®

Check for
updates

Efficient FPGA Design of Exception-Free
Generic Elliptic Curve Cryptosystems

Kiyofumi Tanaka'®) Atsuko Miyaji'?, and Yaoan Jin?

1 School of Information Science, Japan Advanced Institute of Science
and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
kiyofumi@Qjaist.ac. jp
2 Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
miyaji@comm.eng.osaka-u.ac.jp, jin@cy2sec.comm.eng.osaka-u.ac.jp

Abstract. Elliptic curve cryptography (ECC) is one of promising cryp-
tosystems in embedded systems as it provides high security levels with
short keys. Scalar multiplication is a dominating and time-consuming
process that ensures security in ECC. We implement hardware mod-
ules for generic ECC over 256-bit prime fields on field-programmable
gate array (FPGA). The key points in our design are (1) secure and
exception-free for any scalar with less memory usage, (2) long-bit modu-
lar arithmetic modules utilizing today’s advanced and high-performance
programmable logic and considering balance between the modules in
terms of propagation delay, (3) parallelism extraction inside each elliptic
curve point computation as well as between the point computations, and
(4) efficient hardware-software co-processing facilitated by application
interfaces between a processing core and hardware modules. The evalu-
ation results demonstrate that our design achieves the best performance
to existing FPGA designs without using a table for generic ECC.

Keywords: Elliptic curve cryptosystem + Complete addition -
Exception-free - FPGA

1 Introduction

Elliptic curve cryptography (ECC) is one of promising cryptosystems in embed-
ded systems as it provides high security levels with short keys. Therefore, ECC
is becoming a mainstream cryptosystem in embedded systems where memory
resources are constrained. However, the use of ECC still requires considerable
processing time as well as memory, especially for software in embedded systems
with constrained processing speed. Hardware acceleration is a promising option
to reduce the overhead of software processing.

The dominant computation of ECCs is scalar multiplication, which computes
kP for an elliptic curve point P and a scalar k. Thus, the security and efficiency
of the scalar multiplication are paramount. To implement scalar multiplication,
several types of coordinates for elliptic curves exist (such as affine, Jacobian, or
© Springer Nature Switzerland AG 2021

K. Sako and N. O. Tippenhauer (Eds.): ACNS 2021, LNCS 12726, pp. 393-414, 2021.
https://doi.org/10.1007/978-3-030-78372-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78372-3_15&domain=pdf
https://doi.org/10.1007/978-3-030-78372-3_15

394 K. Tanaka et al.

Projective). To be secure against simple power analysis (SPA), these coordinates
need to be combined with secure scalar multiplication algorithms without any
branch instruction such as Joye’s RL algorithm [17].

Recently, more advanced security notion of ezception free is introduced [32],
where scalar multiplication should work for any scalar k including & = 0. Since
complete addition (CA) formulae can work in the same formulae of addition and
doubling formulae [32], combining with Joye’s RL algorithm is secure against
SPA and exception-free for any scalar k. Although various ECC FPGA imple-
mentations have been proposed so far [6-8,12-14,22,26], any of them neither
employs CA formulae nor satisfies exception-free secure. They fail to execute a
case that the MSB of k is equal to 0 as well as k = 0. However, CA formulae uses
three coordinates of X, Y, and Z to represent an elliptic curve point and, thus, it
is far from less memory. Recently, another approach to use exception-free affine
coordinate, which is a combination of affine and extended affine coordinates, is
proposed [16]. Combining exception-free affine coordinates with improved Joye’s
RL algorithm is secure against SPA for any scalar k. Importantly, exception-
free affine coordinates can represent an elliptic curve point by two coordinates,
which can work with less memory compared with combination of CA formulae
and Joye’s RL algorithm. To give high performance of the scalar multiplication
while keeping the resistance to SPA, one of simple ways is to focus on a specified
elliptic curve such as NIST P-256 [14], which chooses an affine coordinate for
the reason of less memory and works efficiently on only NIST P-256. However,
their design cannot be applied to any other elliptic curves. For universal usage,
an important point is generic elliptic curve design, which provides an architec-
ture available to any elliptic curve over a finite field. Another strategy to give
the high-performance is to use a precomputation table such as window methods
[25,30]. However, it requires additional memory. For example, the implementa-
tion in [24] can work on a generic elliptic curve and is secure against SPA and
exception-free. However, since it is based on window methods, it needs additional
memory of points.

In this paper, we aim at efficient hardware—software FPGA design of generic
ECC with less-memory which is secure against SPA and satisfies exception-free
for Vk. Especially, we focus on system-on-chip (SoC) type of FPGA device. Com-
pared to conventional FPGA devices with programmable logic only, SoC FPGA
device provides a tightly coupled system so that data transfer between a proces-
sor core and a programmable logic part is performed at high speeds. We imple-
ment EC point computations as hardware modules by making complete use of
advanced and high-performance programmable logic in today’s FPGA devices.
Software processing performs scalar multiplication by invoking each hardware
module when needed. In real-time applications, EC scalar multiplication pro-
cessing shorter than 1 ms is highly desirable as many control tasks use a period
less than or equal to 1 ms [34]. Our design achieves this requirement by utilizing
high-performance resources in today’s FPGA devices. To the best of our knowl-
edge, our accelerator performs secure and exception-free scalar multiplications

Efficient FPGA Design of Exception-Free Generic ECC 395

faster than any FPGA implementations for a generic ECC without any table
over 256-bit prime fields [6,7,12-14,22,26].

This paper is organized as follows. First, we summarize basic notion of ellip-
tic cryptosystems in Sect. 2. Then, we describe related works in Sect. 3. Subse-
quently, we clarify our targets in Sect.4. We describe the details of our design
in Sect.5. Experimental results are shown in Sect.6. We conclude our work in
Sect. 7.

2 Operations in Elliptic Curve Cryptography

2.1 Addition Formulae on Elliptic Curve

Elliptic curve cryptography (ECC), which was proposed in the 1980s [19,29],
is a public-key cryptography system, and its cipher strength depends on the
difficulty of the elliptic curve discrete logarithm problem. This section describes
our target elliptic curve and addition formulae.

We target the elliptic curve E over a prime field F,(p > 3) expressed by the
following short Weierstrass form:

E/F,:y* =2+ ar+b (a,beF, 4a® + 270 #0)

For a set of points on this curve and a point at infinity, O, the addition is
geometrically defined. In the affine coordinate system, for a point Py = (x1,y1)
and a pOiIlt P2 = (I27y2) (P1 7é PQ), pOiIlt addition, Pg = (LEg,yg) = P1 + PQ, is
calculated as follows:

Y2 = Y12
€T3 = 7) — X1 — T2
Xro — I
2 — U1
y3=(7y y)($1—$3)—y1

Xo — I
Similarly, point doubling, P; = 2Py, is defined as follows:

327 +a

x3 = (%)2 — 2z
32+ a
ys = (21y1)1 —23) — 91

Compared to the formulae for other projective coordinate systems, the above
calculation of the affine coordinate system is desirable in terms of memory usage.
As the variables in the above formulae (z1, y2, and so on) are multi-bit data
(longer than 32- or 64-bit) and Ps; must be an element in F,,, multi-bit modular
addition (subtraction), multi-bit modular multiplication, and multi-bit modular
inversion for division are required. Performing multi-bit division directly would
involve high computational complexity. Instead, an inverse element should be
obtained and multiplied.

