
Kazue Sako
Nils Ole Tippenhauer (Eds.)

LN
CS

 1
27

26

19th International Conference, ACNS 2021
Kamakura, Japan, June 21–24, 2021
Proceedings, Part I

Applied Cryptography 
and Network Security



Lecture Notes in Computer Science 12726

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693


More information about this subseries at http://www.springer.com/series/7410

http://www.springer.com/series/7410


Kazue Sako • Nils Ole Tippenhauer (Eds.)

Applied Cryptography
and Network Security
19th International Conference, ACNS 2021
Kamakura, Japan, June 21–24, 2021
Proceedings, Part I

123



Editors
Kazue Sako
Waseda University
Tokyo, Japan

Nils Ole Tippenhauer
CISPA Helmholtz Center
for Information Security
Saarbrücken, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-78371-6 ISBN 978-3-030-78372-3 (eBook)
https://doi.org/10.1007/978-3-030-78372-3

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-8424-2602
https://doi.org/10.1007/978-3-030-78372-3


Preface

We are pleased to present the proceedings of the 19th International Conference on
Applied Cryptography and Network Security (ACNS 2021).

ACNS 2021 was planned to be held in Kamakura, Japan. Due to the ongoing
COVID-19 crisis, we decided to have a virtual conference again to ensure the safety of
all participants. The organization was in the capable hands of Chunhua Su (University
of Aizu, Japan) and Kazumasa Omote (University of Tsukuba, Japan) as general
co-chairs, and Ryoma Ito (NICT, Japan) as local organizing chair. We are deeply
indebted to them for their tireless work to ensure the success of the conference even in
such complex conditions.

For the second time, ACNS had two rounds of submission cycles, with deadlines in
September 2020 and January 2021, respectively. We received a total of 186 submis-
sions from authors in 43 countries. This year’s Program Committee (PC) consisted of
69 members with diverse backgrounds (among them, 27% female experts) and broad
research interests. The review process was double-blind and rigorous, and papers were
evaluated on the basis of research significance, novelty, and technical quality. 539 re-
views were submitted in total, with at least 3 reviews for most papers.

Some papers submitted in the first round received a decision of major revision. The
revised version of those papers were further evaluated in the second round and most
of them were accepted. After the review process concluded, a total of 37 papers were
accepted to be presented at the conference and included in the proceedings, repre-
senting an acceptance rate of around 20%.

Among those papers, 27 were co-authored and presented by full-time students. From
this subset, we awarded the Best Student Paper Award to Angèle Bossuat (IRISA,
France) for the paper “Unlinkable and Invisible c-Sanitizable Signatures” (co-authored
with Xavier Bultel). The reviewers particularly appreciated its clear and convincing
motivation and explanation of the intuition behind the approach, and the strong
properties achieved by the proposed sanitizable signature scheme. The monetary prize
of 1,000 euro was generously sponsored by Springer.

We had a rich program including eight satellite workshops in parallel with the main
event, providing a forum to address specific topics at the forefront of cybersecurity
research. The papers presented at those workshops were published in separate
proceedings.

This year we had three outstanding keynote talks: “Privacy-Preserving Authenti-
cation: Concepts, Applications, and New Advances” by Prof. Anja Lehmann (Hasso
Plattner Institute, Germany), “Digital Being” presented by Nat Sakimura (OpenID
Foundation, Japan), and “Cryptography and the Changing Landscape of Payment
Fraud” by Prof. Ross Anderson (University of Cambridge and University of
Edinburgh, UK). To them, our heartfelt gratitude for their outstanding presentations.

In this very unusual year, the conference was made possible by the untiring efforts
of many individuals and organizations. We are grateful to all the authors for their



submissions. We sincerely appreciate the outstanding work of all the PC members and
the external reviewers, who selected the papers after reading, commenting, and
debating them. Finally, we thank all the people who volunteered their time and energy
to put together the conference, speakers and session chairs, and everyone who con-
tributed to the success of the conference.

Last, but certainly not least, we are very grateful to Mitsubishi Electric for spon-
soring the conference, and Springer for their help in assembling these proceedings.

June 2021 Kazue Sako
Nils Ole Tippenhauer
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Adaptive-ID Secure Hierarchical
ID-Based Authenticated Key Exchange
Under Standard Assumptions Without

Random Oracles

Ren Ishibashi(B) and Kazuki Yoneyama

Ibaraki University, 4-12-1 Nakanarusawacho, Hitachi-shi, Ibaraki 316-8511, Japan
21NM706R@vc.ibaraki.ac.jp

Abstract. Hierarchical ID-based authenticated key exchange (HID-
AKE) is a cryptographic protocol to establish a common session key
between parties with authentication based on their IDs with the hierar-
chical delegation of key generation functionality. All existing HID-AKE
schemes are selective ID secure, and the only known standard model
scheme relies on a non-standard assumption such as the q-type assump-
tion. In this paper, we propose a generic construction of HID-AKE that
is adaptive ID secure in the HID-eCK model (maximal-exposure-resilient
security model) without random oracles. One of the concrete instantia-
tions of our generic construction achieves the first adaptive ID secure
HID-AKE scheme under the (standard) k-lin assumption in the stan-
dard model. Furthermore, it has the advantage that the computational
complexity of pairing and exponentiation operations and the communi-
cation complexity do not depend on the depth of the hierarchy. Also, the
other concrete instantiation achieves the first HID-AKE scheme based
on lattices (i.e., post-quantum).

Keywords: Authenticated key exchange · Hierarchical ID-based
authenticated key exchange · HID-eCK model · Adaptive ID security

1 Introduction

Authenticated Key Exchange (AKE) is a cryptographic protocol to share a com-
mon session key among multiple parties through unauthenticated networks such
as the Internet. In the ordinary PKI-based setting, each party locally keeps its
static secret key (SSK) and publishes a static public key (SPK) corresponding
to the SSK. Validity of SPKs is guaranteed by a certificate authority. In a key
exchange session, each party generates an ephemeral secret key (ESK) and sends
an ephemeral public key (EPK) corresponding to the ESK to the other party. A
session key is derived from these keys with a key derivation function.

ID-based AKE (ID-AKE) is an ID-based extension of AKE, and the pur-
pose is to remove the management of certificates. Similar to the basic scenario

c© Springer Nature Switzerland AG 2021
K. Sako and N. O. Tippenhauer (Eds.): ACNS 2021, LNCS 12726, pp. 3–27, 2021.
https://doi.org/10.1007/978-3-030-78372-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78372-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-78372-3_1


4 R. Ishibashi and K. Yoneyama

of ID-based encryption (IBE) such as [12–14], a trusted key generation center
(KGC) generates a master secret key (MSK), and SSKs of all parties with the
MSK according to their IDs. ID-AKE enjoys the same merit as IBE: no need
of PKI, and using IDs instead of SPKs. However, at the same time, a problem
of scalability is inherited: the workload for a KGC becomes burdensome when
running on a large system.

To solve the scalability problem the hierarchical ID-based AKE (HID-AKE)
is studied, in which each node can generate SSKs for its children in the hierarchy
and delegate the key generation functionality of the KGC to each party. For
example, the ID of a party U at level t is represented as (ID1, ID2, . . . , IDt), and
the party can generate the SSK of the party whose the ID (ID1, ID2, . . . , IDt,
IDt+1). Thus, it is enough that the KGC just generates MSK and the SSK of
the first level party. It is similar to the advantage of hierarchical IBE (HIBE)
such as [13] and [15]. Such a hierarchical structure includes hierarchical IDs such
as e-mail addresses.

In HID-AKE schemes, we need to take into account forward secrecy and col-
lusion resistance. Forward secrecy means that any adversary cannot obtain infor-
mation of the session key even if the SSKs are compromised after the completion
of the session. Collusion resistance means that disclosure of a party’s SSK does
not compromise SSKs of higher-level parties. The HID-eCK Security Model [1]
guarantees these properties. The HID-eCK model captures maximal-exposure-
resilience which means that an adversary is allowed to obtain any non-trivial1

combination of MSK, SSKs, and ESKs individually. Thus, maximal-exposure-
resilience implies forward secrecy and collusion resistance. Exposure of such
secret keys may be usually caused in real-world applications. For example, a
MSK is exposed when the KGC is corrupted. A SSK is revealed if SSKs are gen-
erated in an insecure host machine while it must be generated in a tamper-proof
module such as a smart card. Such a failure may be caused to reduce costs for
randomness generations in a tamper-proof module. Also, an ESK will be known
to the adversary if a weak pseudo-random number generator is implemented.
Therefore, it is important to consider such a fail-safe security to apply a cryp-
tographic scheme to practical systems. Fail-safe means that if a cryptographic
protocol is implemented in a system in the wrong way by some failure, minimum
security properties are still guaranteed. For that reason, it is desirable to satisfy
the HID-eCK security.

Currently, there are two HID-AKE schemes that satisfy HID-eCK security, [1]
and [2]. However, one [1] is the selective HID-eCK secure scheme in the random
oracle (RO) model, and the other [2] is proved in the standard model but it
is selective HID-eCK secure under the non-standard assumption (i.e., q-type
assumption). The selective ID security means that the adversary must specify
target IDs at the beginning of the security experiment. On the other hand,

1 If both SSK and ESK of a party are compromised in the target session, the adversary
can obtain the session key trivially. Similarly, if both MSK and ESK are compromised
in the target session, the adversary can also compute the session key trivially. We
define freshness to consider combinations except this condition.
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the adaptive ID security means that the adversary can specify target IDs when
the target session is decided in the security experiment. Currently, no adaptive
HID-eCK secure scheme under standard assumptions in the standard model is
known.

1.1 Contribution

In this paper, we achieve the first adaptive HID-eCK secure HID-AKE scheme
without ROs under standard assumptions. Specifically, we introduce a generic
construction from an adaptive HID-CCA secure HIB-KEM and an IND-CPA
secure KEM. An instantiation of our generic construction with a practical
pairing-based HIB-KEM has the following advantages compared with existing
schemes.

– Adaptive ID secure under standard assumptions.
– The communication cost and the computational cost of pairing and exponen-

tiation operations are independent of the depth of hierarchy.

The existing scheme in [2] is HID-eCK secure under the non-standard q-type
assumption in the standard model. The q-type assumption will change the size
of instances depending on the parameter size of the scheme and the security
proof. This causes the guaranteed security to be inconsistent even for schemes
with the same assumption. On the other hand, standard assumptions, such as
the k-lin and the DDH assumptions, are more reliable because the complexity
of the assumption does not change according to the scheme and the proof. Our
proposed scheme is HID-eCK secure under these standard assumptions in the
standard model. In addition, existing schemes [1,2] are selective ID secure HID-
AKE schemes, while our proposed scheme is an adaptive ID secure HID-AKE
scheme.

Moreover, the computational cost of pairing and exponentiation operations
and the communication complexity in the existing scheme in [1] and the compu-
tational cost of exponentiation operations in the existing scheme in [2] depend
on the depth of hierarchy. Our paring-based instantiation of the generic con-
struction is hierarchy-independent in terms of the computational cost of pairing
and exponentiation operations and the communication complexity.

Furthermore, by using HIBE and KEM based on lattices, the first post-
quantum HID-AKE scheme can be also constructed. Note that since no adaptive
ID secure HIBE from lattices is known, the current instantiation is limited to be
selective ID secure. If an adaptive ID secure HIBE from lattices is proposed, we
can construct the post-quantum adaptive ID secure HID-AKE scheme.

2 Hierarchical ID-Based eCK Security Model

In this section, we show the definition of the HID-eCK security model [1] for
HID-AKE. The HID-eCK model is an extension of the eCK security model of
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PKI-based AKE by LaMacchia, Lauter, and Mityagin [8] to HID-AKE. In this
paper, we suppose the 2-pass protocol, but it can be easily extended to any
n-pass protocol.

Throughout this paper, if X is a set, then by x ∈R X we denote that x is
sampled uniformly from X.

2.1 Algorithms

An HID-AKE scheme Π consists of the following algorithms. We denote a party
by Ui and its associated identity by IDi = (IDi.1, ..., IDi.t) where IDi.j ∈
{0, 1}∗. We say that IDi is a prefix of or equal to the identity ID

′
i and denote

IDi � ID
′
i for IDi = (IDi.1, ..., IDi.k1) and ID

′
i = (IDi.1, ..., IDi.k1 , ..., IDi.k2)

for 1 ≤ k1 ≤ k2. Let � be the maximum depth of the hierarchy in the system.
All parties are modeled as a PPT Turing machine.

[Parameters]
A system parameter params is generated for a security parameter κ. All follow-
ing algorithms implicitly take params as input.

[Key Generation]
The key generation algorithm KeyGen takes a security parameter 1κ as input,
and outputs a master secret key MSK and a master public key MPK, i.e.,

KeyGen(1κ) → (MSK,MPK).

[Key Extraction]
The key extraction algorithm KeyExt takes the master public key MPK, iden-
tities IDi = (IDi.1, ..., IDi.t−1) and ID

′
i = (IDi.1, ..., IDi.t−1, IDi.t), where the

identity IDi is the parent of the identity ID
′
i, and a static secret key SSKIDi

corresponding to the identity IDi, and outputs a static secret key SSKID
′
i

cor-

responding to the identity ID
′
i, i.e.,

KeyExt(MPK, IDi, ID
′
i, SSKIDi

) → SSKID
′
i
.

In the case of t = 1, the key extraction algorithm uses the master secret key
MSK instead of a static secret key SSKIDi

, i.e.,

KeyExt(MPK, IDi, ID
′
i,MSK) → SSKID

′
i
.

[Key Exchange]
Party UA and party UB share a session key by performing the following
2-pass protocol. UA has static secret key SSKIDA

corresponding to IDA =
(IDA.1, . . . , IDA.α) and UB has static secret key SSKIDB

corresponding to
IDB = (IDB.1, . . . , IDB.β).

UA computes ephemeral keys by algorithm EphemeralKey, that takes the mas-
ter public key MPK, the identity IDA, the static secret key SSKIDA

, and the
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identity IDB , and outputs the ephemeral secret key ESKIDA
and the ephemeral

public key EPKIDA
, i.e.,

EphemeralKey(MPK, IDA, SSKIDA
, IDB) → (ESKIDA

, EPKIDA
).

UA sends EPKIDA
to UB .

On the other hand, UB computes ephemeral keys by algorithm EphemeralKey,
that takes the master public key MPK, the identity IDB , the static secret key
SSKIDB

, and the identity IDA, and outputs the ephemeral secret key ESKIDB

and the ephemeral public key EPKIDB
, i.e.,

EphemeralKey(MPK, IDB , SSKIDB
, IDA) → (ESKIDB

, EPKIDB
).

UB sends EPKIDB
to UA.

Upon receiving EPKIDB
, UA computes a session key by algorithm

SessionKey, that takes the master public key MPK, the identity IDA, the static
secret key SSKIDA

, the identity IDB , the ephemeral secret key ESKIDA
and

the ephemeral public key EPKIDA
, and the ephemeral public key EPKIDB

,
and outputs the session key SK, i.e.,

SessionKey(MPK, IDA, SSKIDA
, IDB , ESKIDA

, EPKIDA
, EPKIDB

) → SK.

Similarly, Upon receiving EPKIDA
, UB computes a session key by algorithm

SessionKey, that takes the master public key MPK, the identity IDB , the static
secret key SSKIDB

, the identity IDA, the ephemeral secret key ESKIDB
and

the ephemeral public key EPKIDB
, and the ephemeral public key EPKIDA

,
and outputs the session key SK, i.e.,

SessionKey(MPK, IDB , SSKIDB
, IDA, ESKIDB

, EPKIDB
, EPKIDA

) → SK.

2.2 Session

Let IDi be an identifier of Ui, and EPKID be an ephemeral public key of
Ui. An invocation of a protocol is called a session. A session is activated by an
incoming message of the form (Π, I, IDA, IDB) or (Π,R, IDB , IDA, EPKIDA

),
where Π is a protocol identifier, I and R are role identifiers. If UA is activated
with (Π, I, IDA, IDB), then UA is called the session initiator. If UB is activated
with (Π,R, IDB , IDA, EPKIDA

), then UB is called the session responder. The
initiator UA sends EPKIDA

, then on receiving an incoming message of the forms
(Π, I, IDA, IDB , EPKIDA

, EPKIDB
) from the responder UB, UA outputs the

session key SK. The responder UB sends EPKIDB
, and computes the session

key SK.
If UA is the initiator of a session, the session is identified by sid =

(Π, I, IDA, IDB , EPKIDA
) or sid = (Π, I, IDA, IDB , EPKIDA

, EPKIDB
).

If UA is the responder of a session, the session is identified by sid = (Π,R,
IDA, IDB , EPKIDB

, EPKIDA
). We say that UA is the owner of sid if the third

coordinate of sid is IDA. We say that UA is the peer of sid if the fourth coor-
dinate of session sid is IDA. We say that a session is completed if a session key
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is computed in the session. The matching session of (Π, I, IDA, IDB , EPKIDA
,

EPKIDB
) is the session with identifier (Π,R, IDB , IDA, EPKIDA

, EPKIDB
)

and vice versa.

2.3 Adversary

The adversary A, that is modeled as a PPT Turing machine, controls all com-
munications among parties including session activations, by performing the fol-
lowing adversary query.

– Send(message): The message has one of the following forms: (Π, I,
IDA, IDB), (Π,R, IDB , IDA, EPKIDA

), or (Π, I, IDA, IDB , EPKIDA
,

EPKIDB
). Each party performs an internal computation according to the

given message and returns the response to A.

A party’s secret information is not accessible to the adversary, however, leak-
age of secret information is captured via the following adversarial queries.

– SessionKeyReveal(sid): The adversary obtains the session key for the session
sid if the session is completed.

– EphemeralKeyReveal(sid): The adversary obtains the ephemeral secret key of
the owner of the session sid.

– StaticKeyReveal(IDi): The adversary learns the static secret key correspond-
ing to the identity IDi.

– MasterKeyReveal(): The adversary learns the master secret key of the system.
– EstablishParty(Ui,IDi): This query allows the adversary to register identity

IDi on behalf of the party Ui and the adversary totally controls that party. If
party Ui is established by EstablishParty(Ui,IDi) query issued by the adver-
sary, then we call Ui dishonest. If not, we call Ui honest.

2.4 Freshness

For the security definition, we need the notion of freshness.

Definition 1 (Freshness). Let sid∗ = (Π, I, IDA, IDB , EPKIDA
, EPKIDB

)
or (Π,R, IDB , IDA, EPKIDA

, EPKIDB
) be a completed session between honest

party UA with identity IDA and UB with identity IDB. If the matching session
exists, then let sid∗ be the matching session of sid∗. We say that session sid∗ is
fresh if none of the following conditions hold:

1. The adversary issues a SessionKeyReveal(sid∗), or SessionKeyReveal(sid∗)
query if sid∗ exists,

2. sid∗ exists and the adversary makes either of the following queries
– both StaticKeyReveal(ID) (s.t. ID � IDA) and EphemeralKeyReveal

(sid∗), or
– both StaticKeyReveal(ID) (s.t. ID � IDB) and EphemeralKeyReveal

(sid∗),
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3. sid∗ does not exist and the adversary makes either of the following queries
– both StaticKeyReveal(ID) (s.t. ID � IDA) and EphemeralKeyReveal

(sid∗), or
– StaticKeyReveal(ID) (s.t. ID � IDB),

where

– if the adversary issues MasterKeyReveal() query, we regard that the adversary
issues StaticKeyReveal(IDA) and StaticKeyReveal(IDB) queries.

2.5 Security Experiment

For the security definition, we consider the following security experiment. Ini-
tially, the adversary A is given a set of honest parties, and makes any sequence
of the queries described above. During the experiment, A makes the following
query.

– Test(sid∗): Here, sid∗ must be a fresh session. Choose a random bit b ∈R

{0, 1}, and return the session key held by sid∗ if b = 0, and return a random
key if b = 1.

The experiment continues until A makes a guess b
′
. The adversary wins the

game if the test session sid∗ is still fresh and if the guess of A is correct, i.e.,
b

′
= b. The advantage of the adversary A in the experiment with the HID-AKE

scheme Π is defined as

AdvHIDAKE
Π (A) = |Pr[A win] − 1/2|

We define the security as follows.

Definition 2 (Security). We say that an HID-AKE scheme Π is secure in the
HID-eCK model, if the following conditions hold:

1. If two honest parties complete matching sessions, then, except with a negli-
gible probability, they both compute the same session key.

2. For any PPT bounded adversary A, AdvHIDAKE
Π (A) is negligible in security

parameter κ.

Moreover, we say that an HID-AKE scheme Π is adaptive ID secure in the
HID-eCK model, if adversary A can specify a challenge ID when Test(sid∗)
query is issued in the security game. Also, we say that an HID-AKE scheme
Π is selective ID secure in the HID-eCK model if adversary A must specify a
challenge ID in the beginning of the security game.
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3 Building Blocks

3.1 KEM

This section shows the definition of KEM.

Definition 3 (Model for KEM Schemes). A KEM scheme consists of the
following 3-tuple (wKeyGen,wEnCap,wDeCap):

– (ek, dk) ← wKeyGen(1κ; rg): a key generation algorithm which on inputs 1κ

and rg ∈ RSG, where κ is the security parameter and RSG is a randomness
space, outputs a pair of keys (ek, dk).

– (K,CT ) ← wEnCap(ek; re): an encapsulation algorithm which takes as inputs
encapsulation key ek and re ∈ RSE , outputs session key K ∈ KS and CT ∈
CS where RSE is a randomness space, KS is a session key space, and CS is
a ciphertext space.

– K ← wDeCap(dk,CT ): a decapsulation algorithm which takes as inputs
decapsulation key dk and ciphertext CT ∈ CS, and outputs session key
K ∈ KS.

Definition 4 (IND-CPA Security for KEM). A KEM scheme is IND-CPA
secure for KEM if the following property holds for security parameter κ; For
any PPT adversary A = (A1,A2), Advind−cpa = |Pr[rg ← RSG; (ek, dk) ←
KeyGen(1κ; rg); (state) ← A1(ek); b ← {0, 1}; re ← RSE ; (K∗

0 , C∗
0 ) ← EnCap

(ek; re);K∗
1 ← K; b

′ ← A2(ek, (K∗
b , C∗

0 ), state); b
′
= b] − 1/2| ≤ negl, where K is

the space of session key and state is state information that A wants to preserve
from A1 to A2.

3.2 Hierarchical ID-Based KEM

This section shows the definition of HIBKEM.

Definition 5 (HIBKEM). An HIBKEM scheme consists of the following 5-
tuple (MKeyGen,KeyExt,KeyDer,EnCap,DeCap):

– (MPK,MSK) ← MKeyGen(1κ; rg): a master key generation algorithm which
on inputs 1κ and rg ∈ RSG, where κ is the security parameter and RSG is
a randomness space, outputs a master public key MPK and a master secret
key MSK.

– dki ← KeyExt(MPK,MSK, IDi): a key extraction algorithm which on inputs
master public key MPK, master secret key MSK, and IDi, outputs a decap-
sulation key dki corresponding to the identity IDi.

– dki ← KeyDer(MPK, dki−1, IDi, IDi−1): a key delegation algorithm which on
inputs master public key MPK, decapsulation key dki−1, IDi−1, and IDi,
where IDi−1 is the parent of IDi outputs a decapsulation key dki correspond-
ing to the identity IDi.
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– (K,C) ← EnCap(MPK, ID; re): an encapsulation algorithm which on inputs
master public key MPK, ID and re ∈ RSE , outputs session key K ∈ KS and
ciphertext C ∈ CS, where KS is a session key space, RSE is a randomness
space and CS is a ciphertext space.

– K ← DeCap(dk,C): an decapsulation algorithm which on inputs decapsulation
key dk and ciphertext C ∈ CS, outputs session key K ∈ KS or ⊥.

Here, we show the definition of adaptive HID-CCA security for HIBKEM
by the following HID-CCA game. The game is played between adversary A =
(A1,A2) and a challenger.

1. The challenger generates the master public key and the master secret key by
(MPK,MSK) ← MKeyGen(1κ; rg) and gives MPK to the adversary A1.

2. The adversary A1 issues the following queries adaptively.
(a) Extraction(IDi): The challenger runs dki = KeyExt(MPK,MSK, IDi)

and returns the decapsulation key dki corresponding to IDi.
(b) Decryption(IDi, Ci): The challenger runs Ki ← DeCap(KeyExt(MPK,

MSK, IDi), Ci) and returns the session key Ki that is decrypted from
the ciphertext Ci.

3. The adversary A1 outputs the challenge ID ID∗ = (ID∗
1 , ..., ID∗

�∗) and state
information s, and passes the state information s to the adversary A2, where
the challenge ID is not queried to Extraction for the prefix ID of it in the
above phase, i.e., ID = (ID∗

1 , ..., ID∗
� ) (where � ≤ �∗) has not been queried.

4. The challenger computes (C∗,K∗
0 ) ← EnCap(MPK, ID∗; r∗

e) and randomly
chooses K∗

1 ∈ KS. The challenger randomly chooses b ∈ {0, 1} and gives
(C∗,K∗

b ) to the adversary A2 as a challenge.
5. The adversary A2 issues the following queries adaptively.

(a) Extraction(IDi): The challenger runs dki = KeyExt(MPK,MSK, IDi)
and returns the decapsulation key dki corresponding to IDi, where the
prefix ID of the challenge ID ID∗ must not be queried.

(b) Decryption(IDi, Ci): The challenger runs Ki ← DeCap(KeyExt(MPK,
MSK, IDi), Ci) and returns the session key Ki that is decrypted from
the ciphertext Ci, where the pair (ID∗, C∗) must not be queried.

6. adversary A2 outputs a guess b
′ ∈ {0, 1}.

If b = b
′
, then we say that the adversary wins the game. We also define the

adversary’s advantage in this game as AdvHID−CCA
A = |Pr[b

′
= b]| − 1/2|.

Definition 6 (Adaptive HID-CCA Security). If the advantage of the adver-
sary A over the challenger in the above HID-CCA game is negligible, then
HIBKEM is adaptive HID-CCA secure.

We define the notion of δ-min-entropy for KEM keys as follows.

Definition 7 (Min-Entropy of KEM Keys [3]). An HIBKEM scheme is
δ-min-entropy HIBKEM if for any ID, MPK, distribution DKS of variable K
defined by (C,K) ← EnCap(MPK, ID; re), distribution Dpub of public infor-
mation and random re ∈ RSE , H∞(DKS |Dpub) ≥ δ holds, where H∞ denotes
min-entropy.

The δ-min-entropy of PKI-based KEM can be defined in the same way.
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3.3 Key-Derivation Function

Let KDF : Salt × Dom → Rng be a function with finite domain Dom, finite
range Rng, and a space of non-secret random salt Salt.

Definition 8 (Key-Derivation Function). We say that function KDF is a
KDF if the following condition holds for a security parameter κ. For any PPT
adversary A and any distribution DDom over Dom with H∞(DDom) ≥ κ,
|Pr[y ∈R Rng, s ∈R Salt; ; 1 ← A(s, y)] − Pr[x ∈R Dom; s ∈R Salt; y ←
KDF(s, x); 1 ← A(s, y)]| ≤ negl.

3.4 Pseudo-Random Function

We show the definition of Pseudo-Random Function (PRF). Let κ be a security
parameter and F = {Fκ : Domκ × FSκ → Rngκ}κ be a function family with
a family of domains {Domκ}κ, a family of key spaces {FSκ}κ and a family of
ranges {Rngκ}κ.

Definition 9 (Pseudo-Random Function). We say that function family F =
{Fκ}κ is a PRF family if for any PPT distinguisher D, AdvPRF = |Pr[1 ←
DFκ(k)]−Pr[1 ← DRFκ(·)]| ≤ negl, where RFκ : Domκ → Rngκ is a truly random
function.

4 Generic Construction of Hierarchical ID-Based AKE

In this section, we propose a generic construction of HID-AKE (named HID-
GC) based on an adaptive HID-CCA secure HIBKEM and an IND-CPA secure
KEM. HID-GC satisfies the adaptive HID-eCK security. The protocol of HID-
GC is shown in Fig. 1.

4.1 Design Principle

We extend the known generic construction of ID-AKE (ID-GC) by Fujioka et al.
[3] to the HID-AKE setting, and use adaptive HID-CCA-secure HIBKEM instead
of selective ID-CCA IBKEM in order to achieve adaptive ID security. In the ini-
tialization, static secret keys are generated by using the key delegation function
(KeyDer of HIBKEM), and each party receives the static secret key correspond-
ing to its ID. In a key exchange session, each party uses the other party’s ID
to encapsulate the KEM session key by the encapsulation function (EnCap of
HIBKEM). In addition, the IND-CPA secure KEM allows us to exchange ekT

and CT using only the respective ephemeral secret keys, without using the static
secret keys of parties. Such a mechanism provides forward secrecy and security
against leakage of both static secret keys of the initiator and the responder.

