
Efficient Homomorphic Conversion
Between (Ring) LWE Ciphertexts

Hao Chen1, Wei Dai2, Miran Kim3, and Yongsoo Song2(B)

1 Facebook, Cambridge, USA
2 Microsoft Research, Redmond, USA

{wei.dai,yongsoo.song}@microsoft.com
3 Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea

mirankim@unist.ac.kr

Abstract. In the past few years, significant progress on homomorphic
encryption (HE) has been made toward both theory and practice. The
most promising HE schemes are based on the hardness of the Learn-
ing With Errors (LWE) problem or its ring variant (RLWE). In this
work, we present new conversion algorithms that switch between differ-
ent (R)LWE-based HE schemes to take advantage of them. Specifically,
we present and combine three ideas to improve the key-switching proce-
dure between LWE ciphertexts, transformation from LWE to RLWE, as
well as packing of multiple LWE ciphertexts in a single RLWE encryp-
tion. Finally, we demonstrate an application of building a secure channel
between a client and a cloud server with lightweight encryption, low
communication cost, and capability of homomorphic computation.

Keywords: Homomorphic encryption · Learning with Errors · Key
switching

1 Introduction

In recent years, there have been remarkable advances in cryptographic primitives
for secure computation without compromising data privacy. Specifically, homo-
morphic encryption (HE) [28] has been considered as one of the most attractive
solutions due to its conceptual simplicity and efficiency. HE is a cryptosystem
which supports arithmetic operation on encrypted data, so that any computa-
tional task can be outsourced to a public cloud while data provider does not need
to either perform a large amount of work or stay online during the protocol exe-
cution. In addition, the concrete efficiency of HE has been improved rapidly by
theoretic and engineering optimizations [4,15,41]. Recent studies demonstrated
that this technology shows reasonable performance in real-world tasks such as
biomedical analysis and machine learning [20,33,34].

Currently, all the best-performing HE schemes, such as BGV [8], BFV [6,23],
TFHE [18] and CKKS [16], are based on the hardness of Learning with Errors
(LWE) or its ring variant (RLWE). In particular, ring-based HE systems have
c© Springer Nature Switzerland AG 2021
K. Sako and N. O. Tippenhauer (Eds.): ACNS 2021, LNCS 12726, pp. 460–479, 2021.
https://doi.org/10.1007/978-3-030-78372-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78372-3_18&domain=pdf
https://doi.org/10.1007/978-3-030-78372-3_18

Efficient Homomorphic Conversion Between (Ring) LWE Ciphertexts 461

shown remarkable performance in real-world applications due to the efficient use
of the ciphertext packing technique [43]. Each HE scheme has its own pros and
cons, but it has been relatively less studied how to take advantage of various HE
schemes by converting ciphertexts of different types [5].

Our Contribution. In this paper, we provide a toolkit to transform (R)LWE-
based ciphertexts and generate another ciphertext under a new key or of a differ-
ent structure. Specifically, we present three conversion methods: (1) to perform
a new key-switching (KS) operation between LWE ciphertexts; (2) to transform
an LWE ciphertext into an RLWE-based ciphertext; and (3) to merge multiple
LWE ciphertexts into a single RLWE ciphertext. The first two conversions (from
LWE to LWE/RLWE) have quasi-linear complexity Õ(N) where N denotes the
dimension of (R)LWE. The last packing algorithm is a generalization of LWE-
to-RLWE conversion which achieves a better amortized complexity. Our algo-
rithms are almost optimal in the sense that their complexities are quasi-linear
with respect to the size of input ciphertext(s). Moreover, there is no reduction of
ciphertext level (modulus) because all building blocks (e.g. homomorphic auto-
morphism) are depth-free. The proposed methods have wide applications in the
literature: For example, our KS algorithm can replace the old KS method in the
FHEW and TFHE schemes [18,22], and our LWEs-to-RLWE packing method
can improve the performance of [5,10] which present a hybrid framework between
different HE schemes. In addition, the proposed methods can be easily general-
ized to design better key-switching methods between (R)LWE ciphertexts with
different dimensions, or more generally, Module LWE [8,35] based schemes with
different parameters.

Finally, we present experimental results to show that our techniques achieve
better asymptotic and concrete performance than previous methods. Moreover,
we provide a secure outsourcing solution of storage and computation to a cloud
with low communication cost. A client encrypts data via an LWE-based sym-
metric encryption on a lightweight device. On receiving LWE ciphertexts, the
public server transforms or packs them into RLWE encryptions to provide better
functionality for homomorphic arithmetic. Compared to prior works based on
block or stream ciphers [3,9,21,27,37], our approach has advantages in terms of
flexibility, functionality and efficiency.

Technical Overview. Let N be the dimension and q the modulus of an LWE
problem. An LWE ciphertext with secret s ∈ Z

N is of the form (b,a) ∈ Z
N+1
q

and its phase is defined as μ = b+ 〈a, s〉 (mod q). Typically, the phase is a noisy
encoding of some underlying plaintext. Performing homomorphic operations on
a ciphertext will increase this noise and thus the phase will be changed, but as
long as the noise is below a given threshold, the underlying plaintext is preserved.
Similarly, in the case of RLWE over R = Z[X]/(XN + 1) and its residue ring
Rq = R/qR, the phase of an RLWE ciphertext (b, a) ∈ R2

q of secret s is defined
as μ = b + as (mod q).

Suppose that we are given some ciphertexts of a cryptosystem (which is not
necessarily an HE scheme) and wish to publicly transform them into ciphertexts
of another HE scheme for secure computation. In general, this task can be done

462 H. Chen et al.

by evaluating the decryption circuit of the initial cryptosystem using an HE
system if a homomorphically encrypted secret key is given. Furthermore, the
conversion can be more efficient if input ciphertexts are encrypted by an LWE-
based cryptosystem because it suffices to homomorphically evaluate the phase,
instead of performing the full decryption which usually includes expensive (non-
arithmetic) operations such as bit extraction or rounding [12,26].

We remark that this approach can be still inefficient in some cases. For exam-
ple, if we aim to convert an LWE encryption (b,a) ∈ Z

N+1
q under secret s ∈ Z

N

into an RLWE ciphertext, the secret key owner should generate and publish an
RLWE ‘encryption’ of s as the evaluation key, and the conversion can be done
by computing the LWE phase μ = b + 〈a, s〉 homomorphically over an RLWE-
based HE system. In fact, the evaluation key consists of N key-switching keys
from individual s[i] to the RLWE secret and the conversion requires N RLWE
KS operations. Consequently, the total complexity grows quadratically with the
security parameter. The techniques we present in this work do not follow the
existing framework of the phase evaluation.