396 K. Tanaka et al.

2.2 Scalar Multiplication

While processing encryption and decryption in elliptic curve cryptography sys-
tems, multiplication of a point on the elliptic curve and scalar dominates the
total computation cost. Scalar multiplication can be performed by applying point
addition and point doubling in Sect. 2.1. The simplest approach is to use a binary
method [10]: variables R and @, initialized to O and P, respectively, are pre-
pared. A scalar value in binary is scanned from the least significant bit to the
most significant bit (or in the opposite direction). When the corresponding bit
is zero, @ is updated by 2@Q. Otherwise, @ is updated by 2@Q) after R is updated
by R+ Q. (For the opposite scanning direction, R is updated by addition after
@ is updated by doubling.) The final R is the result of scalar multiplication, kP.

In the above method, the execution time of a loop iteration varies according
to the value of the corresponding bit. That is, it performs only point doubling, or
both point addition and point doubling. This indicates that the method is vul-
nerable to simple power analysis (SPA) attacks that exploit energy dissipation
measured and infer the input value [20]. To alleviate this problem, Joye’s m-ary
Ladder [17] was proposed by reforming the binary method, where the computa-
tion in an iteration is made uniform. This uniformity is achieved by transforming
each digit in the m-ary expression of the scalar into a nonzero form such that
an addition and a m-times multiplication are executed every time. However, it
is not completely secure against SPA, as there can be exceptional addition with
O in the processing of point addition on the affine coordinates.

To solve the problem of exceptional addition with O, Jin et al. proposed
the New 1-bit 2-ary Right-to-Left Powering Ladder [16]. This algorithm does
not involve exceptional addition by avoiding initialization with O in the above-
mentioned method. In addition, the algorithm is extended to the New 2-bit
2-ary Right-to-Left Powering Ladder, where the main loop is unrolled such
that processing for every two bits in k is done in an iteration. In the itera-
tion, affine double-quadruple [23] is used to obtain double and quadruple values,
with only one inversion computation involved. As a result, the combination of
loop unrolling and affine double-quadruple reduces the amount of computation
in the main loop.

To reduce the amount of hardware resources required, our target algorithm
is the above-mentioned New 1-bit 2-ary Right-to-Left Powering Ladder, rather
than the 2-bit derivation. We implement a scalar multiplication accelerator by
analyzing dataflow in point addition and point doubling and extracting full paral-
lelism in the algorithm, as well as fully utilizing advanced and high-performance
FPGA logic resources.

3 Related Work

In this section, we review several FPGA implementations of scalar multipli-
cation. FPGA implementations over prime fields are classified into specific-
prime-field and general-prime-field. The examples of the former are observed in

Efficient FPGA Design of Exception-Free Generic ECC 397

[2,9,26,27,33]. The use of specific primes enables fast modular reduction, lead-
ing to division replaced by a series of additions and subtractions; however, it has
some inflexibility, where the accelerators are limited to supporting specific prime
fields, for example, the NIST primes, i.e., generalized Merssene primes. In con-
trast, implementations over general prime fields provide considerable flexibility
in terms of selecting a prime number, p, and they can be applied to various appli-
cations such as digital signature generation and key agreement. Some examples
of FPGA implementations over general-prime-fields include [6,7,12-14,22].

Another perspective is regarding the choice of coordinate system. One is an
affine coordinate system, and the other is a projective or Jacobian coordinate
system. The former has the advantage of smaller memory usage than the latter
with an additional axis of coordinates, leading to a smaller number of registers
in FPGA resources. However, inversion calculation is required for every point
addition and doubling over affine coordinates, whereas it is performed once at
the end of scalar multiplication over projective or Jacobian coordinates. In this
study, because we prioritize the flexibility of prime fields and memory /hardware
resource usage, we focus on FPGA designs for scalar multiplication over general
prime fields and affine coordinates.

Ghosh et al. proposed an FPGA implementation that performs point addition
and point doubling in parallel [6]. This parallelism is naive and common in
various hardware implementations. For modular multiplication, their interleaved
multiplication algorithm takes k+1 cycles, where k is the bit length of p, i.e., 257
cycles when 256-bit p is assumed. Similarly, the modular multipliers in [12,13,22]
used similar algorithms and took at least k cycles. As modular multiplication
is one of the main calculations in EC scalar multiplication, the cycles taken by
these implementations result in long computation time for scalar multiplication.
In contrast, our implementation of modular multiplication described in Sect. 5,
which utilizes DSP modules embedded in FPGA devices, takes 28 cycles with
256-bit p, leading to a much faster execution of EC scalar multiplication. Today’s
FPGA devices include high-performance embedded DSP modules. Using them is
better than constructing complicated multipliers with programmable logic based
on look-up tables and long-delayed wiring.

Javeed et al. used a modular multiplier that includes a radix-8 Booth encoded
multiplier with iterative addition and reduction modulo p of partial products [14].
Although this modular multiplier reduces the execution cycles compared with
the above-mentioned modular multipliers, it still requires 88 cycles for 256-bit p,
whereas our implementation requires only 28 cycles. In addition, the cascaded
adders structure in [14] makes the critical path long, thereby preventing the
clock frequency from improving.

In the implementations in [26,33] (which are dedicated to NIST P-256 prime
fields), redundant signed digit (RSD) arithmetic is used, where multi-bit addi-
tion can be performed without carry propagation at the expense of additional
FPGA resource areas. In contrast, our implementation of addition/subtraction
simply utilizes fast carry logic in today’s FPGA slices and achieves one-cycle
addition/subtraction with 256-bit operands at over 200 MHz. Similar to the use

398 K. Tanaka et al.

of DSP modules, we can expect that using fast carry logic yields faster and
smaller adders than RSD-based adders.

Considering the use in embedded systems, the amount of hardware required
for EC accelerators is important. The accelerator in [7] saves on hardware by
sharing hardware resources among different finite-field modular arithmetic oper-
ations and among EC point computations at the sacrifice of parallelism inside
point addition and doubling. In contrast, our implementation decouples multi-bit
arithmetic units from EC point computations to reuse arithmetic units between
point computations that are serially processed while duplicating the arithmetic
units to extract full parallelism inside each point computation and among point
computations running in parallel.

