in Sect. A.3, the function of the
LSTM cell is to extract and learn key structure tokens from exfiltrating emails.
However, when the training set is not sufficiently diverse, the model may fail
to learn useful token sequences and instead may only remember some sequence
or symbols at a specific position. For instance, exfiltrating emails often contain
some series of dashes at the beginning. As a consequence, the structure token
of these exfiltrating emails starts with the symbol S. In contrast, regular emails
normally start with greetings, so the structure token of most regular emails starts
with C. If such a training set is used to train the model, it causes the model to
only use the first symbol as a strong indicator of exfiltrating emails and ignore
the subsequent sequence. It causes the model to be very vulnerable in practice
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because an attacker can easily fool it, e.g. by embedding the exfiltrating email
into a regular email.

In order to solve this issue, we randomly inject structure token fragments of
different lengths, that are sampled from regular emails. To prevent learning these
injected fragments, we inject the fragments that are sampled from the regular
training set.

A.4 Analysis of DeepPK

In this section, we discuss the impact of various parameters in DeepPK’s per-
formance.

Our results are shown Fig. 6. In general, we can see that the precision
increases but the recall decreases with the number of memory cells and the size
of the input. The recall is still quite stable and stays above 99% across the board.
The input length plays an important role: a shorter input allows the model to
recognize more exfiltrating emails (higher recall), but increases the false positive
rate. This indicates that the model requires enough structural information to
accurately classify the messages.

The model is less sensitive to the number of memory units (the precision
remains above 94% across the board). The model with 128 memory units and
an input length of 600 yields the highest F1 score.

A.5 Analysis of Structure Token Length

As discussed in Sect. A.3, we needed to select a “reasonable” length for the
structure token, since the LSTM cell requires fixed-length input. A reasonable
length is the length that is able to cover “enough” context for the model to learn
the required information from the structure token. To determine that, we first
look at the length distribution of the structure token length in the exfiltrating
email database, as shown in the Fig. 7.

We can see that save a few instances that end up with a very long structure
token, most exfiltrating tokens have fewer than 600 characters. Through manual
inspection, we find that these instances with long structure tokens can be divided
into two categories: one category comes from instances produced by a specific
template that collects 70 fields, as shown in Fig. 8. It comes from a phishing
attack targeting a Brazilian bank https://www.bradescoseguranca.com.br. The
other category are instances of exfiltrating emails that are coming from end
users that have attacked back the phishing site: in these messages, the fields are
populated with extremely long dummy strings. We thus chose 600 as the input
length for DeepPK, since this length can cover most exfiltrating emails. In fact,
even for the instance that exceeds this length, the cropped part is often a repeat
of the previous part.

https://www.bradescoseguranca.com.br
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[Input length with 128 memory units]

[# of memory units with 600 input length]

Fig. 6. DeepPK performance with different parameters

Fig. 7. Distribution of structure token length in the phishing database
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========—B.r.a.d.e.s.c.o—========[XX]:**[
XX]:**[XX]:**[XX]:**[XX]:**[01]:**[02]:**[03]:**[04]:*
*[05]:**[06]:**[07]:**[08]:**[09]:**[10]:**[11]:**[12]:**[1
3]:**[14]:**[15]:**[16]:**[17]:**[18]:**[19]:**[20]:**[21]:
**[22]:**[23]:**[24]:**[25]:**[26]:**[27]:**[28]:**[29]:**[
30]:**[31]:**[32]:**[33]:**[34]:**[35]:**[36]:**[37]:**[38]
:**[39]:**[40]:**[41]:**[42]:**[43]:**[44]:**[45]:**[46]:**
[47]:**[48]:**[49]:**[50]:**[51]:**[52]:**[53]:**[54]:**[55
]:**[56]:**[57]:**[58]:**[59]:**[60]:**[61]:**[62]:**[63]:*
*[64]:**[65]:**[66]:**[67]:**[68]:**[69]:**[70]:**[00]:**=
==========

Fig. 8. Email template with long structure tag and its screenshot (In the actual exfil-
tration email, the data is where the “**” are in the figure.)

Fig. 9. Performance comparison on injection attack test sets
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B Model Robustness

Set-cover does not fare well at all against replacement attacks, because this
attack removes the information that these models have learned.

The apparent success of the model NB and NB-windows against replacement
attack is misleading. It is because in these attacks, the model does not recognize
anything at all and ends up with a zero vector. Since the model can only provide
2 outputs (exfiltrating email or non exfiltrating emails), this simply indicates
that our model happens to defaults to an “exfiltrating email” output when the
input is completely unknown. It also indicates that this model would flag as
“exfiltrating emails” any message for which it knows none of the word.

It is noted that the replacement attack test we conduct is very strict: each
structure token fragment in the attack instance is totally different from the
original one, which may rarely occur in practice. Our results show that even
under this extreme test, DeepPK can still provide reasonable performances.

Fig. 10. Performance comparison on replacement attack test sets
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Abstract. Identifying the compilation provenance of a binary code
helps to pinpoint the specific compilation tools and configurations that
were used to produce the executable. Unfortunately, existing techniques
are not able to accurately differentiate among closely related executables,
especially those generated with minor different compiling configurations.
To address this problem, we have designed a new provenance identi-
fication system, Vestige. We build a new representation of the binary
code, i.e., attributed function call graph (AFCG), that covers three types
of features: idiom features at the instruction level, graphlet features at
the function level, and function call graph at the binary level. Vestige
applies a graph neural network model on the AFCG and generates rep-
resentative embeddings for provenance identification. The experiment
shows that Vestige achieves 96% accuracy on the publicly available
datasets of more than 6,000 binaries, which is significantly better than
previous works. When applied for binary code vulnerability detection,
Vestige can help to improve the top-1 hit rate of three recent code
vulnerability detection methods by up to 27%.

Keywords: Compilation provenance · Code similarity · Vulnerability ·
Binary code · Graph neural network

1 Introduction

A binary code is generated from source code through the compilation process.
The source code can be compiled to completely different binary codes, when
different compilers, coupled with different configuration settings, are used. The
process of identifying the compiler and configuration is referred to as the compi-
lation provenance identification [35]. Knowing the compilation provenance is very
helpful for binary code analysis, especially for malware analysis [16,21,41], code
vulnerability detection [14,17,40], and code authorship identification [29,30].
In this context, compilation provenance identification aims to find out the used
compiler family, compiler version, and optimization level. Note that in this paper
we do not take into account the computer architecture for which the code is
compiled, because it can be accurately identified by existing tools, e.g., the file
software.
c© Springer Nature Switzerland AG 2021
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Fig. 1. Code example. (a) shows an example source code with integer overflow, (b)
(c) show the assembly code and function call graph by compiling the source code with
compiler GCC-4.8.4 but different optimization levels O0 vs. O2.

Prior works transform this problem to a machine learning-based classification
problem [35,36]. That is, they regard the compilation provenance as the label,
extract features from the binary code, and leverage machine learning methods,
e.g., conditional random field, to predict (classify) the provenance. The key com-
ponent in this design is the feature, as one needs to mine the useful features that
are able to show the difference between various compilation provenance. Two
types of features have been used in prior works, that is, the normalized instruc-
tion patterns, and the control flow graph [35,36].

1.1 Motivation

However, we observe that these features focus only on the instruction and func-
tion levels, and as a result, are unable to differentiate closely related provenances.
For the example source code with integer overflow (happens when the sum of
a and b exceeds the maximum value of int) shown in Fig. 1(a), one may com-
pile with the same compiler but with different optimization levels (O0 vs. O2).
The assembly codes (disassembled with IDA-Pro [4]) are presented in Fig. 1(b)
and (c), respectively. For the control flow graph (CFG) features, as there are
no branch instructions in both sum and main functions, their CFGs remain the
same (one node) in both cases. Similarly, for the instruction features, after nor-
malization, e.g., unifying the register and memory address, the patterns will be
the same with the minor difference in the occurred frequency. As a result, using
the aforementioned features alone will unlikely to produce the correct provenance
for these two binary codes.
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In this paper, we have observed that a new feature, i.e., the function call
graph at the binary code level, can be used to significantly improve the accuracy
of provenance identification, especially for those binary codes generated with
different optimization levels. As we will show in Sect. 2, the optimization level has
the largest impact in binary code similarity detection, compared with compiler
family and version. Figure 1 also shows the function call graphs of the binaries.
With optimization level O0, the main function calls three functions, i.e., the
sum function and two library functions (scanf and printf ). In contrast, with
optimization level O2, the main function only calls the two library functions as
the sum function is inlined shown in lines 17 and 18 in Fig. 1(c). Clearly, the
function call graphs will be able to help differentiate these two cases.

1.2 Contribution

To take advantage of this observation, we have designed a new code provenance
identification method, Vestige. Given a binary, Vestige transforms it to a
new representation, i.e., attributed function call graph, that covers code features
from three levels, instruction, function, and binary. Later, Vestige applies an
attention-based graph neural network to generate a representative embedding to
predict the compilation provenance.

In summary, we make the following contributions.

– New representation and method. We design a new representation for
binary code, i.e., attributed function call graph (AFCG). The AFCG takes
the function call graph from the binary level as the graph structure. Later,
we attribute each node in the AFCG as a vector with the features from both
instructions and functions. Further, Vestige applies the attention-based
graph neural network (GAT) [39] to generate more accurate embeddings by
directly learning from the attributed graph. GAT can learn a representative
embedding by automatically highlighting the important nodes, which are,
in this case, the more representative functions for the correct compilation
provenance.

– Implementation and evaluation. We have implemented a prototype of
Vestige and tested it on several publicly available datasets with more
than six thousand binaries. For provenance identification, Vestige achieves
96% accuracy for overall provenance, which significantly outperforms previ-
ous work’s 90% accuracy. Particularly for the optimization level, Vestige
achieves 99% accuracy over previous work’s 92%.

– Applying to code vulnerability detection. We successfully apply Ves-
tige as a pre-processing step to binary code similarity detection and
vulnerability detection. In both cases, given an unknown binary, prior
works would compare it with the known vulnerable code from a pre-built
database [11,13,14,40,43]. Such a strategy often leads to comparing two
binary codes compiled with different provenances. Instead, with Vestige,
one can first identify the compilation provenance of the unknown binary.
Then, one only needs to compare it with the known vulnerable code com-
piled with the same provenance. In this way, one avoids the blind comparison
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and thus can improve accuracy. Particularly, for code similarity detection,
we apply Vestige to three recent works, BGM [14], Genius [14], and Gem-
ini [40]. Vestige can improve the top-1 hit rate by 27%, 13%, and 22% for
BGM, Genius, and Gemini, respectively. On detecting 20 OpenSSL vulnera-
bilities, Vestige helps improve the top-1 hit rate by 16%, 19%, and 26% for
BGM, Genius, and Gemini, respectively.

Paper Organization. Section 2 explains the use case of Vestige on binary
code similarity detection. Section 3 presents the design of Vestige, and Sect. 4
shows experimental results. Section 5 summarizes related work. Section 6 dis-
cusses and concludes the paper.

2 Use Case: Binary Code Similarity Detection

This section studies the use case of Vestige in binary code similarity detection.
In the following, we discuss the background, challenge of code difference, and
Vestige solution.

In this work, we focus on the static code similarity detection methods. The
dynamic methods that leverage the dynamic execution behaviors, but face the
scalability challenge [12] are left for future work. It is also worthy to point out
that in this work we assume a binary is compiled with one compilation prove-
nance. Although it is possible to compile a binary with different settings, the real-
world software usually uses one configuration for easy maintenance and usabil-
ity [7]. Further, the binary code is assumed to be stripped, which means one
can not get helper information, such as section names, debugging symbols and
sections, symbol and relocation information, and compiler-generated symbols.

2.1 Background

A lot of executable binary code performing different functionalities run in the
servers, mobile devices, and Internet-of-Thing (IoT) devices [9,27,33]. Unfortu-
nately, a large number of vulnerabilities exist in these binaries and have become
the major attacking vectors [23]. For example, the researchers from Independent
Security Evaluators (ISE) find 124 vulnerabilities from 13 routers and network-
attached storage (NAS) devices in 2019 [5]. Also, in February 2020, Cisco con-
firms the existence of five critical vulnerabilities that have affected tens of mil-
lions of network devices [1].

Binary code similarity detection is a commonly used method to detect vulner-
abilities [11,13,14,17,25,40,43]. Given an unknown binary, such a method would
compare it with the vulnerable code from a pre-built vulnerability database. If
the unknown code were similar to one vulnerable code, it would be considered as
a positive which might share the same vulnerability. The identified similar code
will be further investigated either manually or by automatic verification methods
to confirm the vulnerability. The detection of an unknown binary is regarded as
the online phase. Meanwhile, these methods usually need an offline phase, which
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includes preparing the known vulnerable code database and building the model,
e.g., training for machine learning-based methods.

Here we illustrate the details of binary code similarity detection with a recent
work Gemini [40]. First, for any function in the binary code, Gemini represents
it as an attributed control flow graph (ACFG), where each node in the control
flow graph is attributed as an eight-dimension feature vector, including between-
ness centrality value and the number of string constants, numeric constants,
transfer instructions, calls, instructions, arithmetic instructions, and offspring.
Second, Gemini collects n (by default 154) vulnerable functions and extracts
their ACFGs to build the known vulnerability database. Third, for an unknown
binary, Gemini extracts the ACFG of each function, creates query pairs with the
vulnerable functions in the vulnerability database, and computes their similari-
ties. Assume there are m functions in the unknown binary, Gemini would create
m∗n query pairs. Fourth, Gemini computes the similarity score of each function
pair with a neural network-based embedding generation method. Particularly,
Gemini applies a graph embedding network to firstly generate embeddings for
the ACFGs. Later, Gemini uses the Siamese network to compute the similarity
score. For each vulnerability function, Gemini would extract top-k (e.g., k equals
50) similar functions as positive. Finally, the security experts would verify the
positive code to confirm the vulnerability.

2.2 Code Variance from Compilation

The same source code can be compiled to completely different binary codes,
as various compilation toolchains can be used. Therefore, binary code similarity
detection methods face the challenge of code variance brought by the compilation
process. To figure out the impacts, we have studied a commonly used binary
code representation, i.e., control flow graph (CFG), under different compilation
provenances. The node in CFG denotes the basic block and the edge denotes
the control flow. It is directly or indirectly used as the key data representation
in the code similarity detection methods [11,14,40,43].

In this study, we compile the OpenSSL software (version 1.0.1f) with dif-
ferent compilation configurations. The default provenance is GCC-4.8.4 with
optimization level O0 on architecture x86. Further, we compare with a higher
optimization level O3, and a different compiler Clang-3.5. Figure 2 shows the
cumulative distribution function of the similarity score between two CFGs of
the same function but from differently compiled binaries. The similarity score is
measured by the DSC similarity defined in Eq. (1), where |A|, |B| denote the ver-
tex count of CFG A and B, |A ∩ B| denotes the minimum vertex count between
the two CFGs.

DSC(A,B) =
2 ∗ |A ∩ B|
(|A| + |B|) (1)

From Fig. 2, one can observe that both the optimization level and compiler
affect the CFGs. In particular, the optimization level shows a bigger impact,
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only 42% CFGs share the same size and 20% CFGs show a similarity score of
less than 0.53, in which the CFGs are already quite different. The compiler also
affects the CFGs but with a smaller effect. That is, 71% CFGs share the same
size.

Fig. 2. The cumulative distributed function (CDF) of CFG size similarity for different
optimizations and compilers.

2.3 Solution with VESTIGE

To tackle this challenge, existing binary code similarity detection methods focus
on developing algorithms to eliminate these variances. For example, Genius uses
clustering and locality sensitive hashing [14], Gemini uses graph embedding net-
work and Siamese network [40], InnerEye uses recurrent neural networks [43],
and Asm2Vec uses PV-DM model [11]. These methods have been shown to work
well in their experiments, but the number of tested compilation provenances is
limited. For example, excluding architecture variance, they tested 12, 4, 4, and
8 for Genius, Gemini, InnerEye, and Asm2vec, respectively.

Clearly, the complete coverage of compilation provenance poses a significant
challenge. As of this writing, GCC has released 202 versions [3] and LLVM has
53 versions [2]. Each version has at least 4 optimization levels, which makes the
number of compilation provenances for these two compilers more than one thou-
sand, not to mention other factors that can also affect compilation provenance.

Besides capturing the code variance from different compilation provenances,
the all-in-one models in these methods also need to identify the difference
between the binary code compiled from different source code, which is also chal-
lenging. When the compilation provenance scales up, the performance of existing
works will drop further as a result.

The key tenet of this work is that identifying compilation provenance accu-
rately will help produce better detection results of binary code similarity. As shown
in Fig. 3, one can leverage Vestige to first identify the compilation provenance
of the unknown binary. With the provenance information, the following code
similarity detector only needs to compute the similarity between the unknown



Vestige: Identifying Binary Code Provenance for Vulnerability Detection 293

binary code and the known vulnerable code (from the vulnerability database)
having the same compilation provenance. That means, existing code similarity
detection methods only need to worry about the challenge from different source
codes. Further, such a solution can scale up as Vestige takes over the bur-
den of handling a large number of compilation provenances. With Vestige, the
performance of code similarity and vulnerability detection can be significantly
improved as we will show in Sect. 4.

Fig. 3. Applying Vestige to binary code similarity detection. The dotted rectangle
shows the preprocessing step with provenance identification.

3 VESTIGE Design

This section presents the design of Vestige, including attributed function call
graph construction, provenance identification with graph neural network, and
implementation.

3.1 Overview

The architecture of Vestige is shown in Fig. 4. Given a binary, Vestige first
disassembles it to assembly code. Later, Vestige extracts three types of features,
i.e., the idiom features from the instruction level, the graphlet features on the
control flow graph from the function level, and the function call graph from
the binary level. With all these features, we build a new representation, named
attributed function call graph (AFCG). Next, Vestige generates the graph
embedding for AFCG with an attention-based graph neural network.

During the training stage, Vestige tunes the graph neural network model
by the downstream task, i.e., multi-graph classification. In this case, the label is
the compilation provenance combined by compiler family, compiler version, and
optimization level.

During the inference stage, Vestige will go through the same process of
disassembling binary code and constructing AFCG, but output the predicted
compilation provenance.
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3.2 Representing Binary Code as Attributed Function Call Graph

The key to provenance identification is to find the appropriate features that can
show the difference between various compilation provenances. We find there are
three levels of features that can be used in combination to identify provenance.
Together, we construct a new representation for the binary code as attributed
function call graph (AFCG). Below, we will discuss why the features are useful
for provenance identification and how we extract them.

Fig. 4. The architecture of Vestige. Given a binary code, Vestige first builds the
attributed function call graph by disassembling it and extracting three types of features,
i.e., idiom, graphlet, and function call graph. Later, Vestige applies the attention-
based graph neural network to predict the provenance.

1) Instruction level features are used because different compilers and
configurations usually have different approaches in terms of instruction usage,
register usage, instruction ordering, etc. For example, for the source code “tbio
= BIO_pop(f)” in line 3 of Fig. 5(a), GCC-4.8.4-O0 would use the accumulator
register eax and two mov instructions before calling the BIO_pop function. On
the other hand, GCC-4.8.4-O2 would use the base address register ebx and just
one mov instruction.

To identify the differences, we take the instruction patterns, known as idioms,
as the instruction features for provenance identification [35,37]. These features
are generated in two steps, instruction normalization, and feature extraction.

Instruction normalization will keep the essential opcode and normalize the
operands to a general shape. Particularly, we will normalize the register, memory
address, and other user-controlled operands, such as constant and function name.
For the assembly code in Fig. 5(b), we will normalize them to the code shown in
Fig. 6(a).

In the second step, we extract the unique instruction patterns and their
combinations as the feature whose size is the number of covered instructions. To
improve the representativeness of the patterns, we add the wildcard to repre-
sent any instruction. For the example code, the extracted features are shown in
Fig. 6(a) with ‘|’ as the instruction split symbol.

2) Function level features. Similarly, different compilation process will
affect how the basic blocks form the control flow graph (CFG). As a CFG is
extracted from a function, we consider such features at the function level. For the
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example code in Fig. 5(a), it is one node with GCC-4.8.4-O0 shown in Fig. 5(b),
while it is split into two nodes with GCC-4.8.4-O2 shown in Fig. 5(c).

Again, we extract the function features in two steps, CFG normalization
and feature extraction. First, we normalize the CFG by assigning a type value
to each node and edge. As each node is a basic block, its type value will be
decided by the category of contained instructions, e.g., string, branch, and logic
operation [24]. We classify the instructions into 14 categories and use a 14-
bit integer to represent the type, where each bit denotes whether the specific
instruction category exists or not. For the edges initiated by branch operations,
we label them based on the different types of branch operations, e.g., jnz, jge.
The normalized CFG of the example function is shown in Fig. 6(b).

Second, we extract different subgraphs from the normalized CFG as features.
A subgraph is regarded as a subset of the connected nodes with the corresponding
edges. For the example CFG in Fig. 6(b), its subgraphs included G1, G2, G3, and
others. As the goal here is to mine useful subgraph patterns that can represent
the compilation provenance, we set a threshold to the interested subgraph size
(number of nodes) to avoid mining all the possible subgraphs, which is not
scalable as it is an NP problem [15].

3) Binary level features. In this work, we especially focus on the fact that
the compilers will optimize the program from the binary level to achieve the
optimal global performance. Many compiler optimizations work on the binary
level, such as, function inlining, interprocedural dead code elimination, interpro-
cedural constant propagation, and procedure reordering [6]. Taking the function
inlining (usually enabled in O2 and O3 ) as an example, it heuristically selects

Fig. 5. A running example code and its assembly code with different compilation prove-
nance. (a) shows the source code fragment of CVE-2015-1792, (b) (c) (d) show its
assembly code with GCC-4.8.4-O0, GCC-4.8.4-O2, and Clang-5.0-O0, respectively.
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Fig. 6. The features in three levels for provenance identification, using the assembly
code from Fig. 5(b) as an example.

the functions worth inlining. From the binary level, one can clearly see the dif-
ference from a feature like the call relationships between functions.

We find that the function call graph (FCG), generated in the binary level, is
an effective representation to show the changes brought by different compilation
provenances. In an FCG, the node denotes a function, and the edge denotes
the call relationship. It is able to capture the difference from function changes
in terms of number, call relationship, etc. Thus, we construct the FCG as the
binary level feature.

4) Attributed function call graph (AFCG). To combine the features
from three different levels together, we newly design a representation, namely
attributed function call graph (AFCG). Taking the function call graph (FCG)
as the core structure, it attributes each node (function in this case) as an initial
feature vector.

At the training phase, we need to extract the features from a number of
binaries. Since we are extracting the patterns from both instruction and CFG,
the resulted number of features is massive. One can get an impression of the
instruction features in Fig. 6(a). For the first two instructions, we construct 4
features in total, 2 for single instruction, 1 for the two instructions, and 1 for
the two instructions with wildcard in-between. In our experiment with only 600
binaries, the number of extracted features is up to millions. This is known as the
feature explosion challenge, which would cause the machine learning algorithms
to take an incredibly long time to converge [26].

To solve that, we employ the feature selection technique. Particularly, we use
the mutual information method to select a reasonable number of good features.
In this case, a feature is good if it is important to classify different classes, which
can be quantified by the mutual information between the feature and class. In
the end, we select the top-k highly ranked features. Further, for the feature value,
which is initialized as the frequency, we will normalize it to [0: 1] to avoid feature
bias. Particularly, we divide each feature frequency to the maximum frequency
value among all the binaries. To this end, we build the AFCG with a reasonable
number of attributes. An example of the final AFCG is shown in Fig. 4.
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Fig. 7. Graph attention network (GAT). (a) shows the workflow, (b) explains one layer.

3.3 Identifying Provenance with Graph Neural Network

After we generate the AFCG for each binary, the problem is transformed into a
multi-class graph classification problem. Such a problem is a perfect fit for the
graph neural network (GNN) [8,10,22,39], which is able to learn an embedding
for a graph and further tune the model based on the downstream task, i.e.,
multi-graph classification.

For provenance identification, we apply a recently developed graph neural
network, i.e., graph attention network (GAT) [39]. Conventional graph neural
networks, e.g., GCN [22] and structure2vec [10], iteratively learn a model by
accumulating the neighbor embeddings based on the fixed graph structure, i.e.,
equally or degree-based. However, in this application, the neighbor nodes or
edges on the AFCG have different impacts on the final embedding. For example,
when generating the embedding of a node in the AFCG, the function with critical
compilation features that can be used to identify the provenance should be more
representative, and thus should be weighted more for embedding generation.
Fortunately, the graph attention network (GAT) with the attention mechanism
satisfies our requirement. GAT is able to automatically identify the important
nodes and edges and will assign larger weights to the more important ones and
smaller weights to the less important ones. We will elaborate on the details
below.

GAT takes a graph g as input, iteratively computes the node embedding by
attention on its neighbor nodes, and outputs a learned embedding e for the whole
graph as shown in Fig. 7(a). GAT is stacked with L layers. Each layer (except
the input layer) takes the node embeddings from the previous layer as input and
outputs the computed node embeddings from this layer. Below, we will discuss
the details of GAT.
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Attention Mechanism. For the (l+1)-th layer, the node embedding computation
for node v is shown in Fig. 7(b). For every neighbor node of v (including itself),
GAT first learns an attention coefficient, and later computes the embedding for
node v. We use tlv to represent the embedding for node v at the l-th layer which
has d-dimension, and tl+1

v to represent the embedding at the (l+1)-th layer which
has d′-dimension. For every edge connecting u and v, we use αvu to denote the
attention coefficient, which is computed from a single-layer feedforward neural
network. The formalized equation is shown in Eq. (2),

αvu = softmax
(
σ

(
θ [W1t

l
v ‖ W1t

l
u]

))
(2)

where softmax(·) represents the standard softmax function which normalizes
the input vector into a probability distribution, σ(·) represents the activation
function which is the ReLU function in our setting, θ is a weight vector with 2d′

dimensions, W1 is a shared weight matrix with d′ × d dimensions, and ‖ is the
concatenation operation.

Graph Convolution. After obtaining the attention coefficients from the neighbors
of node v, GAT will accumulate the neighbor embedding, which is the graph
convolution operation [22]. The formalized equation is shown in Eq. (3).

tl+1
v = σ

⎛

⎝
∑

u∈N(v)

αvuW1t
l
u

⎞

⎠ (3)

Here for each edge connecting u and v, its accumulated value will be the mul-
tiplication of the attention coefficient αvu, weight matrix W1, and embedding
tlu of node u. Followed by another activation function, one will get the node
embedding tl+1

v with d′-dimension.

Graph Embedding. At the output layer, we will accumulate all the node embed-
dings in this graph to one embedding as in Eq. (4),

e = W2

(
∑

v∈V

tLv

)

(4)

where W2 is a weight matrix with dimension p × p and p equals to d′ of the
previous layer, e is a p dimension vector. We use the cross-entropy loss function
to compute the loss value between graph embedding and the provenance class.
Later, it backward propagates the loss value to the previous layers and optimizes
the learned model with Adam optimizer aiming at minimizing the loss value.

3.4 Implementation

Vestige includes two major components, AFCG constructor and graph atten-
tion network. The AFCG constructor is implemented on top of a binary analysis
platform, Dyninst [38]. We set the pattern size of instruction and function level
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features to be 3 since larger features are slow to generate and usually have low
importance ranks. This setting already yields a million scale feature count for the
evaluated dataset (discussed in Sect. 4). We set the selected number of features
for instruction and function to be 1, 024 (studied in Sect. 4.3).

We implement the graph attention network with TensorFlow (v1.3.0) and
set the intermediate and final embedding size as 128, the number of epochs 100,
the number of iterations 4, the number of heads 2, the learning rate 0.0001. The
parameters are selected based on both accuracy and runtime (Sect. 4.3).

4 Experiment

In this section, we conduct extensive experiments to answer the following
research questions:

– (RQ1) How does Vestige compare with other works on provenance identi-
fication?

– (RQ2) How do the two key designs in Vestige, i.e., attributed function call
graph (AFCG) and graph attention network (GAT), affect the performance?

– (RQ3) How do various parameters impact the performance of Vestige,
including the number of features for constructing AFCG and the hyper-
parameters in graph attention network?

– (RQ4) How can we apply Vestige to binary code similarity detection as
well as vulnerability detection?

4.1 Experiment Setting and Dataset

We run the experiments on an internal server, which has two Intel Xeon E5-2683
(2.00GHz) CPUs. Each CPU has 14 cores and enables hyper-threading. It is also
equipped with four Nvidia K40 GPUs, while only one is used for each run.

We use the following three datasets for the experiment.
Dataset I: Baseline dataset. We build a baseline dataset with five

standard software, i.e., GNU Bash (v4.3), Diffutils (v3.3), Grep (v2.16), Tar
(v1.27.1), and Wget (v1.15). We compiled them with 24 different compilation
provenances, including six compilers, i.e., GCC-{4.6.4, 4.8.4, 5.4.1} and Clang-
{3.3, 3.5, 5.0}, and four optimization levels (O0-O3) on x86 architecture. In the
end, we are able to collect 336 binaries as some software may generate multi-
ple binaries, e.g., 4 for Diffutils. We use this dataset for evaluating provenance
identification.

Dataset II: Code similarity dataset. We build a code similarity
dataset with six software, SNNS-4.2, PostgreSQL-7.2, Binutils-{2.25, 2.30}, and
Coreutils-{8.21, 8.29}. They are compiled with the same 24 compilation prove-
nances. In total, we get 6, 168 binaries. This dataset is used for both provenance
identification and code similarity detection.

Dataset III: Vulnerability dataset. We build a vulnerability dataset with
three versions of OpenSSL (0.9.7f, 1.0.1f, and 1.0.1n) by collecting 20 CVEs.
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They are also compiled with the same 24 provenances. This dataset is used for
vulnerability detection.

The evaluation metric used for provenance identification is accuracy, which
is defined as the number of correctly classified samples over the total. As the label
distribution is balanced, the accuracy is a valid metric. For the experiments of
code similarity and vulnerability detection, the used metric is hit rate. Among
the top-k similar code, if the targeted code is included, it is a hit, otherwise, it
is a miss. Since the top-k similar codes are usually manually investigated by the
security analysts, a higher hit rate with a smaller k would be valued.

4.2 Accuracy of Provenance Identification

This section studies the accuracy of Vestige and related works on provenance
identification, which answers research questions RQ1 and RQ2. This experiment
uses the 6, 504 binaries from the baseline (dataset I) and code similarity dataset
(dataset II). We perform 10-fold cross-validation. For each binary, we guarantee
that all of its 24 provenance varieties are split into the same group so that we
can justify the generalization of the trained model. In this experiment, all the
methods use 1, 024 instruction, and function level features.

We compare with two implementations, i.e., a recent work Origin [35] and a
baseline of Vestige with a different graph neural network model, structure2vec
(S2V) [10]. We get the source code of Origin from the Dyninst group. Both
implementations are configured with the parameters leading to their best per-
formance.

Table 1. Accuracy of binary code provenance identification (The best are highlighted).

Origin Vestige-S2V Vestige-GAT

Optimization level 92.2% 98.7% 99.0%
Compiler version 96.8% 95.5% 97.9%
Compiler family 99.5% 99.5% 99.5%
Overall accuracy 90.2% 93.3% 96.1%

Table 1 presents the accuracy for overall provenance, and specific compila-
tion configurations, i.e., optimization level, compiler version, and compiler family.
Each case is studied independently while keeping the other two unchanged. We
can get three consistent observations. First, Vestige outperforms other works
on provenance identification for the overall and specific provenance (RQ1). For
the overall provenance, Vestige with GAT is able to achieve 96.1% accuracy
over Origin’s 90.2%. For the specific provenances, Vestige achieves 99% accu-
racy over Origin’s 92.2% for optimization levels. For compiler versions, Vestige
achieves 97.9% accuracy over Origin’s 96.8%. For compiler family, both methods
achieve a rather high accuracy at 99.5%.
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Second, GAT is effective for provenance identification (RQ2). With the same
input, Vestige with GAT outperforms Vestige with S2V for both overall and
specific compilation provenances as shown in Table 1. The improvement demon-
strates the effectiveness of the attention mechanism on capturing the important
nodes and features towards the correct compilation provenance.

Third, AFCG is an efficient representation for the binary code towards com-
pilation provenance identification, especially for optimization level (RQ2). We
intend to compare two implementations with the only difference in AFCG, while
the machine learning method in Origin can not take AFCG as input and the
graph neural network can not sustain the input of Origin. From both Table 1
and Fig. 8, we can see the effectiveness of AFCG. From Table 1, one can see
Vestige-S2V gets 98.7% accuracy over Origin’s 92.2% for optimization level.

Further, Fig. 8 shows the accuracy changes for overall and specific compila-
tion provenance with a different number of instruction and function features.
Interestingly, with only 16 features, Vestige can achieve 98% accuracy for opti-
mization level, up to 31% higher than Origin. This clearly shows the impact
of binary-level features for provenance identification. AFCG is able to identify
optimization level differences since many optimizations work on the binary level.
Origin crashes when adding more features beyond 1, 024 due to the large inter-
mediate data size crashes the used tool, CRFsuite [31].

Fig. 8. Accuracy of binary provenance identification with different number of features
for (a) overall, (b) optimization level, (c) compiler version, and (d) compiler family.
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4.3 Sensitivity Study

This section conducts sensitivity study for the feature count in AFCG and the
hyper-parameters in GAT (RQ3). We use the same dataset from the previous
experiment and also perform 10-fold cross validation.

1) Feature count in AFCG denotes the total number of instruction and
function level features. This is the major parameter for constructing AFCG,
as only a small number (thousand scale) of the total features (million scale)
will be selected. We perform an extensive study on this parameter by selecting
different number of features. Particularly, we test the provenance accuracy of
overall, optimization level, compiler version, and compiler family for the number
of features from 16 to 4, 096 with the power of two. The results are shown in
Fig. 8.

We can get two consistent observations in this experiment. First, Vestige
and the two compared works mostly converge with around 1, 024 features. For
the overall accuracy, Vestige-GAT achieves 96.1% with 1, 024 features. With
4, 096 features, the accuracy only improves a little bit 0.8%. Similar observation
can be concluded on the accuracy of Vestige-S2V. To this end, we can conclude
that 1, 024 instruction and function level features are sufficient for provenance
identification.

Second, the binary level feature can help to effectively identify the changes
from different provenance, especially the optimization level, which has been stud-
ied in the previous experiment. For the compiler version, Vestige is able to get
86% with 16 initial features, comparing with Vestige-S2V’s 81% and Origin’s
68%. Interestingly, starting from 128 features, Origin performs better than Ves-
tige-S2V-based method. We believe this is because the S2V model is not able
to emphasize the nodes relating to the correct provenance since it equally weighs
the neighbor nodes. For compiler family, it is relatively easy to predict as all the
methods are able to achieve high accuracy, i.e., over 98% from 16 features.

2) Hyper-parameters in GAT are studied in this experiment. Figure 9
presents the accuracy of Vestige with different GAT hyper-parameters, includ-
ing number of epochs, embedding size, iteration count, and head count. For each
parameter test, we keep the others as default (discussed in Sect. 3.4).

Figure 9(a) presents the overall and specific provenance accuracy against the
number of epochs. We run the test dataset every 10 training epochs. With only
20 epochs, Vestige already reaches a stable state, where the overall accuracy
is around 95%, both optimization level and compiler family are close to 100%
accuracy, and the compiler version is above 95%. In this experiment, we are
training with a large number of binaries, i.e., 5, 854, each epoch takes about 10.3
min. That means, one is able to train a usable Vestige model within 206min.

Figure 9(b) presents the accuracy against different embedding size. We test
five embedding sizes, i.e., 32, 64, 128, 256, and 512. One can see that the opti-
mization level and compiler family achieve high accuracy regardless of the embed-
ding size. However, the overall accuracy and compiler version increase to a stable
state from embedding size 128. As larger embedding sizes take longer time to
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Fig. 9. Sensitivity study of hyper-parameters in GAT, including (a) epoch number, (b)
embedding size, (c) iteration count, and (d) head count.

train, e.g., embedding size 512 costs 26% more time than size 128 per epoch, we
select 128 as the embedding size.

Figure 9(c) shows the accuracy against different number of iterations. We
test six iteration counts from 1 to 6. The optimization level and compiler family
achieve high accuracy from 3 iterations, while the overall and compiler version
achieve high accuracy from 4 iterations. Although the iteration count does not
significantly affect the runtime, training with 6 iterations still costs 3% more
time than 4 iterations per epoch. Therefore, we set the iteration count to be 4.

Figure 9(d) shows the accuracy against different number of heads from 1 to
5. One can observe that starting from 2 heads, the model achieves high accuracy
for the overall provenance as well as each specific provenance. For the runtime,
training with 5 heads would incur 11% more time per epoch. Therefore, we set
the head count to 2.

4.4 Case Study: Code Similarity Detection

This section applies Vestige to binary code similarity detection, and later vul-
nerability detection (RQ4). Particularly, we apply three recent code similarity
detection methods, i.e., Gemini [40], Genius [14], and BGM [14]. They convert
each binary function as an attributed control flow graph (ACFG), which is pre-
sented in §2. We illustrate their details in the following.

– Bipartite graph matching (BGM) is a baseline method to evaluate the pairwise
graph-based matching approaches [14,40]. BGM regards the similarity score
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of two binary functions as the graph edit distance-based similarity between
the two ACFGs. We get its source code from the authors of Genius [14].

– Genius is the first work of using graph embedding for binary code similar-
ity detection [14]. Since each function is represented as an ACFG, Genius
uses graph edit distance to compute the similarity of two functions. Later,
it applies the bag-of-words method to create a high-level embedding for each
function. During online searching, it uses semantic hashing on the embed-
dings to quickly get the similar code. We get part of the source code from the
authors and reimplement the rest.

– Gemini presents the first work of using a graph neural network to generate
embeddings for binary code similarity detection [40]. It uses the Siamese
network to supervise the embedding generation. The Siamese network takes
two embeddings as input with the label as either +1 for similar and −1
for different, computes the loss value, and back propagates it to embedding
generation. We get its source code from the authors.

1) Case #1: Code Similarity Detection.
The code similarity dataset (Dataset II) is used for this experiment. BGM

does not need training, but it needs tuning the cost weight for the eight attributes
in ACFG. We use the default values from [40] as they get them through large
scale testing. Both Genius and Gemini need the training to be able to identify
similar code. Realizing the binaries from the same software may share similar
code, we split the dataset into training and testing from the software level. That
is, we use the 600 binaries from software SNNS and PostgreSQL as training
dataset, and the 5, 568 binaries from Binutils-{2.25, 2.30} and Coreutils-{8.21,
8.29} as testing dataset. Vestige uses the same split for the training and testing
dataset. Such dataset splitting would show the generability of both Vestige and
code similarity detection methods.

Table 2. Top-1 and top-5 hit rate for the original methods and new solutions with
Vestige on binary code similarity detection.

Top-1 Top-5
Original + Vestige Original + Vestige

BGM 29% 56% 45% 89%
Genius 51% 64% 69% 91%
Gemini 66% 87% 77% 94%

During testing, we randomly select 1, 000 different query functions from the
testing dataset. For each query function, we will search the targeted binaries,
which are known to have matches to the query function. In the end, we compute
the average hit rate of the 1, 000 queries under different top-k values.

To integrate with the code similarity methods, during the online phase, we
first use Vestige to figure out the compilation provenance of the query binary,
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and later apply the code similarity methods to compute function similarities with
the predicted provenance. In this case, Vestige gets 82% accuracy for the whole
compilation provenance, and 100%, 96% and 84% accuracy for compiler family,
compiler version, and optimization level, respectively. Although the performance
drops compared with cross validation result from Sect. 4.2, it is reasonable as
the training and testing are on a completely different dataset and the size of
the testing dataset is much larger than the training. In fact, this shows the
generability of our method in a practical scenario.

Table 2 shows the hit rate of top-1 and top-5 for the three code similarity
detection methods without and with our provenance identifier. We can observe
that provenance identification is able to significantly improve the performance
of all the works. Particularly, for the top-1 hit rate, the original code similarity
detection methods, BGM, Genius, and Gemini get 29%, 51%, and 66%, respec-
tively. Vestige is able to improve the hit rate by 27%, 13%, and 22%, for BGM,
Genius, and Gemini, respectively. Top-1 hit rate is most important because the
security analysts would start the manual investigation from the first one. Fur-
ther, for the top-5 hit rate, the provenance identifier is able to improve BGM,
Genius, and Gemini by 44%, 22%, and 17%, respectively. Interestingly, the sim-
ple baseline method, BGM, with Vestige is able to reach a rather high 89%
hit rate. Note that, the hit rates of prior works align with their original reports
since we only pick up the most strict and meaningful top-1 and top-5 hit rates.

2) Case #2: Vulnerability Detection.
In this study, we extend the evaluation of general code similarity detection

to the specific case of vulnerability detection. Particularly, we reuse the trained
models of the three code similarity works and Vestige from the previous exper-
iment.

We use the vulnerability dataset (Dataset III), and take the ACFGs from
OpenSSL-1.0.1f as the vulnerability database. For each binary, we will query
against the binaries with 24 different compilation provenances from OpenSSL-
1.0.1f. We report the average results of all the binaries with different compilation
provenances for that OpenSSL version. Our provenance identifier is able to get
71% accuracy for the overall provenance, and 94%, 78%, 75% for compiler family,
compiler version, and optimization level, respectively.

Table 3 shows the top-1 hit rate of the three works without and with Vestige
for the 20 CVEs. Interestingly, the provenance identification of Vestige is able
to significantly improve the performance of the original works on code similarity
detection. One can see that, the original code similarity works get 50%, 39%, 33%
top-1 hit rate for Gemini, Genius, and BGM, respectively. With Vestige, the
top-1 hit rate improves to 76%, 58%, and 49% for Gemini, Genius, and BGM,
respectively.

To understand the false positives of vulnerability detection, we take a deep
look at the specific cases. A false positive is likely to happen if a queried nor-
mal function shares similar ACFG with the vulnerable function. Although it is
uncommon for two completely different functions to have similar ACFGs, we
do observe some occurrences, e.g., CVE-2016-0705 which is a double free vul-
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Table 3. The average hit rate (%) of top-1 candidates on the 20 CVEs. +P represents
adding our provenance identifier Vestige to their methods.

CVE Query BGM : +P Genius : +P Gemini : +P

2015-0209 1.0.1f 46 : 67 50 : 71 50 : 88
2014-0195 1.0.1f 33 : 42 42 : 58 54 : 92
2016-2106 1.0.1f 58 : 63 58 : 63 63 : 83
2012-0027 1.0.1f 42 : 58 58 : 67 63 : 88
2014-3513 1.0.1f 46 : 71 50 : 83 67 : 92
2015-1791 1.0.1f 50 : 67 50 : 83 71 : 96
2015-3196 1.0.1f 42 : 67 38 : 75 58 : 92
2014-3567 1.0.1f 22 : 56 33 : 67 50 : 79
2016-0797 1.0.1n 21 : 41 25 : 41 38 : 83
2016-2180 1.0.1n 25 : 42 29 : 83 46 : 95
2016-2105 0.9.7f 58 : 67 47 : 58 58 : 83
2016-2176 1.0.1n 38 : 42 38 : 46 50 : 67
2016-2109 0.9.7f 10 : 29 30 : 38 40 : 54
2015-3195 0.9.7f 25 : 42 50 : 63 58 : 83
2016-2182 0.9.7f 25 : 42 33 : 50 46 : 58
2016-2178 0.9.7f 13 : 25 19 : 42 25 : 63
2015-0292 0.9.7f 37 : 42 46 : 54 50 : 67
2016-2105 0.9.7f 58 : 63 58 : 63 67 : 71
2016-2842 1.0.1n 5 : 25 10 : 33 19 : 50
2016-0705 1.0.1n 13 : 21 17 : 21 19 : 42
Average – 33 : 49 39 : 58 50 : 76

nerability in function dsa_priv_decode. In this case, another function, named
d2i_ECPrivateKey, is ranked as top-1 for some queries, which encodes and
decodes functions for saving and reading a key data structure. We have identified
two factors that explain this false positive. First, although the source codes of
the two functions are different, they share some similarities. Both of them are
related to private key decode, which results in them both invoking a number of
similar private key related functions. And the two functions have similar cod-
ing characteristics, i.e., both have many conditional branches (including if and
goto), and neither has loop operations. Thus, their structures and code features
are similar. Second, from the binary level, these two functions share quite sim-
ilar graph structures. For example, for OpenSSL version 1.0.1f compiled with
Clang-3.3-O0, the CFG of dsa_priv_decode has 44 nodes and 61 edges, while
d2i_ECPrivateKey has 40 nodes and 58 edges. In short, in this case, the best
traditional solution, i.e., Gemini, shows the top-1 hit rate of 50% across 24 vari-
eties. However, with Vestige, the hit rate improves to 76%.
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5 Related Work

The first work on binary code compilation provenance identification is done by
Rosenblum et al. [36]. They extract the instruction level features, i.e., idioms,
and train a provenance identification model with the linear conditional random
fields (CRF) method. Further, they design Origin by adding another type of
feature, i.e., the graphlet features from function level [35]. They still use the
same linear CRF model. Although there are two more proposed works, Origin
still achieves the best performance [28]. BinComp builds a three-layer prove-
nance identification model [34]. The first layer learns the code transformation
rules with supervised learning. The second layer extracts the statistical features
and labels compiler-related functions. The third layer identifies the compiler
version and optimization level from the semantic features. BinComp relies on
compiler helper information, which is affected by a complete strip. Massarelli et
al. design a graph embedding neural network for provenance identification [28].
They build an attributed control flow graph by representing each basic block
as an embedding with natural language processing (NLP) models. Using NLP
model is promising, but they also miss the important binary level features. o-
glassesX [32] identifies the compilation provenance from a short code fragment
using a deep learning model with attention mechanism and convolutional neural
network. However, the compiler version and optimization level are not well differ-
entiated. For example, the optimization level is only classified as either low (O0)
or high (O3). We only compared with Origin and a variant of Vestige for two
reasons. First, we were not able to find the source code of some other works, e.g.,
BinComp [34]. Second, even if we got the source code, e.g., o-glassesX [32] (we
really appreciate their efforts of releasing them), we were not able to run them
on our dataset due to failures on configuring the required disassembly tools.

6 Discussion and Conclusion

The interpretation of machine learning methods, especially neural networks, is
an open challenge. Vestige uses one graph-based neural network, i.e., graph
attention network. We have tried to interpret Vestige from the perspective of
extracting useful features towards code provenance identification, i.e., the three-
level features investigated in Sect. 3. Recently, we see several interesting methods
for graph neural network explanation [42]. In the future, we would try to explain
Vestige with such methods. Though Vestige uses a graph neural network, it
takes reasonable time for training and inference. We also see some interesting
works on accelerating the computation of graph algorithms [18–20], which we
would like to leverage in the future to further improve the runtime performance.

In this work, we designed Vestige, a binary code provenance identification
framework with a graph neural network. Vestige designs a new representa-
tion of binary code, i.e., attributed function call graph (AFCG) and applies an
attention-based graph neural network, graph attention network. We have tested
Vestige on several publicly available datasets with more than six thousand
binaries. Vestige outperforms state-of-the-art by 6% for overall provenance.
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Abstract. Enforcement of policy regulations and availability of audit-
ing mechanisms are crucial building blocks for the adoption of distributed
payment systems. In this work we review a number of existing propos-
als for distributed payment systems that offer some form of auditability
for regulators. We identify two major distinct lines of work: payment
systems that are not privacy-preserving such as Bitcoin, where regu-
lation functionalities are typically tailored for organizations controlling
many accounts, and privacy-preserving payment systems where regula-
tion functionalities are typically targeted to user level. We provide a sys-
tematization methodology over several axes of characteristics and perfor-
mance, while highlighting insights and research gaps that we have iden-
tified, such as lack of dispute-resolution solutions between the regulator
and the entity under audit, and the incompatibility of ledger pruning or
off-chain protocols with regulatory requirements. Based on our findings,
we propose a number of exciting future research directions.
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1 Introduction

Distributed payment systems have emerged as an alternative to the central-
ized banking system. Starting with Bitcoin [51], a number of schemes have been
proposed with the common characteristic of relying on a globally distributed,
append-only public ledger (which is sometimes in the form of a blockchain), to
record monetary transactions in a publicly verifiable and immutable way. These
systems utilize various cryptographic primitives to secure transactions, as well
as a consensus protocol to guarantee agreement on the ledger’s state by all par-
ticipants. User participation can be controlled or unrestricted, categorizing such
systems in permissioned and permissionless respectively. While such systems
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are increasingly growing in popularity, they are often associated with fraudulent
transactions [27] or with loss of user funds due to lack of regulation [50].

The distributed nature of the ledger, typically accessible by the open pub-
lic or by a wide base of participants (even in permissioned systems), enables
external observers to access transaction information, for example sender/receiver
addresses or transaction amounts. These addresses are essentially random look-
ing strings and provide their owners a sense of anonymity, especially in per-
missionless payment systems where anyone can easily create multiple addresses.
However, it has been shown it is possible to associate these “pseudo-anonymous”
addresses with real identities, for instance using clustering techniques [49]).
These concerns led to a number of privacy enhancing proposals. Some were stand-
alone cryptocurrencies offering strong privacy guarantees such as Zcash [17] or
Monero [57], while others were add-on functionalities to existing systems, such
as CoinJoin [48] or TumbleBit [43]. But these systems in turn raised concerns for
the regulatory and law-enforcement authorities, since the abuse of such strong
privacy guarantees provides users the potential to circumvent regulatory controls
(e.g. tax evasion or unauthorized money transmission) or even engage in fraud-
ulent/illegal activities (e.g. money laundering, extortion or drug trafficking [6]).

Needed Features and Regulatory Goals. Ensuring compliance with regulations
is crucial for any widely-accepted payment system, even in a system that is
designed to preserve user privacy. The goal is to ensure that the system and/or
its participants comply with financial regulations and laws (e.g. cannot con-
duct illicit activities such as money laundering without being accountable to
the authorities). In this setting, state authorities or audit firms (e.g. Deloitte or
KPMG [4,13]) will need to be convinced that the auditee “follows the rules” by
meeting certain regulatory requirements. For example, all participants in a pay-
ment system should be compliant with Anti-Money Laundering and Counter-
Terrorism Financing (AML/KYC) per Financial Action Task Force (FATF)
Travel Rule [5], while an auditor should be able to verify compliance with regula-
tions such as the European General Data Protection Regulation [12] or industry-
specific requirements such as the Health Insurance Portability and Accountabil-
ity Act (HIPAA).

Regulation in Distributed Payment Systems. As mentioned above, pseudoanony-
mous distributed payment systems such as Bitcoin do not hide transaction infor-
mation. However, the posted information is not enough to provide regulatory
control and additional regulation functionalities are still needed. For instance, in
the cryptocurrency world there exist numerous types of centralized organizations
which hold users’ coins (e.g. online wallets, exchanges, interest accounts etc.) or
even “stablecoins” that are backed by fiat currency [9]. These third-party inter-
mediaries are typically opaque to their internal operations, and several infamous
examples exist where users lost their funds without holding these intermedi-
aries accountable [50] or organizations investing users’ funds instead of focusing
on solvency [10]. In fact, the Conference of State Bank Supervisors proposed a
model regulatory framework including cryptographic solvency proofs as a means
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of demonstrating solvency [3]. In that end, some works [23,28] focused on mak-
ing these services more transparent to earn users trust, and provide auditability
functionalities to authorities (i.e., proving that they are solvent) without disclos-
ing additional information or exposing their users’ privacy1. However preserving
privacy does not come for free, as this makes proof manipulation or collusion
possible to falsely convince an auditor on the organization’s claims.

In the privacy-preserving setting, enforcing regulation is even more chal-
lenging, as the notions of privacy and regulation seem contradictory. In such
distributed payment systems, regulation implies auditability and accountability
at user level (e.g. disclosing the user’s assets or past transactions) or transaction
level (e.g. disclosing the participants or value associated with some transaction),
while the public ledger entries hide such information from parties not associated
with it. A handful of academic works attempted to provide some basic account-
ability or auditability functionalities, either on top of existing privacy-preserving
payment systems [28,37], or as new stand-alone ones [52,59]. However, at the
time of writing, no such work has attempted to provide a complete solution that
would satisfy all needs from its users and regulators, and there is still a research
gap for addressing regulatory concerns (e.g. enforce regulation in permissionless
systems [29]).

Our Contributions. We review and unify the landscape of distributed payment
systems that offer some form of auditability or accountability. Such forms can
range from simple audit protocols where an auditor learns some hidden informa-
tion posted on the public ledger (e.g. hidden value of a transaction), up to system
policies that are automatically executed based on a system participant’s behav-
ior, while remaining consistent with the system basic security properties. We
provide a non-exhaustive list of such functionalities in Sect. 2.2. We then catego-
rize related work into two distinct groups: schemes that do not have underlying
privacy characteristics, and schemes that preserve some privacy. These groups
in turn create two major categories of regulatory functionalities: at an orga-
nization level and at a user/transaction level. Our systematization framework
considers the following three axes: (1) the security guarantees of each scheme
for organization-level auditing (as such audits can be easily abused or leak infor-
mation), and their audit functionalities for user/transaction-level auditing (as
we identify a plethora of such functionalities in privacy-preserving systems), (2)
the efficiency asymptotics and (3) the overall properties and attributes. Through
our systemic categorization, we identify a number of insights and research gaps
which pave the path for future research directions.

Systematization Scope. We focus on distributed payment systems (using a com-
mon public ledger) offering some form of auditability or accountability as regu-
lation functionalities with any level of privacy guarantees.

We include related works that either propose the above functionalities as
stand-alone systems [52,59] or as extensions/add-ons to existing systems [28,37].
1 In some scenarios, non-private auditing might suffice. However, such a protocol would

be trivial from a security standpoint, and to our knowledge no related proposal exists.
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We include both permissioned and permissionless systems and with different
“bookkeeping” formats (e.g. UTXO or account-based). Our work remains orthog-
onal to the underlying data structures used by the common ledger and to the
underlying consensus protocol.

The rest of this paper is organized as follows. In Sect. 2 we provide the defini-
tions and security properties used for our systematization. In Sect. 3 we discuss
our categorization for the works we consider. In Sects. 4 we present regulation in
works that do not have any underlying privacy preserving mechanisms and high-
light insights and research gaps, while in Sect. 5 we follow a similar pattern for
privacy preserving systems. We conclude in Sect. 6 with a summary of proposed
research directions in this field.

2 Background

We informally present the necessary concepts and definitions required through-
out this paper and provide a more detailed cryptographic background in
Appendix A.

2.1 (Private) Distributed Payment Systems

Assuming the existence of a consensus layer, we define a basic distributed pay-
ment system (DPS) to consist of the following algorithms: Setup(), CreateAcc(),
CreateTx() and VerifyTx() with a public ledger L as common input and output.
A DPS can be permissioned where all participants are known (typically con-
trolled by a single entity or organization), or permissionless where participation
is open to anyone, resulting in more decentralization (in the above generic defini-
tion we do not distinguish between a permissioned and a permissionless system).
Note that although participation in the system is typically consistent with the
consensus protocol (i.e. transacting in a permissioned payment system implies
a permissioned consensus, similarly for permissionless), this is not always the
case. For example, it is possible to run a permissionless payment system with
a permissioned consensus layer, such as a permissionless “Fabcoin” on top of
Hyperledger Fabric [14].

A distributed payment system must satisfy the following core properties,
which are typically safeguarded by verifiers participating in the consensus algo-
rithm (e.g. often called “miners”):

• Theft prevention: Spending values from a sender account S requires knowl-
edge of private information associated with that account (typically a secret
key skS).

• Balance: A transaction which transfers a value v from a sender S to a receiver
R, should always increase a receiver’s total assets by v and adjust S’s total
assets by −v.

• Non-negative assets: A transaction that spends v from sender’s total assets,
should not result in negative assets for S which would allow S to overspend.
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Private DPSs come with the following “privacy-preserving” properties:

• Confidentiality: Only the sender S and the receiver R of a transaction tx can
learn the value associated with tx.

• Anonymity: An external observer of tx cannot derive the public keys or iden-
tifiers of S and R associated with that transaction2.

We note that some systems might offer only one of the above privacy charac-
teristics, but not both. However, if the system provides both confidentiality and
anonymity, we say that it is fully private. We also call a system pseudoanonymous
if it does not provide any of the above.