Our first idea is to embed elements of Z
N
q or Zq into Rq. Given an LWE

ciphertext (b,a) ∈ Z
N+1
q of the phase μ0 = b + 〈a, s〉, we consider the RLWE

ciphertext ct = (b, a) ∈ R2
q for a =

∑
i∈[N] a[i]·Xi and the secret s =

∑
i∈[N] s[i]·

X−i ∈ R. The ciphertext ct is not a completely valid RLWE ciphertext but its
phase μ = b + as (mod q) contains μ0 = μ[0] in its constant term. We use this
idea to accelerate the KS procedure between LWE ciphertexts. For another LWE
secret s′, we first perform a RLWE KS procedure from s to s′ =

∑
i∈[N] s

′[i]·X−i.
Then the phase of the output ciphertext is approximately equal to μ in R, so it
is enough to extract an LWE ciphertext from the ciphertext.

Our second algorithm is an efficient conversion from LWE to RLWE. In the
example above, the RLWE ciphertext ct cannot be directly used for further
homomorphic computation because the phase μ contains invalid values in its
coefficients except the constant term. We observe that the field trace function
TrK/Q of the number field K = Q[X]/(XN + 1) zeroizes all the monomials Xi

for 0 �= i ∈ [N] but keeps the constant term (scaled by a factor of N). We
homomorphically evaluate the trace function to obtain an RLWE ciphertext
whose phase is approximately equal to the constant polynomial N ·μ0 (the extra
factor N can be easily removed). To minimize the conversion complexity, we
present a recursive algorithm that includes only log N automorphism evaluations,
based on the tower of number fields. Furthermore, our algorithm reduces the
number of key-switching keys to log N compared to N of the previous method.

Finally, we present a packing algorithm that takes at most N LWE cipher-
texts as the input and returns a single RLWE ciphertext. Suppose that we are
given n ≤ N input ciphertexts of phases μj ∈ Zq. A naive solution is to perform
our LWE-to-RLWE conversion on each LWE ciphertext and adds up the output
RLWE ciphertexts into a single ciphertext, which requires n log N homomorphic
automorphisms. We can improve the complexity by performing the FFT-style
ciphertext packing algorithm. The first step is a tree-based algorithm which
generates an RLWE ciphertext of phase μ ∈ Rq such that μ[(N/n) · j] ≈ n · μj

Efficient Homomorphic Conversion Between (Ring) LWE Ciphertexts 463

Table 1. Computational costs (number of scalar operations) and storage (number of Zq

elements to store a switching key) of conversion algorithms. N denotes the dimension
of (R)LWE, n denotes the number of input LWE ciphertexts to be packed in an RLWE
ciphertext, and d denotes the gadget decomposition degree.

Type Previous works [17,39] This work
Complexity Storage Complexity Storage

LWE-to-LWE O(dN2) dN2 O(dN logN) 2dN

LWE-to-RLWE O(dN2) 2dN2 O(dN log2 N) 2dN logN

nLWEs-to-RLWE O(dN2 logN) 2dN2 O(dN logN(n+
log(N/n)))

2dN logN

for all j ∈ [n], i.e., it collects the phases μj ’s in an element
∑

j∈[n] μj · Y j of
Kn = Z[Y]/(Y n + 1). In the following step, we evaluate the field trace TrK/Kn

to annihilate the useless coefficients μ[i] for (N/n) � i and finally return an
RLWE ciphertext of phase ≈ N · ∑

j∈[n] μj · Y j . The whole process requires
(n − 1) + log(N/n) homomorphic automorphisms, so we achieve an amortized
complexity of < 1 + n−1 · log N automorphisms per an LWE ciphertext.

Related Works. In [25,26], the authors presented a method to switch the
underlying field of HE ciphertexts. In these works, ciphertexts were taken as the
input of the trace function to reduce the dimension of the base ring dynamically
during computation purely for efficiency reasons. Meanwhile, in our LWE(s)-
to-RLWE algorithm, we utilize the trace function in a totally different way for
a different purpose. We homomorphically evaluate the field trace on plaintexts
(phases) to generate a valid RLWE ciphertext over a larger ring Rq from LWE
ciphertexts over Zq.

It has been studied in [17,39] how to convert multiple LWE ciphertexts into
a single RLWE ciphertext. Given n LWE ciphertexts {(bj ,aj)}j∈[n], it vertically
stacks the i-th entries of all ciphertexts in a polynomial by b =

∑
j∈[n] bj ·Xj and

ai =
∑

j∈[n] aj [i]·Xj for i ∈ [N]. Then it homomorphically evaluates b+
∑

i ai ·si

over an RLWE-based HE scheme. Different from our packing algorithm, this
method has a fixed complexity of N RLWE KS operations, independently from
the number n of input ciphertexts. This implies that it needs to pack Ω(N) many
ciphertexts to achieve minimal amortized complexity.

Boura et al. [5] presented various transformations between ciphertexts of dif-
ferent RLWE-based HE schemes. Our work is in an orthogonal direction to [5]
as we aim to switch the secret key or change the type of ciphertexts (e.g. LWE,
RLWE) while preserving their phases (encoded plaintexts). In addition, the per-
formance of [5] can be improved by replacing the underlying KS methods by our
conversion algorithms.

Cheon and Kim [13] considered converting an ElGamal-like public key
encryption scheme to an HE scheme. This involves evaluating the decryption

464 H. Chen et al.

circuit homomorphically, which consumes at least 10 levels, while our approach
is almost depth-free.

In Table 1, we provide the performance of previous works and analyze the
computational costs of our algorithms. Our LWE-to-RLWE conversion consists
of several iterations in which we evaluate an automorphism and add the resulting
ciphertext to the original input. There have been proposed a few algorithms [11,
12,14,31] which are technically similar to our conversion algorithm. However, to
the best of our knowledge, this is the first study to reinterpret and apply this
building block to the KS (conversion) of HE ciphertexts.

Recently, Gentry and Halevi [24] and Brakerski et al. [7] presented a new
framework that compresses multiple HE ciphertexts into a single ciphertext with
the nearly optimal rate of 1−o(1). Our approach solves an associated but funda-
mentally different problem. In our application, we could build a lightweight and
low-latency communication from the client to the cloud because fresh ciphertexts
are high-rate and extremely small. However, they should be packed or converted
into an RLWE ciphertext before computation. Meanwhile, previous works [7,24]
aim to compress HE ciphertexts after computation and thereby minimize the
communication cost from the cloud to the client.

2 Background

We denote vectors in bold, e.g. u, and the i-th entry of a vector u will be denoted
by u[i]. For simplicity, we identify Z ∩ (−q/2, q/2] as a set of representatives of
Zq and write the index set [N] = {0, 1, . . . , N − 1}. For a finite set S, U(S)
denotes the uniform distribution on S.

2.1 Cyclotomic Field

Let ζ = exp(πi/N) for a power-of-two integer N . We denote by K = Q(ζ) the
2N -th cyclotomic field and R = Z[ζ] the ring of integers of K. We will identify
K (resp. R) with Q[X]/(XN +1) (resp. Z[X]/(XN +1)) with respect to the map
ζ 	→ X. The residue ring of R modulo an integer q is denoted by Rq = R/qR.
For a, b ∈ Z (or R, Rq), we informally write a ≈ b (mod q) if a = b + e for some
small e ∈ Z (or R).