Unlike the above-mentioned designs, some implementations use projective or
Jacobian coordinate systems. The use of these coordinate systems eliminates
division in every EC point addition/doubling at the cost of increased stor-
age space, accelerating scalar multiplication. The implementations in [8,24] are
examples. These designs can be applicable to real-time applications since they
achieve less than 1 ms of processing for scalar multiplication, whereas all the
designs in affine coordinates mentioned above take more than 2 ms. Our objec-
tive is to achieve less than 1 ms of processing for scalar multiplication in the
affine coordinate system to satisfy the performance and cost requirements in
various real-time applications.

4 Target Algorithm and Modular Arithmetics

4.1 Algorithms for Scalar Multiplication

Algorithm 1 proposed in [16] computes a scalar multiplication with a point, P, on
the elliptic curve and an integer scalar, k, and outputs Q = kP. This algorithm
has two important features. First, an affine coordinate is used to reduce the
memory usage. Second, it satisfies secure generality (i.e., it can operate on any
input scalar k). To achieve secure generality, this algorithm does not include
exceptional initialization or exceptional computation and is thus secure against
a side-channel attack (SCA). Therefore, we choose this algorithm.

The algorithm comprises three parts: initialization, main loop, and final cor-
rection. The initialization starts with R[0] =« —P and R[1] < P in Steps 1 and
2, respectively, avoiding exceptional initialization with O and exceptional com-
putation O + P in the main loop while leaving the computation for adjustment,
+2RJ[1], in Step 10 in the final correction. Steps 3 and 4 perform affine point
doubling and affine point addition, respectively, and help in avoiding exceptional
computations, P+ P or P — P. The extra computations are adjusted in the final
correction. The main loop from Steps 5 to 8 dominates the execution time of
scalar multiplication. In each iteration, affine point addition and affine point
doubling are performed in Steps 6 and 7, respectively.

After the main loop, the final correction is performed. This is one of the
important security-enhanced parts. They introduced extended affine point addi-
tion and doubling that can execute exceptional computation such as P — P and

Efficient FPGA Design of Exception-Free Generic ECC 399

Algorithm 1. New 1-bit 2-ary Rright-to-Left Powering Ladder (Algorithm 7 in
[16])

Input: P € E(F,), k=320 k2, k € [0, N]

Output: Q = kP

Initialization
R[O] — —P

R[l] — P
A«—2P

R[ko] — R[ko] + A

e

Main Loop

fori=1tol—1do
Rlk;] «— R[ki]+ A
A—2A

end for

I>X

Final Correction
9: R[ko] — R[k/’o] - P
10: A — (-=A+ R[0]) +£ 2eR[1]
11: return A

2P = O. In Step 9, an affine point addition is applied to R[ko] and the com-
plement of P. The conventional affine coordinates are used in Steps 1 to 9. In
contrast, in Step 10, while affine point addition, —A + R[0], is computed using
conventional affine coordinates, extended affine point doubling is applied to R[1],
described by 2 R[1]. Finally, these two results are added by an extended affine
point addition (4+g in Step 10). Extended affine point addition and extended
affine point doubling are used to avoid exceptional computations. Details regard-
ing the extended affine point addition and affine point doubling can be found
in [16]. Importantly, our elegant FPGA design does not increase the FPGA
resource usage as arithmetic calculators in the extended affine point addition
and doubling are shared with other point computations.

4.2 Modular Arithmetic

Elliptic curve (EC) point computations comprise multi-bit modular arithmetic:
addition, subtraction, multiplication, and inversion. Modular addition (subtrac-
tion) is a combination of multi-bit addition (subtraction) and conditional sub-
traction (addition) for the residue. In our implementation, subtraction (addition)
for the residue is performed only when it is indispensable. Each addition or sub-
traction is performed without the residue, thereby reducing the computation
complexity at the expense of additional most-significant bits. After several addi-
tions/subtractions, subtraction or addition for the residue is applied to reduce
the value to the field range.

For modular multiplication, we use the Montgomery multiplication algorithm
[31] that involves multi-bit additions/subtractions and multi-bit multiplications.

400 K. Tanaka et al.

Several algorithms, such as the Karatsuba method [18], are candidates for multi-
bit multiplications. We adopt a simple method for the parallel generation of
partial products as the operand length is at most 264 bits. For inversion calcula-
tion, a constant binary extended GCD algorithm [3] is selected, wherein the shift
and subtraction operations are performed in each iteration, while the number of
iterations is constant.

5 Design and Implementation

Our method offers programmability (i.e., application programming interfaces)
in designing an accelerator for scalar multiplications such that higher-layer EC
cryptography protocols such as ECDH and ECDSA [4] can invoke the hardware
accelerator when required. EC point computations along with modular/multi-bit
arithmetic calculators are provided as hardware modules, whereas the control
sequence among the modules is provided via software processing, which achieves
hardware—software co-processing for scalar multiplication. Current tightly cou-
pled SoC-type FPGA devices facilitate fast communication between processor
cores and FPGA modules, thereby making hardware—software co-processing effi-
cient.

5.1 Design of Arithmetic Units

Based on the directions mentioned in the previous section, we designed and
implemented the following arithmetic units in hardware description language
(VHDL): multi-bit adder, multi-bit subtractor, multi-bit multiplier, modular
Montgomery multiplier, and modular inversion calculator.

Multi-bit Adder/Subtracter. While our ECC system targets 256-bit ele-
ments over the prime field F,, with 256-bit p, 260-bit adders and subtractors are
implemented since 260-bit temporary data emerge internally as the result of post-
poned residue operations. In addition, a 520-bit adder is required inside Mont-
gomery multipliers, wherein multi-bit multiplication generates 520-bit operands.
Furthermore, a 264-bit subtractor is used in Montgomery multipliers. These
adders and subtracters are designed to output the results in one clock cycle, as
current FPGA devices include fast carry logic and can achieve one-cycle 520-bit
addition at over 200 MHz. Simple ‘+’ operators in the HDL source files generate
these calculators.

Multi-bit Multiplier. In the process of Montgomery multiplications, 264-bit x
264-bit multiplications are performed. Our multi-bit multiplier generates a mul-
tiplication result in four clock cycles, as depicted in Fig. 1. In the first cycle, the
2’s complement values are obtained when the operands are negative. In the sec-
ond and third cycles, each 264-bit operand is divided into two 132-bit segments,
and 132-bit x 132-bit multiplications in parallel generate partial products. For

Efficient FPGA Design of Exception-Free Generic ECC 401

these multiplications, embedded multipliers in the target device, DSP48E2 [36],
which perform 27-bit x 18-bit multiplication, are allocated through logic syn-
thesis in the FPGA design tool Vivado [37]. Finally, in the fourth cycle, the
summation of the partial products as well as the 2’s complement operation, if
necessary, yields a multiplication result. Simple * and + operators are used in
the HDL source files for partial multiplication and addition, respectively.