2.2 Enforcing Regulation in Distributed Payment Systems

We now organize the different types of regulation that we encounter in the related
literature. These are protocols or policies that disclose information to the auditor,
where as an auditor we consider some type of a regulation authority or an audit
firm.

Disclosed information can include (but not limited to) [26,52,59]:

• Transaction sender and/or receiver
• Transaction value
• Tax compliance
• Total value of assets

Note that as we discuss below, some functions are mostly applicable to private
DPS (e.g. transaction value) while others are applicable to pseudoanonymous
systems as well (e.g. total value of assets).

Transaction and User-Level Regulation. As a starting point, an auditor or
a regulation authority would focus on inquiries that involve single transactions
or the transaction history of certain system participants3. At first glance it might
seem that a privacy-preserving system (which hides transaction values and/or
transacting parties) cannot comply with such regulatory requirements. However,
via the use of cryptographic techniques we can allow for auditability and/or
accountability properties. We informally define such properties as follows:

• Auditability: There exists a protocol where an external auditor A having
access to the common public ledger can provably learn the requested infor-
mation to be audited (e.g. the participating parties in a transaction). This
protocol can be either interactive with the audited parties (requiring their
consent) or non-interactive (where A learns the information at will).

2 This property is sometimes referred to as “transaction graph obfuscation”.
3 In typical DAPs, a “human user” might control multiple payment addresses. By

user/participant regulation below we refer to address-level regulation, unless we
explicitly explain otherwise in certain permissioned schemes.
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• Accountability: There exists a system functionality which enforces automatic
execution of policies (as defined in its parameters) when a certain predicate is
satisfied. For instance, these policies might automatically reject transactions
from a specific user or transactions that do not comply with a spending limit
and potentially also automatically disclose private information to a designated
authority.

Auditability vs Accountability. In general, accountability does not require active
participation of an auditor, and accountability policies are typically enforced
during the verification phase of a transaction (which usually happens at the
consensus layer). For instance, the system might perform certain actions based
on the value of the transaction or the cumulative value of recent ones, such as
involuntary leakage of information from that transaction or prevent acceptance
of subsequent transactions. The system might also enforce other system-wide
policies (e.g. tax payment to a pre-determined address). Therefore, accountabil-
ity can be thought of as a stronger version of auditability, as defined in a general
context in [34,38,42,46]. Another distinctive characteristic is that accountability
is proactive in nature, while auditability is reactive.

Auditability and Accountability vs. System Security. We note that in some works,
the notions of auditability and accountability are implicitly used as a “dishon-
esty” detection mechanism (e.g. breaking the ledger’s immutability property),
aimed to incentivize a party to “follow the rules” and holding it accountable
when it attempts to violate the system’s security [11,22,39]. For instance, in
Bitfury’s whitepaper on Blockchain auditability [11] both of these notions are
used interchangeably, and are associated with a system service that detects such
malicious activities even in case of collusion with ledger maintainers. However,
we don’t include such a role for an auditor within our scope, and we assume any
such activity would be promptly detected and/or prevented by the consensus
layer. In fact, in a regulatory context a party might violate laws or regulations
(e.g. launder money, transfer more than $10k in a day etc.) without ever violating
the system protocols or breaking its security properties.

Organization-Level Regulation. In the case of an organization controlling a
number of payment system accounts on behalf of its customers (i.e., a bank or
custodial service), a regulatory concern is if the organization is solvent. Such a
proof of solvency can be considered as a form of auditability, which convinces
an auditor that the organization indeed controls sufficient funds reflected on the
public ledger, without however disclosing more information other than this fact
is true (e.g. number of its clients, total assets etc.). A solvency proof typically
consists of two parts: a Proof of Assets (PoA) and a Proof of Liabilities (PoL),
which when combined prove that an organization’s assets exceed its liabilities,
thus proving solvency. We discuss both of these proofs below. Note in some
cases it might be sufficient to prove “partial” solvency (as it is typically done
in the real-world) but from a technical standpoint, it’s trivial to convert a full
solvency to a partial solvency proof. However, an organization would typically
prefer to only prove its solvency without disclosing additional information (e.g.
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specific asset amounts or account public keys). Also, while regulation at user or
transaction level is trivial, in pseudoanonymous systems there are many factors
to consider at organization-level, regardless of the system’s privacy properties.

Proof of Assets (PoA). As in auditability protocols, a Proof of Assets needs
to convince a verifier that an organization controls at least a certain amount of
funds. Note than this proof does not necessarily need to disclose the exact amount
to the auditor, and a lower bound will be sufficient. In some cases however, an
upper bound could be provided as well (e.g. in a tax scenario, an organization
might want to prove its total assets value lies within a “tax bracket”).

For a pseudoanonymous payment system, a naive PoA is to provide signa-
tures to the auditor for some (or all) of the accounts it controls, by also including
some challenge value or nonce-timestamp in the signature to ensure freshness.
Proving Assets in privacy-preserving systems however might require more com-
plex protocols that involve cryptographic primitives such as ZK proofs.

Proof of Liabilities (PoL). Here the organization needs to periodically publish
information on its liabilities (e.g. user balances in banks or exchanges [8]). This
information can be either provided directly from the organization, or stored in
a public bulletin board. However, with this information publicly available, it
is desirable to leak as little side-information as possible (e.g. without exposing
the exact value of the organization’s liabilities or other information related to its
clients). The published information is verified by clients in a probabilistic fashion
(i.e., not all of the clients need to actively check for the validity of the published
information). We note that publishing this information can be seen equivalent
to an auditor “reply” step (where any client can assume the auditor role), so it
is possible to reduce the PoL functionality to an auditability protocol.

2.3 Security Properties and Threats of Regulatory Functions

Based on the above discussion of required regulatory functions for DPS we infor-
mally define the related security properties.

• Regulation Correctness. An honest auditee following the regulation protocols
should always be able to convince an auditor and transact under the correct
system policies.

• Regulation Soundness. An auditor should always reject false claims for a mali-
cious auditee, while the system should always apply the corresponding policies
to the system participants that should be affected by those policies.

• Minimal Information Disclosure. When implementing a regulation function-
ality, the auditee should only disclose the needed information, without suffer-
ing any “collateral damage” in terms of privacy. For instance, when a user is
asked if ever transacted with a specific party, it should not reveal the asso-
ciated values; an exchange proving solvency should not leak its number of
clients.

Beyond security, some additional desired properties are the following:
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Table 1. Organization-level Regulation of pseudoanonymous schemes. By � we denote
support of a functionality or addressing a security or privacy issue, by ✕ the existence
of security or privacy issues and by “N/A” non applicability.

Functions Auditor security Auditee security
Gener-

alizePoA PoL

PoA

Collu-

sion

Hid-

den

Liab.

Value

hiding

Popul.

hiding

Account

Leakage

Multi

Proof

Leakage

Provisions

[28]

� � � � � ✕ � � Y

ZeroLedge

[31]

N/A � N/A � � ✕ � � Y

DaPoL [23] N/A � N/A � � � � � Y

Maxwell [7] � � ✕ ✕ ✕ ✕ ✕ ✕ Y

Blockstream

[56]

� N/A ✕ N/A ✕ N/A ✕ � N

Wang [58] � N/A � N/A ✕ N/A N/A � Y

• Offline Auditors. A system compatible with offline auditors, who do not need
to always maintain and track its entire public state.

• Out-of-band Communication and Storage. Regulatory functions are preferably
performed using system-maintained information, minimizing the use of out
of band protocols.

• Dispute Resolution. There exists a mechanism to resolve disputes between an
auditor and auditee, in case a malicious auditor falsely accuses the auditee
of non-compliance. Such mechanism might even include holding an auditor
accountable for its own actions.

3 Systematization Methodology

We first categorize all works and systems we consider into two major taxonomies.
The first considers pseudoanonymous DPSs (where audits are typically per-
formed at an organization level), and are discussed in detail in Sect. 4. The
second includes schemes that have privacy-preserving attributes (where they
typically perform auditing at a transaction or user level), and are discussed in
detail in Sect. 5 (from our previous discussion, user or transaction-level auditing
in pseudoanonymous systems is trivial from a cryptographic standpoint).

Our core systematization is performed over the following three axes (we con-
sider systems with respect to their privacy guarantees separately within each
axis):

Audit Properties Axis: We first consider pseudoanonymous systems. In such
schemes the basic audit functionalities are Proof of Assets (PoA) and Proof
of Liabilities (PoL) which happen in an organization level. In Table 1 we con-
sider schemes that provide PoA and/or PoL functionalities. Additionally, we
also look at security and privacy properties, as existing works in the literature
have different security guarantees, both for the auditor and the auditee. From
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Table 2. Regulation Functionalities in Private Schemes. By � we denote supporting
functionality, by � that although not explicitly defined, the scheme can be trivially
extended to support that audit type and by “N/A” no support.

Scheme Transaction-level Tx/User

level

User level

Lim Trace Value Sender-

Receiver

Tax Non- par-

ticipation

Sum Blacklist Stats Anonym.

revocation

Zcash ext [37] � � � � � � � � � �

ZKLedger [52] � N/A � � � � � � � N/A

PRCash [59] � N/A N/A N/A N/A N/A N/A N/A N/A �

PGC [26] � � � N/A � N/A � N/A � N/A

MiniLedger [25] � N/A � � � � � � � N/A

ACCDET [15] N/A N/A � � N/A � N/A N/A N/A N/A

ATRA [19] N/A N/A � � N/A N/A N/A N/A N/A N/A

MProve [32] N/A N/A N/A N/A N/A N/A � N/A N/A N/A

Damg̊ard et al. [29] N/A N/A N/A N/A N/A N/A N/A N/A N/A �

Barki-Gouget [16] N/A N/A N/A N/A N/A N/A N/A N/A N/A �

the auditor’s point of view, security implies Regulation Soundness, i.e. rejecting
false PoA due to collusion among organizations (denoted as “PoA Collusion” in
Table 1) or false PoL due to “Hidden Liabilities” not included in the proof. From
the auditee’s point of view, security implies Minimal Information Disclosure, i.e.
hiding the actual values of its total assets and liabilities (“Value hiding”), not
leaking its total client population (“Population hiding”) or other details on its
accounts (“Account Leakage”), and preventing a malicious auditor from infer-
ring any additional information from subsequent proof executions (“Multi Proof
Leakage”). In Table 1 we present a classification of systems according to the
above properties, and discuss them in detail in Sect. 4. We also classify a scheme
based on whether it can be generalized to work for any distributed ledger-based
payment system or if it is designed for a specific one.

For regulating privacy-preserving systems (at a transaction or user level),
we desire a scheme to offer a wide variety of auditability and accountability
functionalities. In Table 2, we first distinguish between regulatory functions in a
transaction level, which includes if value is under or over a threshold (limit), link
different transactions (tracing), revealing the transaction’s value, sender and/or
receiver) and withhold tax by paying the respective amount to a pre-determined
account. We also distinguish them in a user level, which includes auditing a
user’s total assets (equivalent to PoA in pseudoanonymous systems), applying
policies only to users in a “blacklist”, deriving statistical information from user’s
past transactions (e.g. learning the average transacted value in a time period)
or revoking a user’s anonymity based on some criteria. In some cases it might
also be desirable to prove non-participation for some user in some transaction,
which is a combined audit both in a transaction and in a user level.

Efficiency Axis: Our second axis is based on the efficiency asymptotics for
both pseudoanonymous and private systems, namely their space requirements,
transaction creation costs and audit proving and verification costs. We do not
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Table 3. Efficiency asymptotics. n: # of owned/system accounts (for pseudoanony-
mous and privacy preserving schemes respectively). N : maximum number of supported
accounts. m: number of recorded transactions. k: size of anonymity set. mu: Txs of user.
For Audit Proofs we consider the most basic audit in each scheme (i.e. proof of a value).
If audit proof is non-interactive, cost is embedded in tx creation costs).

Scheme Proof size Tx Create Audit Prove Audit Verify

PoA PoL PoA PoL PoA PoL

Provisions [28] O(k) O(n) N/A O(k) O(n) O(k) O(n)

ZeroLedge [31] N/A O(n) N/A N/A O(n) N/A O(n)

DAPOL [23] N/A O(1) N/A N/A O(lgN) N/A O(lgN)

Maxwell [7] O(n) O(1) N/A O(n) O(lgn) O(n) O(lgn)

Blockstream [56] O(n) N/A N/A O(n) N/A O(n) N/A

Wang [58] O(n) N/A N/A O(n) N/A O(n) N/A

Scheme Ledger Storage Tx Create Audit Prove Audit Verify

Zcash ext [37] O(m) O(lgm(lglgm)) Embedded in tx O(1)

ZKLedger [52] O(mn) O(n) O(1) O(1)

PRCash [59] O(k) O(k) Embedded in tx O(1)

PGC [26] O(m) O(1) O(mu) O(mu)

MiniLedger [25] O(n) O(n) O(1) O(1)

ACCDET [15] O(m) O(k) Embedded in tx O(m)

ATRA [19] O(m) O(1) Embedded in tx O(m)

MProve [32] O(k) proof size N/A O(k) O(k)

consider concrete metrics because of the variety (or absence) of implementations.
Regarding space efficiency, we consider the proof size for organization-level audit-
ing and the overall ledger storage costs for privacy-preserving schemes with user
or transaction level auditing (denoted as “proof storage” and “ledger storage”
respectively in Table 3). Then we capture the transaction creation costs (which
are not applicable for schemes under the first category as the transactions have
already been created). Finally for capturing the auditee’s proving and the audi-
tor’s verification costs, we consider the most “basic” audit functionality each
scheme offers. We note that not all schemes have the same “basic” audit func-
tionality, thus Table 3 should not be seen as a comparison table. Also, audit
proofs are not applicable for schemes offering only accountability, as the neces-
sary information is included in the transaction itself, while transaction creation
costs do not apply for auditing at an organization level (as they are always
independent of PoA or PoL protocols).

General Properties Axis: This axis is based on several different properties and
attributes of all existing proposals. We compare them in terms of audit scope,
i.e. user level (U) if auditing information of a particular user, transaction level
(T) if auditing a transaction’s full details and organization (O) if auditing an
organization’s assets, liabilities or solvency, underlying system architectures (e.g.
UTXO or account-based) consensus and participation models (permissioned vs
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permissionless). We particularly highlight the need of various trusted centralized
authorities (either for identification or for auditing purposes), which is typically
not desired. In auditing we also categorize the schemes in terms of interaction
between auditor and auditee, as well as the audit granularity. Then we also
refine schemes based on their level of privacy, and we list any other assumptions
not fitting in the previous categories. The comparison is shown in Table 4. We
note that requiring interaction for transaction/user level audits implies audi-
tee consent, while all organization-level audits always require consent from the
organization. Another observation is that non-interactive user/transaction audits
typically require the existence of an auditing authority, as the non-interactive
data should only be accessible to such authorities (else this would compromise
privacy).

Table 4. General categorization of auditable schemes. Scope: T Transaction level, U
User level, O Organization level. Model: Acc: account-based, UTXO: Unspent Trans-
action Output based. By � we denote full privacy, by �� set anonymity, by �� confiden-
tiality and by � pseudoanonymity (privacy is against auditor and against all observers
for pseudoanonymous and privacy-preserving schemes respectively). By � we denote
permissionless, by � permissioned and by ⊥ orthogonality to consensus layer. By � we
denote non-academic works.

Auditing

Scheme
Audit
Scope

Model Consensus
Partic-
ipation

Identity
authority

Inter-
action

Auditing
authority

Fine-
coarse

Privacy Assumptions

Provisions [28] O Both ⊥ N/A N Y N Coarse ��
ZeroLedge [31] O Both ⊥ N/A N N N Coarse ��
DAPOL [23] O Both ⊥ N/A N N N Coarse ��
Maxwell� [7] O Both ⊥ N/A N Y N Coarse �
Blockstream� [56] O UTXO � � N N N Fine �
Wang [58] U/O Both ⊥ N/A N Y N Fine � Secure channel

between prover-
auditor

Zcash ext [37] T/U UTXO � � Y N Y Both � Trusted setup,
Spending authority

ZKLedger [52] T/U/O Acc ⊥ � Y Y N Both � Out of band comm

PRCash [59] T/U Acc ⊥ � Y N Y
Coarse
(limit)

�� Trusted validators,
Out of band comm,
sender-receiver inter-
action

PGC [26] T Acc ⊥ � Y Y N Fine ��
MiniLedger [25] T/U/O Acc ⊥ � Y Y (N) N (Y) Both �
ACCDET [15] U UTXO � � Y N Y Fine �
ATRA [19] U N/A � � Y N Y Fine �
MProve [32] O UTXO � � N N N Fine ��
Damg̊ard et al. [29] U N/A ⊥ � Y N Y N/A � Anonymity revoker

Barki-Gouget [16] U N/A ⊥ � Y N Y N/A � Anonymity revoker

4 Regulation Functions in Pseudoanonymous Systems

We now discuss the first major category of payment auditable systems; those
with a pseudoanonymous underlying system where the focus is typically on orga-
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nization level regulation. As discussed in Sect. 2.2 the common goal here is for
an organization to prove that is solvent.

Insight 1. Pseudoanonymous systems inherently expose their users’ privacy
(due to the public nature of the distributed ledger), making user or transaction-
level auditing trivial.

Perhaps the first attempt to prove an organization’s digital assets was Bit-
stamp’s Proof of Reserves [2], a procedure on top of Bitcoin (also applicable to
any pseudoanonymous system), involving a single entity asking the organization
to provide a signature using its private keys on a message selected by that entity.
The obvious drawback of this approach however is lack of auditee privacy, i.e. it
does not satisfy Minimal Information Disclosure.

Insight 2. As a naive PoA method, one might prove ownership of accounts asso-
ciated with those assets by signing a message using the respective private keys.
This method however does not accomplish Minimal Information Disclosure, as it
also discloses the organization’s exact assets as well as the respective accounts.

Towards providing a way to prove solvency in a more distributed fashion,
Maxwell’s PoL [7] consists of a “summation” Merkle tree with each leaf contains
a client’s balance in plaintext, summing with the siblings up to the root as in a
plain Merkle tree. Then, the organization’s clients can check their inclusion in
the organization’s liabilities through Merkle proofs, which implies this method
of PoL has a probabilistic nature. However Minimal Information Disclosure was
still unresolved, as Maxwell’s PoL publicly exposes the total liabilites and the
number of the users, and leaks information of sibling nodes by multiple execution
of proofs. In addition, an attack was identified (and subsequently fixed) in this
scheme which could potentially enable a participant to claim less liabilities [44].

Gap 1. Given the probabilistic nature of PoL, an organization can collect infor-
mation on client queries in the network or application layer and manipulate sub-
sequent proofs by not including user balances with low-probability retrievals. Can
such behavior be prevented without having to publicly disclose liabilities data,
thus disclosing the population of an organization’s accounts?

Private Information Retrieval techniques have been proposed [23] to efficiently
mitigate Gap 1, however such techniques have not yet been deployed.

As in [2], Maxwell’s PoA protocol simply requires signing some message using
the private keys associated with the controlled assets. As discussed in Sect. 2.2,
Maxwell’s PoA and PoL combined constitute a proof of the organization’s sol-
vency. We also mention an early implementation for Proof of Solvency using
similar cryptographic techniques [1].

Provisions [28] was among the first academic works to present a complete
proof of solvency solution, and augmented both PoA and PoL protocols with
privacy-preserving characteristics. For the PoA part, the organization chooses
adds a number account public keys to those it already controls (Provisions
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assumes these keys are not hashed), essentially forming an anonymity set, then
creates a Pedersen commitment for each (with a commitment to zero for those
it does not own) and publishes a homomorphic addition of those commitments.
Then using standard Zero Knowledge (ZK) protocols, it proves that it either
knows the secret key for the respective commitment public key or it is a commit-
ment to zero. This ensures that the verifier does not really learn which accounts
the organization owns. Note that using standard, efficient ZK proofs is not com-
patible with hashed public keys (since in systems like Bitcoin it would be required
to spend at least once from a wallet address to reveal the account public key).
Customized ZK proofs would have to be created for such statements to overcome
this limitation, and works like [24] could serve as a starting point.

For the PoL part, the organization constructs and publishes a Pedersen com-
mitment representing each one of its clients’ balances, which can be homomor-
phically added to form a commitment of the organization’s total liabilities. At
any point, each client can check it is included in the liabilities commitment by
asking for an inclusion proof, while ensuring overall that no commitments have
been added with negative amounts though appropriate range proofs. However,
as shown in Table 1, subsequent execution can still potentially leak some infor-
mation to external parties (e.g. number of user accounts of organization at a
specific time). Given the two above published commitments, the organization
proves that their difference is positive (which constitutes the overall proof of sol-
vency). As [28] was published in 2015, there is room for efficiency improvements
by i.e. utilizing recent range proof constructions (Bulletproofs [21]).

Insight 3. Hashed public keys in systems like Bitcoin are not fully compatible
with more complex PoA techniques as in [28] using standard Zero-Knowledge
proofs. Customized ZK circuits for SNARKs need to be designed in such cases.

Gap 2. During PoA, organizations can collude with each other to manipulate
these proofs by including their assets to each other’s proofs, violating Regulation
Soundness. Does a mitigation strategy exist to prevent this?

While performing PoA in a synchronous manner could trivially prevent orga-
nization collusions, this approach is impractical.

Gap 3. Can we design a PoA protocol on top of a pseudoanonymous system
that is fully private for the auditee with sublinear costs?

We observe that all current PoA protocols form some anonymity set to hide
the actual audited organization’s accounts. Implementing a zk-SNARK in a sys-
tem might enable full privacy and sublinear proof size and verification costs, but
at the cost of introducing additional assumptions like trusted setup.

ZeroLedge [31] focuses on the PoL aspect, aiming to address the weaknesses of
Maxwell’s protocol, most notably its “hidden liabilities” attack. In this approach,
the organization creates commitments to identifier-value pairs for each of its
accounts along with zero-knowledge proofs of their validity as well as to the total
liabilities amount. Through the zero-knowledge properties, it prevents collusion



324 P. Chatzigiannis et al.

attacks and preserves verifier anonymity, however it still leaks some information
about the total number of accounts. Similar to Provisions, this scheme could
benefit from newer, more efficient range proof techniques such as Bulletproofs
[21]. Even so, as shown in Table 3 its asymptotic costs remain linear in the total
number of accounts, which might make it very costly in large deployments.

The recent PoL proposed standard (DAPOL) [23] is inspired by previous
works [7,28]. It addresses the majority of their privacy-related issues and cur-
rently has the best PoL Minimum Information Disclosure possible, without leak-
ing information about other addresses’ balances, total liabilities or total number
of addresses (which even the “flat” version of Provisions was leaking). To achieve
this, as the Merkle Tree approach always leaks such information, it augments it
with more sophisticated primitives and constructions, such as Zero Knowledge
Proofs, VRFs, and sparse Merkle Trees, and has a “layered” PoL that supports
a very large number of addresses. In addition, it presents itself in use cases out-
side financial applications and solvency proofs, such as disapproval votes, virus
outbreak reports or referral programs.

Insight 4. To achieve Regulation Soundness and Minimal Information Disclo-
sure, more advanced cryptographic primitives and complex constructions have to
be employed, such as Zero Knowledge proofs, VRFs and sparse Merkle trees.

Wang et al. [58] provides a simple protocol for a potential buyer proving assets
to a vendor before conducting a transaction, using that transaction’s external
data as a “challenge”. Although this protocol could be extended for providing
PoA at an organization level as well, the use-case of such a protocol seems
to be limited to a “buyer-vendor” scenario as it is associated with a specific
transaction. More importantly, it does not have strong Minimal Information
Disclosure as other PoA/PoL protocols like Provisions or DAPOL [23,28].

Finally we briefly mention a few additional works related to organization-
level regulation. Hu et al. [44] highlighted a “mix and match” attack on the
Maxwell protocol, while proposing its mitigation technique. Blockstream proof
of reserves [56] propose an alternative to the naive PoA approach by creating
and signing invalid transactions using all owned UTXOs, which however degrades
the organization’s privacy. Moore and Christin [50] provide a risk analysis for
cryptocurrency exchanges, highlighting the need of Solvency Proofs. Finally,
Decker et al. [30] proposed a variant of the Maxwell Protocol based on a trusted
platform module (TPM) to securely execute the necessary computations while
ensuring honest computation. This approach can also facilitate the computation
between PoA and PoL for proving solvency.

An open problem in Proofs of Liabilities approach commonly used in these
works is Dispute Resolution, i.e. a client claiming that his balance within the
organization is not included in the proof. This is problematic in both ways, i.e.
a malicious organization simply rejecting an honest client’s claim, or a malicious
client falsely accusing an honest organization of misbehavior.
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Gap 4. Can disputes be resolved by a third-party judge at an organization-level
regulation, when a client claims that their balance with the organization has not
been included in a PoL?

Mutual contract-signing solutions (i.e. both client and the organization sign-
ing a user’s transaction and signature) might be helpful to solve this gap, however
such an approach also needs to be practically deployable.

5 Regulation Functions in Privacy-Preserving Systems

In this section, we provide an overview of distributed payment systems that have
privacy-preserving characteristics and some form of auditability and/or account-
ability functionalities focused on a transaction or user-level. In our discussion,
we further divide such systems into two categories: the ones that require desig-
nated auditors and the ones where no explicit auditors are assumed, as shown
in the “Auditing authority” column in Table 4.

5.1 Centralized - Designated Authority

A common approach when designing audit and accountability functionalities
for privacy-preserving DPSs is to add a system-designated, centralized author-
ity (or group of authorities). Such authority could either enforce accountability
rules or take the role of an external auditor as defined in Sect. 2.2. This app-
roach was adopted in one of the first works [37] to address regulatory concerns
in privacy preserving cryptocurrencies in the permissionless model by extending
Zerocash [17]. It assumes the existence of various types of authorities where each
one is designated to enforce different policies, offering a wide range of auditability
functionalities as seen in Table 2. The main idea is to embed auxiliary informa-
tion to coins, such as counters or coin types, and define policies as algorithms
that are executed each time a coin is spent. Then, a designated authority can
be used to verify a policy at the time of transaction generation, for example it
could check that a transaction value does not exceed a certain limit and sign the
transaction to certify it. This is a type of accountability, since it can proactively
check transactions before being posted in the ledger. We note that this tech-
nique can be easily adapted for pretty much any type of policy but as discussed
below comes with efficiency and privacy costs. [37] also presents techniques for
coin tracing assuming that coins include tracing information encrypted under an
authority’s public key. Then, an authority could at will trace those coins (and
all subsequent coins resulting from transactions of the original coins) without
any interaction with the users. Interestingly, [37] also provides techniques for
accountable authorities, the actions of which would be transparent to users. For
instance, users could check if a tracing authority has traced their coins.

The techniques of [37] are quite effective, easily allowing the implementation
of a wide range of policies. However, there exist both efficiency and privacy lim-
itations. Requiring transactions to be validated by an authority before posted,
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requires extra communication and computation costs which can be a burden
in practice – especially on top of an already computationally intensive system
such as Zerocash. Most importantly though, the main issue with the given app-
roach is that it gives too much power to the designated authorities. Not only
such authorities can learn transaction information that would otherwise remain
private, but they could also arbitrarily refuse to validate certain transactions.

Insight 5. Embedding encrypted auxiliary information in transactions that can
be decrypted by designated authorities at any point, is a trivial solution for
accountability and auditing but has negative impact to user privacy.

Insight 6. Accountability policies rely on the transaction verifiers (i.e. the con-
sensus layer) to enforce them. Any reactive auditability functionality can be con-
verted to an equivalent proactive accountability policy through auxiliary data and
interaction with an authority in the transaction creation phase.

Although [37] only included a vague description of how to add audit func-
tionalities in Zerocash (without providing a concrete construction or eval-
uation), it offered some of the first insights and problems for designing
auditable/accountable privacy-preserving payment systems. PRCash [59] was
developed as a stand-alone fully-private payment system with built-in account-
ability for spending limits. Specifically, it only allows transactions up to a spec-
ified amount, while leaving the option for users to de-anonymize themselves
against a centralized authority if wishing to transfer larger amounts. PRCash
works in a permissioned setting, with an anonymous credential issued by a cen-
tralized identity authority to prevent circumventing limits by creating sybil iden-
tities. Consequently, this same authority is responsible for both identity man-
agement and regulatory functions in the system (although these roles could be
decoupled in separate “identity” and “auditing” authorities). PRCash is inspired
by the private cryptocurrency Mimblewimble [35,54], however its construction
follows a more complex design. Namely it uses two commitments and a pub-
lic key pair (as opposed to one commitment and no public key cryptography in
Mimblewimble) in order to connect participants to identity credentials. The addi-
tional commitment is used to generate “re-randomizeable” authority certificates
(that permit participating in the system) and a secret key is used to derive a
unique transaction ID. For transacting within the limit, the sender would include
an appropriate range proof in the transaction. To exceed the limit, instead of
the range proof, the sender would need to encrypt his public key under the
authority’s public key (thus deanonymizing himself to the authority). PRCash
as shown in Table 2 is limited to this specific accountability functionality by
design, while it relies on a centralized authority for its accountability aspects.
In addition, although an external observer of the ledger cannot link transact-
ing parties or learn transaction values, the system is not fully private against
transaction Validators in the consensus layer, as each transaction leaks informa-
tion (pseudo-identifiers) to the Validators which could be used to generate links
between transactions.
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Insight 7. In a permissionless setting, identity authorities associating real iden-
tities with public keys are required to preserve regulation connected to value limits,
or else such regulation can be trivially circumvented through sybil identities.

In the permissioned setting, an anonymous, auditable payment scheme was
presented in [15] (we will refer to it by ACCDET). The goal of ACCDET is
to hide the content of transactions without preventing authorized parties from
auditing them. The paper considers a centralized identity authority for associ-
ating real-world identities with system credentials, similar to PRCash [59], as
well as a designated trusted auditor for each system participant who can learn
any hidden transaction the participant is involved in at will. This is ensured
by including encrypted transaction information under the designated auditor’s
public key, along with a standard ZK proof of correct encryption under the cor-
rect key. Value tokens are hidden using Pedersen commitments, while they are
checked for validity and blind-signed by a certifier when spending them. The
paper includes an evaluation based on Hyperledger Fabric [14] as a consensus
layer and provides an analysis of the computational costs for each required oper-
ation. Besides the fact that the trusted auditor is again very powerful, we also
note that the auditing verification cost is linear to the number of transactions
ever happened in the system, as shown in Table 3. This is because ACCDET does
not assume user consent during audit, thus an auditor would have to decrypt the
whole ledger in order to trace any user. A more generic approach that does not
restrict itself to payment systems [19] (we will refer to it by ATRA), considers
the issuance of anonymous credentials in permissioned blockchain systems which
could be transformed into a payment scheme. It also implements auditability by
assuming the existence of a centralized auditor and encrypting all private trans-
action information under the auditor’s keys. ATRA, similar to ACCDET, has
inefficient auditing, as the auditor has to decrypt all ciphertexts in the ledger.

Insight 8. Auditing a fully-private DPS without any aid from the auditee, is
generally inefficient, as the auditor would need to audit the whole ledger to
retrieve the desired audits.

Gap 5. Can we design a private DPS with centralized authorities that reveal a
user identity only when a user misbehaves according to well-defined policies (as
done in traditional Chaum e-cash protocols [20])?

Note that PRCash [59] seems to accomplish this, as it de-anonymizes a user
against an authority if the user exceeds a transaction limit. Still PRCash is
tailored to support this specific policy, and designing a system that can make
users accountable without their consent for arbitrary policies is challenging.

Damg̊ard et al. [29] provide “design principles” for private and accountable
distributed payment systems, rather than building a standalone one. Their main
focus is to support auditing as anonymity revocation of participants in the iden-
tity layer, rather than auditing the aspects of a payment system (e.g. trans-
actions or assets) in the transaction layer. To accomplish this, they propose
two kinds of authorities: An Identity provider who provides a digital identity
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with attributes to account holder and stores registration information, and an
anonymity revoker who can revoke anonymity at will on accounts created by the
account holder using the registration information. While threshold encryption
is proposed to avoid giving too much power to a single anonymity revoker, this
approach might be still problematic in the same manner as in Zerocash exten-
sion [37]. In a similar manner, Barki-Gouget [16] also focus in a physical entity’s
anonymity revocation by a centralized authority, while presenting their work as
a standalone accountable-anonymous system. As both of above works focus on
the identity layer and they only provide an abstract way of building a complete
distributed payment system, we omit concrete efficiency asymptotics in Table 3.

5.2 General Auditor

A designated auditor (or set of auditors) makes an implementation simpler, but
is a strong assumption for any payment system. Some schemes were proposed
making auditing possible by any auditing authority typically with the auditee’s
consent. This approach is generally preferred to address Insight 5 concerns, while
still being compatible with regulatory practices as we discuss below.

zkLedger [52] is a permissioned, privacy-preserving payment system with
built-in auditability functions that does not require a designated auditor. Its
shared transaction ledger takes a unique approach, and instead of the typical
blockchain format, it employs a two-dimensional table recording all participat-
ing parties (columns) and all posted transactions (rows). Transactions are formed
via a combination of commitments and ZK proofs and, whenever a transaction
happens, a new row is generated in the table including information for all system
participants, even for those who do not participate in that transaction by com-
mitting to a zero value (in order to ensure transaction and participant privacy).

zkLedger’s basic auditing functionality is an interactive ZK protocol between
an account holder and an auditor, where the account holder reveals the value
hidden in a commitment in a verifiable manner, without disclosing any other
information (such as its private key) or needing to open the commitment. Based
on this basic audit functionality, several other audits can be implemented at a
transaction or participant level (e.g. transaction limits or statistical information).
Statistical audits can be easily derived from the basic value audit using auxil-
iary bit flags, while limit audits can be implemented using appropriate range
proofs. Value audits can also be used to derive participation audits (as well
as non-participation proofs) utilizing zkLedger’s architecture. zkLedger could
be trivially extended to accommodate tax compliance either proactively as an
accountability functionality (by verifying a ZK proof that the relation between
the total recipient values and the tax authority recipient is equal to a fixed ratio,
per Insight 6) or reactively as an auditability functionality (by verifying the same
ZK proof as before during the auditing process). Also zkLedger’s audits can be
seen as organization-level audits (i.e. PoA) due to its participants mainly con-
sidered being “Banks”. Transaction types and tracing could also be easily added
as system add-ons through an additional commitment and an appropriate ZK
proof of consistency between sent and received values, but this would further
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increase storage needs and computational costs. However, its structure circum-
vents the limitation of Insight 8 which enables efficient auditing with as low as
O(1) asymptotic costs (assuming an online auditor tracking ledger state).

However it is obvious from Table 3 that zkLedger suffers from very limited
scalability, as requiring each transaction to include a commitment (as well as
the needed auxiliary information) for all participants, combined with an ever-
increasing ledger of such transactions, results in large computational and storage
costs, which makes it viable for up to about a hundred participants. It also
requires participants to communicate out-of-band and be online at all times,
which further limit its practical applications. Nevertheless, it was the first system
to depart from the naive approach described in Insight 5 while offering a wide
range of auditing functionalities, which inspired subsequent academic works.

Insight 9. An interactive auditing protocol implies the auditee’s consent and
cooperation with an auditing authority. This requirement is not necessarily a
drawback for such schemes, as refusal to cooperate with authorities can be con-
sidered as equivalent to a failed audit. In addition, audit by consent typically
enables more efficient auditing.

Insight 10. Many audit functions such as transaction limit or tax compliance
can be reduced to a “basic” transaction value audit.

PGC [26] is a confidential payment system with an auditing functionality on
transaction values. It uses similar cryptographic techniques to zkLedger. Specif-
ically, it uses an El Gamal encryption variant equivalent to a Pedersen Commit-
ment and the auxiliary information used in zkLedger, and relies on ZK proofs
composed of Σ-protocols. PGC by using encryption instead of commitments does
not need to rely on out-of-band communication assumptions (which are needed
to open the commitments), which could potentially enable it to work in a permis-
sionless setting as well (although not explicitly discussed in the paper). It pro-
poses three different audit functions, namely transaction limit (using appropri-
ate range proofs), value disclosure and tax payments (which can be derived from
value disclosure as discussed in Insight 10). Recall that these reactive auditability
functions could be converted into equivalent proactive accountability functions
enforced by the consensus layer (Insight 6). Since PGC is not anonymous, trans-
action participant auditing is not applicable. Also transaction types or tracing
functionalities can be added in PGC by including the necessary auxiliary infor-
mation in the transaction structure as in Zcash extension [37]. Although PGC
does not suffer from the scalability issues of zkLedger, it requires each trans-
action to include a unique serial number to prevent replay attacks (as Zcash
[17]), which asymptotically results in linearly-increasing blockchain storage to
the number of transactions. PGC can be considered as a special case of Insight 8
- by trading off anonymity, it achieves highly efficient auditing only dependent
to the number of past user transactions, as shown in Table 3.

Similarly to zkLedger, MiniLedger [25] is a permissioned, fully anonymous
system. While it has a similar structure with zkLedger, it identified its vulnera-
bilities and shortcomings and implements a system without needing out-of-band
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communication between participants, using a similar encryption scheme with
PGC. However the crucial difference is that its ledger size does not grow linearly
with the number of recorded transactions, and is only proportional to the num-
ber of participants, while preserving efficient auditing (as shown in Table 3). This
is accomplished though a transaction pruning process, which however preserves
auditability for pruned transactions. In addition, it offers additional regulation
functionalities (shown in Table 2) and an option to make non-interactive audits
without consent at the cost of having a centralized audit authority (Table 4).

Gap 6. Is auditing of transactions that do not appear in the ledger (or happen
“off the chain”) possible?

While it’s desirable to compress a public ledger to improve its scalability,
a system that enforces regulation policies is typically incompatible with ledger
compression techniques (such as pruning), since auditing in DPSs needs to refer
to some published data on the ledger. MiniLedger [25] is a first step towards this
in a permissioned setting, however with linear transaction costs in terms of num-
ber of participants. At the same time, no system exists that achieves Regulation
Correctness and Regulation Soundness for locked funds. While it is unclear how
to provide regulatory control for distributed ledger systems implementing pay-
ment channels or cross-chain atomic swaps a first approach might be to consider
a centralized authority.

Gap 7. How can a dispute between an auditor and an auditee be resolved? 4

We note most of DPSs ignore the problem of dispute resolution in case an auditor
misbehaves (e.g. accuses an auditee of failing an audit). While the auditee could
publish all their secret information to rebut the accusation, this would fully
compromise their privacy.

MProve [32] is a PoA protocol tailored for Monero [57]. As the Provisions
protocol won’t work for Monero because of ring signature obfuscation, MProve
provides a proof that the key images of the one-time addresses controlled by the
exchange (which they sum to its total assets) have not previously appeared on
the public ledger. This approach provides a proof of non-collusion as well, as
the one-time nature of the key images would trivially expose collusion. However
it exposes the sender’s identity when those key images are spent, which might
eventually enable public tracing of transactions (especially in cases where such
a PoA protocol is used frequently).

Gap 8. Can PoA/PoL be implemented on privacy-preserving payment systems
without degrading the participant’s privacy?

6 Conclusion

We observe increasing efforts towards implementing regulatory control in dis-
tributed payment systems. However, existing lines of research approach the
4 Gap 7 is the equivalent of Gap 4 for privacy-preserving systems.
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problem from different angles, with different goals, assumptions and use-cases.
Our systematization identifies a number of exciting open problems on providing
mechanisms for regulation of DPSs which we summarize below.

Despite auditing in pseudoanonymous systems intuitively being straightfor-
ward, no solution exists that prevents collusions among organizations when prov-
ing assets, while allowing them to exclude liabilities with low-probability of access
(Gaps 1 and 2). In addition, proving assets efficiently, in a fully-anonymous
manner and without introducing additional assumptions remains an open prob-
lem (Gap 3). In privacy-preserving systems, we note that mapping regulation
requirements and laws to automated computations is not trivial, and designing
fully-private DPSs supporting many different regulations currently seems out of
reach. Proof of solvency on privacy-preserving systems is challenging (Gap 8),
while there is no fully-private DPS that is scalable, computationally efficient
and without strong assumptions such as designated auditing authorities that
can violate user privacy. We observe all schemes attempting to enforce regula-
tory functions are designed for “on-chain” protocols, and are not compatible with
information that either lives off the ledger and/or locks funds, or with informa-
tion that has been pruned entirely from the common ledger (Gap 6). A possible
approach is relying on powerful “full nodes” who keep a copy of the full ledger
history (regardless of whether it has been pruned or not), and have the auditors
use them as query points. While by checking that their history is consistent with
the pruned ledger would prevent malicious behavior by those nodes, this app-
roach is still a centralized point of failure for auditing purposes. Finally, dispute
resolution without compromising privacy against a third-party judge is an open
problem in both pseudoanonymous and privacy-preserving systems (Gaps 4, 7).

Acknowledgements. We thank Kaoutar Elkhiyaoui (IBM Research) for the clarifi-
cations on [15] and Dmitry Korneev (Facebook) for his input on needed regulation and
compliance.

A Cryptographic Background

A.1 Consensus

A consensus protocol allows a number of nodes to output a common agreement
on input of a sequence of messages. In our setting, the commonly agreed value
is typically recorded on a public ledger. The basic properties of a consensus pro-
tocol are [36] a) Consistency: On some input, all honest nodes make the same
output. b) Liveness: An input proposed by some honest node will be eventu-
ally processed by all honest nodes after a finite number of rounds. A common
distinction among consensus protocols is according to their failure model, where
crash tolerant protocols assume failed nodes may become offline or otherwise
stop interacting with the system, while Byzantine tolerant [47] protocols assume
such nodes might also engage into malicious activity in order to defeat the above
properties. These models typically assume different levels of adversarial power
needed for the system to fail. Another distinction is based on the participation
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model, where permissioned consensus participation is open only to a closed set
of parties, while permissionless is open to anyone, which however needs a mech-
anism to prevent attacks through “sybil” identities such as Bitcoin’s Proof of
Work [51] or Proof of Stake protocols [45].

A.2 Distributed Payment Systems

A distributed payment system DPS (also known as ledger-based payment sys-
tem) can be simply defined by the following algorithms and protocols when
already assuming the existence of a consensus layer.

– pp, L ← Setup(λ): on input of security parameter λ, outputs public parame-
ters pp and initializes a public ledger L to be maintained by the consensus
layer. This algorithm is executed once in the setup phase of the system, and
is run by either a single party or a quorum of parties in a multi-party com-
putation (MPC) protocol. In the following algorithms and protocols, pp and
L are default inputs and are omitted for simplicity.

– (pk , sk) ← CreateAcc(): Run by any party wishing to transact in the system5,
outputs a public key pair.

– tx ← CreateTx(skS , pkR , v): Run by a sender wishing to send value v to
receiver, and outputs a transaction tx. Although here for simplicity we assume
a single sender and receiver, a transaction can generally accommodate mul-
tiple senders and receivers. tx is sent to the consensus layer in order to be
included in L after verification.

– VerifyTx(tx) := {0, 1} Verifies the validity of a transaction tx, given the state
of the ledger L. Verification is typically performed in a distributed fashion in
the consensus layer among all verifiers (often called “miners”), where agree-
ment results in the update of the ledger’s state to L′ which contains tx.

A.3 Commitment Schemes

Commitment schemes are very commonly used in private DPSs, to hide trans-
action information. A non-interactive commitment scheme Com(pp,m, r) takes
as input public parameters pp, a message m and randomness r and outputs
a commitment value cm. This value reveals no information about the message
(hiding property) while it is hard to find (m′, r′) such that Com(pp,m, r) =
Com(pp,m′, r′), when m′ �= m (binding property). Certain commitment schemes,
i.e. Pedersen commitments [53] allow for homomorphic operations over commit-
ted values, a useful property in private DPSs.

5 Although participation in payment systems is typically achieved through public key
cryptography, some systems achieve it through other primitives (e.g. spending in
Mimblewimble [35,54] requires knowledge of a commitment’s blinding factor).
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A.4 Zero Knowledge Proofs

A Zero Knowledge proof is an interactive protocol between a prover P and a
verifier V where P based on a common input statement proves knowledge of a
witness w without revealing to V any additional information other than this fact
alone. In DPSs, zero-knowledge proofs are used extensively to provide privacy-
preserving attributes, with transacting parties proving validity of a transactions
based on a public ledger without revealing the full transaction details, while in
recent works they are also used to prove compliance with regulatory require-
ments.

Range Proofs are Zero Knowledge protocols proving that a committed value
v lies within some interval (a, b), with v as the witness. In a payment system
setting, such proofs are typically used to show that v is positive or does not
overflow a maximum presentable value. Most well-known construction families
for range proofs include square decomposition [40], multi-base decomposition
[55] and Bulletproofs [21], with the latter being the most efficient in terms of
proof size. Obviously, one can generate constant size range proofs from trusted-
setup based SNARKs like Groth16 [41]. In privacy-preserving DPSs they are
often used to ensure their basic core properties discussed in Sect. A.2, but they
are also used for regulation purposes (e.g. distinguish between transactions that
exceed a value limit).

A.5 Interactive Zero Knowledge Proofs

An interactive zero-knowledge proof (ZKP) for statement {w : f(w, x)} where x
is publicly known and witness w is known only to prover P , is a protocol between
P and verifier V that proves P ’s knowledge of w such that f(w, x) holds. This
protocol needs to satisfy the following:

– Completeness: Honest V is always convinced by an honest P who knows a
valid witness w.

– Soundness: A malicious prover P ∗ cannot convince a verifier for a false
statement.

– Zero Knowledge: After executing the protocol, a verifier does not learn any
additional information other than the validity of the statement.

An interactive ZKP can be converted to a non-interactive zero knowledge
proof (NIZK) using the Fiat-Shamir heuristic [33]. In turn, a ZK - Succinct
Non-interactive ARgument of Knowledge (zk-SNARK) is a non-interactive zero-
knowledge proof that is succinct, namely its proofs are very short O(λ) with
efficient verification O(λ|x|) [18].
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Abstract. A flash crowd attack (FCA) floods a service, such as a Web
server, with well-formed requests, generated by numerous bots. FCA
traffic is difficult to filter, since individual attack and legitimate service
requests look identical. We propose robust and reliable models of human
interaction with server, which can identify and block a wide variety of
bots. We implement the models in a system called FRADE, and evaluate
them on three Web servers with different server applications and con-
tent. Our results show that FRADE detects both naive and sophisticated
bots within seconds, and successfully filters out attack traffic. FRADE
significantly raises the bar for a successful attack, by forcing attackers to
deploy at least three orders of magnitude larger botnets than today.

1 Introduction

Application layer DDoS attacks or flash-crowd attacks (FCAs) are on the rise [23,
25,30]. The attacker floods a popular service with legitimate-like requests, using
many bots. This usually has a severe impact on the server, impairing its ability
to serve legitimate users. The attack resembles a “flash crowd”, where many
legitimate clients access popular content. Distinguishing between a flash-crowd
and a FCA is hard, as the attack uses requests whose content is identical to
a legitimate user’s content, and each bot may send at a low rate [24,27,44].
Thus, typical defenses against volumetric attacks, such as looking for malformed
requests or rate-limiting clients, do not help against FCAs.

We propose FRADE, a server-based FCA defense, which aims to identify
and block malicious clients, based on a wholistic assessment of their interaction
with the server. FRADE views the problem of distinguishing between legitimate
and attack clients, as distinguishing between humans and bots. Thus, FRADE
is well-suited to protect applications where legitimate service requests are issued
by humans, such as Web servers.

FRADE leverages three key differences between humans and bots. First,
humans browse in a bursty manner, while bots try to maximize their request rate
and send traffic continuously. FRADE learns the dynamics of human interaction
with a given server over several time scales, and builds its dynamics models.
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Second, humans follow popular content across pages, while bots cannot identify
popular content. FRADE learns patterns of human browsing over time, and
builds its semantics model. Third, humans only click on visible hyperlinks, while
bots cannot discriminate between hyperlinks based on their visibility. FRADE’s
deception module embeds invisible hyperlinks into the server’s replies. When
the load on the server is high, FRADE labels as “bot”, and blocks clients whose
behavior mismatches its dynamics or semantics model, or clients that access
deception hyperlinks.

FRADE does not make FCAs impossible, but it successfully mitigates a
large range of attack strategies. Our evaluation with real traffic, servers and
attacks, shows that FRADE identifies and blocks naive bots after 3–5 requests,
and stealthy bots after 15–19 requests, thus significantly raising the bar for
attackers. To perform a successful, sustained attack, an attacker must employ
more sophisticated bots, and deploy them in waves, retiring old ones as they are
blocked by FRADE and enlisting new ones. The attacker needs at least three
orders of magnitude more bots than used in today’s attacks.

Our prior work by Oikonomou and Mirkovic [39] proposed the high-level ideas
of differentiating humans from bots using dynamics and semantics models, and
decoy hyperlinks. We refer to this work as OM. We build upon the basic ideas
in OM, but significantly modify and improve them, to make the system robust
against sophisticated adversaries, and practical to implement. Our contributions
are (also summarized in Table 1):

Sophisticated Attack Handling: OM cannot handle attacks by an attacker
familiar with the defense, while FRADE can (Sect. 3.3).

Stealthier Decoy Hyperlinks: FRADE uses stealthier deception hyperlinks
than OM (Sect. 2.6), which cannot be detected via automated Web page analysis.

Improved Models: FRADE has simpler and more robust dynamics and seman-
tics models (Sect. 2.4 and 2.5), which only require legitimate clients’ data to
train. OM also required attack data for training, which is hard to obtain and
may impair detection of new attacks. FRADE is much more accurate than OM
in differentiating bots from humans (Sect. 3.5).

Implementation and Evaluation: FRADE is implemented as a complete sys-
tem and evaluated with real traffic and server content, while OM was evaluated
in simulation only. FRADE’s implementation-based evaluation helped us dis-
cover and solve major real-time processing issues, such as enabling the defense to
receive and analyze requests during FCAs, and dealing with missed and reordered
client requests (Sect. 2.7). FRADE as a complete system, mitigates FCAs about
ten times faster than OM.

Section 2.8 provides a detailed explanation of the novelties and improvements
that FRADE offers over OM. Our code and data are accessible at the link [47].
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2 FRADE

We next give an overview of FRADE’s goals and operation.

Attacker Model. In our work we consider two attacker models. A naive attacker
launches FCAs that are observed today and is not familiar with FRADE. A
sophisticated attacker is familiar with FRADE and actively tries to bypass it.

Design Goals. We aim to design an FCA defense that mitigates both naive
and sophisticated attacks. Our design rests on two premises. First, FRADE’s
models are based on features that are difficult, albeit not impossible, for an
attacker to learn, because they are only observable at the server. Second, if
an attacker does successfully learn and mimic our models, it drastically lowers
the usefulness of each bot and forces the attacker to employ many more bots
to achieve a sustained attack. In our evaluation, FRADE raises the bar for a
successful FCA from just a single bot to 8,000 bots. Extrapolating from the
botnet sizes observed in contemporary FCAs, FRADE would raise the bar from
3–6 K to 24–48 M bots—far above the size of botnets available today.

Anomaly detection methods regularly learn feature thresholds from training
data, and apply them in production. Our contribution lies in (a) selecting which
features to learn, to be effective against both naive and sophisticated attacks,
(b) implementing and evaluating our approach in three different Web servers,
with different content.

2.1 Feature Selection

FRADE aims to differentiate human users from bots during FCAs, and to do
so transparently to the human users. Differentiating humans from bots is chal-
lenging in an FCA, since legitimate and attack requests can be identical. Our
key insight is that while individual requests are identical, the behavior of traf-
fic sources (humans and bots), observed over sequences of requests differs with
regard to dynamics and semantics of interaction with the server, and how they
identify content of interest.

Dynamics: Human users browse server content following their interest, and
occasionally pause to read content or attend to other, unrelated tasks (e.g.,
lunch). Their rate is therefore bursty – it may be high in a small time window,
but not sustained over time. Bots are incentivized to generate requests more
aggressively, generating a sustained rate of requests over long time. To capture
these differences we develop models that encode the dynamics of human user
interaction with the server over multiple time windows.

The main challenge lies in how to properly model various types of requests
to make it hard for bots to avoid detection. Because requests may be generated
in different ways and may consume different resources at the server, we develop
three dynamics models: (a) main-page requests are generated through human
action, such as clicking on a hyperlink or scrolling to the bottom of a page – we
model their rate directly over multiple time windows, (b) requests for embedded
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content, such as images, are automatically generated by a Web browser, and
their rate will vary depending on the browser configuration and the number of
embedded objects per page – instead of modeling request rate for embedded
objects, we associate each object with its parent page, and allow only those
objects to load that belong to a recently loaded parent page, (c) requests for
dynamic pages can consume many server resources, even at low rate – we model
the demand for server resources over different time windows.

Semantics: Since humans follow their interests and understand content, they
tend to click on popular content more often than not. Bots, on the other hand,
must either hard-code a sequence of pages to visit, fabricate requests for non-
existing pages, or choose at random from hyperlinks available on the pages, which
they previously visited. The main challenge lies in building a model that properly
leverages popularity measures to detect random, fake or hard-coded sequences of
bot requests, while being able to handle user sequences that were not seen in
training.

FRADE models sequences of human user’s requests, and learns the proba-
bilities of these sequences over time. Clients whose request sequences have low
probabilities according to the model will be classified as bots. FRADE has a
special fall-back mechanism to handle sequences not seen in training.

Deception: We expect human users to visit only those hyperlinks that they
can see and that are interesting to them, in the rendered content. The main
challenge in leveraging this difference lies in developing ways to automatically
insert decoy hyperlinks in pages, which humans will not visit, and to make it hard
for bots to identify them via page source parsing. FRADE dynamically inserts
decoy hyperlinks [46], into Web pages, which are linked to anchors invisible to
human eye (hidden, small or transparent). FRADE leverages page analysis and
CSS files to make these anchors hard to identify by automated analysis. Clients
that click on decoy anchors are identified as bots.

We discuss novelty in Sect. 2.8 and demonstrate effectiveness in Sect. 3.

Table 1. Comparison between OM [39] and FRADE.

Feature OM [39] FRADE Section

Web req. FCA Yes Yes Sect. 3.2

Embd. obj. FCA No Yes, DYNe mod Sect. 3.3

Costly req. FCA No Yes, DYNc mod Sect. 3.3

Accuracy fp ≥ 0, fn ≥ 0 fp= 0, fn= 0 Sect. 3.5

Models DYNh & sem. mod. improved Sect. 2

Honeytokens Simple Sophisticated Sect. 2.6

Training Leg. & attack data Leg. data Sect. 2

Evaluation Simulation Real traffic/servers Sect. 3
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2.2 Overview

FRADE runs in parallel with the server and not inline. It includes an attack
detection module and three bot identification modules—dynamics, semantics
and deception. It interfaces with a firewall (e.g., iptables) to implement attack
filtering. FRADE learns how human users interact with the Web server that it
protects. It builds the semantics and dynamics models by monitoring Web server
access logs (WAL) in absence of FCAs. Deception objects, invisible to humans
in rendered content, are also automatically inserted into each Web page on the
server. When a potential FCA is detected, FRADE enters the classification mode.
FRADE loads its learned models into memory, and begins tracking each user’s
behavior. When a user’s behavior deviates from one of the learned models, the
user is put on the filter list and all their requests are dropped. When attack
stops, the detection module deactivates classification. A filtering rule is removed
when the traffic matching it declines.

main 
request?

Web request yes

no

DYNh
decoy 
target?

no

yes

DYNe

DYNc

Semantics

Block
Block

mismatch

mismatch

mismatch

mismatch

Fig. 1. Overview of FRADE’s processing of a Web request.

FRADE uses some customizable parameters for its operation. The parame-
ters and values we used in evaluation are shown in Table 2 and explained below.
We perform sensitivity analysis over these parameters in Sect. 3.6.

2.3 Attack Detection

The attack detection module runs separately from the rest of FRADE, and acti-
vates and deactivates other modules by starting and stopping processes. Our
detection module is intentionally simple, since our focus was on bot identifica-
tion. We focus on detecting increase in incoming requests, regardless of whether
they are due to legitimate flash-crowd event or due to FCA. We then rely on
our, very accurate, identification of bots to handle the event. A deploying net-
work can replace our detection module with other mechanisms, such as the Bro
Network Security Monitor [40].