An element of K (resp. R, Rq) can be uniquely represented as a polynomial
of degree less than N with coefficients in Q (resp. Z, Zq). The i-th coefficient of a
polynomial a(X) will be denoted by a[i]. We use the map ι : a 	→ ∑

i∈[N] a[i] ·Xi

to identify a polynomial and the vector of its coefficients.

2.2 (Ring) Learning with Errors

Given the dimension N , modulus q and error distribution ψ over Z, the LWE
distribution with secret s ∈ Z

N is a distribution over Z
N+1
q which samples

a ← U(ZN
q) and e ← ψ, and returns (b,a) ∈ Z

N+1
q where b = 〈a, s〉+ e (mod q).

Efficient Homomorphic Conversion Between (Ring) LWE Ciphertexts 465

The (decisional) LWE assumption of parameter (N, q, χ, ψ) is that it is compu-
tationally infeasible to distinguish the LWE distribution of a secret s ← χ from
the uniform distribution U(ZN+1

q).
The RLWE problem [36] is a variant of LWE which has been widely used to

design HE schemes, e.g. [8,16,18,23]. The key s is chosen from the key distri-
bution χ over R, and an RLWE sample (b, a) ∈ R2

q by sampling random a and
noise e from U(Rq) and the error distribution ψ over R and computing b = as+e
(mod q). The RLWE assumption with parameter (N, q, χ, ψ) is that the RLWE
distribution of a secret s ← χ and U(R2

q) are computationally indistinguishable.

2.3 Gadget Decomposition

Let q be an integer and g = (g0, . . . , gd−1) be an integral vector. A gadget
decomposition [38], denoted by g−1 : Zq → Z

d, is a map satisfying 〈g−1(a),g〉 =
a (mod q) for all a ∈ Zq. We can naturally extend its domain and define g−1 :
Rq → Rd by a =

∑
i∈[N] ai · Xi 	→ ∑

i∈[N] g
−1(ai) · Xi.

The base (digit) decomposition [6,8] and prime decomposition [4,15] are typ-
ical examples. This technique has been widely used to control the noise growth
during homomorphic computation such as key-switching, which will be described
in the next section.

2.4 Key Switching

We describe a well known KS method for RLWE ciphertexts. The goal of KS
procedure is to transform a ciphertext into another ciphertext under a different
secret key while approximately preserving its phase.

• KSKeyGen(s ∈ R, s′ ∈ R) : Sample k1 ← U(Rd
q) and e ← χd. Compute

k0 = −s′ · k1 + s · g + e (mod q) and return the KS key K = [k0|k1] ∈ Rd×2
q .

• KeySwitch(ct;K) : Given an RLWE ciphertext ct = (c0, c1) ∈ R2
q and a KS

key K ∈ Rd×2
q , compute and return the ciphertext ct′ = (c0, 0) + g−1(c1) · K

(mod q).

Roughly speaking, a KS key consists of d RLWE ‘encryptions’ of s · gi under
s′, i.e., K · (1, s′) ≈ s · g (mod q). For an RLWE ciphertext ct ∈ R2

q and a KS
key K ← KSKeyGen(s, s′), the output ct′ ← KeySwitch(ct;K) satisfies that

〈ct′, (1, s′)〉 = c0 + g−1(c1) · K · (1, s′)

= c0 + 〈g−1(c1), s · g + e〉 = 〈ct, (1, s)〉 + eks (mod q) (1)

for the KS noise eks = 〈g−1(c1), e〉 ∈ R.

2.5 Galois Group and Evaluation of Automorphisms

We recall that K ≥ Q is a Galois extension and its Galois group Gal(K/Q)
consists of the automorphisms τd : ζ 	→ ζd for d ∈ Z

×
2N , the invertible residues

466 H. Chen et al.

modulo 2N . The automorphisms τd ∈ Gal(K/Q) gives some distinctive func-
tionalities to the HE system. For example, many of RLWE-based schemes such
as BGV [8], BFV [6,23] and CKKS [16] utilize the Discrete Fourier Transform
(DFT) to encode multiple plaintext values in a single polynomial, so that the
slots of a ciphertext can be permuted by evaluating an automorphism.

We describe a well-known method to homomorphically evaluate an automor-
phism τd : a(X) → a(Xd).

• AutoKeyGen(d ∈ Z
×
2N ; s ∈ R) : Run Ad ← KSKeyGen(τd(s), s).

• EvalAuto
(
ct ∈ R2

q , d ∈ Z
×
2N ;Ad

)
: Given a ciphertext ct = (c0, c1) ∈ R2

q , an
integer d ∈ Z

×
2N and an automorphism key Ad, compute and return the cipher-

text ct′ ← KeySwitch ((τd(c0), τd(c1));Ad).

Security. The homomorphic automorphism algorithm is a simple application
of KS, so its security basically relies on the hardness of RLWE for KSKeyGen.
Moreover, an additional circular security assumption should be made because
Ad is a special encryption of τd(s) with secret s.

Correctness. Suppose that ct ∈ R2
q is an RLWE ciphertext such that μ =

〈ct, (1, s)〉 (mod q) and Ad ← AutoKeyGen(d; s) is an automorphism key. Then
the output ciphertext ct′ ← EvalAuto(ct, d;Ad) satisfies that

〈ct′, (1, s)〉 ≈ 〈(τd(c0), τd(c1)), (1, τd(s))〉 = τd (〈ct, (1, s)〉) = τd(μ) (mod q),

from the property of KeySwitch.

In the rest of this paper, we simply write EvalAuto(ct, d;Ad) = EvalAuto(ct,
d) by assuming that an automorphism key Ad ← AutoKeyGen(d; s) is properly
generated and implicitly taken as input of the EvalAuto algorithm. We remark
that homomorphic automorphism has almost the same complexity as the KS
procedure because the computation of τd(ci) is very cheap.

3 Conversion Algorithms

This section presents core ideas and their application to efficient conversion
between HE ciphertexts of different secret keys or algebraic structures.

3.1 Functionality of Automorphisms on Coefficients

We examine how the elements of Gal(K/Q) act on the coefficients of an input
polynomial. Let us define the sets Ik =

{
i ∈ [N] : 2k ‖ i

}
1 for 0 ≤ k < log N

and Ilog N = {0}. Then, the index set [N] can be written as the disjoint union⋃
0≤k≤log N Ik. We are interested in how the automorphism τd(·) acts on the

monomials for d = 2� + 1, 1 ≤ � ≤ log N . We note that the map i 	→ i · d

1 2k ‖ i if and only if 2k | i and 2k+1
� i.

Efficient Homomorphic Conversion Between (Ring) LWE Ciphertexts 467

(mod N) is a signed permutation on Ik, i.e., if i ∈ Ik, then τd(Xi) = ±Xj for
some j ∈ Ik. In particular, we see that

τd(Xi) = Xi for i ∈
⋃

k>log N−�

Ik,

τd(Xi) = −Xi for i ∈ Ilog N−�. (2)

In other words, the map μ 	→ μ+τd(μ) doubles the coefficients μ[i] if 2log N−�+1| i,
but zeroizes the coefficients μ[i] if 2log N−�‖ i.