132 bits .
| 2(§fcompleme;1t
if necessary’
[Xogh | Xow | <—— X[263:0]
1st cyde
[Yogn | Yiw | <—— Y[263:0]
| XIuw x YIow | h
-
| Xnigh X Yiow | b
Xiow X Yhigh b
ey -
| Xnigh X Yhigh D
l : |
— (4th cycl
2's complement
(if necessary)

X xY i

Fig. 1. 264-bit x 264-bit multiplier.

Multi-bit Modular Montgomery Multiplier. The algorithm of our modular
multiplication is based on the Montgomery reduction technique. The designed
Montgomery multiplier receives two 260-bit input data, x; and x5, and generates
a 260-bit result, z, through two 520-bit additions, two 264-bit subtractions, and
six 264-bit x 264-bit multiplications. These calculations are performed serially
since no parallelism is inherent in the Montgomery multiplication algorithm. The
dataflow for Montgomery multiplication is shown in Fig.2. In Steps 1, 2, 3, 6,
7, and 8, the above-mentioned multi-bit multiplier is used. Each multiplication
process takes four cycles. In Steps 4 and 9, a multi-bit adder is used in one cycle.
Subtraction is performed for residue calculation in Steps 5 and 10. A total of 28
cycles are used for processing.

Multi-bit Modular Inversion Calculator. An inversion calculator is
designed such that it inputs a 260-bit data and outputs a 256-bit result that
is the corresponding inverse element over a prime field. The calculation is based
on the binary extended GCD algorithm [28], wherein one subtraction or two sub-
tractions in parallel along with one-bit shift operations (insignificant delay) are
conditionally performed in each loop iteration. Considering that the operands
are 260-bit data and that, in contrast, 520-bit additions are performed in one

402 K. Tanaka et al.

Inputs
X2[259:0] x:[259:0]

R?mod p
[527:0] = t5[263:0] * (R® mod p) @

Step 1 (4 cycles) 1[519:0] = x1[259:0] * x,{259:0] Step 6 (4 cycles)
__ multi-bit
B2850] 1[255:0] addition
p_inv p_inv
Step 2 (4 cycles) Step 7 (4 cycles)
t[511:0] = 4[255:0] * p_inv ta[511:0] = ,[255:0] * p_inv @
__________ wesso TTTTTTT T Quesser T T T T T T T T T multi-bit
<P subtraction
4 cycl . Step 8 (4 cycl
Step 3 (4 cycles) 1,[511:0] = £[255:0] * p ep 8 (4 cycles) ° 1[511:0] = [255:0] * p :
Step 4 (1 cycle) 1[519:0] = t,[519:0] + ts[511:0] Step 9 (1 cycle) t0[519:0] = t/[519:0] + t6[511:0] multi-bit
muttiplication
1[519:256] t10[519:256]
p
Step 5 (1 cycle) 1:[263:0] = t,[519:256] - p Step 10 (1 cycle) 111[263:0] = t0[519:256] - p
ifts>0 then ts=ts ift;1 >0 then tiz =ty
Wy _else to = 1,[519:256] Smw/__else tip = t10[519:256]

2[259:0]
Output

Fig. 2. Dataflow in Montgomery multiplication.

clock cycle in the Montgomery multiplier, our strategy is to unroll two consecu-
tive iterations so that two subtractions are serially performed in one clock cycle.
As a result, it executes half the number of iterations compared with the original
algorithm and spends half of the clock cycles.

Figure 3(a) shows the pseudocode of the original binary extended GCD algo-
rithm. The variables u, v, B, and D are used in the computation. According to
their values, shift, subtraction, or subtraction and shift operations are applied.
The shift operations are performed without combinational logic in the hard-
ware implementation, as they are achieved simply by connecting wires appropri-
ately, whereas the subtractions are performed by subtractors. In contrast, in our
inversion algorithm, shown in Fig. 3(b), two consecutive iterations in the original
algorithm are unrolled and executed in an iteration. Additional variables—u0,
v0, B0, and D0O—hold the temporal results of the first part that are then used
in the second part. This unrolling technique causes two subtractions, at most,
to be cascaded in an iteration. For example, two subtractions in lines (A) and
(B) in Fig.3(b) are serially executed, when w, v, u0, and v0 are odd, u > v,
and w0 > v0. These cascaded subtractions are within one clock-cycle delay in
our implementation. In addition, six subtractors are implemented and reused,
whereas 12 subtractions are to be executed in the algorithm.

The number of iterations in the original binary extended GCD algorithm
depends on the input data. As a measure against side-channel attacks, dummy
iterations are added after completing the calculation until it reaches a predefined
upper bound, so that the execution time is fixed regardless of the input data. In
addition, random calculations are performed in dummy iterations to maintain
the energy dissipation. As the predefined upper bound, we use 742 for a 256-bit
prime field, which is the theoretical upper bound for the binary extended GCD
algorithm [3]. This leads to an execution time of 742/2 = 371 clock cycles for
the main loop in the algorithm.

Efficient FPGA Design of Exception-Free Generic ECC 403

Initialization

u<=p; #field modulus
v<=X; #inputdata
B<=0; D<=1;

Main loop
while (u>0)do
if (uis even) then
u<=u>>1; #1-bit right shift
if (Bis even) then

B<=B>>1;
else

B<=(B-p)>>1;
end if;

v<=V; D<=D;
elsif (vis even) then
V<=v>>1;
if (D is even) then
D<=D>>1;
else
D<=(D-p)>>1;
end if;
u<=Uu; B<=B;
elsif (u>=v) then

Initialization

u<=p; #field modulus
v<=X; #inputdata
B<=0; D<=1;

Main loop
while (u>0) do
Corresponding to 1st iteration
if (uis even) then
u0 <=u>>1; # 1-bit right shift
if (B is even) then

B0 <=B>>1;
else
BO<=(B-p)>>1;
end if;

v0 <=v; D0 <=D;

VO <=v>>1;
if (D is even) then

D0 <=D>> 1;
else

DO <=(D—-p)>>1;
end if;

u0 <=u; B0O<=B;

Corresponding to 2nd iteration
if (u0=0)then
u<=u0; v<=Vv0; B<=B0; D<=DO0;
else #u0>0
if (uO is even) then
u<=u0>>1;
if (B0 is even) then
B<=B0>>1;
else
B<=(B0O-p)>>1;
end if;
v <=Vv0; D <=D0;
elsif (v0 is even) then
v<=Vv0>>1;
if (DO is even) then
D <=D0>> 1;
else
D<=(D0-p)>>1;
end if;
u <= u0; B<=B0;
elsif (u0 >=v0) then
U<=u0-v0; B<=B0—-D0;----(B

u<=u-v; B<=B-D; elsif (u>=v)then v <=V0; D <= DO0;
V<=V D <=D; u0<=u-v; B0O<=B-D;---" A else

else V0 <=v; D0 <= D; v <=v0—u0; D<=D0-B0;
v<=v-u; D<=D-B; else u <= u0; B <= BO;
u<=u; B<=B; VO<=v—u; DO<=D-B; end if;

end if; u0 <=u; B0 <=B; end if;

end if;
end while; # D is final output

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elsif (vis even) then :
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

end while; # D is final output

(a) Original inversion algorithm (b) Revised algorithm with unrolling

Fig. 3. Inversion algorithms.