Learning. FRADE’s attack detection module monitors incoming service
requests rate, and learns its smoothed historical mean. If the current incoming
rate of requests exceeds the historical mean multiplied by the parameter attack-
High, this module raises the alert. Otherwise, the module updates the mean. The
update interval, intDet, and the parameter attackHigh, are configurable (we use
intDet = 1 s and attackHigh = 10).
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Table 2. FRADE’s parameters and the values we used.

Parameter Meaning Value

intDet Monitoring int 1 s

attackHigh Incoming req high thresh 10 * avg

attackLow Incoming req low thresh 2 * avg

windows Time int. for dyn. models 1 s, 10 s, 60 s, 300 s, 600 s

ρ Ratio of dec. to vis. obj 1

ThreshPerc High perc. of a modeled quantity 100

Classification. During an FCA, the detection module continues to collect and
evaluate the incoming request rate, but does not update its historical mean.
When the current rate falls below the pre-attack historical mean, multiplied
by a configurable parameter attackLow (we use attackLow = 2), FRADE signals
the end of the FCA and turns off bot classification modules. Figure 1 shows
FRADE’s processing of a Web request during attack. In the rest of this section
we describe each processing step.

2.4 Request Dynamics

The dynamics module models the rate of a user’s interaction with a server within
a given time interval, and consists of three sub-modules. DYN h models the
rate of main-page requests, such as clicking on a hyperlink or scrolling to the
bottom of a page. DYN e models embedded-object requests, such as loading an
image. DYN c models the rate of a user’s demand for server resources, where
the demand is represented as the total time it took to serve the given user’s
requests in a given time period.

Learning. DYN h and DYN c learn the expected range of the quantity they
model (e.g., request rate, processing time, etc.) over all users, by analyzing
WAL. We group requests by their source IP address, and assume that each IP
address represents one user or a group of users. FRADE classifies each request
as either a main-page or embedded. Section 2.10 describes how to detect these
two types of requests. DYNh and DYNc model the main-page requests and use
a high percentile of the range (controlled by ThreshPerc, e.g., 99%) as their
learned threshold for the quantity they model. In our evaluation we use Thresh-
Perc = 100%. The number and sizes of windows are configurable parameters. As
humans browse in a bursty manner, having multiple windows allows monitor-
ing at different time scales, and drastically raises the bar for a successful FCA.
It enables us to correctly classify legitimate bursts and distinguish them from
sustained attack floods, even when their peak request rates are equal. We use
windows of 1, 10, 60, 300 and 600 s.

DYNc models the processing time spent to serve a user’s requests. This time
depends both on the complexity of the user’s request, and the current server
load. DYNc models the time to serve a user’s request on lightly loaded server to
capture only that cost to the server that the user can control – the “principal
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cost”. During an attack, we use this principal cost, rather than the actual pro-
cessing time (inflated cost), to calculate a user’s demand on server’s resources.
This allows us to avoid false positives, where legitimate users hitting a heavily
loaded server, experience a large inflated cost through no fault of their own. Dur-
ing learning, each request and its processing time are recorded in a hashmap,
called the ProcessMap. DYNc looks up the principal cost for each request in the
ProcessMap, and adds it to the running total for the given user. It then learns
the ThreshPerc value over these totals and for each window.

DYNe learns which embedded objects exist on each Web page and records
this in a hashmap, called the ObjectMap.

Classification. During classification, DYNh and DYNc collect the same mea-
sures of user interaction, per each user, as they did during learning. These mea-
sures are continuously updated as new requests arrive. After each update, the
module compares the updated measure against its corresponding threshold. If
the measure exceeds a threshold, the client’s IP is communicated to the fil-
tering module. Whenever a client issues a main-page request, DYNe loads all
the embedded objects related to this request from ObjectMap into this user’s
ApprovedObjectList (AOL). DYNe checks for the presence of the embedded
object requests made by the same user in his AOL. If found, the object is deleted
from the AOL. If not found, DYNe treats this request as a main page request,
and forwards it to DYNh and semantic modules. We do this because a user may
bookmark an embedded object, e.g., an image, and request it separately at a
future time. Our design allows such requests to be served, while preventing FCAs
that create floods of embedded requests.

2.5 Request Semantics

The semantics module models the probability of a sequence of requests generated
by human users.

Learning. We consider only requests classified as main-page requests. In the
learning phase, we compute transition probabilities between each pair of pages
(e.g., A to B) on the server using Eq. (1), where NA→B is the number of transi-
tions from page A to page B, and NA→∗ is the number of transitions from page
A to any page. We learn NA→B and NA→∗ from WAL. We define the probability
of sequence S = {u1, .. , un} as compound probability of dependent events, which
are page transitions, using Eq. (2).

Pt(A → B) =
NA→B

NA→∗
, (1); P (S) =

n−1∏

i=1

Pt(ui → ui+1), (2)

During learning, the semantics model calculates sequence probabilities for
each user. Since sequence probability declines with length, we learn the proba-
bility for a given range of sequence length (e.g., 5–10 transitions), grouped into a
bin. We also ensure that bins are of balanced size. When learning the threshold
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for each bin, we sort probabilities of all sequences in our training set that fall
into that bin and take a low percentile (1-ThreshPerc) to be the threshold.

In practice, if a server has very dynamic content, the semantics module may
not see all the transitions during learning, leading to false positives in classi-
fication. To handle incomplete training data, semantics module has a fall-back
mechanism. It views Web pages as organized into groups of related content.
During learning, it learns transitions from pages to groups, groups to pages,
and groups to other groups. We define a group as all the pages that cover the
same topic. On some Web sites, the page’s topic can be inferred from its file
path, while others require analyzing each Web page content to determine the
topic (Sect. 2.9). The probability of transition from a page/group to a group, is
calculated as the average probability of transition to any file within the group:

Pt(A → group(b)) =

∑
f∈group(b) Pt(A → f)

NA→group(b)
, (3)

Classification. FRADE processes the request sequence for each client in the
active session list (ASL). When a new request arrives, the module updates the
client’s sequence probability, just like it did during learning. If a transition from
page A → B is not found, FRADE falls back to using groups instead of pages.
It attempts to find transitions A → group(B), group(A) → B and group(A) →
group(B) in that order. When the first transition is found, its probability is used
to multiply the current sequence probability, according to Eq. 2. If no transitions
are found, FRADE multiplies the current sequence probability with a constant
called noFileProb � 1. After each update, it compares the current sequence’s
probability against the corresponding threshold for the sequence’s length. Values
lower than the threshold lead to blocking of the client.

2.6 Deception

The deception module follows the key idea of honeytokens [46], special objects
meant to be accessed only by attackers. The module embeds decoy objects, such
as overlapping/small images, into Web pages. In websites with mainly textual
content, like Wikipedia, we insert hyperlinks around random pieces of text, but
do not highlight them. This makes the hyperlink invisible to humans. In web-
sites with mainly media content, like Imgur, we embed hyperlinks around small
images, or small-font text. We insert these decoy objects away from existing
hyperlinks, to minimize the chance that they are accidentally visited by humans.

We automatically insert decoy objects into a page’s source code so that they
do not stand out among other embedded objects in that page. The number of
decoy objects to be inserted is guided by the parameter ρ – the ratio of the
decoy to original objects on the same page. We make decoy hyperlinks hard to
identify from the page’s source code by creating separate styles for them in the
site’s CSS file. We automatically craft the names of the pages, pointed to by
decoy hyperlinks, similar to the names of other, non-decoy pages on the server.
We introduce some randomness into the deception object’s placement, to make
it harder to identify them programmatically.
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2.7 Using a Proxy to Speed up Servers
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Fig. 2. Illustration of high-rate attack han-
dling, (a) by the server itself, (b) by Trans
approach and (c) by TAB approach

FRADE mines data about user pay-
load from WAL, to classify users as
humans/ bots, as shown in Fig. 2(a).
A server may be so overwhelmed
under FCA, that it cannot accept
new connections, slowing down log-
ging and delaying FRADE’s action.

We explored two approaches to
boost the number of requests a server
is able to receive and log during
FCAs. Our first approach, trans-
parent proxy (Trans), shown in
Fig. 2(b), uses a lightweight proxy
between clients and the server. It com-
pletes the 3-way handshake with the
client, receives and logs Web page
requests. It then recreates the connec-
tion with the backend server. This can
speed up logging, but ultimately the
target server may overload before we
block all bots, and this will back up
the Trans server as well. We use http-
proxy-middleware [14] as our trans-
parent proxy. It lets us log requests as
soon as they arrive, and forward them
to the backend server.

Our second approach, take-a-break proxy (TAB), shown in Fig. 2(c), uses
a dropping proxy between clients and the backend server. FRADE runs on the
dropping proxy, which logs and drops all the requests, until our blocking manages
to reduce the request rate. Logging requests and dropping them immediately
allows for faster blocking, as immediate closure of a connection frees the port
and socket on the proxy for reuse. Dropping all requests hurts legitimate clients,
but it ensures the fastest bot identification, helping us serve users well for the
remaining (possibly lengthy) duration of the FCA. We implement the proxy in
http-proxy-middleware [14].

To improve the speed of bot detection, we further stop building the Approve-
dObjectList (AOL) once TAB proxy is active. Since no replies are returned to
users while the TAB proxy is active, a human user will not issue embedded
object requests, while a bot may. This helps us identify bots faster.

2.8 Improvements over OM

We now detail improvements of FRADE over OM – these improvements enable
FRADE to be robust against sophisticated attacks, while OM only handles naive
attacks.
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Stealthier Decoy Hyperlinks: FRADE uses stealthier decoy targets and
anchors, and makes the placement of decoy anchors more robust against false
positives than OM. FRADE learns the page naming structure from Web server
logs, and automatically crafts the names of the target pages for decoy hyperlinks.
OM creates target pages with random names, which can be detected by bots.

FRADE inserts the decoy anchors away from the existing, visible anchors to
reduce the chance that they are accidentally visited by humans. OM does not
address such concerns, and is prone to false positives.

FRADE makes decoy anchors invisible by adding new styles to the site’s CSS
file, while OM manipulates the anchors in the Web page source, making them
small or changing their color or z-index. OM’s anchors can be detected more
easily by bots.

Improved Dynamics Model: OM models the request dynamics only for main-
page requests, while FRADE models it for main-page and embedded requests,
and also models each request’s principal cost. This helps FRADE handle a variety
of sophisticated attacks (see Sect. 3.3) that OM cannot handle.

OM uses decision trees to capture request dynamics, grouping requests into
sessions and using four features per session. This makes OM’s model more com-
plex than FRADE’s, which uses just one feature – the threshold rate of requests
per time window. OM further requires both legitimate and attack data for train-
ing. Attack data is hard to obtain and overfitting can impair detection of new
bot variants. FRADE only requires legitimate data for training.

Improved Semantics Model: Both OM and FRADE build the request graph
to encode transition probabilities from one Web page to another. But OM focuses
only on pages, while FRADE also models transitions between page groups. This
fall-back mechanism enables FRADE to handle transitions in production that
were not seen in training. Further, OM computes the sequence probability as the
average of probabilities on the request graph, while FRADE computes it as a
product (compound probability of dependent events), which ensures fast decline
with sequence size.

Implementation and Evaluation: FRADE is implemented as a complete
system and evaluated in a realistic setting, while OM was evaluated in simulation.

2.9 Deployment Considerations

Customization. To use FRADE, the Web site administrators must (1) cat-
egorize their Web pages into groups for the semantics module, and (2) insert
decoy hyperlinks into Web pages. This may in some cases require minor human
effort, depending on the server’s content. Table 3 shows how we classified pages
into groups. For Wikipedia, we leveraged its existing categorization of pages into
topics. Imgur and Reddit have a folder-based Web site structure, with related
files grouped into the same folder. In absence of both, a Web site could use a topic
identification tool, such as [2]. We have automated decoy hyperlinks insertion
(around 100 lines of code), which can be customized for a new Web site.
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User Identification. FRADE currently blocks IP addresses, but this can lead
to collateral damage when clients share a NAT. FRADE could use cookies and
block users at the application level, but when a server is under FCA, it is too
overloaded to process each request and mine its cookie. We thus view IP-based
filtering as necessary to relieve the load at the server.

Training Data. FRADE requires training data of legitimate clients and needs
to be trained per server. Each server needs to tune the frequency of their training
and decoy hyperlink insertion to match the frequency of their content updates.
Attackers may introduce adversarial data before the attack to dilute the learned
models. One could address this issue by: (1) sampling training data over multiple
days, (2) excluding outliers by adopting lower values for ThreshPerc parameter,
(3) using techniques such as machine unlearning [13].

Dynamic Content and Misclassification. If a server does not update its
models on new content, FRADE may miss some transitions in the semantics
model, or embedded objects in the AOL. Our fall-back mechanisms for the
semantics model and treating embedded requests not found on AOL as main
requests, help minimize this effect. We used the data from Internet Archive
[34] to measure the daily updates on some frequently-updated Web sites, CNN,
NY Times, Imgur and Amazon. On the average, a small percentage of the
Web site’s content (0.17–0.31%) is added daily, around 6 K–54 K objects and
pages. FRADE’s models can be incrementally updated this often, without full
re-training.

Load Balancers. Larger sites deploy load balancers in front of server farms;
we would have to periodically gather web access logs to a central location and
run FRADE there to learn models and classify bots. FRADE could then block
bot IPs by inserting filtering rules into the load balancer.

2.10 Implementation

FRADE’s core engine is written in C++, and runs on the Web server/proxy.
Filtering is achieved by interfacing with a host-specific mechanism. We use
iptables with ipset extension, which scale well with large filter lists. We clas-
sify each request as either main-page or embedded in the following way. We crawl
the full Web site using the Selenium-based [43] crawler. This helps us identify
both static and dynamically generated HTML content. We extract main requests
by finding elements with tag “a” and attribute “href”. We label other requests
as embedded. These steps are fully automated.

3 Evaluation

Ideally, we would evaluate FRADE with operational servers, real logs, human
users and real FCAs. Unfortunately there are many obstacles to such evaluation:
(1) there are no publicly available WAL from modern servers, (2) paying real
users to interact with a server during evaluation can get costly and prevent
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repeatable experiments, (3) there are no publicly-available logs of real FCAs.
We test FRADE in emulated experiments on the Emulab testbed [50], using
replayed human user traffic and real FCAs. We try to make our experiments as
realistic and representative as possible, given the obstacles listed above.

3.1 Emulation Evaluation Setup

We mirror dynamic content for three popular Web sites: Imgur, Reddit and
Wikipedia. All content is generated dynamically by pulling page information
from the server’s database, using the original site’s scripts. This content is
copyright-free and server configuration files were publicly available. We down-
load each full site, modify it by automatically inserting decoy hyperlinks, and
deploy the site’s original configuration and scripts on our server within Emulab
testbed. While we wanted to replicate more servers in our tests, this was impos-
sible because their implementation was either private (e.g., Facebook, YouTube,
etc.) or their content was not copyright-free (e.g., major news sites).

We engage human users to browse our Web sites and gather data to train
and test FRADE’s models. We replay human user data in a controlled environ-
ment and launch FCAs, with real traffic, targeting our servers from an emulated
botnet. We launch repeated FCAs with various botnet sizes and bot behavior,
and measure the time it takes to identify and block bots.

Our chosen Web sites had server software diversity. Imgur runs on Apache,
Reddit runs on haproxy, and we deployed Wikipedia on nginx.

Human User Data. We obtained human user data using Amazon Mechanical
Turk workers. This study was reviewed and approved by our IRB. In the study
we presented an information sheet to each worker, paired the worker with a server
at random, and asked the worker to browse naturally. We intentionally did not
create specific tasks for workers, as we wanted them to follow their interests and
produce realistic data for our semantic models. We also asked each worker to
browse at least 20 pages so that we would have sufficient data for training and
testing. To keep engagement high, and discourage workers who just click through
as fast as possible, we asked each worker to rate each page’s loading speed on
a 1–5 scale. These ratings were not used in our study. Human behavior may
become more aggressive during FCAs (e.g., more attempts to refresh content),
which may lead to misclassification. However, QoS studies show that users tend
to click less and not more when the server’s replies are slow [6]. Our dataset does
not capture any adaptation of users to speed of server replies. Each server had
243 unique users for training and 107 users for testing in our dataset.

Legitimate Traffic Generator. During each experiment, we replay user traffic
from testing logs. We wrote a custom traffic generator, which extracts timing and
URL sequences from logs, and then chooses when to start each sequence based
on the desired number of active users. The generator uses many different source
IPs. Our replay maintains timing between requests in a sequence, and traffic
is replayed at the application level. When a user sequence completes, another
sequence is selected and another IP becomes active. If we run out of sequences
to replay, we reuse the old ones.
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Attack Traffic Generator. Our attack traffic generator is a modified httperf
tool [37]. We added the ability to choose source IPs from a pool, and to select
requests for each IP from a given sequence, in order. Before building our own
attack tool, we have investigated popular attack tools, such as HULK [1],
LOIC [22] and HOIC [8]. These tools do not allow us to use multiple IP addresses
when running on the same physical machine. This feature is important as one
can mimic large botnets using few machines. Our tool can generate all attacks
generated by HULK, LOIC and HOIC tools, and more.

Table 3. Group assignment for our
three Web sites.

Server Groups

Wikipedia Topic-based categories

Imgur Folder-based groups

Reddit Folder-based groups

Table 4. Time to block all bots

Windows Time to block all bots

Botnet size

8 bots 800 bots 8,000 bots

Non-unif-5 (current) 3 s 8 s 16 s

Uniform-5 4 s 15 s 47 s

Uniform-10 3 s 10 s 38 s

Uniform-20 3 s 7 s 23 s

Experiment Topology and Scenarios. Our experiment topology is shown in
Fig. 3. It has 8 physical attack nodes (each emulating 1–1,000 virtual attackers
each), 1 node emulating 100 legitimate clients, and 3 nodes for mirrored servers.
All nodes are of type d430 on Emulab, with 32 cores and the Ubuntu 14.04 OS.
We fine-tuned the nodes to maximize the request rate that each client could
generate, and to maximize the request rate that our servers could handle. While
having a larger topology would have helped us perform larger-scale tests, Emulab
is a shared resource and we were limited in how many nodes we could request.
Our tests suffice to illustrate trends in FRADE’s effectiveness as botnet size
increases.

Fig. 3. Attackers: A1–A8 (up to 8,000
virtual bots), Legitimate: L (100
clients), the proxy and 3 Web servers.

To identify an effective attack rate,
we measured the request rate required to
slow down each server’s processing below
1 request per second. For all the Web sites,
this rate was around 1,000 rps. We chose
to generate 8 times this rate during an
attack – 8,000 rps. We test one server per
run. Legitimate clients start sending traf-
fic to the server following the timing and
sequences from the testing logs. We main-
tain 100 active, parallel virtual clients throughout the run, each with a separate
IP address. After a minute, our virtual attackers (1–1,000 per physical machine)
start sending requests to the server at the aggregate rate of 8,000 rps. After
10 min we stop the attackers, and a minute later we stop the clients.

We illustrate FRADE’s handling of an FCA in Fig. 4, which shows legitimate
and FCA traffic (sent to the server, and allowed by FRADE), and the blocked
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bots. Legitimate traffic declines at first, until FRADE manages to identify most
bots. After 20 s, FRADE blocks all bots and legitimate traffic returns to its
pre-attack levels. At that point, although the attacker keeps sending the attack
traffic (the actual attack area in Fig. 4), the attack requests cannot reach the
server, as the bot IP addresses are blocked at the proxy.

3.2 Today’s (Naive) Attacks

Fig. 4. FRADE’s handling of an FCA.

First, we test FCAs, that resemble
today’s attacks as noted by [16]. Our
attackers repeatedly request: (t1) non-
existing URLs, or (t2) the base
URL. In the case (t1), we tailor the
URL’s syntax for it to be identified
as main requests. Figures 5(a) and 5(b)
show the time that FRADE took to
block all the bots, in these FCAs, for
each server, and for 8 and 800 bots.
Both attacks show similar trends, with
the smaller botnet being blocked sooner
(around 4 s instead of 8–10 s). All bot
classification is done by the DYNh

module.

3.3 Sophisticated Attacks

An attacker familiar with FRADE could attempt to launch a sophisticated FCA,
where bots mimic humans to evade detection. To evade DYNh, bots would send
at a lower rate, necessitating a larger botnet. Bots could also attempt to gen-
erate requests mimicking a human’s semantics, i.e., trying to guess or learning
popular sequences. Finally, bots could leverage knowledge of FRADE’s different
processing pipelines to engage in embedded or costly request floods.

We first explore fully automated FCAs. An attacker has previously engaged a
crawler to learn about the target server’s Web site graph, i.e., which pages point
to which other pages and to match pages to embedded objects. The attacker
knows that lower request rates per bot mean longer detection delays, but does
not know each page’s popularity and which hyperlinks are decoy links. We only
show results for Imgur. FCAs on other servers show a similar trend.

Fully-Automated: Larger Botnet and Smarter Sequences: These FCAs
include a larger botnet—8,000 bots. The first two FCAs are using the same
(s1) non-existing and (s2) base URLs as described in Sect. 3.2, with a larger
botnet to evade DYNh detection. The third FCA performs a (s3) random walk
on the Web site graph, making only main page requests (we investigate FCAs
that use embedded links in Sect. 3.3). It cannot differentiate between decoy and
non-decoy links.
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Figure 6(a) illustrates the time it takes to block all 8,000 bots in s1–s3 attacks,
using the TAB proxy approach. The non-existing URL attack (s1) is fully han-
dled within 16 s, with each bot blocked after ≈5.8 requests, by the semantics
module. The random walk (s3) is handled within 16 s, with each bot blocked
after 3.8 requests on average by the deception module. For the base URL attack
(s2) it takes 36 s to block 8,000 bots, with each bot blocked after ≈15 requests
by the DYNh module.

Fig. 5. Today’s (Naive) attacks and per-
formance comparison for sophisticated
attacks.

Fully-Automated: Embedded and
Costly Request Floods: Attackers
could attempt to flood with embedded
or costly requests. The non-existing-
object attack (s4) requests made-up
URLs, which end up treated as main
page requests by FRADE. Figure 6(b)
shows the time to block all 8,000 bots
in this FCA. Within a few seconds
the FCA is fully handled. Each bot
is blocked within 2–3 requests. The
semantics module blocks all bots. The
costly attack (s5) sends the most
expensive main page request repeat-
edly to the server. All bots are blocked
by the DYNc module, within a few sec-
onds.

An attacker could collaborate
with some human users to learn
popular pages on a server, and
decoy objects, and then launch semi-
automated attacks. The attacker then
leverages what they learned to craft
sequences of requests, which may
evade detection by FRADE’s seman-
tics and deception modules. The
requests are sent automatically by bots
at predetermined timing.

Semi-Automated: Floods that
Avoid Deception. The smart walk
attack (s6) performs a random walk
on the Web site graph avoiding
decoy links. The smart-walk-object
(s7) performs a smart walk among
all embedded objects on the site,
and smart-walk-site (s8) performs a
smart walk on the site, and requests all
non-decoy embedded objects for each
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main page request. A replay attack [52], where the attacker records and replays
legitimate users’ requests, is a special example of the smart-walk-site attack.
Figure 6(c) shows the time it takes to block all 8,000 bots in these FCAs. In
a smart-walk attack (s6), FRADE takes 38 s to block all 8,000 bots. Each bot
is blocked after 19 requests on the average, by the DYNh module. Figure 5(c)
illustrates benefits of using a proxy. Without a proxy, it would take around 6 min
to block all the bots. With Trans, it takes under 3 min, and with TAB it takes
38 s—almost 10-fold speed-up compared to the server-only approach!

Fig. 6. The time to block 8,000 bots in
sophisticated attacks.

In the smart-walk-object attack
(s7), all bots are blocked within a few
seconds. Each bot is blocked within
2–3 requests, as it requests embed-
ded objects that are not on the AOL
during FCA. All bots are blocked by
DYNe module. The smart-walk-site
attack interleaves main page and their
corresponding embedded requests, and
it avoids decoy links. It thus man-
ages to slip under the radar of DYNh

(main page requests come at a low
rate), DYNc (requests are not costly)
and deception (asking for non-decoy
links only) modules. All 8,000 bots
are blocked within 22 s. Each bot
is blocked on the average after 6
requests. The complete blocking is
done by the semantics module. Since
no replies are returned to users while
the TAB proxy is active, a human
user will not issue embedded object
requests. Hence, FRADE does not
keep embedded objects on the AOL
while TAB is active. Instead, embed-
ded object requests are treated as
main-page requests, and forwarded to
DYNh and semantic modules, which
model only main-page requests. The
semantics module blocks all the bots,
due to the random walk created, lead-
ing to low-probability sequences.

Semi-Automated: Floods that
Use Popular Sequences. An attacker
may learn which sequences are popu-
lar among humans and generate main
page requests for them. They need to
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distribute the rate among many bots to evade detection by DYNh. We evaluate
this FCA analytically, using the WAL of a large public network testbed, that
serves thousands of users. The logs covered three months of data and around 5 K
users. Few users were obvious outliers, making thousands of requests. If we prune
the most aggressive 5% of the users and analyze the rest of the user sequences,
95% were shorter than 17 requests. To evade FRADE, the attacker would need
to retire each bot after 17 requests. For a 10-min, 1,000 rps FCA, the attacker
would need to recruit 35 K bots to attack this specific server. Today, a single
server can be brought down by a single, aggressive bot. FRADE thus raises the
bar for this specific server’s FCA 35,000 times.

3.4 Evasion Attacks

It may still be possible to evade FRADE and launch a successful FCA. This
would require: (1) Recruiting very large botnets, so each bot is used inter-
mittently. As per our evaluation, FRADE raises the bar from 1 bot to more
than 8,000 bots, so at least three orders of magnitude. (2) Leveraging humans
instead of bots and instruct users to click on visible, popular content, following
their interests. Then, FRADE would not be able to identify malicious (human)
clients, but the attacker would need thousands of humans for a sustained FCA.
The attacker could combine these two approaches, learning popular sequences
from human collaborators, then encoding them in stealthy, low-rate bots. This
attack would not be detected by FRADE, but it would require at least 3 orders
of magnitude more bots than are in use today (see discussion above of floods
that use popular sequences).

3.5 FRADE Outperforms OM

We experimentally compare the accuracy of FRADE versus OM for DYNh and
semantics models. These models exist in both solutions and FRADE improves
on OM’s design. We use the same legitimate traffic as in Sect. 3.2, interleaved
with synthetically generated FCA bot traffic, exploring a range of request rates
as suggested in [39]. For OM, we train decision trees using Weka on the training
data and test on the testing data. When testing DYNh we run base-URL FCA,
and use 8–8,000 bots. When testing semantics models we run the smart-walk
FCA, and also use 8–8,000 bots. A false positive means that the defense clas-
sified a human user as a bot. A false negative means that the defense failed to
identify a bot. For space reasons we summarize our findings. While FRADE
had no false positives or false negatives in our tests, OM had many
false positives (7–76%) for the DYNh model, for Wikipedia and Red-
dit, due to high dimensionality [51] of its models and overfitting. OM also had
some false negatives (5–13%) for the semantics model and the 8,000-bot
FCAs, because OM cannot handle transitions not seen in training data, while
FRADE can using its fallback mechanism. FRADE’s models thus outperform
those of OM.
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In addition to this comparison on attacks they both handle, FRADE also
outperforms OM by handling a wider range of attacks (embedded and costly
request floods).

3.6 Sensitivity

FRADE uses multiple parameters in its operation, as shown in Table 2. We focus
here on analyzing sensitivity of parameters that influence classification accuracy.
DYNh and DYNc currently use 5 window sizes as time intervals, during which
they learn thresholds for their models. These window sizes follow a non-uniform,
exponential-like pattern, with increasing gaps between windows. We also tested
3 different uniform distributions: uniform-5, uniform-10 and uniform-20 with 5,
10 and 20 windows in the 0–600 s range, respectively. We tested non-existing URL
FCAs on Imgur with these alternative windowing approaches, and compared the
speed of FRADE’s response. Results are shown in Table 4. Non-uniform window
sizes perform better than uniform sizes, especially for bots that send at a low
rate.

Fig. 7. Memory and CPU cost vs #
bots.

Both dynamics and semantics modules
use ThreshPerc to find the percentage of
the quantities they model. In our eval-
uation, we use 100% as ThreshPerc. We
chose this value to achieve zero false posi-
tives since we had small training data. In
reality, a large server would have logs of
millions of clients, some of which could be
outliers. We have evaluated values of 99%,
95% and 90% for ThreshPerc with non-
existing URL FCAs on Imgur. For DY Nh

model false positives were 3%, 5% and 9%
with ThreshPerc values of 99%, 95% and
90% respectively. This is mainly because
our training data is small and does not have outliers, so removing some per-
centage of aggressive behaviors from training will lead to the similar amount
of misclassifications on test data. Semantic model did not generate any false
positives with tested ThreshPerc values. Another parameter is the decoy object
density ρ—the ratio of decoy objects to visible objects on the same page. In our
experiments we use ρ = 1. The higher the ρ, the faster a bot’s identification, but
the higher chances that a human user could accidentally access a decoy object
and visible distortion to the original page’s layout. In our MTurk experiments
no humans have clicked on our decoy objects. We also observed no visible distor-
tion. Around ρ = 1.5 we observe distortion in Imgur’s Web pages, and around
ρ = 5 distortion becomes severe.
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3.7 Operational Cost and Scalability

We tested FRADE with attacks of up to 0.5 M bots to evaluate its scalability.
FRADE’s operational cost is modest. The CPU load never exceeded 5% and
the memory grew linearly to around 1.5 GB for 0.5 M bots (Fig. 7), or around
3 KB per bot or client. Extremely active Web sites like Amazon can see about
4 M active clients per hour [3,4], and would need 12 GBs of memory, which is
feasiable today. It takes on the average 0.05 ms to process a Web log request in
FRADE. Thus, FRADE could easily process around 20,000 rps on a single core.
Since FRADE does not operate in line, it does not add any user-visible delay to
request processing.

Table 5. Page serve time in ms

Number of IPs 0 100 1K 10K 100K 1 M

iptables 4.5 4.5 4.5 4.7 4.9 N/A

ipset 4.8 4.8 4.9 4.9 4.9 5.3

We evaluate scalability of
FRADE’s filtering using iptables
and ipset. We artificially insert
a diverse set of IP-rules and send
packets matching these rules at a
high rate. This emulates the situ-
ation when a server is under FCA

by numerous bots. We issue Web page requests and measure the time it takes to
receive the reply. Table 5 shows the averages over ten runs. iptables’s process-
ing time grows modestly until 100 K IPs, but then explodes. We were not able
to complete the tests with 1 M IPs. However, ipset imposes only a small delay
of 8% as the rules table grows from 100 K to 1 M, and no measurable delay for
fewer than 100 K rules. Thus, FRADE can block a million IPs using ipset.

4 Related Work

Clouds are a common solution for DDoS. They may offer “attack scrubbing” ser-
vices, but the details of such services are proprietary. Clouds handle volumetric
attacks well, but FCAs may fly under their radar. They also use Javascript-
based cookies [17,41], to detect if a client is running a browser. These challenges
are transparent to humans, and good for detecting automated bots. However,
attackers can use the Selenium engine to generate requests. Since Selenium inter-
prets Javascript, it would pass the cookie challenge. FRADE can complement
cloud defenses, enabling server-based solutions for FCAs.

Table 6. Rel. work comparison, showing the absence or
presence of human Web server interaction features, even
if present at the very basic level.

Detection mech. Dyn Sem Dec

Jung et al. [28] ✓ ✗ ✗

Ranjan et al. [42] ✓ ✗ ✗

Liao et al. [33] ✓ ✗ ✗

Wang et al. [48] ✗ ✓ ✗

Xie and Yu [54] ✗ ✓ ✗

Beitollahi et al. [9] ✓ ✓ ✗

FRADE ✓ ✓ ✓

CAPTCHAs [7,29] are
another popular defense
against FCAs. Users, who
correctly solve a graphi-
cal puzzle have their IPs
placed on “allow” list.
While a deterrent,
CAPTCHAs have some
issues. Multiple on-line
services offer bulk
CAPTCHA solving, using
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automated and semi-automated methods (e.g. [32]). CAPTCHAs also place a
burden on human users, while FRADE does not. Google’s reCAPTCHAs [20]
and similar approaches for human user detection are transparent to humans, but
can still be defeated using deep learning approaches [5,11,45]. These approaches
are complementary to FRADE, as they model complementary human user
features.

Jan et al. [26] propose a stream-based bot detection model [49] and augment
it with a data synthesis method, using Generative Adversarial Networks [36], to
synthesize unseen bot behavior distributions. While we lack the data they have,
and cannot compare our systems directly, we can comment on their expected rel-
ative performance based on their design. Jan et al. system focuses on eventually
detecting advanced bots, and is well-suited for click bot or chat bot detection.
Authors show that it can adapt to new bot behaviors with small re-training, and
that it is robust to adversarial attacks. FRADE focuses on quickly detecting bots
involved in an FCA. Such bots are likely to exhibit specific, aggressive behaviors,
since they seek to maximize request rate at the server. When FRADE misses a
bot, such bot has a low yield to the attacker, necessitating a large botnet for a
sustained attack. Thus FRADE could miss some bots that Jan et al. approach
detects, but these bots would not be very useful for flash-crowd attacks.

Comparing reported performance, Jan et al. require long request sequences
(30+ requests in a month) to classify a user as benign or bot. This means that
new bots will not be detected for at least 30 requests. FRADE can identify and
block most bots within 3–6 requests, and sophisticated bots with less than 20
requests. FRADE also achieves higher accuracy – it identifies all bots in our
tests and does not misidentify any benign users as bots. Finally, Jan et al. use a
small fraction of bot data in training, while FRADE uses only benign user data.

Rampart [35] and COGO [18] build models of resource consumption over
time to detect and handle resource exhaustion states. Such defense mechanisms
could handle FCAs that employ costly requests, but not other FCA variants.

Like FRADE’s dynamics model, several efforts use timing requests to detect
FCAs [33,42]. Ranjan et al. [42] use the inter-arrival of sessions, requests and the
cost profile of a session to assign a suspicion value and prioritize requests. Liao
et al. [33] look at the inter-arrival of requests within a window. They use custom
classification based on sparse vector decomposition and rely heavily on thresholds
derived from their dataset. These works have limited evaluation compared to ours
and rely only on modeling human requests, while we also deal with embedded and
costly requests, we build semantic models of request sequences and use decoys to
bait bots. Yatagai et al. [55] look for repetitive sequences of resources, and clients
which spend shorter than normal periods of time between requests. Bharathi
et al. [10] use fixed sized windows to examine which, and how many, resources
a client accesses and to detect repetitive patterns. Najafabadi et al. [38] use
PCA and fixed windows to examine which resources a client requests. Beitollahi
et al. [9] propose ConnectionScore, where connections are scored based on history
and statistical analysis done during the normal conditions. Models engaged in
connection scoring are coarser (e.g., 1 rps vs our rate per several time intervals)
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than FRADE models, and thus we believe that FRADE would outperform this.
Jung et al. [28] learn existing clients of a Web server, and perform network aware
clustering [31]. When the server is overloaded, they drop aggressive clients that
do not fit in the existing clusters. In comparison to these works, we evaluate
timing dynamics at a much finer granularity, and evaluate the strict order of
requests, allowing us to detect stealthier FCAs.

Multiple works are related to FRADE’s semantics model. Wang et al. [48]
examine requests over 30-min windows (sessions) and use a click-ratio (page pop-
ularity) model and Markov process to model clients. Their detection is highly
accurate for bot identification, but has a high false-positive rate, while we have
zero false positives. Similar to [48], Xie et al. [54] capture the transition proba-
bilities between requests in a session through a hidden semi-Markov model. Our
approach to training and modeling is simpler, while still very accurate.

Our deception model uses honeytokens [46], similar to [12,19,21]. We build
on ideas from these prior works (use of decoy links), but we use a variety of decoy
objects, configurable object density and automate object insertion code for each
site. To our knowledge, our work is the first to combine dynamics, semantics
of user requests, and the decoy objects in a single defense, and evaluate its
effectiveness using realistic traffic and real servers (Table 6). Our results show
that different modules are effective against different FCAs. Thus, a combination
is needed to fully handle FCAs. Software and datasets for these prior works are
not publicly available, and thus we could not directly compare FRADE to them.

Biometrics solutions (e.g., [15] or [53]) can distinguish bots from humans by
capturing mouse movements and keystrokes. These approaches are orthogonal
to FRADE, and may suffer from privacy issues.

5 Conclusions

FCAs are challenging to handle. We have presented a solution, FRADE, which
models how human users interact with servers and detects bots as they deviate
from this expected behavior. Our tests show that FRADE stops naive bots within
3–5 requests and sophisticated bots within 15–19 requests. A bot could modify
its behavior to bypass FRADE’s detection, but this forces the attacker to use
botnets at least three order of magnitude larger than today, to achieve sustained
attack. FRADE thus successfully fortifies Web servers against today’s FCAs.
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Abstract. In this work, we present a zero knowledge argument for gen-
eral arithmetic circuits that is public-coin and constant rounds, so it can
be made non-interactive and publicly verifiable with the Fiat-Shamir
heuristic. The construction is based on the MPC-in-the-head paradigm,
in which the prover jointly emulates all MPC protocol participants and
can provide advice in the form of Beaver triples whose accuracy must be
checked by the verifier. Our construction follows the Beaver triple sacri-
ficing approach used by Baum and Nof [PKC 2020]. Our improvements
reduce the communication per multiplication gate from 4 to 2 field ele-
ments, matching the performance of the cut-and-choose approach taken
by Katz, Kolesnikov, and Wang [CCS 2018] and with lower additive
overhead for some parameter settings. We implement our protocol and
analyze its cost on Picnic-style post-quantum digital signatures based on
the AES family of circuits.

1 Introduction

Zero knowledge proofs are a useful cryptographic primitive for verifiable yet confi-
dential computing that have found applications in the design of anonymous cryp-
tocurrencies [10,62] and identification schemes [27]. They are also used as a compo-
nent within other cryptographic protocols like digital signature schemes [8,55] and
malicious-secure multiparty computation protocols [43,58]. Both the interactive
[44,45] and non-interactive [19,35] variants of zero knowledge (ZK) proofs (respec-
tively, arguments) allow an unbounded (resp., polynomially-bounded) prover P to
convince a verifier V that a relation C is satisfiable while hiding the witness to this
fact. We focus on ZK arguments in this work.

There have been substantial advances over the past decade to improve the
efficiency of ZK arguments along several metrics. We categorize these advances
into three groups based on their tradeoffs between proof size (or total commu-
nication for interactive protocols), RAM requirements, and whether the proofs
are verifiable to the general public or a single designated verifier.
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First, ZK-SNARKs and ZK-STARKs offer sublinear proof size and verifi-
cation time (between logarithmic and square root of the circuit size |C|) but
require the prover to use enormous amounts of memory. There is a long line
of research into ZK succinct interactive arguments of knowledge (SNARKs),
building upon the work of Killian [57]. Initial constructions required superlinear
prover time and per-circuit structured setup [11,14,18,21,32,41,46,47,65], and
subsequent work achieved linear prover time and permitted universal structured
setup [22,30,38,39,48,60,72]. The newest ZK-SNARKs and ZK scalable trans-
parent arguments of knowledge (STARKs) leverage ideas from interactive oracle
proofs [13,66] or the sumcheck protocol [29,59] to remove structured setup alto-
gether but have slightly higher proof size [3,12,17,25,26,67,68,70,74]. Moreover,
the large RAM requirement remains.

Second, there exist ZK arguments that scale to large statements due to
their moderate RAM requirements (approximately security parameter × circuit
size) and linear prover and verifier runtime, but that sacrifice public verification
because they need a designated verifier to maintain secret randomness. ZK proofs
based on privacy-free garbled circuits [37,40,50,53,73] require a designated ver-
ifier to garble the circuit and keep the wire labels hidden until the end of the
protocol. A separate line of research [5,71] uses vector oblivious linear evalua-
tion (VOLE) [23,24,63] to build proofs with a highly efficient (and optionally
non-interactive) online phase, after a one-time interactive preprocessing phase
is used to establish correlated randomness between the prover P and verifier V.

The focus of this work is the remaining situation: when both public verifia-
bility and low RAM utilization are required and a linear proof size is acceptable,
the best available constructions are based on the “MPC-in-the-head” paradigm
developed by Ishai et al. [51]. These proofs are constructed by executing a secure
multiparty computation (MPC) protocol, which only requires fast symmetric key
crypto operations and is amenable to the Fiat-Shamir transform [36]. As a result,
proofs in the MPC-in-the-head paradigm form the basis of the Picnic digital sig-
nature scheme that is currently an “alternate candidate” in round 3 of the NIST
post-quantum crypto competition [1,28,55,61].

1.1 Our Contributions

In this work, we contribute a new zero knowledge proof in the MPC-in-the-
head paradigm that provides concretely smaller proof sizes than prior work. Our
construction, called TurboIKOS, retains the benefits of all constructions in the
MPC-in-the-head paradigm: low RAM utilization, public verifiability, avoiding
structured setup, prover and verifier runtime that are linear in the circuit size |C|,
and the ability to make the proof non-interactive via the Fiat-Shamir transform.

We describe two variants of TurboIKOS, both of which operate over an NP
relation encoded as an arithmetic circuit C over a large field F. The first version is
an improvement over Baum-Nof [6] that reduces the number of field elements sent
per gate from 4 to 3, and is intended for circuits with large field size (Sect. 3.3).
The second version further reduces the number of field elements sent per mult
gate from 3 to 2, and uses a modified batched consistency check that allows
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the technique to be used in smaller fields (Sect. 3.4). We analyze our security
in Sect. 4. We describe our implementation of our first variant and evaluate the
proof size of our second variant in Sect. 5.

1.2 The MPC-in-the-Head Paradigm

MPC-in-the-head is a method to construct a zero knowledge proof from a secure
multiparty computation (MPC) protocol. Given an NP relation encoded as a
circuit C, the prover P runs all parties in a secure computation of C beginning
with a sharing of the witness, and the verifier V challenges P to open some
of the views. Zero knowledge follows from the privacy of the MPC protocol,
and soundness is achieved because a malicious P must have created inconsistent
views and V finds them with noticeable probability. The seminal work of Ishai
et al. [51] (also referred to as “IKOS”) demonstrated that this transformation
works for any MPC protocol. Subsequently, a line of works designed specific
protocols with increasingly smaller proof size: ZKBoo [42], ZKB++ [28], Katz
et al. [55], and Baum-Nof [6].

Table 1 shows proof sizes for MPC-in-the-head constructions in which the
prover P runs R iterations of an MPC protocol, each of which involves N parties
securely evaluating a circuit C with I input wires, O output wires, and M
multiplication gates. When using an ordinary MPC protocol like SPDZ [33], a
multiplication gate requires all parties to broadcast one message that is stored in
the resulting proof, yielding in a proof size of Ω(MNR). To do better, MPC-in-
the-head constructions make optimizations that are not acceptable for “normal”
MPC protocols: they design circuit decompositions that look like MPC party
views, yet can only be computed when a single entity P knows the inputs of
all MPC parties. In circuit decompositions, the emulated MPC parties don’t
communicate to compute the views, but rather only to check their consistency.

We briefly survey the main ideas in each construction and the impact they
have on the proof size per multiplication gate, which tends to be the largest
contributor to the proof size.

– ZKBoo [42] and ZKB++ [28] are based on the N = 3 party replicated secret
sharing MPC protocol of Araki et al. [4]; they do not generalize to arbitrary
choices of N . All data is secret shared using 3-out-of-3 additive sharing, and
addition can be done locally. Multiplication requires sending 3 messages, each
of which is a function of a different subset of 2 of the 3 shares of the input
wires. The verifier V receives two shares, and therefore can verify 1 of the 3
messages sent during each multiplication.

– ZKB++ and all subsequent works sample shares pseudorandomly. Given a
seed σp for each party p, to share a value vw on wire w, only the offset
ew = vw +

∑
p PRF(σp, w) is recorded in the proof, reducing the cost per

multiplication gate but requiring a (cheap) initial setup to distribute seeds.
– Katz et al. [55] extends MPC-in-the-head to accommodate MPC protocols

with preprocessing. They build Beaver triples using a cut-and-choose app-
roach, where some triples are opened and checked during preprocessing. The
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Table 1. Proof size (in # of field elements) and soundness error (for large fields) for
several MPC-in-the-head protocols. Some lower-order terms are omitted for legibility.
N is the number of parties, M is the circuit size (number of multiplication gates), I
and O are the number of input and output wires for the circuit, respectively, and R is
the number of times the protocol is repeated. Note that ZKBoo and ZKB++ are only
constructed for N = 3. P is a parameter specific to [55] indicating how many Beaver
triples are committed to in advance.

Protocol Proof size Soundness error

IKOS+SPDZ [33,52] R · (6MN + (I + O)N) (1/N)R

ZKBoo [42] R · (2M + 2I + 2O) (2/3)R

ZKB++ [28] R · (M + I) (2/3)R

Katz et al. [55] R · (2M + I + log N + logR(P )) max0≤i≤R
(P−R+i

P−R )
( P
P−R)Ni

Baum-Nof [6] R · (4M + I + log N) (1/N)R

ΠTurboIKOS (this work) R · (3M + I + log N) (1/N)R

ΠTurboIKOS (this work) R · (2M + I + log N + NU) See Theorem 3

proof size (R logR(P )) required to assist V in the preprocessing step is inde-
pendent of the circuit size. The remaining Beaver triples are assumed to be
valid and used to verify the real execution.

– Baum-Nof [6] also uses pseudorandom shares and Beaver triples in a variant
of the SPDZ MPC protocol, but avoids cut-and-choose in favor of sacrificing
one Beaver triple to check the validity of each multiplication gate.

For each multiplication gate: ZKB++ requires 1 field element to represent the
offset ew for the output value (but requires more repetitions than the rest), Katz
et al. requires 1 more field element to represent the offset for the Beaver triple
value, and Baum-Nof requires 2 more field elements to test whether the sacrificed
Beaver triple and the circuit values are consistent. In this work, we introduce two
new sacrificing-based MPC-in-the-head constructions that require 1 and then 0
field elements to perform this consistency test; the latter introduces an additive
overhead that can be smaller than that of Katz et al. for some parameter settings.
See Table 1 for more details about the proof size for each protocol.

1.3 Overview of Our Construction

The simplest way to describe our first protocol variant is that we combine the
techniques used in the Baum-Nof ZK proof with the Turbospeedz MPC protocol
[9] so that sacrificing a Beaver triple costs only one field element instead of two,
while preserving the soundness error. Our second variant replaces the remaining
field element per multiplication gate with some prover advice about the overall
circuit, reducing the proof size so that it is competitive with Katz et al. [55] but
with a different set of parameter tradeoffs. In this section, we briefly describe
the Turbospeedz construction and explain the challenge when integrating it into
MPC-in-the-head.
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SPDZ and Turbospeedz. The SPDZ line of works [15,33,64] is a popular family of
MPC protocols that offloads the (expensive) generation of Beaver triples into a
preprocessing phase so that the online phase has free additions and only requires
broadcasting 2 elements per multiplication gate (1 per input wire). Turbospeedz
[9] saves 1 element per multiplication gate by exploiting a redundancy: when
generating shares of an input wire w pseudorandomly such that the shares of
the value are [vw] = ew + [λw], the public offsets ew can also serve “for free” as
the broadcast values for the input wires, and the only effort required is to create
the new offset for the 1 output wire.

The Challenge of TurboIKOS. When SPDZ is used in MPC-in-the-head to
check a multiplication gate whose input and output wires are claimed to be
a Beaver triple 〈vx, vy, vz〉, it suffices to use the semi-honest protocol without
MAC checks, and for the prover P to cheaply generate an independent Beaver
triple 〈λ̂x, λ̂y, v̂z〉. However, with Turbospeedz there is a problem: the protocol
transmits 2 field elements in the preprocessing stage, in addition to the 1 field
element in the online stage. This is fine from an MPC perspective where prepro-
cessing work might be viewed as “free,” but is unacceptable for MPC-in-the-head
where all elements add equally to the proof size.

To overcome this issue, we turn to another member of the SPDZ family:
Overdrive [56]. The Overdrive protocol includes a clever method for generating
a partially-correlated Beaver triple 〈λx, λ̂y, v̂z〉 where the shares [λx] for the first
element of the Beaver triple are the same as the shares for the true value vx. With
a common element between the two Beaver triples, all of the setup calculations
become linear steps that can be computed locally by the parties. Integrating
Turbospeedz’s function-dependent preprocessing with Overdrive’s Beaver triple
generation mechanism is one of the accomplishments of our TurboIKOS protocol.

Implementing Picnic Digital Signatures. We provide an open source implemen-
tation of our protocol [49] and evaluate our proof size when using a variant
of the Picnic post-quantum digital signature scheme [61] that uses AES as its
block cipher, following the techniques introduced by BBQ [34]. Picnic signatures
are based on an MPC-in-the-head proof of knowledge of a secret key k such
that AESk(x) = y, where the corresponding public key is (x, y). As we show
in Sect. 5.1, our protocol returns the smallest proof size among streaming- and
memory-friendly systems using less than 32 emulated MPC parties. Our signa-
ture sizes are also competitive with those of Banquet [7], an independent recent
work that involves a memory-intensive polynomial interpolation over the entire
circuit.

2 Preliminaries

2.1 Notation

Throughout this work, P denotes the prover and V denotes the verifier. We
let C denote an arithmetic circuit corresponding to the NP relation with a
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canonical output message corresponding to logical true (i.e., the witness satisfies
the relation). We use ADD, MUL to denote addition and multiplication gates,
respectively.

The circuit has a set of gates G of which a subset M are MUL gates, as
well as a set W of wires, of which there are subsets I of inputs to the circuit
and outputs of MUL gates. O ⊆ W denotes the output wires for the circuit. By
abuse of notation, we use the same variables to denote the size of each set; for
instance, we let M denote the number of multiplication gates when it is clear
from context that we are describing an integer rather than a set.

We consider an MPC-in-the-head protocol execution with N parties that is
repeated R times. If a single iteration of a protocol has soundness error δ, then
we can run R = � κ

log(1/δ)� independent iterations to reduce the soundness error
to 2−κ (where all logarithms are taken base-2 in this work).

For computation and equations, we use F to refer to a finite field and F
∗ to

refer to the units of that field. We generally use κ as our security parameter and
[v] to refer to an additive secret sharing of a value v among the N parties.

We say a party is p.p.t. to denote that it is probabilistic polynomial time.

2.2 Definitions

Pseudorandom Functions and Commitments. We require the existence of a pseu-
dorandom function PRF and a computationally hiding commitment scheme Com
in our security analysis in Appendix 4. Our implementation uses hash-based com-
mitments that models the hash function as a random oracle and assumes that
AES acts as a PRF. Below we give the formal definitions for PRF and Com:

Definition 1 (Pseudorandom Function). Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗

be an efficient, length-preserving, and keyed function. F is a pseudorandom func-
tion with soundness κ if for all adversaries A that run in at most q time steps, A’s
advantage AdvPRF(A) = |Prk[AF(k,−) = 1] − PrH [AH = 1]| at distinguishing the
pseudorandom function from a random oracle H is at most q/2κ.

Definition 2 (Commitment). A commitment scheme is a protocol between
two parties S and R with the following algorithms:

– Com(m): The sender S has an input message m ∈ {0, 1}∗ and security param-
eter 1n. The algorithm Commit outputs a pair (c, r) where c is the public
commitment and r is the private decommitment randomness.

– Decom(c,m, r): the sender S sends (c,m, r) to the receiver R, who then either
accepts and outputs m or rejects.

A computationally secure commitment scheme satisfies the following properties:

– Completeness: If (c, r) = Com(m), then in Decom(c,m, r) the receiver R
accepts and outputs m.

– (Computational) Hiding: For any two message pairs m,m′ ∈ {0, 1}∗, any
receiver R∗ running in q time cannot distinguish their respective commitments
AdvCom(R∗) = |Pr[R∗(Com(m, r)) = 1] − Pr[R∗(Com(m′, r′)) = 1]| except
with probability at most q/2κ.
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– (Computational) Binding: No adversarial sender S∗ running in at most q
time has more than probability q/2κ of outputting c,m,m′, r, r′ such that m 	=
m′, and Decom(c,m, r) and Decom(c,m′, r′) both accept.

While our main construction can support arbitrary commitment schemes, in
this work we focus on the hash-based commitment scheme in the random oracle
model, in which Com(m; r) = H(m, r) feeds the input message and randommess
into the random oracle and Decom(c,m, r) = (m, r) provides the preimage to
the hash. The binding of this scheme follows from a birthday bound analysis: if a
random oracle has 2κ bit output length and an adversary makes at most q queries
to this oracle, then the probability that the adversary finds a collision in the
oracle is at most q2/22κ, and a collision is necessary to break the binding property
of the commitment scheme. The hiding property can be proved similarly.

There are a few optimizations that prior works have used here to save space.
First, when committing to a list of messages 〈m1,m2, . . . ,m�〉, the sender can
provide a succinct commitment H(Com(m1, r1), . . . ,Com(m�, r�)) to the entire
list, again thanks to collision resistance. Second, if m is already known to the
receiver, then it suffices to send only r during decommitment. Third and most
ambitiously, because we will only commit to strings that already have min-
entropy κ, when generating a signature scheme we can go further and remove
the randomness r from the Com and Decom algorithms to create a deterministic
scheme in which decommitments are free. This strategy breaks the hiding prop-
erty of the commitment and thus the zero knowledge property of the schemes we
will construct, but it will suffice for our signature construction; we refer readers
to Katz et al. [55, §3.1] for details.

Honest Verifier Zero-Knowledge Argument of Knowledge. Next, we formally
define the notion of ZK arguments over an NP-relation R(x,w) as a two-party
protocol involving two p.p.t. algorithms, a prover P and a verifier V. Both parties
have the same NP statement x, and only the prover receives its corresponding
witness w. The parties interact to determine whether R(x,w) = 1 without reveal-
ing the witness. We restrict our attention to the honest verifier setting in which
V never deviates from the protocol.

Definition 3. The protocol (P, V) is an honest verifier ZK argument for the
relation R(x,w) if it satisfies the following properties:

– Completeness: If P and V are honest and R(x,w) = 1, V always accepts.
– Soundness: For any malicious and computationally bounded prover P∗,

there is a negligible function negl(·) such that a statement x is not in the
language (i.e., R(x,w) = 0 for all w), then V rejects on x with probability
≥ 1 − negl(|x|) when interacting with P∗.

– Honest verifier computational zero knowledge: Let V iewV(x,w) be a
random variable describing the distribution of messages received by V(x) from
P(x,w). Then, there exists a p.p.t. simulator Sim such that for all x in the
language, Sim(x) ≈c ViewV(x,w).
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In this work, we will construct a ZK argument of knowledge, which provides a
stronger knowledge soundness guarantee that if a bounded-time malicious prover
P∗ can make the verifier accept a statement x with non-negligible probability,
then there exists an extractor EP∗

(x) that can output a witness w such that the
relation holds R(x,w) = 1.

Additionally, we restrict our attention to honest verifier ZK in this work
because our protocol TurboIKOS is also public coin and constant round, so
it can be transformed into a non-interactive argument using the Fiat-Shamir
transform.

Secure Multi Party Computation (MPC). An MPC protocol allows N players
to jointly compute a function of their respective inputs while maintaining the
privacy of their individual inputs and the correctness of the output. In addition,
the protocol should prevent an adversary who may corrupt a subset of play-
ers, from learning additional information or harming the protocol execution. A
party’s view in MPC contains that party’s input, randomness, and any messages
received by that party. For use in MPC-in-the-head, secure computation proto-
cols must satisfy t-privacy, meaning that the view of any subset t < N of the
parties can be simulated (see [51] for a formal definition).

3 Construction

We present our protocol ΠTurboIKOS in this section and in Fig. 1. We start by
describing the Baum-Nof [6] SPDZ-like protocol and the Turbospeedz MPC
protocol. Then, we show how to incorporate Turbospeedz [9] into the MPC-in-
the-head paradigm to reduce the amount of communication per MUL gate.