3.2 LWE to LWE

Let (b,a) ∈ Z
N+1
q be an LWE ciphertext under a secret s ∈ Z

N with phase
μ0 = b + 〈a, s〉 (mod q). We aim to design an efficient LWE-to-LWE conversion,
which replaces the secret of the ciphertext into another secret s′ ∈ Z

N while
almost preserving the phase μ0.

Our first idea is to embed Z
N
q and Zq into Rq to utilize the ring structure.

We consider the two polynomials

a := ι(a) =
∑

i∈[N]

a[i] · Xi ∈ Rq,

s := τ−1 ◦ ι(s) =
∑

i∈[N]

s[i] · X−i ∈ R,

and we define the polynomial pair ct = (b, a) ∈ R2
q . We remark that ct can

be viewed as an RLWE ciphertext with secret s satisfying 〈ct, (1, s)〉[0] = (b +
as)[0] = μ0, i.e., its phase μ = 〈ct, (1, s)〉 (mod q) of ct stores μ[0] = μ0 in the
constant term but all other coefficients, μ[i] for 0 �= i ∈ [N], have no valid values.

Though ct is not a valid RLWE ciphertext, we can still apply the KS algo-
rithm. If we perform the KS procedure from s to s′ = τ−1 ◦ ι(s′), then the output
ciphertext also includes a valid value in its constant term from the property of
KS. Finally, we can extract an LWE ciphertext with secret s′.

• LWE-to-LWE ((b,a),K) : Given an LWE ciphertext (b,a) ∈ Z
N+1
q and a KS

key K ∈ RL×2
q , set the RLWE ciphertext ct ← (b, a) ∈ R2

q where a = ι(a).
Compute ct′ = (b′, a′) ← KeySwitch(ct,K) ∈ R2

q and let a′ = ι−1(a′). Return
the ciphertext (b′[0],a′) ∈ Z

N+1
q .

Correctness. We claim that, if K ← KSKeyGen(s, s′) is a KS key from s to
s′, then (b′[0],a′) is an LWE ciphertext under s′ whose phase is approximately
equal to the phase of (b,a) under s. It can be shown by

b′[0] + 〈a′, s′〉 = (b′ + a′s′)[0] ≈ (b + as)[0] = b + 〈a, s〉 (mod q),

where the approximate equality is derived from the property of KeySwitch (see
Eq. (1)).

468 H. Chen et al.

Algorithm 1. Homomorphic Evaluation of the Trace Function (EvalTrN/n)
Input: ciphertext ct = (b, a) ∈ R2

q , a power-of-two integer n ≤ N .
1: ct′ ← ct
2: for k = 1 to log(N/n) do
3: ct′ ← ct′ + EvalAuto(ct′; 2log N−k+1 + 1)

4: return ct′ ∈ R2
q

3.3 LWE to RLWE

Our next goal is to design a conversion algorithm from LWE to RLWE. As
explained above, if we set an RLWE ciphertext (b, a = ι(a)) ∈ R2

q from an LWE
ciphertext (b,a) ∈ Z

N+1
q , then its phase has the valid value only in the constant

term. Hence, the key question is how to annihilate useless coefficients of μ except
the constant term μ[0] to generate a valid RLWE ciphertext.

We remark that the field trace TrK/Q : K → Q, a 	→ ∑
τ∈Gal(K/Q) τ(a) has

the required property, i.e., TrK/Q(1) = N and TrK/Q(Xi) = 0 for all 0 �= i ∈ [N].
Therefore, conversion from LWE into RLWE can be done by evaluating the field
trace homomorphically. A naive solution is to evaluate each automorphism τ(·)
and add up all the resulting ciphertexts, and therefore it requires N KS oper-
ations. We now describe a recursive algorithm that uses an algebraic structure
of cyclotomic fields for reducing the conversion complexity. To be precise, for
the tower of finite fields K = KN ≥ KN/2 ≥ · · · ≥ K1 = Q, where Kn denotes
the (2n)-th cyclotomic field for a power-of-two integer n, the field trace can be
expressed as a composition TrK/Q = TrK2/K1 ◦ · · · ◦ TrKN /KN/2

of log N field
traces and each Galois group Gal (K2�/K2�−1) has a (unique) nontrivial element
τ2�+1|K2�

for � = 1, . . . , log N . Therefore, the evaluation of TrK2�/K2�−1 requires
only one homomorphic rotation.

See Algorithm 1 for a description of homomorphic trace evaluation TrKN /Kn

for any power-of-two integer n ≤ N . We use the parameter n = 1 in the following
LWE-to-RLWE conversion algorithm.

• LWE-to-RLWE
(
(b,a) ∈ Zq × Z

N
q

)
: Set the RLWE ciphertext ct ← (b, a) ∈

R2
q where a = ι(a). Then, run Algorithm 1 and return the ciphertext ct′ ←

EvalTrN/1(ct) ∈ R2
q .

The phase of the input LWE ciphertext (b,a) is multiplied by N by the trace
evaluation. We will explain in the next section how to remove the constant N
by adding a pre-processing step.

Correctness. We will prove the correctness of Algorithm 1 for an arbitrary
n ≤ N . Let μ = 〈ct, (1, s)〉 (mod q) be the phase of an input ct. We inductively
show that the phase μ′ = 〈ct′, (1, s)〉 (mod q) satisfies

μ′ ≈ TrKN /K
N/2k

(μ) = 2k ·
∑

2k|i∈[N]

μ[i] · Xi (mod q) (3)

Efficient Homomorphic Conversion Between (Ring) LWE Ciphertexts 469

at iteration k. For the base case k = 0, the statement is trivially true since
μ′ = μ. Now we assume that (3) is true for k − 1. In the next k-th iteration, we
evaluate the map μ′ 	→ μ′ +τd(μ′) for d = 2log N−k+1+1. We recall from (2) that
τd(Xi) = Xi for 2k | i ∈ [N] and τd(Xi) = −Xi for i ∈ [N] such that 2k−1 ‖ i.
From the induction hypothesis,

μ′ ≈ 2k−1 ·
∑

2k−1|i
μ[i] · Xi

= 2k−1 ·
∑

2k|i
μ[i] · Xi + 2k−1 ·

∑

2k−1‖i

μ[i] · Xi (mod q),

τd(μ′) ≈ 2k−1 ·
∑

2k|i
μ[i] · Xi − 2k−1 ·

∑

2k−1‖i

μ[i] · Xi (mod q),

and thereby μ′ + τd(μ′) ≈ 2k · ∑
2k|i μ[i] · Xi. Finally, we obtain

μ′ ≈ TrKN /Kn
(μ) = (N/n) ·

∑

(N/n)|i∈[N]

μ[i] · Xi (mod q)

after k = log(N/n) iterations. We remark that the noise does not blow up much
during the evaluation since τd(·) preserves the size of elements in R.

The correctness of LWE-to-RLWE is directly derived from this result with a
parameter n = 1. Given an RLWE encryption ct = (b, a), we homomorphically
compute the field trace TrKN /Q and the phase μ′ = 〈ct′, (1, s)〉 of the output
ciphertext is approximately equal to TrKN /Q(b + as) = N · (b + as)[0] = N · (b +
〈a, s〉), as desired.