5.2 Design of EC Point Computation Modules and Parallelism

Based on the directions mentioned in the previous section, we designed and
implemented the following EC point computation modules: affine point addi-
tion module (PADD), affine point doubling module (PDBL), extended affine
point addition module (EXA_PADD), and extended affine point doubling mod-
ule (EXA_PDBL).

EC Point Computation Modules. PADD, PDBL, EXA_PADD, and EXA_
PDBL modules are composed of the aforementioned arithmetic units (adders/
subtractors, Montgomery multipliers, and inversion calculators) with predefined
control sequences. The data are transmitted between the arithmetic units via
260-bit temporary registers. To achieve parallel processing between the EC point
computation modules, as described later, the designed system is equipped with
six temporary registers: one of them is occupied by the PADD module, the other
two are shared by the PADD and EXA_PADD modules, and the remaining three
are shared by the PDBL, EXA_PDBL, and EXA_PADD modules.

Figures4(a) and (b) show the dataflow in PADD and PDBL, respectively, and
Figs.5(a) and (b) show the dataflow in EXA_PADD and EXA_PDBL, respec-
tively. Parallel processing contributes not only to high-performance processing,
but also to resistance to SPA, as it makes power analysis more difficult than
in sequential processing. The system utilizes two types of parallelism: intra-
module and inter-module parallelism. In terms of the former, parallelism inside

404 K. Tanaka et al.

Inputs Registers lifetime
Y2 Y1 X2 X

Registers lifetime

TMP. TMP TMP TMI TMP TMP.
Reg0 Reg1 Reg2 Reg3 Reg4 Reg5

te=Xa =Xy !

T
|
|
|
|
1
|
|
|
|
i
|
1
|
t
|
|
|
|
|
|
e
|
|
<
|
]
|

multi-bit

addition
________ y - RS S -,
———————— —+—-—- | multibit .] s

subtraction

©

_____ Y i
Montgomery
multiplication
_______ b | v inversion P . R
_______ y L. ISR NN 2
3 : :
_______ y . I S AN,
ésutputs><3 (xs) (ys) Outputs (x3) (ya)
(a) PADD (b) PDBL

Fig. 4. Dataflow in (a) PADD and (b) PDBL.

EXA _PADD is described as an example. Analyzing the dataflow and consider-
ing the processing time of each arithmetic unit offers the possibility of parallel
execution among arithmetic. In Fig. 5(a), during the inversion processing, addi-
tion, subtraction, and three Montgomery multiplications can be processed and
completed. The same strategy is applied to the other EC point computation
modules (PADD, PDBL, and EXA_PDBL), although the amount of parallelism
extracted is small for them. After scheduling the arithmetic units and allocating
registers, the number of necessary temporary registers is known. That is, three
registers are necessary for PADD, PDBL, and EXA_PDBL, whereas five registers
are necessary for EXA_PADD.

Efficient FPGA Design of Exception-Free Generic ECC 405

Registers lifetime Inputs Registers lifetime
X1 yi<<1

TMP. TMP TMP. TMP TMP TMP - TMP - TMP

M
Reg3 Reg4 Reg5 Reg1 Reg2 Reg3 Reg4 Reg5

ti=1/y1<<1)

S W e N RS 205 SO (R multi-bit | ——————fF—— v i
: addition ‘ :

14] : @ e Yoy _i_
multi-bit * i

subtraction

_________ Montgomery
multiplication

inversion

_____ R AT

Ys X
Outputs

(2) EXA_PADD (b) EXA_PDBL

Fig. 5. Dataflow in (a) EXA_PADD and (b) EXA_PDBL.

After intra-module parallelism is fixed, inter-module parallelism is estab-
lished. In the main loop of Algorithm 1, an affine point addition (Step 6) and
affine point doubling (Step 7) are executed. The latter does not have read-after-
write dependency with the former. Therefore, affine point doubling can be exe-
cuted in parallel with the preceding affine point addition. Affine point doubling
has a write-after-read relation with the affine point addition in terms of A, that
is, update of A by affine point doubling has to be performed after the affine
point addition reads it. This is solved by introducing synchronization mecha-
nisms, as described in the next subsection. In addition to this parallelism, at
Step 10 in the final correction, affine point addition and extended affine point
doubling are processed in parallel. Considering the inter-module parallel process-
ing and the number of temporary registers required by each EC point computa-
tion module, the temporary registers are efficiently shared between modules as
mentioned above. As a result, the introduction of the two extended affine point
computations does not require additional registers. Thus, enhancing security for
exceptional addition can be done with no additional registers.

406 K. Tanaka et al.

5.3 APIs for Inter-module Parallelism and Synchronization

To achieve parallel processing and synchronization between EC point computa-
tion modules, the software procedures shown in Table 1 are implemented. These
APIs enable our efficient hardware—software co-processing.

For each EC point computation module, the corresponding Start_*() proce-
dure invokes the hardware module and finishes (or returns to the caller) asyn-
chronously, i.e., without waiting for the completion of the hardware operation. In
contrast, when End_*() is called, it waits for the completion of the correspond-
ing hardware processing. As affine point doubling has a write-after-read relation
with the affine point addition in the main loop, its result is not directly writ-
ten in the corresponding buffers (described later) but written in the temporary
registers. The execution of Sync_PDBL() moves the result to the target buffer.

Using these procedures, the main loop of Algorithm 1 is written in C lan-
guage, as in Fig. 6. With the use of the APIs described above, PDBL and PADD
run in parallel. Here, Start_*() procedures have parameters for EC point data.
For Start_.PDBL(), the buffer identifier “2” is specified since Buffer[2] contains
an EC point A. Similarly, for Start_PADD(), the buffer identifiers “2” and “ki”
are specified so that Buffer[ki] is updated by Buffer[2] + Buffer[ki]. In contrast,
Sync_PDBL() is accompanied by the destination buffer identifier “2” so that the
temporary register value is copied to Buffer[2].

In addition to the parallelism between affine point doubling and affine point
addition, affine point addition and extended affine point doubling can run in
parallel in Step 10 of Algorithm 1. Considering these chances of parallelism,
resource sharing for temporary registers and arithmetic units is performed. The
possible combinations of EC point computations for parallel processing are a
pair of PADD and PDBL and a pair of PADD and EXA_PDBL. Each EC point
computation module uses a set of an adder, a subtractor, a Montgomery multi-
plier, and an inversion calculator. To reduce the total hardware amount, a set of
arithmetic units is shared between PADD and EXA_PADD and another set is

Table 1. Application Programming Interfaces (APIs).

