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Abstract. In this work we first provide a framework for defining a large
subset of pairing-based digital signature schemes which we call Par-
tially Structure-Preserving Signature (PSPS) schemes. PSPS schemes
are similar in nature to structure-preserving signatures with the excep-
tion that in PSPS schemes messages are scalars from Zp instead of being
group elements. This class encompasses various existing schemes which
have a number of desirable features which makes them an ideal building
block for many privacy-preserving cryptographic protocols. Such schemes
include the widely-used schemes of Camenisch-Lysyanskaya (CRYPTO
2004) and Pointcheval-Sanders (CT-RSA 2016). We then provide vari-
ous impossibility and lower bound results for variants of this class. Our
results include bounds for the signature and verification key sizes as
well as lower bounds for achieving strong unforgeability. We also give
a generic framework for transforming variants of PSPS schemes into
structure-preserving ones. As part of our contribution, we also give a
number of optimal PSPS schemes which may be of independent interest.
Our results aid in understanding the efficiency of pairing-based signa-
ture schemes and show a connection between this class of schemes and
structure-preserving ones.

Keywords: Digital signatures · Bilinear groups · Lower bounds ·
Structure-preserving

1 Introduction

Digital signatures are a fundamental cryptographic primitive which besides being
useful in their own right, they are used as an essential building block for various
more complex protocols.

The emergence of pairing-based cryptography has been associated with the
introduction of many pairing-based digital signature schemes. One of the exten-
sively used pairing-based signature schemes is that of Camenisch and Lysyan-
skaya (CL) [16]. The scheme has a number of desirable features which makes it
an ideal building block for various privacy-preserving protocols, including group
signatures, e.g. [10,16], anonymous credentials, e.g. [16], and direct anonymous
attestation, e.g. [20]. Notably, the scheme besides having fully and perfectly ran-
domizable signatures, it is compatible with Pedersen-like commitment schemes
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[41] and thus it is possible to sign committed messages. A recent improvement to
the CL scheme is the Pointcheval and Sanders (PS) scheme [42], which besides
enjoying better efficiency and preserving all of its desirable features, it yields
constant-size signatures regardless of the size of the message. Despite its rela-
tively young age, the PS scheme has been used in the construction of various
protocols. A common feature to the structure of both aforementioned schemes
is that the signer is generic, and when viewing the signature components as an
exponentiation of the respective group generator to a fraction of polynomials,
the denominator polynomials are independent of the message. This is to the con-
trary of other pairing-based schemes, e.g. [11,12,43,45], which even though are
based on non-interactive intractability assumptions, they do not enjoy some of
the desirable features of the CL and PS schemes, e.g. the randomizability of the
signatures, having a generic signer, the ease of being combined with Pedersen-like
commitments, and a short verification key.

The dual-form signature framework [27] was used by [18,27] to obtain (less
efficient) variants of some existing schemes, e.g. CL and PS schemes, whose
security relies on static intractability assumptions.

Structure-Preserrving Signature (SPS) schemes [4] are also pairing-based sig-
nature schemes with the extra requirement that the messages, the verification
key and the signatures consist of only source group elements. Verification of
signatures in those schemes only involves evaluating Pairing-Product Equations
(PPEs) and checking group memberships. Such properties make them compat-
ible with widely-used constructs such as ElGamal encryption [21] and Groth-
Sahai proofs [35] and hence they render themselves as a tool for designing cryp-
tographic protocols which dispense with relying on random oracles [22] despite
the efficiency degradation. SPS schemes have numerous applications, including
group signatures, e.g. [4,38], blind signatures, e.g. [4,24], and anonymous cre-
dentials, e.g. [15,23].

A numerous number of SPS schemes have been proposed in the 3 differ-
ent bilinear groups settings. In the most efficient bilinear group setting, i.e. the
Type-3 setting (cf. Sect. 2), existing schemes include [4,5,7,19,29,31,34]. Abe
et al. [5] proved that a Type-3 signature must contain at least 3 bilateral ele-
ments and require at least 2 PPEs for verification. Optimal SPS schemes rely on
security proofs in the generic group model [40,44]. Abe et al. [6] proved that the
unforgeability of an optimal Type-3 scheme cannot be based on a non-interactive
intractability assumption. Ghadafi [31] showed that by restricting the message
space to the set of Diffie-Hellman (DH) pairs (cf. Sect. 2) it is possible to cir-
cumvent the lower bound and obtain optimal unilateral signatures consisting
of 2 elements. Such variants provide some efficiency gains for some protocols,
including direct anonymous attestation [13] and attribute-based signatures [39].
Other constructions for this message space include, e.g. [4,28,29,32,33].

Constructions of SPS schemes relying on non-interactive assumptions include
[1–3,8,14,26,36–38]. Chase and Kohlweiss [17] gave a transformation which uti-
lizes pairwise-independent hash functions and the Groth-Sahai proof system [35]
to obtain structure-preserving signatures based on standard assumptions from
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some pairing-based signature schemes for scalar messages. Their transformation
is rather costly as it yields signatures consisting of tens of group elements.

Motivation and Our Contribution. While structure-preserving signatures
and their efficiency are well studied, other types of pairing-based signature
schemes still have some open problems pertaining to their feasibility and bounds
for their efficiency are still lacking. For instance, it is not currently known
whether efficient strongly unforgeable generic-signer schemes with a similar
structure to the CL and PS schemes are possible. Moreover, it is not currently
known whether the recent efficient PS scheme is optimal or whether it is possible
to improve efficiency while preserving all of its desirable features.

SPS schemes might be less desirable than pairing-based schemes for scalar
messages for some applications due to the loss in efficiency. This is particularly
the case for applications where relying on random oracles is tolerated, appli-
cations requiring a stand-alone signature scheme, or applications not requiring
proof systems to hide the message.

Towards a better understanding of the efficiency of pairing-based signature
schemes for scalar messages, we first define a framework for capturing a large
class of such schemes which we refer to as Partially Structure-Preserving Signa-
ture (PSPS) schemes1. Other than the messages being scalars from Zp rather
than source group elements, PSPS schemes have similar properties to structure-
preserving signatures, including having a generic signer and signatures and ver-
ification keys consisting solely of source group elements. We provide different
variants of our definition. More precisely, we define Strongly Partially Structure-
Preserving (SPSPS) schemes and Linear-Message Strongly Partially Structure-
Preserving (LmSPSPS) schemes. The former requires that the PSPS scheme does
not involve the message in the denominator of any of the signature components
whereas the latter additionally requires that the message is embedded in the
signature components in a linear manner. The CL and PS schemes for example
fall into the LmSPSPS class.

We provide various lower bounds and impossibility results for LmSPSPS sch-
emes. More precisely, we prove that existentially unforgeable under random-
message attacks (EUF-RMA) schemes must have at least 2 elements in the sig-
nature and that strongly existentially unforgeable under chosen-message attacks
(sEUF-CMA) schemes must have bilateral signatures consisting of at least 3 ele-
ments. Also, we prove that optimal schemes, including one-time schemes, cannot
have a verification key consisting of fewer than 2 elements. In essence, this proves
that the PS scheme and our new LmSPSPS scheme are optimal in every respect.
In Table 1 we summarize our lower bound results for the size of the signature
and compare them to those for structure-preserving signatures.

We also construct optimal one-time sEUF-CMA LmSPSPS schemes with
one-element signatures and a new optimal EUF-CMA LmSPSPS scheme for a
vector of messages. We prove the security of the latter using a new interactive
intractability assumption which we show holds in the generic group model. The
1 We remark that such a term was used informally in [31] to refer to SPS schemes

where some message components are allowed to be scalar messages.
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Table 1. Summary of the lower bounds for |σ| in the Type-3 bilinear setting. B stands
for bilateral elements whereas U stands for unilateral elements.

Notion # sign queries EUF-RMA sEUF-CMA

LmSPSPS (this work) 1 1 1
>1 2U 3B

SPS for unilateral messages [5,7] 1 1 1
>1 3B 3B

SPS for DH pairs [32,33] 1 1 1
>1 2U 3B

efficiency of our scheme matches that of the PS scheme [42] whose security also
relies on an interactive assumption in every respect.

Finally, we show a connection between LmSPSPS schemes and SPS schemes
by showing that if a LmSPSPS scheme satisfies an extra requirement which is
that the signature and verification key components in either source group are
disjoint, which for instance is satisfied by the CL and PS schemes as well as our
new scheme, such a scheme automatically yields an analogues SPS scheme where
the message space is the set of Diffie-Hellman pairs. The obtained SPS scheme
has the same key pair as the original LmSPSPS scheme and is unforgeable in
the generic group model. We also show some instantiations of our framework.

Besides being a step closer towards a better understanding of the efficiency
of pairing-based signature schemes, our results uncover a link between LmSP-
SPS and SPS schemes.

