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Abstract. Access control encryption (ACE) enforces both read and
write permissions. It kills off any unpermitted subliminal message chan-
nel via the help of a sanitizer who knows neither of the plaintext, its
sender and receivers, nor the access control policy. This work aims to
solve the open problem left by the seminal work of Damg̊ard et al.
(TCC 2016), namely, “to construct practically interesting ACE from
noisy, post-quantum assumptions such as LWE.” We start with revisit-
ing group encryption (GE), which allows anyone to encrypt to a certified
group member, whom remains anonymous unless the opening authority
decided to reveal him/her. We propose: 1) the notion of sanitizable GE
(SGE), with specific changes for non-interactive proof, 2) the notion of
traceable ACE (tACE), which helps damage control by tracing after-
the-fact if some secret were leaked unluckily, 3) a generic construction of
(t)ACE for equality policy (ACE-EP) from SGE, 4) a generic construc-
tion of ACE for general policy from ACE-EP, 5) a lattice-based instan-
tiation of SGE, which comes with 6) a simple mechanism for checking
that the randomness of ciphertexts can span the randomness space.

Keywords: Access control encryption · Group encryption ·
Lattice-based encryption · Learning with error · Post-quantum
security · Chosen-ciphertext security · Sanitization · Traceability

1 Introduction

Sensitive data should not propagate arbitrarily without restriction; encryption
techniques can enforce access control over the read but not write permissions.
Meanwhile, enforcing control over who can write to whom is equally important.
Consider a CEO who worries about leaking any strategic plan to arbitrary staff
(e.g., interns), say, via a malware-infected program s/he used for processing the
related sensitive data. Note that digital signatures do not help since the recipient
of the sensitive data can ignore any verification. Even worse, the data can be sent
via a subliminal means, e.g., embedding it as the randomness of a ciphertext.

Sherman S. M. Chow is supported by General Research Fund (Project Numbers: CUHK
14210217 and CUHK 14209918) from Research Grant Council, Hong Kong.

c© Springer Nature Switzerland AG 2021
K. Sako and N. O. Tippenhauer (Eds.): ACNS 2021, LNCS 12726, pp. 417–441, 2021.
https://doi.org/10.1007/978-3-030-78372-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78372-3_16&domain=pdf
http://orcid.org/0000-0001-7306-453X
https://doi.org/10.1007/978-3-030-78372-3_16


418 X. Wang et al.

It seems necessary to have a sanitizer to “monitor” the traffic for enforcing access
control, especially over the write permissions. Ideally, the sanitization process
should be “blindfolded,” i.e., without the need to know who the sender is, who
the recipient is, and what the access control policy is. Such an idea is formalized
by Damg̊ard, Haagh, and Orlandi [12] as access control encryption (ACE).

1.1 Designs from Two Ends of a Spectrum, and Open Problems

Sanitizing a ciphertext blindfolded is not an easy task. Damg̊ard et al. [12]
proposed two constructions. They first started with ACE for a single user (1-
ACE) from standard (e.g., decisional Diffie-Hellman) assumptions. To make it
a fully-fledged ACE scheme, i.e., supporting the general policy P : {0, 1}� ×
{0, 1}� → {0, 1} which sender IDs ∈ {0, 1}� can write to receiver IDr ∈ {0, 1}�

if and only if P(IDs, IDr) = 1, it runs 2� parallel copies of 1-ACE, making both
the master public key and the ciphertext O(2�)-long. This is not only for hiding
the intended reader but also for a uniform treatment in sanitization without
knowing who the writer is. They also proposed a construction that offers poly(�)
efficiency, yet, it relies on a sanitizable variant of general-purpose functional
encryption (FE) [6]. While FE for limited functionality (mostly inner-product)
can be efficient, general-purpose FE is much more powerful and less efficient.
Damg̊ard et al. instantiated it with indistinguishability obfuscation.

Follow-up works mostly fall into two extremes: using practically-inefficient
techniques to construct a regular ACE scheme, or practically-efficient tech-
niques to construct an ACE scheme with limited functionality. Kim and Wu [18]
built an ACE scheme from FE for randomized functionality (rFE) [2] and
predicate-encryption (PE). Sanitization uses an FE key to create a PE cipher-
text. Although the FE scheme can be instantiated by the LWE (learning-with-
error) assumption, expressing the encryption algorithm of PE as a circuit is not
that efficient. For the second paradigm, Fuchsbauer et al. [13] proposed a generic
construction and a pairing-based construction for equality policy (ACE-EP), i.e.,
the receiver is the sender. They also proposed to use many ACE-EP instances
for interval membership policy, which is useful, albeit still not general.

A concurrent work by Wang and Chow [26] does not fall into the above
two categories. In some sense, their generic construction can be considered as
a “dual” of our proposed approach here. However, most of its building blocks,
specifically structure-preserving signatures and broadcast encryption, are more
“pairing-friendly,” meaning that lattice-based instantiations are still limited now.

One of the open problems left by Damg̊ard et al. in their original work [12] is
as follows: “to construct practically interesting ACE from noisy, post-quantum
assumptions such as LWE” and they commented that “the challenge here is that
it always seems possible for a malicious sender to encrypt with just enough noise
that any further manipulation by the sanitizer makes the decryption fail.”

Tan et al. [25] use Gentry–Sahai–Waters fully-homomorphic encryption [14]
to instantiate 1-ACE. Their 2�-extension still suffers from O(2�) ciphertext size.
The scheme of Kim and Wu [18] still relies on a general-purpose rFE scheme for
arbitrary functions (albeit it can be LWE-based). Both fail to close the above
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open problem. Furthermore, both require the sanitizer to have a private saniti-
zation key. Removing this requirement is also left as an open problem by Kim
and Wu [18]. In this work, we ask ourselves a bigger question: “Can we achieve
the best of both worlds, i.e., using practically interesting lattice-based building
blocks to build a general-policy ACE scheme, supporting keyless sanitization?”

1.2 Viewing ACE Through the Lens of Group Encryption (GE)

Recurrent research activities in the cryptography community include identifying
similarities and differences between primitives and connecting them if possible
(e.g., [11]). Our starting point is group encryption (GE), introduced by Kiayias
Tsiounis, and Yung [17]. GE is like public-key encryption (PKE). Anyone can
encrypt to a certified group member. GE shares one basic feature of ACE, which
is hiding who can decrypt a given ciphertext. In normal circumstances, this
group member remains anonymous. When needed, an opening authority can
reveal him/her. These features make GE an attractive primitive for privacy-
preserving applications [17], e.g., filtering encrypted traffic or “oblivious retriever
storage systems” [10]. There are a few existing GE schemes [3,8,21]. Notably,
Libert et al. [20] proposed a lattice-based scheme (to be adapted by this paper).

However, GE falls short as ACE in many regards, notably the writing per-
mission control: 1) Anyone can encrypt (no policy enforcement). 2) It does not
feature a sanitization algorithm that randomizes a ciphertext (still without the
need to know who can decrypt). It also falls short in terms of the reading per-
mission control: 3) It encrypts to a single reader (not for the general policy).

The first two features can be added generically. Recall that an encryptor
in GE first retrieves the public key of the intended receiver and its certificate
issued by the group manager (GM) as a signature. The ciphertext contains a zero-
knowledge proof of the certificate. By viewing the decryptor in GE also as the
encryptor, we get ACE-EP. Sanitization, roughly, can be done by randomizing
the ciphertext based on this hidden public key “accordingly” (which turns out
to be tricky, see below). Indeed, these tricks are just rediscovery of the generic
ACE-EP construction of Fuchsbauer et al. [13], who also mentioned, “A similar
concept had previously been introduced in [15]1.” We do not claim any novelty of
extending GE with sanitizability [15]. What we deem important is that revisiting
this conceptual connection allows us to borrow the existing results in lattice-
based GE to solve our problems in ACE, forming the starting point of this work.