For HID-eCK security, the twisted PRF trick [3] is used as well as ID-GC
[3]. The twisted PRF trick computes F(esk, ssk)⊕F

′
(ssk

′
, esk

′
) using two PRFs

F and F
′
, and uses it instead of directly using ephemeral secret keys, where
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(ssk, ssk
′
) are static secret keys and (esk, esk

′
) are ephemeral secret keys. It

is especially effective for leakage of ephemeral secret keys. Even if (esk, esk
′
)

is exposed, it is impossible to compute F(esk, ssk) without knowing ssk. Sim-
ilarly, even if (ssk, ssk

′
) is exposed, it is impossible to compute F

′
(ssk

′
, esk

′
)

without knowing esk
′
. In our generic construction of HID-AKE, the output of

the twisted PRF trick is used as the randomness of the encapsulation algorithm
in HIBKEM. Therefore, the definition of freshness prevents an adversary from
obtaining information about the randomness, since both ephemeral secret key
and static secret key of the party must not be exposed.

In our security proof of the proposed HID-GC, we use the adaptive HID-CCA
secure HIBKEM to prove the security in the adaptive HID-eCK model. Unlike
security proofs in the selective ID security model, since the ID space may be
a super-polynomial size, parties of the test session cannot be fixed in advance
and, thus, we cannot do as in the proof of ID-GC [3]. Moreover, though in the
adaptive ID security model of HIBKEM the challenge ciphertext is generated
after receiving the target ID from the adversary, in the adaptive ID security
model of HID-AKE the adversary can first activate a session with the target IDs
to generate ephemeral public keys corresponding to the challenge ciphertext, and
then later specifies the test session with the target ID. Due to this difference in
the timing, at one glance it is difficult to construct a reduction to the adaptive
security of HIBKEM from the adaptive security of HID-AKE. However, since the
number of sessions that an adversary can observe in queries is a polynomial size,
we can simulate ephemeral public keys of the test session by guessing the order of
the test session among activated sessions and generating ephemeral public keys
using the target IDs because IDs are specified in the timing of the activation by
the adversary. Hence, we can prove the adaptive security.

Note that though HID-GC is not 1-round protocol (i.e., the initiator and the
responder can send messages simultaneously) due to the exchange of ekT and
CT of IND-CPA KEM, if we use KEM with public-key-independent-ciphertext
(PKIC-KEM), which is used in the generic construction of 1-round AKE pro-
posed in [16], instead of IND-CPA KEM, HID-GC can be a 1-round protocol
without using the twisted PRF trick. An example of PKIC-KEM is the ElGamal
KEM.

4.2 Protocol

The protocol of HID-GC consists of HIBKEM (MKeyGen,KeyExt,KeyDer,
EnCap, DeCap) and KEM (wKeyGen,wEnCap, wDeCap), as follows.

[Public Parameters]
Let κ be a security parameter, and let F,F

′
: {0, 1}∗×FS → RSE , PRF : {0, 1}∗×

FS → {0, 1}κ be PRFs, where FS is a key space of PRFs (|FS| = κ), RSE is a
randomness space of the encapsulation algorithm, and let KDF : Salt×KS → FS
be a KDF with a non-secret random salt s ∈ Salt, where Salt is the salt space
and KS is the session key space of KEM session keys. These are provided as
public parameters.
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Fig. 1. Generic Construction HID-GC

[Master Secret and Public Keys]
The KGC randomly chooses r ∈ RSG and runs (MPK,MSK) ← MKeyGen
(1κ, r), where RSG is a randomness space of the key generation algorithm.
[Secret Key]
Party UP randomly chooses rP ∈R FS and r

′
P ∈R {0, 1}κ. For

party UP , the KGC or the parent of UP runs the key extraction algo-
rithm dkP ← KeyExt(MPK, MSK, IDP ) or the key delegation algorithm
dkP ← KeyDer(MPK, dkIDP −1 , IDP , IDP−1). Party UP ’s static secret key is
(dkP , rP , r

′
P ).

[Key Exchange]
Let party UA with SSK = (dkA, rA, r

′
A) be the initiator, and party UB with

SSK = (dkB , rB , r
′
B) be the responder.

1. UA randomly chooses ephemeral secret keys eskA ∈R {0, 1}κ, esk
′
A ∈R FS,

and eskTA ∈R RSG . UA computes (ekT , dkT ) ← wKeyGen(1κ; eskTA),



Adaptive-ID Secure HID-AKE Under Standard Assumptions Without ROs 15

sA = F(eskA, rA) ⊕ F
′
(r

′
A, esk

′
A), (CB ,KB) ← EnCap(IDB ; sA) and sends

(UA, UB , CB , ekT ) to UB .
2. Upon receiving (UA, UB , CB , ekT ), UB randomly chooses ephemeral secret

key eskB ∈R {0, 1}κ, esk
′
B ∈R FS, and eskTB ∈R RSE . UB computes

sB = F(eskB , rB) ⊕ F
′
(r

′
B , esk

′
B), (CA,KA) ← EnCap(IDA; sB), (CT ,KT ) ←

wEnCap(ekT ; ekTB) and sends (UA, UB , CA, CT ) to UA. UB computes KB ←
DeCap(dkB , CB) and shared values as follows.

– σ1 = KDF(s,KA)
– σ2 = KDF(s,KB)
– σ3 = KDF(s,KT )

UB sets sid = (UA, UB , CB , ekT , CA, CT ) and computes the session key SK =
PRF(sid, σ1) ⊕ PRF(sid, σ2) ⊕ PRF(sid, σ3).

3. Upon receiving (UA, UB , CA, CT ), UA computes KA ← DeCap(dkA, CA),
KT ← wDeCap(dkT , CT ) and shared value as follows.

– σ1 = KDF(s,KA)
– σ2 = KDF(s,KB)
– σ3 = KDF(s,KT )

UA sets sid = (UA, UB , CB , ekT , CA, CT ) and computes the session key SK =
PRF(sid, σ1) ⊕ PRF(sid, σ2) ⊕ PRF(sid, σ3).

4.3 Security

In this section, we show the security of the proposed HID-GC. The sketch of the
proof is given in Sect. 4.1.

Theorem 1. Assuming that (MKeyGen,KeyDer,EnCap,DeCap) is an adap-
tive HID-CCA secure and δ-min-entropy HIBKEM, and (wKeyGen,wEnCap,
wDeCap) is an IND-CPA secure and δ-min-entropy KEM, F,F′,PRF are PRFs,
and KDF is a KDF, then HID-GC is adaptive HID-eCK secure.

Proof. In the experiment of HID-eCK security, we suppose that sid∗ is the ses-
sion identity for the test session, and that at most n sessions are activated. Let
κ be the security parameter, and let A be a PPT (in κ) bounded adversary. We
construct a solver S and a distinguisher D from A runs the HID-eCK game.

If Test(sid∗) query is issued for a session by (IDA, IDB), then sid∗ = (Π, I,
UA, UB , (CB , ekT ), (CA, CT )) or (Π,R, UB , UA, (CB , ekT ), (CA, CT )) is the ses-
sion identity of the test session.

Suc denotes the event that A wins. We consider the following events that
cover all cases of the behavior A.

-E1: test session sid∗ has no matching session sid∗, the owner of sid∗ is the
initiator and A queries StaticKeyReveal(ID) s.t. ID � IDA.

-E2: test session sid∗ has no matching session sid∗, the owner of sid∗ is the
initiator and A queries EphemeralKeyReveal(sid∗).

-E3: test session sid∗ has no matching session sid∗, the owner of sid∗ is the
responder and A queries StaticKeyReveal(ID) s.t. ID � IDB .
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-E4: test session sid∗ has no matching session sid∗, the owner of sid∗ is the
responder and A queries EphemeralKeyReveal(sid∗).

-E5: test session sid∗ has matching session sid∗, and A queries
MasterKeyReveal() or StaticKeyReveal(ID) s.t. ID � IDA and
StaticKeyReveal(ID) s.t. ID � IDB .

-E6: test session sid∗ has matching session sid∗, and A queries
EphemeralKeyReveal(sid∗) and EphemeralKeyReveal(sid∗).

-E7: test session sid∗ has matching session sid∗, and A queries
EphemeralKeyReveal(sid∗) and StaticKeyReveal(ID) s.t. ID � IDA.

-E8: test session sid∗ has matching session sid∗, and A queries
EphemeralKeyReveal(sid∗) and StaticKeyReveal(ID) s.t. ID � IDB .

To finish the proof, we investigate events Ei ∧ Suc(i = 1, . . . , 8) that cover
all cases of event Suc. Due to the page limitation, we give the proof of event
E1 ∧ Suc, and proofs of other events are given in Appendix A.

Event E1 ∧ Suc. We change the interface of oracle queries and the computa-
tion of the session key. These instances are gradually changed over seven hybrid
experiments, depending on specific subcases. In the last hybrid experiment, the
session key in the test session does not contain information of the bit b. Thus, the
adversary clearly only outputs a random guess. We denote these hybrid experi-
ments by H0, . . . , H6 and the advantage of the adversary A when participating
in experiment Hi by Adv(A,Hi).

Hybrid Experiment H0: This experiment denotes the real experiment for
HID-eCK security and in this experiment the environment for A is as defined
in the protocol. Thus, Adv(A,H0) is the same as the advantage of the real
experiment.

Hybrid Experiment H1: This experiment aborts when sid is matched with
multiple sessions.

By the decryption correctness of KEM, the probability of outputting the
same ciphertext from different randomness in each session is negligible. Thus,
|Adv(A,H1) − Adv(A,H0)| ≤ negl.

Hybrid Experiment H2: This experiment chooses an integer i∗ ∈ [1, �] in
advance and fixes the session to be the target of the Test query as the i∗-th
session. If A queries a session other than the i∗-th in the Test query, abort the
experiment.

The probability that the guess of the test session is correct is 1/�, hence
Adv(A,H2) ≥ 1/� · Adv(A,H1).

Hybrid Experiment H3: This experiment changes the way of the computation
of initiator’s twisted PRF in the test session is changed. Instead of computing
s∗ = F(esk∗, r∗) ⊕ F

′
(r

′∗, esk
′∗), it is changed as s∗ = F(esk∗, r∗) ⊕ RF(r

′∗).
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We construct a distinguisher D that distinguishes if F∗ is either a pseudo-
random function F

′
or a random function RF from A in H2 or H3. D performs

the following steps.
[Setup]

D chooses PRF F,F
′
: {0, 1}∗ × FS → RSE , PRF : {0, 1}∗ × FS → {0, 1}κ,

and a KDF KDF : Salt × KS → FS with a non-secret random salt s ∈ Salt.
These are provided as the public parameters. Also, D embeds F∗ into F

′
of the

i∗-th session.
D sets MPK and MSK according to the protocol.

[Simulation]
D maintains the list LSK that contains queries and answers of

SessionKeyReveal. D simulates oracle queries by A as follows.

1. Send(Π, I, UP , UP̄ ) : If the SSK of UP is not set, D generates and sets
the SSK according to the protocol. If the session is the i∗-th session, D
chooses ESK∗ = (esk∗, esk

′∗, esk∗
T ) according to the protocol and poses r

′∗

of SSK∗ to his oracle F ∗ (F
′
or RF) and obtains x ∈ RSE . Also, D computes

s∗ = F(esk∗, r∗)⊕x, sets EPK∗ = (C∗, ek∗
T ), and returns EPK∗. Otherwise,

D computes EPK = (CP̄ , ekT ) according to the protocol, returns it, and
records (Π, UP , UP̄ , (CP̄ , ekT )) in LSK .

2. Send(Π,R, UP̄ , UP , (CP̄ , ekT )) : If the SSK of UP̄ is not set, D gener-
ates and sets the SSK according to the protocol. D computes EPK =
(CP̄ , ekT ) and SK according to the protocol, and returns EPK, and records
(Π,UP , UP̄ , (CP̄ , ekT ), (CP , CT )) as the completed session and SK in LSK .

3. Send(Π, I, UP , UP̄ , (CP̄ , ekT ), (CP , CT )): If (Π, UP , UP̄ , (CP̄ , ekT )) is not
recorded in LSK , then D records this sid as not completed. Also, if the
SSK of UP is not set, D generates and sets the SSK according to the pro-
tocol. Otherwise, D computes SK according to the protocol and records
(Π,UP , UP̄ , (CP̄ , ekT ), (CP , CT )) as the completed session and SK in LSK .

4. SessionKeyReveal(sid) :
(a) If sid is not completed, then D returns error.
(b) Otherwise, D returns SK as recorded in LSK .

5. EphemeralKeyReveal(sid) : D returns ESK for sid as defined.
6. StaticKeyReveal(IDi) : If the SSK for IDi is not set, D generates and sets

the SSK according to the protocol. D returns the SSK as defined.
7. MasterKeyReveal(): D returns MSK as defined. Indeed, it is not queried by

the freshness definition.
8. EstablishParty(Ui, IDi) : D generates and returns SSK for IDi according to

the protocol and marks Ui as dishonest.
9. Test(sid∗) : D responds to the query as defined, and gives the SSK∗ of the

owner of sid∗ to A.
10. A outputs a guess b

′ ∈ {0, 1}. If A outputs b
′

= 0, then D outputs that
F∗ = F

′
, otherwise D outputs that F∗ = RF.

[Analysis]
For A, the simulation by D is the same as the experiment H2 if F∗ = F

′
. Oth-

erwise, the simulation by D is the same as the experiment H3. Thus, since the
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advantage of D is negligible due to the security of the PRF, |Adv(A,H3) −
Adv(A,H2)| ≤ negl.

Hybrid Experiment H4: This experiment changes the way of the computation
of the initiator’s K∗ in the i∗-th session. Instead of computing (C∗,K∗) ←
EnCap(ID∗; s∗) where s∗ = F(esk∗, r∗)⊕RF(r

′∗), it is changed as choosing K∗ ←
KS randomly.

We construct an adaptive HID-CCA adversary S from A in H3 or H4. The
S performs the following steps.
[init]

S receives MPK and params as a public parameter.
[setup]

S chooses PRF F,F
′
: {0, 1}∗ × FS → RSE , PRF : {0, 1}∗ × FS → {0, 1}κ,

and a KDF KDF : Salt × KS → FS with a non-secret random salt s ∈ Salt.
These are provided as the public parameters.

S sets as (params,F,F
′
,PRF,KDF) and MPK.

[simulation]
S maintains the list LSK that contains queries and answers to

SessionKeyReveal. S simulates oracle queries by A as follows.

1. Send(Π, I, UP , UP̄ ) : If the SSK of UP is not set, then S sets the SSK by the
Extraction oracle of the HID-CCA game. If the session is the i∗-th session,
S sets the target ID as ID∗ = IDP̄ . S receives (C∗,K∗

b ) as a challenge from
the challenger, computes ekT according to the protocol, sets it as EPK∗ =
(C∗, ekT ) and returns EPK∗. Otherwise, S computes EPK = (CP̄ , ekT )
according to the protocol, returns it, and records (Π,UP , UP̄ , (CP̄ , ekT )) in
LSK .

2. Send(Π,R, UP̄ , UP , (CP̄ , ekT )) : If the SSK of UP̄ is not set, then S sets
the SSK by the Extraction oracle of the HID-CCA game. If P̄ = ID∗ and
CP̄ �= C∗, then S poses CP̄ to the Decryption oracle of the HID-CCA game,
and obtains KP̄ , and computes (CP , CT ) and SK and return EPK, and
records (Π,UP , UP̄ , (CP̄ , ekT ), (CP , CT )) as a completed session and SK in
LSK . Also, if P̄ = ID∗ and CP̄ = C∗, then S sets KP̄ = K∗

b , computes
(CP , CT ) and SK according to the protocol, and returns EPK. S records
(Π,UP , UP̄ , (CP̄ , ekT ), (CP , CT )) as a completed session and SK in LSK .
Otherwise, S computes EPK = (CP , CT ) and SK according to the protocol,
returns EPK, and records (Π,UP , UP̄ , (CP̄ , ekT ), (CP , CT )) as a completed
session and SK in LSK .

3. Send(Π, I, UP , UP̄ , (CP̄ , ekT ), (CP , CT )) : If the SSK of UP is not set, then
S sets it by the Extraction oracle. If (Π,UP , UP̄ , (CP̄ , ekT )) is not recorded
in LSK , then S records this sid as not completed. Also, if the session is the
i∗-th session, S computes SK according to the protocol except KP̄ = K∗

b ,
and records (Π, UP , UP̄ , (CP̄ , ekT ), (CP , CT )) as a completed session and SK
in LSK . Otherwise, S computes SK and record (Π, UP , UP̄ , (CP̄ , ekT ), (CP ,
CT )) as a completed session and SK in LSK .
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4. SessionKeyReveal(sid) :
(a) If sid is not completed, then S returns error.
(b) Otherwise, S returns SK as recorded in LSK .

5. EphemeralKeyReveal(sid) : S returns ESK for sid as defined.
6. StaticKeyReveal(IDi) : If the SSK for IDi is not set, then S sets the SSK

by the Extraction oracle. S returns the SSK of IDi as defined.
7. MasterKeyReveal(): S aborts. Indeed, it is not queried by the freshness defi-

nition.
8. EstablishParty(Ui, IDi): S returns SSK for IDi by the Extraction oracle and

marks Ui as dishonest.
9. Test(sid∗) : S responds to the query as defined and gives the SSK∗ of the

owner of sid∗ to A.
10. If A outputs b

′
, then S outputs b

′
.

[Analysis]
For A, the simulation by S is same the as the experiment H3 if the challenge
is (C∗,K∗

0 ). Otherwise, the simulation by S is same the as the experiment H4.
Thus, since the advantage of S is negligible due to the security of the adaptive
HID-CCA secure HIBKEM, |Adv(A,H4) − Adv(A,H3)| ≤ negl.

Hybrid Experiment H5: This experiment changes the way of the computation
of the σ∗

2 in the i∗-th session. Instead of computing σ∗
2 ← KDF(s,K∗), it is

changed as choosing σ∗
2 ∈ FS randomly.

Since K∗ is randomly chosen in H4, it has sufficient min-entropy because
HIBKEM is δ-min-entropy KEM. Thus, by the definition of the KDF,
|Adv(A,H5) − Adv(A,H4)| ≤ negl.

Hybrid Experiment H6: This experiment changes the way of the computa-
tion of SK in the i∗-th session. Instead of computing SK = PRF(sid, σ1) ⊕
PRF(sid, σ2) ⊕PRF(sid, σ3), it is changed as SK = PRF(sid, σ1) ⊕ x ⊕PRF(sid,
σ3) where x ∈R {0, 1}κ.

We construct a distinguisher D′
that distinguishes if F∗ is either a pseudo-

random function PRF or a random function RF from A in H5 or H6. The D′

performs the following steps.
[setup]

D′
chooses F,F

′
: {0, 1}∗ × FS → RSE , PRF : {0, 1}∗ × FS → {0, 1}κ, a

KDF KDF : Salt × KS → FS with a non-secret random salt s ∈ Salt. These
are provided as the public parameters. Also, D′

embeds F∗ into PRF of the i∗-th
session.

D′
sets MPK and MSK according to the protocol.

[Simulation]
D′

maintains the list LSK that contains queries and answers to
SessionKeyReveal. D′

simulates oracle queries by A as follows.

1. Send(Π, I, UP , UP̄ ) : If the SSK of UP is not set, D′
generates and sets the

SSK according to the protocol. D′
computes and returns EPK = (CP̄ , ekT )

according to the protocol and records (Π, UP , UP̄ , (CP̄ , ekT )) in LSK .
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2. Send(Π,R, UP̄ , UP , (CP̄ , ekT )) : If the SSK of UP̄ is not set, D′
gener-

ates and sets the SSK according to the protocol. D′
computes EPK =

(CP , CT ) and SK according to the protocol, returns EPK, and records
(Π,UP , UP̄ , (CP̄ , ekT ), (CP , CT )) as the completed session and SK in LSK .

3. Send(Π, I, UP , UP̄ , (CP̄ , ekT ), (CP , CT )) : If the SSK of UP is not set, D′

generates and sets the SSK according to the protocol. If (Π,UP , UP̄ , (CP̄ ,
ekT )) is not recorded in LSK , then D′

records this sid as not completed.
Also, if the session is the i∗-th session, D′

poses sid to oracle F∗ (PRF
or RF) and obtains x ∈ {0, 1}κ, and computes SK∗ = PRF(sid, σ1) ⊕
x ⊕ PRF(sid, σ3), and records (Π,UA, UB , (C∗

B , ek∗
T ), (CA, CT )) as the com-

pleted session and SK in LSK . Otherwise, D′
computes SK and records

(Π,UP , UP̄ , (CP̄ , ekT ), (CP , CT )) as the completed session and SK in LSK .
4. SessionKeyReveal(sid) :

(a) If sid is not completed, then D′
returns error.

(b) Otherwise, D′
returns SK as recorded in LSK .

5. EphemeralKeyReveal(sid) : D′
returns ESK for sid as defined.

6. StaticKeyReveal(IDi) : If the SSK for IDi is not set, D generates and sets
the SSK according to the protocol. D′

returns the SSK as defined.
7. MasterKeyReveal(): D′

returns MSK as defined. Indeed, it is not queried by
the freshness definition.

8. EstablishParty(Ui, IDi) : D′
generates and returns SSK for IDi according

to the protocol and marks Ui as dishonest.
9. Test(sid∗) : D′

responds to the query as defined and gives the SSK∗ of the
owner of sid∗ to A.

10. A outputs a guess b
′ ∈ {0, 1}. If A outputs b

′
= 0, then D′

outputs that
F∗ = PRF. Otherwise D′

outputs that F∗ = RF.

[Analysis]
For A, the simulation by D′

is the same as the experiment H5 if F∗ = PRF.
Otherwise, the simulation by D′

is the same as the experiment H6. Thus, since
the advantage of D′

is negligible due to the security of PRF, |Adv(A,H6) −
Adv(A,H5)| ≤ negl.

In H6, the session key in the test session is perfectly randomized. This gives A
no information from the Test query, therefore Adv(A,H6) = 0 and Pr[E1∧Sec] =
negl.

5 Instantiations

5.1 Pairing-Based Instantiation

Here, we show our pairing-based instantiation under standard assumptions. We
can obtain an HID-AKE scheme by instantiating HID-GC using the Langrehr
and Pan’s HIBKEM scheme HIBKEM1 := HIBKEM [MAC1[U3k,k],Dk] [4]
which is adaptive HID-CPA secure and the ElGamal KEM which is IND-CPA
secure. In order to make the HIBKEM scheme from CPA secure to CCA secure,
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the HID-CPA-secure (� + 1)-level HIBKEM is used by converting it to HID-
CCA secure �-level HIBKEM using the CHK conversion [6]. In the conversion,
we use Mohassel’s strongly unforgetable digital signature scheme [7] based on
hardness of the discrete logarithm problem, and we can omit the generation of
the user delegation key (udk) because it is not necessary for the proof of the
conversion. The underlying HIBKEM scheme is based on the k-lin assumption
derived from the Dk-matrix Diffie-Hellman assumption and the k-lin assumption
is the same as the symmetric external Diffie-Hellman assumption (SXDH) (i.e.,
DDH assumption in G1 and G2) in the k = 1 case. A comparison of the efficiency
with existing schemes is shown in Table 1.

Table 1. Comparison of existing pairing-based schemes and our instantiations

Model Resource Assumption Computation
[pairings,
regular-exp]

Communication
complexity

[1] Selective-ID ROM GBDH [3� − 1, � + 2] 2�κ 256�

[2] Selective-ID StdM (q+1)−DBDHE [4, � + 14] 13κ 1664

Ours1 Adaptive-ID StdM k-lin [5k + 1, 8k2 +
3k + 10]

(8k + 13)κ
1024k + 1664

Ours2 Adaptive-ID StdM SXDH [6, 21] 21κ 2688

GBDH means the gap Bilinear Diffie-Hellman assumption. DBDHE means the Decisional
Bilinear Diffie-Hellman Exponent assumption. For concreteness expected communication
complexity for a 128-bit implementation is also given. Note that computational costs are
estimated without any pre-computation technique and any multi-exponentiation technique.

In existing HID-AKE schemes, the communication and computational com-
plexity of the pairing operation and exponentiation of the scheme in [1] and the
computational complexity of exponentiation of the scheme in [2] depend on the
depth �, while in our schemes, the communication and computational complexity
of the pairing operation and exponentiation are constant and independent of �.2

Also, the scheme in [1] is in the random oracle model, and the scheme in [2] is in
the standard model but under the non-standard assumption, while, our scheme
can be proved under the standard assumptions in the standard model.

In our scheme, the size of the static public key and the static secret key are
dependent on �. However, both existing HID-AKE schemes [1,2] are selective
HID-AKE secure, and our scheme is adaptive HID-eCK.

5.2 Lattice-Based Instantiation

We also achieve the first post-quantum HID-AKE. We propose a concrete instan-
tiation using Agrawal et al.’s HIBE scheme [9], which is INDr-sID-CPA secure
under the LWE assumption, and KEM1 [11] which is IND-CPA secure KEM
scheme under the ring-LWE assumption. In order to make the HIBE scheme
2 However, the number of multiplications depends on �.
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from CPA secure to CCA secure, we use the CHK conversion [6]. In the con-
version, we use Lyubashevsky and Micciancio’s strongly unforgeable one-time
signature scheme [10] under the ring-SIS assumption. Also, the HIBE scheme
can be transformed into the HIBKEM scheme by using internally generated
randomness instead of the plaintext in the HIBE.

Thus, not only in pairing-based but also in lattice-based, we can construct
an HID-eCK secure HID-AKE scheme in the standard model. Since the HIBE
is selective ID secure, the resultant HID-AKE scheme is selective ID secure.

A Proof of Other Events

A.1 Event E2 ∧ Suc

The proof in this case is essentially the same as the event E1 ∧ Suc. There
is a difference in the experiment H3. For the computation of s∗ in the i∗-th
session, in the event E1 ∧ Suc, instead of s∗ = F(esk∗, r∗) ⊕ F

′
(r

′∗, esk
′∗), it is

changed as s∗ = F(esk∗, r∗) ⊕ RF(r
′∗). In the event E2 ∧ Suc, it is changed as

s∗ = RF(esk∗) ⊕ F
′
(r

′∗, esk
′∗). Since A cannot obtain r∗ of the initiator by the

freshness definition in this event, we can construct a distinguisher D from A in
the similar manner in the proof of the event E1 ∧ Suc.

A.2 Event E3 ∧ Suc

The proof in this case is essentially the same as the event E1 ∧ Suc. There is a
difference in the experiment H3 and H4. For the computation of the initiator’s
s∗ in the i∗-th session, in H3 of the event E1 ∧Suc, instead of s∗ = F(esk∗, r∗)⊕
F

′
(r

′∗, esk
′∗), it is changed as s∗ = F(esk∗, r∗) ⊕ RF(r

′∗). In H3 of the event
E3 ∧ Suc, it is changed as s∗ = F(esk∗, r∗) ⊕RF(r

′∗) for the computation of the
responder’s s∗ in the i∗-th session. For the computation of the initiator’s K∗

in the i∗-th session, in H4 of the event E1 ∧ Suc, (C∗,K∗) ← EnCap(ID∗; s∗),
where s∗ = F(esk∗, r∗)⊕RF(r

′∗), it is changed as choosing K∗ ← KS randomly.
In H4 of the event E3 ∧ Suc, it is changed as choosing K∗ ← KS randomly
for the computation of the responder’s K∗ in the i∗-th session. Since A cannot
obtain esk

′∗ of the responder by the freshness definition in this event, we can
construct a distinguisher D from A in the similar manner in the proof of the
event E1 ∧ Suc.