3.4 LWEs to RLWE

An LWE ciphertext has a phase in Zq, which can store only one scalar message, so
our LWE-to-RLWE conversion algorithm aims to generate an RLWE ciphertext
whose phase μ contains an approximate value of an initial LWE phase in its
constant term. However, in general, an RLWE ciphertext can store at most N
scalars in the coefficients of its phase. So a natural question is how to efficiently
merge multiple LWE ciphertexts into a single RLWE ciphertext.

Suppose that we are given n LWE ciphertexts {(bj ,aj)}j∈[n] for some n =
2� ≤ N and let μj ∈ Zq be the phase of (bj ,aj) under the same secret s ∈ Z

N . A
naive answer for the question above is to run ct′j ← LWE-to-RLWE ((bj ,aj)) ∈ R2

q

for all j ∈ [n] and take their linear combination ct′ =
∑

j∈[n] ct
′
j · Y j for Y =

XN/n. Then the phase of ct′ is approximately equal to N · ∑j∈[n] μj · Y j , which
is an element of the ring of integers of Kn. However, this method is not optimal
in terms of both complexity and noise growth.

In this section, we present a generalized version of our previous algorithm
which takes multiple LWE encryptions as input and returns a single RLWE
ciphertext. This conversion consists of two phases: packing and trace evaluation.
The first step (Algorithm 2) is an FFT-style algorithm which merges n = 2�

470 H. Chen et al.

Algorithm 2. Homomorphic Packing of LWE Ciphertexts (PackLWEs)
1: input ciphertexts ctj = (bj , aj) ∈ R2

q for j ∈ [2�]
2: if � = 0 then
3: return ct ← ct0
4: else
5: cteven ← PackLWEs

({ct2j}j∈[2�−1]

)

6: ctodd ← PackLWEs
({ct2j+1}j∈[2�−1]

)

7: ct ←
(
cteven + XN/2� · ctodd

)
+ EvalAuto

(
cteven − XN/2� · ctodd, 2� + 1

)

8: return ct

multiple RLWE ciphertexts into one. The phase μ of an output ciphertext stores
the constant terms of input phases in its coefficients μ[i] for (N/n) | i. All valid
values are now packed into an element of Rn, so in the next step, we use the idea
of the previous section to evaluate the field trace TrKN /Kn

and zeroize useless
coefficients.

• LWEs-to-RLWE
(
{(bj ,aj)}j∈[n]

)
: Given n = 2� LWE ciphertexts (bj ,aj) ∈

Z
N+1
q , do the following:

1. Set ctj ← (bj , aj) ∈ R2
q for each j ∈ [n] where aj = ι(aj).

2. Run Algorithm 2 to get ct ← PackLWEs
({ctj}j∈[n]

)
.

3. Compute and return the ciphertext ct′ ← EvalTrN/n(ct).

The packing algorithm and the subsequent field trace evaluation for n = 2�

ciphertexts require (n − 1) and log(N/n) homomorphic automorphisms, respec-
tively. Hence the total complexity of LWEs-to-RLWE is (n − 1) + log(N/n) < n +
log N automorphisms, yielding an amortized complexity less than (1+n−1·log N)
automorphisms per an input LWE ciphertext. We remark that this conversion
algorithm achieves the asymptotically optimal amortized complexity (O(1) auto-
morphisms) when n = Ω(log N). Similar to the LWE-to-RLWE conversion, the
phase of input ciphertexts are multiplied by the factor of N which can be removed
by a pre-processing step described below.

Correctness. We first show the correctness of our packing algorithm. For j ∈
[2�], let ctj be input ciphertexts of Algorithm 2 such that μj = 〈ctj , (1, s)〉[0]
(mod q). For the output ciphertext ct ← PackLWEs

({ctj}j∈[2�]

)
, we claim that

its phase satisfies

μ
[
(N/2�) · j

] ≈ 2� · μj (mod q) for all j ∈ [2�]. (4)

We again use the induction on � ≥ 0. The base case � = 0 is trivial since
μ[0] = μ0. Suppose that our statement is true for some 0 ≤ � − 1 < log N . For
2� input ciphertexts, Algorithm 2 first divides them into two groups of size 2�−1

and runs PackLWEs twice (in lines 5 and 6). From the induction hypothesis, the
output ciphertexts cteven, ctodd have phases μeven, μodd such that

Efficient Homomorphic Conversion Between (Ring) LWE Ciphertexts 471

μeven

[
(N/2�−1) · j

] ≈ 2�−1 · μ2j (mod q),

μodd

[
(N/2�−1) · j

] ≈ 2�−1 · μ2j+1 (mod q),

for all j ∈ [2�−1]. Then, we compute and return the ciphertext ct whose phase is

μ ≈ (μeven + XN/2� · μodd) + τd

(
μeven − XN/2� · μodd

)

= μ′
even + XN/2� · μ′

odd,

for μ′
even = μeven + τd(μeven) and μ′

odd = μodd + τd(μodd), which satisfies that

μ′
even

[
(N/2�) · (2j)

] ≈ 2� · μ2j , μ′
even

[
(N/2�) · (2j + 1)

] ≈ 0 (mod q),

μ′
odd

[
(N/2�) · (2j)

] ≈ 2� · μ2j+1, μ′
odd

[
(N/2�) · (2j + 1)

] ≈ 0 (mod q)

for all j ∈ [2�−1]. Therefore, their linear combination μ = μ′
even + XN/2� · μ′

odd

has coefficients μ
[
(N/2�) · j

] ≈ 2� · μj for all j ∈ [2�], as desired.
Now let us discuss the LWEs-to-RLWE algorithm. After running the packing

algorithm, the phase μ of ct ← PackLWEs
({ctj}j∈[n]

)
has n ·μj in its coefficients

μ[i] such that (N/n) | i. So we homomorphically evaluate the field trace TrKN /Kn

on the ciphertext ct to zeroize all other coefficients. It follows from the property
of Algorithm 1 that the final output ct′ ← EvalTrN/n(ct) satisfies

〈ct′, (1, s)〉 ≈ TrKN /Kn
(μ) = (N/n) ·

∑

(N/n)|i∈[N]

μ[i] · Xi

≈ (N/n) ·
∑

j∈[n]

(n · μj) · X(N/n)·j = N ·
∑

j∈[n]

μj · Y j (mod q)

where Y = XN/n, as desired.

Removing the Leading Term. Let {ctj}j∈[n] be n LWE input encryptions of
our LWEs-to-RLWE algorithm and ct′ the output RLWE ciphertext. We denote
their phases by μj = 〈ctj , (1, s)〉 (mod q) and μ′ = 〈ct′, (1, s)〉 (mod q), respec-
tively. As shown in their correctness proofs, our algorithms converting one or
more LWE encryptions into an RLWE ciphertext introduce the additional term
N into the phase of output RLWE ciphertext.