1.3 Sanitizable Group Encryption for Sanitization in ACE

We first describe what sanitizable group encryption (SGE) is and how its sani-
tizability is defined. Similar to how sanitizable PKE [13] (SPKE, see Sect. 3.3)

1 Izabachene et al. [15] proposed mediated traceable anonymous encryption that pre-
dates ACE. The mediator is essentially the sanitizer here. Like GE, it is a PKE
scheme, and hence the missing feature is the enforcement of who can write. Their
scheme design shares conceptual similarity with the 1-ACE scheme [12].
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extends PKE, SGE extends GE with a San algorithm sanitizing ciphertexts. San
essentially randomizes its input ciphertext without knowing the public key of its
intended receipt. We expect sanitizability, which requires sanitized versions of
an adversarially generated ciphertext and honest encryption of a random mes-
sage remain computationally (instead of statistically [12]) indistinguishable. This
definition is a variant of the subliminal-channel freeness of mediated traceable
anonymous encryption [15] and similar to the no-write rule requirement of ACE.

With the working mechanisms of ACE-EP and SGE as outlined above, this
paper starts with a generic construction of ACE-EP from any SGE. As a by-
product, we obtain traceable ACE, with traceability analogous to the anonymity
revocation of SGE, which traces the information (leakage) flow.

1.4 Meaningful Chosen-Ciphertext Security Under Sanitizability

It would be nice if there is a generic upgrade from any GE to SGE. However,
the development of GE emphasizes security against chosen-ciphertext attacks
(CCA) [3,8,20,21]. A CCA-secure GE is unsanitizable by definition. For exam-
ple, the lattice-based GE construction of Libert et al. [20] (the scheme we will
modify) uses the transformation of Canetti, Halevi, and Katz (CHK) [7] to
achieve CCA security. Encryption starts by picking a one-time signature key.
The verification key is attached to the label of an underlying encryption that is
secure against chosen-plaintext attacks (CPA-secure), such that no one can mod-
ify the label. The whole ciphertext is then signed by this one-time key, intuitively
providing the integrity needed by CCA security. However, the label for tightly
coupling the signature key with the ciphertext forms a convenient channel for a
malicious writer that the sanitizer cannot easily randomize/sanitize.

This illustrates why most ACE literature did not consider CCA security.
Notably, Badertscher, Matt, and Maurer [4] formulate a meaningful CCA secu-
rity notion for ACE that protects the integrity of unsanitized ciphertexts. Con-
sider a non-CCA-secure scheme and an attacker without any write permission.
By capturing only one ciphertext before it reached the sanitizer, the attacker
might be able to maul it to encrypt an arbitrary message and write to whomever
the original creator is authorized to. Their CCA notion prevents such attacks.

Similarly, our SGE notion aims for such a flavor of CCA security. Following
the generic GE construction of El Aimani and Joye [3], we propose a generic SGE
construction from a CPA-secure, key private, and sanitizable PKE scheme that
still features a “compatible” public ciphertext validity check. Roughly, similar
to the trick of Badertscher et al., the ciphertext produced by our SGE scheme
allows the sanitizer to easily check (for CCA security) and drop the “validity
tag.” Any potential subliminal channel formed by this tag will be completely
killed off, while the remaining parts can be sanitized.

1.5 Challenges in Sanitization

The property we stipulated above, namely, “rerandomizability without knowing
the underlying public key,” turns out to be non-trivial to achieve in lattices.
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Although rerandomization can be done by applying similar tricks of the existing
ACE-EP construction via additive homomorphism, there is a mismatch in the
threat models. In normal PKE usage, the encryptor has no intention to use
imperfect randomness, while it is completely the opposite case for ACE, in which
a malicious encryptor is motivated to establish a subliminal channel. To the best
of our knowledge, no existing lattice-based PKE scheme is proven sanitizable.

To prevent the encryptor from cheating, i.e., crafting a ciphertext c such that
even an honest rerandomization of c will not result in a perfectly rerandomized
ciphertext, we propose an efficient technique to detect such kind of adversarial
behavior. At a high level, the vectors of randomness are required to be linearly
independent to span the whole randomness space, so the sanitizer can use it to
fully rerandomize a ciphertext. To filter out the randomness that fails to span the
whole space, we leverage the lemma for rank relation of matrix multiplication for
a ciphertext component formed by a multiplication between the public key and
the randomness. This structure is not readily available, and we need to adapt
an existing LWE-based scheme (see Footnote 4). The underlying sanitization
technique requires a dedicated analysis, which may own independent interest.

1.6 Efficient ACE for General Policy from ACE for Equality Policy

Finally, we propose a generic upgrade extending an ACE for equality policy to
a general-policy scheme for 2� users. Our crucial observation is to strategically
manage the credentials, which does not require 2�-repetition of an underlying
ACE scheme [12]. We still set the “legitimate decryptor” as the sender itself as in
ACE for equality policy. Instead of granting the decryption key to the sender, we
grant the decryption key to all the users that this particular sender can encrypt
to. In this way, we obtain an ACE scheme for general policy, featuring constant-
size ciphertexts, but at the cost of a decryption key that can be as long as the
maximum number of senders a particular user can receive messages from.

1.7 Putting It Altogether

Our instantiation mostly uses the building blocks underlying the lattice-based
GE scheme of Libert et al. [20], but with two major changes as explained above.
We replace the underlying encryption scheme with a modified version of Regev’s
LWE encryption [23], in which we build an efficient detection technique for con-
firming if its ciphertext “spans.” For CCA security, we use the Naor–Yung trans-
formation [22,24]. This leads to our lattice-based construction of SGE. With
our generic transformation, we get a lattice-based ACE scheme for general pol-
icy, featuring keyless sanitization and constant-size ciphertexts. It provides a
solution to two open problems: one from Damg̊ard et al. [12] since it does not
use general-purpose FE for circuits, and another from Kim and Wu [18] that
asks for a general-policy ACE scheme with public sanitizer key (which rules out
FE-based sanitization [12,18]). It is also the second in the ACE literature that
features CCA security. Like other LWE-based schemes, it is also post-quantum
secure.
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Organization. Section 2 recalls the definitions of ACE. Section 3 defines the
SGE notion and presents our generic SGE construction. We upgrade it to ACE-
EP and ultimately general-policy ACE in Sect. 4. Finally, Sect. 5 presents our
SGE instantiation from lattices, which leads to our general-policy ACE.

2 Access Control Encryption with Keyless Sanitization

2.1 Definition

ACE is defined by the following probabilistic polynomial-time (PPT) algorithms.

– Setup(1λ,P) → pp: This algorithm takes the security parameter λ and a policy
P : {0, 1}� × {0, 1}� → {0, 1} as input. It outputs the public parameter pp,
which includes the message space M and two ciphertext spaces C and C′.

– MKGen(pp) → (mpk,msk): This algorithm takes pp as input. It outputs a
master public-secret key pair (mpk,msk). We assume mpk is an implicit input
for all algorithms below.

– EKGen(msk, IDi) → ekIDi
: This algorithm takes the master secret key msk and

an identity IDi ∈ {0, 1}� as input. It outputs an encryption key ekIDi
.

– DKGen(msk, IDj) → dkIDj : This algorithm takes the master secret key msk
and an identity IDj ∈ {0, 1}� as input. It outputs a decryption key dkIDj

.
– Enc(ek,M) → c: This algorithm takes an encryption key ek and a message

M as input. It outputs a ciphertext c ∈ C.
– San(c) → c′: This algorithm transforms an incoming ciphertext c ∈ C into a

sanitized ciphertext c′ ∈ C′ ∪ {⊥}. We only consider keyless sanitization.
– Dec(dk, c′) → M : The algorithm takes a decryption key dk and a ciphertext

c ∈ C′ as input. It outputs a message M ∈ M ∪ {⊥}.

For all M ∈ M and IDi, IDj ∈ {0, 1}� with P(IDi, IDj) = 1, an ACE scheme
is correct if: Pr[Dec(dkIDj

,San(Enc(ekIDi
,M))) �= M ] ≤ negl(λ) where pp ←

Setup(1λ,P), (mpk,msk) ← MKGen(pp), ekIDi
← EKGen(msk, IDi), and dkIDj

←
DKGen(msk, IDj). The probability space is over the coin flips of all the algorithms.