Procedure Action

Start_.PADD() Invokes PADD

End_PADD() Waits for completion of PADD
Start_PDBL() Invokes PDBL

End_PDBL() Waits for completion of PDBL
Sync_PDBL() Stores the result of PDBL in buffers

Start_EXA_PADD() | Invokes EXA_PADD
End_EXA_PADD() | Waits for completion of EXA_PADD
Start_EXA_PDBL() | Invokes EXA_PDBL
End_.EXA_PDBL() | Waits for completion of EXA_PDBL

Efficient FPGA Design of Exception-Free Generic ECC 407

for (i=1;i<ki+){
Start PDBL(2); /* TMP_Reg = 2 * Buffer[2] */
ki=(k>> i) &Ox1;
Start PADD(2, ki); /* Buffer[ki] = Buffer[2] + Buffer[ki]; */
End_PADD();

End_PDBL()
Sync PDBL(2); /* writing TMP_Reg in Buffer[2] */

Fig. 6. Software code of main loop in Algorithm 1.

shared between PDBL and EXA_PDBL (Fig. 7). Similarly, temporary registers
TMP-Reg 1 and TMP-Reg 2 can be shared between PADD and EXA_PADD,
and TMP-Regs 3 to 5 are shared between PDBL, EXA_PDBL, and EXA_PADD.

5.4 System Structure

The designed ECC system was implemented in Xilinx Zynq UltraScale+ MPSoC
ZUTEV device [39]. Figure 7 depicts the system structure, including the designed
arithmetic units and EC point computation modules. A Cortex-A53 core in the
processing system (PS) executes software code at a clock frequency of 500 MHz.

EC point computation modules with arithmetic units are implemented in
programmable logic (PL), working at a clock frequency of 214.286 MHz'. In the
figure, the multi-bit adder, subtractor, multiplier, Modular Montgomery multi-
plier, and inversion calculator are depicted as ADD, SUB, MUL, MONT_MUL,
and INVERSE, respectively. Each EC point computation module includes a con-
trol register and a status register. PS software calls Start_*() procedure, which
writes an invocation signal as well as buffer identifiers in the control register.
Similarly, it calls End_*() and reads from the status register to recognize the
completion of module processing. The control and status registers are memory-
address-mapped and accessed via conventional load/store instructions?.

Data transfer between PS and PL is performed through a high-speed on-chip
bus (AXI), and the unit of transfer is 64 bits. EC point data are transferred via
four global buffers (Buffer[0-3] in the figure). These buffers are memory-address-
mapped and accessed by conventional load/store instructions. Each buffer con-
tains point data (256 bits x 2) on the elliptic curve. Each EC point computation
module uses buffers specified by the control register. During computation, the
temporary registers (TMP-Regs 0 to 5 in the figure) are used to store the results
of the arithmetic units.

! Phase Locked Loop (PPL) in the device generates 214.286 MHz by 33.3 MHz Xx
90/14.

2 As ARM processors use relaxed memory models, memory barrier (DMB) instruc-
tions must be properly inserted to guarantee access order to the control and status
registers.

408 K. Tanaka et al.

Zyng UltraScale+ MPSoC ZU7EV
i Y,
TVERSE Programmable Logic (PL) TR
SUB SUB
SUB | [MONT_MUI SUB | [MONT_MUL
SUB — ADD SUB m Buffer
FSM gﬂg FsM—— suB||app /sus | ||FS™ gﬂg FSM SUB||[DD / suB (0]
i L] 1
11 sus]|| 77 —{mut]|[aoo]sus] | VT Uss]|[77 “—{mu]|[apo] sus] Bufer
=.|_ _____ Jf N ——— J1 :.u. _____ i N T ——— g1 [1]
ll. ______ J.___|____J ll_ ______ J._.__'_.___..J I
[} | [1
i PADD | EXA_PADD i PDBL | EXA_PDBL Buffer
_ H H 1 2
FM Cntrol reg FSM Cntrol reg il | Fsm Cntrol reg FSM Cntrol reg [2]
M Status re(_ﬂl_ M Status reg ™ M Status reg M Status reg
I I TR T N I Buffer
y & [3]
TMP-Reg 0 [TMP-Reg 1 [TMP-Reg 2] [TMP-Reg 3 [TMP-Reg 5| TMP-Reg 4]
High-speed on-chip bus (AXI) |
Cortex-A53 — PS DDR4
SODIMM
Processing System (PS)

Fig. 7. System structure for Algorithm 1.

5.5 Execution Cycles

Table 2 shows the execution clock cycles of the arithmetic units, EC point com-
putation modules, and scalar multiplication. Our design gives constant execution
times for all the computation modules. PADD and PDBL take almost the same
number of cycles, leading to balanced parallel processing in the main loop.

The execution cycles for scalar multiplication are 120 403, corresponding to
0.562ms at the clock frequency in our implementation, that is, 214.286 MHz.
These cycles do not include software execution, such as API procedures and
operands transfer. The total execution time of the hardware-software co-
processing is described in the next section.

6 Analysis

This section presents the evaluation results in terms of performance and
hardware-resource usage. Table 3 compares our designs with the other existing
FPGA designs for generic ECC over 256-bit prime fields described in Sect. 3.
As the FPGA devices used are different in terms of their generations, the table
includes, in the right-most column, the processing time normalized to 200-MHz
processing for reference. It also compares them from the point of view of security
of exception-free for any k and usage of pre-computation tables.

Efficient FPGA Design of Exception-Free Generic ECC 409

Table 2. Execution clock cycles of arithmetic units, EC point computation modules,
and scalar multiplication.

Arithmetic unit | Cycles EC point computation module | Cycles
ADD/SUB 1 PADD 463
MUL 4 PDBL 461
MONT_MUL 28 EXA_PADD 488
INVERSE 372 EXA_PDBL 460
Scalar multiplication Cycles
PDBLx1 + PADDx258 + EXA_PADDXx1 120,403

6.1 Execution Time

The designed ECC system was synthesized and implemented with Xilinx Vivado
v2019.2. The processing time of the ECC scalar multiplication was measured on a
ZCU104 evaluation board [38]. Software with Linux 4.14.0 runs on the processor
(Cortex-Ab3) in PS at 500 MHz. The software code is written in C language
and compiled using gce 6.3.0 with -O4 option. The elapsed time was obtained
using the gettimeofday() library function. The elapsed time includes not only
the hardware processing time but also the software processing time.

For comparison, software-only processing, “Soft,” that executes Algorithm 1
using GNU Multiple Precision Arithmetic Library (GMP) Version 6.1.2 [1] is pre-
pared. Our proposed system of processing with hardware modules is “w/HW.”
Another implementation is “w/HW-auto,” equipped with an auto loop mecha-
nism, where the main loop sequence is automatically processed in the hardware
(without Start/End_PADD/PDBL()) to mitigate the overhead of PS-from/to-
PL communication/synchronization.