Paper Organization. Some preliminary definitions are in Sect. 2. In Sect. 3 we
define PSPS schemes. In Sects. 4 and 5 we present our LmSPSPS constructions.
In Sect. 6 we give our transformation from LmSPSPS to SPS schemes and provide
example instantiations. Finally, in Sect. 7 we give our feasibility results.

Notation. We write y = A(x; r) when algorithm A on input x and randomness
r outputs y. We write y ← A(x) for the process of setting y = A(x; r) where
r is sampled at random. We also write y ← S for sampling y uniformly at
random from a set S. A function ν(.) : N → R

+ is negligible (in n) if for every
polynomial p(.) and all sufficiently large values of n, it holds that ν(n) < 1

p(n) . By
PPT we mean running in probabilistic polynomial time in the relevant security
parameter. We use [k] to denote the set {1, . . . , k} and [i, k] to denote the set
{i, i + 1, . . . , k}. For vectors x,y ∈ Z

n
p we denote by xy the operation

∏n
i=1 xyi

i .

2 Preliminaries

In this section we provide some preliminary definitions.
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2.1 Bilinear Groups

A bilinear group is a tuple P := (G,H,T, p,G, H̃, e) where G, H and T are
groups of a prime order p, and G and H̃ generate G and H, respectively. The
function e is a non-degenerate bilinear map e : G×H −→ T. We refer to G and
H as the source groups whereas we refer to T as the target group. We will use
multiplicative notation for all the groups. To distinguish elements of H from those
of G we will accent the former with .̃ We let G× := G\{1G} and H

× := H\{1H}.
We limit our attention to the efficient Type-3 setting [25], where G �= H and
there is no efficiently computable homomorphism between the source groups in
either direction. We assume an algorithm BG that on input 1κ, for some security
parameter κ ∈ N, outputs a description of a bilinear groups P.

We call a pair (M, Ñ) ∈ G × H a Diffie-Hellman (DH) pair [4] if it satisfies
e(M, H̃) = e(G, Ñ). We denote the set of DH pairs by DH.

2.2 Digital Signatures

A digital signature scheme DS over a bilinear group P generated by BG for a
message space M consists of the following algorithms:

KeyGen(P) on input P, it outputs a pair of secret/verification keys (sk, vk).
Sign(sk,m) on input sk and a message m ∈ M, it outputs a signature σ.
Verify(vk,m, σ) outputs 1 if σ is a valid signature on m w.r.t. vk and 0 otherwise.

Definition 1 (Correctness). A digital signature scheme DS over a bilinear
group generator BG is (perfectly) correct if for all κ ∈ N

Pr

⎡

⎢
⎢
⎣

P ← BG(1κ)
(sk, vk) ← KeyGen(P)
m ← M
σ ← Sign(sk,m)

: Verify(vk,m, σ) = 1

⎤

⎥
⎥
⎦ = 1·

Besides the correctness requirement, we require existential unforgeability.

Definition 2 (Existential Unforgeability). A digital signature scheme DS
over a bilinear group generator BG is Existentially-Unforgeable against adaptive
Chosen-Message Attack (EUF-CMA) if for all κ ∈ N for all PPT adversaries
A, the following is negligible (in κ)

Pr

⎡

⎣
P ← BG(1κ)
(sk, vk) ← KeyGen(P)
(σ∗,m∗) ← ASign(sk,·)(P, vk)

: Verify(vk,m∗, σ∗) = 1 ∧ m∗ /∈ QSign

⎤

⎦ ,

where QSign is the set of messages queried to Sign.
Strong Existential Unforgeability against adaptive Chosen-Message Attack

(sEUF-CMA) requires that the adversary cannot even output a new signature
on a message that was queried to the sign oracle.
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A weaker variant of EUF-CMA is Existential Unforgeability against a
Random-Message Attack (EUF-RMA) in which the sign oracle samples a mes-
sage uniformly from the message space and returns the message and a signature
on it. In one-time signatures, the adversary is restricted to a single signing query.

Sometimes it is desirable that signatures are publicly re-randomizable where
there is an algorithm Randomize that on input (vk,m, σ) outputs a new signature
σ′ on m which is indistinguishable from a fresh signature on the same message.

Structure-Preserving Signatures. Structure-preserving signatures [4] are
signature schemes defined over bilinear groups where the messages, the veri-
fication key and signatures are all group elements from either or both source
groups, and verifying signatures only involves deciding group membership of the
signature components and evaluating pairing-product equations (PPEs) of the
form of Eq. (1).

∏

i

∏

j

e(Ai, B̃j)ci,j = 1T, (1)

where Ai ∈ G and B̃j ∈ H are group elements appearing in P,m, vk, σ, whereas
ci,j ∈ Zp are constants.

Generic Signer. We refer to a signer that can only decide group membership,
evaluate the bilinear map e, compute the group operations in groups G,H and
T, and compare group elements as a generic signer.

3 Partially Structure-Preserving Signatures

In this section we define a class of prime-order pairing-based digital signature
schemes which we call Partially Structure-Preserving Signature (PSPS) schemes.
Informally, a PSPS scheme is a pairing-based signature scheme for scalar mes-
sages from Z

n
p for n ≥ 1 where the signature components and verification key

contain only source group elements and the signature components are computed
by raising source group elements to fraction of polynomials involving the secret
key, the messages and the randomness chosen as part of the signing process. We
then define 2 variants of PSPS schemes to capture most of the practical schemes
existing in the literature. First, we define Strongly Partially Structure-Preserving
Signature (SPSPS) schemes which additionally require that the denominator
polynomials used in computing the signature components are independent of
the messages to be signed. Then we define a variant of SPSPS which we refer
to as Linear-Message Strongly Partially Structure-Preserving Signature (LmSP-
SPS) schemes which additionally requires that the numerator polynomials are
linear in the message to be signed. The latter captures a large class of existing
schemes for scalar messages, including variants of the CL and PS schemes.

Definition 3 (Partially Structure-Preserving Signatures). A digital sig-
nature scheme DS over a bilinear group generator BG is Partially Structure-
Preserving Signature (PSPS) scheme if it satisfies all the following:
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• BG(1κ) generates a bilinear group description P := (G,H,T, p,G, H̃, e).
• The verification key vk consists of P and source group elements (X,Y ) ∈
G

μ × H
μ′

.
• The message space is M := Z

n
p for some n ≥ 1.

• A signature on a message m ∈ M is of the form σ := (S, T̃ ) ∈ G
ν × H

ν′

which is computed by a generic signer by sampling a vector r ∈ Z
n′
p

(independently of the message m) and computing Si := G
αi(sk,m ,r )
α′

i
(sk,m ,r ) and

T̃j := H̃
βj(sk,m ,r)
β′

j(sk,m ,r) for some formal multivariate polynomials αi, α
′
i, βj , β

′
j ∈

Fp[X1, . . . , Xμ, Y1, . . . , Yμ′ ,M1, . . . ,Mn, R1, . . . , Rn′ ] of total degree bounded
by d(κ).

• Signature verification involves deciding group membership2 and evaluating a
set of pairing-product equations of the following form:

ν∏

i=1

e(Si,

μ′
∏

j=1

Ỹj)
ρ1,i,j

(m )
ν′
∏

i=1

e(
μ∏

j=1

Xj , T̃i)
ρ2,i,j

(m )

ν∏

i=1

e(Si,

ν′
∏

j=1

T̃j)
ρ3,i,j

(m )
μ∏

i=1

μ′
∏

j=1

e(Xi, Ỹj)
ρ4,i,j

(m )

= Z�, (2)

where ρ
i,j,k

∈ Fp[M1, . . . ,Mn] are multivariate polynomials of total degree
bounded by d′(κ) whereas Z� ∈ T is a public constant. In the strict sense, one
can necessitate that Z� = 1T.

Definition 4 (Strongly Partially Structure-Preserving Signatures). A
digital signature scheme DS over a bilinear group generator BG is Strongly
Partially Structure-Preserving Signature (SPSPS) if it is partially structure-
preserving and it holds that for all i ∈ [ν] and for all j ∈ [ν′], the polynomials
α′

i and β′
j are independent of the message.

Definition 5 (Linear-Message Strongly Partially Structure-Preserving
Signatures). A digital signature scheme DS over a bilinear group generator
BG is Linear-Message Strongly Partially Structure-Preserving Signature (LmSP-
SPS) if it is strongly partially structure-preserving and it holds that for all i ∈ [ν]
and for all j ∈ [ν′], αi and βj are linear in M , i.e. for all k ∈ [n], for all i ∈ [ν],
for all j ∈ [ν′], the degree of Mk in αi and βj is either 0 or 1 and for all η, η′ ∈ [n]
neither of the polynomials contain the monomial MηMη′ .

We now define a subset of PSPS schemes which we call Disjoint Partially
Structure-Preserving Signature (DPSPS) schemes. Informally, a DPSPS scheme
is a PSPS scheme where the spans of the sets of fraction of formal polynomials
corresponding to the verification key and signature components in the source
groups are disjoint.

2 For more generality, we allow membership checks of the forms Si ∈ G
× and T̃j ∈ H

×.