2.2 Security

ACE is for enforcing two access-control rules: the no-read rule and the no-write
rule. Most existing works [12,13,18,25] consider them under only CPA-based
definitions, where the adversary is given access to the oracles for encryption,
encryption-key generation, and decryption-key generation. Badertscher et al. [4]
consider a CCA-based definition with a malicious insider who can maul an
honestly-generated and unsanitized ACE ciphertext into a carrier for sending
a message to a receiver that is forbidden by the policy otherwise. Even though
ACE needs to assume an operational environment where ciphertexts must be
routed through the sanitizer before reaching their final destination, it does not
assume that no one can eavesdrop and maul them before reaching the sanitizer.
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Instead of a typical decryption oracle, Badertscher et al. proposed an oracle
that first sanitizes the ciphertext then decrypts it, i.e., a sanitize-then-decrypt
oracle. If an ACE scheme remains CCA-secure in this sense, no one can maul an
unsanitized ciphertext. Note that the CCA protection does not extend to a sani-
tized ciphertext. Also, in practice, the sanitizer can sign on the sanitized cipher-
texts and publish them on a public bulletin board for (anonymous) retrieval.

Let ACE = (Setup,MKGen,EKGen,DKGen,Enc,San,Dec) be an ACE scheme
for policy P : {0, 1}� × {0, 1}� → {0, 1} over a message space M. For a security
parameter λ and a random bit b drawn from a fair coin flip, the general exper-
iment ExpACE,A(λ) for a PPT adversary A starts with the challenger sampling
pp ← Setup(1λ,P) and (mpk,msk) ← MKGen(pp). Then ExpACE,A(λ) diverges
into no-read rule experiment ExpNoRead

ACE,A(λ) or no-write experiment ExpNoWrite
ACE,A (λ)

with a different challenge oracle and a different set of training oracles as below.

– OEnc(M, IDi) → c: On input M ∈ M and a sender identity IDi ∈ {0, 1}�, the
encryption oracle outputs c ← Enc(EKGen(msk, IDi),M).

– OSanEnc(M, IDi) → c′: On input a message M ∈ M and a sender identity
IDi ∈ {0, 1}�, it outputs c′ ← San(Enc(EKGen(msk, IDi),M)).

– OEKGen(IDi) → ekIDi
: On input a sender identity IDi ∈ {0, 1}�, the encryption

key generation oracle outputs ekIDi ← EKGen(msk, IDi).
– ODKGen(IDj) → dkIDj : On input a receiver identity IDj ∈ {0, 1}�, the decryp-

tion key generation oracle outputs dkIDj
← DKGen(msk, IDj).

– ODec(IDj , c) → M : With a receiver identity IDj ∈ {0, 1}� and an unsanitized
ciphertext c ∈ C, it outputs M ← Dec(DKGen(msk, IDj),San(c)).

– ONoRead((M0,M1), (ID0, ID1)) → cb: This is the challenge oracle for the no-
read experiment. On input a pair of messages (M0,M1) ∈ M×M and a pair
of sender indices (ID0, ID1) ∈ {0, 1}� × {0, 1}�, the challenger responds with
cb ← Enc(EKGen(msk, IDb),Mb).

– ONoWrite(c, ID∗) → cb: This is the challenge oracle for the no-write experiment.
On input an unsanitized ciphertext c ∈ C and a sender identity ID∗ ∈ {0, 1}�,
it sets c∗

0 ← c. Then the challenger samples M∗ ← M, computes c∗
1 ←

Enc(EKGen(msk, ID∗),M∗), and responds with cb ← San(c∗
b).

A outputs a bit b′ ∈ {0, 1} as the output of the experiment at the end.

Definition 1 (No-Read Rule). A wins the no-read game with OEnc, OEKGen,
ODKGen, ODec, and ONoRead if b′ = b, |M0| = |M1|, for all queries IDj ∈ {0, 1}�

that A makes to the ODKGen, P(ID0, IDj) = P(ID1, IDj) = 0, and cb has never been
queried to ODec. ACE satisfies the no-read rule if for all PPT A, the advantage
for A to win the no-read game is AdvA = Pr[A wins ExpNoRead

ACE,A(λ)]− 1
2 ≤ negl(λ).

The adversary can compromise the sanitizer under the above definition since
the challenge ciphertext is not sanitized, and our ACE notion does not have
any sanitizer key. The no-read rule ensures payload privacy, i.e., no unintended
receivers can learn anything about the message. It also guarantees (outsider)
sender anonymity, which holds against any coalition of receivers that cannot
decrypt the challenge ciphertext. This definition is weaker than requiring sender
anonymity to hold even against an adversary who can decrypt the ciphertext.
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Definition 2 (No-Write Rule). Given the oracles of OSanEnc, OEKGen,
ODKGen, ODec, and ONoWrite, A wins the no-write game if b′ = b, San(c) �= ⊥,
and:

– The adversary A makes at most one query2 to the challenge oracle ONoWrite.
– For all identities IDi ∈ {0, 1}� that A submits to OEKGen prior to its challenge

and all identities IDj ∈ {0, 1}� that A submits to ODKGen, P(IDi, IDj) = 0.

We say that an ACE scheme satisfies the no-write rule if for all PPT adver-
sary A, the advantage of A is AdvA = Pr[A wins ExpNoWrite

ACE,A (λ)] − 1
2 ≤ negl(λ).

The no-write rule means that a sender can only encrypt to receivers per-
mitted by the policy. Even an adversary can somehow embed in a ciphertext
some subliminal information, it will be killed off after sanitization. Likewise,
this property should hold even when multiple senders and receivers collude.

Sender Policy and Message Policy. The formulation of Kim and Wu [18]
additionally considers “fine-grained sender policy” with the access control policy
also governs the messages a sender can send. This policy is embedded in and
authorized via the encryption key. They also suggested that an encryption key
for multiple policies over the message can be supported in a straightforward
manner by granting the sender multiple certified encryption keys.

In this paper, we consider a variant definition that the message policy can
be ad hoc, i.e., the sender can create ciphertexts encrypting different messages
satisfying different relations to any legitimate receiver. This flexibility has (seem-
ingly inherent) implications on privacy and the no-write rule since the sanitizer
needs to know about the relation and cannot “sanitize” the relation.

2.3 Traceable ACE

To obtain traceable ACE (tACE), we equip the traceability feature via two
algorithms below, and with Enc algorithm now takes, besides the user encryption
key ek, also an input of opening-authority public key tpk for the tracing feature.

– TKGen(pp) → (tpk, tsk): This algorithm takes as input the public parameter
pp and outputs the tracer public/secret key pair (tpk, tsk).

– Trace(tsk, c′) → ID: This algorithm takes the input of the tracer secret key
tsk and a sanitized ciphertext c′ ∈ C′. It outputs the sender identity ID of c′.

Tracing the sender can be desirable in the context of ACE since we can locate
which user has his/her machine compromised that tried to leak information. One
may consider an alternative formulation that traces the receiver.

Here, we only consider a primitive form of tracing that recovers a user identity
ID associated with a ciphertext [15]. Akin to traceable signatures [16], one could
consider using a user-specific trapdoor for ID to check [1] whether ID is associated
with a ciphertext [21] or to trace [9] all ciphertexts associated with a specific ID.
2 A standard hybrid argument shows that security against an adversary that makes a

single challenge query implies security against one that makes multiple such queries.
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Traceability Correctness and Soundness. For all M ∈ M and IDi ∈ {0, 1}�,
pp ← Setup(1λ,P), (mpk,msk) ← MKGen(pp), (tpk, tsk) ← TKGen(pp), and c ←
Enc(EKGen(msk, IDi),M), traceability correctness means Pr[Trace(tsk,San(c))
�= IDi] ≤ negl (λ). The probabilities are taken over the randomness of all
algorithms.

A tACE scheme has traceability soundness if, for any PPT adversary A who
queries to OEKGen and outputs a ciphertext c, the advantage for A to win, defined
to be Pr[ID /∈ QEKGen|Trace(tsk,San(c)) = ID], is negligible, where QEKGen denotes
the set of queries to OEKGen, i.e., c should not trace to an uncompromised user.

3 Sanitizable Group Encryption

3.1 Syntax of Sanitizable Group Encryption

A sanitizable group encryption scheme consists of the following algorithms.

– Setup(1λ) → pp: On input a security parameter λ, this probabilistic algorithm
outputs the public parameter pp as an implicit input of what follows.

– (Gr,SampleR): On input of λ, Gr generates the key pair (pkR, skR) of the
relation R concerning a message M one might want to prove about. skR can
be empty if R is publicly sampleable. We assume there is a PPT algorithm
that can check if (pkR, skR) is a valid output of Gr. On input of (pkR, skR),
SampleR produces (x,M) where x is an instance and M is a witness for R.