For our implementations (Soft, w/HW, and w/HW-auto), the average pro-
cessing time of scalar multiplication for 1000 pairs of (k, P) is presented in
Table 3. Soft takes 7.943 ms, which is not fast enough for various real-time appli-
cations. In contrast, the execution time of w/HW is 0.742 ms, which is approxi-
mately 11 times faster than Soft. In addition, w/HW-auto takes 0.575 ms, which
is 23% faster than w/HW and 14 times faster than Soft. This result implies that
the overhead of invoking hardware and recognizing its completion, i.e., writing
to/reading from control/status registers, is non-negligible.

Table 3 shows that our design is the fastest among the existing FPGA imple-
mentations without a precomputation table. Let us compare our design with [24],
which uses 15 points for a pre-computation table. Thanks to the pre-computation
table, it can reduce the number of point additions to 71 from the original 256.
Nevertheless, our design is comparable to it, although processing executes 256
point additions and doublings without pre-computation table, each of which
involves inversion calculation. This indicates that the number of clock cycles to
be taken by our design is sufficiently low. In other words, our design achieves

410 K. Tanaka et al.

Table 3. Comparison of scalar multiplication over arbitrary 256-bit prime fields.

Design Exception Pre-comp. | Device Area Frequency | Time Time at
free (any k) Table (# (MHz) (ms) 200 MHz
points) (ms)
Soft Yes No Cortex-A53 N/A 500 7.943 —
(GMP)
This work
w/HW Zynq 6.3K slices 0.742 0.795
w/HW- Yes No UltraScale+ (42K 214.286 0.575 0.626
auto LUTs)
+ 256
DSPs
[22] (2019) | No No Virtex-7 5.4K slices | 124.2 3.730 2.316
[13] (2018) | No No Virtex-4 9.4K slices | 20.44 29.840 | 3.050
[12] No No Kintex-7 11.3K 121.5 3.270 1.987
slices
[14] (2016) | No No Virtex-6 (No 70 2.800 0.980
report)
Virtex-4 1.3K slices | 40 5.000 1.000
Virtex-4 (no report) | 54 6.260 1.690
[7] (2011) | No No Virtex-II Pro | 12K slices | 36 9.380 | 1.688
(20K
LUTs)
[6] (2009) No No Virtex-4 20K slices | 43.32 7.700 1.668
(34K
LUTs)
[24] (2013) | Yes Yes (15 Virtex-5 1.7K slices | 291 0.380 0.553
pts)
(4.2K
LUTSs)
+ 37 DSPs
[8] (2010) No No Stratix IT 9K ALMs 157.2 0.680 0.534
+ 96 DSPs

more efficient processing per cycle. Therefore, we conclude that our ECC system
should be based on a highly efficient digital logic design.

The performance gain of our designs is attributed to the high performance
in inverse calculation and utilization of intra-/inter-module parallelism. Table 4
shows the performances of several high-performance designs for modular inver-
sion over 256-bit prime fields. All implementations, including our design, in the
table are based on the extended Fuclidean algorithm or its variants. This means
that the processing time of these implementations depends on the input values.
Their processing times in Table4 are from the corresponding literature, which
are regarded as the average execution times. In contrast, our implementation
of inversion, “Ours w/ UB” in the table, shows the execution time of inversion
with the upper bound mentioned in Sect. 5.1, which is the fixed execution time,
whereas “Ours w/o UB”, which is for reference, corresponds to the average exe-
cution time when the upper-bounded loop execution is not applied. The table
shows that our designed inversion calculator is the fastest among the recently
published designs.

Efficient FPGA Design of Exception-Free Generic ECC 411

Table 4. Performance of modular inversion over 256-bit prime fields.

Design Device Area Frequency |Time (us) |Time at

(MHz) 200 MHz
(us)

Ours w/o Zynq 6,926 LUTs | 214.286 1.279 1.370

UB

Ours w/UB | UltraScale+ 1.736 1.860

[21] (2019) | Virtex-7 1,069 slices | 168.560 2.013 1.697

5] (2018) | Virtex-7 617 slices | 144.011 2.220 1.599

[11] (2015) | Virtex-7 1,480 slices | 146.380 2.329 1.705

[15] (2016) | Virtex-6 4,758 LUTs | 151.000 3.391 2.560

6.2 FPGA Resources

Table 3 and Table 4 include the information of FPGA resources (Area) occupied
by each design. As the FPGA devices used are different from design to design,
directly comparing their sizes is difficult. For example, the UltraScale+ archi-
tecture has a slice structure containing eight 6-input look-up tables (LUTSs),
whereas a slice in Virtex-6/7 has four 6-input LUTs, or Virtex-4 has 4-input
LUTs. Nevertheless, the proposed system seems to occupy more resources than
the others. However, the size is sufficiently practical since the area information
of our implementation reported in Table 3 is not only for scalar multiplication
processing but also for all other components including the high-speed on-chip
bus and the DDR4 DIMM controller, and the total hardware can be accommo-
dated using low-price FPGA devices such as a Xilinx Artix-7 XC7A200T that
comprises 134 600 LUTS and 740 DSPs [35].

7 Conclusion

We have investigated various methods for efficient FPGA implementations of
scalar multiplication on elliptic curve cryptosystems over any prime field. Our
design makes the most of the advanced and high-performance programmable
logic in today’s FPGA devices and extracts the full parallelism inherent in the
algorithms. Our proposed hardware—software coprocessing outperforms the exist-
ing FPGA implementations for generic ECC over 256-bit prime fields without
a pre-computation table and is also secure against SPA and exception-free for
any scalar. The processing time result of 0.575ms shows that our design could
be applicable to any real-time embedded system.

Acknowledgments. This work was supported by enPiT (Education Network for
Practical Information Technologies) at MEXT, Innovation Platform for Society 5.0
at MEXT, and JSPS KAKENHI Grant Number JP21H03443.

412

K. Tanaka et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

https://gmplib.org/

Alrimeih, H., Rakhmatov, D.: Fast and flexible hardware support for ECC over
multiple standard prime fields. IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
22(12), 2661-2674 (2014)

Bernstein, D.J., Yang, B.-Y.: Fast constant-time GCD computation and modu-
lar inversion. IACR Trans. Cryptogr. Hardw. Embedded Syst. 2019(3), 340-398
(2019)

Blake, 1., Seroussi, G., Smart, N.: Elliptic Curves in Cryptography. Cambridge
University Press, Cambridge (1999)

Dong, X., Zhang, L., Gao, X.: An efficient FPGA implementation of ECC modular
inversion over Fjgss. In: Proceedings International Conference on Cryptography,
Security and Privacy, pp. 29-33 (2018)

Ghosh, S., Alam, M., Chowdhury, D.R., Guputa, 1.S.: Parallel crypto-devices for
GF(p) elliptic curve multiplication resistant against side channel attacks. Comput.
Electr. Eng. 35(2), 329-338 (2009)

Ghosh, S., Mukhopadhyay, D., Roychowdhury, D.: Petrel: power and timing attack
resistant elliptic curve scalar multiplier based on programmable GF(p) arithmetic
unit. IEEE Trans. Circ. Syst. 58(8), 1798-1812 (2011)