3.1 Starting Point: SPDZ and Baum-Nof

We use the MPC-in-the-head paradigm introduced by Ishai et al. (IKOS) [51]
combined with a semi-honest version of the (N −1)-private SPDZ MPC protocol
[33] as a starting point for our zero-knowledge proof using MPC-in-the-head pro-
tocol. In IKOS, a prover simulates an MPC protocol for all parties and commits
to a view for each party containing the party’s randomness, input, and messages
received. To save proof space, an additional “broadcast channel” is committed
to for messages that are sent to all parties, rather than writing the same value
in all party views. Then the verifier chooses a subset of the parties and chal-
lenges the prover to open the committed views of these parties. The verifier
then confirms that the views of the opened parties are consistent, that is, the
message party i sent to party j is the same in views of both those parties. For
N -party MPC protocols that only send broadcast messages and do not contain
any private messages between parties, the verifier opening T parties will have
a T

N chance of catching a prover who cheats by creating inconsistent views: the
“receiving” half of the message is always revealed in the broadcast channel, and
these are checked for consistency with the revealed parties’ “sent” messages. By
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repeating this process R times with fresh randomness, the verifier can shrink the
probability of error by a power of R.

We start with the variant of semi-honest SPDZ [33] used by Baum-Nof [6].
Let N denote the set of parties and M denote the set of multiplication gates
in the circuit C. The parties hold sharings of the inputs [xm] and [ym] for each
MUL gate m ∈ M ; since this MPC protocol is being emulated by a prover who
knows the value on the wire, the parties additionally have a sharing of the gate’s
output [zm]. The prover generates a random multiplication triple, 〈am, bm, cm〉,
which will be “sacrificed” to check a multiplication constraint in a MUL gate.
The verifier will send a random challenge εm ← F. Each party does the following:

1. Broadcast [fm] = εm[xm] + [am] and [gm] = [ym] + [bm]
2. Use the recombined f and g to compute

[ζm] = εm[zm] − fmgm + fm[bm] + gm[am] − [cm]. (1)

Baum and Nof show that if either 〈am, bm, cm〉 or 〈xm, ym, zm〉 is not a valid
multiplication triple, this value ζm will be nonzero with probability at least
1 − 1/|F| over the choice of εm. We will prove similar claims in Lemmas 1–2.

To save proof space, rather than broadcasting the ζm values for each MUL
gate m, an additional challenge variable ε̂m ∈ F is sent by the verifier V and the
prover P responds by sending a linear combination [Z] =

∑
m∈M ε̂m[ζm] of the

secret values and public coefficients. If the prover is honest then Z = 0. Baum
and Nof show (Proposition 1 of [6]) that Z will be nonzero if at least one mult
gate constraint is violated with probability at least 1 − 2/|F|. Later in Lemma 2
of this pape we will improve this bound for a batched set of ζm values to a 1/|F|
error using a very-slightly different batching technique.

If 1/|F| does not yield sufficient soundness error, we can reduce this error
by doing multiple batched checks. To do so, we reveal linear combinations
[Z1], . . . , [ZU ], all over the same [ζm] shares, but using different random ε̂m

choices provided by the verifier. Let U be the number of these checks.
Naively, this protocol broadcasts (2M+U)N elements since each party broad-

casts their f shares and g shares for each multiplication gate, plus [Z]. Later in
this work we will show multiple ways to reduce this size with different tradeoffs,
by taking advantage of the fact that V has corrupted N − 1 parties. We empha-
size that all parties’ shares must still be committed to before P knows which
party will remain uncorrupted.

To compress the parties’ views, we can generate the shares of all values
pseudorandomly, with only one public “offset” value per wire. Then, for each
multiplication gate, the prover only needs to broadcast the offset values for f
and g, along with the offsets of the true output wire z and the Beaver triple
product c. Hence, the proof contains 4 field elements per multiplication gate, as
shown in Table 1.

3.2 Introducing Turbospeedz

Turbospeedz [9] generally shows how to have only one broadcast per multipli-
cation gate instead of two in normal SPDZ by adding a function-dependent
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preprocessing step where the circuit to be computed is known, but the input to
the circuit need not yet be known. The idea is to add a sharing of a “mask”
on each wire, propagated additively (but not multiplicatively) during prepro-
cessing. Then, the masks of the input wires can serve as the first two elements
of a Beaver triple, which is also generated during the preprocessing. Let x and
y denote the input wire and z denote the output wire of any gate. Let vx, vy,
vz denote the real values on the wires. In the preprocessing phase, the prover
performs the following:

1. For each party, the prover generates random “masking shares” [λw] for each
input wire and the output wire of each MUL, w.

2. The prover homomorphically computes the mask shares for each ADD gate
internal output wire, [λz] = [λx] + [λy].

3. For each wire w, the prover computes external value, ew = λw +vw. In MPC,
these external values are public to all parties. In MPC-in-the-head, P will
give them to V in the clear.

In Turbospeedz, given ex, ey, and a Beaver triple 〈am, bm, cm〉, each party
computes their share of MUL gate m’s output wire by locally computing

[vz] = exey − ey[am] − ex[bm] + [cm]
= (vx + am)(vx + bm) − (vy + bm)[am] − (vy + am)[bm] + [cm]
= [vxvy].

The parties then proceed to compute and open [ez] = [vz] + [λz]. Note that
this relies on the parties already possessing a sharing of a valid Beaver triple
〈am, bm, cm〉 in advance.

The upshot of this method is that multiplication gates can be computed using
only one opening (ez) instead of two (d and e in the previous section).

3.3 Adapting Turbospeedz into Sacrificing-Based MPC-in-the-Head

In this section, we incorporate a modified version of the Turbospeedz method
from Sect. 3.2 into the SPDZ-based MPC-in-the-head framework described above
from Sect. 3.1. For large field sizes, the resulting MPC-in-the-head protocol
ΠTurboIKOS will require only 3 field elements per multiplication, rather than
the 4 elements used in Baum-Nof [6].

Committing to all Wire Values. The first step of converting Turbospeedz into
an MPC-in-the-head protocol is to replace the step of opening shares of ez by
having the P simply provide ez in the clear. However, unlike Turbospeedz, we
do not wish to have a costly preprocessing process in which the verifier becomes
convinced of the validity of all Beaver triples in the circuit; instead we wish to
use ζm values as in Eq. 1. In order to do this without reusing masks on multiple
values, we must make some subtle changes to the original Turbospeedz protocol.
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Fig. 1. Beginning of an interactive zero knowledge protocol between prover P and
honest verifier V, given a relation represented as an arithmetic circuit with ADD and
MUL gates over a field F. All verifier messages are public coins, so the protocol can be
made non-interactive using the Fiat-Shamir transform. There are two different endings
to this protocol, given in Figs. 2 and 4.

To save space, we set the parties’ shares [λw] on each wire pseudorandomly,
taking advantage of the external value e as an offset: the value on wire w is
defined as simply vw = ew − λw.

P will generate all λw values for all wires in the circuit the same as in original
Turbospeedz, but by generating each party’s share pseudorandomly using a party
key. Additionally, for each MUL gate m, the prover will generate additional
pseudorandom shares [λ̂y,m] and [λ̂z]. P computes êz = λxλ̂y,m + λ̂z, forming
a correlated Beaver triple 〈λx, λ̂y,m, êz − λ̂z〉 that will be sacrificed. The double
index on [λ̂y,m] is due to the fact that wire y may be reused in several different
mult gates m, each of which must define their own Beaver triple for the prover’s
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Fig. 2. End of the interactive zero knowledge protocol ΠTurboIKOS between prover P
and honest verifier V, given a relation represented as an arithmetic circuit with ADD
and MUL gates over a field F. See Fig. 1 for the beginning of this protocol.

privacy. (For legibility, we sometimes omit this double-subscript when the gate
under consideration is clear from context.)

Creating a Test for Consistency of all Gates. The largest change is in how ζm is
calculated for each MUL gate m. To save space, we check the consistency of all
of these values with one random linear combination of Eq. (1) for all MUL gates.
We begin similarly to the Baum-Nof challenge: V will send random challenges
εm, ε̂m ← F. Our αm values are defined slightly differently, for a reason we will
explain shortly. The prover will send αm = εmλy + ε̂mλ̂y. Then, the parties
compute:

[ζm] = εmez − εmexey + ε̂mêz + (εmey − αm)[λx] + εmex[λy] − εm[λz] − ε̂m[λ̂z].

First, we wish to show that this ζm serves a similar purpose to Baum-Nof’s,
assuming (for the moment) that the prover P honestly computes all αm values
from the parties’ shares. For each MUL gate m ∈ M , define:

Δz,m = (ez − λz) − (ex − λx)(ey − λy) and Δ̂z,m = (êz − λ̂z) − λxλ̂y.

Observe that if P is honest, then 〈ex −λx, ey −λy, ez −λz〉 and 〈λx, λ̂y, êz − λ̂z〉
are both valid Beaver triples and therefore Δz,m = Δ̂z,m = 0.

Lemma 1. Fix a MUL gate m ∈ M . If εm and ε̂m are chosen uniformly ran-
domly from F, and if either Δz,m 	= 0 or Δ̂z,m 	= 0 (or both), then ζm 	= 0 with
probability at least 1 − 1/|F|.
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Proof. Observe that

ζm = εmez − εmexey + ε̂mêz + (εmey − αm)λx + εmexλy − εmλz − ε̂mλ̂z

= εmez − εmexey + ε̂m(λxλ̂y + Δ̂z,m) + (εmey − αm)λx + εmexλy − εmλz

= εmez − εmexey + ε̂mΔ̂z,m + (εmey − εmλy)λx + εmexλy − εmλz

= εmez − εmλz − εmexey + εmexλy + εmeyλx − εmλyλx + ε̂mΔ̂z,m

= εm((ez − λz) − (ex − λx)(ey − λy)) + ε̂mΔ̂z,m

= εmΔz,m + ε̂mΔ̂z,m.

Now, consider the probability that ζm = 0 over the uniform choice of εm

and ε̂m from F. The only way for this to occur is if εmΔz,m = −ε̂mΔ̂z,m. If
Δz,m = 0, this happens if and only if ε̂m = 0, which occurs with probability
1/|F|. If Δz,m 	= 0, then for any choice of ε̂m there exists a single option for
εm = −ε̂mΔ̂z,mΔ−1

z,m that makes ζm = 0, so again we arrive at a probability of
1/|F|. These two cases are mutually exclusive, which yields the desired bound.

Similar to Baum-Nof, we can combine these in a linear combination Z to
test all multiplication gates at once. However, because we defined ζm to already
include two different random coefficients on the different Δ values, these coeffi-
cients already suffice to serve as challenge coefficients for this linear combination.
As we show in Lemma 2, the upshot is that we can test all gates in the circuit
with a soundness error of only 1/|F| by merely revealing [Z] =

∑
m∈M [ζm].

Lemma 2. If εm and ε̂m are chosen uniformly randomly from F for all multi-
plication gates in the circuit, and if there exists at least one MUL gate m̄ ∈ M
such that Δz,m 	= 0 or Δ̂z,m 	= 0, then Z 	= 0 with probability at least 1 − 1/|F|.

Proof. Consider Z =
∑

m∈M ζm = (εm̄Δz,m̄ + ε̂m̄Δ̂z,m̄) + Z ′, where Z ′ is the
sum of all other terms in the formula and m̄ ∈ M is the gate where the sum
is guaranteed to be nonzero; without loss of generality, suppose that Δz,m̄ 	= 0.
Then, Z = 0 if and only if εm̄ = Δ−1

z,m̄ · (−Z ′ − ε̂m̄Δ̂z,m̄), which occurs with
probability 1/|F|.

Completing the Consistency Test. Rounds 3–5 of the protocol provide a method
for the verifier to check whether Z = 0, up to 1/N soundness error. We will
describe two ways to perform this task: a base protocol ΠTurboIKOS described
in this section (shown also in Fig. 2) and an improved protocol Π̃TurboIKOS in
Sect. 3.4. Both techniques involve providing some ‘advice’ in the form of the
non-privacy-sensitive αm value for each MUL gate that assists the verifier in its
computation of Z.

In round 3 of the base protocol ΠTurboIKOS in this section, the prover provides
for each MUL gate m ∈ M . Importantly, the prover also commits to all shares
[αm] = εm[λy]+ε̂m[λ̂y], and analogously for all [Z] shares. There are three claims
that the verifier must check:
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– The committed [αm] and [Z] are consistent with the parties’ individual views,
at least for the N − 1 emulated parties that the verifier can open.

– The committed [αm] shares in round 3 collectively sum to the provided αm

value. That is, the prover provided the public αm ‘advice’ value correctly.
– Assuming the advice is correct, then the [Z] shares committed in round 3

sum to Z = 0. That is, the prover passes the test posed in Lemma 2.

After the prover reveals seeds for N −1 parties in round 5, the verifier can check
these claims as follows. First, V can compute the remaining party’s [αm] by
subtracting the known shares from the public αm value, and then check whether
these shares together constitute a valid opening of the commitment in round
3. This checks (most of) the first two claims simultaneously. The final claim is
verified similarly; the key observation here is that if the prover is honest, then the
value Z = 0 is publicly known. So, the V computes N −1 shares of Z, calculates
what the remaining party’s share must be in order for the overall value Z = 0
as required, and then checks whether these shares together constitute a valid
opening of the commitment.

Putting it all Together. Our protocol is described in detail in Fig. 1. The prover
P and verifier V interact in a 5-round protocol, and if all consistency checks pass
then the verifier believes that the output wire labels derived from the circuit
evaluation is correct.

Completeness is a straightforward consequence of the fact that the honest
prover computes the desired circuit (many times, in fact). We prove the privacy
and knowledge soundness of our ZK argument of knowledge in Sect. 4.

Compared to Baum-Nof [6], we reduce communication per multiplication gate
from 4 to 3 field elements. Concretely, for each multiplication gate, Baum-Nof
must send the f and g values described in Sect. 3.1. Their protocol must also
send a Beaver triple offset (analogous to êz) as well as the offset for the output
wire of the MUL gate (similar to ez). By using the Turbospeedz approach, we
reduce communication to only 3 field elements: ez, êz, and αm.

Algorithmic Optimizations. There are a few optimizations that we can apply to
the base protocol ΠTurboIKOS to save space even further. Some of these optimiza-
tions are deliberately omitted from Figs. 1 and 2 for brevity; they are simple to
add, and they are built into our implementation in Sect. 5.

Our first optimization saves on the cost of commitments. Recall that we need
to commit to values in each of the prover steps (rounds 1, 3, and 5), and also
that the entire procedure from Figs. 1–2 is repeated R times. It suffices to build a
single commitment per round across all repetitions: that is, just 2 commitments
in total for the entire proof.

Second, we described the SPDZ-style MPC protocol by considering pseudo-
random values for each party plus a public offset. Following prior works, we save
space by integrating the offset into a single party’s value (say, party 1). While
this party no longer has pseudorandom value, the upshot is that we only need
to reveal the êz values within party 1’s view, or in other words we don’t need
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to reveal these values for the 1/N fraction of repetitions in which party 1 is the
unopened party. (Note that we still need to publish the ez and αm values on all
repetitions because V needs this information to perform its consistency check.)

Third, if the circuit has a single known value that represents ‘logical true’
(say, the value 0), then we can save on the cost of opening the output wire shares
[λw] for all parties (i.e., including the unopened party). Instead, we can follow a
similar trick as we described above for [αm] and [Z]. In round 1 of the protocol,
the prover P commits to all output wire shares. Once the verifier V learns the
seeds to reconstruct N − 1 of these shares for itself, it assumes that the output
wires collectively reconstruct to logical true and calculates the remaining share
accordingly. Finally, V checks that all shares match P’s commitment.

3.4 Constructing Smaller Consistency Tests

In this section, we describe an improved protocol Π̃TurboIKOS that reduces the
cost per multiplication gate from 3 field elements down to 2. Specifically, we show
a new method to check the consistency of Z in rounds 3–5 without revealing an
αm element for each MUL gate. The motivation for this change is twofold. The
first reason is obvious: reducing the number of field gates required per MUL gate
shrinks the proof size. The second and more subtle reason is to improve the
performance of TurboIKOS on smaller fields, such as the field GF(256) used in
AES, without blowing up the size of the protocol with additional zero-checks.

We will explain this second motivation at a high level here; for more detail
see the soundness analysis (Theorems 2 and 3) in Sect. 4. A cheating prover
must have a sufficiently low chance of getting a set of coefficients εm, ε̂m where
Z = 0 even though at least one MUL constraint is violated. For small fields, a
malicious prover has a decently-high probability of passing a single zero-test Z
by pure chance. While one could overcome this issue by increasing the number of
repetitions R, there is an alternative solution: run multiple Z values with fresh
random εm and ε̂m coefficients for each, but the same wire shares λz and offsets
ez and êz.

This alternative method doesn’t fare well in the original protocol ΠTurboIKOS

because our method requires revealing an αm value per MUL gate for each test,
so each additional Z value used to improve the soundness error would reveal
an additional field element per MUL gate, making the proof size much larger.
Thus, our goal in this section is to show how to consistency-check multiple zero-
tests Z1, . . . , ZU without transmitting additional information proportional to
the number of MUL gates beyond the two field elements ez and êz we already
transmitted in round 1.

Recall that for a single MUL gate m,

[ζm] = εmez − εmeyey + ε̂mêz + εmey[λx] − αm[λx] + εmex[λy] − εm[λz] − ε̂m[λ̂z]

is a sharing of ζm = εmΔz,m + ε̂mΔ̂z,m = 0 for an honest prover. Observe that
each party can calculate most of the terms in this sum even without receiving
αm. Specifically, for each MUL gate, define φm =: ζm+αmλx. Each party has the
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information to compute its own share [φm] using information already available:
the public εm and ε̂m values, the known offsets e, and the corrupted shares [λ].

Also, recall from the original protocol that the parties never test each [ζm]
directly, but rather they only test that the sum Z =

∑
m∈M ζm equals zero. We

can rewrite the shares of this test in the following way. (We add a subscript m
to the wire values to make it unambiguous which gate each wire belongs to.)

[Z] =
∑

m∈M

[ζm] =
∑

m∈M

[φm] −
∑

m∈M

αm[λm,x].

The corrupted parties can compute their shares for the left sum. However,
the sharing of the remaining term, which we will name

β =
∑

m∈M

αmλm,x (2)

is problematic because it seems to require each αm to be known in the clear to
calculate the sum. This is where the original protocol ΠTurboIKOS revealed all
αm, so that each party could compute their share of β as

∑
m∈M αm[λm,x].

We proceed to show a different way that the prover can commit to and
provide the shares for [β], which we also describe pictorially in Fig. 3. Let [x]i
denote the ith share of x. The crucial observation is that all shares [αm] can
be revealed without a loss in privacy; our only objective here is a performance
improvement to avoid sending these shares, even though we could safely do so.
Furthermore, observe that:

β =
M∑

m=1

αmλm,x =
M∑

m=1

(
N∑

i=1

[αm]i

)(
N∑

j=1

[λm,x]j

)

=
M∑

m=1

N∑

i=1

N∑

j=1

[αm]i[λm,x]j

=
N∑

j=1

N∑

i=1

βi,j , where βi,j =
M∑

m=1

[αm]i[λm,x]j (3)

We will take advantage of the MPC-in-the-head structure of our proof to
create a sharing where each party essentially holds a “column” of these values:
that is, party j’s share of β is

∑N
i=1 βi,j . In a normal MPC protocol, each pair

of parties i and j could collaborate to compute βi,j . In MPC-in-the-head this is
mostly unnecessary, because V has corrupted N − 1 of the parties, it has N − 1
of these [αm]i shares and therefore can compute βi,j for all corrupted parties
i, j ∈ T . It is missing only βi∗,j , where i∗ is the remaining, uncorrupted party.

In Fig. 3, the parties’ shares of β are the sum of the elements in each column.
V has N − 1 elements (the unshaded regions in each column) out of the N
elements needed to compute the full share (column sum), but needs to be sent
the remaining (shaded) element to sum the column and compute the share.

For soundness, we require that all βi,j be committed to in advance. To do
this, we concatenate all elements in each column and commit to them; call these
commitments h1, . . . , hN . Each commitment hj must be randomized since the
field elements might be small enough not to provide the required min-entropy
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Fig. 3. Creating a more efficient sharing of β (Eq. 2). Each cell holds a single βi,j value
(Eq. 3). A single commitment ĥ binds the entire matrix. To open N −1 of the columns,
P gives V the field elements in the shaded region along with hi∗ .

on their own, but this can be done “for free” by using party j’s seed to generate
this random value. We then commit to the concatenation of those commitments
and give the result ĥ to V in round 3, before the corrupted parties are chosen.

To check the commitments, V checks two properties: First, the commitment
to the βi,j values must be consistent with the party views, and second, the shares
of Z must sum to 0. To show the first property, V first recreates all (N − 1)2

elements it can from the parties it corrupted. It then receives (N − 1) missing
elements (the shaded region in Fig. 3) from P, which lets it compute the shares
[β]j for the parties it corrupted and also the commitment hj to the concatenation
of the elements in each column. V does not get the missing share [β]i∗ ; instead,
it is given hi∗ , the missing commitment. Using all these, it can check ĥ to ensure
the corrupted party views are consistent with the commitment to the βi,j .

Second, as in the other version of this protocol, the shares to Z are also
committed to, but where the β component of Z is shared using this method.
V checks that Z = 0 by recomputing the N − 1 shares it corrupted, and then
computes the last share by subtracting those shares from 0. The recomputed
shares are checked against the commitment to the [Z] shares from round 3.

This portion of the proof sends (N − 1) field elements (the shaded elements)
and one commitment (hi∗) per repetition; the additional commitments to the
shares of Z and the ĥ need only use one commitment for the entire proof, across
all repetitions. It bears repeating that this method was able to check the con-
sistency of all multiplication gates without revealing an additional αm value per
MUL gate. This allows us to add additional fresh zero-tests independently of the
number of MUL gates as well. If there are U of these tests, our communication
per repetition becomes about (2M + UN) field elements, which can outperform
Katz et al. [55] when the number of parties N is small. The description of this
version of the protocol is given in Fig. 4.
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Fig. 4. Ending of the improved zero knowledge protocol Π̃TurboIKOS between prover P
and honest verifier V, given a relation represented as an arithmetic circuit with ADD
and MUL gates over a field F. See Fig. 1 for the beginning of this protocol. Compared to
Fig. 2, step 3 is new, and this change affects the opening and checking of commitments
in step 5 and verification; the remainder of the protocol is unchanged from before. If
multiple zero tests are desired, then steps 2, 3, and 5 are repeated with independent
εm and ε̂m, Z, and βi,j values.

4 Security Analysis

In this section we prove the honest-verifier zero-knowledge and knowledge sound-
ness properties of the two protocols constructed in Sect. 3. For each property,
we first analyze the base protocol ΠTurboIKOS, and then we describe how the
analysis changes for the improved protocol Π̃TurboIKOS.

Theorem 1. When instantiated with a pseudorandom function PRF and a com-
putationally hiding commitment scheme Com, both the base protocol ΠTurboIKOS

and improved protocol Π̃TurboIKOS run with N parties and R repetitions is
honest-verifier computational zero knowledge with distinguishing bound at most
R · (AdvCom + AdvPRF).

Proof. We focus here on the privacy argument for the base protocol ΠTurboIKOS.
The privacy of the improved protocol Π̃TurboIKOS then follows immediately from
the fact that it provides strictly less information to the verifier than the base
protocol ΠTurboIKOS does. Additionally, we prove the statement for a single
repetition of the base protocol ΠTurboIKOS, from which the theorem follows by
a union bound over the independent repetitions.
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Let I and M ′ represent the set of input wires and MUL-gate-output wires
respectively. Consider a simulator that follows the following steps during the
interactive protocol.

1. The simulator samples all verifier challenges uniformly at random: all εm, ε̂m

in round 2, and a party i∗ ∈ N in round 4 to be the “uncorrupted party”
whose key will not be revealed to V.

2. Choose keys σp for all parties p ∈ N uniformly at random, honestly following
step 1 of preprocessing.

3. For all corrupted parties, derive all shares [λw] for all wires w from the keys
honestly, as in step 3 of the preprocessing.

4. For the output wires w ∈ O, choose the ew values uniformly at random, and
set party i∗’s share of λw such that vw = ew − λw represents logical true.

5. Now, work backward through the circuit in reverse topological order.
(a) For ADD gates, choose a random setting of the ex and ey values on the

input wires to the ADD gate, conditioned on meeting the linear constraints
induced by all ADD gates at this layer.

(b) For a MUL gate with input wires x and y and output wire z, the values of
ex, ey, and the corrupted shares of λ̂y, λ̂z, and êz must all be simulated.
Note that ex, ey, or both may already be set by an existing constraint
(e.g. if the wire was reused in a later layer or used in multiple gates).
i. Generate λ̂y and initialize the λ̂z shares honestly for the corrupted

parties from the party keys (leaving it unspecified for party i∗).
ii. Generate êz uniformly (and also ex or ey, if they are unspecified).
iii. Let Δz be the difference between the value on the output wire z

and the product of the value on the input wires xy. That is, Δz =
vz − vxvy = ez − exey − λz + exλy + eyλx − λxλy. Let Δ̂z be the
difference between (êz − λ̂z) and λxλ̂y; that is, Δ̂z = êz − λ̂z − λxλ̂y.
For an honest prover, Δz = Δ̂z = 0, but the simulator is not honest
so these values are likely to be non-zero. Using the foreknowledge of
εm and ε̂m, alter party i∗’s share of λ̂z so that ζ = εmΔz + ε̂mΔ̂z

equals 0 (or alter λz if Δ̂z = 0 but Δz 	= 0).
6. In round 1, commit honestly to all parties’ keys σp and all parties’ shares [λz]

for all output wires z ∈ O. Also, send the offsets ez for all z ∈ I ∪ M ′.
7. In round 3, commit to all shares [αm] and [Z], where [Z] is computed correctly

from the already-manipulated ζ shares from above.
8. In round 5, honestly open the key commitments for all parties except i∗. Also,

honestly reveal party i∗’s shares [Z], [αm], and [λw] for output wires.

It is straightforward to confirm that the simulated proof passes all verification
checks. It remains to show that the simulated proof is computationally indistin-
guishable from a real one. As a stepping stone, we consider a hybrid proof H
that is constructed like the real one, except using an ideal commitment scheme
Com (where it is impossible to recover an un-opened key) and a truly random
function in place of PRF. The distinguishing probability between the real game
and H is at most AdvCom + AdvPRF.
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In the hybrid world, we claim that all of the information provided by P to
V throughout the proof is meaningless. The commitment to σi∗ is now useless,
values like the output wires or Z are publicly known to V beforehand, and the
remaining information (ew for all wires w ∈ W , êz and αm values for all MUL
gates, and the shares [Z]) contains masks that hide the real values from V.

– On each wire w, the revealed ew = vw + λw does not reveal anything about
the value on the wire vw because it is masked by party i∗’s share of λw.

– For each MUL gate m ∈ M , information in αm is masked by i∗’s share of λ̂y.
– For each MUL gate, êz hides info about λxλ̂y by masking it with party i∗’s

share of λ̂z.
– Party i∗’s share of Z reveals no information because it can be computed as

−∑
p∈T [Z] (leveraging the fact that Z = 0 is public knowledge), and the

corrupted parties’ shares of Z are only a function of their own data.

All of these masks are truly random in the hybrid world. Observe that ew, êz and
αm all have the uniform distribution in the simulated world as well. Therefore,
the distance between the hybrid and simulated games is 0, which completes the
proof for the base protocol ΠTurboIKOS.

Next, we examine the soundness of the base protocol ΠTurboIKOS. We focus on
its security for the non-interactive version of the MPC-in-the-head construction
using the Fiat-Shamir transform using a random oracle H with 2κ bits of output,
so that finding a collision has 2κ cost. (The interactive version of the protocol
has even better soundness because the prover cannot rewind the verifier.)

Theorem 2. Consider the non-interactive version of the base protocol
ΠTurboIKOS over a large field |F| = 2κ and instantiated with a random oracle
H with 2κ output length. Then, Protocol ΠTurboIKOS with R = κ

log2(N) + 1 repe-
titions provides knowledge soundness with error at most 1/2κ.

Proof. We focus here on proving the traditional soundness property. The
stronger knowledge soundness claim immediately follows by applying the analy-
sis from Katz et al. [55, §3.1] in order to build an extractor that recovers a witness
by observing the inputs to the random oracle-based commitment scheme on a
single execution. The reduction is tight because the extractor never needs to
rewind.

To prove soundness, consider a malicious prover P∗ that is attempting to
prove a false statement. Since an honest execution of the circuit would return
logical false, the prover must deviate from the protocol on each repetition. There
are effectively four different places where the malicious prover P∗ can deviate
from the protocol in order to gain an advantage:

1. In round 1 of the protocol, P∗ can change the offsets for one or more MUL
gates, so that the Δz or Δ̂z values on these gate(s) are non-zero. (We presume
it is simple for the prover to determine a sufficient set of gates to tamper
in order to cause the circuit to return logical true.) P∗ will learn in round
2 whether V catches this deviation or whether P∗ has successfully evaded
detection. By Lemma 2, the prover is successful with probability 1/|F|.



TurboIKOS: Improved Non-interactive Zero Knowledge 385

2. In round 3, P∗ can change one party’s [αm] and [Z] shares so that the verifier
reconstructs a Z value of 0. The success of this attack is revealed in round 4,
and P∗ evades detection with probability 1/N .

3. In rounds 1 or 3, P∗ can attempt to break the binding property of the com-
mitment scheme and open it later to different values.

4. In round 1, P∗ can change one party’s share of the final output so the result
becomes logical true. P∗ will learn in round 4 whether V catches this deviation
or whether P∗ has successfully evaded detection (this occurs with probability
1/N).

(Observe that the pseudorandom function has no impact on soundness. It only
exists to ‘compress’ each party’s share of each wire label [λw], and any tampering
of these wire labels is equivalent to tampering the corresponding offset ew.)

The key observation in this proof is that item 1. is strictly better for P∗ than
item 3. and that item 2. is strictly better than item 4.. The first part of this claim
follows from the observation that items 1. and 3. both require the prover to deviate
in round 1 and the first has better probability of success since the commitment
scheme has soundness κ. The second part of this claim is true because the attacks
in items 4. and 2. both give the same probability of success and are both revealed
in round 4, yet the alteration of [αm] and [Z] occurs later. Delaying the start of
the attack is strictly better for P∗ because it can wait to see if the attack on wire
offsets in round 1 was successful, and only attempt this attack if necessary.

Concretely, we use the same proof technique as several recent analyses of
non-interactive zero knowledge proofs that apply the Fiat-Shamir transform to
protocols with more than three rounds [7,16,54]. We consider all attacker strate-
gies (r1, r2) in which the prover P∗ changes wire offsets in round 1 until r1
repetitions happen to have Z = 0 anyway, and then P∗ attacks the remaining
r2 = R − r1 repetitions in round 3 by altering αm and Z. In general, the cost
of any multi-round attack strategy is given by C = 1/p1 + 1/p2, where p1 and
p2 denote the probability that the first and second parts of the attack succeed,
respectively. To achieve κ soundness, we must choose a sufficiently large number
of repetitions R so that any attacker strategy (r1, R−r1) has a total cost C ≥ 2κ.

In this case, one attacker strategy dominates the rest: r1 = 1 and r2 =
R − 1. In more detail, the malicious prover P∗ changes the wire offsets for all
repetitions in round 1, and rewinds until finding an input that evades detection
from the verifier’s round 2 challenge on r1 = 1 instance. Because each instance
evades detection only with probability 1/|F| = 1/2κ, the malicious prover P∗

can only expect to evade detection on r1 = 1 instance in time less than 2κ. Even
succeeding on 2 instances is exceedingly unlikely in the adversary’s runtime, and
the P∗ gains no benefit by foregoing an attack on round 1 altogether. Thereafter,
P∗ must complete the attack on the remaining r2 = R−1 repetitions by altering
[αm] and [Z]. This change is undetected by the verifier with probability 1/N
independently for each repetition. Hence, the overall probability of success for the
second repetition is (1/N)r2 , and thus its cost exceeds 2κ when R = κ

log2(N) + 1.



386 Y. Gvili et al.

Theorem 3. Consider the improved protocol Π̃TurboIKOS that is instantiated
with a random oracle H with 2κ output length and executed over the field F with
N parties, R repetitions, and U tests per repetition. Then, the protocol satisfies
knowledge soundness with security parameter κ if:

max
0≤r1≤R

{[

p1 =
R∑

i=r1

(
R

i

)

·
[

1
|F|

]Ui

·
[

1 − 1
|F|

]U(R−i)
]−1

+ N (R−r1)

}

> 2κ.

(4)

Proof. Once again, we focus on proving traditional soundness, after which we can
build an extractor for knowledge soundness using the same technique as before.
Additionally, the analysis from Theorem 2 about the options for a malicious
prover P∗ to deviate from the protocol holds here too. The prover’s dominant
strategy remains to change the offsets for one or more MUL gates in a way that
causes the remainder of the circuit (computed honestly) to return logical true;
note that this will also cause the corresponding Δz or Δ̂z values to be nonzero.
For each repetition independently, there are two ways for the malicious prover
P∗ to evade detection by the verifier:

1. Based on the verifier’s U independent random choices of εm and ε̂m in round
2, there is a (1/|F|)U probability that all of the Z tests happen to equal 0 (by
Lemma 2).

2. If even a single Z value is non-zero, then P∗ can commit to erroneous βi,j

values to ‘fix’ this error. Note that P∗ can only inject erroneous data in one
row of the table in Fig. 3 because the verifier can check the remaining N − 1
rows directly. This attack evades detection only if the verifier chooses in round
4 to leave this row as the uncorrupted party, which happens with probability
1/N .

As before, we can analyze the malicious prover P∗’s probability of success
by analyzing all attacker strategies (r1, r2) that operate as follows. First, the
prover P∗ rewinds round 1 until at least r1 repetitions have the property that
the verifier’s choice of εm and ε̂m are such that all of the Z tests within these
repetitions equal 0. Second, P∗ rewinds round 3 until the remaining r2 = R− r1
have been tampered in the locations chosen by the verifier in round 4.

To achieve κ soundness, we must select enough repetitions R so that any
attacker strategy (r1, R − r1) has a total cost C ≥ 2κ. Here, the cost of this
multi-round attack strategy is given by C = 1/p1 + 1/p2, and p1 and p2 denote
the probability that the first and second parts of the attack succeed, respectively.

Because we consider an arbitrary field size in this theorem, the cost analy-
sis here is more complicated than in Theorem 2. Our argument is very similar
to that of Banquet [7]. The first probability boils down to the chance that the
attacker has r1 successes out of R trials, where each trial succeeds with proba-
bility (1/|F|)U . This is the right tail of a binomial distribution:
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p1 =
R∑

i=r1

(
R

i

)

· (1/|F|)Ui · (1 − 1/|F|)U(R−i). (5)

The second probability is simply p2 = (1/N)r2 because the malicious prover must
succeed on all remaining repetitions of the protocol. Combining the costs of both
parts of the attack results in Eq. (4), completing the proof of the theorem.

The goal here is to find the “minimum” choices of N , R, and U that yield a
desired soundness parameter κ for a circuit with a given field size |F|. While it is
challenging to write a closed-form version of Eq. 4 that connects the five param-
eters, it is easy to find satisfying tuples empirically. In Table 2, we show several
such choices for the field F28 . We include a computer program that calculates
valid parameter settings within our open source repository [49].

Table 2. Valid parameter settings for F28 . The body of the table shows the number of
repetitions R based on the soundness parameter κ, number of parties N , and number
of tests per repetition U .

κ N U

1 2 4 6 9

128 8 66 53 47 45 44

16 54 41 36 34 33

31 47 35 30 28 27

192 8 99 79 70 68 66

16 81 62 54 52 50

31 71 53 45 43 41

256 8 132 106 95 91 89

16 108 83 73 69 67

31 95 71 61 57 55

5 Performance and Prototype Implementation

In this section, we compare our Π̃TurboIKOS system’s performance against other
MPC-in-the-head based systems, and we describe our prototype Python imple-
mentation of ΠTurboIKOS.

5.1 Performance Analysis

To evaluate our performance, we measure our signature size when computing a
variant of the Picnic signature scheme [61]. Picnic uses MPC-in-the-head (specif-
ically, a variant of the Katz et al. protocol [55]) and LowMC [2], a block cipher
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with few multiplications that is designed to be efficient in secure computation.
Picnic is currently an “alternate candidate” in round 3 of the NIST post-quantum
crypto competition [1]. BBQ [34] introduced the idea of using AES in Picnic-
like signatures and showed that the signature sizes could be competitive with
those using LowMC. To achieve this, rather than evaluating the binary circuit
for AES, they used an arithmetic MPC-in-the-head system over F28 ; this facil-
itates proving constraints about inverses in F28 , the non-linear component of
the AES S-box. They also show how each field inversion can be reduced to a
single multiplication gate (without testing for the case in which the input and
output are both equal to 0) with very small reduction in the soundness of the
resulting system (less than 3 bits of security). We follow their approach in this
section.

Table 3 shows the proof sizes of Π̃TurboIKOS when computing signatures using
AES at different security levels. We compare against the following systems:

– BBQ [34]: The figures are taken directly from their paper, except the number
of parties is not listed. We make an educated guess that they use approxi-
mately N = 64 parties; for lower N their proof size will be larger.

– Katz et al. [55]: We calculate the proof size using the formula in [55], assuming
that a field inversion constraint can be verified with two field elements per
MUL gate like in this work; we believe this should be true but did not check.
Also, our calculations use 32 parties rather than 31; this result should be a
conservative smaller estimate of the actual proof size when N = 31.

– Baum-Nof [6]: We calculate a conservative underestimate of the proof size
using the formula in [6], assuming that only a single zero-check is needed per
repetition. However, this is unlikely to be the case in F28 for the same reason
as in our work.

– Banquet [7]: The figures are taken directly from their paper.

Banquet [7] is independent recent work that reduce the size of AES-based
Picnic signatures using very different techniques based on polynomial interpola-
tion in extension fields of F28 [20,31]. They achieve a smaller proof size than all
competitors, including us. However, this advantage comes with two downsides
relative to our scheme and prior ones. First, performing polynomial arithmetic in
extension fields would be costly on embedded devices whose CPU architectures
typically have a small word size. Second, the polynomials are proportional to
the entire circuit size, making their system more memory-costly than traditional
MPC-in-the-head based methods like ours where the memory is only propor-
tional to the circuit width (i.e., the memory required to compute the circuit).
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Table 3. Signature size comparison for the Picnic signature scheme at different security
levels for different systems. All signature sizes are shown in kilobytes (KB). AES-128
has (M, I) = (200, 128), AES-192 × 2 has (M, I) = (416, 192), and AES-256 × 2 has
(M, I) = (500, 256).

Scheme N Protocol (all sizes in KB)

BBQ [34] Katz et al. [55] Baum-Nof [6] Π̃TurboIKOS Banquet [7]

AES-128

(L1)
8 | 26.7 37.3 23.8 |

16 31.6 22.4 29.4 20.6 19.8

31 | 19.8 24.8 19.8 17.5

AES-192x2

(L3)
8 | 76.3 110.8 66.7 |

16 86.9 63.1 87.4 56.3 51.2

31 | 54.9 73.4 52.2 45.1

AES-256x2

(L5)
8 | 122.6 179.9 109.3 |

16 133.7 101.9 140.7 90.4 83.5

31 | 89.1 118.0 82.8 73.9

5.2 Prototype Implementation

We created a prototype implementation for ΠTurboIKOS in Python. We did not
optimize the runtime or memory usage of our code, thus, we will likely not
win on prover runtime with other MPC-in-the-head approaches written in C
or C++, e.g. [6,55]. That having been said, our protocol is amenable to all of
the optimizations made by the recent Reverie software [69] implementing the
protocol of Katz et al. Our code currently achieves runtimes about twice as
long as Reverie for the same size circuit. In this section we briefly describe our
implementation.

Our Python implementation [49] supports both Bristol circuit formats and
Prover Worksheet (PWS) formats as input. The circuit is parsed into a list of
Gate objects, found in gate.py, and initializes a Wire data structure, found in
wire.py, that takes in a list of dictionaries containing the values on each wire.

Dictionaries are used extensively to manage information. Circuit information
such as the number of various types of gates are stored in a dictionary. Values
on each wire such as e and λ are also stored in a dictionary. Each wire has a
dictionary of values, resulting in a list of dictionaries with length of the number
of wires. This list of dictionaries is later used as the input to the Wire object,
found in wire.py, which defines functions to access values on the wire.

On the Prover side, P calculates all the parties as she parses through the
circuit, so P uses the Wire objects to access a party’s value. On the Verifier side,
V picks one party to leave unopened and reconstructs the other N −1 views from
the seeds given by P. We generate the shares λ, λ̂y, and λ̂z pseudorandomly using
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AES as a PRF with the party’s seed as the key and the concatenation of the
(fixed-length) wire index and type of value as the message.

The prover is required to send a commitment in Round 1 and Round 3. As
discussed in Sect. 2, when committing to values with sufficient min-entropy, we
simply use Com(m) := H(m), thus decommitments are “free” aside from the
cost of m itself. This remains computationally hiding as long as m has sufficient
min-entropy and H is a random oracle. We use SHA2 from hashlib for our
instantiation of H. To achieve non-interactivity via the Fiat-Shamir Transform
[36], the random messages sent by the Verifier in Round 2 and Round 4 are
replaced by a call to H on the info sent by P in all previous rounds.
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Abstract. In 1989, Shamir presented an efficient identification scheme
(IDS) based on the permuted kernel problem (PKP). After 21 years,
PKP was generalized by Lampe and Patarin, who were able to build an
IDS similar to Shamir’s one, but using the binary field. This binary vari-
ant presented some interesting advantages over Shamir’s original IDS,
such as reduced number of operations and inherently resistance against
side-channel attacks. In the security analysis, considering the best attacks
against the original PKP, the authors concluded that none of these exist-
ing attacks appeared to have a significant advantage when attacking the
binary variant. In this paper, we propose the first attack that targets
the binary PKP. The attack is analyzed in detail, and its practical per-
formance is compared with our theoretical models. For the proposed
parameters originally targeting 79 and 98 bits of security, our attack can
recover about 100% of all keys using less than 263 and 277 operations,
respectively.

Keywords: Permuted kernel problem · Cryptanalysis · Post-quantum
cryptography

1 Introduction

With the engineering progress on building larger quantum computers, the main
cryptographic schemes used today become more and more vulnerable. Since
2016, the National Institute of Standards and Technology (NIST), is running a
standardization process for post-quantum cryptography [4]. A similar initiative
is conducted by the Chinese Association for Cryptographic Research (CACR).

One of the candidate for CACR’s competition is PKP-DSS [3], a digital
signature scheme based on the hardness of the permuted kernel problem (PKP).
This signature scheme is obtained by applying the Fiat-Shamir [6] transform
on Shamir’s PKP-based identification scheme [20], which dates back from 1989.
Given a matrix A and a vector v with elements in a finite field, PKP asks to
find a permutation of the entries of v that is in the kernel of A. PKP is NP-hard
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and there is no known quantum algorithm which have a significant advantage
over classical algorithms when solving the problem.

In 2010, Lampe and Patarin proposed a generalized version of PKP, in which
vector v is substituted by a matrix V. This enabled them to instantiate PKP
in the binary field, without an apparent security loss. At the time, this binary
variant presented some interesting advantages such as a reduction in the number
of operations and an inherently resistance to side-channel attacks. To estimate
the security of binary PKP, the authors considered the best attacks against the
original PKP, with minor adjustments to make they work against the binary
variant. They noted that none of the available attacks was significantly faster
against binary PKP.

However, the use of binary coefficients for matrix A comes with a security
risk. We observed that low weight binary words occur with non-negligible prob-
ability in two public spaces: one is generated by the matrix A while the other
is generated by the kernel of V. It is then possible to devise an attack against
binary PKP by matching these low weight codewords using subgraph isomor-
phism algorithms, and recovering the secret permutation from these matchings.

Contribution. In this paper, we present the first attack that specifically targets
the binary PKP. Unlike previous attacks, which need a very large amount of
memory to run efficiently, our attack uses only a negligible amount of memory.
This allows us to provide a concrete implementation of the attack. We provide a
detailed analysis of the attack, and then compare these results with the attack’s
performance in practice. As an example of the power of the attack: for binary
PKP parameters originally targeting 80 bits of security, it uses about 263 CPU
cycles to fully recover the key, while the best previously known attack [12] needs
about 276 matrix-vector multiplications and 250 bytes of memory.

Paper Organization. In Sect. 2, we introduce our notation and review basic
concepts of Coding Theory. Then, PKP and its binary variant are presented
in Sect. 3, where we also review previous attacks against PKP. The attack is
described in Sect. 4 and its performance is analyzed in Sect. 5. The asymptotic
analysis of the attack is given in Sect. 6. In Sect. 7 we briefly describe how to
choose secure parameters for binary PKP. In Sect. 8 we conclude and provide
directions for future work.

2 Background

This section introduces the notation and reviews important concepts in Coding
Theory.

Notation. Vectors and matrices are denoted by lower and upper case bold letters,
respectively. In general, vectors are rows, except when explicitly mentioning
specific columns of matrices. If φ is a permutation of n elements and M is an
n × n matrix, then Mφ and φ (M) correspond to the action of permutation φ
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over rows and columns of M, respectively. For any matrix X, we denote its i–th
column as (X)i. We denote the finite field of q elements as Fq.

We abuse the factorial notation to avoid overloading expressions in the anal-
ysis of the attack. For any x ∈ [0,+∞), we let

x! =

{
Γ (x + 1), if x ≥ 1, and
1, otherwise.

Clearly it does not affect the definition of factorials of integers. Furthermore,
it allows us to evaluate upper bounds of products of factorials of real numbers
without having to worry about the interval x ∈ (0, 1), where Γ (x+1) < 1, which
could make the product vanish rapidly. Using this notation, we can then write(
x
y

)
= x!/((x − y)!y!), for x, y ∈ [0,+∞) with x > y. These will make for a more

clear description of our approximations in Sect. 5.

Coding Theory. A binary [n, k]-linear code is a k-dimensional linear subspace of
F

n
2 , where F2 denotes the binary field. Let C be a binary [n, k]-linear code. If C

is the linear subspace spanned by the rows of a matrix G in F
k×n
2 , we say that

G is a generator matrix of C. The Hamming weight of a vector v, denoted by
w (v), is the number of its non-null entries. The support of a vector v, denoted
by supp (v), is the set of indexes of its non-null entries.

3 The Permuted Kernel Problem

Let us begin by formally defining the permuted kernel problem. Let A be an
m × n matrix and v be a vector of n entries whose coordinates are taken from a
finite field Fp. Then, the permuted kernel problem asks to find some permutation
π of the coordinates of v such that Av�

π = 0.
PKP is well-known to be NP-hard [8], and it is conjectured to be hard on

the average case. The naive approach to solve this problem would be to test all
permutations of the entries of v. Intuitively, there are two components which
make the problem hard. The first is the large number of possible permutations,
which is close to n!, when v does not have a large number of equal entries. The
second is the small number of permutations of v which are in the kernel of A.

In 2011, Lampe and Patarin [13] considered a PKP variant with p = 2. The
authors pointed a few problems when transitioning to the binary setting that
need to be taken into account. One is that the number of different permutations
is significantly reduced, since every two binary vectors of the same weight are
equal, up to some permutation. Furthermore, for a fixed matrix A, there are
effectively only n possibilities for v, corresponding to one for each possible value
of w (v). To avoid these problems, they proposed the use of an n × � matrix V
instead of the vector v, obtaining the following PKP variant.

Definition 1 (Binary PKP [13]). Let A be an m × n binary matrix and V
be an n × � binary matrix. Then, the permuted kernel problem asks to find some
permutation π of the rows of V such that AVπ = 0.
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Notice that the original PKP can be seen as an instance of this generalized
variant, by taking p instead of 2, and � = 1.

Even though the main interest on PKP is for the construction of signature
schemes, we will not review details of Shamir’s protocol [20] or PKP-DSS [3] this
construction because they are not relevant for our attack.

3.1 Previous Attacks on PKP

After Shamir introduced the PKP-based IDS [20], there has been some effort to
find efficient algorithms to solve the problem. In 1990, Georgiades [9] discussed
how one can use symmetric equations, such as the sum of the entries of v or
the sum of their squares, can help in lowering the number of permutations one
needs to test. This, combined with the linear relations among the coordinates of
kernel elements, can reduce the number of permutations to test in a brute force
attack from n! to n!/(m + 2)! permutations.

Soon after, in 1992, Baritaud et al. [1] proposed a time-memory tradeoff,
where one first precompute a large table of partial solutions, which is then used
to speed up a bruteforce search. In particular, for attack parameters (k, k′), their
algorithm searches for solutions of a set of k ≤ m equations, after precomputing
partial values of the equations when some set of k′ variables are fixed by some
arrangement of the entries in v.

In 1993, Patarin and Chauvaud [17] showed a significant improvement on
the cryptanalysis of PKP, which is also based on a time-memory tradeoff. Their
idea was to partition the variables of the linear equation Av�

π = 0 into two sets.
For one set, all the possible values for their linear combination is computed and
stored in a file. Then, a brute-force search, which is sped-up by the precomputed
values, is used to find the values of the other set of variables. Furthermore, in
1997, Poupard [18] provided a careful and realistic extension on the analysis
of Patarin and Chauvaud’s algorithm by considering the impact of reasonable
memory limitations on the time-memory trade-off.

In 2001, Jaulmes and Joux [10] proposed a new attack against PKP, which
is also based on a time-memory tradeoff, but used a very different strategy.
Their attack consists in adapting an algorithm for counting points in an elliptic
curve [11] to solve a new problem, called 4SET, to which PKP can be reduced.
Interestingly, this approach resulted in an algorithm somewhat similar to the
one by Patarin and Chavaud [17], but, for years after the attack was published,
it appeared to be more efficient.

More recently, in 2019, Koussa, Macario-Rat and Patarin [12] presented two
important contributions on the hardness of PKP. Their first contribution is to
provide a detailed analysis of the attack proposed by Jaulmes and Joux [10],
which was considered to be the most efficient attack against PKP. They con-
cluded that Jaulmes and Joux’s attack may not be as efficient as previously
thought for the current PKP security parameters. Koussa, Macario-Rat and
Patarin’s second contribution is a combination of the ideas of Patarin and Chau-
vaud [17] with the ones by Poupard [18] to obtain a new algorithm to solve PKP,
together with a detailed analysis on their time and space complexity.
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The main drawback of Koussa’s et al. attack is that they use a significant
amount of memory, and their implementation may not be efficient in practice.
Moreover, all of the published attacks against PKP target the original version
of the problem. And even though they all can be adapted to attack the binary
PKP, as done by Lampe and Patarin [13] for their analysis, it appears that none
of the attacks are significantly more efficient in the binary case.

3.2 Instantiation

We now present the parameter sets for PKP, in which the security level is esti-
mated based on the best attacks available by Koussa et al. [12]. Table 1 shows
these parameter sets for different security levels. The focus of this work is in the
parameter sets given in the first two rows, corresponding to the binary PKP.
It is important to notice that what we now consider to be the parameter sets
BPKP–76 and BPKP–89, originally targeted security levels 79 and 98, respec-
tively. However, these had to be revised after Koussa et al.’s [12] attack.

Table 1. Parameter sets for different security levels. The security level is estimated
based on the attack by Koussa et al. [12].

Parameter set Security
level

Targeted security
level when proposed

p n m �

BPKP–76 [13] 76 79 2 38 15 10
BPKP–89 [13] 89 98 2 42 15 11
PKP–128 [3] 128 128 251 69 41 1
PKP–192 [3] 192 192 509 94 54 1
PKP-256 [3] 256 256 4093 106 47 1

4 A Novel Attack Against Binary PKP

We are given the public matrices A and V and we want to find the secret
permutation π such that AVπ = 0. Let CA and CK be the binary codes generated
by A and K, respectively, where K is the left kernel matrix of V. Fix an integer
w small enough so that we can build the sets Lw

A and Lw
K consisting of all

the codewords of weight w in CA and CK, correspondingly. Notice that, since
AVπ = 0, then Lw

A ⊂ Lw
π(K) = {uπ : u ∈ Lw

K}.
This idea gives the following simple algorithm to find the secret permu-

tation π. First find a subset S of Lw
K, such that, for some permutation τ ,

Lw
A = {uτ : u ∈ S}. Then, test if the corresponding column permutation τ is

valid, that is, if AVτ = 0. If τ is valid, return it as π. Otherwise, restart the
search. Figure 1 can be useful for visualizing the relationship between the two
sets of codewords, which is the core of the attack.
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Fig. 1. Illustration of the relationship between Lw
A and Lw

K with respect to the secret
column permutation π for codewords of weight w = 2. White and black squares repre-
sent null and non-null entries, respectively.

Even though it has a rather simple description, we need to carefully deal
with the following two problems. The first one is that matching vectors in Lw

A

and a subset of Lw
K is closely related to the subgraph isomorphism problem,

which is NP-hard [8]. The second problem is that, since we are dealing with
sparse codewords, there may be a large number of repeated columns in Lw

A. This
could potentially make it infeasible to find the secret permutation π because
of the combinatorial explosion on the number of possible permutations between
columns.

In the following sections, we formally describe the algorithms for the attack
against the binary PKP. Then, after this initial exposition, each component of
the algorithm is analyzed in Sect. 5.

4.1 Searching for Codewords of Small Weight

The problem of finding codewords of small weight is hard in general, with the
security of some well known cryptographic schemes, such as McEliece’s one [15],
depend on this problem’s hardness. However, in the binary PKP setting, the
length n of the codes in question, namely CA and CK, is typically very small,
which makes it even possible to use brute force. Using brute force, one has to
test exactly if

(
n
w

)
words are elements of each of the codes.

A better approach would be to use specialized algorithms from Coding The-
ory such as Stern’s algorithm [22], which we used in our attack implementation,
or its improved variants [2,7]. All of these are well-known probabilistic algorithms
that can be used to find low weight codewords in binary codes.

4.2 Searching for Matchings

Aiming to simplify the description of the attack, we identify sets Lw
A and Lw

K as
matrices where each row is one vector in the corresponding set. This is arguably
a natural identification when we consider a real implementation of the algorithm
in a programming language such as C.
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We now focus on the problem of finding a submatrix of Lw
K which is equal to

matrix Lw
A when its coordinates are permuted by some permutation τ . Notice

that, if we let G (X) be the bipartite graph built using matrix X as a biadjacency
matrix, then this problem is exactly the subgraph isomorphism problem for the
bipartite graphs G (Lw

A) and G (Lw
K).

Even though subgraph isomorphism is NP-hard [8], for small enough inputs,
the problem has been widely studied because of its importance in Pattern Recog-
nition. It is well-known that, for sufficiently small instances, the problem can be
solved efficiently using algorithms such as the one by Ullman [23] or the ones
from the VF family [5,19]. The main problem with these widely used algorithms
is that they use heuristics that make it hard to perform a sound average case
complexity analysis for our case. Since such analysis is critical for estimating
the concrete security of the scheme, we propose a different algorithm with two
remarkable advantages. The first one is that it runs faster than other generic
subgraph isomorphism algorithms for our specific case of bipartite graphs. The
second is that it is simpler to analyze and give realistic estimates on its perfor-
mance.

The algorithm we propose is based on a simple depth-first search strategy. In
each level α of the search, a node represents a matrix built using a set of α rows
of Lw

K which is equal to the first α rows of Lw
A, when its columns are permuted

by some permutation. Whenever a matching is found, the searching algorithm
calls a procedure that tries to extract the secret permutation from the matching.
In the following sections, we describe each component of the algorithm in more
detail.

Signature of a Matrix. It is crucial for the subgraph isomorphism algorithms
to efficiently determine whether a matrix S is equal to a submatrix of Lw

A up to
some column permutation. For this task, we can use a function σ such that, if
σ(S1) = σ(S2), then with high probability S1 = τ(S2) for some permutation τ ,
for any two matrices S1 and S2 with equal dimensions.

One easy way to build such a function is to sort the columns of S using a
lexicographical ordering obtaining SSorted. Then, the signature of S is simply
σ(S) = h

(
SSorted

)
, for some cryptographic hash function h. It is clear, by this

construction, that σ is invariant with respect to column permutations.
The problem with sorting is that, since this function will be executed a very

large number of times, it can become expensive. One alternative is to use the
following approximation σ(S) =

∑
c column of S h (c) , for some hash function h.