– KeyGenE(pp) → (pkE , skE): This algorithm outputs the key pair (pkE , skE)
of the entity E in the system. E can either be the group manager GM, the
opening authority OA, or a group member u identified by ID.

– Join(skGM, pkGM, pkID) → certpkID : This algorithm outputs a certificate certpkID
on public key pkID and stores (ID, pkID, certpkID) in a directory db.

– Vfcert(pkGM, pkID, certpkID): It verifies the validity of certpkID for pkID.
– Enc(pkGM, pkOA, pkID, certpkID , (pkR, x, ) M) → c: On input the respective pub-

lic key pkGM, pkOA, and pkID of GM, OA, and a group member certified by
certpkID , and optionally a relation pkR with a public value x, it returns a
ciphertext c of the plaintext M , which (x,M) ∈ R is supposed to hold.

– Vf(pkGM, pkOA, (pkR, x, ) c) → {0, 1}: It outputs 1 if c is valid; 0 otherwise.
– San(c) → c′: On input a valid ciphertext c, this algorithm outputs its saniti-

zation c′ (or a rejection symbol ⊥).
– Dec(skID, c′) → M : On input the private key skID and a sanitized ciphertext

c′, this algorithm decrypts c′ and outputs the message M (or ⊥).
– Open(skOA, c′) → pkID: On input the private key skOA of OA and a sanitized

ciphertext c′, this algorithm recovers from c′ the public key pkID.

Similar to the application scenario of ACE, we consider SGE ciphertexts to
be (verified and) sanitized before reaching the final destination. This explains
why our Dec and Open algorithms only work on sanitized ciphertexts. One might
consider an alternative definition that they also work on unsanitized ciphertexts.
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Our SGE formulation is kept as non-interactive as possible. Instead of having
an explicit Prove algorithm/protocol in the prior GE formulation, the ciphertext
produced by Enc contains a non-interactive proof. Existing schemes can indeed
be formulated in this setting, some at the cost of using Fiat–Shamir heuristics.
Also, the Join protocol is reduced to a pair of algorithms that the GM uses the
algorithm Join to sign on a given public key for generating a certificate on it3,
which the user can then run Vfcert to verify its validity. This helps to simplify
the security definitions. We remark that the security definition for existing non-
interactive GE schemes [8,21] still separates the proof from the ciphertext.

Correctness. We require for an SGE scheme, the correctness game Corr defined
in Fig. 1 returns 1 with overwhelming probability.

Fig. 1. Experiment for the correctness of SGE

3.2 Security Model of Sanitizable Group Encryption

In the following, we assume the adversary A is stateful. By maintaining the state
information state, A becomes aware of at which stage it is.

Message Indistinguishability (IND). An SGE scheme meets the IND-CCA
notion if the success probability of any PPT adversary A to distinguish among
encryptions of a chosen message and of a random message is at most negligibly
better (in parameter λ) than 1

2 in the experiment Ind in Fig. 2a, where the oracles
are defined as below.

– OJoin∗
L () is a stateful oracle that simulates executions for honest users who

request to join the group. It maintains as state information an initially
empty list L. For its i-th invocation, the simulator executes (pkIDi

, skIDi
) ←

3 The public key can be proven valid by an external mechanism (e.g., via any proof-of-
possession mechanism over its secret key). Our final goal is to reduce ACE to GE. In
ACE, each public key is generated by a trusted key generator, and hence it suffices.
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KeyGenu(pp), sends it to the adversary, which responds with certpkIDi
. The

output (pkIDi
, skIDi

, certpkIDi
) of the user is stored in L if the Join()-executing

A provides a valid certificate certpkIDi
.

– ODec
¬(ID∗,cb)

(ID, ci) is a stateless decryption oracle. On input a ciphertext ci, it
runs M ′ ← Dec(skID,San(ci)) and returns M ′ if (ID, ci) �= (ID∗, cb).

– ORoR
b (pkID, pkR, x,M) is a real-or-random challenge oracle that is only queried

once. For a bit b, it samples a random plaintext M0 uniformly from M, and
sets M1 = M . It returns cb ← Enc(pkGM, pkOA, pkID, certpkID , (pkR, x, ) Mb).

Fig. 2. Experiments for (2a) IND-CCA and (2b) ANO-CCA notions of SGE

Anonymity. The formal definition of anonymity against chosen-ciphertext
attacks (ANO-CCA) is as follows. The notion is met if the success probabil-
ity of any PPT adversary A is at most negligibly better than 1

2 . We introduce
the following oracles and the game Ano in Fig. 2b.

– OOpen
¬cb

(skOA, ·) returns Open(skOA,San(c)) on input of a ciphertext c �= cb,
– OAno

b (pkGM, {pkIDd
, certpkIDd

}d∈{0,1}, pkR, x,M) is a challenge oracle that is
only queried once. It returns cb ← Enc(pkGM, pkOA, pkIDb

, certpkb , (pkR,
x, ) M).

Soundness. In a soundness attack, A creates adaptively the intended group of
receivers communicating with the genuine GM. A is successful if it can output a
ciphertext c and a chosen pkR such that (1) c is not in the valid ciphertext space
denoted by CpkGM,pkOA,db,pkR,x = {Enc(pkGM, pkOA, pkID, certpkID , (pkR, x, ) M) :



428 X. Wang et al.

((x,M) ∈ R) ∧ (pkID ∈ db) ∧ Vfcert(pkGM, pkID, certpkID) = 1}, and (2) opening c
results in a public key that does not belong to any group member.

An SGE scheme is sound if, for any PPT A, the experiment ExpSoundA (λ)
outputs 1 with negligible probability. We introduce the following oracle and the
game Sound in Fig. 3a.

– OJoin
db (skGM, pkGM, ·) is a stateful oracle that simulates GM and maintains db

storing each registered public key pkID along with its certificate certpkID .

Fig. 3. Experiments for the (3a) Soundness and (3b) Sanitizability of SGE

Sanitizability. Sanitizability requires that sanitization of two ciphertexts, one
given by the adversary and the other randomly picked from the ciphertext space,
cannot be distinguished as long as the adversary has no decryption key that
decrypts any one of the ciphertexts. An SGE scheme is sanitizable if, for any
PPT A, the experiment ExpwSanA (λ) outputs 1 with negligible probability. With
the two oracles OJoin∗

L () and ODec
¬(ID∗,c)(ID, ci) introduced in Fig. 2a, we introduce

an additional oracle below and the game wSan in Fig. 3b.

– OwSan(pkR, skR, c) → cb is a real-or-random challenge oracle that is only
queried once, It aborts if Vf(pkGM, pkOA, pkR, x, c) = 0. For a bit b, it first
sets c∗

0 ← c and runs (x,M∗) ← SampleR(pkR, skR) to sample M∗ uniformly
from M under the constraint that (x,M∗) ∈ R. It then computes c∗

1 ←
Enc(pkGM, pkOA, pkID, certpkID , (pkR, x, ) M∗) and returns cb ← San(c∗

b).

3.3 Sanitizable Public-Key Encryption

Let E = (Setup,KeyGen,Enc,San,Dec) be a key-private sanitizable PKE scheme.
We omit to repeat the standard definitions of correctness, key privacy, and CPA
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security here [13]. Sanitizability requires any adversary generating two pairs of
message and randomness (M0, r0), (M1, r1) cannot distinguish the random bit
b when given a sanitized ciphertext San(Enc(pk,Mb; rb)), where Enc(pk,M ; r)
refers to using r as its internal randomness.

3.4 Generic SGE Construction

We construct SGE by adapting the generic GE construction of El Aimani and
Joye [3]. In a nutshell, the membership certificate is a signature. To create a GE
ciphertext, the message and the public key are encrypted in two ciphertexts, and
the validity of the certificate and well-formedness of the GE ciphertext are proven
by non-interactive zero-knowledge (NIZK) proof. To achieve CCA security, they
use tag-based public-key encryption with label and employ the CHK transform.
A one-time signature verification key is put as the label, which is not sanitizable.

Instead of the CHK transform, we use the Naor–Yung technique [22,24] to
upgrade from CPA- to CCA-security. At a high level, two “component” cipher-
texts, both encrypting the same message, are proven to be so via non-malleable
NIZK. To simulate the decryption oracle, the reduction knows the decryption key
for one of the two PKE instances, and hence decryption is trivial. The challenge
ciphertext can be simulated via simulation soundness of NIZK, which ensures
that the adversary has no advantage even if the simulated NIZK for the challenge
query is for a wrong statement, and can easily be achieved via, e.g., Fiat–Shamir
heuristic. With this approach, we can achieve a CCA-security definition akin to
that of ACE we defined in Sect. 2.2, following the prior definition [4]. Namely,
the sanitizer first checks the well-formedness of the ciphertexts, drops the proof
and the redundant ciphertext, and then performs rerandomization.