A.3 Event E4 ∧ Suc

The proof in this case is essentially the same as the event E2 ∧ Suc. There is a
difference in the experiment H3 and H4. For the computation of the initiator’s
s∗ in the i∗-th session, in H3 of the event E2 ∧Suc, instead of s∗ = F(esk∗, r∗)⊕
F

′
(r

′∗, esk
′∗), it is changed as s∗ = RF(esk∗) ⊕ F

′
(r

′∗, esk
′∗). In H3 of the event

E4∧Suc, it is changed as s∗ = RF(esk∗)⊕F
′
(r

′∗, esk
′∗) for the computation of the

responder’s s∗ in the i∗-th session. For the computation of the initiator’s K∗ in
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the i∗-th session, in H4 of the event E2∧Suc, (C∗,K∗) ← EnCap(ID∗; s∗), where
s∗ = RF(esk∗) ⊕F

′
(r

′∗, esk
′∗), it is changed as choosing K∗ ← KS randomly. In

H4 of the event E4 ∧ Suc, it is changed as choosing K∗ ← KS randomly for the
computation of the responder’s K∗ in the i∗-th session. Since A cannot obtain
r∗ of the responder by the freshness definition in this event, we can construct a
distinguisher D from A in the similar manner in the proof of the event E2 ∧Suc.

A.4 Event E5 ∧ Suc

We change the interface of oracle queries and the computation of the session key.
These instances are gradually changed over six hybrid experiments, depending
on specific subcases. In the last hybrid experiment, the session key in the test ses-
sion does not contain information of the bit b. Thus, the adversary clearly only
outputs a random guess. We denote these hybrid experiments by H0, . . . , H5

and the advantage of the adversary A when participating in experiment Hi by
Adv(A,Hi).

Hybrid Experiment H0: This experiment denotes the real experiment for
HID-eCK security and in this experiment the environment for A is as defined
in the protocol. Thus, Adv(A,H0) is the same as the advantage of the real
experiment.

Hybrid Experiment H1: This experiment aborts when sid is matched with
multiple sessions.

By the decryption correctness of KEM, the probability of outputting the
same ciphertext from different randomness in each session is negligible. Thus,
|Adv(A,H1) − Adv(A,H0)| ≤ negl.

Hybrid Experiment H2: This experiment chooses an integer i∗ ∈ [1, �] in
advance and fixes the session to be the target of the Test query as the i∗-th
session. If A queries a session other than the i∗-th in the Test query, abort the
experiment.

The probability that the guess of the test session is correct is 1/�, hence
Adv(A,H2) ≥ 1/� · Adv(A,H1).

Hybrid Experiment H3: This experiment changes the way of the computation
of the K∗

T in the i∗-th session. Instead of computing (C∗
T ,K∗

T ) ← wEnCap(ek∗
T ,

esk∗
T ), it is changed as K∗

T ← KS randomly.
We construct a IND-CPA adversary S in H2 or H3 from A. S is performs

the following steps.
[init]

S receives ek∗
T as a challenge.

[setup]
S chooses F,F

′
: {0, 1}∗ × FS → RSE , PRF : {0, 1}∗ × KS → {0, 1}κ, and a

KDF KDF : Salt×KS → FS with a non-secret random salt s ∈ Salt. These are
provided as the public parameters.
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S sets params as (params,F,F
′
,PRF,KDF), MPK and MSK.

[simulation]
S maintains the list LSK that contains queries and answers to

SessionKeyReveal. S simulates oracle queries by A as follows.

1. Send(Π, I, UP , UP̄ ) : If the SSK of UP is not set, S generates and sets the
SSK according to the protocol. If the session is the i∗-th session, S receives
(C∗

T ,K∗
Tb) as a challenge from the challenger and computes CP̄ according to

the protocol. Also, S sets EPK∗ = (CP̄ , ek∗
T ) and returns EPK∗. Otherwise,

S computes and returns EPK = (CP̄ , ekT ) according to the protocol and
records (Π,UP , UP̄ , (CP̄ , ekT )) in LSK .

2. Send(Π,R, UP̄ , UP , (CP̄ , ekT )) : If the SSK of UP̄ is not set, S generates and
sets the SSK according to the protocol. If the session is the i∗-th session,
S sets KT = K∗

Tb, computes CP and SK according to the protocol, and
returns EPK = (CP , C∗

T ). Also, S records (Π,UP , UP̄ , (CP̄ , ekT ), (CP , C∗
T ))

as the completed session and SK in LSK . Otherwise, S computes EPK =
(CP , CT ) and SK according to the protocol, returns EPK. Also, S records
(Π,UP , UP̄ , (CP̄ , ekT ), (CP , CT )) as the completed session and SK in LSK .

3. Send(Π, I, UP , UP̄ , (CP̄ , ekT ), (CP , CT )) : If the SSK of UP is not set, S gen-
erates and sets the SSK according to the protocol. If (Π,UP , UP̄ , (CP̄ , ekT ))
is not recorded in LSK , then S records this sid as not completed. Also, if
the session is the i∗-th session, S computes SK according to the protocol,
except KT = K∗

T , and records (Π,UP , UP̄ , (CP̄ , ekT ), (CP , CT )) as the com-
pleted session and SK in LSK . Otherwise, S computes SK and records
(Π,UP , UP̄ , (CP̄ , ekT ), (CP , CT )) as the completed session and SK in LSK .

4. SessionKeyReveal(sid) :
(a) If sid is not completed, then S returns error.
(b) Otherwise, S returns SK as recorded in LSK .

5. EphemeralKeyReveal(sid): S returns ESK for sid as defined.
6. StaticKeyReveal(IDi) : If the SSK for IDi is not set, S generates and sets

the SSK according to the protocol. S returns the SSK of IDi as defined.
7. MasterKeyReveal(): S returns MSK as defined.
8. EstablishParty(Ui, IDi): S generates and returns SSK for IDi according to

the protocol and marks Ui as dishonest.
9. Test(sid∗) : S responds to the query as defined and gives the SSK∗ of the

owner and responder of sid∗ to A.
10. If A outputs b

′
, then S outputs b

′
.

[Analysis]
For A, the simulation by S is the same as the experiment H2 if the challenge is
(C∗

T ,K∗
T0). Otherwise, the simulation by S is the same as the experiment H3.

Thus, since the advantage of S is negligible due to the security of the IND-CPA
secure KEM, |Adv(A,H3) − Adv(A,H2)| ≤ negl.

Hybrid Experiment H4: This experiment changes the way of the computation
of the σ∗

3 in the i∗-th session. Instead of computing σ∗
3 ← KDF(s,K∗

T ), it is
changed as choosing σ∗

3 ∈ FS randomly.
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Since K∗
T is randomly chosen in H3, it has sufficient min-entropy because

KEM is δ-min-entropy KEM. Thus, by the definition of the KDF, |Adv(A,H4)−
Adv(A,H3)| ≤ negl.

Hybrid Experiment H5: This experiment changes the way of the compu-
tation of SK in the i∗-th session. Instead of computing SK = PRF(sid, σ1) ⊕
PRF(sid, σ2)⊕PRF(sid, σ3), it is changed as SK = PRF(sid, σ1)⊕PRF(sid, σ2)⊕x
where x ∈R {0, 1}κ.

We construct a distinguisher D that distinguishes if F∗ is either a pseudo-
random function PRF and a random function RF from A in H4 or H5. The D
performs the following steps.

[setup]
D chooses F,F

′
: {0, 1}∗ × FS → RSE , PRF : {0, 1}∗ × KS → {0, 1}κ, and

a KDF KDF : Salt × KS → FS with a non-secret random salt s ∈ Salt. These
are provided as the public parameters. Also, D embeds F∗ into PRF of the i∗-th
session.

D sets MPK and MSK according to the protocol.
[simulation]

D maintains the list LSK that contains queries and answers to
SessionKeyReveal. D simulates oracle queries by A as follows.

1. Send(Π, I, UP , UP̄ ) : If the SSK of UP is not set, D generates and sets the
SSK according to the protocol. D computes and returns EPK = (CP̄ , ekT )
according to the protocol, and records (Π,UP , UP̄ , (CP̄ , ekT )) in LSK .

2. Send(Π,R, UP̄ , UP , (CP̄ , ekT )) : If the SSK of UP̄ is not set, D gener-
ates and sets the SSK according to the protocol. D computes EPK =
(CP , CT ) and SK according to the protocol, returns EPK, and records
(Π, UP , UP̄ , (CP̄ , ekT ), (CP , CT )) as the completed session and SK in LSK .

3. Send(Π, I, UP , UP̄ , (CP̄ , ekT ), (CP , CT )) : If the SSK of UP is not set, D gen-
erates and sets the SSK according to the protocol. If (Π,UP , UP̄ , (CP̄ , ekT ))
is not recorded in LSK , then D records this sid as not completed. Also, if the
session is the i∗-th session, D poses sid to oracle F∗ (PRF

′
or RF) and obtains

x ∈ {0, 1}κ, and computes SK∗ = PRF(sid, σ1) ⊕ PRF(sid, σ2) ⊕ x. Also D
records (Π, UA, UB , (C∗

B , ek∗
T ), (CA, CT )) as the completed session and SK in

LSK . Otherwise, D′
computes SK, and records (Π,UP , UP̄ , (CP̄ , ekT ), (CP ,

CT )) as the completed session and SK in LSK .
4. SessionKeyReveal(sid) :

(a) If sid is not completed, then D returns error.
(b) Otherwise, D returns SK as recorded in LSK .

5. EphemeralKeyReveal(sid) : D returns ESK for sid as defined.
6. StaticKeyReveal(IDi) : If the SSK for IDi is not set, D generates and sets

the SSK according to the protocol. D returns the SSK as defined.
7. MasterKeyReveal(): D returns MSK as defined.
8. EstablishParty(Ui, IDi) : D generates and returns SSK for IDi according to

the protocol and marks Ui as dishonest.
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9. Test(sid∗) : D responds to the query as defined and gives the SSK∗ of the
owner of sid∗ to A.

10. A outputs a guess b
′ ∈ {0, 1}. If A outputs b

′
= 0, then D outputs that

F∗ = PRF. Otherwise D outputs that F∗ = RF.

[Analysis]
For A, the simulation by D is the same as the experiment H4 if F∗ = PRF.
Otherwise, the simulation by D is the same as the experiment H5. Thus, since
the advantage of D is negligible due to the security of the PRF, |Adv(A,H5) −
Adv(A,H4)| ≤ negl.

In H5, the session key in the test session is perfectly randomized. This gives A
no information from the Test query, therefore Adv(A,H5) = 0 and Pr[E5∧Sec] =
negl.

A.5 Event E6 ∧ Suc

The proof in this case is essentially the same as the event E2∧Suc. The situation
that the ephemeral secret key of sid∗ is given to A is the same as sid∗ has no
matching session because A can decide arbitrary ephemeral key. Thus, the proof
in this event follows that in the event E2 ∧ Suc.

A.6 Event E7 ∧ Suc

The proof in this case is essentially the same as the event E1∧Suc. The situation
that the ephemeral secret key of sid∗ is given to A is the same as sid∗ has no
matching session because A can decide arbitrary ephemeral key. Thus, the proof
in this event follows that in the event E1 ∧ Suc.

A.7 Event E8 ∧ Suc

The proof in this case is essentially the same as the event E3∧Suc. The situation
that the ephemeral secret key of sid∗ is given to A is the same as sid∗ has no
matching session because A can decide arbitrary ephemeral key. Thus, the proof
in this event follows that in the event E3 ∧ Suc.
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Abstract. Time-stamping services produce time-stamp tokens as evi-
dences to prove that digital data existed at given points in time. Time-
stamp tokens contain verifiable cryptographic bindings between data and
time, which are produced using cryptographic algorithms. In the ANSI,
ISO/IEC and IETF standards for time-stamping services, cryptographic
algorithms are addressed in two aspects: (i) Client-side hash functions
used to hash data into digests for nondisclosure. (ii) Server-side algo-
rithms used to bind the time and digests of data. These algorithms
are associated with limited lifespans due to their operational life cycles
and increasing computational powers of attackers. After the algorithms
are compromised, time-stamp tokens using the algorithms are no longer
trusted. The ANSI and ISO/IEC standards provide renewal mechanisms
for time-stamp tokens. However, the renewal mechanisms for client-side
hash functions are specified ambiguously, that may lead to the failure
of implementations. Besides, in existing papers, the security analyses of
long-term time-stamping schemes only cover the server-side renewal, and
the client-side renewal is missing. In this paper, we analyse the neces-
sity of client-side renewal, and propose a comprehensive long-term time-
stamping scheme that addresses both client-side renewal and server-side
renewal mechanisms. After that, we formally analyse and evaluate the
client-side security of our proposed scheme.

1 Introduction

Digital data is ubiquitous in our modern world. To prove the existence time of
digital data, a time-stamping service produces verifiable cryptographic bindings
between digital data and time to form time-stamp tokens. Such cryptographic
bindings could be digital signatures, hash values, message authentication codes
etc. Most of the bindings are generated through cryptographic algorithms. There-
fore, time-stamp tokens are valid only when the underlying cryptographic algo-
rithms remain secure.

For time-stamping services specified in the ANSI [1], IETF [2] and ISO/IEC
[3–6] standards, the cryptographic algorithms used to generate time-stamp
tokens could be categorized into two sides: (i) Client-side hash functions used
to hash data into digests for nondisclosure; (ii) Server-side algorithms used to
bind digests of a data item and a given point in time. These algorithms are
c© Springer Nature Switzerland AG 2021
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time-restricted due to their limited operational life cycles and the increasing
computational power of attackers [7]. For instance, the upcoming quantum com-
puters are considered to break some broadly-used signature algorithms [8] and
to increase the speed of attacking hash functions [9]. Once the algorithms are
compromised, the corresponding time-stamp tokens are no longer valid.

However, for many types of digital data, the validity of time-stamp tokens need
to be maintained for a long time. For example, the identity information of citi-
zens should be kept permanently; the health records of people follow their life-
times; mp3 files produced by musicians may last for decades etc. In these cases, the
validity periods of time-stamp tokens need to be longer than any individual cryp-
tographic algorithm’s lifetime. For the purpose of this paper, if a time-stamping
service (or scheme) is able to prove the existence of data at given points in time
through valid and secure time-stamp tokens in a long period of time, which is not
bounded with the lifetimes of underlying cryptographic algorithms, we say it is a
Long-Term Time-Stamping (LTTS) service (or scheme). Clearly, for a long-term
time-stamping service, time-stamp tokens should be constantly renewed.

The ANSI [1] and ISO/IEC [3–6] standards provide time-stamp renewal
mechanisms for both client-side and server-side algorithms. For server-side
renewal, the standards clearly say that a requester sends a time-stamp request
with inputting a new server-side algorithm identifier, hash value(s) of a data
item, and a previous time-stamp token on this data item to a Time-Stamping
Authority (TSA), the TSA then produces a new time-stamp token on the input
content using the indicated algorithm.

However, the client-side renewal mechanisms in both standards are specified
ambiguously. In the ISO/IEC standard, the renewal of client-side hash functions
is not mentioned as a motivation for time-stamp renewal, and how to implement
the client-side renewal is not explicitly specified. In the ANSI standard, a list
of reasons for time-stamp renewal includes that a requester needs to replace
the hash value using a stronger hash function, but when a requester “needs” to
replace the hash value is not specified in detail. These ambiguities may cause
the failure of client-side renewal implementations and therefore the failure of
long-term time-stamping services.

In the existing papers [10] and [11], long-term time-stamping schemes based
on signatures and hash functions have been formally analysed respectively (the
details will be introduced in Sect. 2). Nevertheless, the analyses are only related
to renewal mechanisms of server-side algorithms, the client-side renewal is not
covered. Specifically, in the security model of [10], the client-side renewal is not
discussed, and client-side hash functions are treated as random oracles. This
security notion does not truly model the case of practical implementations. In
[11], the client-side hash functions are not considered.

The motivation of this work is based on the following observation. The secu-
rity of client-side is as significant as server-side, since the time-stamp tokens are
generated on the hash values of data items. If the client-side hash functions are
broken and the client-side renewal mechanism is not performed effectively, the
time-stamp tokens are no longer valid regardless whether the server-side is secure
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or not. Even if a client-side renewal mechanism is clearly specified, a formal secu-
rity analysis of the mechanism is necessary and it does not exist in the literature.

In this paper, we provide following contributions:

– We firstly analyse several possible failures of client-side renewal implementa-
tions by complying with the ANSI and ISO/IEC standards, and discuss the
importance of a well-specified client-side renewal mechanism.

– We then propose a comprehensive long-term time-stamping scheme that
addresses both client-side and server-side renewal mechanisms.

– After that, we formally analyse the client-side security of our proposed long-
term time-stamping scheme, and provide a quantified evaluation to the client-
side security level.

2 Related Works

In 1990 [12], Haber and Stornetta introduced the first concept of digital time-
stamping with two techniques: linear linking and random witness. In this paper,
they also proposed a solution for time-stamp renewal, in which a time-stamp
token could be renewed by time-stamping the token with a new implementation
before the old implementation is compromised.

In 1993 [13], Bayer, Haber and Stornetta proposed another time-stamping
technique: publish linked trees into a widely visible medium (e.g., newspapers).
Besides, they spotted that the renewal idea in the 1990 paper [12] is insufficient to
time-stamp a digital certificate alone (without the original data being certified).
They proposed a corrected renewal solution: time-stamping a (data, signature)
pair or a (data, time-stamp) pair to extend the signature or time-stamp’s lifetime.

In further years, the ideas of [12,13] have been polished and recorded into
various standards: The NIST standard specified several signature-based time-
stamping applications for proving time evidences of digital signatures [14]; the
IETF standard [2] (an update is [15]) specified signature-based time-stamping
protocols; the ISO/IEC and ANSI standards cover various time-stamping mech-
anisms and renewal mechanisms. Notice that the time-stamping services in both
the NIST and IETF are not specified in long-term, the ANSI and ISO/IEC
standards contain the specifications for long-term time-stamping services.

Apart from the standards, the ideas of [13] have been extended into several
long-term integrity schemes [16–22], but the security analyses of such schemes
were not given until 2016, Geihs et al. formalized this idea separately into a
signature-based long-term integrity scheme [10], and a hash-based long-term
time-stamping scheme [11] in 2017. These two schemes are related to the security
of two types of server-side algorithms: signature schemes and hash functions,
and their renewal mechanisms, but the renewal mechanisms for client-side hash
functions are not addressed. In [10], the client-side hash functions are ideally
modelled as random oracles, and the renewal of client-side hash functions is not
discussed; in [11], the client-side hash functions are not considered in the scheme,
time-stamp tokens carry out on actual data items.
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Similarly, in Geihs’ PhD thesis [23] (includes [10,11]), the signature-based
time-stamping scheme is slightly different with [10]: time-stamp tokens are cre-
ated on a data item and signature pair, and the consideration of client-side hash
functions is removed. For all these analyses [10,11,23], the client-side security is
guaranteed with ideal assumptions.

Nevertheless, the papers [10,11,23] provide substantial frameworks for
analysing the security of long-term time-stamping schemes. For example, they pre-
sented a new computational framework based on [24], and a global time model
based on [25] for modelling the computational power of long-lived adversaries; they
created “long-termunforgeability”model for the integrity of signature-based time-
stamping [10]; they constructed “long-term extraction” model for the integrity of
hash-based time-stamping [11], which is an integration of “extraction-based” time-
stamping proposed in [26] and “preimage awareness” hash functions defined in [27].

In addition, the security of hash functions in time-stamping has been explored
[28–31], and only in [29] Buldas et al. analysed the security of client-side hash
functions. They proposed a new notion named “unpredictability preservation”
and argued that this property, rather than collision resistance or second preimage
resistance (the definitions are in Sect. 3.1), is necessary and sufficient for client-
side hash functions in secure time-stamping. However, their conclusions are not
in the case of long-term time-stamping since the time-stamping renewal is not
considered in their works.

In this paper, we create a “long-term integrity” model for our long-term
time-stamping scheme including both client-side and server-side renewal (will be
introduced in Sect. 6.3). In this model, we follow the computational framework
of long-lived adversaries, and refer to the analysis results of server-side security
in [10,11,23]. In our analysis, we mainly focus on analysing the security at the
client-side.

3 Review the ANSI and ISO/IEC Time-Stamping
Services

The ISO/IEC 18014 standard specifies time-stamping services in four parts: the
framework in Part 1 [3], mechanisms producing independent tokens in Part 2[4],
mechanisms producing linked tokens in Part 3 [5], and traceability of time sources
in Part 4 [6]. The ANSI X9.95 standard [1] specifies both independent and linked
tokens, which are similar to the mechanisms specified by the ISO/IEC in [3–5].

In this section, we review some common specifications from the first three
parts of the ISO/IEC 18014 [3–5] and the ANSI X9.95 [1] standards, which
includes the definition of hash functions, two types of time-stamp tokens and
time-stamp transactions between entities.

3.1 Hash Functions

A secure hash function [32] maps a string of bits of variable (but usually upper
bounded) length to a fixed-length string of bits, satisfying the following three
properties:
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– Preimage Resistance: it is computationally infeasible to find, for a given out-
put, an input which maps to this output.

– Second Preimage Resistance: it is computationally infeasible to find a second
input which maps to the same output.

– Collision Resistance: it is computationally infeasible to find any two distinct
inputs which map to the same output.

Note that the hash functions discussed in this paper are compression functions.
That means, the collision resistance of a hash function implies preimage resis-
tance [33,34]. In other words, if a hash function is collision resistant, then it is
also preimage resistant; if a hash function is not preimage resistant, then it is
not collision resistant.

3.2 Types of Time-Stamp Tokens

There are two types of time-stamp tokens that can be generated by a time-
stamping service:

1. Independent tokens : An independent time-stamp token can be verified with-
out involving other time-stamp tokens. The protection mechanism used to
generate this type of tokens can be digital signatures, message authentication
codes (MAC), archives or transient keys [1]. For instance, for signature-based
time-stamping, a Time-Stamping Authority (TSA) digitally signs a data item
and a time value that results a cryptographic binding between the data and
time. The data, time and the corresponding signature together form a time-
stamp token.

2. Linked tokens : A linked time-stamp token is associated with other time-stamp
tokens produced by the same methods. The protection mechanism used to
generate this type of tokens can be hash functions and a public repository,
therefore a time-stamping service generating this type of tokens is referred
to “hash-based time-stamping” or “repository-based time-stamping”. In spe-
cific, a TSA hashes a data item and a time value together and aggregates
the hash output with other data items produced at the same time, (e.g.,
uses a Merkle Tree [35]). The aggregation result can be linked to other data
produced at previous times, (e.g., uses linear chain linking [12]). Eventually,
the aggregation or linking result is published at a widely visible media (e.g.,
newspapers). The data, time record, published information, and group val-
ues that are contributed to determine the published result, together form a
time-stamp token.

3.3 Time-Stamp Transactions

There are two time-stamp transactions that are performed between a requester
and one or more TSAs, or between a requester and a verifier, respectively:

1. Time-stamp request transaction: A requester sends a time-stamp request to
a TSA and the TSA returns a time-stamp response to the requester.
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2. Time-stamp verification transaction: A requester sends a verification request
to a verifier and the verifier returns a verification response to the requester.

The data formats of a time-stamp request and response are shown in Fig. 1.
A time-stamp request contains a “messageImprint” field, which is comprised of
a hash value of a data item and its hash function identifier, an “extensions” field
and other information.

More specifically, the “extensions” field contains three types of additional
information: ExtHash, ExtMethod and ExtRenewal, which work as follows:

1. ExtHash: In this field, a requester could submit multiple “messageImprint”
fields, in which each hash value could be computed from a different hash
function so that it prevents the failure of any single hash function.

2. ExtMethod: In this field, a requester could indicate a specific protection mech-
anism (e.g., a digital signature scheme) to bind the data item and time.

3. ExtRenewal: In this field, a requester could submit an existing time-stamp
token on the data item in the purpose of extending the validity period of the
time-stamp token.

Fig. 1. Data formats of time-stamp request and time-stamp response

After the TSA receives the request, it adds the current time to the request
content to form a “TSTInfo” structure, and produces a cryptographic binding on
the TSTInfo by using the indicated protection mechanism or a default one if it is
not indicated. The TSTInfo and the cryptographic binding together form a time-
stamp token, then the TSA returns a time-stamp response with the time-stamp
token to the requester.

In order to validate the time-stamp token, the requester could send a veri-
fication request that contains the time-stamp token to a verifier at time tv. For
a single time-stamp token that has not been renewed, the verifier checks the
following:
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– The token is syntactically well-formed.
– Every hash value of the data item is correctly computed through the corre-

sponding hash function.
– At least one of the hash functions that is used to generate digests of the data

item is collision resistant at tv.
– The protection mechanism of the time-stamp token is not broken at tv.
– The cryptographic binding is correctly computed on the data and time.

If all above conditions are held, the time-stamp token is valid at time tv, so
the verifier returns a verification response with a “true” result to the requester.
Otherwise, the verifier returns a “false” result to the requester.

For a renewed time-stamp token, the verifier checks the validity of each nested
time-stamp token at the time it was generated or renewed, and validity of the
latest time-stamp token at tv following the above checking steps. The verifier
returns a verification response with a “true” result to the requester if all verifi-
cations are successful, or a “false” otherwise.

4 Discussions on Client-Side Renewal

In Sect. 3, we have reviewed some common specifications in the ANSI and
ISO/IEC time-stamping services. In this section, we observe that the client-
side renewal mechanisms in both standards are not explained thoroughly, which
may cause some ambiguities for implementations. To make our discussions clear,
we analyse several possible scenarios that the client-side hash functions are not
renewed correctly by following the standards and their consequences.

4.1 The Ambiguities in the ANSI and ISO/IEC Standards

As specified in Sect. 3.3, a time-stamp token consists of hash value(s) of a data
item, a time value and a cryptographic binding. The cryptographic algorithms
used in the token include client-side hash functions and server-side algorithms.
However, the lifetimes of these cryptographic algorithms are restricted due to
the operational life cycles or advanced computational architectures. Once the
algorithms are compromised, the time-stamp token becomes invalid and the
existence of the data item could not be proved after that. Thus, time-stamp
tokens should be constantly renewed to extend their validity periods.

In both the ANSI and ISO/IEC standards, the server-side renewal could
be achieved by using the “ExtMethod” and “ExtRenewal” fields as following:
when the server-side algorithm in the time-stamp token is close to the end of
its lifecycle, or there is strong evidence that it will be compromised in the near
future, the requester associates the time-stamp token in the “ExtRenewal” field,
and indicates a new server-side algorithm in the “ExtMethod” field. The TSA
then maintains these contents in the “TSTInfo” structure, and generates a new
time-stamp token on TSTInfo using the indicated algorithm.

For client-side hash functions, as Sect. 3.3 shows, the ISO/IEC and ANSI
standards both introduce the “ExtHash” field that allows multiple hash values
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of a data item to be submitted in the time-stamp request, but how to renew the
client-side hash functions are not introduced clearly. For example, as the quote
from the ISO/IEC 18014-1 [3], Section 5.7, Time-stamp renewal:

“Time-stamped data may be time-stamped again at a later time. This process
is called time-stamp renewal and may optionally be implemented by the TSA.
This may be necessary for example for the following reasons:

– The mechanism used to bind the time value to the data is near the end of its
operational life cycle (e.g., when using a digital signature and the public key
certificate is about to expire).

– The cryptographic function used to bind the time value to the data is still
trusted; however, there is strong evidence that it will become vulnerable in the
near future (e.g., when a hash function is close to begin broken by new attacks
or available computing power).

– The issuing TSA is about to terminate operations as a service provider.”

We can see that the “mechanism used to bind the time value and data” and
“cryptographic function used to bind the time value to the data” do not include
the client-side hash functions, which means that the client-side hash functions
are not defined as a motivation for time-stamp renewal. Apart from this, there
are no other specifications in the ISO/IEC standard about how to renew client-
side hash functions.

In the ANSI standard [1], the client-side renewal is briefly addressed in
the definition of the “renewal” term, as the quote from the ANSI X9.95 [1],
Section 3.29, Renewal:

– “A renewal is the extension of the validity of an existing time stamp token.
Legitimate reasons to renew a TST include: (i) the public key certificate used
to verify the TSA digital signature is nearing its expiration date, or (ii) a
requestor needs to replace the hash value using a stronger hash algorithm.”

We can see that “a requestor could replace the hash value using a stronger
hash algorithm” is a statement that allows requesters to replace the client-side
hash value, but when to replace the hash value, how many hash values should
be replaced are not specified. The ambiguities in both standards may mislead
the implementers to ignore or improperly operate client-side renewal.

4.2 Possible Failed Implementations of Client-Side Renewal

Based on the observations in Sect. 4.1, we further analyse some possible scenarios
for implementations that do not effectively renew client-side hash functions. Note
that the following three cases are arguably compatible with both the ISO/IEC
and ANSI time-stamping standards.

– Case 1: A requester only submits one hash value of a data item without
renewal.