Partially Structure-Preserving Signatures 291

Definition 6 (Disjoint Partially Structure-Preserving Signatures). Let
γ1,i(SK)
γ′
1,i(SK) for i ∈ [μ] and γ2,j(SK)

γ′
2,j(SK) for j ∈ [μ′] be the fraction of formal polynomi-

als used to compute the verification key X ∈ G
μ and Y ∈ H

μ′
(excluding the

default source group generators), respectively. We say a signature scheme DS
over a bilinear group generator BG is a Disjoint Partially Structure-Preserving
Signature (DPSPS) scheme if it is partially structure-preserving and additionally
meets the following requirement:

Span

({γ1,1(SK)

γ′
1,1(SK)

, . . . ,
γ1,μ(SK)

γ′
1,μ(SK)

,
α1(SK,M ,R)

α′
1(SK,M ,R)

, . . . ,
αν(SK,M ,R)

α′
ν(SK,M ,R)

})

∩ Span

({γ2,1(SK)

γ′
2,i(SK)

, . . . ,
γ2,μ′(SK)

γ′
2,μ′(SK)

,
β1(SK,M ,R)

β′
1(SK,M ,R)

, . . . ,
βν′(SK,M ,R)

β′
ν′(SK,M ,R)

})
= {0}·

We call a LmSPSPS scheme a Disjoint LmSPSPS (DLmSPSPS) scheme if it
satisfies the above disjointness requirement. Examples of schemes conforming to
this requirement include the PS scheme and our new scheme.

We later show that DLmSPSPS schemes yield equivalent structure-preserving
signature schemes for DH pairs. In our transformation, the disjointness require-
ment ensures that a generic adversary against the SPS scheme cannot feed ele-
ments obtained from previous queries to the sign oracle back into the sign ora-
cle since they do not have a matching component in the opposite source group,
i.e. they do not form DH pairs. This restricts the messages the SPS adversary can
query back into her sign oracle to being constant polynomials, i.e. scalars from
Zp, similarly to the generic adversary against the underlying DLmSPSPS scheme.

4 A New Optimal LmSPSPS Scheme

Here we give a new LmSPSPS scheme for signing a vector m ∈ Z
n
p . The idea of

the new scheme is based on the signature scheme underlying the blind signature
scheme in [30]. The efficiency of our scheme matches that of the PS scheme in
every respect.

Given the description of a Type-3 bilinear group P output by BG(1κ), the
scheme is as follows:

• KeyGen(P): Select x, y1, . . . , yn−1, z ← Z
×
p . Set X̃ := H̃x, Ỹi := H̃yi for

all i ∈ [n − 1] and Z̃ := H̃z. Set sk := (x, y1, . . . , yn−1, z) and vk :=
(X̃, Ỹ1, . . . , Ỹn−1, Z̃) ∈ H

n+1.

• Sign(sk,m): Select r ← Z
×
p and set (S1, S2) :=

(

Gr, G
r(x+m1+

∑n
i=2 miyi−1)
z

)

.

The signature is σ := (S1, S2) ∈ G
×2.

• Verify(vk,m, σ): Return 1 if S1 �= 1G and e(S2, Z̃) = e(S1, X̃H̃m1
n∏

i=2

Ỹ mi
i−1)

and 0 otherwise.
• Randomize(vk,m, σ): Select r′ ← Z

×
p and return σ′ := σr′

.
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4.1 Security of the Scheme

Correctness of the scheme is straightforward and easy to verify. Also, it is easy
to verify that the scheme conforms to the requirements of a DLmSPSPS scheme.
We now define the following new interactive intractability assumption to which
we reduce the unforgeability of the scheme.

Definition 7 (New PSPS (NPSPS) Assumption). Let P = (G,H,T, p,G, H̃, e)
be the description of a Type-3 bilinear group generated by BG(1κ). Let X̃ := H̃x

and Ỹ := H̃y for some x, y ← Z
×
p . Let ÔX̃,Ỹ (·) be an oracle that when queried

on m ∈ Zp, selects r ← Z
×
p and returns the pair (Gr, G

r(x+m)
y ) ∈ G

2. The
NPSPS assumption holds (relative to BG) if for all PPT adversaries A given
(P, X̃, Ỹ ) and unlimited access to ÔX̃,Ỹ (·), the probability that A outputs a new

pair (R∗, R∗ (x+m∗)
y ) ∈ G

×2 for some m∗ ∈ Zp which was not queried to ÔX̃,Ỹ (·)
is negligible (in κ).

The following theorem proves that the NPSPS assumption holds in the generic
group model.

Theorem 1. For a generic adversary A which makes qG group operation
queries, qP pairing queries and qO queries to the ÔX̃,Ỹ oracle, the probabil-

ity that A breaks the NPSPS assumption is O( q2
G+q2

P +q2
O

p ) where p if the prime
order of the bilinear group.

Proof. Let qO be the number of queries to the ÔX̃,Ỹ oracle, qG be the number of
group operation queries and qP be the number of pairing queries the adversary
makes in her game. We first prove that no linear combinations of the formal
Laurent polynomials in Zp[R1, . . . , RqO

,X, Y ±1] yields a tuple that constitutes
a solution for the underlying NPSPS problem.

In the game, we keep 3 different lists LG, LH and LT for the Laurent polyno-
mials corresponding to group elements from groups G, H and T, respectively. At
the end of the game, the total number of (non-constant) Laurent polynomials
used is |LG| + |LH| + |LT| ≤ 2 + qG + qP + 2qO.

Since both elements in the adversary’s output (R∗, S∗) are from G, it follows
that r∗ and s∗ can only be constructed using linear combinations of the Laurent
polynomials corresponding to elements from G. Thus, we must have that:

r∗ = ar +
qO∑

i=1

br,iri +
qO∑

i=1

cr,i

(
rix

y
+

rimi

y

)

s∗ = as +
qO∑

i=1

bs,iri +
qO∑

i=1

cs,i

(
rix

y
+

rimi

y

)

For the pair (R∗, S∗) ∈ G
×2 to be a valid solution, we must have that:

s∗y = r∗x + r∗m∗ (3)
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Thus, we must have:

asy +
qO∑

i=1

bs,iriy +
qO∑

i=1

cs,i (rix + rimi)

= arx +
qO∑

i=1

br,irix +
qO∑

i=1

cr,i

(
rix

2

y
+

rimix

y

)

+

(

ar +
qO∑

i=1

br,iri +
qO∑

i=1

cr,i

(
rix

y
+

rimi

y

))

m∗

There is no term in y or riy on the RHS, so we must have as = 0, bs,i = 0 for
all i ∈ [qO]. Thus, we have:

qO∑

i=1

cs,i(rix + rimi) = arx +
qO∑

i=1

br,irix +
qO∑

i=1

cr,i(
rix

2

y
+

rimix

y
)

+
(
ar +

qO∑

i=1

br,iri +
qO∑

i=1

cr,i(
rix

y
+

rimi

y
)
)
m∗

There is no term rix
2

y on the LHS, so we must have that cr,i = 0 for all i ∈ [qO].
Also, no term in x on the LHS, so we must have that ar = 0. Thus, we have:

qO∑

i=1

cs,i (rix + rimi) =
qO∑

i=1

br,irix +
qO∑

i=1

br,irim
∗

The monomial rix implies cs,i = br,i for all i ∈ [qO]. Since we must have that
that R∗ ∈ G

×, we must have r∗ �= 0 and therefore we must have at least a single
value of cs,i = br,i �= 0. The monomial ri implies cs,imi = br,im

∗ which means
m∗ = mi for some i. Thus, the pair (R∗, S∗) is not a valid new pair.

Thus far we have proven that the adversary is unable to symbolically produce
a valid tuple for a new scalar. What remains is to bound the probability that the
simulation fails. The adversary wins if for any two different Laurent polynomials
F and F ′ in any of the 3 lists evaluate to the same value. Note that the only
indeterminate in those Laurent polynomials with a negative power is Y . Thus,
for any Laurent polynomial F on any of those 3 lists, we can view F as a frac-
tion of polynomials F = Fn

Fd
for some polynomials Fn ∈ Zp[R1, . . . , RqO

,X, Y ]
and Fd ∈ Zp[Y ]. Note that Zp[Y ] ⊂ Zp[R1, . . . , RqO

,X, Y ]. Thus, the equality
check F (r1, . . . , rO, x, y, y−1) − F ′(r1, . . . , rO, x, y, y−1) = 0 can be substituted
by checking whether Fn(r1, . . . , rO, x, y)F ′

d(y) − F ′
n(r1, . . . , rO, x, y, )Fd(y) = 0.