Precomputation of Signatures. This step consists in building the |Lw
A|×|Lw

A|
matrix H containing signatures of submatrices of Lw

A that are used for pruning
the possible child nodes in each level of the search. Let a1, . . . ,a|Lw

A| be the
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vectors in Lw
A, and let Lj denote the matrix formed by the first j rows of Lw

A.
Then, we let

Hi,j =

⎧⎪⎨
⎪⎩

σ

([
Lj

ai

])
if i > j, and

0 otherwise.

(1)

Key Recovery Algorithm. In this step, the algorithm effectively tries to build
a submatrix S of Lw

K such that τ (S) = Lw
A, for some column permutation τ . The

algorithm is formally described as Algorithm 1 but we give a brief description
next.

Algorithm 1: KeySearch: Key search algorithm using depth-first search
Data: A and V: the PKP public parameters

Lw
A: a set of codewords in CA of weight w

Lw
K: the set of all codewords in CK of weight w

H: the precomputed matrix of signatures
α: the level in the search tree (initially, α = 0)
S: an α × n matrix (initially, S is the empty 0 × n matrix)

P =
(
P1, . . . , P|Lw

A|
)
: the sets of children (initially, each Pi = Lw

K)

Result: π: a permutation such that AVπ = 0 or ⊥ if none exists
1 begin

2 if α =
∣∣Lw

A

∣∣ then
3 return ExtractPermutationFromMatching(A,V,S)

/* Updates the possible children for each level not yet defined: */
4 for i = α + 1 to

∣∣Lw
A

∣∣ do
5 P̂i ←

{
p ∈ Pi : σ

([
S

p

])
= Hi,α

}

6 P ←
(
P1, . . . , Pα, P̂α+1, . . . , P̂|Lw

A|
)

7 for each p in P̂α+1 do

8 Update S by inserting p as its last row
/* Recursive call: */

9 π ← KeySearch(A,V, Lw
A, Lw

K,H, α + 1,S, P)
10 if π �= ⊥ then

11 return π
12 Update S by removing its last row p

13 return ⊥

The search starts at level α = 0, with S being a 0 × n empty matrix. At
each level α in the search tree, the algorithm runs a pruning procedure, that
updates the lists of possible vectors for each level greater than α using the
precomputed matrix of signatures H. This ensures that the main invariant of
the recursive algorithm is that, at level α, the algorithm holds an α×n submatrix
S of Lw

K which is equal to the matrix formed by the first α rows of Lw
A, up to

some column permutation. The search proceeds by selecting a vector from set
Pα+1 ⊂ Lw

K of vectors which can be safely added to the next level without
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breaking the invariant. Each time the algorithm successfully gets to a leaf, that
is, it adds a vector to level α = |Lw

A|, then a full matching S is found and the
procedure that tries to extract the permutation π from matching S is executed.
If the permutation π is successfully extracted, then π is returned. Otherwise, the
depth-first search proceeds.

The procedure for extracting the secret permutation from the matching, if
possible, is described in the next section.

4.3 Extracting Permutations from Matchings

After each each matching found in the previous step, we are given a matrix S
such that τ(S) = Lw

A for at least one permutation of columns τ . In this section we
describe how to efficiently extract the secret permutation π from this matching,
if possible.

We first consider the brute force solution. Let T be the set of permutations
that match equal columns in S and Lw

A. Then, we can just test, for each per-
mutation τ in T , if AVτ = 0. If one such τ is found, then the algorithm returns
π ← τ . Suppose that there are β unique columns c1, . . . , cβ of matrix Lw

A, and
let ci denote the number of times column ci appears in Lw

A. This implies that
the number of candidate permutations is given by |T | =

∏β
i=1 (ci!). The brute

force approach may be efficient when S has a large number of unique columns.
However, due to the combinatorial nature of this problem, even a small increase
in the number of equal columns can make the algorithm very inefficient.

To reduce the number of permutations to test we can use the fact that
dim (kerA) = n−m. Therefore, there are n−m rows of Vπ which, together with
the m equations defined by A, completely determine the other m rows of Vπ.
Intuitively, this means we can focus on partial permutations in T corresponding
to these n − m indexes.

More formally, let I1 and I2 be a partition of the set of possible n indexes
such that |I1| = m and the m × m matrix A1 built using the columns from
A whose indexes are in I1 is invertible. Similarly, let A2 be the m × (n − m)
matrix whose columns are taken from A, but with indexes in I2. Let φ be the
permutation of n elements such that φ (A) = [A1|A2], and define as U1 and U2

the matrices such that φ
(
(Vπ)�

)
= (Vπφ)� =

[
U�

1 |U�
2

]
. Then, we have

AVπ = φ(A)Vπφ = [A1|A2]
[
U1

U2

]
= A1U1 + A2U2 = 0,

which implies that U1 =
(
A−1

1 A2

)
U2.

Therefore, one can reduce the number of permutations in T to test by using
the following procedure. Let I be a sequence of n column indexes sorted, in
decreasing order, by the number of times in which the corresponding column of
matrix Lw

A occurs in this same matrix.1 Now let I1 to be composed by the first

1 The reason why it is interesting to sort the indexes in this way is explained in the
last paragraph of this section.
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m indexes in I whose corresponding columns of A are linearly independent, and
let I2 = I − I1 = {i1, . . . , in−m}. Consider the set

J =
{

(j1, . . . , jn−m) : (S)jk = (Lw
A)ik for all k = 1, . . . , n − m

}
,

where (X)y denotes the y–th column of matrix X. Intuitively, set J captures the
parts of the permutations in T corresponding only to the n − m indexes in I2,
and therefore |J | may be much smaller than |T |. For each sequence J of J , we
let U2 be the (n−r)×� matrix built from rows of V whose indexes are in J . For
each of these possible values of U2, we compute the matrix U1 =

(
A−1

1 A2

)
U2,

and test if
[
U1

U2

]
corresponds to a permutation of the rows of V. If this is indeed

the case, then the secret matrix Vπ is simply Vπ =
[
U1

U2

]
φ−1

.

It is important to notice that, since we want to make |J | as low as possible,
we sorted the set of indexes I so that, when defining I1 and I2, the columns of
Lw
A whose indexes are in I2 tend to appear a lower number of times. In Sect. 5.3,

we show how to estimate the size of J .

5 Concrete Analysis of the Attack

In this section we estimate the attack complexity. We begin by analyzing, in the
first three subsections, the work factor of the three components of the attack
algorithm: building sets Lw

A and Lw
K, matching the low weight vectors in these

sets, and extracting the secret permutation from matchings. Then, we put these
components together to give the complexity of the attack in Sect. 5.4. Finally, in
Sect. 5.5, we show the performance of the attack in practice.

The work factor of attacks against PKP is typically stated in number of
matrix-vector products, as it is the basic operation to test if a vector is in the
kernel of a matrix. Even though binary PKP uses two matrices, we can see the
rows of V as elements of F2� and, since � is typically small, then the product
AV can be seen as a matrix-vector multiplication where sum is replaced by a
XOR.

5.1 Searching for Codewords of Small Weight

Let us analyze the first step of the attack: the construction of sets Lw
A and Lw

K.
Each of these sets can be computed by searching exhaustively the whole set
of
(

n
w

)
possible vectors of n bits of weight w, and testing if they belong to CA

and CK. However, as we pointed in Sect. 4.1, we can do a lot better by using
Stern’s [22] algorithm. Consider a random [n, k]–linear code generated by matrix
G. Given parameters (p, q), Stern’s algorithm first permutes the columns of G
hoping to obtain a matrix Ĝ = φ(G), called a good permutation, for which there
is a linear combination of its rows that has the form c = [c1|c2|c3|c4], such that
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w (c1) = w (c2) = p, component c3 is the zero vector of length q, and c4 has
weight w (c4) = w − 2p.

When such conditions are met, Stern’s algorithm finds a vector c with such
properties, which can then be permuted to give a vector cφ−1 of weight w in the
code generated by G. To compute the work factor of Stern’s algorithm then, we
have to take into account the average number of iterations until it chooses a good
permutation Ĝ and the average number of operations performed by the algo-
rithm each time. Considering Finiasz and Sendrier’s [7] approximation, which
takes parameter q ≈ log

(
k/2
p

)
, the work factor of Stern’s algorithm, considering

the number of binary operations, until it gives us a random codeword of weight
w in a random [n, k]–linear code is

BinOpsWF(n,k,w)
Stern ≈ min

p

2q
(

n
w

)
(
n−k−q
w−2p

)(
k/2
p

) .
Each time Stern’s algorithm runs successfully, it finds a random codeword

of weight w. Therefore we can model the expected number of iterations until
all codewords are found as an instance of the coupon collector problem. Let us
consider the time to build Lw

A. Each low weight vectors is modeled as a coupon,
and we need to collect all �A of them. Let C be the random variable that counts
the number of low weight vectors we need to find before obtaining �A different
vectors. Then, it is well known that E (C) = Θ (�A log �A). Furthermore, the
upper tail estimate for the coupon collector problem ensures that

Pr (C ≤ γA�A log �A) ≤ �−γA+1
A .

Let WFLw
A

be the work factor of building the set Lw
A, counted in number

of binary matrix-vector multiplications. Since dimA = m, we can get an upper
bound on WFLw

A
as

WF(n,m,w,�A)
Lw

A
≤ BinOpsWF(n,m,w,�A)

Lw
A

= γA (�A log �A)BinOpsWF(n,m,w)
Stern ,

where γA > 1 is chosen so that �−γA+1
A gives a small error probability.

Now we want do the same thing for the construction of Lw
K. Let �K = |Lw

K|.
and let us estimate �K. As usual in coding theory, to count elements of a given
weight, we approximate the number of elements of weight w in a random code
as a binomial distribution. Thus, out of the

(
n
w

)
possible vectors of weight w,

we expect that a fraction of 2dimK/2n belong to CK. Since K is the left kernel
matrix of V, then dimK = (n − dimV) = (n − �), and we can approximate the
expected value of �K as

�̂K = E (�K) ≈ 2n−l

2n

(
n

w

)
= 2−l

(
n

w

)
. (2)

Therefore, for some factor γK > 1 we can define an upper bound on the work
factor of building Lw

K as

WF(n,�,w,�A)
Lw

K
≤ γK

(
�̂K log �̂K

)
BinOpsWF(n,n−�,w)

Stern .
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Notice that if Lw
K does not contain the permutations of all vectors of Lw

A, then
the search will fail. Thus, factor γK must be chosen conservatively, but since �̂K
is typically very large, the probability �̂

(1−γK)
K of not collecting all vectors can

be made negligible even for relatively small γK.

5.2 Searching for Matchings

In this section, we evaluate the number of paths that will be tested by the
subgraph isomorphism algorithm. For this evaluation, we need to estimate the
number of possible child nodes in each level.

Consider the case when the search is holding matrix S at level α. We want
to estimate the size of set P̂α+1 of possible rows to add to S in the next level
of the search. In other words, we want to compute the number of vectors that
survive the filter imposed by the line 5 of Algorithm 1. The first thing to notice
is that the result of the filtering is exactly the same if we filter from p ∈ Lw

K

instead of p ∈ Pi, that is

P̂i =
{
p ∈ Pi : σ

([
S
p

])
= Hi,α

}
=
{
p ∈ Lw

K : σ

([
S
p

])
= Hi,α

}
.

The reason why the algorithm keeps updating the list P =
(
P1, . . . , P|Lw

A|
)

of possible vectors in all levels, is solely for efficiency. Without it, the filtering
would be very inefficient for nodes in lower levels down the search because it
would have to run, every time, through set Lw

K, which may be very large.
Let Lα be the matrix formed by the first α rows of Lw

A, and let r be the
(α + 1)–th row of Lw

A. Now, using the definition of Hi,α, we want to estimate

how many vectors p in Lw
K satisfy σ

([
S
p

])
= σ

([
Lα

r

])
.

One problem that makes estimating the number of child nodes difficult is
that, since vectors in Lw

K are low-weight codewords of a fixed linear code, the
vectors in Lw

K are not independently distributed. This is a common problem
when analyzing bounds on weight distribution in coding theory, and as usual
in the field, we overcome this problem by assuming that the set Lw

K consists of
vectors chosen uniformly at random over the vectors of length n and weight w.

Now, under our model, let us fix Lα and estimate the probability qα+1(Lα)
that vector p̂ of Lw

K is a possible child node in P̂α+1. Because of the way that
the algorithm builds S, its columns are the same as the ones of Lα, up to some
permutation, and therefore

qα+1(Lα) = Pr
(

σ

([
S
p̂

])
= σ

([
Lα

r

]))

= Pr
(

σ

([
Lα

p

])
= σ

([
Lα

r

]))
,

where p is a random n–bit vector of weight w.



408 T. B. Paiva and R. Terada

The signatures of the two matrices will be the same if the columns above
the non-null entries of p and r are equal, up to some permutation. Therefore,
qα+1(Lα) is simply the probability that two subsets of w columns drawn from
Lα are the same, up to some permutation. In the simple case when all columns
of Lα are unique, then qα+1(Lα) = 1/

(
n
w

)
. However, in general, Lα may have

non-unique columns, which occur with high probability for small values of α,
since Lα is sparse.

Let R be the α × w matrix built by taking columns of Lα whose indexes are
in supp (r). Define two counting functions N and NR that, given a column c,
output the number of times column c appears in matrices Lα and R, respectively.
For each column c, which should appear NR(c) times in the columns above the
non-null entries of p, there are

(
N(c)

NR(c)

)
ways in which different column indexes

of R can be chosen. Therefore

qα+1(Lα) =
1(
n
w

) ∏
c∈F

α
2

(
N(c)
NR(c)

)
.

To estimate the average attack performance, we want to compute the
expected value qα+1 = E (qα+1(Lα)) when Lα is obtained from a randomly
generated key. This value can be easily estimated using simulations by sampling
Lα from the set of α × n matrices in which each row has weight w. However, to
give an analytic approximation, we face the problem of computing the expected
value of the binomial coefficients over the random variables N(c) and NR(c) for
each possible column c. To deal with this problem, we use of the following rough
approximation

qα+1 ≈ 1(
n
w

) ∏
c∈F

α
2

(
E (N(c))
E (NR(c))

)
.

To compute the expected values E (N(c)) and E (NR(c)), we consider Lα as a
random sparse matrix of density w/n as an approximation of the real case where
each of its rows have a fixed weight w. Under this model, the probability that
a random column of Lα is equal to c depends only on its the weight k = w (c)
and the number α of rows in Lα. This probability is given by

p (k, α) =
(w

n

)k (
1 − w

n

)α−k

. (3)
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Thus both N(c) and NR(c) follow binomial distributions with parameters
(n, p(w (c) , α)) and (w, p(w (c) , α)), respectively. Therefore2

qα+1 ≈ 1(
n
w

) ∏
c∈F

α
2

(
np(w (c) , α)
wp(w (c) , α)

)

≈ 1(
n
w

) α∏
k=0

(
np (k, α)
wp (k, α)

)(α
k)

.

One can then use this analytic approximation or simulations for qα to obtain
the number of possible nodes in each level as

∣∣∣P̂α

∣∣∣ = qα�̂K, where �̂K = E (|Lw
K|)

is given approximately by Eq. 2. Figure 2 shows how the analytic approximation
and the value obtained by simulations compare with what is observed during
a real attack. We can see that simulations can accurately be used to estimate
qα and that the analytic estimate tends to overestimate the number of possible
nodes in each level.

Fig. 2. Comparison of estimates on the average number of possible vectors to add in
each level of the search. The attack parameters (w = 8, �A = 10) were used against the
BPKP–76 parameter set.

The work factor of the search procedure, denoted by WFSearch, consists of
the expected number of possible paths, which is given by

WF(n,w,�A)
Search =

�A∏
α=1

∣∣∣P̂α

∣∣∣ ≈
(
�̂K

)�A
�A∏

α=1

qα.

2 Recall, from Sect. 2, that binomials are defined over non-negative real numbers to
allow our approximations.
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5.3 Extracting Permutations from Matchings

We now analyze the complexity of the procedure that tries to extract the secret
permutation after a matching is found. The main quantity we need to estimate
is the number of permutations that the procedure needs to test each time it is
called. Formally, we need to estimate the average size of set J for each parameter
set (n,m, �) when the scheme is attacked with attack parameters (w, �A).

Let I1 and I2 = {i1, . . . , in−m} be the sets constructed from Lw
A and A as

described in Sect. 4.3. The first thing to notice is that |J | can be computed
directly from matrix Lw

A, that is, it does not depend on a each S. This is a
consequence of the fact that, by construction, S = τ (Lw

A), for some column
permutation τ . Formally, what we mean is that, since3

J =
{

(j1, . . . , jn−m) : (τ (Lw
A))jk = (Lw

A)ik for all k = 1, . . . , n − m
}

=
{

(j1, . . . , jn−m)τ : (Lw
A)jk = (Lw

A)ik for all k = 1, . . . , n − m
}

,

then |J | =
∣∣∣{(j1, . . . , jn−m) : (Lw

A)jk = (Lw
A)ik for all k = 1, . . . , n − m

}∣∣∣,
which does not depend on τ .

Thus we can model |J | as the number of arrangements of n − m different
balls, which may come from different boxes, under the restriction that each box
will be sampled a fixed number of times. In this analogy, each box represents a
set of indexes that correspond to equal columns in Lw

A. More formally, let L2 be
the �A × (n − m) matrix formed by taking columns of Lw

A whose indexes are in
I2. Define two counting functions N and N2 that, given a column c, output the
number of times column c appears in matrices Lw

A and L2, respectively. Then,
we have

|J | =
∏
c∈C2

N(c)!
(N(c) − N2(c))!

.

Now, let us consider the expected value of J when A is a random matrix such
that Lw

A contains �A vectors of weight w. This number can easily be estimated
by simulations, which perfectly correspond to what is observed in a real attack
since, up to this point no simplification has been made. Furthermore, we can also
give an analytic estimate using the very same ideas from the previous section.
First we approximate this case by modeling Lw

A as a random �A×n sparse matrix
with density w/n, and let p (k, �A) denote the probability that a given column
of Lw

A is equal to a fixed column of weight k and height �A, as defined by Eq. 3.
Then, the rough approximation on E (|J |) is given by

3 Recall that (X)i denotes the i–th column of matrix X.
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E (|J |) ≈
∏

c∈F
�A
2

E (N(c))!
(E (N(c)) − E (N2(c)))!

=
�A∏

k=0

(
(np (k, �A))!

(np (k, �A) − (n − m)p (k, �A))!

)(�A
k )

=
�A∏

k=0

(
(np (k, �A))!
(mp (k, �A))!

)(�A
k )

.

Figure 3 shows how |J | rapidly decreases as larger values of �A are used.
It also provides a comparison between our analytic estimate on E (|J |) and
the observed values in our simulations. Notice that, for small values of �A, the
analytic estimate tends to overestimate the real values of |J |, but for sufficiently
large �A, the estimate converges to the observed values. Now, since each sequence
E (|J |) needs one matrix multiplication to be tested, we define the work factor
of the permutation extraction procedure, as WF(n,m,w,�A)

Perms = E (|J |) .

Fig. 3. The number of permutations to test after each matching considering the BPKP–
76 parameter set. The attack parameter w = 8 was fixed, and the simulations were run
for increasing values of parameter �A.

5.4 Attack Complexity

This section builds upon the three previous sections to explicitly state the attack
complexity and the fraction of keys that can be attacked for different attack
parameters (w, �A).

The full complexity of the attack is given by the following lemma.

Lemma 1. Let (n,m, �) be a binary PKP parameter set. Then, the work factor
of the attack with parameters (w, �A) is given as

WF(n,m,�,w,�A)
Attack = WF(n,m,�,w,�A)

LowWeightSets +
(
WF(n,w,�A)

Search

)(
WF(n,m,w,�A)

Perms

)
.
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Proof. The complexity of the attack is given by summing the costs of build-
ing the sets of vectors of small weight Lw

A and Lw
K, and the complexity of the

key recovery algorithm. The cost of the key recovery algorithm is computed as
follows. Remember that, for each path, from the root to one leaf, the number
of permutations we have to test is given as WF(n,m,w,�A)

Perms . Since the average
number of paths is WF(n,w,�A)

Search , the complexity of the key recovery algorithm is

simply the product
(
WF(n,w,�A)

Search

)(
WF(n,m,w,�A)

Perms

)
. 	


Figure 4 shows how WF(n,m,�,w,�A)
Attack varies with respect to the attack parame-

ters used, when attacking BPKP–76 parameter set. To estimate the work factor
of the attack, we used simulations4 for WF(n,w,�A)

Search and analytic estimation for
WF(n,m,w,�A)

Perms . Notice how, as �A gets larger, the work factor stabilizes. This hap-
pens because the number of permutations to test gets closer to 1. Furthermore,
it is clear that when w is smaller, the attack is more efficient, which happens
because, in this case, |Lw

K| is smaller, which makes the search much faster. The
problem however, is that the attack parameters for which the attack is most
efficient occur with lower probability, as we elaborate next.

Lemma 1 does not say anything about the fraction of keys that one can
attack using parameters (w, �A). To compute this fraction, we have to take into
account the probability that a public matrix A, selected at random, generates a
code with at least �A codewords of weight w. This is considered in the following
lemma.

Lemma 2. Let (n,m, �) be a binary PKP parameter set. Then, the fraction of
keys against which the attack is effective when using parameters (w, �A) is given
as

KFn,m,�,w,�A
Attack ≈ 1 − e−λ

�A−1∑
k=0

λk

k!
, (4)

where λ =
(

n
w

)
2m−n.

Proof. Take a random matrix A, generated with parameters (n,m, �). Let Lw

be the random variable that represents the number of vectors of weight w in the
code generated by matrix A. Since the code generated by A is a random code,
we can approximate Lw by a binomial distribution which samples

(
n
w

)
vectors

and each one of them is in the code with probability 2m−n.
The probability that Lw ≥ �A would be then simply

(
1 −∑�A−1

k=0 Pr(Lw =

k)
)
. However, the probability mass function of the binomial can be costly to

compute for some values of k, since N may be very large, and N − k appears
as an exponent. But, for large N and small probability 2m−n, the binomial may
4 Even though the analytic approach is useful to estimate the number of nodes in

each level, the errors would accumulate exponentially in the product necessary to
compute the work factor of the search.
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be approximated as a Poisson distribution with parameter λ =
(

n
w

)
2m−n. Then,

the approximation given as Eq. 4 is easily achieved by considering the cumulative
distribution function of the Poisson distribution, instead of the binomial. 	


Fig. 4. Work factor of the attack against BPKP–76 parameter set using different attack
parameters (w, �A).

Fig. 5. Fraction of the keys generated with BPKP–76 parameter set against which the
attack is successful using different attack parameters (w, �A).

Figure 5 shows the effect of parameters (w, �A) in the fraction of keys that we
can attack. The first thing to notice is that large �A and small w tend to occur
with smaller probability. Now we can combine both Figs. 4 and 5 to understand
the power of the attack. For example, considering parameters (w = 7, �A = 10),
we can attack about 1 in each 150.000 keys of BPKP–76 with less than 255

operations, and about 100% of all keys can be recovered using 262 operations.
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5.5 Experimental Results

To validate our proposed attack, we implemented it in SageMath and in C lan-
guage, using M4RI [14] library for efficient binary linear algebra computations.
The source code is publicly available at www.ime.usp.br/∼tpaiva.

Table 2 shows the performance of the attack against BPKP-76. To obtain
empirical estimates on its performance, we considered the average number of
clock cycles for the smallest level α̂ in the search for which we can get a significant
number of samples. Then, the empirical estimate is given by the product between
this average number of clock cycles and the average number of total nodes in
level α̂. Thus smallest values of α give more accurate results. The values of �A
are chosen as to guarantee that the number of permutations to test is within
reasonable computational limits and so that α̂ ≤ 3.

Notice how, in general, the estimates on the work factor of the attack tend
to overestimate the real complexity of the attack. The main explanation for this
fact seems to be that, for sufficiently large �A, the algorithm rarely enters in a
leaf node, which is where most of the matrix product operations occur. This is
exemplified by the decay, shown in Fig. 2, of the curve representing the observed
number of nodes in each level during a real attack, where, after level α = 7, a
node rarely has more than one child.

Table 2. Estimates on the number of clock cycles necessary for a successful attack.

w �A α̂ Fraction of keys Predicted work factor
(matrix-vector products)

Empirical estimate
(clock cycles)

5 14 1 0 239.46 234.39

6 11 2 2−43.32 249.75 247.58

7 10 2 2−17.86 255.84 248.62

8 9 3 2−2.88 262.28 260.54

9 9 3 2−0.00 264.16 262.31

6 Asymptotic Analysis

In the previous section, a detailed analysis of the attack is presented. However,
the concrete analysis fails to provide a general idea of how the complexity grows,
as the complexity of the components are not easy to simplify and must be com-
puted using iterative procedures for products of binomial coefficients. Therefore
we aim, in this section, to give simpler and closed expressions for the asymptotic
attack complexity, but without compromising the reliability of the analysis.

www.ime.usp.br/~tpaiva
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6.1 Asymptotic Growth of the Attack Parameters

First let us recall the growth of parameters m and � with respect to n. To ensure
that the binary PKP instances are difficult to solve on average, we need that,
out of the n! possible permutations of the rows of V, about only one of them is
in the kernel of A. The dimension of A is m, which means the probability that
a random vector belongs to the kernel is 2(n−m)/2n = 2−m. Therefore, since the
binary PKP is solved only when all � column vectors of Vπ are in the kernel of
A, then n!2−m� ≈ 1. As suggested by Lampe and Patarin [13], we consider that
m and l should be roughly the same size

m ≈ l ≈
√

log n! = O(
√

n log n). (5)

From Eq. 5, we see that the dimension m of the code generated by A grows
much slower than its size n. Intuitively then, as n gets larger, it gets harder
to obtain codewords of weight much smaller than n/2, because of the small
dimension. Since we need to deal with values of w close to n/2, we are interested
in using the following lemma that gives approximations on binomial coefficients(

n
w

)
under this regime.

Lemma 3 (Eq. 5.41 [21]). Let n and w be positive integers such that |n/2 −
w| = o(n2/3). Then (

n

w

)
∼ 2n

√
2

nπ
e

−(n−2w)2

2n .

	

We are now ready to show, in the following lemma, how to carefully choose

values of w such that Lemma 3 ensures us that Lw
A has a reasonable number of

vectors.

Lemma 4. Take the attack parameter w as

w =

⎢⎢⎢⎣n

2
−
√

mn4/5

2 log e

⎤
⎥⎥⎥ . (6)

Then, on average, the attack can effectively use parameters (w, �A) when �A is
smaller than

�A ≤
(√

2
π

)
2(m(1−n(−1/5))−(log n)/2).

Proof. Let A be an m×n random binary PKP public matrix. The attack param-
eters (w, �A) are effective when �A is smaller than or equal to the number of vec-
tors of weight w in the code generated by A. Therefore, on average, the attack
works when

�A ≤ 2m−n

(
n

w

)
.
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Now take w as defined by Eq. 6, and notice that, since m = O
(√

n log n
)
,

then

|n/2 − w| =

√
mn4/5

2 log e
= O

(√
n4/5

√
n log n

)

= O
(
n13/20 (log n)1/4

)
= o

(
n13/20+ε

)
= o

(
n2/3

)
.

Therefore we can use Lemma 3 to obtain the approximation

2m−n

(
n

w

)
≈ 2m−n

(
2n

√
2

nπ
e

−(n−2w)2

2n

)
= 2m

(√
2

nπ
e

−(n−2w)2

2n

)
.

But notice that

e
−(n−2w)2

2n = e
−(n/2−w)2

n/2 = exp

⎛
⎝− 1

n/2

√
mn4/5

2 log e

2⎞⎠ = exp
(

−mn−1/5

log e

)
.

That is

e
−(n−2w)2

2n = 2−mn−1/5
. (7)

Therefore the attack is effective for

�A ≤ 2m

(√
2

nπ
2−mn−1/5

)
=

(√
2
π

)
2(m(1−n(−1/5))−(log n)/2).

	

Notice that when w is chosen according to the lemma above, then w/n

approaches 1/2 when n gets larger. This motivates the following corollary, which
has an important role in simplifying the analysis.

Corollary 1. As n gets larger and w is taken as in Lemma 4, the values of
p (k, α) stop depending on k, and we have

p (k, α) =
(

1
2

)k (
1 − 1

2

)α−k

= 2−α.

	

As a first application of Corollary 1, we show that, for sufficiently large n, we

do not need �A to be very large. With roughly �A ≈ log n, the number WFPerms

of permutations to test after each matching is very close to 1.
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Lemma 5. Consider binary PKP parameters (n,m, �). Take attack parameters
w as in Lemma 4 and �A ≥ log n�. Then, for sufficiently large values of n, the
average number of permutations to test after each matching is

WFPerms = 1.

Proof. From our concrete analysis, we know that

WFPerms =
�A∏

k=0

(
(np (k, �A))!
(mp (k, �A))!

)(�A
k )

.

But Corollary 1 tells us that p (k, �A) ≈ 2−�A when n is large. Therefore,

WFPerms =
�A∏

k=0

( (
n2−�A

)
!

(m2−�A)!

)(�A
k )

=
�A∏

k=0

( (
n2−�log n�)!(
m2−�log n�)!

)(�log n�
k )

= 1.

	

It is important to understand that the lemma above needs a relatively large

n, because it uses Corollary 1. Therefore, to lower the number of permutations to
test after each matching when attacking small values of n, we typically want to
use �A near the maximum provided by Lemma 4. Notice that even for relatively
small values of n, there are usually more than log n vectors of weight w in the
code generated by A. For example, when n = 38 we have

log(n) ≈ 5.25 < 5.99 ≈
√

2
π 2m(1−n−1/5)−(log n)/2).

We are now ready to derive the asymptotic complexity of WFSearch, which
is the most critical step of the attack.

6.2 Searching for Matchings

Let us begin by deriving an asymptotic bound on the number of child nodes in
each level of the search tree.

Lemma 6. Take the attack parameter w as in Lemma 4. Then, for sufficiently
large values of n, the number of child nodes in each level α of the search is given
as ∣∣∣P̂α+1

∣∣∣ =

⎧⎨
⎩2n−l−mn−1/5 (

2α2α/2
)√

2
nπ

2α

if α ≤ (log n� − 2);

1 otherwise.

Proof. By our concrete analysis, we know that
∣∣∣P̂α+1

∣∣∣ is given as

∣∣∣P̂α+1

∣∣∣ = �̂Kqα+1 =
(

2−l

(
n

k

))
1(
n
w

) α∏
k=0

(
np (k, α)
wp (k, α)

)(α
k)

= 2−l
α∏

k=0

(
np (k, α)
wp (k, α)

)(α
k)

.
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Using Corollary 1, we can simplify the above expression as

∣∣∣P̂α+1

∣∣∣ = 2−l
α∏

k=0

(
n2−α

w2−α

)(α
k)

= 2−l

(
n2−α

w2−α

)(∑α
k=0 (α

k))

= 2−l

(
n2−α

w2−α

)2α

.

Now, if α ≥ (log n� − 1), then w2−α < 1, and
(

n2−α

w2−α

)2α

≤
(

n2−α

n
2 2−α

)2α

≈ 1.

Therefore, we can focus on approximating the case when α ≤ (log n� − 2).
Remember that w is close to n/2, thus we can use Lemma 3 to get the approxi-
mation (

n2−α

w2−α

)
≈ 2n2−α

√
2

n2−απ
e

−(n2−α−2w2−α)2

2n2−α

= 2n2−α

2α/2

√
2

nπ
e

−(n−w)2

2n 2−α

.

Recall Eq. 7, which lets us further simplify the expression above as(
n2−α

w2−α

)
= 2n2−α

2α/2

√
2

nπ

(
2−mn−1/5

)2−α

.

Now, getting back to
∣∣∣P̂α+1

∣∣∣, we have

∣∣∣P̂α+1

∣∣∣ = 2−l

(
n2−α

w2−α

)2α

= 2−l

(
2n2−α

2α/2

√
2

nπ

(
2−mn−1/5

)2−α
)2α

= 2n−l−mn−1/5
(
2α2α/2

)√ 2
nπ

2α

.

	

Now that we have bounded the number of nodes in each level, we are ready

to give the asymptotic bound on the search procedure.

Lemma 7. Take attack parameters w and �A ≥ log n� as in Lemma 4. Then,
the asymptotic work factor of the search is given as

WFSearch ≈ 2(n−l−mn−1/5)(�log n�−1)−0.91n+
1
2 log n+1.33.
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Proof. From our concrete analysis, we know that the complexity of the search
is the product of the number of nodes in each level of the search. Furthermore,
Lemma 6 says that we only need to compute these values for α ≤ log n� −
2, because after this point, typically there is at most one possible child node.
Therefore, the complexity of the search is given as

WFSearch =
�A−1∏
α=0

∣∣∣P̂α+1

∣∣∣ =
�log n�−2∏

α=0

∣∣∣P̂α+1

∣∣∣
=

�log n�−2∏
α=0

⎛
⎝2n−l−mn−1/5

(
2α2α/2

)√ 2
nπ

2α
⎞
⎠

= 2(n−l−mn−1/5)(�log n�−1)2
(∑�log n�−2

α=0 α2α/2
)(

2
nπ

)(∑�log n�−2
α=0 2α/2

)

= 2(n−l−mn−1/5)(�log n�−1)2(1+n
4 (�log n�−3))2(log 2

nπ )(n/4−1/2)

≈ 2(n−l−mn−1/5)(�log n�−1)−0.91n+
1
2 log n+1.33.

	


6.3 Asymptotic Complexity of the Attack

We are almost ready to complete the asymptotic analysis of the attack. The
only missing component to consider is WFLowWeightSets. Using the bruteforce
algorithm, one needs to test, for all

(
n
w

)
= O(2n) possible vectors of weight w, if

they are in the space generated by A or in the left kernel of V. Therefore, the
complexity of building sets Lw

A and Lw
K is

WFLowWeightSets = O(2n).

We can then combine the result above with Lemmas 5 and 7 to obtain the
complexity of the attack, as given next.

Theorem 1. Take attack parameters w and �A ≥ log n� as in Lemma 4. Then,
the asymptotic work factor of the attack is given as

WFAttack = WFLowWeightSets + (WFSearch) (WFPerms)

= O

(
2(n−l−mn−1/5)(�log n�−1)−0.91n+

1
2 log n

)
.

	

Figure 6 shows how the asymptotic complexity presented above compares

with the simulations based on the concrete analysis. We can see that the asymp-
totic estimate appears to be realistic, even though the ceiling operation used for
log n� makes the function rapidly increase when n− 1 is a power of 2, and then
decrease until the next power of 2 is found.
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Fig. 6. Asymptotic complexity of the attack.

Figure 7 shows an asymptotic comparison between our algorithm and the one
by Koussa et al. [12]. Even though their algorithm is currently the best generic
algorithm for solving PKP in every field, we can see that our algorithm has a
considerable advantage in the binary case. To help us visualize the asymptotic
growth of our attack, we consider a smooth version of the estimate that consists
in using log n instead of log n� in the expression provided in Theorem 1.

Fig. 7. Comparison between our attack and the one by Koussa et al. [12].

7 On Secure Parameters for Binary PKP

A conservative approach to select parameters for binary PKP, considering secu-
rity level λ, would be to choose them in such a way that no class of keys that
occurs with probability greater than 2−λ should be attacked with less 2λ oper-
ations. Furthermore, the choice of parameters should consider the use of binary
PKP when building a signature scheme, and, as such, should aim to minimize
not only the key sizes, but also signature sizes and the computational cost to
sign and verify each signature.

The safest possible choice of parameters would be the ones that make it
difficult to even build sets Lw

A and Lw
K. If we take schemes that rely on the
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difficulty of finding small weight codewords such as MDPC [16], this would result
in a very large matrix A. This, however, would have a very negative impact on
performance, key sizes and signature length.

A less conservative approach is to scale parameters (n,m, �) and compute
WF(n,m,�,w,�A)

Attack and KF(n,m,�,w,�A)
Attack for different attack parameters (w, �A). The

search is efficient and can be done with the code that we provide. However,
it is important to notice that it seems to be early to state sets of parameters
for BPKP, as there may be some opportunities to improve this attack, which
could thwart the security of parameters suggested without careful consideration.
Our recommendation therefore is to avoid the Binary PKP, and more generally,
the PKP using small fields for matrix A, for which the search for low weight
codewords can be done efficiently.

8 Conclusion and Future Work

In this paper, we present the first attack that targets binary PKP and provide
a detailed analysis on the attack’s components. The attack is practical and we
provide an implementation of the attack in SageMath and C. Furthermore, the
attack shows an inherently weakness of PKP using small fields, and we rec-
ommend that binary PKP be avoided while its security is not well understood
against this new type of attack.

For future work, we plan to extend this attack to the original PKP, hoping to
better understand what is the minimum finite field size p that can used securely.
Furthermore, we believe that there are some opportunities to improve this attack.
For example, it may be possible to increase the fraction of keys that one can
attack by considering different parameters w simultaneously, or one can try to
reduce the complexity of matching by introducing heuristics.
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Abstract. Quantum computing challenges the computational hardness
assumptions anchoring the security of public-key ciphers, such as the
prime factorization and the discrete logarithm problem. To prepare for
the quantum era and withstand the attacks equipped with quantum
computing, the security and cryptography communities are designing
new quantum-resistant public-key ciphers. National Institute of Stan-
dards and Technology (NIST) is collecting and standardizing the post-
quantum ciphers, similarly to its past involvements in establishing DES
and AES as symmetric cipher standards. The NIST finalist algorithms
for public-key signatures are Dilithium, Falcon, and Rainbow. Finding
common ground to compare these algorithms can be difficult because of
their design, the underlying computational hardness assumptions (lat-
tice based vs. multivariate based), and the different metrics used for
security strength analyses in the previous research (qubits vs. quantum
gates). We overcome such challenges and compare the security and the
performances of the finalist post-quantum ciphers of Dilithium, Falcon,
and Rainbow. For security comparison analyses, we advance the prior
literature by using the depth-width cost for quantum circuits (DW cost)
to measure the security strengths and by analyzing the security in Uni-
versal Quantum Gate Model and with Quantum Annealing. For perfor-
mance analyses, we compare the algorithms’ computational loads in the
execution time as well as the communication costs and implementation
overheads when integrated with Transport Layer Security (TLS) and
Transmission Control Protocol (TCP)/Internet Protocol (IP). Our work
presents a security comparison and performance analysis as well as the
trade-off analysis to inform the post-quantum cipher design and stan-
dardization to protect computing and networking in the post-quantum
era.
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1 Introduction

Public-key digital signatures provide authentication and integrity protection and
are critical in securing digital systems. The security of the most used present-day
digital signature standards like Rivest-Shamir-Adleman (RSA) [44] and Elliptic
Curve Digital Signature Algorithm (ECDSA) [14] are based on the computa-
tional hardness problems such as prime factorization and discrete logarithm
problem. Shor’s polynomial-time algorithm effectively solve these problems when
equipped with a powerful quantum computer [45]. Securing digital communica-
tion against attackers that have access to the quantum computing resources [39]
requires new public-key cryptographic algorithms which can withstand such
quantum attackers.

Recent advancements in quantum computing and quantum computers
(Sect. 2) yields a need for transitioning to post-quantum cryptography (quantum-
resistant cryptography). This involves identifying the relevant hardness problems
and designing and constructing the quantum-resistant algorithms for securing
digital communications.

National Institute of Science and Technology (NIST) launched the Post-
Quantum Cryptography (PQC) standardization project to establish and stan-
dardize quantum-resistant algorithms. NIST has a track record of preparing
for the impending cryptanalysis and breaks on cryptographic ciphers and is
preparing for the post-quantum era before the emergence of the practical quan-
tum computer implementations capable of breaking the current systems. NIST’s
involvement in cryptography has global and lasting impacts on digital systems,
as demonstrated by their involvement in standardizing DES in the 1970’s and
AES in the late 1990’s. The standardization process starts with an open public
call that lists the requirements of the algorithms. All the submission algorithms
are openly published and subjected to analyses and, after the analyses, an algo-
rithm is selected for standardization. PQC standardization project follows the
same process and requested the interested parties to provide submissions for
quantum-resistant cryptographic candidates.

In this paper, we study the security and performances of the third round dig-
ital signature candidate algorithms from NIST’s PQC standardization project.
The digital signature algorithms include three finalist candidates: Crystals-
Dilith- ium (Dilithium), Falcon, and Rainbow, design principles and hardness
problems underlying these digital signature algorithms come from Lattice-based
and multivariate-based cryptography (Sect. 3). The researchers designed and
developed these cipher schemes and algorithms separately, including the secu-
rity analyses, which makes the cross-cipher comparison analyses challenging. Our
work addresses such a gap and provides a comparison analyses between the dif-
ferent cipher families/schemes and the algorithms within the families to inform
the security communities at this time of selecting the PQC cipher standard1.

1 Our work has been shared with NIST.
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Contributions. We compare the PQC digital signature cipher schemes in
both security and performances. Our security analyses include two contribu-
tions. First, we adopt a model for visual representations to compare the size-
security trade-offs of digital signature algorithms (Sect. 4). These include the
security offered by the digital signature algorithms with respect to public key
length and signature length. Second, we analyze the security of digital signa-
ture candidates based on DW cost and with and without quantum annealing
(Sect. 5). We also make the following two contributions in performance analyses.
First, we analyze the implementation overheads in the execution time and its
scalability in message sizes of the individual signature algorithms for key-pair
generation, signature generation, and signature verification (Sect. 6). Second, we
analyze the communication/handshake overheads on TLS 1.3 and TCP/IPv4
connection when integrating the signature algorithms (Sect. 7).

Methodologies and Approaches. We use both theory and empirical mea-
surements in our paper. We take a theoretical approach to analyze the security
against quantum cryptanalysis, since practical quantum computers supporting
a sufficient number of quantum bits (qubits) to implement the theoretical crypt-
analysis attacks are currently unavailable and under active research and devel-
opment. In Sect. 4, we build on the previous analyses on the NIST finalist PQC
schemes and adopt the visualization model proposed by Bernstein [12] to show
the size-security trade-offs of the digital signature algorithms. In Sect. 5, we build
on the quantum physics theory to compare and analyze the PQC schemes, which
previously have been analyzed separately using different metrics of qubits and
quantum gates, challenging the inter-scheme comparison. We adopt the quan-
tum circuit DW cost combining qubits and quantum gate costs [34] to compare
the security of the algorithms in the Universal Quantum Gate Model and the
model with Quantum Annealing.

For the performance analyses of the PQC schemes, we implement prototypes
and empirically measure performances between the schemes. While the post-
quantum era prepares for adversaries equipped with quantum computing, the
PQC cipher schemes are designed to be implemented on classical computers
to defend the common user. We build on the algorithm implementations from
liboqs by Open Quantum Safe [47] and deployed it on a virtual machine with
6 processing cores and 6 GB of RAM on a computer equipped with a 16-core
32-thread AMD Ryzen 9 3950X processor with 3.5 GHz processor frequency,
and 32 GB RAM. While the absolute performance costs vary depending on the
computer platform and its hardware specifications, we focus on the comparison
results in this paper so that our results and insights are applicable to classical
non-quantum computers beyond our platform. We compare the performance
costs of the algorithms by themselves in Sect. 6 and when integrated with TLS
1.3 and TCP/IP in Sect. 7.
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Fig. 1. PQC history and the events leading up to NIST’s standardization. Highlighted
in blue are the events specifically involving NIST.

2 Background: PQC History and NIST

We describe the PQC history and the NIST involvement to motivate our work
in this section, and Fig. 1 shows the timeline of events regarding cryptography
and quantum computing. Cryptography provides the backbone to secure the
digital systems in our society. While the practical quantum computers currently
only support a small number of qubits and at the proof-of-concept stages, the
theoretical algorithms building on quantum computing emerged to expedite the
solving of the computational hardness problems anchoring the security of the
current public-key ciphers. Shor’s algorithm [45], invented in 1994, provides a
polynomial-time algorithm in quantum computing for solving the prime fac-
torization and discrete log problem, threatening the security of the public-key
ciphers such as RSA and Diffie-Hellman Key Exchange. Grover’s algorithm [31]
in 1996 expedites the brute-force search of the general problems, such as the
original database search problem and hash collision finding. The first successful
implementation of quantum searching was performed, in 1998, on a two-qubit
Nuclear Magnetic Resonance (NMR) quantum computer. It used Grover’s algo-
rithm to search for a system that has four states [19]. Followed by Grover’s
implementation, in 2001, a seven qubit NMR quantum computer [48] used Shor’s
algorithm to find prime factors for the number 15.

Inspired by the extraordinary opportunities in quantum computing, major
tech giants started research into quantum computers. The first of such kind was
D-Wave Systems, whose quantum computing capabilities are based on quan-
tum annealing. In 2019, D-Wave unveiled a 5000 qubit processor [49]. On the
other hand, International Business Machines (IBM) and Google follow the uni-
versal quantum gate model. IBM showed significant progress from 5 qubit pro-
cessor [9] and reached a 53 qubit processor. IBM’s quantum experience provides
access to up to 32 qubit processor quantum computers for registered users at
free of cost [16]. Google announced a 72 qubit quantum processor [35]. With
steady growth in practical quantum computers and raising concerns in cryptogra-
phy, NIST initiated PQC standardization project. NIST requested nominations
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in Dec 2016 for public-key post-quantum cryptographic algorithms [4]. NIST’s
PQC standardization project aims to replace the present recommended digital
signature standard of RSA, and ECDSA [27] with post-quantum algorithms.
Instead of measuring the security in bits, all these post-quantum algorithms are
referenced with security categories defined by NIST (Table 1). Each of these cat-
egories sets the minimum required computational resources to break well known
symmetric block cipher or hash functions. Breaking a symmetric block cipher
indicates a successful brute-force key search attack, and breaking a hash function
means a successful brute-force collision attack. Computational resources can be
restricted by a new parameter, defined by NIST, called MAXDEPTH. It can be
used to limit the quantum attacks to fixed running time or circuit depth. PQC
standardization is a multi-year process and involves multiple rounds of analyses
and scrutiny for the maturity of cipher design before the standardization.

Table 1. NIST security categories, where X is the MAXDEPTH

Security

Category

Reference Algorithm Classical Bit Cost Qubit Security Circuit Size to

Break the

Algorithm [4]

1 AES 128 128 (key search) 64 (Grover [31]) 2170/X quantum

gates or 2143

classical gates

2 SHA3-256 128 (collision) 85 (Brassard [13]) 2146 classical gates

3 AES 192 192 (key search) 96 (Grover [31]) 2233/X quantum

gates or 2207

classical gates

4 SHA3-384 192 (collision) 128 (Brassard [13]) 2210 classical gates

5 AES 256 256 (key search) 128 (Grover [31]) 2298/X quantum

gates or 2272

classical gates

6 SHA3-512 256 (collision) 170 (Brassard [13]) 2274 classical gates

In response to the open public call for the PQC standardization proposal [4],
NIST received 82 submissions, and only 69 of the submissions satisfied the min-
imum required conditions. The first-round of the PQC standardization project
started in Dec 2017, selected 26 candidate algorithms. With fewer algorithms
to analyze, the second-round of the PQC standardization project started in Jan
2019 and selected 15 algorithms for third-round [5]. These 15 algorithms are
categorized as seven finalist candidates and eight alternate candidates (Sect. 3).
Seven finalists candidate algorithms include four public-key encryption/KEM
mechanisms and three digital signature schemes. Eight alternate candidate algo-
rithms include five public-key encryption/KEM mechanisms and three digital
signature schemes. At-most one of the finalist candidate algorithms in each of the
public-key encryption/KEM and digital signature standard schemes are expected
to be standards at the end of the PQC standardization project. Started in July
2020, the PQC standardization project aims to complete the analysis by early
2022 and confirm the candidates for standardization.
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We focus on the digital signatures in this paper, while NIST solicits and
plans to standardize both key exchange ciphers/key encapsulation mechanisms
and digital signature ciphers. The current Round 3 includes three finalists and
three alternate schemes for the digital signatures. At most one of the finalist
schemes is expected to be standardized in Round 3, which is planned to occur
in 2022. Our work focuses on the NIST finalist candidates for PQC signature
schemes/algorithms in: Dilithium, Falcon, and Rainbow.

3 PQC Signature Schemes

The current third-round PQC standardization is planned to undergo public and
researchers scrutiny/analyses until 2022 and includes three digital signatures
schemes for its finalists: Dilithium, Falcon, and Rainbow. These families of algo-
rithms can be categorized into two different schemes, listed in Table 2, based on
the hardness problems on which they rely. These include Lattice-based signature
schemes (for Dilithium and Falcon) in Sect. 3.1 and Multivariate-based signature
schemes (for Rainbow) in Sect. 3.2. We also include the description for GeMSS
(the only other Multivariate-based signature scheme which got selected as an
alternate scheme by NIST) in order to compare it with the security of Rainbow
in Sect. 4.

Table 2. Signature algorithms descriptions (the last column indicates the color code
used in our paper)

Algorithm Scheme NIST Status Security Level Reference Color

Dilithium Lattice-based Finalist 1 (AES128) 2 (SHA256) 3 (AES192) [23] Blue

Falcon Lattice-based Finalist 1 (AES128) 5 (AES256) [28] Red

Rainbow Multivariate Finalist 1 (AES128) 3 (AES192) 5 (AES256) [22] Green

GeMSS Multivariate Alternate 1 (AES128) 3 (AES192) 5 (AES256) [15] Magenta

Within each algorithm families (Dilithium, Falcon, and Rainbow), there are
multiple algorithms depending on the parameter choices for the security level
control. The parameters affect the public key length and the private key length
as well as the signature length for the PQC signature algorithms, and the security
strengths increase as the length increase (using greater number/options to yield
greater entropy), as we study in Sect. 4. The public key and the signature lengths
for the different algorithms are also listed in the horizontal axis in Fig. 2. For
example, Dilithium 2 has a public key length of 897 Bytes, Dilithium 3 with
1472 Bytes, and Dilithium 4 with 1760 Bytes. Thus, Dilithium 4 is designed to
have greater security strength than Dilithium 3, and Dilithium 3 greater than
Dilithium 2. This section describes the overview of the PQC schemes without
the scheme-specific details, such as the actual parameters/variables to control
for the different algorithms within the family; we refer the interested readers for
the scheme-specific design details to the design documents for Dilithium [23],
Falcon [28], and Rainbow [22].
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3.1 Lattice-Based Signature Schemes

Lattice-based signature schemes are based on a set of points in n-dimensional
space with periodic structure [42]. The security of lattice-based cryptography
comes from the use of NP-hard problems such as i) Short Vector Problems
(SVP) which involves finding the shortest non-zero vector, ii) Closed Vector
Problems (CVP) which involves finding the shortest vector, iii) Learning With
Errors (LWE) which is computationally intensive as it requires a linear function
over a finite ring of given samples, iv) Short Integer Solutions (SIS) which is
based on Ajtai’s theorem where if polynomial-time algorithm A solves the SIS
problem, then there exists an Algorithm B that can solve the Short Vector
Integer Problem (SVIP), v) Learning With Rounding (LWR) is the non-rounding
variant of LWE. LWR is more efficient than LWE as it removes LWE’s complex
randomization elements [40]. Dilithium and Falcon are the two finalist lattice-
based signatures schemes in the NIST third-round standardization process. Both
are categorized as finalist candidate algorithms, and one of the two is expected
to be a digital signature standard at the end of the PQC standardization process
in 2022–2024 [3].

Dilithium. Dilithium is one of the two lattice-based signature algorithms in
the third round. Dilithium relies on Fiat-Shamir and Aborts framework and
SVP’s for its security [23]. Dilithium introduces three algorithms in Dilithium
2, Dilithium 3, and Dilithium 4 correspond 1, 2, and 3 of NIST’s post-quantum
security categories respectively.

Falcon. Falcon is Fast Fourier lattice-based compact signatures over N-th
Degree Truncated Polynomial Ring (NTRU) [28], and one of the two lattice-
based signature algorithms of the third round. Falcon relies on the NTRU for
key generation, encryption and decryption data, Short Integer Problems (SIS),
Floating-Point arithmetic, and gaussian sampling floating-point arithmetic for
its security. Falcon 512 and Falcon 1024 algorithms correspond to 1 and 5 of
NIST’s post-quantum security strengths respectively.

3.2 Multivariate-Based Signature Schemes

Multivariate-based signature schemes are known as an unbalanced Oil-Vinegar
(UOV) system which is the process of hiding quadratic equations in n unknowns
or Oil and v = n unknowns called “vinegar” in a finite field k [36], and it is based
on solving quadratic equations over finite fields, making it an NP-hard problem.
The security of the signature scheme is based on the number of variables and
the field size, which leads to large key sizes. Rainbow is the only finalist from
multivariate-based signature schemes.

Rainbow. Rainbow, a Multivariate signature scheme, is the only finalist Mul-
tivariate candidate of the third round. Rainbow relies on binary field L over
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Unbalanced Oil and Vinegar (LUOV) and raises it to a bigger field K for its
security [24]. The Rainbow family includes the following algorithms: Rainbow Ia,
Rainbow IIIc, and Rainbow Vc where I, III, and V correspond to 1, 3, and 5
of NIST’s post-quantum security strength, respectively. Rainbow has variants of
cyclic and compressed algorithms.

GeMSS. A Great Multivariate Short Signature (GeMSS ) is one of the alternate
candidates in the third round. GeMSS relies on Hidden Field Equations cryp-
tosystem (HFE) to achieve its level of security and efficiency. GeMSS algorithm
variants are GeMSS 128, GeMSS 192, GeMSS 256 where 128, 192 and 256 cor-
respond to 1, 3, and 5 of NIST’s post-quantum security strengths respectively.
GeMSS has variants of BlueGeMSS and RedGeMSS.

4 Security Analysis Using Visualization Model

In this section, we analyze the size-security trade-offs of NIST finalist algo-
rithms. We build our analyses on the visualization model developed to com-
pare cipher designs [12] and the individual analyses of the NIST finalist cipher
designs, including the individual cipher developer’s security analyses and the
threats/attack discoveries and research targeting the individual cipher schemes.

Lattice-based algorithms analyze the cipher security strength against quan-
tum attackers (the attacker’s cost in breaking the ciphers) in qubit cost, and
multivariate-based algorithms analyze the security strength in quantum gates
cost. For multivariate-based algorithms, we include the comparison with GeMSS
for Rainbow ; GeMSS is the only other multivariate-based family selected by
NIST to advance in the third round but it is selected as an Alternate as opposed
to Finalist. The metrics of qubit and quantum gate to measure the security
strength are relatively new and depend on the quantum computer physics and
hardware architecture, which are in active research and development.

In this section, we separately analyze the size-security trade-offs of the lattice-
based schemes using the attacker’s security cost in qubits and the size-security
trade-offs of the multivariate schemes using the attacker’s cost in quantum gates.
However, in Sect. 5, unlike the previous research approach analyzing the PQC
ciphers individually, we compare them together by using the quantum circuit’s
depth-width cost (DW cost) which incorporates both qubit and quantum gate.

4.1 Metrics: Qubits and Quantum Gates

In classical computing, the state of a particular bit is always known. In the
quantum case, before the measurement is done, the state of a qubit is unknown.
Although qubit resembles a classical bit after the measurement, it takes two
possible values and additionally can exploit the interference effects; before the
measurement, a qubit can be in a superposition of these two states described
by the wave function. The classical brute force attacker searches blindly and
cannot distinguish if some particular value is closer or further from the key
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being searched and while checking if the key is found may get only the binary
result of “true” or “false”. In the quantum case, a brute force attacker always has
an overlap of the wave function of the current state of qubits and the key, and
this overlap is bigger if some particular state of qubits is closer to the key being
searched. Even if the cipher’s structure is unknown for the attacker, interference
helps to move in the direction towards the key enabling a faster search.

Qubit Cost. A qubit cost indicates the number of qubits the attacker needs
to break the cipher assuming a sufficient number of gates. For Dilithium, qubit
cost represents the cost of solving SVP which is exponential to Block-Korkine-
Zolotarev (BKZ) algorithm’s block-size (b) [23] For Falcon, core SVP hardness
indicates the cost for one call to SVP oracle in dimension b [8,28].

Quantum Gate Cost. Quantum gate cost indicates the minimum number of
logical quantum gates required to perform a successful attack assuming a suffi-
cient number of qubits. For Rainbow, quantum gate cost indicates the minimum
number of logical gates required to perform key recovery attacks including Min-
Rank, HighRank, UOV, and RBS attacks [22]. Against Rainbow, the number
of quantum gates (#Gates) can be measured as follows where q is the Galois
Field’s Order: #Gates = #Field Multiplications ·(2 · log2(q)2 + log2(q)).