– Case 2: A requester submits multiple hash values of a data item without
renewal.
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– Case 3: A requester replaces hash values using stronger hash functions after
all current hash functions are not collision resistant.

Case 1: Let D denote a data item, and the hash value of D is h0, which
is computed through a client-side hash function H0, i.e., h0 = H0(D). The
requester sends the pair (h0, H0) to a TSA, the TSA generates a time-stamp
token TST0 at time t0. When the server-side algorithm in TST0 is nearly compro-
mised, the requester sends (h0, H0, TST0) to a TSA, the TSA produces a new
time-stamp token TST1 on the input at time t1. Repeat the server-side renewal
in a long-term period, the requester eventually has TST0, ..., TSTn (n ∈ N ).

Assume the collision resistance of H0 is broken at time tb0. After tb0, the
verification condition “at least one client-side hash function is not broken at tv”
is failed. Thus, time-stamp tokens generated after tb0 are verified as “false”, the
time-stamping service could prove the existence time of data item D at most
between t0 and tb0. After tb0, any server-side renewal does not extend the validity
of time-stamp tokens any more.

Case 2: Let D denote a data item, and the hash values of D are h0, ..., hm,
which are computed through client-side hash functions H0, ..., Hm separately,
i.e., h0 = H0(D), ..., hm = Hm(D). The requester sends (h0, H0), ..., (hm, Hm)
to a TSA, the TSA generates a time-stamp token TST0 at time t0. After that, the
server-side renewal is implemented correctly in a long-term period, the requester
obtains TST0, ..., TSTn (n ∈ N ) at the end.

Assume the collision resistance of H0, ..., Hm are all broken at time tbm.
After tbm, the verification condition “at least one client-side hash function is not
broken at tv” is failed. The time-stamp tokens produced after tbm are verified as
“false”, the time-stamping service could prove the existence time of D at most
between t0 and tbm, not any longer.

Case 3: With the same notation as in Case 2, if the requester replaces one or
more hash values in h0, ..., hm using stronger hash functions at time t1 > tbm,
for the same reason as Case 1 and Case 2, the new time-stamp token generated at
t1 is valid, but the time-stamp tokens generated before t1 are verified as “false”.
The time-stamping service only proves the existence of D at t1 or after, and
certainly can not prove its existence at time t0.

Summary: If a requester does not renew client-side hash functions correctly,
the time-stamping service is only able to prove the existence of data items with
limited time periods, when at least one of the client-side hash functions in the
set is collision resistant. Multiple hash values only extend the lifetime of a single
hash function, but the overall lifetime of them is still limited. In other words,
a time-stamping service without correct client-side renewal does not satisfy the
definition of “long-term” in Sect. 1. In order to achieve a long-term time-stamping
service, the client-side renewal is necessary and should be specified clearly.

5 Proposed Long-Term Time-Stamping Scheme

In this section, we propose a comprehensive long-term time-stamping scheme
that describes how the client-side hash functions and server-side algorithms
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are used and renewed. Notice that the server-side protection mechanism is not
described as a particular one, which could be any of the mechanisms for an inde-
pendent token or a linked token, as specified in either the ISO/IEC 18014-2 [4],
ISO/IEC 18014-3 [5] or the ANSI X9.95 [1].

Table 1. Notation

n ∈ N Total number of time-stamp renewal processes

i ∈ {0, n} Index number of time-stamp renewal

D The data item to be time-stamped

H∗
0 , ..., H∗

n Client-side hash functions’ identifiers, each of them could be a set
of identifiers

h∗
0, ..., h∗

n Hash values computed through hash function H∗
0 , ..., H∗

n

respectively, each of them could be a set of hash values

t0, ..., tn Time points of requesting time-stamp renewal

TST0, ..., TSTn Time-stamp tokens generated at time t0, ..., tn respectively

C0, ..., Cn Cryptographic binding in time-stamp token TST0, ..., TSTn

respectively

Our proposed scheme has three functionalities: time-stamp generation, time-
stamp renewal and time-stamp verification. Figure 2 shows the time-stamp gen-
eration and renewal together, the notation is listed in Table 1. For simplicity,
we assume that each hash value also contains its hash identifier, e.g., we denote
(h∗

0, H
∗
0 ) pair as h∗

0. For every pair (h0, H0) in (h∗
0, H

∗
0 ) satisfying h0 = H0(D),

Fig. 2. The proposed long-term time-stamping scheme
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we denote them as h∗
0 = H∗

0 (D). Note that some message formats that are not
relevant to security analysis are omitted.

5.1 Time-Stamp Generation

As the top row in Fig. 2, at time t0 (i = 0): a requester computes one or more hash
values of D and sends them to a TSA. i.e., h∗

0 = H∗
0 (D). The TSA generates a

cryptographic binding C0 on (h∗
0, t0), and returns the time-stamp token TST0 :=

(h∗
0, t0, C0) to the requester.

5.2 Time-Stamp Renewal

Fig. 3. Timeline of client-side renewal (CR represents “Collision Resistant”)

As the second to the last row in Fig. 2, at time ti (i ∈ {1, n}): the requester
sends (h∗

i , TSTi−1) to a TSA. The TSA produces a new time-stamp token
TSTi := (h∗

i , TSTi−1, ti, Ci) to the requester. hi and Ci are determined with
different renewal mechanisms as follows:

1. Server-side renewal: When the server-side algorithm is about to be com-
promised or reach the end of its life cycle, the requester remains the previous
hash value(s) of D, i.e., h∗

i = h∗
i−1, then indicates a stronger server-side algo-

rithm in the time-stamp request. The TSA generates a new cryptographic
binding Ci with the indicated server-side algorithm.

2. Client-side renewal: When the collision resistance of all client-side hash
functions in the latest time-stamp token are about to be broken, and at
least one of them is still collision resistant, the requester computes one or
more new hash values of D using stronger hash functions, i.e., h∗

i = H∗
i (D),

then replaces some of the old hash values with the new ones, or directly
adds the new ones into the time-stamp request. The TSA generates a new
cryptographic binding Ci using the server-side algorithm used in Ci−1. As
the timeline shows in Fig. 3, each renewal should happen between the current
set of hash functions are all compromised.

3. Both-side renewal: A combination of the above two cases: when the security
of server-side algorithm and collision resistance of client-side hash functions
are all threatened as above scenarios, the requester computes one or more new
hash values of D with stronger hash functions, i.e., h∗

i = H∗
i (D), replaces the
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old hash values with new ones, or adds the new ones into the request, and then
indicates a stronger server-side algorithm in the request. The TSA generates
a new cryptographic binding Ci with the indicated server-side algorithm.

*Note that the message format of Ci depends on the server-side protection mech-
anisms and their details are not discussed in this paper. We stress that the scheme
is applicable for any type of server-side protection mechanism.

5.3 Time-Stamp Verification

At the verification time tv, the verifier receives a time-stamp token TSTi (i ∈
{0, n}) and checks the following conditions:

– The time-stamp token is syntactically well-formed.
– The hash values of D through H∗

0 , ..., H∗
i match the corresponding hash

values in time-stamp tokens, i.e., h∗
0 = H∗

0 (D), h∗
1 = H∗

1 (D), ..., h∗
i = H∗

i (D).
– At least one hash function in H∗

0 and in H∗
1 is collision resistant when H∗

0 is
renewed, ..., at least one hash function in H∗

i−1 and in H∗
i is collision resistant

when H∗
i−1 is renewed, at least one hash function in H∗

i is collision resistant
at time tv.

– The server-side algorithm used in C0 and C1 are secure at the time the one
for C0 is renewed, ..., the server-side algorithm used in Ci−1 and Ci are secure
at the time the one for Ci−1 is renewed, the server-side algorithm for Ci is
secure at tv.

– Cryptographic binding C0, ..., Ci are correctly computed on the correspond-
ing input content.

If all above conditions are satisfied, we say the time-stamp token TSTi is valid
at time tv, and the verifier returns “true” to the requester if the verifications are
successful. Otherwise, return a “false” to the requester. The valid time-stamp
token TSTi indicates that the data item D existed at the time t0.

6 Security Notions

In this section, we formalize the syntax of a long-term time-stamping scheme, the
security assumptions that are required for analysis, and the security properties
that a long-term time-stamping scheme should satisfy.

6.1 Syntax of a Long-Term Time-Stamping Scheme

As defined as follows, a comprehensive long-term time-stamping scheme consists
of three algorithms, which are respectively associated with time-stamp genera-
tion, time-stamp renewal and time-stamp verification.

Definition 1 (Long-term time-stamping (LTTS) scheme). A LTTS scheme is
a tuple of the following algorithms (TSGen, TSRen, TSV er):
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– TSGen(h∗
0) → TST0: the algorithm TSGen takes as input a set of hash values

h∗
0, outputs a time-stamp token TST0.

– TSRen(h∗
i , TSTi−1) → TSTi: the algorithm TSRen takes as input a set

of hash values h∗
i and a previous time-stamp token TSTi−1, outputs a new

time-stamp token TSTi.
– TSV er(D, TSTi, V D, tv) → b: the algorithm TSV er takes as input a data

item D, a time-stamp token TSTi, the necessary verification data V D (e.g.,
revocation lists of cryptographic algorithms that can be updated over time),
and the verification time tv, outputs b = 1 if the time-stamp token is valid,
otherwise outputs b = 0.

6.2 Security Assumptions

In the following models and proofs, we assume that

1. The verifier correctly performs the verification algorithm.
2. TSAs correctly perform the TSGen and TSRen algorithms.
3. The verification data V D is trusted and cannot be tampered.
4. Each cryptographic algorithm is associated with a validity period and pro-

vides correct outputs within their validity periods.

6.3 Security Models and Definitions

A long-term time-stamping (LTTS) scheme should achieve three security prop-
erties: correctness, nondisclosure, and long-term integrity. The formal definitions
of these properties are given as follows:

Correctness. This property means that assuming every entity is honest, a long-
term time-stamping scheme is able to prove existence of data items in a long
period of time that is not bounded with the lifetimes of underlying cryptographic
algorithms. The formal definition of correctness is given below.

Definition 2 (Correctness). Let LTTS = (TSGen, TSRen, TSV er) be
a long-term time-stamping scheme, D be a data item to be time-stamped,
TSTn (n ∈ N ) is a time-stamp token produced as follows.

At time t0, a requester computes a set of hash values of D, i.e., h∗
0 = H∗

0 (D),
then the algorithm TSGen takes input h∗

0 (includes identifiers H∗
0 ) and outputs a

time-stamp token TST0. Then for i = 1, ..., n, at time ti, the algorithm TSRen
takes as input a set of hash values h∗

i = H∗
i (D) and a time-stamp token TSTi−1

at a point in time when the server-side algorithm and client-side hash functions
in TSTi−1 are still secure, and outputs a time-stamp token TSTi. In the end,
at a point in time tv > tn, the algorithm TSV er takes as input the data item
D, the time-stamp token TSTn, the verification data V D and verification time
tv. Assume at tv, at least one client-side hash function in H∗

n is still collision
resistant, and the server-side algorithm in TSTn is still secure.

For a long-term time-stamping scheme to be correct, it must satisfy that if
a time-stamp token TSTn is generated for any data item D following the above
process, the verification algorithm outputs TSV er(D, TSTn, V D, tv) = 1.
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Nondisclosure. This property means that the data item to be time-stamped
is not exposed to any party except for the requester and verifier. Similar to the
definition of a long-term time-stamping scheme, if the nondisclosure could be
achieved with limited duration that is bounded by the lifetimes of corresponding
cryptographic algorithms, we say it is short-term nondisclosure, otherwise it is
long-term nondisclosure. The formal definition of nondisclosure in a long-term
time-stamping scheme is as follows.

Definition 3 (Nondisclosure). A long-term time-stamping service provides
nondisclosure for data items to be time-stamped if it is computationally infeasible
for any party except the requester and verifier to reveal the data items.

Long-Term Integrity. The security notion of long-term integrity is based on
the concept of “compromising” a time-stamping scheme. In specific, we say an
attacker is able to compromise a time-stamping scheme, if it is able to claim that
a data object exists at a point in time that actually it does not exist, or to tamper
valid time-stamp tokens without being detected. Thus, we say a time-stamping
scheme has “long-term integrity” if an attacker is unable to compromise the
time-stamping scheme in a long period of time that is not bounded with the
lifetimes of underlying cryptographic algorithms.

The long-term integrity model is defined as a game running between a long-
lived adversary A, a simulator B and a set of TSAs. As same in [10,11,23], A is
modelled as a set of computing machines that have abilities to develop compu-
tational power and computing architectures with time increasing, but also being
restricted within each time period. B has computational resources comparable to
A. Besides, A is able to advance time by calling a global clock oracle Clock(t),
and communicate with TSAs through available queries in different time periods.
Based on timely manner, the long-term integrity model could be divided into
two stages:

Stage 1 (t = t0):

1. Set time and power: A is able to set current time as t0 by querying the oracle
Clock(t), i.e., tcur = t0, and use computing machine M0 and computational
power P0.

2. Request time-stamps: The adversary A is able to select a secure TSA, then
send one or more hash values of a data object x to the TSA. The TSA returns
a time-stamp token TST0 to A. i.e., h∗

0 := H∗
0 (x), TST0 ← h∗

0. H
∗
0 and the

server-side algorithm used in TST0 are secure against (M0, P0).

Stage 2 (t = ti, i ∈ {1, n}):

1. Set time and power: A is able to set current time as ti by querying the oracle
Clock(t), i.e., tcur = ti, and use computing machine Mi and computational
power Pi.

2. Request time-stamp renewal: The adversary A is able to select a secure TSA,
then send one or more hash values of a data object x with a previous time-
stamp token TSTi−1 to the TSA. The TSA returns a new time-stamp token
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TSTi to A. i.e., h∗
i = H∗

i (x), TSTi ← (h∗
i , TSTi−1). H∗

i ,H
∗
i−1 and the

server-side algorithm used in TSTi are secure against (Mi, Pi).
3. Compromise TSAs: The adversary A is able to select an expired TSA, and

obtain the relevant secret information kept by the TSA (e.g., the private key
for signature-based time-stamping).

The winning conditions of the long-lived adversary A and the simulator B are
defined as:

– A: At any point in time tv, A outputs a pair (x′, TST ), A wins
the game if the pair (x′, TST ) is not queried from the TSAs, and
TSV er(x′, V D, tv, TST ) = 1.

– B: At any point in time tv, B breaks any set of the client-side hash functions,
or any of the server-side algorithms within their validity periods.

We denote the probability that A wins the game as ALTI
LTTS . Until time tv, the

sum probability that B breaks at least one client-side hash function within its
validity period is denoted as BCS

tv , and the sum probability that B breaks at least
one server-side algorithm within its validity period is denoted as BSS

tv . Further-
more, we define the BCryp

tv as the sum probability of the failure of cryptographic
algorithms within their validity periods:

BCryp
tv = BCS

tv + BSS
tv .

Definition 4 (Long-term Integrity). Let LTTS = (TSGen, TSRen, TSV er)
be a long-term time-stamping scheme, let A and B be a long-lived adversary and
a simulator respectively as specified in the game above. we say a LTTS has long-
term integrity if there exists a constant c for B such that for any point in time
tv,

ALTI
LTTS ≤ c · BCryp

tv .

7 Security Analysis

In terms of the security models and definitions in Sect. 6.3, we now prove our
proposed long-term time-stamping scheme holding each security property.

7.1 Proof of Correctness

Theorem 1. The proposed long-term time-stamping scheme is correct.

Proof. In our proposed LTTS = (TSGen, TSRen, TSV er), we assume that
a data item D has been through the TSGen and TSRen algorithms separately
at time t0 and time ti for i ∈ {1, n} as the process described in Definition 2,
and finally outputs a time-stamp token TSTn (n ∈ N ). At time tv > tn, the
verification algorithms takes input D, TSTn, V D and tv, the verification result
could be analysed for each condition specified in Sect. 5.3 as follows:
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First, the time-stamp token TSTn is generated through TSGen and TSRen
legitimately, so every enclosed time-stamp token TST0, ..., TSTn is syntactically
correct.

Second, every set of hash values h∗
i of the data item D are computed through

the corresponding set of hash functions H∗
i , and every cryptographic binding

is generated by the TSGen and TSRen algorithms, it is clear that the hash
values of D through H∗

0 , ..., H∗
i match the corresponding hash values in time-

stamp tokens, and all cryptographic bindings are correctly computed on the
corresponding input contents.

Third, since the algorithm TSRen is implemented every time before client-
side hash functions in the latest time-stamp tokens are all broken, and also
before the server-side algorithm in the latest cryptographic binding is compro-
mised, the validity or client-side hash functions and server-side algorithms are all
guaranteed at their renewal times. With the assumption that at tv, at least one
client-side hash function in TSTn is still collision resistant, and the server-side
algorithm in TSTn is still secure, all verification steps are satisfied. Therefore, the
verification algorithm outputs TSV er(D, TSTn, V D, tv) = 1 and the theorem
follows. ��

7.2 Proof of Nondisclosure

Theorem 2. The proposed long-term time-stamping scheme is able to provide
nondisclosure for data items when all client-side hash functions are preimage
resistant.

Proof. Assume a requester obtains a time-stamp token, which contains a set
of hash values of a data item D. These hash values are computed using a set
of client-side hash functions, H∗

0 = (H0, ..., Hm), i.e., h0 = H0(D), ..., hm =
Hm(D). Assume that the preimage resistance of H0, ..., Hm are compromised at
tp0, ..., tpm respectively, and that the hash function Hf is one of H0, ..., Hm,
the preimage resistance of Hf is broken at tpf , with {tp0, ..., tpm}min = tpf
({...}min denotes the earliest time in the set). Then at time t0 < t < tpf , if an
attacker is able to find a preimage for any of h0, ..., hm with non-negligible
possibilities, the preimage resistance of at least one of H0, ..., Hm is broken
within its validity period, which contradicts our assumption. After time tpf , the
attacker is able to attack at least the hash function Hf that determine preimages
of hf to D with non-negligible possibilities. Thus, the proposed time-stamping
scheme provides short-term nondisclosure in the duration (t0, tpf ). Therefore,
the theorem follows. ��

7.3 Proof of Long-Term Integrity

Based on the assumptions discussed in Sect. 6.2, TSAs and the verifier are trusted
parties and always perform operations correctly. The integrity of data objects
only relies on the security of client-side hash functions and server-side algorithms.



44 L. Meng and L. Chen

In this paper, we do not limit out discussion with a specific server-side protection
mechanism. A time-stamp token could be any type as introduced in Sect. 3.2.

For the security of server-side mechanisms, the existing security analyses
from [10] and [11] have proved the security of a signature-based long-term time-
stamping scheme as well as a hash-based one. As introduced in Sect. 2, these two
schemes satisfy the long-term integrity property under the condition that client-
side security is guaranteed. Thus, their results can be fitted in our analysis. We
assume that server-side security is satisfied in our proposed scheme, and focus
on the analysis of client-side security. In other words, as defined in Sect. 6.3, the
probability of the adversary breaking the scheme through server-side is reduced
to BSS

tv .

Theorem 3. If the security of server-side is guaranteed, the proposed time-
stamping scheme has long-term integrity.

Proof. That the server-side security is guaranteed means that all the time-stamp
tokens TSTs must be created by the corresponding trusted TSAs. The adversary
A can only join the long-term integrity game as defined in Sect. 6.3 to obtain
these tokens. These token are not tampered after their generations.

If A wins the game, it must output a time-stamp token TST =
(TST0, ..., TSTn) on a data item x′, which is distinct to the original x value
that was used to request any of TST0, TST1, ..., TSTn but somehow to manage
letting TSV er(x′, V D, tv, TST ) = 1. Based on Sect. 5.3, this equation guaran-
tees that at time ti for i ∈ {1, n}, the two corresponding sets of client-side hash
functions used by A, denoted by H∗

i−1 = (H(i−1)1, H(i−1)2, ..., H(i−1)mi−1) and
H∗

i = (Hi1, Hi2, ..., Himi
), must both contain at least one collision resistant

hash function. Besides, each set of hash values H∗
i (x) is a part of token TSTi.

Now let us check the following reasoning:
At time t0, A submits a set of hash values H∗

0 (x) of a data item x to a TSA,
the TSA returns a time-stamp token TST0 on H∗

0 (x). Assume that the set of
hash functions H∗

0 = (H01, H02, ..., H0m0), H0j for j ∈ {1, m0} is collision
resistant at t0.

At time t1, A decides to renew the token TST0 by using another set of
client-side hash functions H∗

1 = (H11, H12, ..., H1m1). Since at least one of the
hash functions in H∗

0 , which is still collision resistant at this time, we assume
H0j is still collision resistant at t1, although it may have become weak, and
the corresponding hash value H0j(x) is a part of TST0. Then A can submit
(H∗

1 (x), TST0) for requesting a time-stamp renewal and obtains TST1 (Case
1) or A may submit (H∗

1 (x′), TST0) for requesting a time-stamp renewal and
obtains TST1 (Case 2). If Case 2 happens, there must have H0j(x) = H0j(x′)
with a pair of collisions (x, x′). B can then obtain this pair. This result is
contradict to the assumption that H0j is collision resistant at t1. If Case 1
happens, let us carry on with our reasoning. The TSA returns a renewed time-
stamp token TST1. We now assume that H1j ∈ H∗

1 for j ∈ {1, m1} is collision
resistant at time t1.

At time t2, H0j and all other client-side hash functions used at t0 may have
been broken, but we assume that H1j is still collision resistant, and the hash
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value H1j(x) is a part of TST1. Now repeating the previous situation, A can
submit (H∗

2 (x), TST1) for requesting another time-stamp renewal and obtains
TST2 (Case 1) or A may submit (H∗

2 (x′), TST1) for requesting another time-
stamp renewal and obtains TST2 (Case 2). Again, Case 2 allows B to obtain a
pair of collisions satisfying H1j(x) = H1j(x′) and it contradicts the assumption,
and Case 1 leads us to continue our reasoning.

Carrying on our argument as before, only Case 1 for each time-stamp renewal
is considered. We assume that H(n−1)j for j ∈ {1, m(n−1)} is collision resistant
at both tn−1 and tn, and the hash value H(n−1)j(x) is a part of TSTn−1. If A
finally submits (H∗

n(x′), TSTn−1) and successfully obtains TSTn, then B obtains
a pair of collisions (x, x′) satisfying H(n−1)j(x) = H(n−1)j(x′).

In summary, based on the above reasoning, as long as A wins the game,
B can break at least one client-side hash function within its validity period.
Therefore, the winning probability of A through client-side is reduced to the
same level of the probability that B breaks at least one client-side hash function
within its validity period. With adding the probability of the failure of server-side
algorithms BSS

tv , there exists a constant c such that:

ALTI
LTTS ≤ c · (BCS

tv + BSS
tv ).

Thus, we have proved Theorem 3. ��

8 Evaluations of Client-Side Security Level

In this section, we determine the client-side security level LCS in practical, which
represents the probability of a long-lived adversary as defined in Sect. 6.3 breaks
the client-side security of the proposed scheme. In terms of the ISO/IEC and
ANSI standards, multiple hash values are allowed in every time-stamp request,
and the system is available to set up policies for the number of client-side hash
functions in every time-stamp request, and the interval of time-stamp renewal.
Therefore, there are two parameters that affect the client-side security level:

1. lset: the security level of a set of client-side hash functions in a time-stamp
request, which means the probability that a long-lived adversary as defined
in Sect. 6.3 breaks all collision resistant hash functions in the set within their
validity periods.

2. n: the number of sets of client-side hash functions in time-stamp tokens, which
means the number of client-side renewal process.

Assume the security level of each set of client hash functions are lset1 , ..., lsetn

respectively. The winning probability of the adversary is the aggregated proba-
bility of the failure of every set of client-side hash functions:

LCS =
n∑

i=1

lseti .
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We can see that the more sets of client-side hash functions are used in the
scheme, the higher probability that the adversary breaks the client-side security
of the proposed scheme. The stronger of each set of client-side hash functions,
the lower probability that the adversary breaks the client-side security of the
proposed scheme.

Furthermore, the security level of a set of client-side hash functions lset is
decided by another two parameters:

1. l: the security level of a specific client-side hash function in the set, which
means the probability of a long-lived adversary as defined in Sect. 6.3 breaks
the collision resistance of the specific hash function within its validity period.

2. m: the number of client-side hash functions required in a set.

Assume the security level of each hash function in a set is l1, ..., lm respec-
tively. Then the probability of the failure of a whole set of hash functions, is
equal to the probability that every hash function in the set fails:

lset =
m∏

i=1

lm.

Based on the bounded computational resources in each time period, a long-
lived adversary has not enough resources to break the collision resistance of
whole set of hash functions. That means, the computational resources of the
adversary is not enough to break at least one of the hash functions in the set. If
the adversary owns computational power to break some of the hash functions,
then the security level of these hash functions are equal to 1, the lset is only
determined by the security level of the other hash functions.

Summary: The evaluation results show that with more times the client-side
renewal happens, the probability of the adversary breaks the scheme increases;
for multiple hash values submitted in each time-stamp request, the more colli-
sion resistant hash functions are required in each time-stamp request, the lower
probability of the adversary breaks the scheme.

9 Conclusions

In this paper, we have discussed the importance of client-side renewal: it is not
enough for a requester to only use the same set of multiple hash values in an
initial time-stamping request as well as a time-stamp renewal request, new hash
values computed through stronger hash functions should be used before the
failure of current set of hash functions. This argument is straightforward but is
not explicitly addressed in the ISO/IEC and ANSI standards. Then we propose
a long-term time-stamping scheme with specifications of both client-side and
server-side mechanisms. We have proved that our scheme achieves correctness,
short-term nondisclosure and long-term integrity properties. Finally, we have
provided a quantified evaluation for the client-side security level of our proposed
scheme.
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We argue that the short-term nondisclosure of our scheme could be accepted,
since the integrity could naturally be required for much longer time than nondis-
closure. For instance, intellectual-property data is usually protected in secret for
a certain period before it is released but its integrity should be maintained in
perpetuity.

As the future work, we will implement the proposed scheme in a time-
stamping service environment to measure the timing overhead and to determine
the network channel affectation. Besides, our research could be carried on cov-
ering other renewable applications that require long-term integrity. The renewal
mechanisms in time-stamping services may have other application scenarios and
such applications and their security analyses should be explored.
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Abstract. Dynamic searchable symmetric encryption (DSSE) can
enable a cloud server to search and update over the encrypted data.
Recently, forward and backward privacy in DSSE receive wide attention
due to the rise in a number of emerging attacks exploiting the leakage
in data update operations. Forward privacy ensures newly added data is
not related to queries issued in the past, whilst backward privacy ensures
previously deleted data is not revealed in the queries. Unfortunately,
achieving strong forward and backward privacy, i.e., only revealing inser-
tion timestamps of search results, requires the adoption of oblivious data
structures, which incur heavy computation and communication overhead
at both the client and server-side. In this paper, we resort to secure
enclaves, aka Intel SGX, to tackle the above problem. Specifically, we
propose Maiden, the first strong backward-private DSSE scheme without
relying on ORAM. Our key idea is to keep track of the states of updates
and the deletion information inside the secure enclave to prevent the
leakage from the server. To speed up, we further leverage a compressed
data structure to maintain a sketch of addition operations in the enclave
to facilitate the fast generation of search tokens of non-deleted data.
We conduct formal security analysis and perform comprehensive evalua-
tions on both synthetic and real-world datasets. Our results confirm that
Maiden outperforms the prior work.

1 Introduction

With the advent of cloud computing, outsourcing data to cloud storage becomes
an increasingly common way to keep big data economically and reliably. Yet it
exposes sensitive data to the server which cannot always be trusted. Although
this issue can be mitigated by encrypting the data before uploading it, this
solution also prevents the data from being searched. To solve the above problem,
the notion of searchable symmetric encryption (SSE) was introduced [48] to
enable search over the encrypted data. In past years, SSE schemes [11,17,32,48]
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were proposed to handle secure search over static datasets. In order to support
dynamic operations, dynamic SSE (DSSE) [10,30] is proposed to support secure
updates (addition and deletion) on the encrypted data while preserving the
search functionality. However, recent studies show that the update operation
incurs more information leakage, which ca n be exploited by several attacks [9,57]
to break the security of SSE.