It follows that for F, F ′ ∈ LG we have deg(Fn) ≤ 2 and deg(Fd) ≤ 1. Thus, the
probability that Fn(r1, . . . , rO, x, y)F ′

d(y) − F ′
n(r1, . . . , rO, x, y)Fd(y) = 0 is ≤ 3

p .
For F, F ′ ∈ LH, we have deg(Fn) ≤ 1 and deg(Fd) = 0. Thus, the probability
that Fn(r1, . . . , rO, x, y)F ′

d(y) − F ′
n(r1, . . . , rO, x, y)Fd(y) = 0 is ≤ 1

p . From this
it follows that for F, F ′ ∈ LT the probability that Fn(r1, . . . , rO, x, y)F ′

d(y) −
F ′

n(r1, . . . , rO, x, y)Fd(y) = 0 is ≤ 4
p .
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Summing over all choices of F and F ′ in each case we have that the proba-
bility ε of the simulation failing for this reason is

ε ≤
(|L1|

2

)
3
p

+
(|L2|

2

)
1
p

+
(|LT |

2

)
4
p

≤ 2(2 + qG + qP + 2qO)2

p
·

Thus, we have that the probability of the simulation failing is O( q2
G+q2

P +q2
O

p ).
Since by definition we have that qO, qG and qp are all polynomial in κ whereas
log p ∈ Θ(κ), it follows that the adversary’s advantage is negligible. 
�

The following theorem proves the unforgeability of the scheme.

Theorem 2. The scheme is EUF-CMA if the NPSPS assumption holds.

Proof. Let A be an adversary against the unforgeability of the scheme, we use A
in a blackbox manner to construct an adversary B against the NPSPS assump-
tion.

Adversary B gets (P, X̃, Ỹ ) from her game and chooses y1, . . . , yn−1, α1,
. . . , αn−1 ← Z

×
p and sets Z̃ := Ỹ and Ỹi := Ỹ αiH̃yi for all i ∈ [n − 1]. B ini-

tiates A on vk := (X̃, Ỹ1, . . . , Ỹn−1, Z̃). Note that verification key is distributed
identically to that of the scheme.

When A queries the sign oracle on a vector m ∈ Z
n
p , B computes m′ :=

m1 +
n∑

i=2

yi−1mi and queries her ÔX̃,Ỹ oracle on m′ to get a tuple (S1, S2) ∈ G.

B computes S′
2 := S2S

∑n
i=2 αi−1mi

1 and returns σ := (S1, S
′
2) to A as a signature

on m. This is a valid signature on m w.r.t vk since:

e(S′
2, Z̃) = e(S

x+m1+
n∑

i=2
yi−1mi

z
1 S

n∑

i=2
αi−1mi

1 , Z̃)

= e(S
x+m1+

n∑

i=2
yi−1mi+z

n∑

i=2
αi−1mi

1 , H̃)

= e(S
x+m1+

n∑

i=2
(yi−1+αi−1z)mi

1 , H̃)

= e(S1, X̃H̃
m1+

n∑

i=2
(yi−1+αi−1z)mi

, H̃)

= e(S1, X̃H̃m1

n∏

i=2

Ỹ mi
i−1)·

Eventually, when A halts and outputs her forgery (m∗, σ∗), B computes

m∗′ := m∗
1 +

n∑

i=2

yi−1m
∗
i and returns (σ∗,m∗′) as her output in her game.

It is easy to see that if σ∗ = (S∗
1 , S∗

2 ) is a signature on the new vector m∗

which was not queried to the sign oracle, σ∗ is a valid NPSPS tuple on the new
scalar m∗′ which B did not submit to her oracle ÔX̃,Ỹ .
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We need to handle the case where m∗ /∈ {mi}q
i=1 but m∗′ = m′

i for some
i ∈ [q] in which case A wins her game but B will not be able to break the
NPSPS assumption since the returned tuple is not on a new scalar that was not
queried to her oracle. Note that A’s view is independent of the yi’s and hence
the probability that this event happens is ≤ q

p which is negligible. 
�

5 A New Optimal One-Time sEUF-CMA
LmSPSPS Scheme

Here we give an optimal one-time LmSPSPS scheme for a vector of messages
with one-element signatures and a verification key of size n|G|+ |H|. The scheme
is optimal in every respect.

Given the description of Type-3 bilinear groups P output by BG(1κ), the
scheme is as follows:

• KeyGen(P): Select x1, . . . , xn, y ← Z
×
p . Set sk := (x1, . . . , xn, y), vk :=

(X1, . . . , Xn, Ỹ ) = (Gx1 , . . . , Gxn , H̃y) ∈ G
n × H.

• Sign(sk,m): To sign m ∈ Z
n
p , compute σ = S := G

1+
n∑

i=1
ximi

y .

• Verify(vk,m, σ = S): Return 1 iff e(S, Ỹ ) = e(G
n∏

i=1

Xmi
i , H̃) and 0 otherwise.

Correctness of the scheme is straightforward to verify. We now prove the one-time
strong unforgeability of the scheme.

Theorem 3. The scheme is sEUF-CMA secure in the generic group model.

Proof. We prove that no linear combinations corresponding to polynomials in the
discrete logarithms of the elements the adversary sees correspond to a forgery.

At the start of the game, the only elements in H the adversary sees are H̃,
Ỹ , which correspond to the discrete logarithms 1, y respectively. Note the sign
oracle produces no new elements in H. When queried on a message m, the oracle

will return a signature S = G

1+
n∑

i=1
ximi

y ∈ G. The forgery σ∗ = S∗ can only be
a linear combination of the group elements from G, i.e. a linear combination of
G,S,X1, . . . , Xn. Thus, we have

s∗ = αs + βs

(1 +
n∑

i=1

mixi)

y
+

n∑

i=1

γ
si

xi

For the forgery to be accepted, (s∗,m∗) has to satisfy s∗y = 1 +
n∑

i=1

m∗
i xi.

Therefore, we must have
⎛

⎜
⎜
⎝αs + βs

(1 +
n∑

i=1

mixi)

y
+

n∑

i=1

γ
si

xi

⎞

⎟
⎟
⎠ y=1 +

n∑

i=1

m∗
i xi
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Therefore, we must have

αsy + βs

(

1 +
n∑

i=1

mixi

)

+
n∑

i=1

γsi
xiy = 1 +

n∑

i=1

m∗
i xi

There is no terms of the form y or xiy for any i ∈ [n] on the RHS, so we must
have that αs = 0 and γsi

= 0 for all i ∈ [n]. Thus, we have that

βs +
n∑

i=1

βsmixi = 1 +
n∑

i=1

m∗
i xi

The constant term implies that βs = 1. The monomial xi implies that βsmi =
m∗

i from which it follows that we must have that m∗
i = mi for all i ∈ [n] which

means the forgery can only be the same signature on m the adversary obtained
from the sign oracle.

The probability of the simulation failing is ≤ 3(n+2+qG+qP )2

2p ,

i.e. O(n2+q2
G+q2

P

p ). Since by definition we have that n, qG and qp are all poly-
nomial in κ whereas log p ∈ Θ(κ), it follows that the adversary’s advantage is
negligible. 
�

6 From LmSPSPS Schemes into SPS Schemes

In this section we give a generic framework for transforming any disjoint LmSP-
SPS scheme into a structure-preserving scheme for the message space DHn.

Let P := (G,H,T, p,G, H̃, e) be the bilinear group description gen-
erated by BG. Let DLmSPSPS =

(
KeyGen,Sign,Verify, [Randomize]

)
be a

(s)EUF-CMA (resp. (s)EUF-RMA) DLmSPSPS scheme. The following trans-
formation yields a (s)EUF-CMA (resp. (s)EUF-RMA) SPS scheme SPS =(
KeyGen

SPS
,Sign

SPS
,Verify

SPS
, [Randomize

SPS
]
)
.

• KeyGen
SPS

(P): Run (sk, vk) ← KeyGen(P). Return (sk
SPS

:= sk, vk
SPS

:= vk).