We present a pre-processing technique to remove this constant. We multiply
the constant N−1 (mod q) to the input LWE ciphertexts so that their phases
μj are also multiplied by the same factor. If we run the same algorithm on the
ciphertexts of phases N−1 ·μj (mod q), then the leading term N is naturally can-
celled out and the phase of the output RLWE ciphertext will be approximately
equal to N · ∑j∈[n](N

−1 · μj) · Y j =
∑

j∈[n] μj · Y j , as desired.
We note that this method is depth-free and does not incur extra noise growth.

It requires the ciphertext modulus q to be co-prime to the dimension N , but it
is not a strong assumption in practice2.
2 The ciphertext modulus q is usually set to be a product of primes 1 modulo 2N

so that we can utilize an efficient Number Theoretic Transformation (NTT) for
polynomial arithmetic in Rq.

472 H. Chen et al.

Further Computation on a Packed Ciphertext. In a plaintext level, our
conversion algorithm computes the function Z

n
q → Rq, (μj)j∈[n] 	→ ∑

j∈[n] μj ·Y j ,
which is not a multiplicative homomorphism. However, it is often required to
pack multiple values in plaintext slots, instead of coefficients, so that parallel
computation (e.g. element-wise addition or multiplication) is allowed over an
encrypted vector of plaintexts.

It has been studied in several researches about HE bootstrapping [12,14,26,
32] how to represent values from coefficients to slots and vice versa. In the case of
BGV, BFV or CKKS, the transformation can be done by evaluating the encoding
or decoding functions of the underlying scheme, which are expressed as linear
transformations over plaintext vectors. We do not consider it here because this
coefficients-to-slots conversion is scheme-dependent. Moreover, its computational
cost is cheaper than the main part, so that the total/amortized complexities do
not change much even if we add this extra step at the end.

4 Implementation

4.1 Experimental Results

We provide a proof-of-concept implementation to show the performance of our
conversion algorithms. Our source code is developed in C++ by modifying
Microsoft SEAL version 3.5.1 [42]. All experiments are performed on a desktop
with an Intel Core i7-4770K CPU running a single thread at 3.50GHz, compiled
with Clang 9.0.0 (-O3)3.

We set the secret distribution as the uniform distribution over the set
of ternary polynomials in R coefficients in {0,±1}. Each coefficient/entry of
(R)LWE error is drawn according to the discrete Gaussian distribution centered
at zero with standard deviation σ = 3.2. The selected parameter sets provide
at least 128-bit of security level according to the LWE estimator [2] and HE
security standard white paper [1].

Table 2 presents timing results and noise growth of our conversion algorithms.
The ciphertext moduli q of three parameter sets are products of 2, 4, and 8 dis-
tinct primes, respectively. We use an RNS-friendly decomposition method [4] and
exploit an efficient NTT in order to optimize the basic polynomial arithmetic.
As discussed in Sect. 3.4, the LWEs-to-RLWE conversion algorithm achieves
a better amortized running time as the number n of input LWE ciphertexts
increases. For comparison, we implemented the old KS method using the same
parameter sets and decomposition method, and it took 203ms and 1628ms when
(N, log q) = (212, 72) and (213, 174), respectively, compared to 1.0ms and 4.8ms
of our method. We refer the reader to Appendix A which provides noise anal-
ysis of our conversion algorithms. The noise variances of the LWE-to-LWE and
LWE(s)-to-RLWE conversions are O(N) and O(N3), respectively, which align
very well with our experimental results.

3 Currently, our source repository is private to keep the anonymity, but we will make
it public in the final version.

Efficient Homomorphic Conversion Between (Ring) LWE Ciphertexts 473

Table 2. Concrete performance of our conversion algorithms measured by total running
time (amortized timing per ciphertext) and noise growth (an upper bound on the
bit size of coefficients of conversion errors). n stands for the number of input LWE
ciphertexts.

(N, log q) n (212, 72) (213, 174) (214, 389)

Total Noise Total Noise Total Noise
(Amortized) (Amortized) (Amortized)

LWE to LWE - 1.03 ms 7 4.81 ms 8 27.1 ms 10
LWE to RLWE - 11.2 ms 18 57.7 ms 21 361 ms 23
LWEs to RLWE 2 11.4 ms 18 58.7 ms 21 364 ms 23

(5.70 ms) (29.4 ms) (182 ms)
8 16.8 ms 20 83.2 ms 22 492 ms 24

(2.10 ms) (10.4 ms) (61.5 ms)
32 45.0 ms 20 209 ms 22 1168 ms 24

(1.41 ms) (6.53 ms) (36.5 ms)

We did not specify the underlying HE scheme or its plaintext space as the
performance of our conversion algorithms depends only on the parameters N ,
log q and n. Since the bit-size of a conversion noise is only O(log N) bits, the rest
of the space can be used to store a plaintext or be left empty to provide more
homomorphic functionality after conversion. For example, if we use the BFV
scheme with the second parameter set (N, log q) = (213, 174), then our conversion
algorithms work correctly as long as the bit-size of its plaintext modulus is ≤ 152.

4.2 Lightweight Communication with Homomorphic Functionality

HE is a useful cryptographic technology for secure outsourced computation on
the cloud, however, its applications have some common issues in practice. Since
HE schemes are comparably expensive, a client must have enough memory and
computing power. Moreover, the ciphertext expansion rate can be reasonably
small only when we pack a large number of values in a single RLWE ciphertext.
Therefore, the total communication cost may blow up much when the client
sends a small amount of information.

To mitigate this issue, Naehrig et al. [40] came up with a blueprint that the
client sends data, encrypted by a light-weight symmetric encryption scheme, as
well as a homomorphically encrypted secret key of the cryptosystem. Then, the
cloud homomorphically evaluates its decryption circuit to get homomorphically
encrypted data. In this scenario, the main challenge is to construct a symmetric
encryption with low communication cost (expansion rate) and conversion com-
plexity. After the first attempt by Gentry et al. [27] which evaluated the AES-128
circuit using the BGV scheme, there has been a line of studies (e.g. LowMC [3],
Kreyvium [9], FLIP [37], Rasta [21]) to design HE-friendly symmetric encryp-
tion schemes. These block/stream ciphers made progresses in communication

474 H. Chen et al.

cost and encryption time, but the transformation of ciphertexts results in a
considerable computational overhead on the cloud side.

In this work, we present a new solution that the client uses an LWE-based
symmetric encryption on the edge device. On receiving the LWE ciphertexts,
the cloud transforms them into RLWE encryptions using our conversion algo-
rithm. In addition, we adapt the idea of Coron et al. [19] to reduce the size
of LWE ciphertexts and communication cost. To be precise, a symmetric key
LWE encryption of secret s is of the form (b,a) ∈ Z

N+1
q for a random vector

a ← U(ZN
q) and b = −〈a, s〉 + μ (mod q) where μ is the phase from the input

which is a randomized encoding of the plaintext. Since the second component a
is purely random over Z

N
q , we can modify the encryption algorithm such that it

samples a seed se and takes it as the input of a pseudo-random number gener-
ator f : {0, 1}∗ → Z

N
q to generate a = f(se). As a result, a ciphertext can be

represented as a pair (b, se), and this variant remains semantically secure in the
random oracle model. Moreover, when a client sends multiple LWE ciphertexts
to the cloud, the same seed can be reused by computing the random part of
the i-th ciphertext by ai = f(se; i). Hence, the communication cost per an LWE
ciphertext is only log q bits.