Most recent work on DSSE schemes focuses on the forward and backward pri-
vacy of DSSE introduced by Stefanov et al. [49] and formalised by Bost et al. [4,5].
In general, forward privacy guarantees the updates cannot be associated with prior
queries. Since it can mitigate adaptive file injection attacks [57], several studies
have been presented to construct a forward-private DSSE scheme [4,5,21]. On the
other hand, backward privacy ensures that the queries do not link to deleted docu-
ments. As defined in [5], the strongest backward-private (Type-I) schemes should
only reveal the documents that currently match the queries, i.e., the deleted doc-
ument is hidden from the server. Although the above notion is desirable, recent
work [5,24] demonstrates that Type-I backward privacy is difficult to achieve in
an efficient way as it has to hide the access pattern on updated data. Complex
cryptographic primitives, e.g., ORAM, are required to achieve the goal, but this
introduces formidable computation and communication costs, which bring stupen-
dous obstacle in deploying those Type-I DSSE schemes in practice.

A practical solution for designing a Type-I backward-private DSSE scheme is
to resort to the trusted execution environment (TEE), i.e., Intel SGX. Due to its
advantages on performance and functionality, SGX has been applied to accelerate
the oblivious data structure [36]. Intuitively, a basic approach is to port the exist-
ing strong backward-private DSSE schemeOrion [24] as an SGX-based application.
However, as we demonstrated later in Sect. 6, this approach simply migrates the
heavy ORAM operations from client-server to enclave-server, and they are still the
performance bottleneck. Recently, Amjad et al. [1] proposed another SGX-based
DSSE scheme with Type-I backward privacy (i.e., Fort). They show that it is not
necessary to use ORAM to keep the entire index, while only the states of updates
need to be stored in ORAM to hide the access pattern on addition and deletion.
Also, the search in Fort can be ORAM-free with the help of SGX. Unfortunately,
Fort [1] only has a theoretical construction, and our analysis and empirical evalu-
ation demonstrate that it is still not scalable when handling large datasets.
Contributions: Our contributions in this work can be summarised as follows:

• We thoroughly analyse a basic scheme named Orion�, i.e., direct migration of
the latest strong backward-private DSSE scheme Orion [24] to TEE, and the
latest art of TEE-based scheme Fort [1]. We identify their limitations both
theoretically and empirically. As the implementation of Fort and Orion� is not
available, we implement them from scratch for evaluations and comparisons.

• We propose Maiden, the first Type-I backward-private DSSE scheme without
relying on ORAM. Maiden is designed to keep the states of updates, the
deletion information, and a sketch of insertions inside TEE, so as to eliminate
the leakage in updates and allow minimally necessary leakage during the
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search. We formalise the security model of the scheme and perform security
analysis accordingly.

• We conduct comprehensive evaluations on our proposed scheme Maiden, Fort,
and Orion�. Our experiment shows that the addition throughput of Maiden
is 13–36× higher than Orion�. Maiden takes a negligible time to perform
document deletion. The search latency in Maiden is 70–90× faster than Fort
and Orion� when using a large synthesis dataset. With a real-world dataset,
Maiden is 575× and 291× faster than those schemes, respectively.

Organisation: We discuss related works in Sect. 2. Section 3 presents prelimi-
naries of our work. Section 4 analyses the limitations of baseline approaches that
aim to build strong backward-private DSSE scheme via TEE. In this section, we
also highlight our design and introduce the detail protocols of Maiden. Section 5
analyses the security of the proposed scheme. In Sect. 6, we evaluate Maiden and
compare it with the baseline schemes. Section 7 discusses SGX side-channels and
how existing countermeasures can be applied to our design. Section 8 concludes
the paper.

2 Related Work

Searchable Encryption. The notion of searchable symmetric encryption (SSE)
is firstly introduced by Song et al. [48]. Later, Curtmola et al. [17] and Kamara
et al. [30] formalised the security model of static and dynamic SSE (DSSE),
respectively. Since SSE was formalised, extensive studies have been made to
improve the security [4–6,49], functionality [10,11] and performance [10,11,19,
24,50] of SSE. Recently, the community focuses on designing DSSE schemes with
forward and backward privacy to resolve the security issues [9,57] of it.

Forward and Backward Privacy in DSSE. Stefanov et al. [49] introduced the
notion of forward and backward privacy, and Bost [4] provided the security model
of forward-privacy DSSE. The follow-up work [6] further studied the backward-
privacy model and categorised the backward-privacy DSSE schemes into three
types based on the security level they achieved. A line of work for efficient DSSE
constructions with backward privacy [6,19,24,50] has been present. This includes
Type-I schemes (the highest security level) Moneta [6] and Orion [24], Type-II
schemes Fides [6], Mitra [24], SDa and SDd [19], and Type-III schemes Janus,
Dianadel [6], Horus [24], Janus++ [50] and QOS [19]. To achieve better (Type-I and
Type-II) security, all the above schemes employ ORAMs and multi-rounds of inter-
action, which noticeably increases the protocol complexity. In this work, we will
study how to achieve a stronger security level of backward privacy with low com-
putation and interaction costs by introducing trusted execution to DSSE schemes.

DSSE with Trusted Execution. Amjad et al. [1] are the first to study
hardware-assisted DSSE schemes with backward privacy. They proposed three
schemes supporting Type-I (Fort), II (Bunker-B) and III (Bunker-A) DSSE to
enable single-keyword query with the help of Intel SGX. However, the practical
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Table 1. Comparison with previous SGX-supported Type-I backward-private schemes.
N denotes the total number of keyword/document pairs. aw presents the total number
of entries of addition updates performed on w. nw is the number of (current, non-
deleted) documents containing w. Let dw denote the number of deletions performed on
w. D and W denote the total number of documents, and the total number of keywords,
respectively. Orion� presents the scheme of porting the Client in Orion [24] to TEE.

Type-I
Communication Enclave-Server Enclave Computation

Enclave

Add Del Search Add Del Search
Scheme Storage

Orion� O(log2N)O(log2N)O(nwlog2N)O(log2N)O(log2N)O(nwlog2N) O(1)

Fort [1] O(1) O(1) O(nw) O(log2N) O(1)
O(nw)+

Σ∀wdwO(Σ∀wdw)

Maiden O(1) O(1) O(nw) O(1) O(1) O(nw)

O(WlogD)

+O(awW )

+O(N)

performance of these schemes has not been investigated. Lastly, Vo et al. [53]
proposed Type-II backward-private SGX-SE1 and SGX-SE2 schemes. These two
schemes store database states within the enclave to reduce the communication
between the client and enclave as well as the enclave and server. In addition,
they maintain the deletion information within the enclave to save communica-
tion costs during queries. This also reduces the query delay since it does not
require to re-encrypt accessed database entries after queries like in Bunker-B.
As a result, the above schemes outperform Bunker-B in both search latency and
update computation/communication. Although these schemes are efficient and
highly-scalable to large databases, they cannot achieve Type-I backward privacy.

Table 1 compares the two existing Type-I DSSE schemes and our newly pro-
posed scheme Maiden. While Fort [1] and Maiden are designed for TEE, Orion∗

directly migrates the latest cryptographic-based Type-I DSSE Orion [24] into
SGX. Maiden highly reduces the communication and computation overhead dur-
ing Update and Search. Although it consumes more storage than the other two
schemes, our evaluation results show that this will not affect the efficiency of
Maiden.

Encrypted Search Systems with Trusted Execution. Another active
research line aims to design search systems [3,14,23,28,36,59] over encrypted
data based on hardware-assisted trusted execution environment (TEE). Those
systems can support efficient query over encrypted document [3,23,28], SQL
queries on database tables [14,20,36,52] and complicated analytic tasks [59].
Note that those works target different problems and applications.

3 Preliminaries

3.1 Trusted Execution Environment

Trusted Execution Environment (TEE) like Intel SGX provides a secure and
isolated execution environment for applications and their data when running on
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TEE-enabled platforms. The trusted execution part of the application, named
enclave, is located and executed in a dedicated memory portion of physical RAM
with strong protection mechanism enforced by TEE. Other processes running on
the same CPU, including OS and hypervisor, cannot access the isolated memory
or tamper with the execution. TEE is equipped with the remote attestation
mechanism, which allows an enclave to prove to a remote client that it is running
untampered code. Also, it establishes a secure channel between the enclave and
client to communicate. The TEE threat model we considered in this work is
discussed in Sect. 3.3.

3.2 Dynamic Searchable Symmetric Encryption

We briefly overview the definition of DSSE given by the literature [4,6,49]. In
Sect. 3.3, we will provide the security model of DSSE in this work. We consider
a document doc = (id,w) consists of an identifier id and a list of keywords
w. DB is an inverted index built from a set of documents. A set of documents
containing a keyword w can be retrieved from DB via DB(w) = {idi|w ∈ wi}. Let
N denote the total number of keyword/document pairs, D is the total number
of documents, and W is the total number of keywords in DB. Also, we set aw to
be the number of updates regarding w, nw to be the total number of documents
matching w (|DB(w)|) and dw to be the number of deletions regarding w.

A dynamic SE scheme Σ = (Setup,Search,Update) consists of three protocols
between a client and a server as follows:
Setup(1λ,DB): The protocol inputs a security parameter λ and outputs a secret
key K, a state ST for the client, and an empty encrypted database EDB that
will be stored at the server.
Search(K,w, ST ;EDB): The protocol allows to query w based on the state ST ,
the secret key K and the state ST from the client, and the encrypted database
EDB from the server. After that, it outputs the search result Res containing
documents matching w.
Update(K, (op, in), ST ;EDB): The protocol takes K, ST , an input in associated
with an operation op from the client, and EDB, where op ∈ {add, del}, and in
consists of a document identifier id and a set of keywords in that document. If
op = del, in only contains the deleted id. The protocol inserts or removes in from
EDB upon op.

3.3 Security Model

Our Assumptions with TEE. We assume that the TEE like SGX Enclave
can protect the code and data inside the enclave. Meanwhile, the communication
between the Client and the Enclave is secured by the secure channel established
during attestation. There exist some SGX side-channel attacks such as cache
and page-fault side-channel attacks [8,25,46,55] and transient execution attacks
(i.e., SgxPectre [12] and Foreshadow [51]). Like many other hardware-supported
works [1,36,53,59], we consider side-channel attacks and transient execution
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attacks against SGX are out of our scope. We are aware that the security in
future SGX versions will be improved by both hardware and software-based
countermeasures. We also consider Denial-of-service (DoS) and power analysis
attacks [37] are also out of our focus, i.e., the enclave is always available whenever
the client invoked or queried. Finally, we assume that all the used crypto and
other supporting libraries of SGX are trusted with their correctness, and the SGX
enclave executes correctly with memory-safe implementation to avoid memory-
corruption attacks [15,44]. Note that we later discuss how to deploy our proposed
scheme in practical enclave that are vulnerable SGX-related attacks in Sect. 7.

The Security of DSSE. We follow the same notion of DSSE security defined [4,
6]. In particular, the security of a DSSE scheme Σ is parameterised by a leakage
profile L = (LStp,LUpdt,LSrch), where LStp depicts the leakage during setup,
LUpdt depicts the leakage during updates, and LSrch depicts the leakage during
queries. A secure DSSE scheme will not reveal information about DB beyond
the leakage L. This can be formalised by standard real/ideal game paradigm:

Definition 1. Consider the probabilistic experiments RealA(λ) and
IdealA,S(λ), where RealA(λ) runs a real instantiation of a DSSE scheme Σ,
and IdealA,S(λ) uses a stateful simulator S to simulate Σ via the leakage func-
tion L. A probabilistic polynomial time (PPT) adversary A can adaptively submit
queries to the above instantiations and get query results. Σ is L-adaptively secure
iff RealA(λ) and IdealA,S(λ) are indistinguishable for any PPT adversary.

Forward and Backward Privacy. In order to control the information disclo-
sure during updates, the DSSE scheme presented in this work aims to achieve
forward and backward privacy [6]. The forward privacy ensures that each update
leaks no information about the keyword that was queried in the past and cur-
rently is in the document to be updated. The backward privacy guarantees that
when a keyword-document pair (w, id) is added and then deleted, subsequent
searches on w do not reveal id. There are three types of backward privacy, which
varies the information leakage to the server, from Type-I to Type III [6]. Follow-
ing the verbatim from [4,6], we let TimeDB(w) be the insertion pattern on the
non-deleted documents currently matching w and the timestamps of inserting
them to the database. Formally,

TimeDB(w) = {(u, id) :(u, add, (w, id)) ∈ Q

and ∀u′, (u′, del, (w, id)) /∈ Q}

where u is a timestamp indicating when (w, id) is added into the database, while
u′ is a timestamp indicating when (w, id) is removed from the database.

Type-I backward privacy is the most secure [6], and it only reveals the inser-
tion pattern of what time the current (non-deleted) documents matching to w
was added (i.e., TimeDB(w)). Note that, the timestamps of the current matching
documents equivalent to the timestamps when they were inserted [6]. There have
been many non-SGX supported SSE schemes supporting this advance security
notion (e.g., Type-I backward privacy with Moneta and Orion [6], Type-II with
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Fides and Mitra [6], Type-III with Janus [6], Horus [24], and Janus++ [50]). How-
ever, there is only one SGX-supported Type-I backward-private schemes, which
is Fort [1]. Nonetheless, the enclave’s computation in the Search operation and
the search latency in Fort have not been thoroughly investigated as stated in the
author’s work [1].

Threat Model. We follow existing works [1,23] to consider a semi-honest adver-
sary at the server-side. Although the adversary will not deviate from the protocol,
he/she is capable of accessing the entire software stack (including hypervisor and
OS) except the program running in the enclave. In addition, the adversary can
inspect the untrusted memory and track the access pattern (the address and the
time of access). The goal of the attacker is to learn extra information about the
historical updates on EDB and client’s query keywords from the leakage both
revealed by hardware and the leakage function defined in Sect. 5.

4 Our Proposed Type-I Backward-Private Scheme

In this section, we firstly review the existing attempts on designing a TEE-based
Type-I backward-private scheme and indicate why they still fall short under the
TEE setting. Then, we highlight our design intuition and present the detailed
construction of our scheme.

4.1 Baseline Approaches

A basic attempt to build a Type-I backward-private scheme is to utilise ORAM.
In particular, the latest construction (Orion [24]) leverages two oblivious map
OMAPs to store the database index and states. These two OMAPs ensure the
update and query operations are oblivious, and thus Orion can achieve Type-I
backward privacy. Since the existing work demonstrates how to use TEE (Intel
SGX) to accelerate the oblivious data structure [36], one can directly employ
SGX to fulfil the Client ’s role in non-TEE supported schemes. And then, the
Server in those schemes can be executed in untrusted memory area outside the
Enclave. However, this solution still maintains the high communication overhead
between the Enclave and the Server during Update addition/deletion and Search
due to the use of multiple oblivious maps at the Server (see Table 1 for porting
the Client of Orion [24] to the Enclave).

The second approach (Fort) [1] proposed by Amjad et al. reduces that commu-
nication overhead between the Enclave and the Server via two solutions. First, it
asks the Server to only maintain one oblivious map OMAP. The map stores the
pair (F (w, id), label) during Update, where label is the token used to insert (w, id)
pair into the index map MI . Secondly, the Enclave in Fort stores a Stashdel =
Σ∀wdw that maintains the deleted labels dw of every keyword w. The Client
in Fort holds keyword state stw = (version, count) where version increases
after every Search, and count gets updated for every Update op ∈ {add, del} on
w. During Update, the Enclave generates an update token (label, value), where
label := FK1(w||version||count) and value := Enc(K2, id||op), to insert into MI .
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Whenever the label is inserted into MI , the newly generated pair (F (w, id), label)
is obliviously added to the OMAP. If the op of Update is deletion, the Enclave
obliviously retrieves the corresponding label from the OMAP and then appends
it to Stashdel. The Enclave will execute dummy operations on OMAP to hide
whether the Update is for addition or deletion. The Search operation of Fort is
Type-I backward-private because the Enclave only sends (reveals) nw currently
matching labels to the Server after locally discarding deleted labels found in
Stashdel. The complexity of Fort can be found in Table 1.

Amjad et al. [1] acknowledged that the cost of identifying and discard-
ing the deleted labels of the query keyword w in Stashdel of Fort could slow
down the search latency. However, that cost was not investigated thoroughly
in their work [1]; only a theoretical scheme was proposed. Therefore, we had
re-implemented the Enclave’s computation of Fort and found that the scanning
could take up to 8.02 × 106 ms just to scan 104 tokens when Stashdel = 107.
That insufficient cost is added to the search latency upon Search operation of
Fort.

Remarks on Fort’s Optimisation. Amjad et al. [1] note that Fort can be
optimised by replacing the usage of Stashdel in the Enclave by an OMAP to
be stored in the untrusted Server. In this way, the Enclave does not need to
perform the linear scanning of identifying and discarding deleted labels of the
query keywords. Instead, the Enclave obliviously retrieves them from the OMAP
during Search. However, this access will downgrade the security of the scheme.
The reason is that it additionally leaks the number of deletions of the query
keyword during Search, i.e., the number of ORAM accesses can be exposed.

4.2 Design Intuition

As analysed, Fort relies on TEE (a hardware Enclave) to protect the supporting
information for Search, which is the deletion information in Stashdel. The deleted
labels in Stashdel need to be retrieved via ORAM accesses to the Server during
Update deletion before Search happens. But, this causes the intensive linear
scaning operation during Search if the Stashdel or the number of generated
undeleted/deleted tokens of query keywords is large.

Similar to Fort, we also rely on TEE to protect the supporting information
for Search. But, we let the Enclave store a normal state map Mc of all (w, id)
pairs received during Update addition. Based on our assumption, the Enclave can
protect code and data inside the Enclave, migrating Mc to the Enclave does not
affect the security of our protocol while it fully eliminates ORAM operations
for Type-I DSSE schemes. By doing so, our design neither does require the
Server to store any OMAP data structure in Setup, nor access to that in Update
deletion. Instead, we simply track the deleted id within the Enclave. In addition,
Maiden also employs a sketch addition BF , i.e., a Bloom filter, to compress all
(w, id) pairs added during Update addition. With the latest states of tracked
keywords, BF , and deleted id list, the Enclave is able to generate the query
tokens for currently matching documents. This helps the scheme to achieve Type-
I backward-privacy (i.e., leaking only TimeDB(w)), without exposing historical
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Fig. 1. High-level illustration of Maiden

Fig. 2. Setup protocol in Maiden where the Client is storage-free

deletion information to the Server. Yet, storing Mc in the Enclave may cause the
paging overhead in SGX Enclave Page Cache (EPC). Nonetheless, we observe
that the access with the EPC paging is still one to two orders of magnitude
faster than the linear scan in Fort and the ORAM accesses from the Enclave to
the Server in a basic scheme that ports Orion to TEE (see Sect. 6).

4.3 The Detailed Protocol

Figure 1 presents the design overview of Maiden. The design contains three par-
ticipants: the trusted Client, the TEE denoted as the Enclave within the Server
and the untrusted Server. Maiden equips with a lightweight Client, which does
not maintain any data structure locally. On the other hand, the untrusted Server
only maintains a normal index map MI to store the mapping between label and
value. The Enclave keeps the deletion information. To accelerate the query pro-
cess, the Enclave also has three state maps: The first one is the database state
map ST which stores the update counter for each keyword. It indicates the
number of updates regarding the keyword. We migrate it from the Client to the
Enclave to reduce the workload for generating query/update tokens. The second
one is a count state map Mc maintaining the mapping between (w, id) and the
corresponding count. The third one is a compressed state map BF stored as a
Bloom filter. This indicates whether a given keyword is in a given document,
which can be used to facilitate the query process.

To communicate with the Server, the Client leverages the remote attestation
mechanism to establish a secure channel with the Enclave. Then, the Client
can remotely access the database via Setup, Update (add/del documents), and
Search operations. The Enclave receives the above operations and manipulates
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Fig. 3. Update protocol in Maiden

Fig. 4. Search protocol in Maiden

the encrypted database stored on the untrusted Server on behalf of the Client.
The detailed procedures of Maiden are provided in Fig. 2, 3 and 4.

Setup. During Setup, the Client attests the Enclave and then establishes a
secure channel for later communication. The Enclave maintains the latest key-
word state ST , list d of deleted ids, a Bloom filter BF , and importantly a
state map Mc that tracks the state c of (w, id). It also receives necessary keys
(KΣ ,KBF ) provisioned by the Client. The Server maintains an encrypted map
MI to facilitate the index search.

Update. The Client directly provides a tuple (op = add, in = {doc, id}) to
the Enclave via the secure channel. Then, the Enclave generates update tokens
T = {(u, v)} for ∀(w, id) ∈ doc to update the index map MI , where (ui, vi) ←
(H2(kw, c),Enc(kid, id)) with kid generated from ST [w]. After that, the Enclave
tracks the latest state c of F (kw, id) in the map Mc. This state tracking later
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enables retrieving the states of deleted doc with id containing w in Search. In
addition, the Enclave updates the membership of (w||id) to BF. If the Update
is deletion, given a tuple of (doc′, id) sent by the Client, the Enclave adds id to
the list d. It also adds dummy token entries (u′, v′) generated from doc′ to MI

to hide the deletion op.

Search. The Client sends a query keyword w to the Enclave for receiving docu-
ments matching the keyword. The Enclave first performs the membership test-
ing for (w, idi), idi ∈ d. With the help of the internal map Mc, the Enclave
can retrieve the state of (w, idi) if idi was deleted. Then, the Enclave can gen-
erate the query tokens {(u, kid}), where (u, kid ← (H2(kw, c),H1(kw, c)), for
undeleted states based on the latest state ST [w] after eliminating deleted ones.
Upon receiving the query tokens, the Server returns the currently matching
document id List to the Enclave.

The Efficiency of Maiden. The asymptotic search complexity of Maiden is
O(nw) . The scheme relies on the interval map Mc to compute nw query tokens.
It does not need to communicate to the Server to find the states of deleted
documents. As a trade-off, the scheme maintains a storage of (O(WlogD) +
O(awW )+O(N)), where the significant factor O(N) presents the size of Mc. The
access pattern on Mc during Search is protected by the Enclave. Our experiments
show that Maiden is still more than two orders of magnitude faster than the linear
scanning cost in Fort even when Maiden suffers large memory overhead.

Remarks: Maiden employs a BF for keeping track of addition, which facilitates
the search token generation in Search. A false positive can be introduced when
non-member (w, id) pairs map to set bit positions in the BF vector. This turns
out w presumably presented in the deleted document id by the wrong testing.
We note that this false match does not affect the correctness of search. The state
ST [w] only tracks the matching states for truly existing (w, id) pairs (see line
17 in Fig. 3), and no valid state can be found in Mc if w does not exist in the
document id (see line 6 in Fig. 4). Therefore, an invalid state cannot be used to
generate query tokens (see line 10 in Fig. 4).

Like many other SSE works [1,5,19,24,50,53] that focus on the search docu-
ment index, Search protocol in Maiden only retrieves the document identifiers ids
of currently matching documents docs containing the query keyword. We note
that encrypted data blocks of the documents can be independently outsourced
to an oblivious data structure stored in the Server. The idea of using this data
structure is to hide document update patterns for the document access. Once
the Enclave obtains the currently matching ids, it can perform oblivious access
to the Server to retrieve these data blocks and return them to the Client via
the established secure channel.

5 Security Analysis

Maiden contains the leakage of Update and Search operations. We formulate the
leakage and define RealA(λ) and a IdealA,S(λ) game for an adaptive adversary
A and a polynomial time simulator S with the security parameter λ as follows.
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Let L be a stateful leakage function L = (LStp,LUpdt,LSrch,Lhw), where the
first three functions are inherited from DSSE Server (see Sect. 3.3). They define
the information exposed to the Server in Setup, Update and Search, respectively.
Besides, Lhw defines the inherent leakage of the used SGX Enclave communi-
cating with the Server. In Setup, Maiden only leaks the data structure of MI

(i.e., the encrypted index). We note that the state map Mc is protected by SGX
Enclave and it is not exposed to the Server. In Update(op = {add, del}, in),
Maiden leaks the data access pattern TMI

of encrypted entries to be inserted
in MI . Hence, LUpdt(op, in) = {TMI

}. In Search(w), Maiden leaks the access
pattern on MI when the Enclave queries nw, named apMI

(w). Then, formally
LSrch(w) = {apMI

(w)}. We define Lhw(MI) as the hardware leakage during
Update and Search. That includes memory addresses, the time log, and the size
of the manipulated memory area. We write Lhw.Updt(op, in) ← (MI)Updt, which
outputs the trace τ of {(v, s, t)} on MI , where v is the encrypted data inserted
into MI , s is the memory size of v, and t is the accessing timestamp of op.
We note Lhw.Srch(w) ← (MI)Srch(w), which also leaks the trace τ of entries
matching w in MI . We let EDBk be the state of EDB after updated by the k-th
operation (op, in)k.

Definition 2. Consider Maiden scheme that consists of three protocols Setup,
Update, and Search. Consider the probabilistic experiments RealA(λ) and
IdealA,S(λ), whereas A is a stateful adversary, and S is a stateful simulator
that gets the leakage function L.

RealA(λ): The challenger runs Setup(1λ). Then, A chooses a database DB =
{doci}i∈Z and makes a polynomial number of Updates (addition/deletion) with
(op, in), where Z is a natural number of documents, and (op = add, in =
{doci, idi}) or (op = del, in = {doc′, idi}). Accordingly, the challenger runs those
updates with Update(op, in) and eventually returns the tuple (MI)Updt to A.
After that, A adaptively chooses the keyword w (resp., (op, in)) to search (resp.,
update). In response, the challenger runs Search(w) (resp., Update(op,in)) and
returns the transcript of each operation. The challenger also returns (MI)Srch to
A. Finally, A outputs a bit b.

IdealA,S(λ): The challenger runs S(LStp(1λ)). A chooses a DB = {doci}i∈Z ,
and makes a polynomial number of Updates (addition/deletion) with (op, in)
to the S, where Z is a natural number of documents, and (op = add, in =
{doci, idi}) or (op = del, in = {doc′, idi}) By using LUpdt and Lhw.Updt, S
creates a tuple of (MI) and send them to the Server. Then, A adaptively
chooses the keyword w (resp., (op, in)) to search (resp., update). The chal-
lenger returns the transcript simulated by S(LSrch(w),Lhw.Srch(w)) (resp.,
S(LUpdt(op, in),Lhw.Updt(op, in))). Finally, A returns a bit b.

We say Maiden is L-secure against adaptive chosen-keyword attacks if for all
probabilistic polynomial-time algorithms A, there exist a PPT simulator S such
that

|Pr[RealA(λ) = 1] − Pr[IdealA,S(λ) = 1]| ≤ negl(λ)
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Theorem 1. Assuming the map Mc is secure and protected by SGX Enclave,
and the communication between the Client and the Enclave is secure, Maiden is
an adaptively-secure SSE scheme with (LUpdt(op, in) = op, Lhw.Updt(op, in) =
(MI)Updt), and (LSrch(w) = TimeDB(w), Lhw.Srch(w) = (MI)Srch).

Proof. We now prove Theorem 1 by describing a PPT simulator S for which
a PPT adversary A can distinguish RealA(λ) and IdealA,S(λ) with negligible
probability. We now describe S as follows:

• S.Init(1λ). It generates a random key K̃ = (k̃Σ , k̃BF ) to simulate the key
components that the enclave contains (see Fig. 2). S also creates an empty
MI . It then sets EDB0 ← MI and sends it to the Server, and set stS to null.

• S.Update(stS ,LUpdt(op, in)k,Lhw.Updt(op, in)k,EDBk−1). Recall that LUpdt

(op, in)k = {TMI
}k, and Lhw.Updt(op, in)k = τk. A selects a doc with id and

send a tuple of (op = add, in = {doc, id}) or (op = del, in = {doc′, id}) to S,
where doc′ is a dummy doc. Upon receiving doc, S computes new entries and
sends them to the Server for the insertion to MI . We note that S computes
these new entries by simulating the output of the secure hardware (i.e., TEE).
To do so, the simulator first takes encrypted data in {TMI

}k and decrypts
them using k̃Σ . Based on the timestamps and data sizes revealed in τk, S
tries to locally updates stS , and generates new tokens for (w, id) pairs in doc.
It then sends these new tokens to the Server.

• S.Search(stS ,LSrch(w)k,Lhw.Srch(w)k,EDBk−1). A choose a keyword w and
sends it to S. Recall that LSrch(w)k = TimeDB(w). Then, with Lhw.Srch(w)
and stS , S simulates the outputs of the secure hardware and sends them to
the Server. Finally, let Rw be the set of document identifiers corresponding
to the queried keyword, as derived from TimeDB(w). S sends Rw to A.