• Sign
SPS

(
sk

SPS
,
(
(M1, M̃1), . . . , (Mn, M̃n)

))
:

◦ Decompose the PPE equations of DLmSPSPS to the following form:

ν∏
i=1

e(Si,

μ′∏
j=1

Ỹj)
ai,j,�

ν∏
i=1

μ′∏
j=1

n∏
k=1

e(Si, Ỹj)
a′

i,j,�,kmk

ν′∏
i=1

e(

μ∏
j=1

Xj , T̃i)
bi,j,�

ν′∏
i=1

μ∏
j=1

n∏
k=1

e(Xj , T̃i)
b′
i,j,�,kmk

ν∏
i=1

e(Si,
ν′∏

j=1

T̃j)
ci,j,�

ν∏
i=1

ν′∏
j=1

n∏
k=1

e(Si, T̃j)
c′

i,j,�,kmk

μ∏
i=1

μ′∏
j=1

e(Xi, Ỹj)
di,j,�

μ∏
i=1

μ′∏
j=1

n∏
k=1

e(Xi, Ỹj)
d′

i,j,�,kmk = Z�·
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◦ Initialize 2 empty lists E1 and E2 of triples representing PPE equations.
◦ For each signature component Sj ∈ G of DLmSPSPS:

∗ Parse Sj as G

q∑

i=1
x
c
i , j y

c ′
i , j r

c ′′
i , j

(

a
i,j

+
n∑

k=1
d

i,j,k
mk

)

∑

i
b
i,j

x
e
i , j y

e ′
i , j r

e ′′
i , j

.
∗ Define the set Î ⊆ [q] as the subset of indices i where ∃k ∈ [n] where

di,j,k �= 0 and let Ĭ := [q]\Î. Compute Sj of SPS as:

Sj =
(

G

∑

i∈Ĭ

a
i,j

x
c
i , j y

c ′
i , j r

c ′′
i , j

∏

i∈Î

n∏

k=1

M
di,j,kx

c
i , j y

c ′
i , j r

c ′′
i , j

k

)

1
∑

i
b
i,j

x
e
i , j y

e ′
i , j r

e ′′
i , j

·

◦ For each signature component T̃j ∈ H of DLmSPSPS:

∗ Parse T̃j as H̃

q∑

i=1
x
c
i , j y

c ′
i , j r

c ′′
i , j

(

a
i,j

+
n∑

k=1
d

i,j,k
mk

)

∑

i
b
i,j

x
e
i , j y

e ′
i , j r

e ′′
i , j

.
∗ Define the set Î ⊆ [q] as the subset of indices i where ∃k ∈ [n] where

di,j,k �= 0 and let Ĭ := [q]\Î. Compute T̃j of SPS as:

T̃j =
(

H̃

∑

i∈Ĭ

a
i,j

x
c
i , j y

c ′
i , j r

c ′′
i , j

∏

i∈Î

n∏

k=1

M̃
di,j,kx

c
i , j y

c ′
i , j r

c ′′
i , j

k

)

1
∑

i
b
i,j

x
e
i , j y

e ′
i , j r

e ′′
i , j

·

◦ For each PPE verification equation of DLmSPSPS:
∗ For each pairing of the form e(Si, Ỹj)a′

i,j,�,kmk where a′
i,j,�,k �= 0:

· If Ỹj �= H̃, append (if it does not already exist) S′
i = Msi

k to S,
replace the pairing with e(S′

i, Ỹj)a′
i,j,�,k and append (if it does not

already exist) the tuple (S′
i, Si, M̃k) to E1. Note that Si is inde-

pendent of the message mk so knowledge of the discrete logarithm
mk is not required to compute S′

i.
· Otherwise, replace the above pairing with e(Si, M̃k)a′

i,j,�,k .
∗ For each pairing of the form e(Xi, T̃j)b′

i,j,�,kmk where b′
i,j,�,k �= 0:

· If Xi �= G, append (if it does not already exist) T̃ ′
j = M̃

tj

k to T ,
replace the pairing with e(Xi, T̃

′
j)

b′
i,j,�,k and append (if it does not

already exist) the tuple (T̃ ′
j , T̃j ,Mk) to E2. Note that T̃j is inde-

pendent of the message mk so knowledge of the discrete logarithm
mk is not required to compute T̃ ′

j .
· Otherwise, replace the pairing with e(Mk, T̃j)b′

i,j,�,k .
∗ For each pairing of the form e(Xi, Ỹj)d′

i,j,�,kmk where d′
i,j,�,k �= 0:

· If Xi = G, replace the pairing with e(Mk, Ỹj)d′
i,j,�,k .

· If Xi �= G but Yj = H̃, replace the pairing with e(Xi, M̃k)d′
i,j,�,k .

· If Xi �= G and Ỹj �= H̃, append (if it does not already exist)
S|S |+1 = Mxi

k to S, replace the pairing with e(S|S |+1, Ỹj)d′
i,j,�,k

and append the tuple (S|S |+1,Xi, M̃k) to E1.
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∗ For each pairing of the form e(Si, T̃j)c′
i,j,�,kmk where c′

i,j,�,k �= 0: Note
that by definition mk cannot appear in the denominator of Si or T̃j .
Also, we must have that at least one of the signature components is
independent of mk.

· If Si is independent of mk, append (if it does not already exist)
S′

i = Msi

k to S, replace the pairing with e(S′
i, T̃j)c′

i,j,�,k and append
(if it does not already exist) the tuple (S′

i, Si, M̃k) to E1.
· Otherwise, append (if it does not already exist) T̃ ′

j = M̃
tj

k to T ,
replace the pairing with e(Si, T̃

′
j)

c′
i,j,�,k and append (if it does not

already exist) the tuple (T̃ ′
j , T̃j ,Mk) to E2.

• Verify
SPS

(
vk

SPS
,
(
(M1, M̃1), . . . , (Mn, M̃n)

)
, σ

SPS

)
: Return 1 if all the following

holds and 0 otherwise:
◦ All modified PPEs of DLmSPSPS verify correctly.
◦ For each tuple i in E1, it holds that: e(E1[i][0], H̃) = e(E1[i][1],E1[i][2]).
◦ For each tuple i in E2, it holds that: e(G,E2[i][0]) = e(E2[i][2],E2[i][1]).
◦ All signature group membership required by DLmSPSPS verify correctly.
◦

(
(M1, M̃1), . . . , (Mn, M̃n)

)
∈ DHn.3

Efficiency. What determines the added cost in σSPS compared to σ is dis-
tinct pairings of the form e(Si, Ỹj)a′

i,j,�,kmk where a′
i,j,�,k �= 0 and Yj �= H̃,

e(Xi, T̃j)b′
i,j,�,kmk where b′

i,j,�,k �= 0 and Xi �= G, and e(Si, T̃j)c′
i,j,�,kmk where

c′
i,j,�,k �= 0 in the verification equations of the DLmSPSPS scheme. Each distinct

pairing of those 3 types adds an extra signature component in H, G, and G/H
depending on which component is independent of the message, respectively, to
σSPS compared to σ. Also, each distinct pairing of any of those 3 types would
add an additional PPE equation involving 2 pairings to the verification over-
head of SPS compared to that of DLmSPSPS. Each distinct pairing of the form
e(Xi, Ỹj)d′

i,j,�,kmk where Xi �= G, Ỹj �= H̃ and d′
i,j,�,k �= 0 incurs an additional

signature component in G and an additional PPE involving 2 pairings. Note that
the latter cost is constant for multiple signatures on the same message.

One maintains the same signature size and verification overhead of
DLmSPSPS (modulo the cost for verifying the well-formedness of the messages
in SPS) when the verification of DLmSPSPS does not involve any pairings of the
above forms. Also, it is easy to see that if the original scheme yields randomizable
signatures, the same applies to the resultant SPS scheme.

6.1 Example Instantiations

We give some example instantiations of our transformation for the sake of illus-
tration. The first example shown in Fig. 1 shows how to transform our new
LmSPSPS scheme into an SPS scheme for a vector of messages which also cap-
tures the single-message SPS scheme from [31] as a special case. The second
3 Batch verification techniques, e.g. [9], can speed up this step.
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example shown in Fig. 2 shows how to transform the PS scheme [42] into a SPS
scheme for a vector of messages which also captures the single-message SPS
scheme from [29] as a special case.

Fig. 1. Transforming our new scheme into a SPS scheme for a vector of messages

6.2 Security

Correctness follows from that of DLmSPSPS and the fact that any added PPE
to the verification of the SPS scheme will verify. We now prove the following
theorem regarding the unforgeability of the obtained SPS scheme.

Theorem 4. If DLmSPSPS is (s)EUF-CMA (resp. (s)EUF-RMA), SPS is
(s)EUF-CMA (resp. (s)EUF-RMA) in the generic group model.

Proof. Since DLmSPSPS is unforgeable, it holds that no generic adversary
against it can obtain a forgery using linear combinations of the (fraction of)
polynomials corresponding to the group elements she sees in the game. We prove
that a generic adversary ASPS against SPS does not see any additional group
elements other than what ADLmSPSPS can see in her game and hence it holds
that no linear combinations of the (fraction of) polynomials ASPS sees leads to
a forgery against SPS.

Before the 1st sign query, the group elements ASPS sees are the same as
those ADLmSPSPS can see at the start of her game which include the public key
(X, Ỹ ) ∈ G

μ × H
μ′

. By definition, such a key is disjoint. Now at the first sign
query on a valid message vector

(
(M1,1, M̃1,1), . . . , (M1,n, M̃1,n)

)
, it follows that
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Fig. 2. Transforming the PS scheme [42] into a SPS scheme for a vector of messages

the discrete logarithm m1,i of the message component (M1,i, M̃1,i) for all i ∈ [n]
corresponds to a constant polynomial. The 1st sign query will return a signature
of the form σ1 = (S1, T̃1). By definition such a returned signature still conforms
to the disjointness requirement and thus such a sign query would not generate
any new identical (fractions of polynomials) in groups G and H which ASPS can
feed back as a message into a subsequent sign query, i.e. all subsequent sign
queries are on message vectors corresponding to constant polynomials.

We now argue that the additional elements ASPS sees could be obtained by
ADLmSPSPS in her game and hence the former does not have any more advantage
over the latter.