4.2 Lattice-Based Signature Schemes Security and Length
Trade-Off

Figure 2 shows the classical and quantum security cost trade-offs with respect to
the public key length and the signature length of lattice-based signature algo-
rithms. Public key length and signature length are important parameters con-
trolling the trade-off between security strength and communication overhead
in digital communications. For example, when Alice sends a signed message to
Bob, Bob uses Alice’s public key and signature to verify the message. Public key
and signature are the overheads in the communication. Many real-world appli-
cations use the same private/public key-pair to sign/verify multiple messages
than using One Time Pad/Ephemeral Keys resulting in the transfer of signa-
tures more often than public-keys. Low signature size and public key lengths
help in reducing communication costs. In Fig. 2, an ideal algorithm will have a
small communication cost (left in the plot) and provide strong security (top).

Dilithium and Falcon, the two lattice-based NIST finalists schemes, display
the security vs. overhead/length trade-off, and the security costs measured in
(classical) bits or qubits increase as the public key length or the signature length
increase. Figure 2a analyzes the classical security cost to the public key length
trade-offs. For additional 33 Bytes of public key length from Dilithium at 1760
Bytes, Falcon offers 89 bits more security cost. Figure 2b analyzes the classical
security cost to the signature length trade-offs. For less than half the signature
size of the Dilithium at 2044 Bytes, the classical security cost of the Falcon at
690 Bytes is 14 bits more. Falcon signature size at its highest security cost is 714
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Fig. 2. Security costs for lattice-based signature candidates. The dotted line shows
the classical bit security level (the left two figures), whereas the solid line shows the
quantum bit security level (the right two figures). The vertical scales are consistent
across the figures.

Bytes less to Dilithium at its lowest security. Figure 2c analyzes the quantum
security cost to the public key length trade-offs. For an additional 33 Bytes of
public key length from Dilithium at 1760 Bytes, Falcon offers 72 qubits more
quantum security cost. Figure 2d analyzes the quantum security cost to the sig-
nature length. For less than half the signature size of the Dilithium at 2044 Bytes,
the quantum security cost of the Falcon at 690 Bytes is 12 qubits more. Falcon
is close to ideal reference position of top-left corner compared to Dilithium.

For applications targeting security levels 2 and 3, Falcon doesn’t have param-
eter sets and yet it is advantageous to use Falcon 1024 security level 5 parameter
set as it provides better security for less overhead compared to Dilithium param-
eter sets.

4.3 Multivariate-Based Signatures Security and Length Trade-Off

Figure 3 shows the classical and quantum security trade-offs with respect to
the public key length and the signature length of multivariate-based signature
algorithms. Rainbow and GeMSS security costs are measured in both classical
gates and quantum gates, and the security costs increase as the public key length
and signature length increases. Multivariate-based signature algorithms generate
larger public keys and small signatures compared to the lattice-based schemes
in Sect. 4.2.

Figure 3a analyzes the classical gate cost to the public key length trade-offs.
Horizontal axis of the plot has Bytes of order 106 for huge public key lengths. For
less than half the public key length of GeMSS at 0.3522×106 Bytes, Rainbow at
0.1490×106 Bytes requires 217 more classical gates. Figure 3b analyzes the clas-
sical gate cost to the signature length trade-offs. Rainbow generates signature
length of two to three times than that of GeMSS signature size for respec-
tive security categories. Figure 3c analyzes the quantum gate cost to the public
key length trade-offs. For less than half the public key length of GeMSS at
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Fig. 3. Security costs for multivariate-based signature candidates. The dotted line
shows the classical gate security level (the left two figures), whereas the solid line
shows the quantum gate security level (the right two figures). The vertical scales are
in log2(#Gates) and are consistent across the figures.

0.3522 × 106 Bytes, Rainbow at 0.1490 × 106 Bytes requires 212 more quantum
gates. Figure 3d analyzes the quantum gate cost to the signature length trade-
offs. Overall, Rainbow has smaller key lengths and greater security costs com-
pared to GeMSS. Our analysis shows that with the current cryptanalysis research
and knowledge, Rainbow provides a greater length- or bit-efficient scheme over
GeMSS.

5 Security Analysis Between Dilithium, Falcon,
and Rainbow

In this section, we present a security analysis of PQC algorithms with respect
to qubit, quantum gate, and DW cost metrics working in the framework of the
universal quantum gate model and quantum annealing against a cryptanalyst
using Grover’s algorithm (discussed in Sect. 2). Even though the computational
hardness problems differ between the lattice-based (Dilithium and Falcon) vs.
multivariate-based (Rainbow), Grover’s algorithm-based attacker enables us to
compare the security costs for its generality which expedites the search/brute-
force process.

5.1 Universal Quantum Gate and Quantum Annealing

We provide a brief overview in this section about the universal quantum gate
model, Clifford+T gates, and quantum annealing to provide the background of
our inter-scheme security comparison analysis. While the universal quantum gate
model is applicable to all schemes, including the three NIST finalist schemes we
compare, quantum annealing is only applicable to the lattice-based schemes of
Dilithium and Falcon.

The universal quantum gate model consists of gates connected by wires [21].
Quantum gates are the basic building blocks that perform operations on a small
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number of qubits. Clifford+T gates are used as the universal underlying fault-
tolerant logical quantum gate set [30]. Wires represent the motion of a carrier
which encodes information both logically and physically. External inputs and
outputs are provided by sources and sinks respectively. The structure of the
ciphers implies the methods which can be used to break them. The security of
Dilithium and Falcon is based on the hardness of finding the shortest vectors
on the lattice, while the security of Rainbow is based on the hardness of solving
multivariate polynomials over a finite field. Finding shortest vectors can be refor-
mulated as a problem of finding a minimum, which can potentially be solved by
quantum annealing [26,32] which is designed to find a minimum of the cost func-
tion while being less demanding in terms of quantum error correction. Of course,
finding a minimum is also possible by the universal quantum gate model [25].
However, in addition to qubits, its implementation would be complicated by the
need for a large number of gates.

Quantum annealing works in the following way: the system is initialized in
the ground state of the Hamiltonian Hinit which we assume to be simple to
implement. The minimum which we are looking for corresponds to the ground
state of another Hamiltonian, Hkey. Over the time τ , we change the Hamiltonian
such that Hinit → Hkey. Adiabatic theorem [10,18,38,43] guarantees that if the
time τ is sufficiently large and the change is sufficiently slow (adiabatical), then
the system will end up in the ground state of the Hamiltonian Hkey which
corresponds to the key being searched. As we show in Sect. 5.4, the combination
of quantum annealing and universal gate model provides significant advantages
for the attacker.

Fig. 4. Security cost comparison across signature candidates
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5.2 Metric for All Ciphers: DW Cost to Combine Qubits
and Quantum Gates

The security analyses of the PQC schemes in Sect. 4 and in the prior research
literature are separate in the security strength metrics used, which makes them
difficult to compare. The security costs (the attacker effort/requirement to break
the ciphers) of Dilithium and Falcon are given in qubits, while the security of
Rainbow is measured in terms of quantum gates, as discussed in Sect. 4. In this
section, we introduce and apply the depth-width cost (DW cost) to our post-
quantum cipher analyses to enable the inter-scheme comparison, in contrast
to the previous research. The number of RAM operations needed to execute a
quantum circuit is proportional to the DW cost metric which incorporates both
the cryptanalyst cost factors in qubits and quantum gates and assumes an active
error correction [34]2.

Definition 1. A logical Clifford+T quantum circuit having D gates in-depth,
W qubits in width, and consisting of an arbitrary number of gates is assigned a
DW cost of θ (DW ) RAM operations.

From Definition 1, DW cost incorporates both qubits and quantum gates and
thus enables the comparison between the NIST digital signature finalists.

5.3 Security Analysis in Universal Quantum Gate Model

We provide estimates assuming an adversary executing Grover’s search algo-
rithm [31] for the key search in a universal quantum circuit model, introduced in
Sect. 4.1. If there are N key options among which one is used by the authorized
sender and receiver, the adversary needs on average π

√
N

4 gates and log2(N)
cubits. Therefore, G quantum gates corresponds to W= 2 × log2(

4
π G) qubits.

Figure 4a compares the cryptanalyst costs of the PQC algorithms in qubits while
Fig. 4b does so in quantum gates. From the security analyses, Rainbow is much
more expensive for a cryptanalyst to attack than Dilithium and Falcon in both
gates and in qubits. For example, in terms of both qubits and quantum gates,
Rainbow Vc Classic is 93% more expensive than Dilithium 4 and 63% more
expensive than Falcon 1024. The DW cost in the universal gate model alone
is provided in Fig. 5a. Due to the practical relevance of quantum annealing, we
consider its impact in Sect. 5.4.

2 In addition to DW metrics, Jaques and Schanck [34] introduce G cost metrics for
self-correcting quantum memory. However, self-correcting quantum memory is not
available even theoretically. The two dimensional toric code [37], is not thermally
stable [6]. Even though in a non-physical case of four spatial dimensions, it is ther-
mally stable [7], it remains an open question if it is possible to implement it in three
dimensions in which we live. Therefore, for our purposes, we use conservative DW
cost metrics.
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Fig. 5. Security cost comparison across signature candidates in DW cost without
annealing and DW cost with annealing.

5.4 Security Analysis with Quantum Annealing

Quantum annealing is much more restricted than the universal quantum gate
model; for example, it cannot execute Shor’s algorithm. However, since it relies
on adiabatic Hamiltonian evolution rather than on the gates, it’s much cheaper
in terms of the DW metrics. Figure 5b shows our analysis results. If quantum
annealing is used to break Dilithium and Falcon by finding the minimum of the
length of the vector on a lattice (quantum annealing is not applicable to Rain-
bow), it can significantly expedite the cryptanalysis effort for those lattice-based
ciphers, and the gap in the security cost between Rainbow and the others grow
even further. Even without quantum annealing, as seen in Sect. 5.3, Rainbow Vc
Classics costs more for the adversary to break than Dilithium and Falcon. In
DW cost, Rainbow Vc Classic is 188% more expensive than Dilithium 4 and
187% more expensive than Falcon 1024. Our analyses based on a cryptanalyst
using Grover’s algorithm shows that Rainbow has the greatest security cost (the
most computational effort for the adversary) with or without quantum annealing
(applicable to the lattice-based schemes of Dilithium and Falcon).

6 Performance Analysis of Cipher Algorithms

In this section, we analyze the execution times of each finalist algorithm for
key-pair generation, signature generation (signing), and signature verification
(verifying). We use the liboqs library to analyze the performance of the algo-
rithms. Using our benchmark software, each of the algorithms is sampled to
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calculate the average time duration for key-pair generation, signing a message,
and verifying the messages. We also vary the message lengths with random data
to measure the algorithm performances with respect to the message scalability.
Each data point is averaged over 1000 runs, and the results are plotted.

Fig. 6. Performance analysis of the fastest (colored bar) and slowest (outlined bar)
signature candidates from each family across the three signature phases, with a message
length of 100 Bytes.

Algorithm Performances. Figure 6 shows the computing costs for every algo-
rithm of each family. While we experiment with all algorithms, our presenta-
tion/plot focuses on the slowest from each algorithm family (outlined bar) and
the fastest from each algorithm family to show the performance span across
Dilithium(D), Falcon(F), and Rainbow(R).

We analyze the performances within each PQC family of algorithms in order
to compare the performances between the algorithms once the scheme/family
is selected, for example, an application chooses a PQC family or NIST selects
the standard PQC signature. We introduce the intra-family performance ratio,
Ri where i specifies the algorithm family, i.e., i ∈ {D,F,R}. For example, RD

is the ratio between the execution time for the slowest Dilithium algorithm and
the time for the quickest Dilithium algorithm. By definition, Ri > 1,∀i. By
dividing the slowest algorithm’s duration with the fastest for each family of
algorithms, the key generation data (Fig. 6a) shows that RD = 1.3, RF = 2.85,
and RR = 36.16. For the message signing phase (Fig. 6b), RD = 1.4, RF = 2.15,
and RR = 17.17. For message verification (Fig. 6c), RD = 2, RF = 2, and
RR = 17.85. This makes it clear that Dilithium, when compared to Falcon and
Rainbow, shows optimal behavior with regards to the time taken to run the
algorithms from each family.

While the intra-family comparison analysis helps in understanding how each
algorithm in a family performs independently, an inter-family comparison analy-
sis gives additional insights when compared with algorithms from other families.
For key generation, our data shows that Dilithium is between 102.15 and 32004.2
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Fig. 7. Performance analysis for the fastest and slowest candidates from each family.
The horizontal axis is in logarithmic scale. The dots show the discrete experimental
data, and the solid lines are our LoBF estimates.

times faster than the other finalist algorithms. For message signing, Dilithium
is between 8 and 192.3 times faster than the other family of finalist algorithms.
For message verification, Dilithium is up to 755.67 times faster than the other
algorithms, but only 0.01 milliseconds faster than Falcon. From our intra-family
and inter-family comparisons, we conclude that Dilithium is the fastest algo-
rithm across all algorithms. We extend the analysis to algorithm scalability by
using variable message lengths, to compare how the performance changes when
the input size increases.

Message Scalability Performances. We measure the signing and verifying
performance of the PQC algorithms when the message length varies from 1 Byte
to 100 MB in order to analyze the message scalability. Figure 7 shows the fastest
and slowest algorithms in each family so that the algorithms within a cipher fam-
ily have performances between the two algorithms. Using our results in Fig. 7, we
estimate the line of best fit (LoBF) based on minimizing the mean squared error
to enable the analyses with greater precision. Table 3 includes the LoBF estima-
tions. Our results from Fig. 7a show that Dilithium 2 is the optimal algorithm
for signing, until the message length reaches the intersection with Rainbow Ia
Cyclic, at 387578 Bytes. Therefore if the message length exceeds 387578 Bytes,
Rainbow Ia Cyclic becomes the fastest signing algorithm instead of Dilithium
2. For verifying (Fig. 7b), Dilithium 2 is the fastest algorithm until a message
length reaches 461478 Bytes, and for messages of greater length, Rainbow Ia
Classic has the best verifying time.

Application Dependency. The choice of the PQC cipher algorithm depends
on its application since the cipher application determines the usage frequencies of



440 M. Raavi et al.

Table 3. The Line of Best Fit (LoBF) estimations for the signing time and verifying
time in milliseconds, where x is the message length in Bytes

Algorithm LoBF (signing time) LoBF (verifying time)

Dilithium 2 1.845 × 10−15x2 + 3.215 × 10−6x + 0.09799 1.865 × 10−15x2 + 3.213 × 10−6x + 0.02525

Dilithium 3 1.767 × 10−15x2 + 3.225 × 10−6x + 0.1398 1.815 × 10−15x2 + 3.221 × 10−6x + 0.04121

Dilithium 4 1.865 × 10−15x2 + 3.216 × 10−6x + 0.1384 1.902 × 10−15x2 + 3.211 × 10−6x + 0.05348

Falcon 512 1.783 × 10−15x2 + 3.233 × 10−6x + 3.923 1.848 × 10−15x2 + 3.225 × 10−6x + 0.03987

Falcon 1024 1.859 × 10−15x2 + 3.216 × 10−6x + 8.4 1.867 × 10−15x2 + 3.215 × 10−6x + 0.08054

Rainbow Ia Cyclic 1.802 × 10−15x2 + 5.265 × 10−7x + 1.14 1.915 × 10−15x2 + 5.135 × 10−7x + 1.271

Rainbow Ia Classic 1.792 × 10−15x2 + 5.311 × 10−7x + 1.146 1.939 × 10−15x2 + 5.143 × 10−7x + 1.129

Rainbow Vc Cyclic 1.463 × 10−15x2 + 1.181 × 10−6x + 19.23 1.915 × 10−15x2 + 1.135 × 10−6x + 22.67

the signing vs. verifying and the message payload size. The frequency discrepancy
of signing to verifying a message varies significantly according to the cipher
applications For example, in cryptocurrency applications, once a transaction is
created, it gets signed a single time. In contrast, as the transaction propagates
across the network, every node verifies that the message is genuine [29], thus the
signing-to-verifying ratio is close to zero in this case. We aim to prioritize the
algorithm with fast message verification. In addition, the message payload size
provided by the application requirement affects the performance prioritization
and the cipher selection. Our results show that Dilithium 2 is the most execution-
time-efficient if the application message length is short and Rainbow Ia Classic
for verifying if the message length is large.

7 Performance Analysis with Integration with TCP/IP
and TLS

In this section, we analyze the communication/handshake overhead of the PQC
algorithms at packet level when integrated with TLS 1.3 and TCP/IPv4. The
handshake connection involves multiple transmissions between the client and
the server, where the client initiates the connection by sending a client hello
packet to the server and the server responds with server hello carrying the
certificate signed by the Certificate Authority (CA), which contains the public
key (post-quantum) of the server and the signature (post-quantum). The client
then verifies the signature and sends a finished message to the server indicating
the end of the handshake. After a successful handshake, application data is
securely transferred. Our analysis focuses on packet-level overhead as opposed
to the broader networking overhead between the two hosts. We use local virtual
machines loaded with OQS-OpenSSL 1 1 1 [47] acting as a client and server to
establish a TLS 1.3 connection using post-quantum digital signature algorithms.
We use tcpdump [33] to capture the TLS & TCP/IP handshake packets and
Wireshark [2] to collect the packet data. More details about the experimental
setup are provided below. We establish the TLS 1.3 connection 1000 times for
the experimental samples and run and compare the performances with the RSA
(not quantum-resistant) to provide a reference.



Security Comparisons and Performance Analyses 441

Table 4 shows the algorithms, time, CPU usage, Certificate Size (CS), total
TCP Segment Size (TSS), number of Server Hello Packets (SHP), Server Hello
Size (SHS), and number of Handshake Packets (HP). Time refers to the average
handshake time elapsed for a connection, CPU usage represents the highest
percentage logged while connection establishment, CS provides the size of the
certificate generated using the algorithms listed. We observed that Server Hello
with large certificates uses TCP segmentation. SHP represents the number of
packets used to transfer the Server Hello message. TSS provides the total data
transferred by TCP segments. SHS represents the total Server Hello size in bytes
that contains the certificate and TLS extensions. HP represents the total number
of packets used to establish the connection (counted to client finished message).

The implementation of Rainbow into TLS 1.3 fails due to excessively large
certificate sizes, logged using tcpdump, that are responsible for overflowing the
TCP window and thus causing errors. By default, the X.509 certificate size in
TLS 1.3 has a limit of 224 − 1 Bytes [46]. Rainbow ’s certificate size exceeds the
X.509 limit and therefore causes the TLS 1.3 connection to fail.

Table 4. TLS performance with different digital signature algorithms. The CPU sam-
ples have a confidence interval to 95%. The Rainbow algorithms were unable to com-
plete the TLS connection due size limitations, and are therefore marked with asterisks
(*).

Algorithm Time(ms) CPU ± CI CS(B) TSS(B) SHP SHS(B) HP CS/SHS SHP/HP

Dilithium 2 3.12 23.90% ± 2.25% 4700 5875 2 5743 10 0.818 0.2

Dilithium 3 3.13 27.33% ± 2.17% 5900 7477 2 7345 10 0.803 0.2

Dilithium 4 3.21 31.29% ± 0.51% 7200 9161 3 8963 12 0.803 0.25

Falcon 512 6.91 29.84% ± 0.47% 2400 2726 1 2660 8 0.902 0.125

Falcon 1024 11.49 31.43% ± 0.61% 4400 4923 2 4791 10 0.918 0.2

Rainbow Ia Cyclic* 7.53 26.04% ± 1.39% 204700

Rainbow Ia Classic* 6.51 31.78% ± 0.82% 204700

Rainbow Vc Cyclic* 75.52 32.45% ± 0.73% 2300000

RSA 2048 3.46 17.16% ± 0.58% 1000 1319 1 1253 8 0.798 0.115

Packet-Level Handshake Analysis: Time Overhead. This section analyzes
the handshake overheads in the unit of average connection time, and processing
(CPU utilization). Our results in Table 4 show that Dilithium 2 outperforms
the other quantum-resistant algorithms in average handshake time. The average
handshake time for Falcon 512 is 2.21 times more than Dilithium 2. Dilithium 2
is the most efficient in CPU usage, it is 30.92% more efficient than Dilithium 4,
and 24.85% more efficient than Falcon 512. Falcon 1024 ’s CPU usage is 5.33%
more than Falcon 512.

Packet-Level Handshake Analysis: Certificate Size and Server Hello.
This section analyzes the overhead caused by the CS and SHS on the connection
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handshake. Falcon 512 ’s CS (2400 B) is 0.51 times smaller than Dilithium 2
(4700 B). Falcon 512 is the only post-quantum algorithm that transfers its Server
Hello message in a single packet and is suitable for devices capable of handling
only small certificate sizes due to small buffer sizes. We compute the fraction that
the CS takes up inside the Server Hello with CS

SHS. This provides the additional
extension overhead that each algorithm enforces on the TLS connection. Falcon
1024 has CS

SHS percentage of 92%, causing only 8% overhead. Except for Falcon
512, all other post-quantum algorithms use TCP segmentation for their Server
Hello message, indicating the additional overhead within the handshake. Fraction
SHP
HP implicates the effect of post-quantum certificate carrying Server Hello on

the handshake. A handshake using Falcon 512 is composed of 12.5% Server Hello,
while the other post-quantum algorithms have a percentage of 20% or more.

PQC Algorithm Choices with TLS Integration. From our analysis,
Dilithium 2 has the fastest connection time among the PQC cipher algorithms,
and even outperforms RSA in some ways. Falcon 512 is a better alternative
to the Dilithium family for its low CS and similar packet overheads to RSA.
Multivariate-based algorithms are not suitable for TLS implementations since
the large CS’s are bigger than the CS limit for TLS 1.3.

8 Takeaways and Discussions

We analyze the PQC ciphers in security and performances in this paper and sum-
marize our choices and recommendations based on the analyses in this section.
In security costs, Falcon 512/1024 incurs the most computational effort against
a quantum-equipped cryptanalyst among the lattice-based algorithms in qubits
(Sect. 4.2). The multivariate-based schemes are also compared but in quantum
gates. Comparing the finalist scheme of Rainbow with the alternate scheme of
GeMSS according to the security categories defined by NIST, Rainbow Ia incurs
212 greater security costs in quantum gates than GeMSS 128; Rainbow IIIc
incurs 267 greater quantum gates than GeMSS 192; and Rainbow Vc 270 greater
security costs than GeMSS 256 (Section 4.3). In our inter-scheme comparisons,
Rainbow Vc has 188% and 187% greater security costs in DW cost against an
adversary compared to Dilithium 4 and Falcon 1024, respectively, when quantum
annealing is enabled in the universal quantum gate model (Sect. 5). Our perfor-
mance analyses focusing on the algorithms only (Sect. 6) yield that Dilithium
2 is the quickest for signing for messages shorter than 390 kB and Rainbow
Ia Cyclic is the quickest for signing messages longer than 390 kB; Dilithium
2 is the quickest for verifying messages shorter than 460 kB and Rainbow Ia
Classic for verifying messages longer than 460 kB. When the PQC algorithm
is integrated with TLS and TCP/IP (Sect. 7), Dilithium 2 is the best both in
connection handshake time and in CPU processing, while Falcon 512 has the
shortest certificate size affecting the payload and memory size.
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The choice of the PQC digital signature algorithm depends on both the
PQC application requirements and the R&D in quantum computing and crypt-
analysis. Our PQC recommendations are based on standard practices in net-
working security. For example, the key exchange occurs more sporadically than
the message communication frequency3, and therefore we prioritize the recom-
mendations based on the signature length as opposed to the public key length
in Sect. 4.2. Other choices depend on the application domains and properties,
including the application-layer message size affecting the efficiency performance
comparison in the PQC ciphers in Sect. 6 and the signing frequency vs. verifying
frequency providing different prioritization between the efficiency performances
of signing vs. verifying in Sect. 6. For example, the cryptocurrency blockchain
utilizing digital signatures for the transaction integrity would prioritize the ver-
ifying efficiency (since, for every signing to generate a transaction, numerous
miners would verify the signature/transaction) and has a message input size less
than 460 kB (e.g., Bitcoin has the transaction sizes in the order of hundreds to
thousands of Bytes), so the performance-focused PQC cipher choice would be
Dilithium 2. For networking-constrained applications, the algorithm can also be
chosen in order to minimize the number of transmitted packets, which depends
on the algorithm’s certificate size and the networking protocol’s packet specifi-
cation including the field length. For example, if the PQC cipher is used for TLS
and TCP/IP, then Falcon 512 would be the choice as studied in Sect. 7

Our security analyses depend on the state-of-the-art R&D in quantum com-
puting, including quantum physics (quantum annealing), quantum computing
model (universal quantum gate model), and quantum cryptanalysis (the crypt-
analysis on lattice-based and multivariate-based schemes as well as Grover’s’
algorithm). These fields are dynamically evolving in research. In fact, the NIST’s
finalist selection in advance of standardization is designed to facilitate cryptanal-
ysis on Dilithium, Falcon, and Rainbow. While this paper focuses on the current
state of the art, the R&D advancement will affect our future analyses and the
PQC algorithm recommendations.

9 Related Work in PQC Analyses

Section 3 describes the background to our research including the post-quantum
digital signature algorithms, and Sect. 2 explains the history of the post-quantum
cryptography and NIST’s involvement. In this section, we discuss more related
work to our research, including the post-quantum algorithm performance studies,
cryptanalysis, and security studies.

Post-quantum Signature Algorithms. Over the past few years, the inter-
ests in post-quantum cryptography have significantly increased, and various
standardization authorities initiated projects to develop new quantum-resistant

3 If they are comparable, using one-time pad can be an option for information-theoretic
security resistant against (quantum-)computationally capable adversaries.
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cryptography [1,17]. Numerous submissions and candidate designs underwent
extensive analyses. Previous research to that end analyzed the security of the
PQC digital signature algorithms by themselves, e.g., Dilithium [23], Falcon [28],
and Rainbow [22]. We discuss this in greater detail as we introduce the post-
quantum algorithms in Sect. 3. Our work provides inter-scheme comparison anal-
yses by incorporating the DW cost (combining qubits and quantum gates) and
by introducing a cryptanalyst attacker using Grover’s algorithm. Our security
analyses also incorporates the state of the art in quantum computing and, more
specifically, universal quantum gate and quantum annealing.

Performance Analysis in TLS and TCP/IP. The authors in [46] provided a
performance study on the post-quantum digital signature algorithm candidates
of NIST’s PQC standardization project. The few selected parameters of seven
out of the nine algorithms in the second-round were integrated with TLS 1.3 and
analyzed for networking latency for respective algorithms. The Authors proposed
a scheme to use different post-quantum algorithms at Certificate Authority (CA)
and Intermediate Certificate Authority (ICA) to improve the overall handshake
speed and throughput. Our work is comparable to theirs in that it includes
the performance analyses when the PQC algorithms are integrated with TLS.
However, our work provides the performance analyses with finer granularity at
the packet level, enabling richer analyses (e.g., analyzing the required number of
packet transmissions to capture the relationship between the certificate size and
the protocol’s segmentation). Furthermore, we limit our analyses on the NIST
finalist schemes for sharper focus and include the security analyses.

Basu et al. conducted a hardware evaluation study on the signature candi-
dates, including Dilithium, in [11]. Out of the three signature algorithms they
analyzed, only Dilithium advanced to the third-round of NIST’s PQC standard-
ization project. Based on implementations on Field Programmable Gate Arrays
(FPGA) and Application-Specific Integrated Circuit (ASIC), their analysis rec-
ommends the use of Dilithium in server implementations with low latency.

Cryptanalysis and Security Analyses. Lattice-based cryptanalysis is pro-
vided in [20] and [41]. Authors in [20] provided a software toolkit named Sage 9.0,
to perform side-channel attacks on lattice-based cryptography. They also pro-
posed a cryptanalysis framework that can take advantage of side information or
hints to perform lattice reduction attacks. Their analysis shows a significant cost
reduction in performing cryptanalysis that utilizes the hints. In [41], the authors
performed cryptanalysis based on skip-addition fault attacks. They made use of
the determinism in the signature algorithm and inject a single fault targeting
the signing operation. A portion of the secret key was extracted and used by the
proposed forgery algorithm to generate signatures. Their analyses included the
skip-addition attacks on Dilithium and zero-cost mitigation solutions.
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10 Conclusion

This paper presents security comparisons and performance analyses of NIST
finalist post-quantum digital signature candidate ciphers. In our security com-
parison, we use a visualization model to analyze the trade-off between the
key/signature size vs. security. We also analyze and compare the security
strengths across different schemes (based on lattice-based vs. multivariate-based
cipher designs) by building our analyses on the state of the art research (includ-
ing DW cost, Grover’s algorithm, universal quantum gate model, and quantum
annealing). Moreover, we analyze the performances of the NIST finalist PQC
digital signature schemes for key generation, signing, and verifying signatures.
To measure the PQC implementation costs and the overheads in the communi-
cation, time, and processing, we also integrate the PQC algorithms with TLS
and TCP/IP. Our paper includes discussions and recommendations and intends
to facilitate further research in the PQC ciphers/cryptanalysis and aid the stan-
dardization in order to better secure the digital systems in the emerging era of
quantum computing.
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Abstract. We give new, fully-quantitative and concrete bounds that
justify the SIGMA and TLS 1.3 key exchange protocols not just in prin-
ciple, but in practice. By this we mean that, for standardized elliptic
curve group sizes, the overall protocol actually achieves the intended
security level.

Prior work gave reductions of both protocols’ security to the under-
lying building blocks that were loose (in the number of users and/or
sessions), so loose that they gave no guarantees for practical parame-
ters. Adapting techniques by Cohn-Gordon et al. (Crypto 2019), we give
reductions for SIGMA and TLS 1.3 to the strong Diffie–Hellman problem
which are tight, and prove that this problem is as hard as solving discrete
logarithms in the generic group model. Leveraging our tighter bounds,
we meet the protocols’ targeted security levels when instantiated with
standardized curves and improve over prior bounds by up to over 90 bits
of security across a range of real-world parameters.

Keywords: Key exchange · SIGMA · TLS 1.3 · Security bounds ·
Tightness

1 Introduction

The Transport Layer Security (TLS) protocol [41] is responsible for securing bil-
lions of Internet connections every day. Usage statistics for Google Chrome and
Mozilla Firefox report that 76–98% of all web page accesses are encrypted.1 At
the heart of TLS is an authenticated key exchange (AKE) protocol, the so-called
handshake protocol, responsible for providing the parties (client and server) with
a shared, symmetric key that is fresh, private and authenticated. The ensuing
record layer secures data using this key. The AKE protocol of TLS is based
on the SIGMA (“SIGn-and-MAc”) design of Krawczyk [32] for the Internet Key
Exchange (IKE) protocol [28] of IPsec [31], which generically augments an unau-
thenticated, ephemeral Diffie–Hellman (DH) key exchange with authenticating
signatures and MACs.
1 https://transparencyreport.google.com/, https://telemetry.mozilla.org/.
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Naturally, the SIGMA AKE protocol and its incarnation in TLS have been
the recipients of proofs of security. We contend that these largely justify the
AKE protocols in principle, but not in practice, meaning not for the parameters
in actual use and at the desired or expected level of security. Our work takes
steps towards filling this gap.

Qualitative and Quantitative Bounds. Let us expand on this. The proto-
cols KE we consider are built from a cyclic group G in which some DH problem P
is assumed to be hard, a pseudorandom function PRF and unforgeable signature
and MAC schemes S and M. The target for KE is session-key security with
explicit authentication as originating from [10,12,16]. A proof of security has
both a qualitative and quantitative dimension. Qualitatively, a proof of security
for the AKE protocol KE says that KE meets its target definition assuming the
building blocks meet theirs, where, in either case, meeting the definition means
any poly-time adversary has negligible advantage in violating it.

The quantitative dimension associates to each adversary in the security game
of KE a set of resources r, representing its runtime and attack surface (e.g., the
number of users and executed protocol sessions the adversary has access to). It
then relates the maximum advantage of any r-resource adversary in breaking
KE’s security to likewise advantage functions for the building blocks through an
equation of the (simplified) form

AdvKE(r) ≤ fG · AdvP
G
(rG) + fS · AdvEUF-CMA

S (rS) + . . . ,

deriving quantitative factors fX and resources rX for the advantage of each build-
ing block X.

Speaking asymptotically again, when fX and rX are polynomial functions in r,
then AdvKE(r) is negligible whenever all building blocks’ advantages are. Due to
the complexity of key exchange models and the challenging task of combining
the right components in a secure manner, key exchange analyses (including prior
work on SIGMA [17] and TLS 1.3 [22,24,26,35]) indeed often remain abstract
and consider only qualitative, asymptotic security bounds.

Standardized protocols like TLS in contrast have to define concrete choices
for each cryptographic building block. This involves considering reasonable esti-
mates for adversarial resources (like runtime t and number of key-exchange
model queries q) and specific instances and parameters for the underlying com-
ponents X. One would hope that key exchange proofs can provide guidance in
making sound choices that result in the desired overall security level. Unfor-
tunately, AKE security bounds regularly are highly non-tight, meaning that
fX and/or rX for some components X are so large that reasonable stand-alone
parameters for X yield vacuous key exchange advantages for practical parame-
ters. While the asymptotic bound tells us that scaling up the parameters for X
(say, the DDH problem [14]) will at some point result in a secure overall advan-
tage, this causes efficiency concerns (e.g., doubling elliptic curve DH security
parameters means quadrupling the cost for group operations) and hence does
not happen in practice.
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Table 1. Exemplary concrete advantages of a key exchange adversary with given
resources t (running time), #U (number of users), #S (number of sessions), in break-
ing the security of the SIGMA and TLS 1.3 protocols when instantiated with curve
secp256r1, secp384r1, or x25519, based on the prior bounds by Canetti-Krawczyk [17]
resp. Dowling et al. [24], and the bounds we establish (Theorem 4 and 5). Target indi-
cates the maximal advantage t/2b tolerable when aiming for the respective curve’s
security level (b = 128 resp. 192 bits); entries in red-shaded cells miss that target. See
Sect. 7 for full details and curves secp521r1 and x448.

Adv. resources SIGMA TLS 1.3

t #U #S Curve Target CK [17] Us (Theorem 4) DFGS [24] Us (Theorem 5)

260 220 235 secp256r1 2−68 ≈ 2−61 ≈ 2−116 ≈ 2−64 ≈ 2−116

260 230 255 secp256r1 2−68 ≈ 2−21 ≈ 2−106 ≈ 2−24 ≈ 2−106

260 220 235 x25519 2−68 ≈ 2−57 ≈ 2−112 ≈ 2−60 ≈ 2−112

260 230 255 x25519 2−68 ≈ 2−17 ≈ 2−102 ≈ 2−20 ≈ 2−102

280 220 235 secp256r1 2−48 ≈ 2−21 ≈ 2−76 ≈ 2−24 ≈ 2−76

280 230 255 secp256r1 2−48 1 ≈ 2−66 1 ≈ 2−66

280 220 235 x25519 2−48 ≈ 2−17 ≈ 2−72 ≈ 2−20 ≈ 2−72

280 230 255 x25519 2−48 1 ≈ 2−62 1 ≈ 2−62

280 220 235 secp384r1 2−112 ≈ 2−149 ≈ 2−204 ≈ 2−152 ≈ 2−204

280 230 255 secp384r1 2−112 ≈ 2−109 ≈ 2−194 ≈ 2−112 ≈ 2−194

We illustrate in Table 1 the effects of the non-tight bounds for SIGMA
and TLS 1.3 when instantiating the protocols with NIST curves secp256r1,
secp384r1 [39], or curve x25519 [37] and idealizing the protocols’ other com-
ponents (see Sect. 7 for full details). Following the curves’ security, we aim at a
security level of 128 bits, resp. 192 bits, meaning the ratio of an adversary’s run-
time to its advantage should be bounded by 2−128, resp. 2−192. When considering
the advantage of key exchange adversaries running in time t, interacting in the
security game with #U users and #S sessions, we can see that previous security
bounds fail to meet the targeted security level for real-world–scale parameters
(#U ranging in 220–230 based on 227 active certificates on the Internet, #S rang-
ing in 235–255 based on 232 Internet users and 233 daily Google searches2). In the
security analysis by Canetti and Krawczyk [17] (CK) for SIGMA, the factor asso-
ciated to the decisional Diffie–Hellman problem is fDDH(t,#U,#S) = #U · #S,
where #U and #S again are the number of users, resp. sessions, accessible by
the adversary. The analysis by Dowling et al. [24] (DFGS) for TLS 1.3 reduces to
the strong Diffie–Hellman problem [1]—via the PRF-ODH assumption [15,29]—
with factor fstDH(t,#U,#S) = (#S)2. In contrast, we reduce to the strong
Diffie–Hellman problem with a constant factor for both SIGMA and TLS 1.3.

Let us discuss three data points from Table 1:

2 https://letsencrypt.org/stats/, https://www.internetlivestats.com/.
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1. Already with medium-sized resources, investing time t = 260 and interacting
with a million users (#U = 220) and a few billion sessions (#S = 235), the
CK [17] and DFGS [24] advantage bounds for SIGMA and TLS 1.3 with
curves secp256r1 and x25519 fall 6–11 bits below the target of 2−68 for
128-bit security.

2. When considering a more powerful, global-scale adversary (t = 280, #U =
230, #S = 255), both CK and DFGS bounds for secp256r1/x25519 become
fully vacuous; the upper bound on the probability of the adversary breaking
the protocol is 1. We stress that secp256r1 is the mandatory-to-implement
curve for TLS 1.3; secp256r1 and x25519 together make up for 90% of the
TLS 1.3 ECDHE handshakes reported through Firefox Telemetry.

3. Finally, and notably, even switching to the higher-security curve secp384r1
helps only marginally in the latter case: the resulting advantage against
SIGMA falls 3 bits short of the 192-bit security target of 2−112, and the
TLS advantage bound only barely meets that target.

For all curves and choices of parameters, our bounds do better.

Contributions. Most prior results in tightly secure key exchange (e.g., [4,27])
apply only to bespoke protocols, carefully designed to allow for tighter proof
techniques, at the cost of requiring more complex primitives which, in the end,
eat up the gained practical efficiency. Our work in contrast establishes tight secu-
rity for standardized AKE protocols. We give tight reductions for the security
of SIGMA and TLS 1.3 to the strong Diffie–Hellman problem [1], which in addi-
tion we prove is as hard as the discrete logarithm problem in the generic group
model (GGM) [38,42]. Instantiating our bounds shows that, with standardized
real-world parameters, we achieve the intended security levels even when con-
sidering powerful, globally-scaled attackers.

Tighter Security Proof of SIGMA(-I). We establish fully quantitative security
bounds for SIGMA and its identity-protecting variant SIGMA-I [32] in Sects. 3
and 4. Our result is for BR-like [12] key exchange security and gives a tight
reduction to the strong Diffie–Hellman problem [1] in the used DH group, and
to the multi-user (mu) security of the employed pseudorandom function (PRF),
signature scheme, and MAC scheme, adapting the techniques by Cohn-Gordon
et al. [19] in the random oracle model [11]. The latter mu-security bounds are
essentially equivalent to the corresponding bounds by CK [17]. Our improvement
comes from shaving off a factor of #U · #S (number of users times number of
sessions) on the DH problem advantage compared to CK. While we move to the
interactive strong Diffie–Hellman problem (compared to DDH [14] used in [17]),
we prove (in Appendix C) that the strong DH problem, like DDH, is as hard as
solving discrete logarithms in the generic group model [38,42].

Tighter Security Proof for the TLS 1.3 DH Handshake. We likewise establish
fully quantitative security bounds for the key exchange of the recently standard-
ized newest version of the Transport Layer Security protocol, TLS 1.3 [41], in
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Sects. 5 and 6. The main quantitative improvement in our reduction is again a
tight reduction to the strong DH problem, whereas prior bounds by DFGS [24]
incurred a quadratic loss to the PRF-ODH assumption [15,29], a loss which
translates directly to strong DH [15]. While TLS 1.3 roughly follows the SIGMA-I
design, its cascading key schedule impedes the precise technique of Cohn-Gordon
et al. [19] and a direct application of our results on SIGMA-I, as no single func-
tion (to be modeled as a random oracle) binds the Diffie–Hellman values to the
session context. We therefore have to carefully adapt the proof to accommo-
date the more complex key schedule and other core variations in TLS 1.3’s key
exchange, achieving conceptually similar tightness results as for SIGMA-I.

Evaluation. In Sect. 7, we evaluate the concrete security implications of our
improved bounds for SIGMA and TLS 1.3 for a wide range of real-world resource
parameters and all five elliptic curves standardized for use in TLS 1.3 [41], a sum-
mary of which is displayed in Table 1. We report that our tighter proofs indeed
materialize for a wide range of real-world resource parameters. The resulting
attacker advantages meet the targeted security levels of all five curves. In com-
parison to the prior CK [17] SIGMA and DFGS [24] TLS 1.3 bounds, our results
improve the obtained security across these real-world parameters by up to 85 bits
for SIGMA and 92 bits for TLS 1.3, respectively.

Concurrent Work. In concurrent and independent work, Diemert and Jager
(DJ) [21] studied the tight security of the main TLS 1.3 handshake. Their work
also tightly reduces the security of TLS 1.3 to the strong Diffie–Hellman problem
by extending the technique of Cohn-Gordon et al. [19], and their bounds and ours
are similarly tight. When instantiated with real-world parameters, both bounds
are dominated by the same terms, as we will demonstrate in Sect. 7. Our proof
differs from theirs in two key ways: We use an incomparable security model that
is weaker in some ways and stronger in others, and we approximate the TLS 1.3
key schedule with fewer random oracles. We also contextualize our results quite
differently than the DJ work, with a detailed numerical analysis that is enabled
by our fully parameterized, concrete bounds. Uniquely to this work, we treat the
more generic SIGMA-I protocol and justify our use of the strong DH problem
with new bounds in the generic group model. Diemert and Jager [21] in turn
study tight composition with the TLS record protocol.

The DJ analysis is carried out in the multi-stage key exchange model [25],
proving security not only of the final session key, but also of intermediate hand-
shake encryption keys and further secrets. While our proof does show security
of these intermediate keys, we do not treat them as first-class keys accessible to
the adversary through dedicated queries in the security model. Unlike either the
DJ or Cohn-Gordon et al. works, our model addresses explicit authentication,
which we prove via HMAC’s unforgeability.

To tackle the challenge that TLS 1.3’s key schedule does not bind DH val-
ues and session context in one function, DJ model the full cascading derivation
of each intermediate key monolithically as an independent, programmable ran-
dom oracle (cf. [21, Theorem 6]). We instead model the key schedule’s inner
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HKDF [34] extraction and expansion functions as two individual random oracles,
carefully connected via efficient look-up tables, yielding a slightly less extensive
use of random oracles and compensating for the existence of shared computa-
tions in the derivation of multiple keys. This approach produces more compact
bounds and allows our analysis to stay closer to the use of HKDF in TLS 1.3,
where the output of one extraction call is used to derive multiple keys.

2 AKE Security Model and Multi-user Building Blocks

We provide our results in a game-based key exchange model formalized in Fig. 1,
at its core following the seminal work by Bellare and Rogaway [12] considering an
active network adversary that controls all communication (initiating sessions and
determining their next inputs through Send queries) and is able to corrupt long-
term secrets (RevLongTermKey) as well as session keys (RevSessionKey).
The adversary’s goal is then to (a) distinguish the established shared session
key in a “fresh” (not trivially compromised, captured through a Fresh predicate)
session from a uniformly random key obtained through Test queries (breaking
key secrecy), or (b) make a session accept without matching communication
partner (breaking explicit authentication).

Following Cohn-Gordon et al. [19], we formalize our model in a real-or-
random version (following Abdalla, Fouque, and Pointcheval [3] with added
forward secrecy [2]) with many Test queries which all answer with a real or
uniformly random session key based on the same random bit b. We focus on the
security of the main session key established. While our proofs (for both SIGMA
and TLS 1.3) establish security of the intermediate encryption and MAC keys,
too, we do not treat them as first-class keys available to the adversary through
Test and RevSessionKey queries. We expect that our results extend to a
multi-stage key exchange (MSKE [25]) treatment and refer to the concurrent
work by Diemert and Jager [21] for tight results for TLS 1.3 in a MSKE model.

In contrast to the work by Cohn-Gordon et al. [19] and Diemert and
Jager [21], our model additionally captures explicit authentication through the
ExplicitAuth predicate in Fig. 1, ensuring sessions with non-corrupted peer accept
with an honest partner session. We and [21] further treat protocols where the
communication partner’s identity of a session may be unknown at the outset
and only learned during the protocol execution; this setting of “post-specified
peers” [17] particularly applies to the SIGMA protocol family [32] as well as
TLS 1.3 [41].

Key Exchange Protocols. We begin by formalizing the syntax of key
exchange protocols. A key exchange protocol KE consists of three algo-
rithms (KGen,Activate,Run) and an associated key space KE.KS (where most
commonly KE.KS = {0, 1}n for some n ∈ N). The key generation algo-
rithm KGen() $−→ (pk, sk) generates new long-term public/secret key pairs. In
the security model, we will associate key pairs to distinct users (or parties)
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with some identity u ∈ N running the protocol, and log the public long-
term keys associated with each user identity in a list peerpk. (The adversary
will be in control of initializing new users, identified by an increasing counter,
and we assume it only references existing user identities.) The activation algo-
rithm Activate(id, sk, peerid, peerpk, role) $−→ (st′,m′) initiates a new session for a
given user identity id (and associated long-term secret key sk) acting in a given
role role ∈ {initiator, responder} and aiming to communicate with some peer user
identity peerid. Activate also takes as input the list peerpk of all users’ public
keys; protocols may use this list to look up their own and their peers’ pub-
lic keys. We provide the entire list instead of just the user’s and peers’ public
keys to accommodate protocols with post-specified peer. These protocols may
leave peerid unspecified at the time of session activation; when the peer iden-
tity is set at some later point, the list can be used to find the corresponding
long-term key. Activation outputs a session state and (if role = initiator) first
protocol message m′, and will be invoked in the security model to create a new
session πi

u at a user u (where the label i distinguishes different sessions of the
same user). Finally, Run(id, sk, st, peerpk,m) $−→ (st′,m′) delivers the next incom-
ing key exchange message m to the session of user id with secret key sk and state
st, resulting in an updated state st′ and a response message m′. Like Activate, it
relies on the list peerpk to look up its own and its peer’s long-term keys.

The state of each session in a key exchange protocol contains at least the
following variables, beyond possibly further, protocol-specific information:

peerid ∈ N. Reflects the (intended) partner identity of the session;
if post-specified, this is learned and set (once) during protocol execution.

role ∈ {initiator, responder}. The session’s role, determined upon activation.
status ∈ {running, accepted, rejected}. The session’s status; initially status =

running, a session accepts when it switches to status = accepted (once).
skey ∈ KE.KS. The derived session key (in KE.KS), set upon acceptance.
sid. The session identifier used to define partnered session in the security model;

initially unset, sid is determined (once) during protocol execution.

Key Exchange Security. We formalize our key exchange security
game GKE-SEC

KE,A in Fig. 1, based on the concepts introduced above in Fig. 1 and fol-
lowing the framework for code-based game playing by Bellare and Rogaway [13].
After initializing the game, the adversary A is given access to queries NewUser
(generating a new user’s public/secret key pair), Send (controlling activation
and message processing of sessions), RevSessionKey (revealing session keys),
RevLongTermKey (corrupting user’s long-term secrets), and Test (providing
challenge real-or-random session keys), as well as a Finalize query to which it
will submit its guess b′ for the challenge bit b, ending the game.

The game GKE-SEC
KE,A then (in Finalize) determines whether A was successful

through the following three predicates, formalized in pseudocode in Fig. 1: Sound
ensures session identifiers are set in a sound manner (non-colliding, ensuring
agreement on session keys). ExplicitAuth encodes explicit authentication, requir-
ing that accepted sessions agree on the intended peer (if non-corrupted). Finally,
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Fig. 1. Key exchange security game.
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to capture key secrecy, we have to restrict the adversary to testing only fresh
(i.e., not trivially compromised) sessions in order to exclude trivial attacks; this
is ensured through Fresh.

We call two distinct sessions πi
u and πj

v partnered if πi
u.sid = πj

v.sid. We refer
to sessions generated by Activate (i.e., controlled by the game) as honest sessions
to reflect that their behavior is determined honestly by the game and not the
adversary. The long-term key of an honest session may still be corrupted, or its
session key may be revealed without affecting this notion of “honesty”.

Definition 1 (Key exchange security). Let KE be a key exchange protocol
and GKE-SEC

KE,A be the key exchange security game defined in Fig. 1. We define

AdvKE-SECKE (t, qN, qS, qRS, qRL, qT) := 2 · max
A

Pr
[
GKE-SEC

KE,A ⇒ 1
] − 1,

where the maximum is taken over all adversaries, denoted (t, qN, qS, qRS, qRL, qT)-
KE-SEC-adversaries, running in time at most t and making at most qN, qS,
qRS, qRL, resp. qT queries to their oracles NewUser, Send, RevSessionKey,
RevLongTermKey, resp. Test.

Security Properties. We capture regular key secrecy of the main session key
through Test queries, incorporating explicit authentication as well as (“per-
fect”) forward secrecy by allowing corruption as long as each tested sessions
accepted prior to corrupting its intended peer. This strengthens our model com-
pared to that of Cohn-Gordon et al. [19] which only captures implicit authentica-
tion and weak forward secrecy; while Diemert and Jager [21] additionally treat
the security of intermediate and further keys beyond the main session key in
a multi-stage approach [25], but without capturing explicit authentication. Like
[19,21], our model captures key-compromise impersonation, but not session-state
or randomness reveals [16,36] or post-compromise security [18].

Multi-user Security Advantages. Before we continue to our technical results,
let us briefly introduce notation and discuss the multi-user security of the
involved building blocks: PRFs, digital signatures, MAC schemes, and hash func-
tions. We defer full definitions to Appendix B and only explain how to read the
advantage bounds here.

PRF: Advmu-PRF
PRF (t, qNw, qFn, qFn/U). The maximal advantage in distinguishing

PRF from a random function of any adversary running in time t with access
to at most qNw users, making at most qFn function queries overall and qFn/U
function queries per user.

Signature: Advmu-EUF-CMA
S (t, qNw, qSg, qSg/U, qC). The maximal advantage for

an existential signature forgery for S of any adversary running in time t
with access to at most qNw users, making at most qSg/qSg/U signing queries
total/per user, allowed to adaptively corrupt at most qC users.
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MAC: Advmu-EUF-CMA
M (t, qNw, qTg, qTg/U, qVf, qVf/U, qC). The maximal advantage

for an existential MAC forgery for M of any adversary running in time t
with access to at most qNw users, making at most qTg/qTg/U and qVf/qVf/U
tagging resp. verification queries total/per user, allowed to adaptively corrupt
at most qC users.

Hash: AdvCRH (t). The advantage of a given adversary running in time t in out-
putting a hash collision under H.

Strong Diffie–Hellman GGM Bound. The strong Diffie–Hellman (strong
DH) assumption, a weakening of the gap DH assumption [40], states that solving
the computational DH problem given a restricted decisional DH [14] oracle is
hard.

Definition 2 (Strong Diffie–Hellman problem [40]). Let G = 〈g〉 be a
cyclic group of prime order q. Let DDH(X,Y,Z) := [[X logg(Y ) = Z]] be a deci-
sional Diffie–Hellman oracle. We define

AdvstDH
G

(t, qsDH) := max
A

Pr
[
ADDH(gx,·,·)(G, g, gx, gy) = gxy

∣
∣
∣ x, y $←− Zq

]
,

where the maximum is taken over all adversaries, denoted (t, qsDH)-stDH-
adversaries, running in time at most t and making at most qsDH queries to their
DDH oracle.

The strong (or gap) DH assumption has been deployed in numerous works
to analyze practical key exchange designs, directly or through the PRF-ODH
assumption [15,29] it supports, including [22–26,29,35] as well as in the closely
related works on practical tightness by Cohn-Gordon et al. [19] and Diemert and
Jager [21]. To argue that it is reasonable to rely on the strong DH assumption,
we turn to the generic group model [38,42]. Although some known algorithms
for solving discrete logarithms in finite fields like index calculus fall outside
the generic group model, the best known algorithms for elliptic curve groups
are generic. Shoup [42] proved that, in the generic group model, any adversary
computing at most t group operations in a group of prime order p has advantage
at most O(t2/p) in solving the discrete logarithm, CDH, or DDH problem. We
claim, and prove in Appendix C, that any adversary in the generic group model
making at most t group operations and DDH oracle queries, also has advantage
at most O(t2/p) in solving the strong Diffie–Hellman problem.

Theorem 3. Let G be a group with prime order p. In the generic group model,
AdvstDH

G
(t, q) ≤ 4t2/p.

3 The SIGMA Protocol

The SIGMA family of key exchange protocols introduced by Krawczyk
[32,33] describes several variants for building authenticated Diffie–Hellman key
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Fig. 2. The SIGMA/SIGMA-I protocol flow diagram. Boxed code is only performed
in the SIGMA-I variant. Values Lx indicate label strings (distinct per x).

exchange using the “SIGn-and-MAc” approach. Its design has been adopted in
several Internet security protocols, including, e.g., the Internet Key Exchange
protocol [28,30] as part of the IPsec Internet security protocol [31] and the newest
version 1.3 of the Transport Layer Security (TLS) protocol [41].

Beyond the basic SIGMA design, we are particularly interested in the
SIGMA-I variant which forms the basis of the TLS 1.3 key exchange and aims at
hiding the protocol participants’ identities as additional feature. We here present
an augmented version of the basic SIGMA/SIGMA-I protocols which includes
explicit exchange of session-identifying random numbers (nonces) to be closer
to SIGMA(-like) protocols in practice, somewhat following the “full-fledged”
SIGMA variant [33, Appendix B]. We illustrate these protocol flows in Fig. 2.

The SIGMA and SIGMA-I protocols make use of a signature scheme S =
(KGen,Sign,Vrfy), a MAC scheme M = (KGen,Tag,Vrfy), a pseudorandom func-
tion PRF, and a function RO which we model as a random oracle. The parties’
long-term secret keys consist of one signing key, i.e., KE.KGen = S.KGen. The
protocols consists of three messages exchanged and accordingly two steps per-
formed by both initiator and responder, which we describe in more detail now.

Initiator Step 1. The initiator picks a Diffie–Hellman exponent x $←− Zp and a
random nonce nI of length nl and sends nI and gx.

Responder Step 1. The responder also picks a random DH exponent y and
a random nonce nR. It then derives a master key as mk ← RO(nI , nR,X,Y,
Xy) from nonces, DH shares, and the joint DH secret gxy = (gx)y. From mk,
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keys are derived via PRF with distinct labels: the session key ks, the MAC
key kt, and (only in SIGMA-I) the encryption key ke.
The responder computes a signature σ with skR over nonces and DH shares
(and a unique label Lrs) and a MAC value τ under key kt over the nonces and
its identity R (and unique label Lrm). It sends nI , gy, as well as R, σ, and τ
to the initiator. In SIGMA-I the last three elements are encrypted using ke
to conceal the responder’s identity against passive adversaries.

Initiator Step 2. The initiator also computes mk and keys ks, kt, and (in
SIGMA-I, used to decrypt the second message part) ke. It ensures both the
received signature σ and MAC τ verify, and aborts otherwise.
It computes its own signature σ′ under skI on nonces and DH shares (with a
different label Lis) and a MAC τ ′ under kt over the nonces and its identity I
(with yet another label Lim). It sends I, σ′, and τ ′ to the responder (in
SIGMA-I encrypted under ke) and accepts with session key ks using the
nonces and DH shares (nI , nR,X,Y) as session identifier.

Responder Step 2. The responder finally checks the initiator’s signature σ′ and
MAC τ ′ (aborting if either fails) and then accepts with session key skey = ks
and session identifier sid = (nI , nR,X,Y).

4 Tighter Security Proof for SIGMA-I

We now come to our first main result, a tighter security proof for the SIGMA-I
protocol. Note that by omitting message encryption our proof similarly applies
to the basic SIGMA protocol.