Consider the IdealA,S(λ) game with the described simulator S, the produced
transcript is indistinguishable from the one produced during RealA(λ) as the
map MI get entries inserted in the same document addition manner, the state
protected by secure TEE, and the document identifiers of the query keyword are
also the same.

We note that A knows the timestamps when encrypted entries are inserted
into the index map MI in both addition/deletion Updates, but A cannot distin-
guish the Update is addition or deletion. The reason is the map MI always get
entries inserted during the doc addition/deletion under A’s view. During Search,
Maiden only reveals nw during the query on MI . The rest information of dw and
Mc are within the Enclave. Therefore, A cannot match the accessed positions
in Search to any previous document Update on particular w. This ensures that
Maiden only reveals TimeDB(w).

6 Experiment and Evaluation

SGX-Supported Schemes for Evaluation. We develop Maiden and two base-
line schemes Orion� and Fort for comparison by using Intel SGX SDK and C++1.
1 Source code: https://github.com/MonashCybersecurityLab/SGXSSE.

https://github.com/MonashCybersecurityLab/SGXSSE
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Table 2. Statistics of the datasets used in the evaluation.

Name # of keywords # of docs # of keyword-doc pairs

DS1 500 10, 000 119, 286

DS2 1, 000 1, 000, 000 8, 281, 451

Enron 23, 355 85, 000 8, 895, 865

The prototype of Maiden contains three components of Client, the Enclave,
and the Server. They follow the scheme’s protocols as presented in Sect. 4.3. We
leverage standard ecalls/ocalls interfaces provided by SGX SDK to implement
the communication between these components. In all experiments, we set a batch
size to 1×104 when the Enclave sends query tokens to the Server during Search
via the ocall interface. Note that, we use the same Bloom filter’s configuration
for all the following used datasets, with the false positive rate 10−4 and it can
store up to 1.5 × 107 pairs.

For baseline schemes, we first choose Orion [24] since it is publicly known
as the most optimal non-TEE supported Type-I backward-private scheme with
O(nwlog2N) search latency. We migrate the Client of Orion to the Enclave,
and name this ported version as Orion�. The Enclave in Orion� stores the map
LastInd[w] that maintains the most recently inserted file identifier matching w,
and the map UpdtCnt[w] tracking the total number of currently matched doc-
uments of w. The Server in Orion� maintains two oblivious maps (OMAPs) to
facilitate the Update and Search operations, as presented in the original scheme.
They are OMAPupd and OMAPsrc, respectively. We carefully port the implemen-
tation of Orion to the Enclave and also construct the OMAPupd and OMAPsrc

in the Server by using oblivious data structures initiated by AVL trees [24], as
introduced in the original Orion scheme. We refer readers to the original work [24]
for the detailed protocols of the scheme.

In addition, we also implement the Enclave component of Fort during Search
for comparison since the implementation of Fort is not publicly available. In
details, for a given sampled Stashdel cached in the Enclave, we ask the Enclave
to generate deleted/undeleted query tokens for a query keyword w. Then, the
Enclave linearly scans Stashdel to identify and discard a portion of the deleted
tokens existing in the Stashdel.We only measure the scanning time and consider
it as the search latency for Fort.

For both three schemes, we leverage built-in cryptographic primitives in
sgx tcrypto library to implement required cryptographic operations. The pro-
totypes of these schemes are deployed into an Intel SGX-equipped station with
Intel core i7 2.6 GHz and 32 GB RAM.

Experimental Datasets: We use two synthesis datasets (a small DS1: 70 MB,
and a large DS2: 4 GB), and a portion of public Enron email dataset2 (895
MB). The synthesis datasets are generated from the American English keyword

2 Enron email dataset: https://www.cs.cmu.edu/∼./enron/.

https://www.cs.cmu.edu/~./enron/
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Table 3. Avg. (μs) for adding/deleting a (w, id) pair when adding/deleting a portion
of DS1 and DS2.

Scheme Add 100% docs Del 25% docs Del 50% docs Del 75% docs

DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2

Maiden 19 43 1.24 1.4 2.09 2.4 3.01 3.3

Orion� 361 601 575 5,059 820 8,564.1 1,021.3 11,495.1

Table 4. Number of ocalls for data communication between Enclave and Server in
adding/deleting a portion of documents

Scheme Add 100% docs Del 25% docs Del 50% docs Del 75% docs

DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2

Maiden 12 829 1� 1� 1� 1� 1� 1�

Orion� 8.9× 104 6.2× 106 7.86× 105 1.34× 107 9.2× 105 1.7× 107 3.2× 106 3.6× 107

�: Maiden performs 1 ocall per doc in non-batch setting to add dummy entries to MI

frequency data and sampled by using the Zipf’s law distribution. With DS1, the
keyword’s state map Mc of Maiden can fit in the limited memory protected by
SGX Enclave (i.e., 98 MB), while the map causes paging overhead when DS2
is used. The paging overhead is essential to enable Enclave Page Cache (EPC)
perform page swaps of Intel SGX [16]. Table 2 summarises these used datasets.

6.1 The Performance on the Synthesis Datasets

Insertion and Deletion. We first evaluate the time for insertion and deletion
an (w, id) pair under different schemes when using datasets DS1 and DS2. As
shown in Table 3, Orion� takes 361 and 601 µs to insert a pair to DS1 and DS2,
respectively. That latency is about (13–36)× significantly higher than Maiden.
The reason is because the Enclave in Orion� needs to update/traverse the AVL
tree structures of both OMAPupd and OMAPsrc stored in the Server. Table 4
confirms that the communication (i.e., ocalls) in Orion� during addition is about
(4.6×103–1.4×105)× more than Maiden. It is clearly that Maiden is more efficient
because it only updates the local state map Mc within the Enclave. With Maiden,
the number of ocalls contacting to the Server is negligible (12 ocalls with DS1,
829 ocalls with DS2). This communication is purely made when the Enclave
inserts encrypted entries to the index map MI .

Similar with the addition, Orion� operates on both OMAPupd and OMAPsrc

to retrieve/update new state for every (w, id) pairs with the recently inserted
document identifiers. Therefore, the time to delete a document with Orion� scales
to the number of keywords in that document. Averagely, Orion� takes 6, 325 ms
to delete a document containing 8–14 keywords. Table 4 reports the latency when
deleting a portion of documents in DS1 and DS2. In contrast, Maiden takes a
negligible time cost to delete a document. The main reason behind it is because
Maiden only tracks the identifiers of those deleted documents within the Enclave.
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2SDtesataD1SDtesataD

(a) 25% deletion

(b) 50% deletion

(c) 75% deletion

Fig. 5. The query delay of querying the i-th most frequent keyword in the DS1 and
DS2 datasets after deleting a portion of documents

It only takes 1 ocall per a deleted document to insert dummy entries into the
index map MI to hide the operation.

Query Delay. Next, we monitor the search latency between Fort, Orion�, and
Maiden when using datasets DS1 and DS2. We choose to query the top-10 key-
words in the datasets after deleting a portion of documents. With DS1, we insert
1 × 104 documents, then delete 25%, 50%, and 75% of the documents, respec-
tively. Similarly, with DS2, we insert 1 × 106 documents, and also delete these
portions of the documents. Figure 5 reports the search latency under different
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schemes. The result shows that Fort has the downward trend when querying less-
frequent keywords. The reason is because those keywords have fewer number of
undeleted/deleted tokens to be scanned against the map Stashdel stored in the
Enclave. Averagely, scanning a token (w, id) of the most frequent keyword in
DS1 takes 18 µs when Stashdel = 1 × 105. In the larger dataset DS2, this cost
is averagely 284.2 µs to scan just an (w, id) pair for the most frequent keyword
when Stashdel = 6.3 × 106. The more documents deleted, the longer time Fort
takes to scan the tokens of query keywords. Querying the most frequent keyword
in DS2 after deleting 75% documents takes more than 2 × 106 ms. With Orion�,
the scheme takes 1.4×103 ms less than Fort to query the most frequent keyword
w (with the frequency of 1 × 104) in the small dataset DS1 after deleting 25%
documents. The reason is because Orion� only computes the tokens of currently
documents matching the query keyword w. However, the latency to query doc-
uments matching a keyword in the larger dataset DS2 is non-trivial. It takes
about 9.2 × 105 ms to query a keyword in the top-10 frequent keywords in DS2
after deleting 75% documents. The reason for it is because the Enclave in Orion�

needs to retrieve matching nodes from a large AVL tree (with 223 AVL nodes in
DS2) of OMAPsrc, where the tree’s nodes are stored in the random positions of
the underlying ORAM structure stored in the Server. In addition, the oblivious
accesses in Orion� also include the cost of mapping visited AVL nodes to new
ORAM positions, and encrypting/writing them back to the Server.

Figure 5 shows that Maiden completely outperforms Fort and Orion� in both
DS1 and DS2. With the small dataset DS1, querying the most frequency key-
word with Maiden is 10× and 47× faster than Orion� and Fort, respectively, after
deleting 25% documents in DS1. With the large dataset DS2, the difference is
about 35× and 174× faster than Orion� and Fort, respectively. When deleting
75% documents in DS2, Maiden is more efficient than Orion� and Fort about
12× and 95× when querying the most frequent keyword. Even when querying
the 10-th frequent keyword, that difference varies from 45–175×. Note that,
the main difference in the search of Maiden compared to others is how it gen-
erates the query tokens of currently matching documents for query keywords.
Unlike Fort, Maiden does not require intensive computation (i.e. linear scanning
undeleted/deleted tokens of query keywords against the large Stashdel), neither
does Maiden perform oblivious accesses to the Server to identify the state of cur-
rently matching identifiers like Orion�. We note that membership testing with
Bloom filter in Search of Maiden is O(1). With tracked deleted identifiers in the
list d, the Enclave in Maiden can directly retrieve the deleted state of deleted
documents matching the query keyword. The difference between DS1 and DS2
is that the size of the state map Mc in Maiden triggers paging overhead in SGX
Enclave. We monitor that Mc in DS1 takes 2.27 MB, while the latter exceeds 157
MB. The paging cost is added to the search latency of Maiden when the EPC
swaps pages to access the states of deleted (w, id) from the map. Nonetheless,
with paging access, we observe that Maiden is averagely 75× and 90× faster
than Orion� and Fort when querying the top-10 frequent keywords in DS2 after
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(a) DS1 (b) DS2

Fig. 6. The permanent memory in the Enclave in the datasets DS1 (1×104 documents)
and DS2 (1 × 106 documents) and deleted 25% portion of them

deleting 25% documents of the dataset. With 75% documents deleted in DS2,
the difference is in the range 70–72× faster than Orion� and Fort.

Memory Storage. Finally, we present the memory storage in the Enclave of
the three schemes. As shown in Fig. 6, Maiden takes the largest memory, about
41 MB, among others when using dataset DS1. The main reason is because
the storage of Mc (i.e., 2.27 MB) and the configured Bloom filter 38 MB (i.e.,
Pe = 10−4) . When using DS2, the memory storage is about 200 MB due to
the large state map Mc (i.e., 157 MB). We note that, deleting more documents,
i.e., 75% documents in DS1 and DS2 does not affect significantly the memory
consumption in the Enclave of Maiden. The reason is because only the identifiers
of these deleted documents are appended in the list d of the scheme. Note that,
the size of d is only about 30 KB and 3 MB when deleting 75% documents in DS1
and DS2, respectively. With Orion�, the memory consumption in the Enclave is
negligible because the scheme only maintains the number of current documents
and the most recently inserted document identifiers matching every keyword
in the maps UpdtCnt[w] and LastInd[w], respectively. With Fort, the scheme
maintains Stashdel = Σ∀wdw in the Enclave. Hence, with the DS2, deleting 25%
documents requires about 121 MB to store 6.4 × 106 deleted tokens.

6.2 The Performance on the Enron Email Dataset

Query Latency. We use a portion of real world Enron email dataset to demon-
strate the efficient of Maiden when the paging overhead in SGX Enclave occurs.
We insert 85, 000 email documents and test the average query delay with a small
deletion portion 25%. With this deletion portion, there is no paging overhead
in Fort. Figure 7 a reports the query delay when querying the top-10 frequent
keyword in Enron dataset. The result shows that Maiden is averagely 291× and
575× faster than Orion� and Fort, respectively. We obtain that Maiden is more
efficient than Fort and Orion� during Search with the used Enron dataset. The
reason is because Enron actually has more keywords in the same deletion portion
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(a) Query latency (b) Memory Storage

Fig. 7. Query latency and memory storage between schemes in the Enron dataset

compared to the used dataset DS2 (see Table 2). With DS2, the rate of cache
hit in Fort is 1.56 × 10−1, an order of magnitude higher than that rate (i.e.,
1.52 × 10−2) when Enron dataset is used. We note that reducing the false posi-
tive rate Pe of the Bloom filter used in Maiden does not change much its search
performance. Changing Pe = 10−6 from Pe = 10−4, it only incurs averagely an
additional 120 ms latency to search the top-10 frequent keywords.

Memory Storage. Clearly, Maiden needs the largest SGX Enclave memory
to store the state map Mc of the all (w, id) pairs in the dataset (∼170 MB).
Fort consumes a minimal storage Stashdel = 44 MB to store 2.3 × 106 deleted
tokens. The limitation of Maiden is the memory bottleneck in the SGX Enclave.
In the future work, we will improve the memory efficient of the scheme. In the
meantime, we expect the new version Intel SGXv2 to increase the size of the
enclave page cache more greatly and support dynamic page allocation [35].

7 SGX-Related Attacks and Defence Discussion

With Intel SGX’s security guarantee, CPU is the only trustworthy component
where enclave’s code and data are handled in plain-text format, all other compo-
nents including operating system (OS), memory, hypervisor, memory bus, etc.
are treated as untrusted. Whenever the code/data are moved out of the CPU,
i.e., into untrusted DRAM memory space, they are encrypted and integrity pro-
tected. However, there have been many side-channel attacks showing that it is
not impossible to infer/steal the secrets protected by the SGX enclaves. Those
attacks leverage the side information revealed by cache [8,25,43], page table
[46,54,55], transient execution [12,51] and others [2,33,37]. In this section, we
discuss significant SGX-related attacks and existing defences, and consider how
they can be applied to our proposed scheme.

7.1 Cache Side-Channel Attacks and Defence

While enclave’s code and data are encrypted and authenticated by the CPU,
they are still stored unencrypted in CPU’s caches and registers to facilitate



Towards Efficient and Strong Backward Private Searchable Encryption 69

the execution. Therefore, by monitoring the cache channels, an adversary can
learn fine-grained data leakage of the enclave. These cache-based attacks have
been investigated at L1/L2 caches (on the same shared CPU core with hyper-
threading) and L3 cache (cross-CPU core attacks). With shared L1/L2 cache
channels, an adversarial process and a victim enclave process interleaved on the
same physical CPU core, sharing both L1 cache that stores code and data, and
L2 cache that unifies code and data at fine granularity level. Therefore, the
adversary can infer the memory content of the victim enclave via the cache data
access pattern. This is also known as time-sliced cache attacks [8,25,40]. With
L3 cache channel, i.e., the last level cache (LLC) shared between CPU-cores,
Schwartz et al. [43] developed an unprivileged program injected in a malicious
enclave to conceal the secret key of a co-located victim enclave running on the
same host machine. The simplest way to prevent the adversarial hyperthread
from accessing to the shared L1/L2 cache channels of the victim enclave’s pro-
cess is by disabling hyper-threading [34]. However, this solution is not highly
recommended since it obstructs other applications’ performance and restricts
CPUID instruction access from the victim enclave. Alternatively, preferred solu-
tions to mitigate these cache channel attacks are transaction memory randomisa-
tion [7,27] and oblivious execution approaches [38,41,42] to obfuscate the cache
data access pattern, and/or using Varys-protected run-time environment [39].

Transaction Memory Randomisation: Dr. SGX [7] applies a hardening ran-
domisation technique to all data locations in enclave’s memory at cache-line
granularity. By randomising every eight data blocks at once, it makes the cache
tracing of enclave’s data is harder. Cloak [27] is also another mitigation solution
using memory transaction technique. It uses Intel Transactional Synchronization
Extension (TSX) to construct atomic memory operations that obliviously hide
the memory access of enclave’s data. The idea is that the enclave is requested to
touch all cache lines before it accesses to the real data. Therefore, an adversary,
monitoring the cache channel, learns nothing about the enclave’s data access.
We note that Dr. SGX is built as a compiler tool and Cloak simply just requires
annotating enclave’s data. Therefore, they can be applied directly to current
SGX-supported (backward-private) SE schemes, (i.e., Maiden, Fort [1], Orion�,
and SGX-SE1 and SGX-SE2 [53]), without changing the schemes’ design. As a
trade-off, they require an increasing overhead of averagely 4.8× for Dr. SGX, and
2.48× for Cloak, respectively. The penalty overhead is added to the complexity
of enclave’s computation in Update and Search operations for all the schemes
(see Table 1).

Oblivious Memory Execution: Oblivious execution is also another approach
to hide all enclave’s code and data access. For example, Raccoon [41] provides
annotation guides to hide the data access regarding different data sizes in the
enclave. For small-size secrets, the data access is hidden by using Path ORAM.
Otherwise, Raccoon uses Advanced Vector Extensions (AVX) intrinsic opera-
tions provided by Intel to stream over large data structures. In addition, Racoon
also obfuscates control flows by using oblivious operation primitives extended
from CMOV x86 instructions. Applying Racoon to current backward-private SE
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schemes’ operations will add about 16× penalty overhead. We also note that this
solution can be plugged directly to the current implementation of the schemes,
without changing the design. Alternatively, ZeroTrace [42] also proposes effi-
cient oblivious memory primitives by using Circuit-ORAM. It runs on top of
a software memory controller. Therefore, applying ZeroTrace to the implemen-
tation of the backward-private schemes requires a minor modification of using
the memory controller interface for all enclave’s accesses, without changing the
(backward-private) SE schemes’ implementation design. Other oblivious primi-
tives of memory assignments and comparisons, and oblivious array access [38]
can be directly adapted to the schemes’ implementation. Again, using oblivious
data structures like ORAM will reduce the efficiency, and designing an TEE-
based SSE schemes that can address memory access side-channels without using
ORAM is still an open question.

Side-Channel Protected Runtime Environment: To mitigate the cache-
channel attacks, Varys [39] provides a trusted core reservation technique that
ensures the CPU-core only shares its caches to Varys’s benign threads, preventing
adversarial threads from using the same caches. In particular, for single-thread
application like Maiden, Fort [1], Orion�, and SGX-SE1 and SGX-SE2 [53], we
realise that Varys would simply pair that application thread with a service thread
to reserve the complete core, and schedule it for runtime monitoring. Varys was
reportedly to incur 15% penalty overhead in previous case studies [39]. Therefore,
we assume that it would not impact much on the performance of these SE
schemes. In addition, Varys is built as a Low Level Virtual Machine (LLVM)-
based compiler; therefore, it also does not affect the schemes’ code structure.

7.2 Page-Table Side-Channel Attacks and Defence

Apart from exploiting CPU caches, enclave’s code and data are stored in Enclave
Page Cache (EPC), which is the a subset of a contiguous Processor Reserved
Memory (PRM) of DRAM. Every 4 KB enclave page of code and data is allocated
from the EPC (including paging). With SGX design, the page table is managed
by the (untrusted) OS. Therefore, it reveals the page-level access patterns of the
victim enclave. The malicious OS can trigger page faults from requested pages
during the enclave execution to learn the enclave’s control flow and memory
access. That page fault channel is sufficiently informative to extract the rich
text information [55], or secret key bits [46] of victim enclaves. While increasing
high page fault rate, these attacks consequently trigger asynchronous enclave
exit (AEX) to report the accessing address of the faulting page to the (mali-
cious) OS (i.e., even up to 11000 exits per second [54]). Therefore, a common
system-level solution to thwart page-table side-channel attacks is to monitor and
detect AEXs due to interrupts of page faults, like T-SGX [45] and Déjá Vu [13].
This solution allows the enclave to stop its execution if the detection occurs.
Using this detection solution is a separated configuration and it also does not
affect the designs of the SE schemes. Alternatively, Varys [39], an LLVM-based
compiler, also introduces a monitoring mechanism for enclave exits so that the
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application thread running in the enclave can be terminated, without revealing
further faulty pages’ addresses to the OS. Other studies [22,47] also provide a
self-verification mechanism to the enclave when page faults occur with an extra
1.2–2.4× overhead. We note that these compiler-based tools do not cause any
impact on the SE scheme’s code structure and implementation.

7.3 Transient Execution Attacks and Defence

Recent works also exploit the CPU execution design to steal enclave’s secrets.
The execution of a program in Intel CPUs (i.e., Intel’s Skylake microarchitecture)
is facilitated by two parts including a frontend component and an Execution
Engine. While the frontend performs speculative execution predicting branch
instruction to speed up the program’s execution, the Execution Engine can exe-
cute instructions in out-of-order fashion so that multiple instructions can be exe-
cuted in parallel. It has been shown that both these two parts can be exploited.
For instance, Chen et al. [12] demonstrated SgxPectre attack that poisons the
branch prediction of a victim enclave so that malicious injected secret-leaking
instructions can be executed when the victim enclave runs. Unlike SgxPectre
attack, Foreshadow [51] exploits the out-of-order execution to access even pages
where the victim enclave’s memory lies in. It exploits OS’s system calls to trig-
ger page faults and then uses Meltdown-like technique to access enclave’s data
before the page fault is handled. After that, it uses caching side-channel attack
(i.e., Flush+Reload [56]) to read enclave’s secrets from CPU’s cache. We note
that these attacks cannot solely mitigated by software solutions. It would include
updates to OS, hypervisors, and CPU microcode. We refer interested readers to
[18,26] for additional details about these hardware countermeasures.

7.4 Other Attacks and Defence

Apart from side-channel and transient execution attacks, recent studies found
that SGX Enclave is also vulnerable to memory-corruption attacks [2,33]. These
attacks often assume that the adversary has knowledge of vulnerabilities in the
enclave’s legacy code (i.e., stack overflow, data type confusion, format string
vulnerability, etc.). Therefore, the untrusted code outside the enclave could
pass parameters or invokes specific functions in the enclave, which subsequently
perform sensitive computations. Since SGX instructions of ecalls (i.e., EEN-
TER) and ocalls (i.e., EEXIT) do not clear CPU registers, thereby they allow
the execution of (vulnerable) trusted code in the enclave to pass sensitive
results/access to untrusted code (i.e., gaining access to CPU registers [2], or
exfiltrating confidential code and data from enclave memory [33]). Mitigation
solutions could be either 1) restricting the enclave’s permission from accessing
pages containing malicious code injection [58], 2) providing memory-safe access
for variables/objects in SGX [31], 3) designing memory randomisation scheme
for SGX enclave [44], or 4) static host-to-enclave code analysis tool [15]. We note
that memory-corruption attacks are out of our focus since we consider that SE
schemes used in our experiment and evaluation are memory-safe implementation.



72 V. Vo et al.

Finally, adversaries can rely on power management software [37] to induce
memory errors and cause overflows in the SGX runtime. Particularly, they can
change protected values in the EPC region and direct in-enclave pointers to
untrusted memory via this attack. Unlike prior attacks, this attack does not
require any knowledge on code/memory. Fortunately, the issue has been fixed
by recent microcode and BIOS updates offered by Intel [29].

8 Conclusion

In this paper, we design an efficient and strong backward-private DSSE scheme
using TEE. Our scheme is the first to achieve Type-I backward privacy without
relying on ORAM. We carefully investigate the limitations of prior theoretical
TEE-supported scheme. Our proposed design reduces the overhead computation
of the SGX enclave and also reduces the communication between the enclave
and server. We implement prior works and our scheme and conduct a detailed
evaluation on the performance under different schemes. The results show that our
design is more efficient in the update operation and query latency. We also discuss
SGX-related attacks and the deployment of our scheme in practical enclaves.
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Abstract. Due to the large volume of available datasets and powerful
computing infrastructures, federated learning has been widely explored
in many scenarios, e.g. medical screening, and image processing. It refers
to all participants to jointly learn shared models under the orchestra-
tion of the server without exposing their datasets. In federated learning,
since the data qualities of the participants are extremely diverse, reliabil-
ity is used to measure the data qualities of the participants. To make the
learning task liberally and non-discriminative, participants’ reliability
privacy related to their data quality should be well preserved. However,
the existing work assumed that the reliability of participants is trans-
parent for the server provider, resulting in a severe challenge in practi-
cal applications. To thwart this challenge, we propose a novel federated
learning scheme, which prevents each participant’s training set privacy
and reliability privacy from being revealed to the public. Moreover, to
further reduce the impact of unreliable participants and improve train-
ing efficiency, we design a cipher-based reliability weighted method to
differentiate and intensify different contributions of the (un)reliable par-
ticipants for joint model training. Security analysis shows that our pro-
posed scheme can achieve the desired security requirements. Moreover,
extensive performance evaluations demonstrate that our design achieves
higher accuracy and is more robust against unreliable participants than
conventional federated learning.
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1 Introduction

In recent years, a large amount of data has been generated and released for
driving neoteric scientific discoveries. Hence, effective, rational and responsi-
ble utilization of these massive data has become a huge challenge. Fortunately,
thanks to the powerful computing infrastructures, collaborative machine learn-
ing has provided a novel technique for dealing with these large amounts of data.
The term “collaborative learning” refers to a new learning mode in which par-
ticipants at various performance levels work together toward a common clas-
sifier training by leveraging their own datasets. Then, the well-trained classi-
fier will make an accurate prediction on the new input sample, powering its
widespread use in an extremely wide variety of applications such as image pro-
cessing [13,14,17,18], smart medical [2,3,26], and game playing [22,31]. How-
ever, these user-related data are often crowdsourced from sensors deployed on
wearable or mobile devices, comprising of personal sensitive information, e.g.,
location, medical history anamnesis, personally identifiable information, and pri-
vate images, etc. Therefore, it will lead to critical privacy concerns if we directly
share and use these data in collaborative deep learning without any protection
measures.

Federated learning, introduced by Mcmahan et al. [8] in 2016, provides a
promising solution to the privacy leakage problems in collaborative learning.
It refers to a learning setting where many participants collaboratively train a
shared classifier under the orchestration of a parameter server while keeping the
training data decentralized and privately. Concretely, in federated learning, all
participants duplicate a global classifier and update it by iteratively minimizing
the loss function over local datasets over many epochs, and then they only submit
the model parameters or the calculated gradients in non-plaintext form to the
server. Henceforth, a longstanding goal pursued by cryptography and machine
learning research communities is how to efficiently and effectively complete the
above learning process without revealing sensitive information concerning to the
participants. [6,7,20,21,23,24,33].

To this end, extensive privacy-preserving techniques, including secure multi-
party computation (SMC) [12], differential privacy (DP) [9], and homomorphic
encryption (HC) [25], have been fully utilized into federated learning algorithms.
Very recently, to protect the whole gradients as well as reduce the communica-
tion overheads, Shokri et al. [29] proposed a privacy-preserving deep learning
scheme, which allowed participants to share a small portion of gradients with
a parameter server. However, it had been proved by Aono et al. [6] that shar-
ing a portion of gradients also results in privacy leakage. Besides, Aono et al.
[6] designed a privacy-preserving deep learning scheme via additively homomor-
phic encryption technique. Compared with the scheme in [29], Geyer et al. [10]
proposed a differentially private federated learning approach that can maintain
client-level differential privacy at the cost of a minor model performance loss. So
far, these approaches are only suitable for the scenario where all the participants
contribute the same data quality to the joint model training. Nevertheless, in
real-world federated learning, the training data generated and collected from a
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variety of participants differ in quality and reliability. The reason is that dif-
ferent terminal devices have diverse abilities to generate raw data, and it may
occur some extraordinary errors during data collection, storage, processing, and
aggregation. Zhao et al. [35] firstly took the unreliable participant i.e., partici-
pants with low quality data, into account in collaborative learning. In order to
make the learning procedure fair and non-discriminative, reliability privacy of
participants related to their data quality can be regarded as one of privacy con-
cerns that need to be protected. Besides, functional mechanism [34] is applied
to perturb the loss function of model training to avoid potential privacy leakage
from sharing gradients.

Although the method proposed in [35] is capable for preserving each partici-
pant’s training data with taking the existence of the unreliable participants into
account, there still exist some key defects: 1) while the data quality privacy of
each participant cannot be inferred by other participants, it is transparent for
the parameter server, especially for the malicious server. The parameter server
may reveal the data quality privact of the participant with low data quality.
This may cause unfairness and discrimination to participants with low data
quality in the learning process. 2) In the case discussed earlier, the method of
calculating reliability score used in [35] to improve training efficiency is invalid
since that data quality of each participant is also non-transparent for the cloud
server. 3) Based on DP technique, privacy-preserving collaborative deep learning
with unreliable participants introduces a certain model accuracy loss, which may
result in significant performance degradation in some specific domains.