• Additional elements of the form S′
i = Msi

k can be obtained by ADLmSPSPS by
calling her exponentiation oracle for G to get Smk

i .
• Additional elements of the form T̃ ′

i = M̃ ti

k can be obtained by ADLmSPSPS by
calling her exponentiation oracle for H to get T̃mk

i .
• Additional elements of the form S′

j = Mxi

k can be obtained by ADLmSPSPS by
calling her exponentiation oracle for G to get Xmk

i .

Since the SPS forgery must be on a message in DHn, i.e. the message correspond
to a constant polynomials, and DLmSPSPS is unforgeable, it follows that no
linear combinations of the group elements ASPS sees in her game leads to a
forgery against SPS. 
�

7 Impossibility Results

In this section we provide some feasibility results for LmSPSPS schemes.
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7.1 A Bound on the Number of Signatures for LmSPSPS Schemes

Here we prove, similarly to the case of structure-preserving signatures proven by
Abe et al. [7], that a EUF-RMA LmSPSPS scheme must have for each message
superpolynomially many potential signatures.

Theorem 5. An EUF-RMA LmSPSPS scheme (against q > 1 sign queries)
must have for each message superpolynomially many potential signatures.

Proof. We can write the j-th signature component of the �-th signing query as:

Sj = G

∑

i
x
c
i , j y

c ′
i , j r

c ′′
i , j

�
(a

i,j
+

n∑

k=1
d

i,j,k
mk)

∑

i
b
i,j

x
e
i , j y

e ′
i , j r

e ′′
i , j

� or T̃j = H̃

∑

i
x
c
i , j y

c ′
i , j r

c ′′
i , j

�
(a

i,j
+

n∑

k=1
d

i,j,k
mk)

∑

i
b
i,j

x
e
i , j y

e ′
i , j r

e ′′
i , j

�

for some (fixed) a
i,j

, b
i,j

, di,j,k ∈ Zp, ci,j ,ei,j ∈ Z
μ
p , c′

i,j ,e
′
i,j ∈ Z

μ′
p , c′′

i,j ,e
′′
i,j ∈

Z
n′
p which are independent of m.

If there are only polynomially many potential signatures for a message vector,
there is a polynomial set {ri}poly(κ)i=1 from which the randomness vector r is cho-
sen. Thus, with probability 1

poly(κ)2 we have that the 2 signatures σ1 = (S1, T̃1)

and σ2 = (S2, T̃2) on 2 random messages vectors m1 and m2 where m1 �= m2,
respectively, were produced using the same randomness vector r� ∈ Z

n′
p . Thus,

we have that σ∗ := σ1−γ
1 σγ

2 is a valid forgery on the new message vector
m∗ = (1 − γ)m1 + γm2 for any γ ∈ Z

×
p \{1} and therefore such a scheme is

not EUF-RMA secure. 
�

7.2 Impossibility of LmSPSPS Schemes with One-Element
Signatures

Here we prove that an EUF-RMA (aganist q > 1 sign queries) LmSPSPS scheme
cannot have one-element signatures. However, as we show in Sect. 5, one-time
sEUF-CMA LmSPSPS schemes with one-element signatures are possible.

Theorem 6. An EUF-RMA LmSPSPS scheme (against q > 1 sign queries)
must have at least 2 elements in the signature.

Proof. WLOG, let’s assume σ = S ∈ G. The proof for the case where σ = T̃ ∈ H

is similar. Since there is only one unknown in the verification equation, i.e. the
signature S, it follows that 1 PPE verification equation is sufficient for such a
scheme. Thus, the scheme would have a verification equation of the following
form:

e(S,

μ′
∏

j=1

Ỹj)
aj+

n∑

k=1
a′

j,kmk
μ∏

i=1

μ′
∏

j=1

e(Xi, Ỹj)
di,j+

n∑

k=1
d′

i,j,kmk

= Z, (4)

where a
j
, a′

j,k
, d

i,j
, d′

i,j,k
∈ Zp and Z ∈ T are public constants. By definition, we

must have that for all k ∈ [n] that a′
j,k = 0.



302 E. Ghadafi

Given signatures σ∗
1 = S1 and σ∗

2 = S2 on random messages m1 and m2

where m1 �= m2, respectively, we have that σ∗ := σ1−γ
1 σγ

2 is a valid forgery
on the message m∗ = (1 − γ)m1 + γm2 for any γ ∈ Z

×
p \{1}. Therefore such a

scheme is not EUF-RMA secure against an adversary which makes 2 (random-
message) sign queries. 
�

7.3 Lower Bounds for sEUF-CMA LmSPSPS Schemes

The following theorem proves that the signatures of a sEUF-CMA LmSP-
SPS scheme secure against q > 1 sign queries must have bilateral signatures.

Theorem 7. There is no sEUF-CMA (against q > 1 sign queries) LmSP-
SPS scheme with unilateral signatures.

Proof. WLOG let’s assume that the signature is of the form σ = S ∈ G
ν . The

proof for the case where σ = T̃ ∈ H
ν′

is similar. Such a scheme would have a
number of PPE verification equations of the following form:

ν∏

i=1

e(Si,

μ′
∏

j=1

Ỹj)
ρ1,i,j,�

(m )
μ∏

i=1

μ′
∏

j=1

e(Xi, Ỹj)
ρ2,i,j,�

(m )

= Z�, (5)

where ρ1,i,j,�
, ρ2,i,j,�

∈ Fp[M1, . . . ,Mn] are multivariate polynomials and Z� ∈ T

are some fixed constants.
By definition, the denominator polynomials used in computing the signature

components are independent of the message to be signed. Also, since the sig-
nature is unilateral, i.e. the signature components only appear on the LHS of
the pairings, the numerator polynomials are linear in the randomness vector r
whereas the denominator polynomials are independent of the randomness vec-
tor. By Theorem 5 such a scheme must have superpolynomially many potential
signatures. By querying the sign oracle twice on any message vector m from
the message space, with overwhelming probability we obtain 2 distinct signa-
tures σ1 = S1 and σ2 = S2. We have that σ∗ = σ1−γ

1 σγ
2 is with overwhelming

probability a new signature on m for any γ ∈ Z
×
p \{1}. 
�

The following theorem proves that sEUF-CMA LmSPSPS schemes with 2-
element bilateral signatures do not exist. This result holds even without the
restriction that the message is linear. This sets a lower bound of 3 bilateral
elements for such schemes.

Theorem 8. There is no sEUF-CMA (against q > 1 sign queries) LmSP-
SPS scheme with 2-element bilateral signatures.

Proof. The signature is of the form σ = (S, T̃ ) ∈ G×H whereas the verification
key is of the form (X, Ỹ ) ∈ G

μ × H
μ′

. As we prove in Lemma 1 in Theorem 9,
1 PPE verification equation is sufficient for a LmSPSPS scheme with 2-element
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signatures. Therefore, such a scheme would have a PPE verification equation of
the following form:

e(S,

μ′
∏

j=1

Ỹj)
aj

e(
μ∏

j=1

Xj , T̃ )
ρ2,j

(m )

e(S, T̃ )
c

μ∏

i=1

μ′
∏

j=1

e(Xi, Ỹj)
ρ4,i,j

(m )

= Z,

where ρ2,j
, ρ4,i,j

∈ Fp[M1, . . . ,Mn] are multivariate polynomials, and aj , c ∈ Zp,
and Z ∈ T are some public constants.

If for all j ∈ [μ′], aj = 0 and c = 0, the verification equation is independent
of S and hence by Theorem 6 such a scheme is not secure. Thus, we must have
that either for some j ∈ [μ′] that aj �= 0 or c �= 0, which we consider below:

• Case aj �= 0 for some j ∈ [μ′]: Given a signature σ = (S, T̃ ) on a ran-
dom message m, we compute a new signature on m as σ∗ = (S∗, T̃ ∗) :=(

S
aj

aj+γc

μ∏

i=1

X
−γρ2,i(m )

ai+γc

i , T̃
aj+γc

aj

μ′
∏

i=1

Y
γai
aj

i

)

. We have σ∗ �= σ for any γ ∈ Z
×
p .

• Case aj = 0 for all j ∈ [μ′] and c �= 0: Given a signature σ = (S, T̃ ) on a
random message m, we compute a new signature on m as σ∗ = (S∗, T̃ ∗) :=(

S
1
γ

μ∏

i=1

X
(1−γ)ρ2,i(m )

γc

i , T̃ γ

)

. We have that σ∗ �= σ for any γ ∈ Z
×
p \{1}.

This concludes the proof. 
�

7.4 Lower Bounds for the Verification Key of Optimal Schemes

We have seen that an optimal (w.r.t. signature size) EUF-RMA LmSP-
SPS scheme must have at least 2 elements in the signature. Here we prove that
a scheme with ≤ 2 elements in the signature cannot have a verification key con-
sisting of 1 element even for the case when signing single messages, i.e. when
n = 1. This sets a lower bound of 2 elements in the verification key for even
optimal one-time EUF-RMA schemes. Note some of our proofs below assume
that the RHS of the PPE equations in Eq. (4) is Z� = 1T.4

Theorem 9. There is no EUF-RMA LmSPSPS scheme (against q ≥ 1 sign
queries) with signatures consisting of ≤ 2 elements and one-element verification
key.