. Guillermin, N.: A high speed coprocessor for elliptic curve scalar multiplications

over F,. In: Proceedings of International Conference on Cryptographic Hardware
and Embedded Systems, pp. 48-64 (2010)

Gilineysu, T., Paar, C.: Ultra high performance ECC over NIST primes on com-
mercial FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154,
pp. 62-78. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-
3.5

Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, New York (2004). https://doi.org/10.1007/b97644

Hossain, M.S., Kong, Y.: High-performance FPGA implementation of modular
inversion over Fas6 for elliptic curve cryptography. In: Proceedings of IEEE Inter-
national Conference on Data Science and Data Intensive Systems, pp. 169-174
(2015)

Hossain, M.S., Kong, Y., Saeedi, E., Vayalil, N.C.: High-performance elliptic curve
cryptography processor over NIST prime fields. IET Comput. Digit. Tech. 11(1),
33-42 (2017)

Hu, X., Zheng, X., Zhang, S., Cai, S., Xiong, X.: A low hardware consumption
elliptic curve cryptographic architecture over GF(p) in embedded application. Elec-
tronics 7(7), 13p (2018)

Javeed, K., Wang, X.: FPGA based high speed SPA resistant elliptic curve scalar
multiplier architecture. Int. J. Reconfig. Comput. 2016(5), 1-10 (2016)

Javeed, K., Wang, X.: Low latency flexible FPGA implementation of point multi-
plication on elliptic curves over GF(p). Int. J. Circuit Theory Appl. 45(2), 214-228
(2016)

Jin, Y., Miyaji, A.: Secure and compact elliptic curve cryptosystems. In: Jang-
Jaccard, J., Guo, F. (eds.) ACISP 2019. LNCS, vol. 11547, pp. 639-650. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-21548-4_36

Joye, M.: Highly regular m-Ary powering ladders. In: Jacobson, M.J., Rijmen,
V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 350-363. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-05445-7_22

https://gmplib.org/
https://doi.org/10.1007/978-3-540-85053-3_5
https://doi.org/10.1007/978-3-540-85053-3_5
https://doi.org/10.1007/b97644
https://doi.org/10.1007/978-3-030-21548-4_36
https://doi.org/10.1007/978-3-642-05445-7_22

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Efficient FPGA Design of Exception-Free Generic ECC 413

Karatsuba, A.A., Ofman, Y.: Multiplication of multidigit numbers on automata.
Soviet Phys. Doklady 7(7), 595-596 (1963)

Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48, 203209 (1987)
Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104-113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9
Kudithi, T., Sakthivel, R.: An efficient hardware implementation of finite field
inversion for elliptic curve cryptography. Int. J. Innov. Technol. Explor. Eng. 8(9),
827-932 (2019)

Kudithi, T., Sakthivel, R.: High-performance ECC processor architecture design
for ToT security applications. J. Supercomput. 75(1), 447-474 (2019). https://doi.
org/10.1007/s11227-018-02740-2

Le, D.-P., Nguyen, B.P.: Fast point quadrupling on elliptic curves. In: Proceedings
of Symposium on Information and Communication Technology, pp. 218-222 (2012)
Ma, Y., Liu, Z., Pan, W., Jing, J.: A high-speed elliptic curve cryptographic pro-
cessor for generic curves over GF(p). In: Proceedings of International Conference
on Selected Areas in Cryptography, pp. 421-437 (2013)

Mamiya, H., Miyaji, A., Morimoto, H.: Secure elliptic curve exponentiation against
RPA, ZRA, DPA, and SPA. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci. 89-A(8):2207-2215 (2006)

Marzougqi, H., Al-Qutayri, M., Salah, K., Saleh, H.: A 65 nm ASIC based 256 NIST
prime field ECC processor. In: Proceedings of IEEE 59th International Midwest
Symposium on Circuits and Systems, pp. 1-4 (2016)

Marzougqi, H., Al-Qutayri, M., Salah, K., Schinianakis, D., Stouraitis, T.: A high-
speed FPGA implementation of an RSD-based ECC processor. IEEE Trans. Very
Large Scale Integr. (VLSI) Syst. 24(1), 151-164 (2016)

Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (1996)

Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417-426. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X 31

Moller, B.: Parallelizable elliptic curve point multiplication method with resistance
against side-channel attacks. In: Chan, A.H., Gligor, V. (eds.) ISC 2002. LNCS,
vol. 2433, pp. 402-413. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45811-5_31

Montgomery, P.L.: Modular multiplication without trial division. Math. Comput.
44(170), 519-521 (1985)

Renes, J., Costello, C., Batina, L.: Complete addition formulas for prime order
elliptic curves. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,
vol. 9665, pp. 403-428. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49890-3_16

Shylashree, N., Sridhar, V., Patawardhan, D.: FPGA based efficient elliptic curve
cryptosystem processor for NIST 256 prime field. In: Proceedings of IEEE Region
10 Conference, pp. 194-199 (2016)

Wu, X., Chouliaras, V., Goodall, R.: An application-specific processor hard macro
for real-time control. In: Proceedings of IEEE International SOC Conference, pp.
369-372 (2004)

https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/s11227-018-02740-2
https://doi.org/10.1007/s11227-018-02740-2
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-45811-5_31
https://doi.org/10.1007/3-540-45811-5_31
https://doi.org/10.1007/978-3-662-49890-3_16
https://doi.org/10.1007/978-3-662-49890-3_16

414

35.
36.
37.
38.
39.

K. Tanaka et al.

Xilinx, Inc

Xilinx, Inc.:
Xilinx, Inc.:
Xilinx, Inc.:
Xilinx, Inc.:

.. 7 Series FPGAs Data Sheet: Overview, DS180 (v2.6)
UltraScale Architecture DSP Slice User Guide, UG579 (v1.10)
Vivado Design Suite User Guide, Synthesis UG901 (v2020.1)
ZCU104 Evaluation Board User Guide, UG1267 (v1.1)

Zynq UltraScale+ MPSoC Data Sheet: Overview, DS891 (v1.8)

	Efficient FPGA Design of Exception-Free Generic Elliptic Curve Cryptosystems
	1 Introduction
	2 Operations in Elliptic Curve Cryptography
	2.1 Addition Formulae on Elliptic Curve
	2.2 Scalar Multiplication

	3 Related Work
	4 Target Algorithm and Modular Arithmetics
	4.1 Algorithms for Scalar Multiplication
	4.2 Modular Arithmetic

	5 Design and Implementation
	5.1 Design of Arithmetic Units
	5.2 Design of EC Point Computation Modules and Parallelism
	5.3 APIs for Inter-module Parallelism and Synchronization
	5.4 System Structure
	5.5 Execution Cycles

	6 Analysis
	6.1 Execution Time
	6.2 FPGA Resources

	7 Conclusion
	References