1.1 Our Contributions

Our main contributions can be summarized as below.

– We propose a participants’ reliability privacy-preserving federated learning
scheme with unreliable participants based on homomorphic encryption tech-
nique. Except for the training dataset and its corresponding gradients, the
data quality, i.e., reliability privacy of each participant can also be preserved,
decoupling the learning process being unfair and discriminative.

– We design a novel cipher-based gradients weighted method which makes par-
ticipants dedicate discrepant contributions to the joint model training, relying
on their private data quality without revealing them. In this way, our design
has an advantage over conventional federated learning in performance.

– We conduct extensive experimental study on our design by using three bench-
mark datasets and the results confirm that our proposed scheme is effective
and efficient.

1.2 Related Work

Privacy-preserving machine learning attracts more attentions from both the
cryptography and machine learning communities. Previous works have concen-
trated on preserving the training data privacy and model privacy by leveraging
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cryptographic techniques such as garbled circuit, secure multi-party computa-
tion and homomorphic encryption. With the ever-growing volume of data gen-
erated, machine learning based on cloud computing has been widely explored
for its available infrastructure and feasibility in massive data learning. In [11],
Gilad-Bachrach et al. proposed CryptoNets, which allows to conduct model
training and prediction on encrypted data, but it requires considerable com-
putation resources. Mohassel et al. [20] presented SecureML based on secure
two-party computation, implementing a general system for privacy-preserving
machine learning with a two-server model. Based on SIMD, Liu et al. [19] pro-
posed MiniONN, which converts any existing neural networks to an oblivious
neural network for prediction task. Riazi et al. [28] presented a hybrid secure
computation framework for machine learning applications, named Chameleon.
Besides, this method introduces a trusted third-party. Then, Juevekar et al. [15]
improved the scheme in [28] by exploring effective use of packed ciphertexts.

Differential privacy also can be utilized to perturb the model parameters [27],
the objective function [35], or the calculated gradients [29] in collaborative deep
learning in order to hide the original training data privacy. Aggregation of inde-
pendently trained neural networks using DP is presented in [27]. Unfortunately,
directly averaging neural-network parameters does not necessarily contribute to
a better shared model. In [29], participants only contributed a small portion of
gradients to the joint model training, targeting at reduce communication over-
head. The differential privacy is achieved by adding noises to truncated weights.
However, the total privacy budget is increasing with the numbers of parameters.
Zhao et al. [35] proposed a privacy-preserving collaborative deep learning, which
firstly takes the data quality privacy into consideration. While the data quality
privacy of each participant cannot be inferred by other participants, it is still
transparent for the parameter server. Besides, all the above solutions inevitable
result in utility loss by leveraging DP technique.

1.3 Organization

The rest of this paper is organized as follows. Section 2 presents some prelim-
inary knowledge and tools used in this paper, followed by a description of the
system model and security requirements in Sect. 3. In Sect. 4, we give a concrete
construction for the CECMLP scheme. Security analysis and extensive perfor-
mance evaluations are elaborated in Sect. 5 and Sect. 6, respectively. Finally,
Sect. 7 concludes this paper and discusses future work.

2 Preliminaries

In this section, some preliminaries about privacy-preserving collaborative deep
learning [29], homomorphic cryptosystem [25], and cipher-based multi-layer per-
ceptron (CMLP) are presented. The key notations defined in this paper are
shown in Table 1.
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Table 1. Key notations

Notations Description

Wshared Parameters of the shared model

Wnew New parameters of the shared model computed in the Eval Phase

Wi Local model parameters of the participant i

wi Local model parameters in integer form of the participant i

Gi Local model gradients of the participant i

De Evaluating dataset

N Number of the participants

E Size of the evaluating dataset

d Preserved precision of floating-point numbers

2.1 Privacy-Preserving Collaborative Deep Learning

Privacy-preserving collaborative deep learning enables several data owners to
train a common model collaboratively with their local datasets keeping pri-
vately. In general, the system model of privacy-preserving collaborative deep
learning consists of a parameter server and multiple participants. In this setting,
the parameter server keeps a public shared model and the participants own the
corresponding duplicate model as well as their local private datasets. The fol-
lowing procedures are repeatedly conducted to train the shared model with the
contribution from the participants’ private datasets.

Privacy-Preserving Collaborative Deep Learning

1. The participants download the parameters Wshared from the param-
eter server and update the local parameters Wi(1 ≤ i ≤ N) with
Wshared, where N represent the number of the participants.

2. The participants train the local model on their local datasets by
conducting stochastic gradient descent (SGD) algorithm, i.e., Wi =
Wi + Gi(1 ≤ i ≤ N), where the gradients Gi(1 ≤ i ≤ N) are the
vectors of increments of local parameters in the training epoch.

3. The participants upload the local parameters Wi(1 ≤ i ≤ N) to
the parameter server. On receiving the local parameters from the
participants, the parameter server updates the global shared model.
For averaging method, the global model is updated by adding the
average of all parameters, i.e., Wshared = 1

N

∑N
i=1 Wi = Wshared +

1
N

∑N
i=1 Gi.

2.2 Homomorphic Encryption

Homomorphic encryption is a cryptosystem that allows meaningful operations
on ciphertext. When decrypting the result of this computation, the plaintext
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matches the result of operations as if they had been performed on plaintext. Pail-
lier cryptosystem [25] is an additively homomorphic encryption scheme, while
does not support homomorphic multiplication. We extend Paillier and design a
novel homomorphic encryption algorithm, which support encrypting floating-
point number and performing homomorphic operations needed in our work.
The homomorphic encryption algorithm is formalized as HE = (KeyGen,Enc,
Dec,Add,Mul,Max,Equal).

– (pk, sk) ← KeyGen(1λ): KeyGen algorithm returns a key pair (pk, sk)
which is also a Paillier key pair and pk = (n, g), where n is the modulus and
g ∈ Z

∗
n2 .

– c ← Encpk(M): To encrypt a floating-point number, the floating-point num-
ber is encoded into an integer firstly. Then, by encrypting the integer with
Paillier public key pk, the algorithm outputs the ciphertext c.

– M ← Decsk(c): Dec decrypts the ciphertext c to obtain an integer plaintext.
Then, the integer plaintext is decoded into a floating-point number.

– c′ ← Add(c1, c2): Add enables homomorphic addition of two ciphertext c1
and c2.

– c′ ← Prod(c1,m2): On inputting the ciphertext c1 and the plaintext m2,
homomorphic production result c is returned, s.t. Decsk(c′) = m2Decsk(c1).

– c′ ← Mul(c1, c2): Mul is a homomorphic multiplication protocol which
enables one to obtain the homomorphic multiplication result with the help of
private key owner without revealing the result.

– c′ ← Max(c1, c2): Max is a protocol which enables one to obtain the cipher-
text which has a larger corresponding plaintext.

– c′ ← Equal(c1, c2): Equal is a protocol which enables one to obtain the
ciphertext of the result c′ by comparing c1 and c2, where c′ = Encpk(1) if
Decsk(c1) = Decsk(c2), c′ = Encpk(0) otherwise.

2.3 Cipher-Based Multi-Layer Perceptron

CMLP is a model transformed from a multi-layer perceptron (MLP) by encrypt-
ing the parameters of the MLP. Holding a CMLP, one can exploit the CMLP to
make a prediction on an encrypted input data and obtain an encrypted confi-
dence vector.

A multi-layer perceptron generally consists of several fully connected layers,
which are composed of several neurons. Let x and y be the input and output of
one neural layer respectively. Each neuron takes outputs of |X| neurons in the
previous layer as its input, where |X| is the number of neurons of the previous
layer. Then, the output of ith neuron in the layer can be formalized as Eq. (1),
where yi represents the output value of ith neuron, wij represents the weight
of the connection between jth neuron in the previous layer and ith neuron, xj

represents the output of jth neuron in the previous layer, bi represents bias of
the neuron, and f is the activation function. The purpose of using activation
function is to introduce non-linear to the model. In this work, we apply rectified
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linear unit (ReLU) f(x) = ReLU(x) = max(0, x) as the activation function of
MLP model.

yi = f(
|X|∑

j=0

wijxj + bi) (1)

CMLP has the same structure as the original model. The input, output,
and parameters are encrypted exploiting HE represented in Sect. 2.2. For each
layer, the activation of neuron is shown as Eq. (2), where ȳi = Encpk(yi) is
encrypted activation, w̄ij = Encpk(wij) is encrypted parameter, x̄j = Encpk(xj)
is encrypted input, b̄i = Encpk(bi)) is encrypted bias, ⊕ is homomorphic
addition Add, and ⊗ is homomorphic multiplication Mul, f̄ is homomorphic
activation function. In this work, we design a homomorphic ReLU function
f̄(x̄) = Max(Encpk(0), x̄), which is implement by the Max presented in 2.2.

ȳi = f̄(
|X|∑

j=0

w̄ij ⊗ x̄j ⊕ b̄i) (2)

Based on the above homomorphic encryption algorithm HE, the definition
of CMLP is formalized as CMLP = (Pred,Eval).

– Encpk(ŷ) ← Pred(Encpk(W ),Encpk(x)): On inputting the encrypted model
parameter Encpk(W ) and the encrypted input data Encpk(x), Pred com-
putes the encrypted confidence vector Encpk(ŷ).

– Nc ← Eval(Encpk(W ),Encpk(D)): Given the encrypted model parameter
Encpk(W ), on inputting the encrypted dataset D, Eval returns the encrypted
correct number Nc of parameter W .

3 System Model and Security Requirements

The system model and security requirements of our proposed cipher-based evalu-
ating collaborative multi-layer perceptron (CECMLP) training scheme are intro-
duced in this section.

3.1 System Model

As shown in Fig. 1, the system model of the proposed CECMLP consists of three
entities, including the parameter server, the participants, and the evaluator.

– Parameter server. The main task of the parameter server is to send the
shared model parameters to all the participants and update the shared model
parameters on receiving aggregated parameters sent from the evaluator. Note
that the parameter server send the shared model parameters in plaintext
form in Fig. 1. Optionally, some security protocol (e.g., SSL) can be used to
prevent eavesdropping by the adversary when the parameter server sending
the shared model parameters.



86 Y. Chen et al.

Fig. 1. System model of CECMLP

– Participants. The participants have local datasets which are used to train
the shared model collaboratively. Each iteration mainly consists of two phases:
1) The participants update the local model parameters with the shared model
parameters received from the parameter server and train local model over
their own datasets. 2) After training, the participants encrypt the local model
parameters with the public key of the parameter server and send it to the eval-
uator. We remark that the difference in data quality among the participants
is taken into consideration in this work.

– Evaluator. The evaluator holds a small evaluating dataset collected and
encrypted by the parameter server. In order to ensure the accuracy of evalua-
tion, the distribution of the evaluating dataset should be independent and
identically distributed with the real data. When collecting the encrypted
parameters from the participants, the evaluator validates the encrypted
parameters exploiting the encrypted evaluating set and obtains the encrypted
reliability scores for the parameters. New model parameters are obtained by
aggregating the participants’ parameters with the reliability score as weight.
When the new model parameters are computed, the evaluator sends them to
the parameter server.

3.2 Definition of CECMLP

Definition 1. The cipher-based evaluating collaborative multi-layer perceptron
CECMLP = (Setup, Download,Training,Evaluate,Update) consists of the
following five phases.

– Setup. The parameter server initializes the shared model and generates its
key pair and encrypts the evaluating set with its public key. Then, it sends
the encrypted evaluating set to the evaluator.
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– Download. The participants download the current shared model parameters
from the parameter server and update their local models.

– Training. The participants train the local models over their local datasets.
After training, the participants encrypt the local parameters with the public
key of the parameter server and send them to the evaluator.

– Evaluate. When received the encrypted parameters of the participants, the
evaluator computes the reliability scores of the participants via exploiting HE
and CMLP . Then, the evaluator computes the new parameters and sends it
to the parameter server.

– Update. When received the new parameters, the parameter server updates
the current shared model parameters.

3.3 Security Requirements

In our proposed CECMLP scheme, all three entities are honest-but-curious,
which means that they will perform obeying the protocol honestly, but they are
curious about the private information of other participants and they can exploit
the imformation they hold to speculate on participants’ privacy information.
We assume that either of them are non-colluding. The security requirements we
target at achieving are presented below.

– Dataset privacy. The private dataset owned by the participants are not
directly shared with others in collaborative learning procedure.

– Gradient privacy. Utilizing the gradients that calculated via training on
the local dataset, membership inference attack and inversion attack can be
performed. Therefore, the model parameters of the participants should be
encrypted before being uploaded to the evaluator to prevent gradient leakage.

– Participants’ reliability privacy. The reliability of the participants rep-
resent the quality of their local datasets. In CECMLP, the accuracy of the
uploaded parameters represents the reliability of this parameters. reliability
of the participants contain data distribution, data quality and other private
information about the local datasets. Therefore, the reliability of the partic-
ipants should be treated as their private information.

4 The Proposed Construction

In this section, we illustrate our proposed cipher-based evaluating collaborative
multi-layer perceptron (CECMLP) scheme.

4.1 High Description

In this paper, we focus on reducing the influence of the unreliable participants in
federated learning while protecting participants’ reliability privacy. An obvious
method to make good use of the participants with diverse abilities is that the
global model considers the reliability of the participants as the weights for adopt-
ing the parameters uploaded by them. However, it is unpractical to predict the
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data quality of the participants since the participants would not directly share
their private data set with others. Therefore, the reliability of participants are
unknown to all entities. To this end, we propose CECMLP.

The main idea is that the reliability of the participants are evaluated before
computing the new parameters. Concretely, to avoid revealing the participants’
reliability privacy to the public, the calculated local model parameters are
encrypted before being collected. Then, based on HE technique and the pro-
posed CMLP, an evaluator is introduced to evaluate the reliability of the partic-
ipants. In this way, the evaluator is capable of assessing the reliability of all the
participants without decryption. Moreover, the evaluator utilizes cipher-based
reliability weighted method to aggregate and compute the new model parame-
ters, and then sends them to the parameter server for the shared model renewal.
Therefore, the proposed CECMLP can guarantee the reliability privacy of the
participants, and it is robust against the unreliable participants.

4.2 Construction of CECMLP

– Setup. The parameter server generates (pk, sk) as its key pair by running
KeyGen algorithm on inputting the security parameter λ. Then, the param-
eter server: 1) initializes the parameters of the shared model randomly, 2)
encrypts every examples in the evaluating dataset De using private key sk
and sends Encpk(De) to the evaluator. Encrypting an example (x, y) repre-
sents encrypting the data x and its label y, i.e., (Encpk(x),Encpk(y)).

– Download. The participants download the current shared model parameters
Wshared via SSL protocol. When receiving the shared model, the participants
update the local models with the received parameters Wshared.

– Training. The participants update the local model parameters by training
over their local datasets. After training, the local model parameters Wi =
Wshared + Gi(1 ≤ i ≤ N) are obtained. Then, the participants encrypt the
local model parameters Wi(1 ≤ i ≤ N) with pk and send Encpk(Wi)(1 ≤ i ≤
N) to the evaluator. Floating-point vector Wi is encoded into integer vector,
such that wi = �10dWi�, where d is an integer. For simplicity, we assume
that floating-point number only has d decimal. Then, we have wi = 10dWi.
When wi has been computed, Ênc is run to encrypt wi and the ciphertext
Encpk(Wi) is obtained, where Ênc represents Paillier encryption. Therefore,
we have Encpk(Wi) = Êncpk(10dwi). Similarly, when decrypting Encpk(Wi),
integer plaintext wi is computed firstly by exploiting D̂ec, which represents
Paillier decryption, then the floating-point plaintext Wi can be obtained by
calculating Wi = wi

10d
.

– Evaluate. When receiving the ciphertexts from all the participants, the eval-
uator evaluates Encpk(Wi)(1 ≤ i ≤ N) on the encrypted evaluating dataset
Encpk(De) and obtains the reliability scores of the participants. Then, the
evaluator computes the new shared model parameters based on the param-
eters and the reliability scores of all the participants. To aggregate the new
shared model parameters, the evaluator processes the following steps:
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Algorithm 1. Mul protocol
Sign subprotocol

Input: S0 holds c = Encpk(M). S1 holds sk.

Output: S0 obtains the encrypted sign ̂Encpk(s)
S0:

1: Randomly choose r, such that 1 ≤ r ≤ n
2

10d
.

2: Compute c′ = Encpk(rM) and send c′ to S1.
S1:

3: Decrypt c′ to get rM . If rM > 0, let s = 1. If rM == 0, let s = 0. If rM < 0, let
s = −1 = n − 1 mod n.

4: Compute and send ̂Encpk(s) to S0.

SecMul subprotocol

Input: S0 holds c1 = ̂Encpk(m1), c2 = ̂Encpk(m2). S1 holds sk.

Output: S0 obtains c = ̂Encpk(m1m2)
S0:

1: Randomly choose r1, r2, such that 1 ≤ r1, r2 ≤ n − 1.
2: Compute c′

1 = ̂Encpk(m1 + r1) and c′
2 = ̂Encpk(m2 + r2). Then, send c′

1, c
′
2 to S1.

S1:
3: Decrypt c′

1 and c′
2 to get m1 + r1 and m2 + r2.

4: Compute t = (m1+r1)(m2+r2) mod n. Then, encrypt t with pk and send ̂Encpk(t)
to S0.
S0:

5: Compute ̂Encpk(−m1r2), ̂Encpk(−m2r1), and ̂Encpk(−r1r2).

6: Utilize homomorphic addition to compute c = ̂Encpk(t − m1r2 − m2r1 − r1r2) =
̂Encpk(m1m2).

Mul protocol

Input: S0 holds c1 = Encpk(M1), c2 = Encpk(M2). S1 holds sk.
Output: S0 obtains c = Encpk(M1M2)

S0:
1: Run SecMul on c1 and c2 with S1 to get c′ = ̂Encpk(t), where t = 10dM110dM2.

2: Run Sign on c′ with S1 to get ̂Encpk(s).

3: Run SecMul on c′ and ̂Encpk(s) with S1 to obtain ̂Encpk(st)
4: Randomly choose R, such that 1 ≤ R ≤ n

10d
− 2.

5: Compute c′
masked = ̂Encpk(st + 10dR) and send c′

masked to S1.
S1:

6: Receive c′
masked and decrypt it to get st + 10dR.

7: Compute st+10dR
10d

= st
10d

+ R.

8: Send ̂Encpk(
st
10d

+ R) to S0.
S0:

9: Run Add on ̂Encpk(
st
10d

+ R) and ̂Encpk(−R) to obtain ̂Encpk(
st
10d

).

10: Run SecMul on ̂Encpk(s) and ̂Encpk(
st
10d

) to obtain c = ̂Encpk(
s2t
10d

) =

̂Encpk(10dM1M2) = Encpk(M1M2).
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Algorithm 2. Max protocol
Input: S0 holds c1 = Encpk(M1), c2 = Encpk(M2). S1 holds sk.
Output: S0 obtains c′ = arg max

i
Decsk(ci)

S0:
1: Compute cdif = Add(c1, c2).
2: Compute c̄dif = Prod(cdif , r), where r is a random integer.
3: Send c̄dif to S1.

S1:
4: Decrypt c̄dif . If Decsk ≥ 0 send s = 1 to S0, else send s = −1 to S0.

S0: If s = 1, c′ = c1, else c′ = c2

• The evaluator exploits Eval to obtain ciphertext of correct number
Nc,i(1 ≤ i ≤ N), which are the ciphertexts of the numbers that the CMLP
with parameters Encpk(Wi)(1 ≤ i ≤ N) correctly predict on Encpk(De).
For each encrypted example (Encpk(x),Encpk(y)), the evaluator com-
putes the ciphertext of confidence vector Encpk(ŷ). The computations of
each layer in CMLP is processed as Eq. 2, where the Mul and Max is
represented in Algorithm 1 and Algorithm 2. On obtaining the cipher-
text of confidence vector, the evaluator utilizes Max protocol to find the
prediction of CMLP p = arg max

j
ŷj(1 ≤ i ≤ C), where C is the num-

ber of classification classes. To compare the prediction of CMLP p with
the encrypted label Encpk(y), in the same token, the evaluator computes
cp = Prod(Add(Encpk(p),−Encpk(y)), r) and sends cp to the parame-
ter server, the parameter server decrypts cp and sends comparison result
to the evaluator. If Decsk(cp) = 0, the parameter server sends Êncpk(1),
otherwise the parameter server sends Êncpk(0) otherwise. By computing
the summation of comparison results for all the encrypted examples in
evaluating set, Nc,i(1 ≤ i ≤ N) can be obtained.

• The ciphertexts of correct numbers Nc,i(1 ≤ i ≤ N) are not used
directly as reliability score. To compute reliability score si(1 ≤ i ≤ N)
based on Nc,i(1 ≤ i ≤ N), the evaluator finds the homomorphic maxi-
mum Nc,max and minimum Nc,min in Nc,i(1 ≤ i ≤ N), where max =
arg max

i
Decsk(Nc,i) and min = arg min

i
Decsk( Nc,i). Then, the eval-

uator computes homomorphic difference D between Nc,max and Nc,min

utilizing Add. After that, for each participant i, the reliability score si is
computed as si = Add(Add( Nc,i,−Nc,min),D).

• When the encrypted reliability scores of all the participants have been
calculated, the evaluator aggregates all the encrypted parameters with
reliability scores as weights to obtain the ciphertext of new parameters
Encpk(Wnew) =

∑N
i=1 Mul(si,Encpk(Wi)) and sends it to the parameter

server. The homomorphic sum of all reliability scores of the participants
ssum =

∑N
i=1 si is also sent to the parameter server.

– Update. On receiving Encpk(Wnew) and ssum, the parameter server decrypts
the ciphertexts to obtain Wnew and Decsk(ssum). Then, the parameter server
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computes the current shared model parameters as Wshared = Wnew

Decsk(ssum) =
∑N

i=1
si∑N

j=1 sj
Wi.

Algorithm 3. Compute the reliability scores of the participants
Input: Set of the encrypted parameters of the participants {Encpk(Wi)|1 ≤ i ≤ N},

the encrypted evaluating dataset Encpk(De)
Output: The reliability scores of the participants
1: for each 1 ≤ i ≤ N do
2: Compute Nc,i = Eval(Encpk(Wi),Encpk(De))
3: end for
4: Find the homomorphic max Nc,max in {Nc,i |1 ≤ i ≤ N} utilizing Max.
5: Find the homomorphic min Nc,min in {Nc,i |1 ≤ i ≤ N} utilizing Max.
6: Compute the homomorphic difference cdif between Nc,max and Nc,min utilizing

Add.
7: for each 1 ≤ i ≤ N do
8: Compute si = Nc,i − Nc,min + cdif utilizing Add.
9: end for

10: return {si|1 ≤ i ≤ N}

Note that the proposed CECMLP also work for other machine learning mod-
els, i.e., CNN and SVM, which can implemented with addition, multiplication,
and maximum. To this end, in this paper, we only focus on the implementation
of MLP which is a special case of CNN model and will not discussion about
implementation of other models anymore.

5 Security Analysis

The security analysis of our proposed CECMLP is presented in this section.

Theorem 1. In CECMLP, dataset privacy and gradient privacy of the partici-
pant is guaranteed, if all the participants, the parameter server and the evaluator
are non-colluding.

Proof. The privacy of the gradients is presented firstly. In CECMLP, the par-
ticipants only upload the encrypted parameters to the evaluator. While for any
participant i, gradients can be computed by calculating the difference between
the parameter of the participant i and shared model parameter before training,
i.e., Gi = Wi −Wshared. For an adversarial participant adv, only the parameters
of shared model Wshared is visible to the adversary. The adversary can calculate
the difference G of parameters between two adjacent Training phases, where
G =

∑N
i=1

si∑N
j=1 sj

Gi. Since that the adversary only knows Gadv, it is hard for

it to infer any other participant’s gradients.
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For the parameter server, it is similar to the condition of adversarial partic-
ipant. The parameter server can only obtain parameters of the shared model
Wshared in every iteration. Although the evaluator evaluates the encrypted
parameter collaboratively with the parameter server, the evaluator masks the
ciphertext with a blinding factor in the process to avoid revealing private infor-
mation to the parameter server. Because we assume that the evaluator and the
parameter server are non-colluding. Considering a malicious parameter server
who eavesdrops the communication channel between the participant and the
evaluator, SSL protocol can be utilized to guarantee the communication secu-
rity against eavesdropping from the parameter server.

For the evaluator, it only obtains the encrypted parameters of the par-
ticipant. Guaranteed by the Paillier cryptosystem, malicious evaluator cannot
obtain the plaintext of parameters of the participant without the private key of
the parameter server. In Evaluate phase, the evaluator utilizes Eval to com-
pute an encrypted reliability score of each participant and uses the encrypted
parameters as well as the reliability score to aggregate the encrypted new param-
eters. All calculations are performed on ciphertexts via homomorphic operations
and protocols. Therefore, the evaluator cannot obtain any information about
parameters of the participant without colluding with the parameter server, let
alone inferring gradients of the participant. As mentioned before, the gradient
vector of the participant i can be obtain by calculating the difference between
the participant’s parameter vector and the shared model parameter vector, i.e.,
Gi = Wi − Wshared. Participants encrypt the local parameters with the param-
eter server’s public key pks before uploading them to the evaluator. Without
sks, the evaluator cannot obtain the plaintext of the model parameters. So far,
we have proved that dataset privacy and gradient privacy of the participant
information is guaranteed in CECMLP. 	

Theorem 2. In CECMLP, the participant’s reliability privacy is guaranteed, if
all the participants, the evaluator and the parameter server are non-colluding.

Proof. In CECMLP, model accuracy represents the reliability of parameters in
Evaluate phase. The evaluator calculates reliability score si by counting the
number of samples that classified correctly. As shown in Sect. 4.2, The evaluator
utilizes CMLP to make a prediction to an encrypted example. Then, the evalu-
ator compares the prediction and the encrypted label and obtains an encrypted
compare result. By calculating the sum of the encrypted compare results of eval-
uating dataset via Add, Encpk(si) is obtained. Since that the evaluator does not
have the private key, the evaluator cannot obtain the plaintext of reliability score.
Though the parameter server can obtain the new parameter Wnew =

∑N
i=1 siWi,

it still knows nothing about Wi and si. Therefore, the parameter server does not
have the ability to compute the value of si of any participant. Similarly, for the
participant i, it knows nothing except for Wshared and Wi. Therefore, the par-
ticipant i cannot calculate reliability score of any participant. In a conclusion,
reliability privacy of the participants is protected against being revealed to all
entities. 	
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6 Experiments

In this section, we evaluate the proposed CECMLP on a Windows 10 PC with
an Intel Core i5-4590 CPU @3.30 GHz and a 8G RAM.

6.1 Datasets and Model Architectures

– Datasets. We use two real-world datasets to evaluate the proposed scheme,
namely MNIST [4] and SVHN [5]. Concretely, MNIST dataset consists of
60000 training examples and 10000 testing examples. Each example contains
a 28 × 28 image with a handwritten digit on its center and a label in 0–9.
SVHN can be seen as similar to MNIST. It consists of 73257 digits for training,
26032 digits for testing, each examples contains a 32 × 32 RGB image and a
label in 1–10.

– Model architectures. We use MLP with two hidden layers for the classifi-
cation tasks. For different dataset, the number of the neurons in each layer is
shown in Table 2. The activation function of each hidden layer is ReLU. We
train those model exploiting stochastic gradient descent (SGD) learning algo-
rithm with mini-batch size, learning rate, and momentum set as 64, 0.001,
and 0.5.

Table 2. Neuron numbers in each layer of MLP

MNIST SVHN

Input layer 28 * 28 32 * 32 * 3

First hidden layer 1000 255

Second hidden layer 500 255

Output layer 10 10

6.2 Efficiency Analysis

To show the efficiency of CECMLP, we represent the theoretical analysis of
all phases and experiment results of predicting encrypted example with CMLP
on MNIST. We implement CMLP exploiting C++ programming language and
Crypto++ library [1]. We set the security parameter with 128, and set the
floating-point number correct to 8 decimal places, i.e., set d = 8. Since MLP
is not sensitive to the precision of data and parameters, setting d = 8 would not
result in obvious deviation of prediction result.