Proof. We start by proving the following lemma regarding the number of PPE
verification equations required for schemes with 2-element signatures.

Lemma 1. One PPE verification equation is sufficient for a LmSPSPS scheme
with 2-element signatures.

4 Those proofs also hold if the discrete logarithm of Z� in the case Z� �= 1T is known.
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Proof. If the scheme has 2 PPE equations, both equations must impose non-
trivial constraint on the signature components as otherwise they can be reduced
to a single equation. Since each PPE equation must involve at least 1 signature
component, we have 3 cases:

• Both equations involve both signature components: This means we have 2
quadratic/linear equations in the discrete logarithm of the signature compo-
nents. Such an equation system have at most 4 distinct solutions implying
that there are at most 4 potential signatures for the message vector which
contradicts the proof of Theorem 5.

• One equation involves both components whereas the other equation involves
one component: In this case, one equation is quadratic/linear involving both
signature components, whereas the remaining equation is linear in one of
the components. By substituting the value of the signature component in
the linear equation into the other equation we end up with one verification
equation that is sufficient for verifying the signature.

• Each verification equation involves a single signature component: Since the
other constants (the verification key, the public parameters (if any) and the
messages) are fixed, we have that each verification equation is a linear equa-
tion in one of the signature components, i.e. each equation is a linear equation
in one unknown. Thus, there is exactly 1 potential signature for the message
vector which contradicts the proof of Theorem 5. 
�
The following 4 lemmata complete the proof of the theorem.

Lemma 2. There is no EUF-RMA SPSPS scheme (against q ≥ 1 sign queries)
with one verification equation and unilateral signatures and a unilateral verifi-
cation key containing elements from the same source group.

Proof. Let’s consider the case where the signature and the verification key both
belong to group G. The proof for the opposite case is similar. The scheme yields a
signature σ = (S1, . . . , Sν) ∈ G

ν , has a verification key vk = (X1, . . . , Xμ) ∈ G
μ

where WLOG X1 = G, and has a verification equation of the form

ν∏

i=1

e(Si, H̃)
ρ1,i

(m)
μ∏

i=1

e(Xi, H̃)
ρ2,i

(m)

= Z·

for some polynomials ρ1,i
and ρ2,i

.
Given a signature σ = (S1, . . . , Sν) on a random message m ∈ Zp, we can

construct a new forgery σ∗ = (S∗
1 , . . . , S∗

ν) on a different message m∗ �= m
by fixing some i ∈ [ν] and computing let S∗

j := Sj for all j ∈ [ν]\{i} and

S∗
i :=

(
S

ρ1,i(m)
i

∏

j �=i

S
ρ1,j(m)−ρ1,j(m

∗)
j

μ∏

j=1

X
ρ2,i(m)−ρ2,i(m

∗)
j

) 1
ρ1,i(m∗)

. It is easy to

see that such a forgery is a valid signature on the message m∗. 
�
Lemma 3. There is no one-time EUF-RMA LmSPSPS scheme with one veri-
fication equation, one-element signatures and one-element verification key.
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Proof. Note here that we assume that Z = 1T. The case where both the signature
and verification key lie in the same group follows from Lemma 2. Assume a
scheme has a signature σ = S, a verification key vk = Ỹ and a verification
equation of the following form:

e(S, H̃a1+a′
1mỸ a2+a′

2 m) = e(G, H̃b1+b′
1mỸ b2+b′

2m)·
By definition, we must have that a′

1 = a′
2 = 0. Note that we cannot have that

a1 = a2 = 0 as the equation would be independent of the signature, or b′
1 = b′

2 =
0 as the equation would be independent of the message.

Given a signature σ = S on a random message m, we construct a forgery
on m∗ = γm + (γ−1)(b1a2−a1b2)

a2b′
1−a1b′

2
for any γ ∈ Zp\{1} as σ∗ = S∗ :=

G
(γ−1)(b1b′

2−b′
1b2)

a2b′
1−a1b′

2 Sγ . This is a valid forgery unless a2b
′
1 = a1b

′
2 which we deal

with below:

• Case a2b
′
1 = a1b

′
2 �= 0 or b′

1 = a1 = 0: Given a signature σ = S on a random
message m, we construct a forgery σ∗ = S∗ := GγS1 on m∗ = m + γa2

b′
2

for
any γ ∈ Z

×
p .

• Case b′
2 = a2 = 0: Given a signature σ = S on a random message m, we can

construct a forgery σ∗ = S∗ := GγS1 on m∗ = m + γa1
b′
1

for any γ ∈ Z
×
p . 
�

Lemma 4. There is no SPSPS scheme with two-element bilateral signatures
and one-element verification key that is secure against a key-only attack.

Proof. Note here that we assume that Z = 1T. The signature is of the form
σ = (S, T̃ ) ∈ G × H whereas the verification key is either of the form Ỹ ∈ H or
X ∈ G. We prove the first case but the proof for the second case is similar. The
scheme has a verification equation of the following form:

e(S, H̃ρ1(m)Ỹ ρ2(m))e(G, T̃ )ρ3(m)e(S, T̃ )ρ4(m) = e(G, H̃ρ5(m)Ỹ ρ6(m))·
for some polynomials ρi for i ∈ [6]. Given the verification key, we can construct
a forgery on any message m∗ ∈ Zp by choosing γ ← Z

×
p and computing:

σ∗ = (S∗, T̃ ∗) := (Gγ , H̃
ρ5(m∗)−γρ1(m∗)
ρ3(m∗)+γρ4(m∗) Ỹ

ρ6(m∗)−γρ2(m∗)
ρ3(m∗)+γρ4(m∗) )·


�
Lemma 5. There is no one-time EUF-RMA LmSPSPS scheme with two-
element unilateral signatures and a verification key consisting of one-element
from the opposite source group.

Proof. Note here that we assume that Z = 1T. Let’s consider the case where the
signature is of the form σ = (S1, S2) ∈ G

2 whereas the verification key is of the
form Ỹ ∈ H. The proof for the opposite case is similar. Such a scheme would
have a verification equation of the form

2∏

i=1

e(Si, H̃
ai,1+a′

i,1mỸ ai,2+a′
i,2m) = e(G, H̃d1+d′

1mỸ d2+d′
2m)·
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By definition, we must have that either a′
1,1

= a′
1,2

= 0 or a′
2,1

= a′
2,2

= 0.
Let’s assume the former case. Note that if a1,1 = a1,2 = 0, the equation is
independent of S1 and hence by Lemma 3 the scheme is not secure against q ≥ 1
sign queries. Similarly, if a2,1 = a′

2,1 = a2,2 = a′
2,2 = 0, the verification equation

is independent of S2 and hence by Lemma 3 it is not secure against q ≥ 1 sign
queries.

Given a signature σ = (S1, S2) on a random message m, we can con-
struct a new forgery σ = (S∗

1 , S∗
2 ) on a new message m∗ �= m by setting

S∗
1 := G

α
S1 S

β
S1

2 S1 and S∗
2 := G

α
S2 S

β
S2

2 where

αS1
:=

(
d′
2(a2,1 + a′

2,1m
∗) − d′

1(a2,2 + a′
2,2m

∗)
)
(m∗ − m)

a1,2(a2,1 + a′
2,1m

∗) − a1,1(a2,2 + a′
2,2m

∗)

βS1
:=

(a′
2,1a2,2 − a2,1a

′
2,2)(m

∗ − m)

a1,2(a2,1 + a′
2,1m

∗) − a1,1(a2,2 + a′
2,2m

∗)

αS2
:=

(a1,2d
′
1 − a1,1d

′
2)(m

∗ − m)

a1,2(a2,1 + a′
2,1m

∗) − a1,1(a2,2 + a′
2,2m

∗)

βS2
:=

a1,2(a2,1 + a′
2,1m) − a1,1(a2,2 + a′

2,2m)

a1,2(a2,1 + a′
2,1m

∗) − a1,1(a2,2 + a′
2,2m

∗)

Thus, we can find a forgery unless a1,2(a2,1 + a′
2,1m

∗) − a1,1(a2,2 + a′
2,2m

∗) = 0
for all m∗ ∈ Zp. We have 2 cases to deal with the above as follows:

• Case a1,1 = a2,1 = a′
2,1 = 0: Note that as stated earlier, if a1,2 = 0 or

a2,2 = a′
2,2 = 0, the verification equation is independent of one of the signature

components and hence is not secure. We have 2 cases as follows:
◦ Case d1 �= 0: Give a signature σ = (S1, S2) on a random message m ∈ Zp

satisfying d1 + d′
1m �= 0, we have that σ∗ = (S∗

1 , S∗
2 ) where

S∗
1 := G

−γa2,2(d1+d′
1m∗)

a1,2d1 S

d1+d′
1m∗

d1+d′
1m

1 S∗
2 := GγS2

is a valid forgery on any m∗ �= m satisfying d1+d′
1m

∗ �= 0 for any γ ∈ Z
×
p .