Theorem 4. Let the SIGMA-I protocol be as specified in Fig. 2 based on a
group G of prime order p, a PRF PRF, a signature scheme S, and a MAC M,
and let RO in the protocol be modeled as a random oracle. For any (t, qN, qS, qRS,
qRL, qT)-KE-SEC-adversary against SIGMA-I making at most qRO queries to RO,
we give algorithms B1, B2, B3, and B4 in the proof, with running times tB1 ≈
t + 2qRO log2 p and tBi

≈ t (for i = 2, . . . , 4) close to that of A, such that

AdvKE-SECSIGMA-I(t, qN, qS, qRS, qRL, qT)

≤ 3q2S
2nl+1 · p

+ AdvstDH
G

(tB1 , qRO) + Advmu-PRF
PRF (tB2 , qS, 3qS, 3)

+ Advmu-EUF-CMA
S (tB3 , qN, qS, qS, qRL) + Advmu-EUF-CMA

M (tB4 , qS, qS, 1, qS, 1, 0).

Here, nl is the nonce length in SIGMA-I and G is the used Diffie–Hellman group
of prime order p.

In terms of multi-user security for the employed primitives, multi-user PRF
and MAC security can be obtained tightly, e.g., via the efficient AMAC con-
struction [6], and multi-user signature security can be generically reduced to
single-user security of any signature scheme with a loss in the number of users,
here parties (not sessions) in the key exchange game.
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Proof Outline. We defer the detailed game-based description of the proof to the
full version [20] and only outline its core and novel technical steps here. We give
a more detailed proof for our TLS 1.3 bound in Sect. 6 which requires careful
handling of the more complex key schedule, but is still structurally close.

The heart of the proof is the reduction to the strong DH problem. In prior
analyses of SIGMA and TLS 1.3, this reduction embeds a DH challenge into
a single tested session. This technique incurs a loss in the number of sessions
because the reduction must guess in advance which session will be tested. Trans-
lating techniques from Cohn-Gordon et al. [19], we instead use the random self-
reducibility of DH to embed a single challenge into every session which could
possibly accept and be tested without violating the Fresh predicate.

We can divide all sessions into two categories: (A) those who receive nonces
or DH shares that have been tampered with by an adversary and (B) those who
receive unaltered nonces and DH shares from an honest peer. Embedding a DH
challenge into each of these types of sessions must be addressed differently.

If an adversary controls the DH share received by an honest session (cat-
egory (A)), it can compute that session’s DH secret, from which are derived
master key, session key, and MAC key. If such a session has an embedded chal-
lenge, the simulator cannot honestly produce the proper master key. Instead, it
uses the strong DH oracle to detect if the adversary ever makes an RO query
containing the session’s nonces, DH shares, and the corresponding DH secret,
and it programs the response to this query to maintain consistency. The reduc-
tion also cannot produce the proper master key for sessions in category (B);
however, it can again use the strong DH oracle to detect RO queries containing
a valid DH secret that would output the proper master key. This secret can be
used to extract the challenge secret and hence win the strong DH game. One
particular nuance here is that checking each RO query for every session’s DH
secret would lead to a quadratic loss in the number of strong DH oracle queries.
We maintain tightness by instead using the nonces and group elements in the
RO query to identify the relevant sessions and efficiently program responses.

For sessions in category (B), the master key is now chosen uniformly at
random. Invoking PRF security allows the session, traffic encryption, and MAC
keys to be selected at random as well. Each accepting session must receive a valid
signature and MAC tag on its nonces and group elements. Excluding the small
probability that nonces and group elements collide between honest sessions, the
adversary can only produce these by corrupting a long-term key or by forgery.
The former approach violates the Fresh predicate; the latter violates the EUF-
CMA security of either the signature or MAC scheme. Therefore, these sessions
will accept only if they complete an entire protocol execution without tampering
with an honest peer holding the same master key and thus same session key.

For sessions in category (A), the master key may be known to the adversary.
However, these sessions still must receive a valid signature to accept. Since the
nonces and group elements were tampered with, no honest session will produce
this signature. Again, the adversary must resort to either corruption or forgery,
hence violating either freshness or signature EUF-CMA security. 
�
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5 The TLS 1.3 Handshake Protocol

The Transport Layer Security (TLS) protocol in version 1.3 [41] bases its key
exchange design (the so-called handshake protocol) on a variant of SIGMA-I.
Following the core SIGMA design, the TLS 1.3 main handshake is an ephemeral
Diffie–Hellman key exchange, authenticated through a combination of signing
and MAC-ing the (full, hashed) communication transcript.3 Additionally, and
similar to SIGMA-I, beyond establishing the main (application traffic) session
key, handshake traffic keys are derived and used to encrypt part of the handshake.

Beyond additional protocol features like negotiating the cryptographic algo-
rithms to be used, communicating further information in extensions, etc.—which
we do not capture here—, TLS 1.3 however deviates in two core cryptographic
aspects from the more simplistic and abstract SIGMA(-I) design: it hashes the
communication transcript when deriving keys and computing signatures and
MACs, and it uses a significantly more complicated key schedule. In this section
we revisit the TLS 1.3 handshake and discuss the careful technical changes
and additional assumptions needed to translate our tight security results for
SIGMA-I to TLS 1.3’s main key exchange mode.

Protocol Description. We focus on a slightly simplified version of the hand-
shake encompassing all essential cryptographic aspects for our tightness results.
In particular, we only consider mutual authentication and security of the main
application traffic keys and accordingly leave out some computations and addi-
tional messages. We illustrate the handshake protocol and its accompanying key
schedule in Fig. 3, the latter deriving keys in the extract-then-expand paradigm
of the HKDF key derivation function [34].4

In the TLS 1.3 handshake, the client acts as initiator and the server as respon-
der. Within Hello messages, both send nonce values nC resp. nS together with
ephemeral Diffie–Hellman shares gx resp. gy. Based on these values, both par-
ties extract a handshake secret HS from the shared DH value DHE = gxy using
HKDF.Extract with a constant salt input. In a second step, client and server
derive their respective handshake traffic keys tkchs, tkshs and MAC keys fkC ,
fkS through two levels of HKDF.Expand steps from the handshake secret HS,
including in the first level distinct labels and the hashed communication tran-
script H(CH‖SH) so far as context information.

The handshake traffic keys are then used to encrypt the remaining handshake
messages. First the server, then the client send their certificate (carrying their
identity and public key), a signature over the hashed transcript up to including
their certificate, as well as a MAC over the (hashed) transcript up to incl. their
signatures. Note the similarity to SIGMA-I here: each party signs both nonces

3 TLS 1.3 also specifies an abbreviated resumption-style handshake based on pre-
shared keys; we focus on the main DH-based handshake in this work.

4 HKDF.Extract(XTS,SKM) on input salt XTS and source key material SKM outputs
a pseudorandom key PRK. HKDF.Expand(PRK,CTXinfo) on input a pseudorandom
key PRK and context information CTXinfo outputs pseudorandom key material KM.
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Fig. 3. The simplified TLS 1.3 main Diffie–Hellman handshake protocol (left) and key
schedule (right). Values Li and Ci indicate bitstring labels, resp. constant values, (dis-
tinct per i). Boxes Ext and Exp denote HKDF extraction resp. expansion, dashed inputs
to Exp indicating context information (see protocol figure for detailed computations).

and DH values (within CH‖SH, modulo transcript hashing) together with a unique
label, and then MACs both nonces and their own identity (the latter being part
of their certificate). The application traffic secret ATS—which we treat as the
session key skey, unifying secrets of both client and server—is then derived from
the master secret MS through HKDF.Expand with handshake context up to the
ServerFinished message. The master secret in turn is derived through (context-
less) Expand and Extract from the handshake secret HS.

Handling the TLS 1.3 Key Schedule. What crucially differentiates the
TLS 1.3 handshake from the basic SIGMA-I design is the way keys are derived.
While SIGMA-I derives its master key through a random oracle with input
both the shared DH secret and the session identifying nonces and DH shares,
TLS 1.3 separates them in its HKDF-based extract-then-expand key schedule:
The core HS and MS secrets are derived without further context purely from
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the shared DH secret DHE = gxy. Only when deriving the specific-purpose
secrets—handshake traffic keys, MAC keys, and the session key ATS—are the
nonces and DH shares add as session-identifying context. To complicate matters
even further, this context is hashed and the final session key ATS depends on
more messages than just the session-identifying ones. Recall that the original
techniques by Cohn-Gordon et al. [19] heavily relies on (exactly) the session
identifiers being input together with DH secrets to a random oracle when pro-
gramming the latter, impeding a more direct application like for SIGMA-I. In
their concurrent work, Diemert and Jager [21] satisfy this requirement by mod-
eling the full derivation of each stage key in their multi-stage treatment as a
separate random oracle. This directly connects inputs to keys, but results in a
monolithic random oracle treatment of the key schedule which loses the indepen-
dence of the intermediate HKDF.Extract and HKDF.Expand steps in translation.
As we will show next, we overcome the technical obstacle of this linking while
directly modeling HKDF.Extract and HKDF.Expand as individual random oracles,
carefully orchestrating the programming of intermediate secrets and session keys
and connecting them through constant-time look-ups. This leads to a slightly
less excessive use of the random oracle technique and allows us to stay much
closer to the structure of TLS 1.3’s key schedule.

6 Tighter Security Proof for the TLS 1.3 Handshake

We now give our second main result, the tighter-security bound for TLS 1.3.

Theorem 5. Let A be a key exchange security adversary against the TLS 1.3
handshake protocol as specified in Fig. 3 based on a hash function H, a signature
scheme S, and a group G of prime order p, and let the HKDF functions Extract
and Expand in the protocol be modeled as (independent) random oracles RO1,
resp. RO2. For any (t, qN, qS, qRS, qRL, qT)-KE-SEC-adversary against SIGMA-I
making at most qRO queries to the random oracle, we give algorithms B1, B2,
B3, and B4 in the proof, with running times tBi

≈ t (for i = 1, 3, 4) and tB2 ≈
t + 2qRO log2 p close to that of A, such that

AdvKE-SECTLS 1.3(t, qN, qS, qRS, qRL, qT) ≤ 3q2S
2nl+1 · p

+ AdvCRH (tB1)

+ 2 · AdvstDH
G

(tB2 , qRO) +
qRO · qS
2kl−1

+ Advmu-EUF-CMA
S (tB3 , qN, qS, qS, qRL)

+ Advmu-EUF-CMA
HMAC (tB4 , qS, qS, 1, qS, 1, 0).

Here, nl = 256 is the nonce length in TLS 1.3, kl is the output length of RO2 =
HKDF.Expand, G is the used Diffie–Hellman group of prime order p, and qS ·
qRO ≤ 2kl−3.5

5 We simplify the factor on AdvstDH
G to 2 by assuming qS · qRO ≤ 2kl−3, which is true

for any reasonable real-world parameters. See the proof for the exact bound.
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Proof Idea. Let us first outline the core and novel technical steps, before we
give some more proof details below; for space reasons we defer the full proof
to the full version [20]. We note that as all keys in the SIGMA exchange are
derived from the master key mk, which is itself derived from the shared Diffie–
Hellman secret, all intermediate keys in TLS 1.3 are derived from the handshake
secret HS, which is derived directly from the shared Diffie–Hellman secret DHE.
Embedding a DH challenge into all sessions robs the reduction of the ability to
compute HS; as in the SIGMA proof, we will need to use the strong DH oracle
to detect and program queries that would output an inconsistent value of HS.
Since HS is derived without context, a naive method would have to check every
input to HKDF.Extract against the DH shares received by each session, which
would however result in a non-tight, quadratic runtime loss.

We instead leverage that the handshake secret HS is an internal value, not
exposed by any oracle. The adversary hence cannot detect an inconsistent HS
value until it makes the entire chain of queries leading to one of the keys tkshs,
tkchs, fkC , fkS , or ATS used in Send, RevSessionKey, and Test responses.
Our reduction prudently sets up a separate bidirectional lookup table for each
“link” in that chain. The adversary can make the RO queries in the chain in
any order; we need only program the last one for consistency, at which time we
have seen the session’s DH secret, nonces, and group elements as query inputs.
Linking the output of one key-derivation step to the input of the next this way,
the reduction can identify the relevant sessions using only constant time and
linear space. Together with a careful argument that the attacker is unlikely to
guess an intermediate chain value, this allows us to treat HKDF.Extract and
HKDF.Expand as two individual random oracles. Thereby, we stay close to how
HKDF is used in TLS 1.3 and obtain two compact strong-DH bounds.

Now we give a more precise view of the structure of our proof, with a particu-
lar focus on nonstandard techniques and the critical random oracle programming
in the reduction step to the strong Diffie–Hellman problem, handling the com-
plexity of TLS 1.3’s key schedule.

Proof. We develop the bound via a series of code-based game hops.

Game 0. The first game G0 is the key exchange security game (cf. Fig. 1) for
the TLS 1.3 handshake protocol (Fig. 3). So, Pr[G0 ⇒ 1] = Pr[GKE-SEC

TLS,A ⇒ 1].

Games 1–4. Over the next four games we ensure the uniqueness of each session’s
protocol transcript by aborting if an honest session chooses a nonce and DH share
that have already been sent or received by another honest session, or if a collision
occurs in the hash function H. We limit the probability of nonce and DH share
collisions using a union bound, and give a simple reduction B1 to the collision
resistance of the hash function H. We also lazily sample the random oracles RO1

and RO2 using internal tables H1 and H2. Excluding collisions, we obtain the
bound Pr[G0 ⇒ 1] − Pr[G4 ⇒ 1] ≤ 3q2S

2nl+1·p + AdvCRH (t1).

Games 5–6. Following the technique of [19], we let initiator sessions in cate-
gory (A) copy session, MAC, and traffic encryption keys from their partners via
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a table indexed by session IDs. In TLS 1.3, there are two encryption keys tkshs

and tkchs, and two MAC keys fkS and fkC to copy. One significant difference
from both [19] and our SIGMA-I proof is that the session key ATS now depends
on the messages SCRT, SCV, and SF. We have not yet ensured that partnered
sessions agree on these values. Therefore honest initiators will only copy ATS
from their partners if they received the exact same (SCRT, SCV, SF) sent by their
partner, which they check via an internal look-up table. Otherwise, ATS is still
computed as in previous games. Since keys are only copied when partners agree
on all of the information entering the key derivation function, this change is
unobservable to A, hence Pr[G6 ⇒ 1] = Pr[G4 ⇒ 1].

Games 7–8. These two games contain both the most critical step and the one
that diverges the most from the SIGMA-I proof. We let all category (A) sessions
that are not already copying their keys pick the handshake traffic keys SHTS and
CHTS, and the session key ATS uniformly at random, checking for consistency
with the random oracle RO2 and retroactively programming it when necessary.
(Category (A) initiator sessions who do not copy ATS due to tampering sample
only ATS.) Then, we eliminate the consistency check and let these sessions’
handshake traffic keys and session key be uniformly random and inconsistent
with the adversary’s queries to RO2. We argue that the adversary can only
detect this inconsistency if it queries RO2 on the correct input to derive one of
SHTS, CHTS, or ATS for a category (A) session, an event we refer to as event F .

We give a reduction B2 to the strong DH assumption in group G which wins
with high probability if event F occurs. Given a challenge C,D, algorithm B2

simulates Game 7. It embeds C in the DH shares of all initiators and D in the
DH shares of all category (A) responders. Because B2 cannot compute the DH
secret for embedded sessions, it uses its stDH oracle to catch and program all
queries to RO2 which are dependent on this secret. When event F occurs, B2

uses its own randomness to extract the challenge DH secret from the DH secret
contained in the query that triggered event F . In addition to the details covered
in Sect. 6, the reduction has a few nuances:

1. If for some category (A) session, A can guess without making the corre-
sponding query any of the intermediate values HS = RO1(C1,DHE), dHS =
RO2(HS, L3,H("")), or MS = RO1(dHS, 0), where DHE is the DH secret asso-
ciated to some pair of embedded shares (X,Y) chosen by honest sessions, then
it can trigger event F without ever submitting DHE to an oracle. Without
knowing DHE, B2 cannot detect this query, so it does not program RO2 appro-
priately and the simulation fails. B2 does not itself compute HS, dHS, or MS
for category (A) sessions, so if A does not make the appropriate queries than
all three values are uniformly random and each can be guessed with proba-
bility at most qRO·qS

2kl
.

2. In TLS 1.3, the context string including the Diffie–Hellman shares is hashed
with H before it enters the key derivation, so B2 cannot directly associate an
RO2 query with an honest sid. We address this by logging hash computations
of honest sessions in a reverse look-up table R. Then in the RO2 oracle, B2

can use R to efficiently find the context associated with a particular query.
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When qRO · qS ≤ 2kl−3, we obtain the bound Pr[G6 ⇒ 1] − Pr[G8 ⇒ 1] ≤
2 · AdvstDH

G
(tB2 , qRO) + qRO·qS

2kl
.

The reduction B2 queries the stDH oracle at most once for each query to RO2

query and once more when event F occurs. Computing the input to each stDH
query requires 1 multiplication and one exponentiation in the base group, which
can be done using 1 + 2 log2 p total group operations. In our runtime analysis,
we count each group operation as 1 step, so tB2 ≈ t + 2qRO log2 p.

Game 9. In game G9, category (A) sessions sample all encryption and MAC
keys uniformly at random. This is distinguishable only if the adversary can query
RO on a string containing one of the random values SHTS or CHTS, so by the
birthday bound Pr[G8 ⇒ 1] − Pr[G9 ⇒ 1] ≤ qRO·qS

2kl
.

Games 10–13. In the remaining games, we eliminate signature and MAC forg-
eries via straightforward reductions B3 and B4 to the multi-user EUF-CMA
security of S and M. This gives the bound Pr[G9 ⇒ 1] − Pr[G13 ⇒ 1] ≤
Advmu-EUF-CMA

S (tB3,qNw,qS,qS,qRL
) + Advmu-EUF-CMA

M (tB4 , qS, qS, 1, qS, 1, 0).
Finally, we argue that A has advantage 0 in game G13, using logic similar to

that in our SIGMA-I proof, with two slight differences: 1. Partnered sessions no
longer use labels to distinguish their MAC tags; instead we note that messages
tagged by initiator sessions are strictly longer than messages tagged by responder
sessions. 2. We cannot immediately conclude that partnered sessions agree on
the same session key because the session key ATS relies on values that are
not contained in the session identifier. However, since we have excluded MAC
forgeries, all the information entering the derivation of ATS is authenticated by
the responder session’s MAC tag. 
�

7 Evaluation

Tighter security results in terms of loss factors are practically meaningful only
if they materialize in better concrete advantage bounds when taking the under-
lying assumptions into account. In our case, this amounts to the question: How
does the overall concrete security of the SIGMA/SIGMA-I and the TLS 1.3 key
exchange protocols improve based on our tighter security proofs?

Parameter Selection. In order to evaluate our and prior bounds practically,
we need to make concrete choices for each of the parameters entering the bounds.
Let us explain the choices we made in our evaluation:

Runtime t ∈ {240, 260, 280}. We parameterize the adversary’s runtime between
well within computational reach (240) and large-scale attackers (280).

Number of users #U = qN ∈ {220, 230}. We consider the number of users a
global-scale adversary may interact with to be in the order of active public-key
certificates on the Internet, reported at 130–150 million6 (≈ 227).

6 https://letsencrypt.org/stats/, https://trends.builtwith.com/ssl/traffic/Entire-
Internet.

https://letsencrypt.org/stats/
https://trends.builtwith.com/ssl/traffic/Entire-Internet
https://trends.builtwith.com/ssl/traffic/Entire-Internet
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Number of sessions #S ≈ qS ∈ {235, 245, 255}. Chrome and Firefox report that
76–98% of all web page accesses through these browsers are encrypted, with
an active daily base of about 2 billion (≈ 230) users.7 We consider adversaries
may easily see 235 sessions and a global-scale attacker may have access to 255

sessions over an extended timespan. Note that the number of send queries
essentially corresponds to the number of sessions.

Number of RO queries #RO = qRO = t
210 . We fix this bound at a 210-fraction

of the overall runtime accounting for all adversarial steps.
Diffie–Hellman groups and group order p. We consider all five elliptic

curves standardized for TLS 1.3 (bit-security b, order p in parentheses):
secp256r1 (b = 128, p ≈ 2256), secp384r1 (b = 192, p ≈ 2384), secp521r1
(b = 256, p ≈ 2521), x25519 (b = 128, p ≈ 2252), and x448 (b = 224,
p ≈ 2446). We focus on elliptic curve groups, as they provide high efficiency
and the best known algorithms for solving discrete-log and DH problems are
generic, allowing us to apply GGM bounds for DDH and strong DH.

Signature schemes. In order to unify the underlying hardness assumptions,
we consider the ECDSA/EdDSA signature schemes standardized for use with
TLS 1.3, based on the five elliptic curves above, treating their single-user
unforgeability as equally hard as the corresponding discrete logarithm.

Symmetric schemes and key/output/nonce lengths kl, ol,nl. Since our
focus is mostly on evaluating ECDH parameters, we idealize the symmet-
ric primitives (PRF, MAC, and hash function) in the random oracle model.
Applying lengths standardized for TLS 1.3, we set the key and output length
to kl = ol = 256 bits for 128-bit security curves and 384 bits for higher-
security curves, corresponding to ciphersuites using SHA-256 or SHA-384.
The nonce length is fixed to nl = 256 bits, again as in TLS 1.3.

Reveal and Test queries qRS, qRL, qT. Using a generic reduction to
single-user signature unforgeability, the number of RevLongTermKey,
RevSessionKey, and Test queries do not affect the bounds; we hence do
not place any constraints on them.

Fully-Quantitative CK/DFGS Bounds for SIGMA/TLS 1.3. For our
evaluation, we need to reconstruct fully-quantitative security bounds from the
more abstract prior security proofs for SIGMA by Canetti-Krawczyk [17] and
for TLS 1.3 by Dowling et al. [24]. We report them in Appendix A for reference.
In terms of their reduction to underlying DH problems, the CK SIGMA bound
reduces to the DDH problem with a loss of #U ·#S, whereas the DFGS TLS 1.3
bound reduces to the strong DH problem with a loss of (#S)2.

Numerical Advantage Bounds. We report the numerical advantage bounds
for SIGMA and TLS 1.3 based on prior (CK [17], DFGS [24]) and our bounds
when ranging over the full parameter space detailed above in Table 2. Table 1
summarizes the key data points for 128-bit and 192-bit security levels.
7 https://transparencyreport.google.com/, https://telemetry.mozilla.org/.

https://transparencyreport.google.com/
https://telemetry.mozilla.org/
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Table 2. Advantages of a key exchange adversary with given resources in breaking the
security of the SIGMA and TLS 1.3 protocols. See Section 7 for further details.

Adv. resources SIGMA TLS 1.3

t #U #S #RO Curve (bit sec. b, order p) Target t/2b CK [17] Us (Theorem 4) DFGS [24] Us (Theorem 5)

240 220 235 230 secp256r1 (b=128, p≈2256) 2−88 ≈ 2−101 ≈ 2−156 ≈ 2−104 ≈ 2−156

240 220 245 230 secp256r1 (b=128, p≈2256) 2−88 ≈ 2−91 ≈ 2−156 ≈ 2−84 ≈ 2−156

240 220 255 230 secp256r1 (b=128, p≈2256) 2−88 ≈ 2−81 ≈ 2−156 ≈ 2−64 ≈ 2−156

240 230 235 230 secp256r1 (b=128, p≈2256) 2−88 ≈ 2−81 ≈ 2−146 ≈ 2−104 ≈ 2−146

240 230 245 230 secp256r1 (b=128, p≈2256) 2−88 ≈ 2−71 ≈ 2−146 ≈ 2−84 ≈ 2−146

240 230 255 230 secp256r1 (b=128, p≈2256) 2−88 ≈ 2−61 ≈ 2−146 ≈ 2−64 ≈ 2−146

240 220 235 230 secp384r1 (b=192, p≈2384) 2−152 ≈ 2−229 ≈ 2−284 ≈ 2−232 ≈ 2−284

240 220 245 230 secp384r1 (b=192, p≈2384) 2−152 ≈ 2−219 ≈ 2−284 ≈ 2−212 ≈ 2−284

240 220 255 230 secp384r1 (b=192, p≈2384) 2−152 ≈ 2−209 ≈ 2−284 ≈ 2−192 ≈ 2−284

240 230 235 230 secp384r1 (b=192, p≈2384) 2−152 ≈ 2−209 ≈ 2−274 ≈ 2−232 ≈ 2−274

240 230 245 230 secp384r1 (b=192, p≈2384) 2−152 ≈ 2−199 ≈ 2−274 ≈ 2−212 ≈ 2−274

240 230 255 230 secp384r1 (b=192, p≈2384) 2−152 ≈ 2−189 ≈ 2−274 ≈ 2−192 ≈ 2−274

240 220 235 230 secp521r1 (b=256, p≈2521) 2−216 ≈ 2−298 ≈ 2−318 ≈ 2−282 ≈ 2−317

240 220 245 230 secp521r1 (b=256, p≈2521) 2−216 ≈ 2−288 ≈ 2−308 ≈ 2−262 ≈ 2−307

240 220 255 230 secp521r1 (b=256, p≈2521) 2−216 ≈ 2−278 ≈ 2−298 ≈ 2−242 ≈ 2−297

240 230 235 230 secp521r1 (b=256, p≈2521) 2−216 ≈ 2−288 ≈ 2−318 ≈ 2−282 ≈ 2−317

240 230 245 230 secp521r1 (b=256, p≈2521) 2−216 ≈ 2−278 ≈ 2−308 ≈ 2−262 ≈ 2−307

240 230 255 230 secp521r1 (b=256, p≈2521) 2−216 ≈ 2−268 ≈ 2−298 ≈ 2−242 ≈ 2−297

240 220 235 230 x25519 (b=128, p≈2252) 2−88 ≈ 2−97 ≈ 2−152 ≈ 2−100 ≈ 2−152

240 220 245 230 x25519 (b=128, p≈2252) 2−88 ≈ 2−87 ≈ 2−152 ≈ 2−80 ≈ 2−152

240 220 255 230 x25519 (b=128, p≈2252) 2−88 ≈ 2−77 ≈ 2−152 ≈ 2−60 ≈ 2−152

240 230 235 230 x25519 (b=128, p≈2252) 2−88 ≈ 2−77 ≈ 2−142 ≈ 2−100 ≈ 2−142

240 230 245 230 x25519 (b=128, p≈2252) 2−88 ≈ 2−67 ≈ 2−142 ≈ 2−80 ≈ 2−142

240 230 255 230 x25519 (b=128, p≈2252) 2−88 ≈ 2−57 ≈ 2−142 ≈ 2−60 ≈ 2−142

240 220 235 230 x448 (b=224, p≈2446) 2−184 ≈ 2−291 ≈ 2−318 ≈ 2−282 ≈ 2−317

240 220 245 230 x448 (b=224, p≈2446) 2−184 ≈ 2−281 ≈ 2−308 ≈ 2−262 ≈ 2−307

240 220 255 230 x448 (b=224, p≈2446) 2−184 ≈ 2−271 ≈ 2−298 ≈ 2−242 ≈ 2−297

240 230 235 230 x448 (b=224, p≈2446) 2−184 ≈ 2−271 ≈ 2−318 ≈ 2−282 ≈ 2−317

240 230 245 230 x448 (b=224, p≈2446) 2−184 ≈ 2−261 ≈ 2−308 ≈ 2−262 ≈ 2−307

240 230 255 230 x448 (b=224, p≈2446) 2−184 ≈ 2−251 ≈ 2−298 ≈ 2−242 ≈ 2−297

260 220 235 250 secp256r1 (b=128, p≈2256) 2−68 ≈ 2−61 ≈ 2−116 ≈ 2−64 ≈ 2−116

260 220 245 250 secp256r1 (b=128, p≈2256) 2−68 ≈ 2−51 ≈ 2−116 ≈ 2−44 ≈ 2−116

260 220 255 250 secp256r1 (b=128, p≈2256) 2−68 ≈ 2−41 ≈ 2−116 ≈ 2−24 ≈ 2−116

260 230 235 250 secp256r1 (b=128, p≈2256) 2−68 ≈ 2−41 ≈ 2−106 ≈ 2−64 ≈ 2−106

260 230 245 250 secp256r1 (b=128, p≈2256) 2−68 ≈ 2−31 ≈ 2−106 ≈ 2−44 ≈ 2−106

260 230 255 250 secp256r1 (b=128, p≈2256) 2−68 ≈ 2−21 ≈ 2−106 ≈ 2−24 ≈ 2−106

260 220 235 250 secp384r1 (b=192, p≈2384) 2−132 ≈ 2−189 ≈ 2−244 ≈ 2−192 ≈ 2−244

260 220 245 250 secp384r1 (b=192, p≈2384) 2−132 ≈ 2−179 ≈ 2−244 ≈ 2−172 ≈ 2−244

260 220 255 250 secp384r1 (b=192, p≈2384) 2−132 ≈ 2−169 ≈ 2−244 ≈ 2−152 ≈ 2−244

260 230 235 250 secp384r1 (b=192, p≈2384) 2−132 ≈ 2−169 ≈ 2−234 ≈ 2−192 ≈ 2−234

260 230 245 250 secp384r1 (b=192, p≈2384) 2−132 ≈ 2−159 ≈ 2−234 ≈ 2−172 ≈ 2−234

260 230 255 250 secp384r1 (b=192, p≈2384) 2−132 ≈ 2−149 ≈ 2−234 ≈ 2−152 ≈ 2−234

260 220 235 250 secp521r1 (b=256, p≈2521) 2−196 ≈ 2−278 ≈ 2−298 ≈ 2−250 ≈ 2−285

260 220 245 250 secp521r1 (b=256, p≈2521) 2−196 ≈ 2−268 ≈ 2−288 ≈ 2−240 ≈ 2−285

260 220 255 250 secp521r1 (b=256, p≈2521) 2−196 ≈ 2−258 ≈ 2−278 ≈ 2−222 ≈ 2−277

260 230 235 250 secp521r1 (b=256, p≈2521) 2−196 ≈ 2−268 ≈ 2−298 ≈ 2−250 ≈ 2−285

260 230 245 250 secp521r1 (b=256, p≈2521) 2−196 ≈ 2−258 ≈ 2−288 ≈ 2−240 ≈ 2−285

260 230 255 250 secp521r1 (b=256, p≈2521) 2−196 ≈ 2−248 ≈ 2−278 ≈ 2−222 ≈ 2−277

(continued)
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Table 2. (continued)

Adv. resources SIGMA TLS 1.3

t #U #S #RO Curve (bit sec. b, order p) Target t/2b CK [17] Us (Theorem 4) DFGS [24] Us (Theorem 5)

260 220 235 250 x25519 (b=128, p≈2252) 2−68 ≈ 2−57 ≈ 2−112 ≈ 2−60 ≈ 2−112

260 220 245 250 x25519 (b=128, p≈2252) 2−68 ≈ 2−47 ≈ 2−112 ≈ 2−40 ≈ 2−112

260 220 255 250 x25519 (b=128, p≈2252) 2−68 ≈ 2−37 ≈ 2−112 ≈ 2−20 ≈ 2−112

260 230 235 250 x25519 (b=128, p≈2252) 2−68 ≈ 2−37 ≈ 2−102 ≈ 2−60 ≈ 2−102

260 230 245 250 x25519 (b=128, p≈2252) 2−68 ≈ 2−27 ≈ 2−102 ≈ 2−40 ≈ 2−102

260 230 255 250 x25519 (b=128, p≈2252) 2−68 ≈ 2−17 ≈ 2−102 ≈ 2−20 ≈ 2−102

260 220 235 250 x448 (b=224, p≈2446) 2−164 ≈ 2−251 ≈ 2−298 ≈ 2−250 ≈ 2−285

260 220 245 250 x448 (b=224, p≈2446) 2−164 ≈ 2−241 ≈ 2−288 ≈ 2−234 ≈ 2−285

260 220 255 250 x448 (b=224, p≈2446) 2−164 ≈ 2−231 ≈ 2−278 ≈ 2−214 ≈ 2−277

260 230 235 250 x448 (b=224, p≈2446) 2−164 ≈ 2−231 ≈ 2−296 ≈ 2−250 ≈ 2−285

260 230 245 250 x448 (b=224, p≈2446) 2−164 ≈ 2−221 ≈ 2−288 ≈ 2−234 ≈ 2−285

260 230 255 250 x448 (b=224, p≈2446) 2−164 ≈ 2−211 ≈ 2−278 ≈ 2−214 ≈ 2−277

280 220 235 270 secp256r1 (b=128, p≈2256) 2−48 ≈ 2−21 ≈ 2−76 ≈ 2−24 ≈ 2−76

280 220 245 270 secp256r1 (b=128, p≈2256) 2−48 ≈ 2−11 ≈ 2−76 ≈ 2−4 ≈ 2−76

280 220 255 270 secp256r1 (b=128, p≈2256) 2−48 ≈ 2−1 ≈ 2−76 1 ≈ 2−76

280 230 235 270 secp256r1 (b=128, p≈2256) 2−48 ≈ 2−1 ≈ 2−66 ≈ 2−24 ≈ 2−66

280 230 245 270 secp256r1 (b=128, p≈2256) 2−48 1 ≈ 2−66 ≈ 2−4 ≈ 2−66

280 230 255 270 secp256r1 (b=128, p≈2256) 2−48 1 ≈ 2−66 1 ≈ 2−66

280 220 235 270 secp384r1 (b=192, p≈2384) 2−112 ≈ 2−149 ≈ 2−204 ≈ 2−152 ≈ 2−204

280 220 245 270 secp384r1 (b=192, p≈2384) 2−112 ≈ 2−139 ≈ 2−204 ≈ 2−132 ≈ 2−204

280 220 255 270 secp384r1 (b=192, p≈2384) 2−112 ≈ 2−129 ≈ 2−204 ≈ 2−112 ≈ 2−204

280 230 235 270 secp384r1 (b=192, p≈2384) 2−112 ≈ 2−129 ≈ 2−194 ≈ 2−152 ≈ 2−194

280 230 245 270 secp384r1 (b=192, p≈2384) 2−112 ≈ 2−119 ≈ 2−194 ≈ 2−132 ≈ 2−194

280 230 255 270 secp384r1 (b=192, p≈2384) 2−112 ≈ 2−109 ≈ 2−194 ≈ 2−112 ≈ 2−194

280 220 235 270 secp521r1 (b=256, p≈2521) 2−176 ≈ 2−258 ≈ 2−278 ≈ 2−210 ≈ 2−245

280 220 245 270 secp521r1 (b=256, p≈2521) 2−176 ≈ 2−248 ≈ 2−268 ≈ 2−200 ≈ 2−245

280 220 255 270 secp521r1 (b=256, p≈2521) 2−176 ≈ 2−238 ≈ 2−258 ≈ 2−190 ≈ 2−245

280 230 235 270 secp521r1 (b=256, p≈2521) 2−176 ≈ 2−248 ≈ 2−278 ≈ 2−210 ≈ 2−245

280 230 245 270 secp521r1 (b=256, p≈2521) 2−176 ≈ 2−238 ≈ 2−268 ≈ 2−200 ≈ 2−245

280 230 255 270 secp521r1 (b=256, p≈2521) 2−176 ≈ 2−228 ≈ 2−258 ≈ 2−190 ≈ 2−245

280 220 235 270 x25519 (b=128, p≈2252) 2−48 ≈ 2−17 ≈ 2−72 ≈ 2−20 ≈ 2−72

280 220 245 270 x25519 (b=128, p≈2252) 2−48 ≈ 2−7 ≈ 2−72 1 ≈ 2−72

280 220 255 270 x25519 (b=128, p≈2252) 2−48 1 ≈ 2−72 1 ≈ 2−72

280 230 235 270 x25519 (b=128, p≈2252) 2−48 1 ≈ 2−62 ≈ 2−20 ≈ 2−62

280 230 245 270 x25519 (b=128, p≈2252) 2−48 1 ≈ 2−62 1 ≈ 2−62

280 230 255 270 x25519 (b=128, p≈2252) 2−48 1 ≈ 2−62 1 ≈ 2−62

280 220 235 270 x448 (b=224, p≈2446) 2−144 ≈ 2−211 ≈ 2−266 ≈ 2−210 ≈ 2−245

280 220 245 270 x448 (b=224, p≈2446) 2−144 ≈ 2−201 ≈ 2−266 ≈ 2−194 ≈ 2−245

280 220 255 270 x448 (b=224, p≈2446) 2−144 ≈ 2−191 ≈ 2−258 ≈ 2−174 ≈ 2−245

280 230 235 270 x448 (b=224, p≈2446) 2−144 ≈ 2−191 ≈ 2−256 ≈ 2−210 ≈ 2−245

280 230 245 270 x448 (b=224, p≈2446) 2−144 ≈ 2−181 ≈ 2−256 ≈ 2−194 ≈ 2−245

280 230 255 270 x448 (b=224, p≈2446) 2−144 ≈ 2−171 ≈ 2−256 ≈ 2−174 ≈ 2−245

Throughout Table 2, we assume that an adversary with running time t makes
no more than t · 2−10 queries to its random oracles. We target the bit-security
of whatever curve we use; this means that for b bits of security we want an
advantage of t/2b. If a bound does not achieve this goal, we color it red. We
consider runtimes between 240 and 280, a total number of users between to
vary between 220 and 230, and a total number of sessions between 235 and 255

(see above for the discussion of these parameter choices). We evaluate these
parameters in relation to all of the elliptic curve groups standardized for use
with TLS 1.3. We idealize symmetric primitives, assuming the use of 256-bit
keys in conjunction with 128-bit security curves and 384-bit keys in conjunction
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Fig. 4. Elliptic curve group order (y axis) required to achieve 128-bit (top) and 192-
bit (bottom) AKE security for SIGMA and TLS 1.3 based on the CK [17] SIGMA,
DFGS [24] TLS 1.3, and our bounds (ours giving the same result for SIGMA and
TLS 1.3), for a varying number of sessions #S (x axis). Both axes are in log-scale.
For each security and bound, we plot a smaller-resource “(sm)” setting with runtime
t = 260, number of users #U = 220, and number of random oracle queries #RO = 250

and a larger-resource “(lg)” setting with t = 280, #U = 230, and #RO = 270. We let
symmetric key/output lengths be 256 bits for 128-bit security and 384-bits for 192-bit
security; nonce length is 256 bits. The group orders of NIST elliptic curves secp256r1

(p ≈ 2256) and secp384r1 (p ≈ 2384) are shown as horizontal lines for context.

with higher-security curves, this corresponds to the available SHA-256 and SHA-
384 functions in TLS 1.3. The nonce length is fixed to 256 bits (as in TLS 1.3).

Our bounds do better than the CK [17] and DFGS [24] bounds across all
considered parameters and always meet the security targets, which these prior
bounds fail to meet for secp256r1 and x25519 for almost all parameters, but
notably also for the 192-bit security level of curve secp384r1 for large-scale
parameters. We improve over prior bounds by at least 20 and up to 85 bits of
security for SIGMA, and by at least 35 and up to 92 bits of security for TLS 1.3.

In comparison, the TLS 1.3 bounds from the concurrent work by Diemert
and Jager [21] yield bit security levels similar to ours for TLS 1.3: While some
sub-terms in their bound are slightly worse (esp. for strong DH), the dominating
sub-terms are the same.

Group Size Requirements. Finally, let us take a slightly different perspec-
tive on what the prior and our bounds tell us: Fig. 4 illustrates the group size
required to achieve 128-bit resp. 192-bit AKE security for SIGMA and TLS 1.3
based on the different bounds, dependent on a varying number of sessions #S.
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The CK SIGMA and our SIGMA and TLS 1.3 bounds are dominated by the
signature scheme advantage (with a #S · (#U)2 loss for CK and a #U loss
for our bound); the DFGS TLS 1.3 bound instead is mostly dominated by the
(#S)2–loss reduction to strong DH. The CK and DFGS bounds require the use
of larger, less efficient curves to achieve 128-bit security even for 235 sessions. For
large-scale attackers, they similarly require a larger curve than secp384r1 above
about 255 sessions. We highlight that, in contrast, with our bounds a curve with
128-bit, resp. 192-bit, security is sufficient to guarantee the same security level
for SIGMA and TLS 1.3, for both small- and large-scale adversaries and for very
conservative bounds on the number of sessions.
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A Evaluation Details

Fully-Quantitative CK SIGMA Bound. Comparing our SIGMA bound
from Theorem 4 to the original security proof by Canetti and Krawczyk [17]
(CK) faces two complications. First, we must reconstruct a concrete security
bound from the CK proof, which merely refers to the decisional Diffie–Hellman
and “standard security notions” for digital signatures, MACs, and PRFs (i.e.,
single-user EUF-CMA and PRF security). Second, the CK result is given in a
stronger security model for key exchange [16] which allows state-reveal attacks.
Further, the CK proof assumes out-of-band unique session identifiers, whereas
protocols in practice have to establish those from, e.g., nonces (introducing a
corresponding collision bound as in our analysis). We are therefore inherently
constrained to compare qualitatively different security properties here.

Let us informally consider a game-based definition of the CK model [16]
in the same style as our AKE model (cf. Definition 1), capturing the same
oracles plus an additional state-reveal oracle, with qRSt denoting the number
of queries to this oracle, and session identifiers that, like ours, consist of the
session and peers’ nonces and DH shares. Translating the SIGMA-I security
proof from [17, Theorem 6 in the full version], we obtained the following concrete
security bound:

AdvCK
SIGMA-I(t, qN, qS, qRS, qRL, qRSt, qT)

≤ 2q2S
2nl · p + Advmu-EUF-CMA

S (tB1 , qN, qS, qS, qRL) // sid collision & property P1

+ qN · qS ·
(
AdvDDH

G (tB2) + Advmu-PRF
PRF (tB5 , 1, 3) // property P2 . . .

+ (qN + 1) · Advmu-EUF-CMA
S (tB3 , 1, qS, qS, 0) + Advmu-EUF-CMA

M (tB4 , 1, 2, 2, 2, 2, 0)
)
,
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where nl is the nonce length, G the used Diffie–Hellman group of prime order p,
the number of test queries is restricted to qT = 1, and Bi (for i = 1, . . . , 5) are
the described reductions in [17, Theorem 6 in the full version] all running in
time tBi

≈ t. For simplicity, we present the above bound in terms of “multi-
user” PRF, signature, and MAC advantages for a single user qNw = 1, which are
equivalent to the corresponding single-user advantages (cf. Appendix B).

Fully-Quantitative DFGS TLS 1.3 Bound. We compare our security bound
for TLS 1.3 from Theorem 5 with the bound of Dowling et al. [24] (DFGS).
Note that this bound is established in a multi-stage key exchange model [25],
here we focus only on the main application key derivation, as in our proof. The
DFGS bound needs instantiation through the random oracle only in one step (the
PRF-ODH assumption on HKDF.Extract) while other PRF steps remain in the
standard model. Our proof instead models both HKDF.Extract and HKDF.Expand
as random oracles. Translating the bound from [24, Theorems 5.1, 5.2] yields:

AdvDFGS
TLS 1.3(t, qN, qS, qRS, qRL, qT)

≤ q2S
2nl · p

+ qS ·
(
AdvCRH (tB1) + qN · Advmu-EUF-CMA

S (tB2 , 1, qS, qS, 0)

+ qS ·
(
Advdual-snPRF-ODH

HKDF.Extract,G (tB3) + Advmu-PRF
HKDF.Expand(tB4 , 1, 3, 3, 0)

+ 2 · Advmu-PRF
HKDF.Expand(tB5 , 1, 2, 2, 0) + Advmu-PRF

HKDF.Extract(tB6 , 1, 1, 1, 0)

+ Advmu-PRF
HKDF.Expand(tB7 , 1, 1, 1, 0)

))
.

Let us further unpack the PRF-ODH term. Following Brendel et al. [15], it
can be reduced to the strong Diffie–Hellman assumption modeling HKDF.Extract
as a random oracle.8 In this reduction, the single DH oracle query is checked
against each random oracle query via the strong-DH oracle, hence establishing
the following bound: Advdual-snPRF-ODH

RO,G (tB3 , qRO) ≤ AdvstDH
G

(tB3 , qRO)

B Assumptions, Building Blocks, Multi-user Security

Definition 6 (Multi-user PRF security). Let PRF : {0, 1}k × {0, 1}m →
{0, 1}n be a function (for k, n ∈ N and m ∈ N ∪ {∗}) and Gmu-PRF

PRF,A be the multi-
user PRF security game defined as in Fig. 5. We define Advmu-PRF

PRF (t, qNw, qFn,

qFn/U) := 2 · maxA Pr
[
Gmu-PRF

PRF,A ⇒ 1
]

− 1, where the maximum is taken over all
adversaries, denoted (t, qNw, qFn, qFn/U)-mu-PRF-adversaries, running in time at
most t and making at most qNw queries to their New oracle, at most qFn total
queries to their Fn oracle, and at most qFn/U queries Fn(i, ·) for any user i.

8 The same paper suggests that a standard-model instantiation of the PRF-ODH
assumption via an algebraic black-box reduction to common cryptographic problems
is implausible.
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Generically, the multi-user security of PRFs reduces to single-user secu-
rity (formally, Gmu-PRF

PRF,A with A restricted to qNw = 1 queries to New)
with a factor in the number of users via a hybrid argument [7], i.e.,
Advmu-PRF

PRF (t, qNw, qFn, qFn/U) ≤ qNw · Advmu-PRF
PRF (t′, 1, qFn/U, qFn/U), where t ≈ t′.

(Note that the total number qFn of queries to the Fn oracle across all users
does not affect the reduction.) There exist simple and efficient constructions,
like AMAC [6], that however achieve multi-user security tightly. If we use a ran-
dom oracle RO as a PRF with key length kl, then Advmu-PRF

RO (t, qNw, qFn, qFn/U,
qRO) ≤ qNw·qRO

2kl .

Fig. 5. Multi-user PRF security of a pseudorandom function PRF : {0, 1}k ×{0, 1}m →
{0, 1}n. FUNC is the space of all functions {0, 1}m → {0, 1}n.

Definition 7 (Signature mu-EUF-CMA security [4]). Let S be a signature
scheme and Gmu-EUF-CMA

S,A be the game for signature multi-user existential unforge-
ability under chosen-message attacks with adaptive corruptions (see the full ver-
sion [20] for the formal definition). We define Advmu-EUF-CMA

S (t, qNw, qSg, qSg/U,

qC) := maxA Pr
[
Gmu-EUF-CMA

S,A ⇒ 1
]
, where the maximum is taken over all adver-

saries, denoted (t, qNw, qSg, qSg/U, qC)-mu-EUF-CMA-adversaries, running in time
at most t and making at most qNw, qSg, resp. qC total queries to their New,
Sign, resp. Corrupt oracle, and making at most qSg/U queries Sign(i, ·) for
any user i.

Multi-user EUF-CMA security of signature schemes (with adaptive corrup-
tions) can be reduced to classical, single-user EUF-CMA security (formally,
Gmu-EUF-CMA

S,A with A restricted to qNw = 1 queries to New) by a standard
hybrid argument, losing a factor of number of users. Formally, this yields
Advmu-EUF-CMA

S (t, qNw, qSg, qSg/U, qC) ≤ qNw · Advmu-EUF-CMA
S (t′, 1, qSg/U, qSg/U, 0),

where t ≈ t′. (Note that the reduction is not affected by the total number of
signature queries qSg across all users.) In many cases, such loss is indeed unavoid-
able [5].

Definition 8 (MAC mu-EUF-CMA security). Let M be a MAC scheme and
Gmu-EUF-CMA

M,A be the game for MAC multi-user existential unforgeability under
chosen-message attacks with adaptive corruptions (see the full version [20] for the
formal definition). We define Advmu-EUF-CMA

M (t, qNw, qTg, qTg/U, qVf, qVf/U, qC) :=

maxA Pr
[
Gmu-EUF-CMA

M,A ⇒ 1
]
, where the maximum is taken over all adversaries,
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denoted (t, qNw, qTg, qTg/U, qVf, qVf/U, qC)-mu-EUF-CMA-adversaries, running in
time at most t and making at most qNw, qTg, qVf, resp. qC queries to their
New, Sign, Vrfy, resp. Corrupt oracle, and making at most qTg/U queries
Tag(i, ·), resp. qVf/U queries Vrfy(i, ·) for any user i.

As for signature schemes, multi-user EUF-CMA security of MACs reduces to
the single-user case (qNw = 1) by a standard hybrid argument: Advmu-EUF-CMA

M (t,
qNw, qTg, qTg/U, qVf, qVf/U, qC) ≤ qNw · Advmu-EUF-CMA

M (t, 1, qTg/U, qTg/U, qVf/U,
qVf/U, 0), where t ≈ t′.(Note that the reduction is not affected by the total
number of tagging and verification queries qTg resp. qVf across all users.)

Our multi-user definition of MACs provides a verification oracle, which is
non-standard (and in general not equivalent to a definition with a single forgery
attempts, as Bellare, Goldreich and Mityiagin [9] showed). For PRF-based MACs
(which in particular includes HMAC used in TLS 1.3), it however is equivalent
and the reduction from multi-query to single-query verification is tight [9].

In our key exchange reductions, we actually do not need to corrupt MAC
keys, i.e., we achieve qC = 0. This in particular allows specific constructions like
AMAC [6] achieving tight multi-user security (without corruptions).

If we use a random oracle RO as PRF-like MAC with key length kl and
output length ol, then Advmu-EUF-CMA

RO (t, qNw, qTg, qTg/U, qVf, qVf/U, qC, qRO) ≤
qVf
2ol

+ (qNw−qC)·qRO

2kl
.

Definition 9 (Hash function collision resistance). LetH : {0, 1}∗ → {0, 1}ol
for ol ∈ N be a function. For a given adversary A running in time at most t, we
can consider AdvCRH (t) := Pr [(m,m′) $←− A : m �= m′ and H(m) = H(m′)].

If we use a random oracle RO as hash function, then AdvCRRO(t, qRO) ≤ q2RO

2ol+1 + 1
2ol

C Proof of the Strong Diffie–Hellman GGM Bound

We establish the bound of Theorem 3 through a sequence of incrementally chang-
ing code-based games; see the full version [20] for complete details.

Game 0. We formalize the strong Diffie–Hellman problem in the GGM using
the setting and notation of Bellare and Dai [8]. Briefly, we represent a group a
group of prime order p using an arbitrary set G of label strings and a randomly
chosen bijection E : Zp → G, called the encoding function. For any two strings
A,B ∈ G, we define the operation AOPE B = E(E−1(A) + E−1(B) mod p).
The adversary is given the identity element 1 = E(0), a generator g = E(1),
challenges X and Y, and oracle access to OPE through an oracle OP. Note that
for any integer a ∈ Zp, we can compute ga = E(a). On an input A,B, the stDH
oracle uses this property to find the discrete logarithm a of A in order to check
whether E(xa) = Xa = B. Throughout, we track the set GL of group element
labels the adversary has seen, and return ⊥ in response to all oracle queries
containing other labels. By definition, AdvstDH

G
(t, qsDH) = Pr[G0 ⇒ 1].
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Fig. 6. Game G1 of the stDH proof.

Game 1. Although the notation of G0 is simpler and more intuitive, it is more
useful for the proof game to internally represent elements of G with vectors over
Z
3
p instead of integers in Zp, as we do in Fig. 6. We map elements �t ∈ Z

3
p back

to Zp by taking the inner product of �t with the vector (1, x, y). (Effectively, we
take �t to be the coefficients of a linear combination of 1, x, and y, which are
represented respectively by the basis vectors �e1, �e2, and �e3.)

Composing this map with the encoding function E induces a transformation
from Z

3
p to G, which we implement via an internal oracle VE. We cache the

transformation in table TV and its inverse in table TI. Each element of G

now has multiple vector representations, but the bilinearity of the inner product
ensures that the view of the adversary is not changed, and Pr[G1] = Pr[G0].

Games 2–3. In Game G3, we make two undetectable changes: we lazily sample
the bijection E, and in the stDH oracle, we replace the condition VE(x�a) = B =
VE(�b) with the equivalent condition 〈x�a −�b, �x〉 = 0.

We continue in the next game by sampling the entries of TV directly instead
of through calls to E. Distinct vectors �t and �t′ no longer map to the same group
element when 〈�t, �x〉 = 〈�t′, �x〉. The adversary cannot notice this change unless
two such t, t′ are queried to VE; we call this event F1 and let Finalize return
true when it occurs. This only increases the success probability of the adversary,
so Pr[G1] ≤ Pr[G3]. At this point, function E is unused and becomes redundant.

Game 4. The adversary can trivially get a true response from the stDH oracle by
computing A = ga for any integer a and B = Xa. We now return false in all other
cases. Let F2 be the event where the adversary makes a nontrivial query (A,B) to
stDH that should return true, i.e., one where 〈xTI(A)−TI(B), �x〉 = 0. Unless F2

occurs, the output of stDH does not change, so Pr[G3] ≤ Pr[G4 and F2]+Pr[F2].

Game 5. This game is identical to G4, except Finalize returns true whenever
event F2 could have occurred. It follows that Pr[G3] ≤ Pr[G5]. At this point,
variables x, y, and �x are not used by any oracle except Finalize, so we delay
their initialization until the end of the game without detection by the adversary.
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Collecting bounds reveals that AdvstDH
G

(t, qsDH) ≤ Pr[G5∗]. A t-query adver-
sary playing G5∗ wins only if events F1 or F2 occur, or if [VE(x�e3) = Z]. Event
F1 occurs when table TI contains distinct �ti, �tj such that 〈�ti − �tj , (1, x, y)〉.
This means (x, y) is a root of the bivariate linear polynomial (�ti − �tj)[0] +
(�ti − �tj)[1] · x + (�ti − �tj)[2] · y. Since x and y are sampled independently by
the Finalize oracle, this occurs with probability at most 1/p for each poly-
nomial by Lemma 1 of [42]. Event F2 occurs when 〈x�ti − �tj , �x〉 = 0 for some
ti, tj in TI. Similarly, this means that (x, y) must be a root of the quadratic
(x�ti − �tj)[0] + (x�ti − �tj)[1] · x + (x�ti − �tj)[2] · y. By Lemma 1, this occurs with
probability at most 2/p for each (�ti, �tj) pair. Finally, [VE(x�e3) = Z] holds with
probability at most 1/p because VE(x�e3) is uniformly random.

Taking a union bound over the (t + 4)2 possible pairs (�ti, �tj), we obtain
Pr[G5∗] ≤ (3(t + 4)2 + 1)/p. The theorem statement follows for all t > 25. 
�
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Abstract. We introduce a new technique for indexing joins in encrypted
SQL databases called partially precomputed joins which achieves lower
leakage and bandwidth than those used in prior constructions. These
techniques are incorporated into state-of-the-art structured encryption
schemes for SQL data, yielding a hybrid indexing scheme with both par-
tially and fully precomputed join indexes. We then introduce the idea of
leakage-aware query planning by giving a heuristic that helps the client
decide, at query time, which index to use so as to minimize leakage and
stay below a given bandwidth budget. We conclude by simulating our
constructions on real datasets, showing that our heuristic is accurate and
that partially-precomputed joins perform well in practice.

1 Introduction

SQL applications are often deterred from using cloud storage solutions because
they do not wish to grant a third party access to their sensitive data. Yet, in-
house solutions often are less convenient than these large-scale ones and are
vulnerable to compromise as well. This calls for a cryptographic solution which
allows data on the cloud to be end-to-end encrypted so that the server never
“sees” the sensitive data. This in turn poses a challenge when the server is
called upon to perform SQL operations on the data.

Most current offerings of this technology depend heavily on property-
revealing encryption (PRE), making them vulnerable to leakage abuse attacks
(LAAs). For example, Always Encrypted either deterministically encrypts
columns or stores them with an ordered index [4]. These techniques have been
shown to offer little-to-no privacy in certain practical scenarios [26,37].