Let Σ = (Gen,Sign,Vf) be a signature scheme that is existentially unforgeable
against chosen-message attacks (EUF-CMA). Let h be a collision-resistant hash
function from the public-key space to the message space of E . With an NIZK
proof system, an SGE scheme is constructed as follows.

– Setup(1λ) → pp: This algorithm runs the setup algorithms (if any) for the
building blocks and outputs all the public parameters as pp. Let R be a
relation with a key pair (pkR, skR) for sampling pairs (x,M) ∈ R.

– KeyGenGM(pp) → (pkGM, skGM): This key generation algorithm for the group
manager outputs (pkGM, skGM), which is set to be (Σ.pk, Σ.sk) ← Σ.Gen(1λ).

– KeyGenOA(pp) → (pkOA, skOA): It runs E .KeyGen(1λ), which output the pairs
(E .pkOA, E .skOA) and (E .pk∗

OA, E .sk∗
OA). It returns ((E .pkOA, E .pk∗

OA), E .skOA).
– KeyGenu(pp) → (pkID, skID): It runs E .KeyGen(1λ) twice. Let the outputs be

(E .pkID, E .skID) and (E .pk∗
ID, E .sk∗

ID). It outputs ((E .pkID, E .pk∗
ID), E .skID).

– Join(skGM, pkGM, pkID) → certpkID : It runs certpkID ← Σ.Sign(skGM, pkID) and
returns certpkID to user ID. GM also stores (pkID, certpkID) in db.

– Vfcert(pkGM, pkID, certpkID): It outputs Σ.Vf(pkGM, pkID, certpkID).
– Enc(pkGM, pkOA, pkID, certpkID , (pkR, x, ) M) → c: It firstly generates cM ←

E .Enc(E .pkID,M), c∗
M ← E .Enc(E .pk∗

ID,M), cOA ← E .Enc(E .pkOA, h(pkID)),
and c∗

OA ← E .Enc(E .pk∗
OA, h(pkID)), and a non-malleable NIZK proof π for:
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(x,M) ∈ R, Σ.Vf(pkGM, certpkID , pkID) = 1,
cM ← E .Enc(E .pkID,M), c∗

M ← E .Enc(E .pk∗
ID,M),

cOA ← E .Enc(E .pkOA, h(pkID)), c∗
OA ← E .Enc(E .pk∗

OA, h(pkID))

with statement (pkGM, pkOA, pkR, x) and witness (M, coins, pkID, certpkID), and
coins denotes the randomness used in all invocations of E .Enc() above. It
outputs c = (cM , c∗

M , cOA, c∗
OA, π). Note that (pkR, x) can be optional.

– Vf(pkGM, pkOA, (pkR, x, ) c) → {0, 1} : For c = (cM , c∗
M , cOA, c∗

OA, π), it verifies
the NIZK proof π, and outputs 1 if the proof is accepted, 0 otherwise.

– San(c) → c′: It calls Vf on c and returns ⊥ if it is invalid. It then parses c
into (cM , c∗

M , cOA, c∗
OA), and outputs c′ = (E .San(cM ), E .San(cOA)).

– Dec(skID, c′) → M : Parsing c′ = (c′
M , c′

OA), it returns M ← E .Dec(skID, c′
M ).

– Open(skOA, c′) → pkID: It parses c′ = (c′
M , c′

OA), runs h∗ ← E .Dec(skOA, c′
OA),

then looks up at db and outputs the public key pkID such that h(pkID) = h∗.

The following theorems assert the security of our generic construction.

Theorem 1. Our SGE scheme satisfies IND-CCA security if E is IND-CCA-
secure, Σ is EUF-CMA-secure, and NIZK is zero-knowledge proof-of-knowledge.

Theorem 2. Our SGE scheme satisfies ANO-CCA anonymity if E is ANO-
CCA-anonymous, Σ is EUF-CMA-secure, and NIZK is zero-knowledge proof-
of-knowledge.

Theorem 3. Our SGE scheme satisfies soundness if Σ is EUF-CMA-secure
and NIZK is zero-knowledge proof-of-knowledge.

Theorem 4. Our SGE scheme satisfies sanitizability if Σ is EUF-CMA-secure,
E is key-private and sanitizable, and NIZK is zero-knowledge proof-of-knowledge.

The proofs for the first three mostly follow those for the generic GE construc-
tion of El Aimani and Joye [3]. The proof for the sanitizability mostly follows that
for the no-write rule of the generic ACE construction of Fuchsbauer et al. [13].
Their details are deferred to the full version.

4 ACE from Sanitizable Group Encryption

4.1 Our Generic Construction of (t)ACE-EP

Using an SGE scheme, we can construct a (t)ACE scheme for the equality policy,
i.e., P(IDi, IDj) = 1 iff IDi = IDj as follows. Setup of (t)ACE includes Setup of
SGE. (Gr,SampleR) is optional. ACE, by default, does not expect the message
as a witness of some relation. However, incorporating so means that we can also
enforce what kind of messages (even) a legitimate sender can send (cf., [18]).

The key generator takes the roles of GM of SGE. It generates keys for users
in the system by calling KeyGenu and Join to generate the public/secret key pair
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and create a certificate on the public key sequentially. To support sender tracing,
the key generator stores (ID, pkID, certpkID) in a directory db.

For access control, any sender of (t)ACE should be a group member in SGE.
The group member keeps the certificate certpkID on pkID returned from GM pri-
vately as the encryption key for proving the write permission and keeps skID as
the decryption key for exercising the read permission. During encryption, the
sender calls the algorithm Enc of SGE to generate a ciphertext consists of an
NIZK proof for the following relation: (1) the anonymous decryptor is a group
member, (2) the payload message is encrypted under the public key of that
decryptor, and for tACE (3) the hash of the public key of the decryptor is
encrypted in a ciphertext attached which is decryptable by the secret tracing
key. The ciphertext is sent to the sanitizer. If the sanitizer accepts the proof
embedded inside the ciphertext, it sanitizes the ciphertext and broadcasts it.
Finally, the receiver calls the algorithm Dec of SGE to decrypt. The tracer can
call the algorithm Open of SGE to search for the corresponding ID if the need
arises.

Let GE = (Setup, (Gr,SampleR),KeyGenGM,KeyGenOA,KeyGenu, Join,Vfcert,
Enc,Vf,San,Dec,Open) be an SGE scheme. Our (t)ACE scheme for equality
policy, or (t)ACE-EP, is constructed as follows.

– Setup(1λ,P) → ppACE : With security parameter λ and the policy P, this
algorithm runs pp ← GE .Setup(1λ) and returns ppACE = pp.

– MKGen(ppACE) → (mpk,msk): It runs (pkGM, skGM) ← GE .KeyGenGM(pp) and
returns master public/secret key tuple as (mpk,msk) = (pkGM, skGM).

– TKGen(ppACE) → (tpk, tsk): It runs (pkOA, skOA) ← GE .KeyGenOA(pp) and
returns (tpk, tsk) = (pkOA, skOA).

– EKGen(msk, IDi) → ekIDi
: With the input of IDi, it first calls (pkIDi

, skIDi
) ←

GE .KeyGenu(pp) then certpkIDi
← GE .Join(skGM, pkGM, pkIDi

) (and stores in a
directory db (ID, pkIDi

, certpkIDi
) for tracing). Finally, ekIDi

= (pkIDi
, certpkIDi

).
– DKGen(msk, IDj) → dkIDj

: For a receiver with identity IDj , this algorithm
returns skIDj

that has been generated by EKGen(msk, IDi). In practice, the key
generator can use a pseudorandom function output of IDj as the randomness
used by GE .KeyGenu(pp) within EKGen(msk, IDi). It outputs dkIDj

= skIDj
.