◦ Case d1 = 0: Given a signature σ = (S1, S2) on a random message m ∈
Z

×
p , we have that σ∗ = (S∗

1 , S∗
2 ) where

S∗
1 := G

d2(m−m∗)−γm(a2,2+a′
2,2m∗)

a1,2m S

a2,2(m∗−m)
a1,2m

2 S
m∗
m

1 S∗
2 := GγS2

is a valid forgery on the message m∗ �= m for any γ ∈ Z
×
p .

• Case a2,2a1,1 = a1,2a2,1, a′
2,2a1,1 = a1,2a

′
2,1 and a1,1 �= 0: If a1,2 = 0, we have

a2,2 = a′
2,2 = 0 and hence we cannot have any of the following cases:

◦ d2 = d′
2 = 0: Since verification would be independent of the key Ỹ .

◦ a2,1 = a′
2,1 = 0: Since verification would be independent of S2.

◦ a′
2,1 = d′

1 = d′
2 = 0: Since verification would be independent of m.

We have that σ∗ = (S∗
1 , S∗

2 ) where

S∗
1 := G

a1,2γ(a2,1d′
1−a′

2,1d1)+a1,1

(
d2(a′

2,1γ−d′
1)+d′

2(d1−a2,1γ)

)

a1,1(a1,1d′
2−a1,2d′

1) S∗
2 := Gγ
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is a valid forgery on m∗ := a1,1d2−a1,2d1
a1,2d′

1−a1,1d′
2
. The forgery is valid unless a1,2d

′
1 −

a1,1d
′
2 = 0. We have 2 cases to deal with this as follows:

◦ Case a1,2d
′
1 = a1,1d

′
2 = 0: Given a signature σ = (S1, S2) on a random

message m ∈ Zp, we have that σ∗ = (S∗
1 , S∗

2 ) where

S∗
1 := G

−γ(a2,1+a′
2,1m∗)+d′

1(m∗−m)

a1,1 S
a2,1+a′

2,1m

a1,1
2 S1 S∗

2 := Gγ

is a valid forgery on any m∗ �= m for any γ ∈ Z
×
p .

◦ Case a1,2d
′
1 = a1,1d

′
2 �= 0: Given a signature σ = (S1, S2) on a random

message m ∈ Zp, we have that σ∗ = (S∗
1 , S∗

2 ) where

S∗
1 := G

−γa1,2(a2,1+a′
2,1m∗)+d′

2a1,1(m∗−m)

a1,1a1,2 S

a2,1+a′
2,1m

a1,1
2 S1 S∗

2 := Gγ

is a valid forgery on any m∗ �= m for any γ ∈ Z
×
p .

If it is required that S∗
i ∈ G

×, we have to additionally handle the case
that d1a

′
2,1 = a2,1d

′
1 and d2a

′
2,1 = a2,1d

′
2. Note that we cannot have that

a′
2,1 = 0 as otherwise the signature will either be independent of S2 or m.

We have that given a signature σ = (S1, S2) on a random message m ∈ Z
×
p ,

we have that σ∗ = (S∗
1 , S∗

2 ) := (Sγ
1 , S2) is a valid forgery on any message

m∗ = a2,1(γ−1)+a′
2,1γm

a′
2,1

for any γ ∈ Z
×
p \{1}. 
�

This concludes the proof. 
�
We have proved that an (optimal) scheme with two-element unilateral sig-

natures must have at least 2 elements in the verification key besides the default
source group generators. An intriguing question is whether, similarly to the
one-time EUF-CMA scheme we give in Sect. 5, an EUF-RMA scheme with two-
element unilateral signatures and a two-element bilateral verification key exists.
We answer this question negatively by proving the following theorem. In essence,
this means the PS scheme and our new LmSPSPS scheme are optimal w.r.t. the
size of the verification key.

Theorem 10. There is no EUF-RMA (against q > 1 sign queries) LmSP-
SPS scheme with two-element unilateral signatures and a two-element bilateral
verification key.

Proof. Let’s consider a scheme with signatures of the form σ = (S1, S2) ∈ G
2

whereas the verification key is of the form (X, Ỹ ) ∈ G × H. The proof for the
opposite case is similar.

Such a scheme has a PPE verification equation of the form

2∏

i=1

e(Si,H̃
ai,1+a′

i,1mỸ ai,2+a′
i,2m)

= e(Gd1,1+d′
1,1mXd2,1+d′

2,1m, H̃)e(Gd1,2+d′
1,2mXd2,2+d′

2,2m, Ỹ )·
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By definition, we must have that either a′
1,1 = a′

1,2 = 0 or a′
2,1 = a′

2,2 = 0
as otherwise the message features in the denominator polynomial of a signature
component. Let’s assume WLOG that a′

1,1 = a′
1,2 = 0 as the other case is similar.

Such a scheme is not secure against an adversary that receives two signatures
σ1 = (S1,1, S1,2) and σ2 = (S2,1, S2,2) on two random distinct messages m1 and
m2, respectively. We can construct a forgery on a new message m∗ /∈ {m1,m2}
as follows:

Define A1 =
[

a2,1 a1,1

a2,2 a1,2

]

, A2 =
[

a′
2,1 a1,1

a′
2,2 a1,2

]

and A3 =
[

a2,1 a′
2,1

a2,2 a′
2,2

]

Let α := (|A1|+|A2|m1)(m
∗−m2)

(|A1|+|A2|m∗)(m1−m2)
and

βs1,1 :=
m2 − m∗

m2 − m1
βs1,2 :=

m1 − m∗

m1 − m2

γs1,1 :=
|A3|(m∗ − m2 + (m2 − m1)α)

|A2|(m2 − m1)
γs1,2 := −γs1,1

γs2,1 := α γs2,2 := − (|A1| + |A2|m2)(m
∗ − m1)

(|A1| + |A2|m∗)(m1 − m2)

We have that σ∗ = (S∗
1 := S

βs1,1
1,1 S

βs1,2
2,1 S

γs1,1
1,2 S

γs1,2
2,2 , S∗

2 := S
γs2,1
1,2 S

γs2,2
2,2 ) is a valid

forgery on any message m∗ ∈ Zp\{m1,m2,
−|A1|
|A2| } satisfying |A1| + |A2|m∗ �= 0.

Thus, we obtain a forgery on a new message unless |A2| = 0 which is dealt with
by the following 3 cases:

• Case a1,1 = 0: We have 2 cases:

◦ Case a1,2 = 0: The verification equation is independent of the signature
component S1 and hence is not secure.

◦ Case a′
2,1 = 0: Given signatures σ1 = (S1,1, S1,2) and σ2 = (S2,1, S2,2) on

random messages m1 and m2, respectively, we have that σ∗ = (S∗
1 , S∗

2 )
where

S∗
1 := Sγ

1,1S
1−γ
2,1 S

− a′
2,2(γ2−γ)(m1−m2)

a1,2
1,2 S

a′
2,2(γ2−γ)(m1−m2)

a1,2
2,2 S∗

2 := Sγ
1,2S

1−γ
2,2

is a valid forgery on m∗ = γm1 + (1 − γ)m2 for any γ ∈ Z
×
p \{1}.

• Case a′
2,2 = 0 and a1,1 �= 0: Given signatures σ1 = (S1,1, S1,2) and σ2 =

(S2,1, S2,2) on two random messages m1 and m2, respectively, we compute

S∗
1 := Sγ

1,1S
1−γ
2,1 S

− a′
2,1(γ2−γ)(m1−m2)

a1,1
1,2 S

a′
2,1(γ2−γ)(m1−m2)

a1,1
2,2 S∗

2 := Sγ
1,2S

1−γ
2,2

We have that σ∗ = (S∗
1 , S∗

2 ) is a valid forgery on m∗ = γm1 + (1 − γ)m2 for
any γ ∈ Z

×
p \{1}.
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• Case a′
2,2a1,1 = a1,2a

′
2,1 �= 0: Given signatures σ1 = (S1,1, S1,2) and σ2 =

(S2,1, S2,2) on two distinct random messages m1 and m2, respectively, we
compute

S∗
1 := S

m2−m∗
m2−m1
1,1 S

m1−m∗
m1−m2
2,1 S

− a′
2,1(m∗−m1)(m∗−m2)

a1,1(m1−m2)

1,2 S

a′
2,1(m∗−m1)(m∗−m2)

a1,1(m1−m2)

2,2

S∗
2 := S

m2−m∗
m2−m1
1,2 S

m1−m∗
m1−m2
2,2

We have that σ∗ = (S∗
1 , S∗

2 ) is a valid forgery on any new message m∗ ∈
Zp\{m1,m2}.

This concludes the proof. 
�
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