A more promising approach is structured encryption (StE) which uses aux-
iliary encrypted data structures (e.g. encrypted multimaps) to support a subset
of SQL queries [15]. This is done by translating the SQL query into tokens which
can be passed to the server to query the auxiliary structures. The outputs of this
are compiled, decrypted and processed to retrieve the SQL query result. Security
is measured by leakage profiles, which characterize what information a curious
server can learn. In particular, StE-based constructions leak equal or less than
PRE-based constructions and resist most known LAAs [8,9,20,25–27,37].
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Our contributions. Our work can be grouped into three main contributions:

1. Partially precomputed joins: We introduce a new way to index (equi)joins
which stems from the simple observation that when the server fully precom-
putes (FP) joins, the client has to download and decrypt a quadratic number
of rows and the server learns the equality pattern of said rows. In our app-
roach, the server partially precomputes (PP) joins: instead of indexing exactly
which rows from the input table should be concatenated and returned, it just
stores the set of rows from each input table that appears anywhere in the join
output. At query time, the client downloads these sets and computes the join.
When this is used to support SQL queries of the form “select * from id1
join id2 on at1 = at2”, PP outperforms FP in both leakage and bandwidth
at the cost of a logarithmic factor of client computation (in the worst case).

2. Hybrid indexing: When we incorporate PP joins into state-of-the-art StE
schemes, we discover that some queries (e.g. those with a selection subquery)
cannot be computed in the same way because the server does not know the
equality pattern on the join columns (i.e. how the rows “match up”). So
while PP joins are still the more secure choice, they sometimes incur more
bandwidth than FP. To address this, we develop a hybrid StE scheme with
both forms of indexing. The client chooses which to use at query time. We
provide the first heuristic (that we are aware of) to enable this type of leakage-
aware client-side query planning, helping the client decide how to minimize
leakage without exceeding a given bandwidth budget.

3. Simulations on real data: We quantify the effect of using FP and PP
join indexing on bandwidth incurred by simulating our constructions on data
from the City of Chicago’s Data Portal and MySQL’s sample Sakila database
[2,3]. On simple (non-recursive) join queries, PP’s bandwidth is on average
231 times less than FP’s but more complex (recursive) queries are split down
the middle as to which option used less bandwidth. We also demonstrate the
accuracy of our heuristic under different client storage constraints. Assuming
client storage comparable to that which is used in SQL Server, our heuristic
chose a query plan with the maximal number of PP joins 79% of the time,
and the optimal query plan 68% of the time.

Related work. Encrypted databases have been treated from a variety of per-
spectives. Structured encryption (StE) was defined by Chase and Kamara (CK)
and is a special case of SSE, which was first defined by SWP [41].

We see our work as a direct extension and improvement upon SPX and
OPX, two schemes which applied StE to the problem of indexing SQL databases
[15,32,34]. Both our scheme and OPX address a similar query class to the one
introduced in SPX, but lower leakage by using the hashset technique from OXT
and primitives inspired by CJJJKRS [12,13]. In particular, our FpSj scheme
in Sect. 4.2 bears many similarities to OPX with minor leakage improvements
from using a single indexing data structure. Our PpSj and HybStI schemes (in
Sect. 4.2 and Sect. 5 respectively) introduce a new technique which further lowers
leakage and server storage. For non-recursive queries, there are also substantial
bandwidth savings.
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PRE-based solutions achieves higher query support at the cost of higher
leakage [1,21,24,39,43], and are particularly susceptible to leakage abuse attacks
[8,9,20,25–27,37].

Finally, encrypted search has also been attempted using alternate models and
architectures including the database-provider model [28], MPC [6,16], ORAM
[23] and trusted execution environments [5,11,35].

Other works have also partially delegated computation to the client, to reduce
leakage or increase query support, though none have applied it to joins [17,19,42].

2 Preliminaries

We denote the empty string with ε. Given positive integer n, let [n] =
{1, 2, ... , n}. Given tuples t1 = (x1, ... , xn) and t2 = (y1, ... , ym) we write t1‖t2
as a shorthand for (x1, ... , xn, y1, ... , ym). We extend set operations ∩,∪ ∈,⊆
from sets to tuples by interpreting the tuples as sets.

Our algorithms often make use of dictionaries D which map labels � ∈ {0, 1}∗

to values D[�] ∈ {0, 1}∗ ∪ {⊥}. We also adopt the shorthand D.Lbls = {� ∈
{0, 1}∗ : D[�] �= ⊥}. A multimap M is an dictionary where M[�] is either a set
of strings or ⊥.

Pseudocode. In pseudocode, we will assume that all integers , strings and sets
are initialized to 0 , ε and ∅ respectively. For dictionaries and multimaps, they
are initialized with all labels mapping to ⊥. If S is a set or dictionary value,
we write S

∪←− x in pseudocode as a shorthand for S ← S ∪ {x}, initializing it
first to ∅ if necessary. If t is a tuple, we similarly mean t ← t‖(x) by writing
t ← t ∪←− x. Finally, we will write “Define X : pred” to set X (a function or
constant) in such a way that the predicate pred is true. If there are undefined
variables in pred we treat it as a random variable and expect that X is defined
such that pred will always be true.

Games. Our work uses the code-based game-playing framework of BR [7]. Let G
be a game and A an adversary. Then, we write Pr[G(A)] to denote the probability
that A plays G and the latter returns true. G may provide oracles to A, and if
so we write AO1,... ,On to denote that A is run with access to oracles O1, ... ,On.

Fig. 1. Games used in defining IND$ security of SE scheme SE (right) and PRF security
of function family F (left)
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Symmetric Encryption, IND$-security. Symmetric Encryption (SE)
scheme SE defines key set SE.KS, encryption algorithm SE.Enc and decryption
algorithm SE.Dec. Encryption is randomized, taking a key Ke ∈ SE.KS and a
message M ∈ {0, 1}∗ and returns a ciphertext C ∈ {0, 1}∗. Decryption is deter-
ministic and takes a key and ciphertext, returning a message. SE also defines a
ciphertext length function SE.cl. We require that if C ←$ SE.Enc(Ke,M) then
|C| = SE.cl(|M |) and Pr[SE.Dec(Ke, C) = M ] = 1. We want our SE schemes
to protect the privacy of M , so ciphertexts should be indistinguishable from a
random string of length SE.cl(|M |). We capture this with the game Gind$

SE in
Fig. 1 and say that a scheme is IND$-secure if Advind$

SE (A) = 2[Pr[Gind$
SE (A)] − 1

is small for all adversaries A.

Function Families, PRF-security. A function family F defines a key set
F.KS and an output length F.ol. It defines a deterministic evaluation algorithm
F.Ev : F.KS × {0, 1}∗ → {0, 1}F.ol. We define PRF security for function family F

via the game Gprf
F depicted in Fig. 1. We say that F is a PRF if Advprf

F (A) =
2Pr[Gprf

F (A)] − 1 is small for all A.

3 Structured Indexing for SQL Data Types

We now generalize CK’s definition of structured encryption and provide a new
framework for modeling encrypted SQL systems [15].

Abstract Data Types. An abstract data type ADT defines a domain set
ADT.Dom, a query set ADT.QS, and a deterministic specification function
ADT.Spec : ADT.Dom × ADT.QS → {0, 1}∗.

An example is the dictionary ADT DyAdt. DyAdt.Dom,DyAdt.QS contain
all possible dictionaries D and labels respectively (as defined in Sect. 2). Then,
DyAdt.Spec(D, �) = D[�]. Multimap ADT MmAdt is defined analogously.

Structured Indexing. We generalize Structured Encryption (StE) schemes
(as defined by CK [15]) to structured indexing (StI) schemes. These are StE
schemes without a decryption algorithm. The intuition here is that the handling
of outsourced data often indexes the data in addition to encrypting it and we
would like these encrypted indexes, whatever form they take, to achieve semantic
security as well. Later, we show how this primitive allows us to modularize StE
schemes. A StI scheme StI for ADT defines a set of keys StI.KS and the following
algorithms:

– Randomized encryption algorithm StI.Enc which takes a key K ′ ∈ StI.KS and
an element of ADT.Dom and returns an updated key K and index IX ∈ {0, 1}∗.
This syntax generalizes that of CK by allowing key generation to occur within
or outside StI.Enc.

– Possibly randomized token generation algorithm StI.Tok which takes a key
and a query from ADT.QS, and returns fixed length token tk ∈ {0, 1}StI.tl.

– Deterministic evaluation algorithm StI.Eval which takes a token and index,
and returns a ciphertext string C ∈ {0, 1}∗.
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– Finalization algorithm StI.Fin which takes K, q and an input string, and
returns an output string.

Intuitively, the client indexes his data then encrypts this index with StI.Enc,
storing IX on the server. At query time, the client uses StI.Tok to generate a
token and sends it to the server who runs StI.Eval, returning C to the client.
StI.Fin can be used for client-side post-processing of the data. Note that the
output of StI.Eval need not be the input to StI.Fin. In our indexing schemes the
server will use the output of StI.Eval as “pointers” to retrieve rows of SQL data
stored in a different data structure which in turn form the input to StI.Fin.

Structured Encryption. We can now define StE as a special cases of StI.
Intuitively, an StE scheme is an StI scheme where the data structure is also
used to store query responses (as opposed to just indexing them). The output
of evaluation can be fed into finalization for decryption and should return the
query result. To highlight this, StE schemes have a decryption algorithm StE.Dec
in place of a finalization algorithm which takes as input K, q,C and returns the
query result. We define correctness via game Gcor

StE in Fig. 2 and say that StE is
correct if the advantage of all adversaries A, defined Advcor

StE(A) = Pr[Gcor
StE(A)], is

low. The correctness of our schemes will depend on the collision resistance of their
function family primitives. Since we assume these are PRFs to prove security,
we will also assume that their key-lengths are sufficient to ensure correctness.

We subdivide StE schemes into two types. We say that a scheme StErr is
response revealing (RR) if evaluation itself returns the query result. In other
words, decryption must be such that StErr.Dec(K, q,C) = C for all K, q,C. An
StE scheme that is not RR is response hiding (RH).

We refer to StE for the multimap and dictionary data types as multimap
and dictionary encryption (MME/DYE) respectively. Our constructions make
use of a specific dictionary encryption scheme adapted from CJJ+’s SSE scheme∏

bas (2Lev in the Clusion library) [12,36]. In this scheme, the encrypted data
structure is itself a dictionary D′. We start by padding all values in the input
dictionary to the same length, then for each label-value pair �,D[�], we do
D′[F.Ev(Kf , �)] ← SE.Enc(Ke,D[�]) where F is a pseudorandom function family
and SE is a symmetric encryption scheme. For completeness, we include the pseu-
docode of this dictionary encryption scheme (which we call Dyeπ) in Appendix A.
Our constructions also make use of a generic RR multimap encryption scheme.
We adapt Dyeπ to Mmerrπ (using a counter and label-dependent Ke) as an exam-
ple of such a scheme in Appendix A.

Semantic security. We define semantic security for StI using game Gss
StI,L,S

depicted in Fig. 2, where StI is a StI scheme for ADT and L,S are algorithms
we refer to as the leakage algorithm and simulator respectively. The adversary
runs in a setup and guessing phase, as indicated by the first argument to it. Its
advantage is Advss

StI,L,S(A) = 2Pr[Gss
StI,L,S(A) = 1] − 1. Note that when StI is

an StE scheme we recover CK’s non-adaptive security notion.
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Fig. 2. Games used in defining correctness for StE (structured encryption scheme for
ADT) and semantic security for StI (structured indexing scheme for ADT) with respect
to leakage algorithm L and simulator S.

3.1 SQL Data Types

We now describe our notation for SQL data, queries and operations. We then
define a class of ADTs we call SQL data types to construct StE schemes for.

SQL relations, databases, schemas. SQL relation R defines a tuple of dis-
tinct attributes R.Ats = (at1, . . . , atn). Each attribute is a bitstring at ∈ {0, 1}∗

and represents a “column” in the relation. R also defines a table R.T consisting
of n-tuples of bitstrings representing the “rows” in the relation. Given a row
(x1, . . . , xn) = r ∈ R.T, we refer to the i-th entry of the row with r[ati] = xi.
We can initialize a relation with NewRltn

(
(at1, ... , atn)

)
which returns R with

the desired attribute set and no rows.
We define a database to be a set of relations with disjoint attributes and

their (distinct) identifiers, i.e. a set of the form DB = {(id1,R1), . . . , (idN ,RN )}
where i �= j implies idi �= idj and Ri.Ats ∩ Rj .Ats = ∅. We denote the identifier
set of such a database as DB.IDs = {idi}i∈[N ] and retrieve relations by identifier
using DB[idi] = Ri. Since database attributes are non-repeating, we allow the
retrieval of a table by any of its attributes using getID (i.e. if getID(at,DB) = id
then at ∈ DB[id].Ats). Similarly, if t ⊆ DB[id].Ats, then getID(t,DB) = id.

We require that each (id,R) ∈ DB has a unique key attribute uk(id) ∈ R.Ats.
This functions as a “row number” which is not secret and uniquely identifies each
row. In other words, for all distinct r, r′ ∈ R.T, we have r[uk(id)] �= r[uk(id′)].
Given some r ∈ DB[id] we refer to the tuple (id, r[uk(id)]) as its coordinates
and note that it uniquely identifies that row within the database. Addition-
ally, we refer to the values in a “column” with rng(at,DB) = {r[at] : r ∈
DB[getID(at,DB)]}.

A database’s schema communicates all information about DB except the
tables: Schema(DB) = {(id,R.Ats) : (id,R) ∈ DB}. As shorthand, if scma =
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Fig. 3. Examples of SQL relations R1,R2 and the output of joins/ selects on them.

Schema(DB) then scma[id] = DB[id].Ats and getID(at, scma) = getID(at,DB). In
our schemes, the client stores Schema(DB) as part of the key in order to appropri-
ately format data returned by the server. This is a result of our explicit handling
of schemas, coordinates and attributes, something which was left implicit in prior
work.

SQL operations. In our work, we address the secure computation of SQL
(equi)joins and (equality) selections. These operations work as follows.

The selection operation is parametrized by a pair of bitstrings (at, x), takes
a relation R1 with at ∈ R.Ats as input, and returns R = σ(at,x)(R1) where:

R.Ats = R1.Ats and R.T = {r ∈ R1.T : r[at] = x}.

In Fig. 3, we provide an example of such a selection on a relation in a database.
The join infix operation is a function parametrized by two equal-length tuples

of attributes t1, t2. It takes two relations R1,R2 with disjoint attribute sets where
(ati1, ... , atin) = ti ⊆ Ri.Ats. It returns R = R1 ��t1,t2 R2 where:

R.Ats = R1.Ats‖R2.Ats and (1)

R.T = {r1‖r2 : r1 ∈ R1.T, r2 ∈ R2.T,∀i ∈ [n], r1[at1i ] = r2[at2i ]}. (2)

In the case of a join on singleton tuples, we abbreviate ��(at),(at′) as ��at,at′ .
In Fig. 3, we provide an example such a join. Attribute tuples can be empty in
which case it returns the Cartesian product of the input rows. This is also known
as the “cross” operation ×.

ADT for SQL databases. We say that an ADT SqlDT is a SQL data types
if its domain elements DB ∈ SqlDT are SQL databases which take the form
DB = (DB, α) where DB is as defined in Sect. 3.1 and α ∈ {0, 1}∗ is the auxiliary
data. The purpose of α is to allow annotations on DB consistent with real world
applications. In this work, we use α to indicate the allowed joins, and SqlDT.Spec
always returns either a relation or ⊥.
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3.2 Constructing StE for SQL Data Types Using Encrypted Indexes

Our end goal is structurally encrypted databases supporting response-hiding
SQL queries. We build these by constructing StI schemes for classes of SQL
queries, then converting these into StE schemes for SQL data types via a generic
transform. We now describe this conversion, then dedicate the remainder of this
work to the above mentioned StI schemes.

Fig. 4. Algorithms and for structured encryption scheme StE = SqlStE[StI, SE,F]
expressed both in pseudocode (top) and diagrammatically (bottom left), and leakage
algorithm for StE (bottom right). Here, Dyeπ is the RH dictionary encryption scheme
Dyeπ in Appendix A (which uses SE,F as primitives) and Li is StI’s leakage profile.

StE, StI for SqlDT. Intuitively, our StE schemes handle the indexing and stor-
age of SQL data separately. We do the former with an StI scheme and the latter
with an RH dictionary encryption scheme. This modularization simplifies pseu-
docode and reduces the problem of designing secure StE schemes to that of StI
schemes.



488 D. Cash et al.

More formally, we construct an StE scheme for SQL data type SqlDT using the
transform SqlStE which which takes uses an StI scheme for SqlDT1 (described
below), symmetric encryption scheme SE and function family F. We capture the
syntax and pseudocode of StE’s algorithms in Fig. 4. Note that StE.KS = StI.KS
and Dyeπ is the RH dictionary encryption scheme given in Appendix A which
uses SE,F as primitives. It is used in EncRows,EvalRows,DecRows, which encrypt,
retrieve and decrypt the rows of database DB. We used a specific RH dictionary
encryption scheme because pathological alternatives may introduce circular secu-
rity issues, preventing a more general approach.

We now describe how the algorithms in StI and StE = SqlStE[StI,SE,F]
work. During StE.Enc, algorithm EncRows will store the rows of DB in an
encrypted dictionary ED using Dyeπ.Enc. It also prepares a token dictionary T
which maps each row coordinate to a token for Dyeπ. SQL data type SqlDT1

is the same as SqlDT except that its domain elements now take the form
DS = (DB, α,T) where (DB, α) ∈ SqlDT.Dom. The output of StE.Enc is ED
and the index returned by StI.Enc(DS).

StE’s tokens are those generated by StI. As such, the server’s first step in
StE.Eval is to run StI.Eval. We require that StI.Eval returns a pointer tuple P =
(P1, ... , Pn) which is a tuple of sets of tokens. The tokens in each Pi come from
T and point to rows from the same table. Algorithm EvalRows replaces each
token with relevant (encrypted) row from ED and returns ciphertext tuple C =
(C1, ... , Cn), the output of StE.Eval.

During StE.Dec, algorithm DecRows decrypts each ciphertext to get plaintext
tuple M = (M1, ... ,Mn). StI.Fin takes these decrypted rows and performs any
final client-side post-processing, returning the final output relation R.

In this work, we will define three different SQL data types, each with its
own StI scheme(s). To demonstrate that all of these can be used to construct
secure RH StE for their respective data type via SqlStE, we demonstrate that
the semantic security of StE reduces to that of its primitives. The proof follows
from a standard hybrid argument and is given in Appendix B.

Theorem 1. Let StE = SqlStE[StI,SE,F] be a correct StE scheme for SqlDT.
Then given algorithms Li,S i and adversary A we can define L as in Fig. 4 and
construct S, As, Af , Ai such that:

Advss
StE,L,S(A) ≤ Advind$

SE (As) + Advprf
F (Af) + Advss

StI,Li,Si(Ai).

4 Partially Precomputed Joins

We demonstrate our framework from Sect. 3 in action with two SQL data types:
JnDT and SjDT. The former only supports non-recursive join queries and is pre-
sented for the purpose of introducing partially precomputed (PP) join indexing.
The latter allows recursive queries, cluster joins and equality selections, and
demonstrates how OPX’s techniques can be modified to use PP joins.
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Fig. 5. Algorithms of StI schemes FpJn,PpJn (top) and their leakage algorithms (bot-
tom) where Mme is a RR multimap encryption scheme. Note that in the encryption
algorithm, boxed code belongs only to the respective algorithm.

4.1 Indexing of Non-recursive Joins

Join data type JnDT. We define JnDT.Dom to contain (DB, α) such that DB
is a database and α is the set of join queries supported (i.e. if A is the set of
attributes in DB that are not unique key attributes, then α ⊆ {(at1, at2) ∈
A × A : getID(at1,DB) �= getID(at2,DB)}. Our goal here is to capture SQL
queries of the form “id1 join id2 on at1 = at2” where id1, id2 ∈ DB.IDs and
ati ∈ DB[idi].Ats.

We allow queries to be any pair of attributes (i.e. JnDT.QS = {(at1, at2) :
ati ∈ {0, 1}∗}), but JnDT.Spec only computes the join if (at1, at2) ∈ α:

JnDT.Spec
(
(at1, at2), (DB, α)

)
= DB[getID(at1,DB)] ��at1,at2 DB[getID(at2,DB)]

and returns ⊥ otherwise. From here on we assume that all queries made are
“non-trivial” meaning they return relations with at least one row.
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FP indexing. FpJn is an StI scheme that “fully precomputes” joins and is
modeled after SPX’s handling of “type-2 selections” and OPX’s handling of “leaf
joins” [32,34]. The intuition here is that the output relation for each possible
join query is precomputed and pointers to the rows therein are stored as an entry
in a RR encrypted multimap. FpJn’s detailed algorithms and leakage profile are
given in Fig. 5. Note that FpJn.KS = Mme.KS and that each row in the output
of a particular join is indexed as a pair of pointers to rows in DB.

Since join queries are handled directly by Mme the leakage and efficiency of
FpJn depends entirely on Mme. For the rest of this discussion, we will assume
Mme is one of the mainstream multimap encryption schemes (e.g. [12,15,18])
with the “standard” leakage profile consisting the label space size |M.Lbls|, mul-
timap size

∑
�∈M.Lbls |M[�]|, query pattern (equality pattern of queries �1, ... , �n)

and query responses M[�1], ... ,M[�n].
Notice that when a query (at1, at2) is made in FpJn, the query responses

reveal the equality pattern of columns at1, at2 for rows that appear in the join
output. To illustrate, if the query is made on DB = {(id1,R1), (id2,R2)} where
R1,R2 are as depicted in Fig. 3, the server learns that the first two rows of each
Ri all have the same value in their at1, at2 columns, but won’t reveal anything
about the last two rows of each Ri apart from the fact that they are not returned
in the join. Note that in the worst case, the join returns all rows from both rela-
tions and the search pattern leakage reveals the entire equality pattern of both
columns. This leakage is comparable to PRE-based techniques like deterministic
encryption or adjustable joins (an observation also made by DPPS [20]). This
is significant because, as discussed in Sect. 1, LAAs are highly effective against
PRE and can be applied in this case. Beyond the worst case, FP indexing leaks
strictly less than PRE-based solutions but this does not make them immune to
LAAs. In particular, we believe that attacks (such as those using �p-optimization
or graph matching [8,37]) can be extended to make use of partial equality pat-
terns and cross column correlations, and be effective against FpJn’s leakage.

We also note that FpJn achieves lower leakage than the analogous indexing
in SPX or OPX because it uses a single multimap. The latter schemes had one
encrypted multimap for each attribute (i.e. Mat1 indexes all joins (at1, at2) ∈ α)
this leaks additional metadata and tells the adversary when two queries join on
the same at1.

PP indexing. We introduce a new StI scheme PpJn which performs “partially
precomputed” indexing, whose algorithms are also depicted in Fig. 5. PpJn.Enc
proceeds in the same way as FpJn.Enc but we store the rows from each input
relation separately. In other words, if Mf ,Mp are the multimaps constructed
in the respective setup algorithms, then Mp[(at1, at2, i)] = {rti : (rt1, rt2) ∈
Mf [(at1, at2)]} for i = 1, 2 and (at1, at2) ∈ α. Notice that this means the client
needs to reassemble the output relation from the two sets of rows in StI.Fin. We
recommend that the client do so by sorting then joining the columns, avoiding
the quadratic time nested loop join where rows are compared pairwise.

This small change in indexing technique has substantial impact on bandwidth
and security. In the worst case, the number of rows sent with FP is quadratic
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while PP’s is linear. This bandwidth reduction occurs because two sets of rows
are sent instead of their cross product. Notice that modulo some metadata infor-
mation (i.e. the multimap sizes), the PP leakage can be derived from the FP
leakage meaning that PP indexing is no worse than FP indexing. In fact, if more
than one row is returned to any query PP leakage is strictly lower. To illustrate,
when join query (at1, at2) is made to the aforementioned database in Fig. 3, the
adversary sees that the first three rows of both tables were returned and can infer
that each row has at least one matching value in the other column – nothing
specific about their equality patterns.

In summary, PpJn is the superior indexing choice for JnDT because its leakage
is strictly lower, bandwidth is no worse and efficiency is comparable.

Semantic security. The security of FpJn,PpJn reduce to that of Mme. The
proof follows directly from the definition of Mme’s semantic security and is
deferred to the full paper.

Theorem 2. Let L,S be the leakage algorithm and simulator for Mme. Let
Lf ,Lp be the leakage algorithms given in Fig. 5. Then, given adversary A these
exists adversary Am and simulator Sp such that:

Advss
FpJn,Lf ,S(A) ≤ Advss

Mme,L,S(A) and Advss
PpJn,Lp,Sp(A) ≤ Advss

Mme,L,S(Am).

4.2 PP Indexing for Recursive Queries

SjDT. We expand the query support of JnDT to include equality selections,
cluster joins (joins on more than one attribute) and recursively defined queries.
The resultant query class is similar to the SPJ algebra defined by CM [14] except
for the omission of the projection operation which we note can be handled as a
post-processing step requiring no cryptographic techniques.

We capture this via the SQL data type SjDT. Its domain is unchanged from
JnDT.Dom except that α allows tuple pairs in addition to attribute pairs. Below
we describe the forms, evaluation and SQL equivalent of q ∈ SjDT.QS. (Note
that the r, s, j flags are included in SjDT queries for domain separation.) These
are defined recursively so qi,qi are themselves queries of the respective type.

Query Type SjDT query q SjDT.Spec(q, DB) SQL query q

Relation retrieval (r, id) DB[id] where DB = (DB, α) select * from id

(Equality)

selections

(s, at, x, q1) σ(at,x)(SjDT.Spec(q1, DB)) select * from q1 where

at = c

(Equi)joins (j, t1, t2, q1, q2) where

(t1, t2) ∈ α

(SjDT.Spec(q1, DB)) ��t1,t2
(SjDT.Spec(q2, DB))

select * from q1 join q2
on t1 = t2

We say that queries of the form (r, id), (s, at, x, (r, id)) or (j, t1, t2,
(r, id1), (r, id2)) are non-recursive and all others are recursive. We require that
all attributes in each ti come from the same relation in DB (i.e. ti ⊆ DB[id].Ats for
some id ∈ DB.IDs). While allowing cluster joins may lead to an exponential-size
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index, a judicious database administrator would not allow this – cluster joins are
rarely used and usually known in advance.

Hashset filtering. To minimize the leakage of recursive queries in our StI
schemes we employ the filtering hashset technique introduced in OXT [13]. We
now review this technique and establish some notation for it.

This filtering hashset is a set denoted HS containing outputs of a function
family F where F.KS = {0, 1}F.ol. In our algorithms, the hashset will be used
to associate predicate bitstrings with a row tokens (from T). Later, given a
predicate p’s key K = F.Ev(Kf , p) we can filter a set of row tokens, retaining only
those which satisfy the predicate. We formalize this via the following algorithms:

Alg HsEnc(Kf , SET)

For (p, rt) ∈ SET do

HS ∪←− F.Ev
(
F.Ev(Kf , p), rt

)

Return HS

Alg HsFilter(K, (P1, ... , Pn),HS)

For i ∈ [n] do

For rt ∈ rt ∈ Pi if F.Ev(K, rt) ∈ HS then S
∪←− rt

If S �= ∅ then Pi ← S

Return (P1, ... , Pn)

For notational convenience in our pseudocodes, HsFilter takes as input a tuple
set P = (P1, ... , Pn). It then attempts to filter each Pi and retain only the tuples
where at least one rt satisfies the predicate. However, if no such tuple exists, it
does not perform the filtering at all.

PP indexing for SjDT. We are now ready to extend the PP indexing tech-
nique introduced in Sect. 4 to construct StI for SjDT. On a high level, we do so
by using an inverted index (similar to those used for SSE) to handle selections
and a filtering hashset to handle recursively defined queries. The result is StI
scheme PpSj whose algorithms are depicted in Fig. 6.

Now we provide some intuition for PpSj’s algorithms. The scheme has two
server-side data structures: an encrypted multimap and a hashset. The mul-
timap is used to index non-recursive queries my mapping a query-derived
label to the relevant rows in the database. For example, the label for rela-
tion retrieval query (r, id) is the query itself and its values are row tokens
associated to rows in DB[id] (i.e. {(T[(id, r[uk(id)])]) : r ∈ DB[id].T}). Note
that the latter are singleton tuples because we required that pointer tuples
be made out of tuples of tokens. The hashset is used to filter the sets in a
pointer tuple during a recursive query. For example, when processing the query
(j, t1, t2, (s, at, x, (r, id1)), (r, id2)) (a select followed by a join), the server would
use the multimap to retrieve row tokens for each of the non-recursive subqueries
(i.e. (s, at, x, (r, id1)) and (r, id2)). The token would also include two keys which
can be used with HsFilter which tests if the rows being pointed to (in id1 or id2)
are in DB[id1] ��t1,t2 DB[id2].
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Fig. 6. Algorithms for PpSj the StI scheme for SjDT using PP indexing.

FP indexing for SjDT. We analogously extend FpJn introduced in Sect. 4 to
construct FpSj, an StI for SjDT. Just like with PpSj, non-recursive queries will be
added to the encrypted multimap that is used to index the non-recursive joins
while all recursive queries are filtered using the hashset. The only subtlety in
this extension is the handling of “internal joins” which are queries of the form
q = (j, t1, t2, (r, id), q1) (or q = (j, t1, t2, q1, (r, id))) because we want to limit the
row tokens leaked from id to those who join with some row returned by q1. Similar
to OPX, we construct an index where each row token returned in the subquery will
“point to” the tokens of the rows joined to in DB[id]. As alluded to in Sect. 3.2,
this self-referential indexing (where Mme tokens are stored in M) may introduce
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circular security issues if pathological Mme primitives are used. We avoid this by
indexing internal joins with a specific, non-pathological primitive (as was done in
OPX). To avoid the increased leakage and complexity of an additional data struc-
ture, we will assume that Mme is the Mmerrπ scheme recounted in Appendix A and
co-locate this index with the one used for non-recursive queries. Notice that this
subtlety does not come up in PpSj because we do not reveal join equality patterns
so all recursive joins can be handled similarly.

The StE scheme StE = SqlStE[FpSj,SE,F] is essentially the same as OPX
with minor improvements in leakage (analogous to those described in our discus-
sion of FpJn in Sect. 4) and a slightly revised approach to “internal joins”. For this
reason, we defer a complete description of FpSj to the full version of this work.

PpSj leakage profile. While a pseudocode description of PpSj’s leakage pro-
file may seem convoluted, we believe the intuition behind it enables helpful
comparisons with FpSj and OPX [34]. As such, we aim to give some intuition
by describing the components of PpSj’s leakage profile via a running example,
deferring a full description of PpSj’s leakage algorithm and the associated secu-
rity proof to Appendix C. Below, we assume that MME primitives have the
“standard” leakage profile (as described in Appendix A).

Our example database contains R1,R2 from Fig. 3. If no queries are made, the
server-side data structures reveal only metadata leakage. This includes the num-
ber of values in the multimap, the maximum-length of a value in the multimap
and the number of F outputs in the hashset. The leakage of FpSj is compara-
ble but on OPX it is higher because different data structures are used to index
different SQL operations.

We will refer to all other forms of leakage as “query dependent leakage”. This
is where PP indexing has substantial savings over FP and OPX.

Now lets assume the client makes the following queries: q1 = (s, at3, CS,
(r, id2)), q2 = (s, at2, Eve, (r, id2)), q3 = (r, id1) and q4 =

(
j, at1, at2,

(r, id1), (s, at3, CS, (r, id2))
)
. The server will receive four tokens, where

tk1, tk2, tk3 are such that tki = (r,mti) and tk4 =
(
j, (r,mt4), (j,K,mt5)

)
. Here,

each mti is a token for Mme while K is a hashset key. Just from inspecting these,
the adversary learns the recursion structure of the queries. Specifically, he learns
that the first three queries were non-recursive while q4 was a join followed by
a select. This leakage is slightly lower in FpSj,PpSj compared to OPX because
the adversary cannot differentiate between non-recursive selections and relation
retrievals.

The Mme tokens leak the multimap query pattern and multimap responses.
The former reveals whenever the associated query or subquery is repeated. In
our case, the adversary learns that mt1,mt5 are associated to the same query.
Note that this does not extend to mt3,mt4 because the latter is in a join. From
the multimap query responses he “sees” the row tokens that are returned by each
Mme.Eval(mti,EM). This reveals the equality pattern of the rows returned by
each associated query/subquery. For example, this reveals that q1, q2 both return
two rows, one of which is shared. On join queries, we enjoy similar leakage savings
as described in the non-recursive case. For example, tk4 will reveal that three
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rows are returned from the left relation (i.e. id1) but doesn’t say anything about
whether they are in the final output relation or how they “match up” with rows
from the right relation. In FpSj and OPX, both of the above are revealed.

Finally, the hashset keys reveal the hashset key query pattern and hashset
filtering results. The former reveals when the exact same predicate is repeated
and is detectable because the keys would be the same. The latter is because the
adversary is free to apply hashset keys (in the tokens) to filter all the row tokens
he can retrieve from EM thereby learning the hashset filtering results. This means
that using K he can learn that one row returned by q2 satisfies the predicate
associated to K even though it is not in the output of q4. Similarly, he learns
that two rows returned by q1 satisfies the predicate but only one is returned by
q4. Using FpSj the adversary would additionally learn which row returned in q3
is “paired up” with this row in the q4 output.

Leakage comparison. From the above discussion, one might expect decreas-
ing query-dependent leakage from PpSj to FpSj to OPX. While the leakage for
FpSj can always be derived from OPX, the comparison of PpSj to FpSj is not
as straightforward because they sometimes do not return the same rows when
recursive queries are made (which we discuss in more detail below).

However, when restricted to non-recursive queries, PpSj’s query-dependent
leakage is strictly superior for the same reasons that PpJn was superior in Sect. 4.
Extending this, we can upper bound the leakage lkp of PpSj on queries q1, ... , qn

with its leakage lk′
p on the minimal set of non-recursive queries q′

1, ... , q
′
m with

which the server can still deduce the pointer tuples it should return on q1, ... , qn.
Doing the same for FpSj, we have lkf ≤ lk′

f as well. Then, via the above obser-
vation about non-recursive queries we have lk′

p ≤ lk′
f , with the inequality being

strict if at least one join query with at least two rows is made. Our being able
to bound PpSj’s query-dependent leakage lower than FpSj’s gives credence to the
intuition that PpSj is the more secure variant in practice.

Efficiency drawback of PpSj. Comparing the bandwidth of PpSj,FpSj is
also not clear cut: On non-recursive queries, PpSj will perform equal or better
than FpSj but on recursive queries the converse is sometimes true.

Consider the query q = (s, at3, CS, (j, at1, at2, (r, id1), (r, id2))) in our toy
example. With FpSj, the server returns pointers to the two rows that feature
in the output relation (i.e. those with coordinates (id1, cc), (id2, 33)) but PpSj
returns four (i.e. with coordinates (id1, aa), (id1, bb), (id1, cc), (id2, 33)) because
without the equality pattern over the join columns and it cannot filter out the
first and second rows of R1.

More generally, this overhead may occur anytime that a recursive query
(involving at least one join) is made and grows with query complexity. Depend-
ing on the data and query workload, this overhead ranges from negligible to
quite substantial, something we explore further in Sect. 6.
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5 Hybrid Indexing

We showed that the choice between FP and PP indexing depends heavily on
query load. This motivates our hybrid StI scheme that postpones this decision
till query time. We first cover the technical details of supporting both indexing
techniques, then give a heuristic for the client to choose between them.

Fig. 7. Data/ query processing in unencrypted SQL databases (left) and the analogous
processes using SqlStE with hybrid indexing (right).

Hybrid data processing. We give a new ADT where each join in a query is
annotated with the desired indexing technique, HybDT. This ADT is equivalent
to SjDT except that its join queries take the form (op, t1, t2, q1, q2) where op ∈
{fp, pp}. When evaluating HybDT.Spec, these are both functionally equivalent
to the analogous SjDT join query’s (j, t1, t2, q1, q2).

The hybrid system we envision makes the same assumption as in (unen-
crypted) SQL DBMSes – that client queries are unoptimized and have no canoni-
cal form – and therefore mirrors its data flow as depicted in Fig. 7. It also borrows
its architecture (i.e. use of a client-side proxy) from existing encrypted SQL solu-
tions [39,42]. The client’s SjDT query is annotated using a heuristic optimizer to
get a HybDT query. This latter query is then tokenized, evaluated and decrypted
using hybrid indexing scheme HybStI in StE = SqlStE[HybStI,SE,F].

As best we know, no existing work has looked into query optimization in
StE schemes. We believe this area to be of independent interest because unlike
encrypted systems where optimization runs on the server (with full access to the
data) and is solely interested in maximizing efficiency, optimization in encrypted
SQL DBMSes should be done (at least partially) by the proxy with only precom-
puted statistics about the data and may additionally seek to minimize leakage.
We initiate this study with our heuristic below.

HybStI details. This StI merges FpSj,PpSj by essentially storing both kinds
of indexes on the server. More specifically, HybStI.Enc will merge the multimaps
and hashsets generated by PpSj,FpSj (avoiding repetition where possible) so that
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it can take join tokens of either form. When a HybDT join query is made, the
client indicates which index to use in its query with op.

We believe the intuition for how HybStI works is straightforward, so we defer
a full pseudocode, leakage algorithm and proof of security to the full version
of this paper. The only subtlety comes when a query contains both FP and
PP joins. Notice that pointer tuples in this case will contain more than one Pi

(unlike FpSj) and the tuples in at least one Pi will contain more than one rt
(unlike PpSj). As such, after the client performs the PP joins in HybStI.Fin some
column reordering may be necessary.

HybStI leakage. We will describe HybStI’s leakage profile in comparison to
that of PpSj and FpSj. The metadata leakage is comparable, with each size
(multimap or hashset) being the sum of respective FpSj and PpSj sizes. The
recursion structure leakage is technically higher but only because we leak the
join annotations that weren’t present in the other two schemes.

For the same reason that PpSj and FpSj’s query-dependent leakages were
not directly comparable, they also cannot be compared with that of HybStI.
However, like we did in Sect. 4.2, we can upper bound HybStI’s query-dependent
leakage on q1, ... , qn ∈ HybDT.QS with that of q′

1, ... , q
′
m, the minimal set of non-

recursive queries in HybDT.QS (with consistent join annotation) with which the
server can still compute its output on q1, ... , qn. This leakage is no better than
the analogous bound in PpSj and no worse than that of FpSj, this confirms the
intuition that hybrid indexing achieves an intermediate level of query-dependent
leakage compared to solely using FP or PP indexing.

Leakage-aware query planning. The join annotation selected by our query
planning heuristic will minimize leakage without exceeding a predetermined
bandwidth limit. More specifically, suppose the user supplies a query q ∈ SjDT
with J joins and a bandwidth limit L indicating the maximum number of rows
from ED that can be returned in the ciphertext tuple. We estimate the band-
width of all possible HybDT queries, then select an annotation by:

1. Eliminating options which exceed L rows. If none remain, return ⊥.
2. Maximize number of PP joins
3. If multiple choices remain, minimize bandwidth.

We argue that our setup is realistic because (1) we expect the J joins made in a
query to be modest enough for the client to evaluate all 2J HybDT queries, (2)
bandwidth measurement can be reduced to the number of rows from ED sent as
they are padded to the same length, and (3) is it common for SQL applications
to limit bandwidth to prevent the client from maxing out its memory.

To complete this setup, we need a way for the client to estimate the band-
width of a query with only partial information about DB computed during setup.
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Fig. 8. EvalBW algorithm (left) defined in terms of precomputed statistics (right)
stored on the client. Our heuristic assumes that q incurs bandwidth

∑
i∈B.Lbls B[i]

where B = EvalBW(q).

These precomputed statistics are listed on the right of Fig. 8 and the bandwidth
estimation algorithm is EvalBW. Intuitively, EvalBW will populate a dictionary
B with entries B[i] representing the bandwidth for the ciphertext set containing
rows from all DB[id] where id ∈ i. We estimate that a query q ∈ HybDT.QS
incurs bandwidth

∑
i∈B.Lbls B[i] where B = EvalBW(q). We will next explore

the tradeoffs involved in storing these statistics.

Memory tradeoffs. Notice that the client storage required for the precom-
puted statistics (as given in Fig. 8) increases with number of joins (i.e. |α|) and
size of histograms (i.e. |rng(at,DB)| for each at). In practice, data may be too
complex or client devices may be too memory strapped (e.g. mobile devices) to
store this in full. We describe two tradeoffs application designers can explore to
better fit their system requirements.

When it is unfeasible to store full frequency histograms for some at, the
client can partition rng(at,DB) into ranges and store this bucketed frequency
histogram. EvalBW will approximate Hat(x) by assuming that values within
a bucket are uniformly distributed. This approach is used in SQL server and
the literature recommends 200 equiDepth (as opposed to equiWidth) buckets
[10,40]. In the extreme case, the client uses a single bucket and needs only store
|rng(at,DB)| and uses Hat(x) ≈ 1

|rng(at,DB)| . Note that this only works when the
elements of rng(at,DB) can be closely approximated and ordered. For example,
this may not work with a “name” column because the names in rng(at,DB)
are not dense in any easily enumerated set. In general, bucketing sacrifices the
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Fig. 9. Simulated server storage for each data set using each of our schemes in terms of
multimap (MM) labels/values and hashset (HS) values broken down by the query type
being indexed (i.e. relation retrievals, non-recursive/ recursive joins, or selections).

accuracy of EvalBW to reduce client memory. We study this tradeoff more in
Sect. 6.

Above, we assumed the client would pre-compute and store the join sizes.
When this is infeasible due to memory constraints, the client can alternatively
compute join sizes using table sizes and the Hat(x) during EvalBW whenever
rng(at) is enumerable. Notice that we can express each co-occurrence frequency
as a function of the relevant occurrence frequencies. With a single attribute join,
let X = rng(at1,DB) ∩ rng(at2,DB), Ni = N (getID(ati, scma)) then

F(at1, at2) = N1 · N2 ·
∑

x∈X

Hat1(x) · Hat2(x) and Pj(at1, at2) = Nj ·
∑

x∈X

Hatj (x).

We can extend this to a cluster join (t1, t2) where tj = (atj1, ... , atjn). We
substitute the above histogram values for Htj (x1, ... , xn) and take the sum
over all (x1, ... , xn) where xi ∈ rng(at1i ,DB) ∩ rng(at2i ,DB). These frequencies
are approximated by assuming that columns are independently distributed:
Hti(x1, ... , xn) ≈ ∏

i∈[n] Hatji
(xi). Note also that accuracy issues are com-

pounded if frequency histograms are themselves estimated using bucketing. In
general, approximating join sizes trades efficiency (of EvalBW) and accuracy (for
cluster joins) to reduce memory.

6 Simulations on Real-World Datasets

To get some indication of how our schemes would fare in practice we simulate
the storage and bandwidth they would incur in a real-world context. We show
that in practice, PP indexing is likely to be more storage efficient than FP. We
also confirm three claims made in this work: (1) PP indexing has equal or better
bandwidth than FP on non-recursive joins (i.e. JnDT queries), (2) On recursive
selects and joins (i.e. SjDT queries), the analogous choice is data and query
dependent, and (3) our heuristic is accurate in finding optimal hybrid query
execution plans.
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Fig. 10. Breakdown of all possible non-recursive join queries which returns at least one
row by join types. For each type, we simulated the number of rows that would be sent
using FP and PP indexing, and report the minimum, average and maximum overhead
incurred.

We note that our goal here is not to make broad statements about all SQL
data nor to perform a full system evaluation. We see our simulations more as a
sanity check which might motivate large-scale implementations of our schemes.
Additionally, we are not aware of any benchmarks with just join and select
queries so we generate our own as described below.

Simulation setup. Our simulation dataset uses all relations from the MySQL
Sakila benchmark1 and the following fifteen frequently accessed relations
from Chicago’s Open Data Portal: Bike Racks, Census Data, Crimes 2019,
Employee Debt, Fire Stations, Grafitti, Housing, IUCR Codes, Land Inventory,
Libraries, Lobbyists, Police Stations, Reloc Vehicles, Street Names, Towed Vehicles.
In total, our setup involved 30 relations, 175 attributes and 219,992 rows.

We include in α all single-attribute joins that return at least one row. This
helps to filter out meaningless join queries (e.g. joining on “language” and
“actor”). We consider joins within the Sakila relations and joins within the
Chicago relations, but we do not attempt joins between the two independent
sources. We generate recursive queries with J joins and S selections by selecting
uniformly at random J distinct joins from α as well as S attributes and elements
of their domains, discarding queries that return no rows. When J ≥ 2 we only
use input tables with less than 1000 rows to avoid very large output relations.

Server storage. With the above setup we can get an idea of how much server-
side storage would be required by each of our indexing schemes. Recall that
our schemes make use of a RR multimap primitive and/or a hashset filtering
primitive. Therefore, in Fig. 9 we report the number of multimap2 labels and
values as well as the values in hashset HS for each of our StI schemes. We present
our simulation results for the two datasets separately since the Chicago data set
contains many more rows and would dominate the Sakila statistics. Additionally,
we also show a breakdown of these statistics in terms of the queries they index
to better understand the cost of each type of query support.

A number of observations can be made from this data. In our simulation we
see that even though there are more selections to index (as evidenced by the
number of labels), the multimap size (i.e. number of values) is dominated by

1 We excluded the film text relation since it is a subset of the film relation.
2 Note that in the case of FpSj,HybStI, this includes the multimap for internal joins.
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join indexes. We expect this cost to be lower in a real system because a judicious
database administrator can reduce the set of supported joins (α) to a smaller
number than we did. Our simulation also brings forth another advantage of PP
join indexing – it is more storage efficient by several orders of magnitude. This
is because each row token is stored at most once per join (the same thing which
causes PP to have better bandwidth) and, in the case of SjDT, there is no need
for the “internal join” indexing which essentially doubles the multimap’s labels
and values. Finally, for the above reason, the storage overhead of hybrid indexing
over FP indexing is very small so systems which currently use indexing schemes
like FP (e.g. OPX or SPX) can upgrade its security at low cost.

Join categories. We partition joins into three classes which behave quite dif-
ferently: one-one, one-many and many-many. We say that a join R ← R1 ��at1,at2

R2 is one-one if each row in R1,R2 occurs at most once in R. It is one-many if
the above is true for one relation but not for the other. It is many-many if there
exists rows in both R1,R2 which occur more than once in R. We record the
breakdown of these classes in our datasets in Fig. 10.

StI for JnDT. In Sect. 4 we showed that PP indexing has superior bandwidth
on non-recursive join queries. We demonstrate that these savings by computing
all 1880 possible joins in α and report our findings in Fig. 10. As one would
expect, PP indexing always performs equal or better to FP – they perform
equally for one-one joins but there are moderate and significant savings for one-
many and many-many joins respectively.

Fig. 11. On randomly generated queries involving the indicated number of joins (��)
and selects (σ), we report the minimum, average and maximum ratios of rows sent
using each indexing technique compared to the theoretical minimum possible.

StI for SjDT. In Sect. 4.2 we noted that neither PP nor FP joins are strictly
superior when it comes to recursive SjDT queries. We demonstrate this using our
datasets. For each combination of 1 to 3 joins and 0 to 2 selects, we randomly
sampled 25 queries and report the results in Fig. 11. As can be seen, neither
scheme can reliably achieve the optimal bandwidth. While FpSj performed better
on average, its maximum overhead exceeds that of PpSj in about half the cases.
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Fig. 12. On randomly generated queries involving the indicated number of joins (��)
and selects (σ), we report the accuracy of our heuristic under three different client
storage settings. When a suboptimal query execution plan is returned, we report the
point at which our heuristic fails (with R3 being the closest to success).

Hybrid StI. In Sect. 5 we provided a heuristic for client-side leakage-aware
query planning. We demonstrate its efficacy when frequency histograms are esti-
mated via three bucketing options: B = |rng(at,DB)| (full histograms), B = 200
and B = 1. We use the same 225 queries as the SjDT simulations and set the
bandwidth limit L for each q ∈ SjDT to be the mean incurred by all 2J possible
HybDT queries to ensure that the optimization is non-trivial. Additionally, join
sizes F ,P1,P2 are estimated using the histogram. Therefore, our simulation is
conservative and we expect our heuristic to perform better in applications with
a fixed L and precomputed join sizes.

In Fig. 12 we show how our heuristic performed for each query type and his-
togram estimation technique. When the optimal join annotation is not returned
we note which “level” the heuristic failed at, where the levels are defined in rela-
tion to our definition of “optimality” given in Sect. 5. In particular, an R1 failure
means the returned q′ exceeds bandwidth limit L when StE.Eval is run, an R2
failure means q′ used more FP joins than was necessary to reduce bandwidth
below L and an R3 failure means q′ was not the smallest bandwidth option which
uses the minimal number of FP joins while meeting L.

Unsurprisingly, there is a direct tradeoff between client memory and the
heuristic’s accuracy: across all 225 queries, the heuristic returned the optimal
q′ on 198 with full histograms but only 143 and 76 when B = 200 and B = 1
respectively. More interestingly, our heuristic seems to improve when the search
space increases: when there is one join the heuristic performed slightly better
averaged across all three B values than guessing (58.7% vs 50%) but when there
are three it performs significantly better (56.4% vs 12.5%). This demonstrates
that our heuristic works when it is most needful since we expect the bandwidth
overhead from an incorrect choice to increase with query complexity.
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7 Conclusion

Our work introduces partially precomputed join indexing and incorporates it
into a hybrid StE scheme. While we did not explore it in this work, we believe
that our schemes can be extended to support dynamic queries and adaptive
security via multimap primitives of the same kind. We believe the former can
be achieved in a similar way to KM’s extension of SPX to SPX+. To achieve
the latter, our schemes can be reframed in JN’s model for adaptive compromise
[30]. Future work can also extend our query support, possibly by incorporating
cryptographic techniques for range queries or aggregations [22,29]. Higher query
support would also enable more rigorous testing using real-world applications
and query benchmarks. Stronger security can be achieved using lower-leakage
indexing primitives [31,33,38].

We also introduce leakage-aware query planning which we believe to be of
independent interest as it incorporates structured indexing into DBMS archi-
tecture, which may help StE become a part of commercial DBMSes. Future
work could improve our heuristic’s efficiency and accuracy, or develop analogous
hybrid schemes for other query classes.
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A CJJ+’s Multimap/Dictionary Encryption Schemes

CJJ+’s RH dictionary encryption scheme. In our StE scheme con-
structed using SqlStE (in Sect. 3) we use a specific RH dictionary encryption
scheme to store the rows in DB. We formalize this as Dyeπ whose algorithms are
in Fig. 13. The primitives (given as input to SqlStE) used in Dyeπ are symmetric
encryption scheme SE and function family F. Note that Dyeπ.KS = F.KS×SE.KS.

Example RR multimap encryption scheme. In our StI schemes such as
PpJn,PpSj,HybStI we use a RR multimap Mme as a primitive. We give an exam-
ple of such a scheme Mmerrπ which is also based on Πbas. Its algorithms are in
algorithms are in Fig. 13. The primitives are as in Dyeπ but we require that
SE.KS = {0, 1}F.ol. Note that Mmerrπ .KS = F.KS.

B Proof of Theorem 1

Theorem 1. Let StE = SqlStE[StI,SE,F] be a correct StE scheme for SqlDT.
Then given algorithms Li,S i and adversary A we can define L as in Sect. 3.2
and construct S, As, Af , Ai such that:

Advss
StE,L,S(A) ≤ Advind$

SE (As) + Advprf
F (Af) + Advss

StI,Li,Si(()Ai).
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Fig. 13. Algorithms for RH dictionary encryption scheme Dyeπ and RR multimap
encryption scheme Mmerrπ .

Proof. The adversaries, simulator and games G0,G1,G2,G3 are given in Fig. 14.
Notice that the EncRows algorithm used in the adversaries and games is given
at the top, and uses two oracles Enc,Fn which the algorithms define. Let b be
the challenge bit selected in Gss

StE,L,S(A).
Notice that we can express Advss

StE,L,S(A) = Pr[Gss
StE,L,S(A)|b = 1] −

Pr[Gss
StE,L,S(A)|b = 0] = Pr[G3] − Pr[G0]. In b = 1 case, this follows directly

from the definition of Ai. In the b = 0 case, this follows from the definition of
Li,S i.

The only difference between G0 and G1 is whether IX, tk1, ... , tkn are gen-
erated using StI’s algorithms or S. In both cases, D′’s values are encrypted
using SE.Enc. This is the same differentiation going on in the semantic secu-
rity game so Gss

StI,Li,Si(Ai) = Pr[G1] − Pr[G0]. Similarly the difference between
G1 and G2 is whether the values in D′ are the output of SE.Enc or random
strings which is what is going on in the IND$-security game Gind$

SE (As), so
Advind$

SE (As) = Pr[G2] − Pr[G1]. Once again, the difference between G2 and
G3 is whether the labels in D′ (i.e. the tokens in Dyeπ.Enc) are generated using
F.Ev or a random function which is what is going on in the PRF-security game
Gprf

F (Af), so Advprf
F (Af) = Pr[G3] − Pr[G2].

Combining all the above equations gives the desired bound on Advss
StE,L,S(A).
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Fig. 14. Simulator, adversaries and games used in the proof of Theorem 1.

C Leakage Profile and Security Proof for PpSj

Theorem 3. Let L,S be the leakage algorithm and simulator for Mme respec-
tively. Let Lp,Sp be as defined in Fig. 15 and let F be the function family used.
Then for all adversaries A there exists adversaries Am, Af such that:

Advss
PpSj,Lp,Sp(A) ≤ Advss

Mme,L,S(Am) + (p + 1) · Advprf
F (Af).

Here, p is the number of distinct predicates used in constructing HS.
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Fig. 15. Leakage profile (top) and simulator (bottom) for PpSj. In Lp, RS, L,HF,HQ
compute the recursion structure leakage, Mme’s leakage profile, hashset filtering results
and hashset query pattern respectively, as discussed in Sect. 4.2. In Sp, S is a simulator
for Mme.

Proof. Adversary Am is given in Fig. 16. In the same diagram, we see A1, A2

which are both PRF adversaries playing Gprf
F . We define Af to randomly pick

one at run time and use it.

Now we can proceed via a standard hybrid argument. Let bp, bf , bm be the
challenge bits in Gss

PpSj,Lp,Sp , Gprf
F and Gss

Mme,L,S respectively.
From the various advantage definitions, we have that Advss

PpSj,Lp,Sp(A)
= Pr[Gss

PpSj,Lp,Sp(A)|bp = 1] − Pr[Gss
PpSj,Lp,Sp(A)|bp = 0], Advss

Mme,L,S(Am)
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Fig. 16. Adversaries used in proof of Theorem 3. Note that when Af is run it randomly
selects one of A1, A2 and runs it.

= Pr[Gss
Mme,L,S(Am)|bm = 1] − Pr[Gss

Mme,L,S(Am)|bm = 0], and Advprf
F (A1)

= Pr[Gprf
F (A1)|bf = 1] − Pr[Gprf

F (A1)|bf = 0]. Notice also that Pr[Gprf
F (A2)|bf

= 0, c = i] = Pr[Gprf
F (A2)|bf = 1, c = i + 1] for i ∈ [p − 1] and Pr[Gprf

F (A2)|bf
= 1, c = j] − Pr[Gprf

F (A2)|bf = 1, c = j] ≤ Advprf
F (A2) for j ∈ [p]. This means

that

p · Advprf
F (A2) ≥ Pr[Gprf

F (A2)|bf = 1, c = p] − Pr[Gprf
F (A1)|bf = 0, c = 1].

Notice that Am in Gss
Mme,L,S uses the game to simulate multimap encryption

and performs the rest itself as it happens in the “real world” of Gss
PpSj,Lp,Sp(A).

This gives Pr[Gss
PpSj,Lp,Sp(A)|bp = 1] = Pr[Gss

Mme,L,S(Am)|bm = 1]. Similarly, A1

simulates multimap encryption as in the “ideal world” of Gss
Mme,L,S and defers

the filtering key production to Fn which gives us Pr[Gss
Mme,L,S(Am)|bm = 0] =

Pr[Gprf
F (A1)|bf = 1]. When A2 plays Gprf

F (A2), if c = p then all the Ki will be
randomly selected. This means Pr[Gprf

F (A1)|bf = 0] = Pr[Gprf
F (A2)|bf = 1, c = p].

Over p hybrids, we get to the version where all the F.Ev(Ki, ·) (where Ki is
not revealed to the adversary) are simulated with random functions, giving us
Pr[Gprf

F (A1)|bf = 0, c = 1] = Pr[Gss
PpSj,Lp,Sp(A)|bp = 0] because this selects all of

HS elements as Sp does.
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