– Enc(ekIDi , tpk,M) → c: Using an encryption key ekIDi = (pkIDi
, certpkIDi

),
possibly with a tracer public key tpk = pkOA (in tACE), this algorithm
encrypts a message M via c ← GE .Enc(pkGM, pkOA, pkIDi

, certpkIDi
,M), or

c ← GE .Enc(pkGM, pkOA, pkID, certpkID , pkR, x,M) if the message policy with
respect to (pkR, x) where (x,M) ∈ R is also enforced.

– San(c) → c′: Output c′ ← GE .San(c) if Vf(pkGM, pkOA, c) returns true; ⊥
otherwise. If the policy also mandates (x,M) ∈ R, San takes additional inputs
of (pkR, x) and runs Vf(pkGM, pkOA, pkR, x, c) instead.

– Dec(dkIDj
, c′) → M : On input a ciphertext c′ and secret key dkIDj

= skIDj
,

this algorithm runs M ← GE .Dec(skIDj
, c′), which either returns M or ⊥.

– Trace(tsk, c′) → ID: On input a ciphertext c′ and the tracing secret key tsk,
it runs pkID ← GE .Open(skOA, c′) and returns ID by looking up stored db.
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The correctness of this (t)ACE-EP scheme directly follows from the correct-
ness of the SGE scheme GE . Since the SGE does not require any sanitizer key,
the sanitization of our construction is done without any sanitizer key as well.

The proofs for correctness and security are mostly straightforward since san-
itizable group encryption and (traceable) access control encryption are almost
equivalent, modulo to the terminologies. They are deferred to the full version.

4.2 Extension to General Policy

Similar to the scheme of Fuchsbauer et al. [13], this (t)ACE-EP construction can
also be extended to support range policies and a disjunction clause over them,
with both the ciphertext size and decryption key size being poly(�).

Beyond the above policies, we show that (t)ACE-EP can be extended to
support general policy. Our intuition is as follows. For a receiver IDj , the system
generates the decryption key skIDi

of the (t)ACE-EP scheme for each IDi where
P(IDi, IDj) = 1, i.e., receiver IDj holds a set of decryption keys {dkIDi

}P(IDi,IDj)=1.
Let (t)ACEeq = (Setup,MKGen, (TKGen),EKGen,DKGen,Enc,San,Dec,

(Trace)) be an (t)ACE-EP scheme for Peq(IDi, IDj) = 1 iff IDi = IDj . We con-
struct out (t)ACE scheme for general policy by changing the DKGen and Dec
algorithms (all other algorithms remain unchanged).

– DKGen(msk, IDj) → dkIDj
: With the input of msk and an identity IDj , for

any identities IDi with predicate P(IDi, IDj) = 1, this algorithm computes
dkIDi ← ACEeq.DKGen(msk, IDi) and returns the set {dkIDi}P(IDi,IDj)=1 as the
decryption key for receiver IDj .

– Dec(dk, c) → M : With the input of a ciphertext c′ and decryption key dkIDj
=

{dkIDi}P(IDi,IDj)=1, this algorithm decrypts c′ using each dkIDi . It outputs the
message M if one of the decryptions succeeds, ⊥ otherwise.

Our method needs not to replicate the whole cryptosystem for 2� copies [12].
The ciphertext size of our ACE scheme for the general policy is the same as the
underlying (t)ACE-EP scheme, which is O(1). The encryption key size remains
the same as the underlying, i.e., O(1) too. The decryption key size is bounded by
the maximum number of senders any user can receive messages from (denoted by
smax). Theoretically speaking, this can still be as long as 2� when a particular
user can receive from all other users. In practice, we can always heuristically
assign a special identity to this kind of users to reduce the key size. Table 1
compares the size of the parameters of interests for our general-policy ACE
instantiation (from ACE-EP) and the existing one (from 1-ACE [12, §3]).

Note that this scheme only achieves sender anonymity against outsiders. In
other words, a legitimate decryptor can learn information about who the sender
is. This matches the level of Kim–Wu ACE [18]. As argued [18], it suffices for
all application scenarios originally envisioned [12].
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Table 1. Comparison of key size and ciphertext (Ctxt.) sizes

Instantiations from different building blocks Enc. Key Dec. Key Ctxt. San. Key

General-policy ACE from 1-ACE [12, §3] O(2�) O(1) O(2�) O(2�)

General-policy ACE from ACE-EP (This work) O(1) O(smax) O(1) Nil

5 Lattice-Based Access Control Encryption

To achieve our final goal, we adapt Libert et al. [20]’s lattice-based GE scheme,
which is not sanitizable due to a non-randomizable tag. We thus disassemble it
and replace its encryption scheme with a new lattice-based SPKE scheme.

5.1 Lattice Background

We quickly review some preliminaries in lattice-based cryptography. We cite a
special version of the leftover hash lemma [23], which argues the indistinguisha-
bility from a uniform distribution. For our scheme, we consider Zn

q as the Abelian
group G and m = 2n log q be the maximum number of samples to be summed up.

Theorem 5 ([23]). Let G be some finite Abelian group and let k be some integer.
For any m elements g1, . . . , gm ∈ G, consider the statistical distance between the
uniform distribution on G and the distribution given by the sum of a random
subset of g1, . . . , gm. The expectation of this statistical distance over a uniform
choice of g1, . . . , gm ∈ G is at most

√|G|/2m. In particular, the probability that
this statistical distance is more than 4

√|G|/2m is at most 4
√|G|/2m.

The decisional-LWE problem asks to distinguish samples from a perturbed
linear system and random elements from the uniform distribution.

Definition 3 (Decisional Learning with Error [23]). Let Zq be the ring of
integers modulo a positive integer q, and Z

n
q be the set of n-vectors over Zq. Given

a probability distribution χ over Z, a positive integer n, and a positive integer q
of size dependent on n, the goal of learning with error LWEq,χ is to distinguish
between the sample (a,b) from distribution As,χ, defined as b = as+e with e ← χ
for some uniform secret s ← Z

n
q and (a,u) is sampled (via oracle accesses) from

a uniform distribution on Z
n
q × Zq for randomly sampled a.

Definition 4 (Noise Sample Space [23]). For α ∈ (0, 1) and a prime q, let
Ψα denote the distribution over Zq of the random variable 
qX� mod q, where
X is a normal random variable with mean 0 and standard deviation α/2

√
π.

Specifically, if the noise added to the perturbed linear system being an
amplified-then-quantized Gaussian noise (as mentioned in the above definition of
noise sample space), one can apply the following theorem to reduce the hardness
of LWE to existing lattice problems, which helps us to decide the parameters.
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Theorem 6 (Regev’s Reduction [23]). For α ∈ (0, 1) and prime q, if there
exists an efficient, possibly quantum, algorithm for deciding the (Zq, n, Ψα)-LWE
problem for αq > 2

√
n, then there is an efficient quantum algorithm for approxi-

mating the shortest independent vector problem and the gap shortest vector prob-
lem, to within Õ(n/α) factors in �2 norm, in the worst case.

5.2 Lattice-Based Sanitizable Encryption

We start with Regev’s encryption scheme based on the LWE problem [23]. It fea-
tures ciphertext indistinguishability, meaning that an honestly generated cipher-
text is indistinguishable from a random element in the ciphertext space, which
implies key privacy. Sanitization relies on encryption of 0 as randomizers. When
the randomizers form a basis for spanning the randomness space of Regev’s
scheme, the ciphertext can be rerandomized by adding a random subset-sum
of the randomizers. This requires additive homomorphism. However, the noise
accumulates after homomorphic evaluations. We thus change the parameters of
the scheme such that the evaluation correctness (decryption correctness of an
evaluated ciphertext) holds for a bounded number of additions. Namely, we scale
up the modulo size to increase the noise tolerance of decryption.

This sanitization technique assumes an honest encryptor to prepare linearly
independent randomness components, which mismatches the threat model that
randomness is adversarially picked. We address this by a specific structure of the
randomizer that allows us to check the rank of the randomizer, which implies
the rank of the underlying randomness used by the randomizer.

Denote matrix and vector by bold capital and small letter, respectively; our
SPKE scheme (Setup,KeyGen,Enc,Dec,San) is as follows.

– Setup(1λ) → pp: Set n = O(λ), prime q = Õ(n) > 16m(m + 1), m = 2n log q,
k = poly(n). The probability distribution χ is taken to be Ψα, with α =
1/(

√
mω(

√
log n)). Sample Ā ← Z

n×m
q and compute rĀ = Rank(Ā). Output

pp = (q, n,m, k, χ, Ā, rĀ).
– KeyGen(pp) → (pk, sk): Sample s ∈ Z

n
q and e ← χm. Compute b = Āᵀs+e ∈

Z
m
q . Output (pk, sk) = (b, s).