Our approach has advantages in computational efficiency compared to prior
works based on block/stream ciphers. Prior works have several minutes’ latency
for the transformation (e.g. 4.1, 63.1, 29.3, 0.65 and 15.2 min of AES-128, LowMC
v1, Kreyvium, FLIP, and Rasta, respectively4), and have to collect a number
of ciphertexts to achieve the minimal amortized complexity. Meanwhile, our
method has significantly better conversion latency and amortized timings (sev-
eral milliseconds), and enables a smooth trade-off between them via the packing
algorithm. As discussed in Sect. 3.4, it requires to collect only Ω(log N) LWE
ciphertexts to obtain a nearly optimal amortized complexity.

Our method is generic in the sense that it preserves the phases of input
ciphertexts approximately regardless of the type of HE schemes or a plaintext
space. Therefore, it is allowed to use the BGV/BFV scheme with a non-binary
plaintext space, or CKKS for approximate computation. Moreover, we provide a
flexible parameter setting that enables us to achieve an almost optimal expansion
rate of 1+o(1) even when a client sends only a small amount of information at a
time. For example, as shown in Table 2, the expansion rate can be reduced down
to 174/(174 − 21) ≈ 1.14 or 389/(389 − 23) ≈ 1.06 when (N, log q) = (213, 174)
or (214, 389), respectively.

Acknowledgments. The work of Kim was supported by the Settlement Research
Fund (No. 1.200109.01) of UNIST (Ulsan National Institute of Science and Technology).

A Noise analysis

The key switching procedure described in Sect. 2.4 is the only source of an extra
noise during our conversion algorithms. Recall that the key-switching procedure
4 These performance benchmarks are taken from Table 10 in [21].

Efficient Homomorphic Conversion Between (Ring) LWE Ciphertexts 475

KeySwitch(ct = (c0, c1);K) introduces the noise eks = 〈g−1(c1), e〉 where e is the
noise of the KS key K. We make a heuristic assumption (which has been widely
used in HE researches, e.g. [17,27,30]) such that a KS noise behaves as if its
coefficients are sampled independently from a Gaussian distribution with a fixed
variance, which will be denoted by Vks. For a random variable a =

∑
i∈[N] ai ·Xi

over R, we denote by Var(a) the maximum among the variances of its coefficients
{Var(ai) : 0 ≤ i < N}.

In practice, we need to specify the gadget decomposition method to com-
pute Vks. For example, suppose that the ciphertext modulus q =

∏
0≤i<d qi is a

product of relatively co-prime integers and the gadget decomposition is defined
as Rq → ∏

i∈[d] Rqi
, a 	→ g−1(a) = (a (mod qi))0≤i<d

5. Then, the coefficients of
eks = 〈g−1(c1), e〉 have the common variance Vks ≤ 1

12Nσ2 · ∑
i∈[d] q

2
i where σ2

is the variance of RLWE error distribution.

A.1 LWE to LWE

Technically, our LWE-to-LWE conversion includes only one KS procedure
between RLWE ciphertexts and then we extract an LWE ciphertext from the
output ciphertext. As shown in the correctness proof in Sect. 3.2, the additional
noise in the final LWE ciphertext is equal to the constant term of the KS noise,
whose variance is Vks.

A.2 LWE to RLWE

We will analyze the noise of homomorphic trace evaluation (EvalTrN/n in Algo-
rithm 1) since the LWE-to-RLWE conversion is a special case where n = 1.

We showed that if μ = b+as (mod q) is the phase of the input ciphertext ct,
then the phase of ct′ is TrKN /K

N/2k
(μ) + ek for some error ek after k iterations.

We will estimate the variance of ek using the induction on k.
If k = 0, we have e0 = 0. For 1 ≤ k ≤ log(N/n), we denote by e′

k ∈ R
the additional noise from the homomorphic automorphism at the k-th iteration.
Then, we get ek = ek−1 + τd(ek−1) + e′

k for d = 2log N−k+1 + 1 and its variance
is bounded by Var(ek) ≤ 4 · Var(ek−1) + Vks. Therefore, the noise of the output
ciphertext from Algorithm 1 is bounded by Var(ek) ≤ (1+4+ · · ·+4k−1) ·Vks ≤
1
3

(
(N/n)2 − 1

) · Vks.
Our LWE-to-RLWE algorithm is the case of n = 1 (or equivalently k = log N)

which returns a ciphertext whose phase is TrK/Q(μ)+elog N for some elog N such
that Var(elog N) ≤ 1

3 (N2 − 1) · Vks.

A.3 LWEs to RLWE

We first analyze the noise growth of Algorithm 2. We showed that if {ctj =
(bj , aj)}j∈[2�] are the input RLWE ciphertexts such that μj = (bj + aj · s)[0],

5 This method is called the prime decomposition which is widely used in the construc-
tion of RNS-friendly HE schemes such as [4,29,34,42].

476 H. Chen et al.

then the phase μ of output ciphertext satisfies that μ[(N/2�) · j] = 2� · μj + e�,j

(mod q) for all j ∈ [2�] and for some e�,j ∈ Z. If � = 0, then there is no extra
noise from the packing algorithm. In the case of � > 0, we divide the input
ciphertexts into two groups and run the packing algorithm on each subgroup
separately. Suppose that the phases of cteven and ctodd satisfy

μeven[(N/2�−1) · j] = 2�−1 · μ2j + e�−1,2j (mod q),

μodd[(N/2�−1) · j] = 2�−1 · μ2j+1 + e�−1,2j+1 (mod q)

for some errors e�−1,2j , e�−1,2j+1 ∈ Z. Let e′
�(X) be the additional noise from

the evaluation of automorphism EvalAuto(cteven −XN/2� · ctodd, 2� +1) and e′
�,j

the (N/2�)) · j-th coefficient of e′
�(X) for j ∈ [2�]. Then, we get a relation e�,j =

2e�−1,j + e′
�,j between errors from the equation μ = μ′

even +XN/2� ·μ′
odd + e′

�(X)
for all j ∈ [2�]. Since e′

�,j has a fixed variance Vks for all � and j, we have
Var(e�,j) = 4 ·Var(e�−1,j)+Vks. Finally, we use the induction on � and show that
Var(e�,j) = (1 + 4 + · · · + 4�−1) · Vks = 1

3 (n2 − 1) · Vks when n = 2�.
In our LWEs-to-RLWE conversion, the packing algorithm is followed by

the trace evaluation EvalTrN/n whose noise growth is analyzed above. Hence,
the phase of the output ciphertext from the LWEs-to-RLWE conversion satis-
fies that μ = (N/n) ·

(∑
j∈[n](nμj + e�,j) · X(N/n)·j

)
+ ek(X) (mod q) where

ek denotes the noise from trace evaluation and k = log(N/n). Therefore, the
variance of total noise (N/n) ·

(∑
j∈[n] e�,j · X(N/n)·j

)
+ ek(X) is bounded by

(N/n)2 · Var(e�,j) + Var(ek) ≤ 1
3 (N2 − 1) · Vks.