– Enc(pk,m) → c: Given m ∈ {0, 1}k, sample Rm ← {0, 1}k×m and lin-
early independent Rr ← {0, 1}m×m. Set cm = (RmĀᵀ,Rmb + m · 
q/2
) ∈
Z
(k+1)×n
q and cr = (RrĀᵀ,Rrb) ∈ Z

(m+1)×n
q . Output c = (cm, cr).

– Dec(sk, c′) → m: We suppose c′ has been sanitized by San. Parse c′ = (c0, c1).
Set m′ = c1 − c0s mod q. For each entry i of m′, say m′

i, set mi = 0 if m′
i is

closer to 0 than 
q/2
. Otherwise, set mi = 1. Output m.
– San(c) → c′: Parse c = ((cm,0, cm,1), (cr,0, cr,1)). Check if Rank(cr,0) = rĀ,

output ⊥ if it is not. Otherwise, sample R ∈ {0,±1}k×m and output c′ =
(cm,0 + Rcr,0, cm,1 + Rcr,1) ∈ Z

(k+1)×n
q .

Correctness. The decryption correctness of sanitized ciphertext largely follows
the original scheme [23] and by scaling up the modulo q by m+1 times to preserve
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the correctness after the additions done by San. Decryption outputs

c1 − c0s = (cm,1 + Rcr,1) − (cm,0 + Rcr,0)s
= (Rmb + m · 
q/2
 + RRrb) − (RmĀᵀ + RRrĀᵀ)s
= (Rm + RRr)(b − Āᵀs) + m · 
q/2

= (Rm + RRr)e + m · 
q/2
.

Since Rm, R and Rr are binary matrices, the absolute value of entries in R′e
for R′ = Rm + RRr is upper bounded by (m + 1)

∑m
i=1 ei, where ei is the i-th

entry of vector e. To recover m, we need to show that the entry of R′e is upper
bounded by q/16; in other words,

∑m
i=1 ei is upper bounded by q/16(m + 1).

By the definition of Ψα, ei = 
qxi� mod q, where xi’s are independent normal
variables with mean 0 and variances α2. Note that

∑m
i=1 ei is at most m/2 ≤

q/32 away from
∑m

i=1 qxi mod q. It suffices to show that |∑m
i=1 qxi mod q| ≤

q/16(m + 1) with high probability. Since xi’s are independent, |∑m
i=1 xi mod q|

is distributed as a normal variable with mean 0 and standard deviation
√

m ·α ≤
1/ω(

√
log n). Thus, by the tail inequality on normal variables, the probability

that the absolute value of the entry in R′e greater than q/16 is negligible.

Security. The proof mostly follows the existing [23]. We sketch its two hybrids.
The first hybrid game shows that a “well-formed” public key is indistinguish-

able from a random element based on the decisional-LWE assumption (Defini-
tion 3). By this assumption, replacing the component of the public key b (the
LWE instance) with a random element u is indistinguishable.

The second hybrid game shows that a ciphertext is statistically indistinguish-
able from a random element by the leftover hash lemma (Theorem 5). Since the
ciphertext (rᵀĀᵀ, rᵀu) is a random subset-sum of (Āᵀ,u) as r ∈ {0, 1}m, it
is statistically indistinguishable from a uniform distribution. It completes our
argument for indistinguishability from random.

Sanitizability. Although checking for uniformly-sampled randomizer is diffi-
cult, one can check whether the randomizers are linearly independent (for ran-
domness space being a vector) instead so that the randomizers always span
the whole randomness space. Recall that one of the components of the cipher-
text is cr,0 = RrĀᵀ, we leverage the following lemma for the rank of matrix
multiplication in linear algebra to check whether the randomness Rr is lin-
early independent or not.4 Given m-dimensional square matrix R and (n × m)-
dimensional matrix A, if R is full rank, Rank(RAᵀ) = Rank(Aᵀ). Hence, if
4 We remark that the dual version of our sanitizable encryption scheme has no such

efficient machinery (which explains our choices). Although randomly adding random-
izer to payload-part can still rerandomize its randomness, “linearly independence”
is not well-defined (the randomness space is Zn

q but it needs n log q linearly indepen-
dent vectors to rerandomize, where linear independence means none of the samples
is a subset-sum of the other samples), and checking seems to have the same com-
plexity as the NP-complete subset-sum problem. Also, the corresponding ciphertext
component to be checked is perturbed by noise, which ruins the structure.
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Rank(cr,0) = Rank(Āᵀ), it implies that Rr is full rank (linearly independent),
and the corresponding randomizers can be used to span the whole randomness
space. For example, sanitization changes the randomness from Rm to Rm+RRr.

For the indistinguishability of sanitized ciphertexts from a random element
in the space of sanitized ciphertexts because of the changes in randomness space
(from binary to integer), an appropriate version of the leftover hash lemma can
be used. In its proof [23, Sect. 5], selecting a subset-sum or an integer combination
of the basis vector does not affect the argument.

Verifiable Encryption. We show the proof system [20] for the ciphertext’s
well-formedness of our SPKE scheme. The ciphertext is transformed into a linear
relation in the form of P · x = v, where witness x has the same Hamming
weight for 0 and 1. Consider the payload-part of a single-bit encryption cm =
(rmĀᵀ, rmb + m · 
q/2
) as an example. One can trivially extend to the multi-
bit version as in our scheme since the matrix witness can be formulated as
a single vector by concatenating the columns of the matrix one-by-one. Also,
the randomizer cr is an encryption of 0. By matrix arrangement (joining two
relations via an “AND” relation), the well-formedness of the whole ciphertext is
guaranteed. Consider the relation:

R = {((cm,0, cm,1, Ā), (rm,b)) :
cm,0 = rmĀᵀ ∧ cm,1 = rmb + m · 
q/2
 ∧ rm ∈ {0, 1}m ∧ m ∈ {0, 1}}.

With the techniques of Libert et al. [20], the quadratic relation cm,1 = rmb +
m ·
q/2
 boils down to (cm,1 = qz+m ·
q/2
)∧(z = expand⊗(rm, vdecm,q(b))),
where expand⊗ is a function that exhausts all possibilities of two binary vectors,
one obtained from the binary decomposition function vdec, and z ∈ {0, 1}4m2 log q

such that qz = rmb. Hence, we have

P =
[
A 0n×m 0 0 0
0 0 q 
q/2
 0

]
, x =

⎡

⎢⎢⎢⎢
⎣

rm
rc
m

z
m
mc

⎤

⎥⎥⎥⎥
⎦

, v =
[
cm,0

cm,1

]
,

with z = expand⊗(rm, vdecm,q(b)) as an additional part to be verified. Within x,
rc
m is a padding (complement) to make the concatenation of rm and rc

m having
the same Hamming weight for 0 and 1. The term mc is for similar usage.

5.3 Lattice-Based Sanitizable Group Encryption

With our generic ACE construction from any SGE, it remains to instanti-
ate our generic SGE construction. We mostly adopt the building blocks of
Libert et al. [20], i.e., the signature scheme Σ = (Setup,KeyGen,Sign,Vf)
based on the short-integer-solution assumption they used [5,19] (its detailed
description [20, Appendix A.1] is not repeated here) and their techniques in
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zero-knowledge arguments for matrix-vector relations, but with the encryption
scheme replaced by our SPKE scheme E = (Setup,KeyGen,Enc,San,Dec).

We omitted (Gr,SampleR) and the related inputs and steps of Enc below
since they are independent of the cryptosystem. The encryptor can add the
NIZK proof for the desired relation, e.g., for inhomogeneous SIS [20], if needed.

– Setup(1λ) → pp:
1. Run E .pp ← E .Setup(1λ) and Σ.pp ← Σ.Setup(1λ).
2. Pick two random matrices F,F∗ ← Z

n×m log q
q , which will be used to hash

a user public key from Z
m log q
q to Z

n
q .

3. Set matrix Hn,q ∈ Z
n×m̄
q such that for any x ∈ Z

n
q , x = Hn,q · vdecn,q(x),

and vdecn,q : Z
n
q → {0, 1}m̄ is an injective vector-decomposition func-

tion [20, Sect. 3.1 ].
Output pp = (E .pp, Σ.pp,F,F∗).