References

1. Albrecht, M., et al.: Homomorphic encryption security standard. Technical Report,
HomomorphicEncryption.org, Toronto, November 2018

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

3. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5_17

4. Bajard, J.-C., Eynard, J., Hasan, M.A., Zucca, V.: A full RNS variant of FV like
somewhat homomorphic encryption schemes. In: Avanzi, R., Heys, H. (eds.) SAC
2016. LNCS, vol. 10532, pp. 423–442. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69453-5_23

5. Boura, C., Gama, N., Georgieva, M., Jetchev, D.: Chimera: combining ring-LWE-
based fully homomorphic encryption schemes. J. Math. Cryptol. 14(1), 316–338
(2020)

6. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5_50

https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50

Efficient Homomorphic Conversion Between (Ring) LWE Ciphertexts 477

7. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear decryp-
tion: Rate-1 fully-homomorphic encryption and time-lock puzzles. In: Hofheinz,
D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 407–437. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-36033-7_16

8. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Proceedings of ITCS, pp. 309–325. ACM
(2012)

9. Canteaut, A., et al.: Stream ciphers: a practical solution for efficient homomorphic-
ciphertext compression. J. Cryptol. 31(3), 885–916 (2018)

10. Carpov, S., Gama, N., Georgieva, M., Troncoso-Pastoriza, J.R.: Privacy-preserving
semi-parallel logistic regression training with fully homomorphic encryption (2019).
https://eprint.iacr.org/2019/101

11. Carpov, S., Sirdey, R.: Another compression method for homomorphic ciphertexts.
In: Proceedings of the 4th ACM International Workshop on Security in Cloud
Computing, pp. 44–50. ACM (2016)

12. Chen, H., Han, K.: Homomorphic lower digits removal and improved FHE boot-
strapping. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10820, pp. 315–337. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78381-9_12

13. Cheon, J.H., Kim, J.: A hybrid scheme of public-key encryption and somewhat
homomorphic encryption. IEEE Trans. Inf. Forensics Secur. 10(5), 1052–1063
(2015)

14. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate
homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10820, pp. 360–384. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9_14

15. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full RNS variant of approxi-
mate homomorphic encryption. In: Cid, C., Jacobson Jr, J. (eds.) SAC 2018. LNCS,
vol. 11349. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10970-7_16

16. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8_15

17. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption over the torus. J. Cryptol. 33(1), 34–91 (2019). https://doi.org/
10.1007/s00145-019-09319-x

18. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 s. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53887-6_1

19. Coron, J.-S., Naccache, D., Tibouchi, M.: Public key compression and modulus
switching for fully homomorphic encryption over the integers. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 446–464. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_27

20. Dathathri, R., et al.: CHET: an optimizing compiler for fully-homomorphic neural-
network inferencing. In: Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 142–156. ACM (2019)

21. Dobraunig, C., et al.: Rasta: a cipher with low ANDdepth and few ANDs per
bit. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp.
662–692. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_22

https://doi.org/10.1007/978-3-030-36033-7_16
https://eprint.iacr.org/2019/101
https://doi.org/10.1007/978-3-319-78381-9_12
https://doi.org/10.1007/978-3-319-78381-9_12
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-642-29011-4_27
https://doi.org/10.1007/978-3-319-96884-1_22

478 H. Chen et al.

22. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5_24

23. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012). https://eprint.iacr.org/2012/144

24. Gentry, C., Halevi, S.: Compressible FHE with applications to PIR. In: Hofheinz,
D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 438–464. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-36033-7_17

25. Gentry, C., Halevi, S., Peikert, C., Smart, N.P.: Field switching in BGV-style homo-
morphic encryption. J. Comput. Secur. 21(5), 663–684 (2013)

26. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 1–16. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-30057-8_1

27. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_49

28. Gentry, C., et al.: Fully homomorphic encryption using ideal lattices. STOC 9,
169–178 (2009)

29. Halevi, S., Polyakov, Y., Shoup, V.: An improved RNS variant of the BFV homo-
morphic encryption scheme. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405,
pp. 83–105. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_5

30. Halevi, S., Shoup, V.: Design and implementation of a homomorphic-encryption
library. IBM Research (Manuscript) (2013)

31. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2_31

32. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5_25

33. Jiang, X., Kim, M., Lauter, K., Song, Y.: Secure outsourced matrix computation
and application to neural networks. In: Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security, pp. 1209–1222. ACM (2018)

34. Kim, M., Song, Y., Li, B., Micciancio, D.: Semi-parallel logistic regression for
GWAS on encrypted data. BMC Med. Genom. 13(7), 1–13 (2020)

35. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lat-
tices. Des. Codes Crypt. 75(3), 565–599 (2014). https://doi.org/10.1007/s10623-
014-9938-4

36. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

37. Méaux, P., Journault, A., Standaert, F.-X., Carlet, C.: Towards stream ciphers
for efficient FHE with low-noise ciphertexts. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9665, pp. 311–343. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49890-3_13

38. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4_41

https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://eprint.iacr.org/2012/144
https://doi.org/10.1007/978-3-030-36033-7_17
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-030-12612-4_5
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-3-662-46800-5_25
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-662-49890-3_13
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41

Efficient Homomorphic Conversion Between (Ring) LWE Ciphertexts 479

39. Miccianco, D., Sorrell, J.: Ring packing and amortized FHEW bootstrapping.
In: 45th International Colloquium on Automata, Languages, and Programming
(ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

40. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security
Workshop, pp. 113–124. ACM (2011)

41. Riazi, M.S., Laine, K., Pelton, B., Dai, W.: Heax: High-performance architecture
for computation on homomorphically encrypted data in the cloud. arXiv preprint
arXiv:1909.09731 (2019)

42. Microsoft SEAL (release 3.5).: Microsoft Research. Redmond (2020). https://
github.com

43. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Crypt. 71(1), 57–81 (2012). https://doi.org/10.1007/s10623-012-9720-4

http://arxiv.org/abs/1909.09731
https://github.com
https://github.com
https://doi.org/10.1007/s10623-012-9720-4

	Efficient Homomorphic Conversion Between (Ring) LWE Ciphertexts
	1 Introduction
	2 Background
	2.1 Cyclotomic Field
	2.2 (Ring) Learning with Errors
	2.3 Gadget Decomposition
	2.4 Key Switching
	2.5 Galois Group and Evaluation of Automorphisms

	3 Conversion Algorithms
	3.1 Functionality of Automorphisms on Coefficients
	3.2 LWE to LWE
	3.3 LWE to RLWE
	3.4 LWEs to RLWE

	4 Implementation
	4.1 Experimental Results
	4.2 Lightweight Communication with Homomorphic Functionality

	A Noise analysis
	A.1 LWE to LWE
	A.2 LWE to RLWE
	A.3 LWEs to RLWE

	References