– KeyGenGM(pp) → (pkGM, skGM): Output (pk, sk) ← Σ.KeyGen(1λ).
– KeyGenOA(pp) → (pkOA, skOA):

1. Run E .KeyGen(1λ) for twice to get (E .pkOA, E .skOA) and (E .pk∗
OA, E .sk∗

OA).
2. Output ((E .pkOA, E .pk∗

OA), E .skOA).
– KeyGenu(pp) → (pkID, skID):

1. Run E .KeyGen(1λ) for twice to get (E .pkID, E .skID) and (E .pk∗
ID, E .sk∗

ID).
2. Output ((E .pkID, E .pk∗

ID), E .skID).
– Join(skGM, pkGM, pkID) → certpkID :

1. Parse pkID as (E .pkID, E .pk∗
ID) and compute a single hash value of them:

hID = F · vdecm,q(E .pkID) + F∗ · vdecm,q(E .pk∗
ID) ∈ Z

n
q .

2. Output certpkID ← Σ.Sign(skGM,hID) and store (pkID, certpkID) in db.
– Vfcert(pkGM, pkID, certpkID): Output Σ.Vf(pkGM, pkID, certpkID).
– Enc(pkGM, pkOA, pkID, certpkID , (pkR, x, ) m) → c: To encrypt m ∈ {0, 1}m,

1. Parse pkOA as (E .pkOA, E .pk∗
OA) = (bOA,b∗

OA).
2. Parse pkID as (E .pkID, E .pk∗

ID) = (bID,b∗
ID).

3. Compute the hash value hID = F · vdecm,q(E .pkID) + F∗ · vdecm,q(E .pk∗
ID).

4. Compute the ciphertexts cm ← E .Enc(E .pkID,m), c∗
m ← E .Enc(E .pk∗

ID,
m), cOA ← E .Enc(E .pkOA, vdecn,q(hID)), and c∗

OA ← E .Enc(E .pk∗
OA,

vdecn,q(hID)).
5. Generate the non-interactive proof π with witnesses:

• for signature verification: [dᵀ
1 ||dᵀ

2 ||τ [1] · dᵀ
2 || · · · ||τ [l] · dᵀ

2 ]
ᵀ, b, b∗, r,

• for vector decomposition: w = vdecn,q(D0 · r + D1 · h), h =
vdecn,q(hID),

• for encryption of message: Rm, b, m, Rm,r, R∗
m, b∗, R∗

m,r,
• for encryption of hash of public key: ROA, hID, ROA,r, R∗

OA, R∗
OA,r,

in the following relations:
• Σ.Vf(pkGM, certpkID , pkID) = 1 with (A,A0, . . . ,Al,D,D0,D1) from
pkGM and (τ,d, r) from certpkID :

u = [A|A0| · · · |Al] · [dᵀ
1 ||dᵀ

2 ||τ [1]dᵀ
2 || · · · ||τ [l]dᵀ

2 ]ᵀ + (−D) · w mod q,

0 = Hn,q · w + (−D0) · r + (−D1) · h mod q

0 = Hm,q · h + (−F) · vdecm,q(b) + (−F∗) · vdecm,q(b∗) mod q.
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• cm ← E .Enc(E .pkID,m) and c∗
m ← E .Enc(E .pk∗

ID,m) with (b,b∗)
from public key pkID and (Rm,Rm,r,R∗

m,R∗
m,r) as the randomness:

cm,0 = RmĀᵀ, cm,1 = Rmb + m · 
q/2
,
cm,r,0 = Rm,rĀᵀ, cm,r,1 = Rm,rb,

c∗
m,0 = R∗

OAĀ
ᵀ, c∗

m,1 = R∗
mb∗ + m · 
q/2
,

c∗
m,r,0 = R∗

m,rĀ
ᵀ, c∗

m,r,1 = R∗
m,rb

∗.

• cOA ← E .Enc(E .pkOA,h) and c∗
OA ← E .Enc(E .pk∗

OA,h) with h =
vdecn,q(hID), (bOA,b∗

OA) from pkOA and (ROA,ROA,r,R∗
OA,R∗

OA,r) as
the randomness:

cOA,0 = ROAĀᵀ, cOA,1 = ROAbOA + h · 
q/2
,
cOA,r,0 = ROA,rĀᵀ, cOA,r,1 = ROA,rbOA,

c∗
OA,0 = R∗

OAĀ
ᵀ, c∗

OA,1 = R∗
OAb

∗
OA + h · 
q/2
,

c∗
OA,r,0 = R∗

OA,rĀ
ᵀ, c∗

OA,r,1 = R∗
OA,rb

∗
OA.

Some witnesses are transformed to binary representation, which fits with
the existing proof for the linear system [20] that uses binary witness.

6. Output the ciphertext c = (cm, c∗
m, cOA, c∗

OA, π).
– Vf(pkGM, pkOA, pkR, x, c): Return the verification result of proof π against c.
– San(c) → c′: Call Vf over c and output ⊥ if it is invalid; otherwise, parse

c = (cm, c∗
m, cOA, c∗

OA, π) and output (E .San(cm), E .San(cOA)).
– Dec(skID, c′) → m: Parse c′ as (c′

m, c′
OA) and output m ← E .Dec(skID, c′

m).
– Open(skOA, c′) → pkID: Parse c′ as (c′

m, c′
OA) and run h ← E .Dec(skID, c′

OA).
Compute h∗ = Hm,q · h and search for the public key hashes to the value h∗

by F · vdecm,q(·) + F∗ · vdecm,q(·). Output the corresponding public key pkID;
or ⊥ if it is not found.

Optimization. Instantiating our generic construction as above is not optimized.
Specifically, for the ciphertexts marked with ∗, i.e., c∗

m,r and c∗
OA,r, their ran-

domizer components are redundant because these ciphertexts are not sanitized
at San but simply dropped instead. One can remove these randomizers from the
ciphertexts, which also reduces the size of the witness.

Furthermore, the randomizers for encryption of m for a user and vdecn,q(hID)
for OA can be shared by using only single randomness R as a witness instead
of two Rm,r,ROA,r. Specifically, cm,r,0 and cOA,r,0 can be shared, i.e., cm,r and
cOA,r are changed into (cr = RrĀᵀ, cm,r = Rrb, cOA,r = RrbOA), with San
algorithm inputs (cr, cm,r) for cm and (cr, cOA,r) for cOA as randomizers.

Concerns with Subliminal Channel over Error. One may concern that the
error term may form a subliminal channel, as mentioned in the open problem of
Damg̊ard et al. [12]. We briefly explain how our construction prevents it. First,
the public key is certified that the error term there cannot be changed. Second,
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our encryption algorithm by itself does not need any other noises (beyond the
involvement of the public key). Third, if the adversary tries to introduce an error
term to the ciphertext, it will fail the proof verification.

Our sanitization mechanism critically relies on homomorphism. As argued
before, a sanitized ciphertext of our construction, which is a homomorphically-
evaluated HE ciphertext, remains a random element in the ciphertext space
to any adversary without the decryption key. The noise analysis of lattice-based
encryption schemes, e.g., for breaking circuit privacy, is not applicable here since
it requires the knowledge of the decryption key.

6 Concluding Remarks

We connect two seemingly related but different primitives, namely, access con-
trol encryption and group encryption. We borrowed the wisdom from the group
encryption literature and proposed a new access control encryption scheme.
Together with our sanitization technique for LWE-based encryption, we pro-
vide a candidate solution to the open problem left by Damg̊ard in their seminal
work in access control encryption, namely, a practically interesting access con-
trol encryption scheme from noisy, post-quantum assumptions, instead of using
heavyweight tools such as indistinguishability obfuscation or fully homomorphic
encryption.

While we slightly optimized our instantiation (compared to the existing
lattice-based group encryption scheme), there is still room for improvement,
especially for the delicate proof techniques. For practical efficiency, our sugges-
tion is to use the latest access control encryption scheme of Wang and Chow [26],
which comes with timing figures for a prototype implementation (and appears to
be adaptive secure in the random oracle model, or selective secure in the common
reference string model by replacing Fiat–Shamir proof with ZK non-interactive
succinct argument of knowledge). A long-term research problem is to improve
the efficiency of cryptosystems with resiliency to potential quantum computers.
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