Table 3 shows the theoretical analysis of the computation and the communi-
cation cost in all phases for all entities, where |De| and N represent the size of
the evaluating dataset and the number of the participants. For the computation
cost, KeyGen, Enc, Dec,Pred, Equal, Max, Add, and Mul represent the
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computation complexities of the corresponding operation respectively. While,
for the communication cost, those symbols represent the communication com-
plexities of the corresponding operation. For brevity, we use some shorthands
to replace some notation in Table 3. We use P, E , and PS to represent Par-
ticipants, Evaluator, and Parameter Server. Cp and Cm are used to represent
Computation Cost and Communication Cost. For homomorphic algorithms, we
use KG, E, D, A, M, and PEM to represent KeyGen, Enc, Dec, Add, Mul,
and Pred + Equal + Max respectively. The five phases, Setup, Download,
Training, Evaluate, and Update are represented by PS, PD, PT, PE, and
PU respectively. Table 4 shows the computation experiment results of Enc, Dec,
Add, Mul, Max, and Pred. Note that performing Pred once makes prediction
on one sample. While, it is reasonable to considering the evaluator as a powerful
party, e.g., having multiple computation cores, so that the evaluator has the
ability to make prediction on one data batch with Pred simultaneously.

Table 3. Computation and communication cost for CECMLP

Phases PS PD PT PE PU

P Cp – – O(1)E – –

Cm O(1) O(1) O(1) – –

E Cp – – – O(N |De|)(PEM +

A) + O(N)M

–

Cm O(|De|) – O(N) O(N |De|)(PEM) +

O(N)M

–

PS Cp KG +

O(|De|)E
– – O(N |De|)(PEM) +

O(N)M

O(1)D

Cm O(|De| + N) O(N) – O(N |De|)(PEM) +

O(N)M

O(1)

Table 4. Experiment result of homomorphic operations.

Algorithms Enc Dec Add Mul Max Pred

Time cost (usec) 17 14 0.17 336 23 422047571

6.3 Evaluation of CECMLP

Our proposed CECMLP is evaluated by comparing with conventional federated
learning (FL), SecProbe [35], centralized learning (CL). The FL scheme is the
standard federated learning system which does not take the participants’ relia-
bility into consideration and update the shared model parameters by averaging
the participants’ updates. The SecProbe scheme utilizes functional mechanism
and exponential mechanism to prevent the reliability privacy of the participants.
In theoretically, the performance of SecProbe is worse than FL. In CL scheme,
the server centralizes the datasets of the participants and directly train shared
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model over centralized dataset. Obviously, the CL can achieve the best perfor-
mance but give no privacy guarantee to the datasets of the participants. The
performance of CL scheme can be seen as the upper bound of any other schemes.

Fig. 2. Convergences of three schemes with different participant number

– Training convergence. We vary the number of the participants N in
CECMLP, FL, SecProbe, and CL. Each participant holds a local dataset
which contains 600 examples. 30% of the participants are unreliable partici-
pants. Figure 2 shows the convergences of all schemes on two datasets. The
x-axis denotes the number of training epochs, and y-axis denotes the accuracy
of the schemes. Table 5 shows the best accuracy of all schemes on MNIST. It
is obvious that CL achieves the highest accuracy, and CECMLP achieves the
second highest accuracy. The reason why CECMLP achieves higher accuracy
than FL does may be that CECMLP aggregates the participants’ parameters
with referring the reliability of them, which enables the reliable participants
to influence the shared model more. SecProbe exploits the functional mecha-
nism which reduces its performance than FL. As a result, CECMLP achieves
a better performance than SecProbe.

Table 5. Accuracy of different schemes on MNIST

CL CECMLP SecProbe [35] FL

MNIST 97.37% 95.74% 95.58% 95.28%
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– Influence of size of evaluating dataset. We evaluate the influence of size
of evaluating dataset E. In this experiment, E in CECMLP is set to 100,
500, and 1000. As shown in Fig. 3, with larger E, CECMLP achieves higher
accuracy.

Fig. 3. Convergences of CECMLP on MNIST with different evaluating dataset size

– Robustness against the unreliable participants. In this experiment, we
vary the rate of the unreliable participants R and evaluate the robustness of
CECMLP, FL, SecProbe, and CL against the unreliable participants. Figure 4
shows the best accuracy of all learning schemes with 30%, 50%, 70% unreliable
participants respectively. As R raises, the accuracy of all schemes decreases
for affected by the unreliable participants. As shown in Table 6, it is observed
that CECMLP is the robustest scheme except for CL. The reason may be
that CECMLP aggregates parameters refers to the participants’ reliability
and reduces the influence of the unreliable participants.

Fig. 4. Convergences of different scheme on MNIST with different unreliable rate
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Table 6. Accuracy of different schemes on MNIST with different R

CL CECMLP SecProbe [35] FL

R = 0.3 97.37% 95.74% 95.58% 95.28%

R = 0.7 95.92% 85.80% 69.00% 71.56%

Decrease rate 1.54% 9.94% 26.58% 23.72%

7 Conclusion

In this paper, we propose a novel federated learning towards reliability privacy
protection of participants. Except for the training dataset and its correspond-
ing gradients, the reliability privacy of the participants can also be preserved,
decoupling the learning process being unfair and discriminative. The reliability
of the participants are evaluated by the cipher-based gradients weighted method.
In this way, the proposed method has an advantage over conventional federated
learning in performance and prevents the reliability privacy of the participants
simultaneously. Experimental evaluations demonstrate the practical performance
of our scheme as well as the robustness against the unreliable participants.
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of China (No. 61902315).
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Abstract. Data trading is an emerging business, in which data sellers
provide buyers with, for example, their private datasets and get paid from
buyers. In many scenarios, sellers prefer to sell pieces of data, such as sta-
tistical results derived from the dataset, rather than the entire dataset.
Meanwhile, buyers wish to hide the results they retrieve. Since it is not
preferable to rely on a trusted third party (TTP), we are wondering, in
the absence of TTP, whether there exists a practical mechanism satisfy-
ing the following requirements: the seller Sarah receives the payment if
and only if she obliviously returns the buyer Bob the correct evaluation
result of a function delegated by Bob on her dataset, and Bob can only
derive the result for which he pays. Despite a lot of attention data trad-
ing has received, a desirable mechanism for this scenario is still missing.
This is due to the fact that general solutions are inefficient when the
size of datasets is considerable or the evaluated function is complicated,
and that existing efficient cryptographic techniques cannot fully capture
the features of our scenario or can only address very limited computing
tasks.

In this paper, we propose the first desirable mechanism that is practi-
cal and supports a wide variety of computing tasks—evaluation of arbi-
trary functions that can be represented as polynomials. We introduce a
new cryptographic notion called blind polynomial evaluation and instan-
tiate it with an explicit protocol. We further combine this notion with the
blockchain paradigm to provide a practical framework that can satisfy
the requirements mentioned above.
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1 Introduction

Nowadays, data trading is an emerging business, which may involve different
kinds of data, such as financial data, commercial data, and personal data. As
the public gradually realizes the value of data, data trading has attracted more
and more attention. Traditional data trading trivially seeks help from a cen-
tral platform as a trusted third party (TTP). In most trading strategies, sellers
send the entire dataset directly to buyers, which is fairly exchanged under the
coordination of the central platform.

Unfortunately, in these solutions, central platforms are heavily relied on and
have to be assumed to act honestly. Once the central platform is corrupted,
the interests of parties will be significantly hurt. Furthermore, in many data
trading scenarios, sellers may prefer to sell only certain calculation results on
the dataset rather than exposing the entire dataset at one time. At the same
time, buyers in a blind fashion wish to hide from sellers the results they retrieve.
Therefore, it would be preferable to design a practical mechanism for selling only
function evaluation results and capturing requirements like correctness, privacy,
consistency, and fairness, but without the existence of TTP.

Dataset x

Seller SarahBuyer Bob

Data
xf

f(x ) Trading

An illustration of such a scenario is shown above. More precisely, without the
help of TTP, the seller Sarah possessing dataset x receives the payment if and
only if she obliviously helps the buyer Bob possessing a function f get the result
f(x) correctly. Meanwhile, Bob can only derive the result for which he pays from
the data trading. Besides, we should ensure the consistency of datasets in two
transactions, i.e., for each transaction (with the same buyer or with different
buyers), Sarah should use the same dataset x. In addition, for the reason that
datasets during data trading tend to remain unchanged and consistent, we prefer
a pre-processing procedure that amortizes the processing cost of datasets rather
than a one-time solution. Here we call a solution one-time if every execution of
such a solution involves a new entire processing procedure of the dataset.

However, even if data trading is more and more important, desirable solu-
tions meeting the above requirements are still unknown. Although general solu-
tions, such as Yao’s garbled circuits [30] using universal circuit [27,31] and fully
homomorphic encryption [14] (see more discussion in Sect. 2.2 and Sect. 2.3) can
theoretically be used as a component for this scenario, they are infeasible for
practical use when the sizes of datasets are considerable and the evaluated func-
tions are complicated. Furthermore, existing efficient frameworks cannot fully
capture the features of our scenario and practical cryptographic tools can only
cover limited computing tasks. Thus, despite the existence of theoretical solu-
tions, the following question remains open:
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How to construct a practical mechanism for the requirements of data trad-
ing mentioned above, with the capability of supporting a wide variety of
computing tasks?

We answer this question in the present paper.

1.1 Our Results

In this paper, we focus on arbitrary functions that can be represented as poly-
nomials and propose the first practical solution that fulfills all aforementioned
requirements. We remark that the evaluation of polynomials is powerful and can
be utilized in many applications. To further motivate our results, we illustrate
some potential applications from three aspects: (i) Polynomial evaluation sup-
ports many statistical numerical calculations, including mean, variance, deter-
minant, inner product, Minkowski distance, etc. (ii) Since many functions can
be approximated by Taylor polynomials, our work supports approximate eval-
uations of these functions. (iii) Datasets can be specially designed to support
many operations through polynomial evaluation. Here we provide a toy exam-
ple. Suppose that a seller holds a dataset containing the gender and salary of
employees at a company. In cells for gender, female employees are specifically
represented by zero and male by one. If a buyer intends to calculate the total
salary of employees of a particular gender, he requires selecting and summing the
salary items of employees of that gender. We denote the gender and salary as bi

and si, respectively, for the term of the index i. Then calculating the total salary
of female employees is equivalent to evaluating the polynomial

∑
i(si − bisi) on

the dataset and that of male employees equals
∑

i bisi.
To capture the features of the scenario for polynomial evaluations on private

datasets, we introduce a new cryptographic notion called blind polynomial eval-
uation. This notion can be viewed as a subset of two-party computation (2PC)
problems [29] and is of independent interest. We further combine our blind poly-
nomial evaluation protocol with the blockchain paradigm to provide a practical
solution that achieves fairness of exchange for the scenario of data trading.

Here we briefly introduce the underlying insights. We borrow the idea from [6]
of using two compatible homomorphic encryption schemes and introducing a
switching mechanism between them to support complicated computing tasks.
But we note that the scenario we consider is anyhow different from that of [6] (for
a comparison, see Sect. 2.4). Through this mechanism, buyers can evaluate their
polynomials on sellers’ encrypted datasets via additively and multiplicatively
homomorphic properties simultaneously. This idea is simple, but it is a highly
nontrivial approach for two main reasons: two schemes should be compatible, and
switching should be guaranteed to perform correctly. For our scenario, we need
to ensure that two encryption schemes are switched secretly and correctly when
one party holds the complete private keys and intends to behave dishonestly. In
addition, we also consider the fact that almost all multiplicatively homomorphic
encryption schemes do not support encryption of zero, but it is indeed required
in some scenarios. We customize a new multiplicatively homomorphic encryption
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scheme to resolve this situation. Furthermore, we introduce how to achieve fair
exchange of the final result over blockchain.

We summarize the main contributions of this work in the following.

1. Considering the scenario of data trading, we introduce a new cryptographic
notion, namely, blind polynomial evaluation. We propose a generic construc-
tion of this notion with communication cost O(k), where k is the number of
terms of polynomials.

2. We propose a small-constant-round protocol to instantiate the generic con-
struction to support polynomial evaluation over Z∗

n, where n is a strong RSA
modulus having two distinct prime factors of the same length, under standard
computational hardness assumptions. Furthermore, we extend our instantia-
tion from polynomial evaluation over Z

∗
n to that over Zn.

3. We integrate our blind polynomial evaluation protocol with the blockchain
paradigm to support fair exchange in the data trading scenario.

4. We analyze our protocol in terms of both round complexity and a proof-of-
concept implementation to provide evidence that the protocol is practical.

The rest of the present paper is organized as follows. In Sect. 2, we introduce
some related work, with an emphasis on both relevance and difference com-
pared to our work. We then introduce the notion of blind polynomial evaluation
together with a generic construction and corresponding definitions in Sect. 3. The
protocol to instantiate the generic construction over Z

∗
n is presented in Sect. 4,

and is further extended from Z
∗
n to Zn in Sect. 5. In Sect. 6, we show how to

combine our blind polynomial evaluation protocol with the blockchain paradigm
to achieve fair exchange for data trading. Finally, analysis of the practicality of
our protocol is given in Sect. 7. All proofs of security can be found in the full
version of this paper [18].

2 Related Work

In this section, we recall some classical definitions and results that are related
to our work.

2.1 Oblivious Polynomial Evaluation

Naor and Pinkas [22] proposed a cryptographic notion named oblivious poly-
nomial evaluation (OPE), and then an extended version called oblivious multi-
variate polynomial evaluation [26] was proposed. These notions are for the sce-
nario that a receiver holding a value x (resp. vector x) intends to compute p(x)
(resp. p(x)) with the help of a sender possessing a private univariate (resp. multi-
variate) polynomial p. By the protocol, the receiver gets only p(x) (resp. p(x)),
and the sender can infer no information about x (resp. x) from the interaction.

We note that the scenario of data trading we now consider is different from
OPE. On the one hand, the receiver of the evaluation result is the polynomial
provider in our setting, while the data provider in OPE. This difference leads to
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very different security definitions. On the other hand, most OPE protocols are
designed for one-time use. Such solutions are not preferable and could lead to
data inconsistencies among transactions as we have mentioned in Sect. 1.

2.2 Universal Circuit and Garbled Circuit

For a fixed universal circuit Un such that Un(x,C) = C(x) for any circuits
having at most n gates, it is easy to see that universal circuits combined with the
garbled circuit technique can theoretically be used for the data trading scenario
we consider. However, overhead is prohibitive for the following four main reasons.

– For polynomial evaluation, complicated polynomials lead to boolean cir-
cuits with considerable sizes. Meanwhile, representations of boolean circuits
using universal circuits involve a significant expansion of the circuit size—
O(n log n) with significant constant terms as well as the low-order terms.

– To ensure data consistency, a costly consistency check of the entire dataset
may need to be encoded in the circuit.

– To be secure against malicious parties, expensive techniques (e.g., cut-and-
choose approach) should be involved.

– The solution will be a one-time use solution.

In contrast, our solution is efficient and overcomes all of these issues.

2.3 Homomorphic Encryption

Homomorphic encryption is an encryption scheme that allows computations to
be performed on encrypted data, such that the decryption of the final result
equals the result directly computed from the plaintexts. As a classic exam-
ple, ElGamal [13] cryptosystem is multiplicatively homomorphic. For additively
homomorphic encryption schemes, one of the well-known schemes is Paillier cryp-
tosystem [23], which supports additions of encrypted values and multiplications
between encrypted values and constants. Although these cryptosystems (named
partially homomorphic encryption (PHE)) are practically used in many applica-
tions, they support very limited computing tasks (such as only addition or multi-
plication) and are limited in many other applications. In 2009, Gentry proposed
the first fully homomorphic encryption (FHE) [14], from which it is possible to
perform arbitrary computations. Following Gentry’s seminal work, some FHE
schemes are proposed afterward. The noted barrier of FHE is that current FHE
schemes are still inefficient and prohibitive, especially for datasets of considerable
size and complicated functions. For example, polynomial evaluation via FHE is
prohibitive when the degree of polynomials is not a very small constant and the
polynomial cannot be written in a batch-friendly form. In contrast, our protocol
is efficient and will not be subject to these limitations.
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2.4 Encryption Switching Protocol

The notion of encryption switching protocol was formalized by Couteau, Peters,
and Pointcheval [6] in 2016 (see [3] for a more general construction). The encryp-
tion switching protocol applies to the scenario that two parties secretly share
two private keys for a multiplicatively homomorphic encryption scheme and an
additively homomorphic encryption scheme, respectively. Both of them can indi-
vidually encrypt a message, but neither of them can decrypt a ciphertext unless
they cooperate to perform threshold decryption. This leads to a framework for
two parties to cooperatively switch a ciphertext from one cryptosystem to the
other and follow a deterministic computation path on the ciphertexts together
until a computation result is reached. The encryption switching protocol also
shows efficiency in practice [5]. Although we utilize this encryption switching
idea in our work, we are considering a different scenario: one party holds the
two complete private keys while the other holds only the corresponding pub-
lic keys. In this scenario, given an encrypted value, the party holding the two
private keys can decrypt this ciphertext and learn the corresponding plaintext
herself, which leads to entirely different definitions and solutions from [3,6].

2.5 Fairness Based on Blockchain

The blockchain paradigm is the underlying data structure, along with the emer-
gence of Bitcoin [21]. It is deployed in a peer-to-peer (P2P) network, where all
nodes follow a consensus mechanism. Ethereum [28] is the first platform that
introduced blockchain-based smart contracts. After the deployment of a smart
contract, nodes in the network execute the instructions specified by this smart
contract and users. If the majority of nodes honestly follow the consensus mech-
anism, a blockchain can be deemed as a (semi-)honest third party with a public
execution transcript.

It is known that general protocols in the absence of a third party cannot guar-
antee fairness when one of the parties is corrupted for 2PC problems [4]. Because
of the emergence of the blockchain and smart contracts, some researchers recently
integrated them into protocols as a third party to achieve fairness. A few of
blockchain-based protocols, such as [1,2,16], ensure fairness of 2PC via a mech-
anism called claim-or-refund, in which a malicious party who aborts ahead of
specified time will be forced to pay a monetary penalty.

For data trading, a few results based on the blockchain are also proposed
to ensure data consistency through the claim-or-refund mechanism, such as
[8,10,11]. These results mainly focus on data delivery, in which data sellers
intend to sell an entire dataset or file. A few other results are proposed for col-
lecting data from specified data generators, such as [15,19,20]. As a comparison,
in our scenario, only two parties are involved, and the result evaluated on the
function delegated by the buyer is delivered instead of the entire dataset.
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3 Definitions and Generic Construction

According to earlier discussion in Sect. 1, we need a practical mechanism to
capture the requirements of correctness, privacy, consistency and fairness for the
data trading scenario. In this section, we model such a data trading scenario
as a cryptographic notion called blind polynomial evaluation, aiming to resolve
concerns of the first three requirements during data trading. The concern of
fairness will be postponed to Sect. 6.

3.1 Blind Polynomial Evaluation

We consider the scenario that a seller Sarah initially uploads her entire dataset
x in an encrypted form (denoted by cx) to a public place (e.g., cloud) and
publishes a hash value of cx for consistency check. Then she can start trading
data with potential buyers who have downloaded cx . We note that for Business-
to-Customer (B2C) scenarios, the seller Sarah can indeed play the role of the
storage server, and here we use public place to generalize the description that
may also involve Customer-to-Customer (C2C) scenarios. It is typically cheap for
individual sellers to use cloud storage service, and in this way sellers even do not
need to store cx locally. Since Sarah only needs to encrypt her dataset once, this
approach avoids one-time use cost. We also note that once Sarah wants to update
a portion of the dataset, she can only update this portion and the hash value.
Moreover, since buyers can download the encrypted dataset without interaction
with Sarah before a data trading, this approach, in some sense, largely saves
Sarah’s communication cost. Furthermore, the hash value of cx ensures data
consistency of transactions. Once the encrypted dataset is uploaded, Bob, as a
potential buyer, can download cx and check the hash value of cx .

Sarah, as a sender, in a blind fashion helps Bob, as a receiver, evaluates on
the dataset x a function that belongs to the set P, which contains all �-variate
polynomials with k + 1 terms in the sparse representation of

P (x) =
k∑

i=0

bi

�∏

j=1

x
dij

j ,

where x ∈ (Z∗
n)�, κ is the security parameter, �, k ∈ O (κc ) for large enough

constant c > 0, all bi, dij ∈ O (2κ ), and d0j = 0 for j = 1 . . . �. We denote the
terms of P (x) by Pi(x) = bi

∏�
j=1 x

dij

j for i = 1, . . . , k and P0(x) = b0, such

that P (x) =
∑k

i=0 Pi(x). Note that polynomials with the number of variates
less than � and number of terms less than k + 1 can also be written in this form
by simply setting certain bi and dij to be 0. We call such a procedure blind
polynomial evaluation and define its functionality of this notion as follows.

Definition 1. The two-round functionality of the blind polynomial evaluation
protocol between a receiver and a sender is presented below.
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1. (a) The receiver inputs an encrypted vector cx corresponding to a plaintext
vector x and public information pi. The sender inputs a trapdoor td and
public information pi′.

(b) If pi = pi′, td is correct for cx and pi, both parties receive continue and
proceed to the next round. Otherwise, both parties receive ⊥ with abortion.

2. (a) The receiver inputs the description of a polynomial P ∈ P.
(b) If P ∈ P, the receiver receives the evaluation result P (x) and the sender

receives nothing. Otherwise, both parties receive ⊥ with abortion.

We note that pi (resp. pi′) includes public parameters such as public keys for
cx . From this definition, the receiver only receives the result P (x) at the end
without leaking any more information to the sender. Here, we allow buyer to set
the polynomial P (x) = xi to retrieve the i-th entry of x. Our goal is for the
seller to avoid revealing the entire dataset at one time, and it is acceptable that
buyer retrieves the entire dataset via numerous transactions. If the scenario is to
avoid leaking information of single entries, the dataset could simply be processed
by differential privacy [9] techniques at the beginning.

As stated in Sect. 1.1, to support polynomial evaluation on encrypted
datasets, and meanwhile, to make it practical, we utilize in our construction two
compatible homomorphic encryption schemes Π× and Π+, where Π× is multi-
plicatively homomorphic, and Π+ is additively homomorphic. Here we call two
schemes Π× and Π+ compatible if the plaintext space of Π+ is a ring R and that
of Π× is a monoid M with R∩M = R

∗, where R
∗ is the set of invertible elements

of R [3]. The main idea of our construction is that Sarah first encrypts via Π×
all entries of the dataset, which then allows Bob to multiply encrypted values of
the encrypted dataset directly. After multiplications, Sarah, in a blind manner,
helps Bob switch all encrypted multiplication results to ciphertexts of Π+, which
again allows Bob to add encrypted values of these ciphertexts. Finally, we let
Sarah once again in a blind fashion provide Bob with the final decrypted result.

To avoid duplicate definitions, in the rest of this section we denote the multi-
plicatively homomorphic encryption scheme as Π× = (KGen,Enc,Dec,Mul) with
a key pair (pk×, sk×), message space M×, and ciphertext space C×, and the
additively homomorphic encryption scheme as Π+ = (KGen,Enc,Dec,Add,Mul)
with a key pair (pk+, sk+), message space M+, and ciphertext space C+. Here
we require Π+ to support efficient multiplication of an encrypted value and
a constant. Since most additively homomorphic encryption schemes have this
property, this requirement can be easily satisfied. We assume that Π× and Π+

are compatible and both IND-CPA (Indistinguishability under Chosen Plaintext
Attack) secure. We write r ←$ S for sampling r uniformly from a set S.

3.2 Definitions of Building Blocks

To formalize our idea, we introduce the following building blocks. We first recall
the definition of twin-ciphertext pair.

Definition 2 (Twin-Ciphertext Pair [6]). For two encryption schemes Π×
and Π+, we call a pair of ciphertexts (c×, c+) ∈ (C×, C+) a twin-ciphertext pair
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if c× is an encryption of a message m× under Π×, c+ is an encryption of a
message m+ under Π+, m×,m+ ∈ M× ∩ M+ and m× = m+.

Then in Table 1, we present some languages for relations and their corre-
sponding zero-knowledge ideal functionality. The functionality FTwinCtx

zk is for
proving that a ciphertext pair is a twin-ciphertext pair, FEncValue

zk is for proof of
encrypted value for Π+, and F sk+

zk is for proof of private key sk+ of the scheme
Π+. Each ideal functionality receives the statement from both the prover and
verifier, and a witness from the prover. It outputs accept to the verifier if the
statement from both parties are the same and true, and reject otherwise.

Table 1. Languages for relations and their zero-knowledge ideal functionalities.

Language for relation Functionality

LTwinCtx = {(c× ∈ C×, c+ ∈ C+, pk×, pk+) | ∃(m×, m+, r+, sk×), s.t.

sk× is the private key of pk× ∧ m× = Π×.Decpk×(c×, sk×)

∧ c+ = Π+.Encpk+(m+; r+) ∧ m× = m+}
FTwinCtx

zk

LEncValue = {(c+ ∈ C+, m+ ∈ M+, pk+) |∃(r+), s.t.

c+ = Π+.Encpk+(m+; r+)} FEncValue
zk

Lsk+ = {(pk+) | ∃(sk+), s.t.sk+ is the private key of pk+} F sk+
zk

3.3 Construction

We here present our generic construction of blind polynomial evaluation
between the sender, i.e., seller Sarah, and the receiver, i.e., buyer Bob, in the
(FTwinCtx

zk ,FEncValue
zk ,F sk+

zk )-hybrid model in Fig. 1.
Now we define the security of this construction. For the receiver’s security, we

should guarantee that: (i) A malicious sender cannot deviate from the protocol
without being detected (with protocol abortion); (ii) The view of the sender
can be simulated, i.e., the sender learns nothing. The ideal functionalities indeed
guarantee the first requirement in the hybrid model, that is, the sender must
return the correct switched ciphertexts and the decryption result. We now define
the receiver’s security in the hybrid model against malicious senders as follows.

Definition 3 (Receiver’s Security). For all adversaries A running in prob-
abilistic polynomial-time (PPT) with input pi, sk×, sk+, and auxiliary input z

playing the sender’s role in the (FTwinCtx
zk ,FEncValue

zk ,F sk+
zk )-hybrid model, there

exists a PPT simulator S given pi, sk×, sk+ and z in the ideal model of blind
polynomial evaluation, such that the output of S is (perfectly) indistinguishable
from the view of A.
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Fig. 1. Generic construction with FTwinCtx
zk , FEncValue

zk , and F sk+
zk .

For the sender’s security, it is necessary to ensure that after the evaluation
of a polynomial P , the receiver cannot obtain more information than he should,
i.e., Bob only retrieves P (x). In the hybrid model, a malicious Bob can only
cause abortion or send different ciphertexts to Sarah instead of the ciphertexts
according to an honest evaluation for P (x). If Bob sends values in incorrect
forms, he will be rejected and the protocol aborts. Since Bob obtains nothing,
this behavior does not offend our security goal. If he sends ciphertexts that are
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different from an honest evaluation, but in the correct form, he indeed evaluates a
different polynomial P ′ from P . We notice that if Π× and Π+ are both IND-CPA
secure, Bob gains no advantage after he receives ciphertexts from Sarah (see more
in Sect. 6.1). Hence, it is reasonable to let malicious Bob pick a polynomial P
after seeing cx and before the execution of the protocol, and then Bob behaves
semi-honestly during the protocol. Hence, we define the adversary that plays the
role of the receiver as A = (A0,A1): A0 takes as input cx and pi, and outputs
the description of a polynomial P ∈ P; A1 takes as input the description of P ,
cx and pi, and acts as a semi-honest adversary to evaluate P on the encrypted
dataset cx with the sender. We abuse the notion representation slightly and use
P to represent the description of the polynomial P if the context is clear.

Definition 4 (Sender’s Security). For every PPT adversary A = (A0,A1)
in the (FTwinCtx

zk ,FEncValue
zk ,F sk+

zk )-hybrid model with input cx , pi and auxiliary
input z playing receiver’s role, once the description of a polynomial is output via
P ← A0(cx , pi, z), there exists a PPT simulator S taking cx , pi and P as input
in the ideal model, such that the view simulated by S and the view of the semi-
honest A1 in the hybrid model taking cx , pi, and P as input are computationally
indistinguishable.

For the above generic construction, we have the theorem as follows.

Theorem 1. If Π× and Π+ are both IND-CPA, the generic construction in the
(FTwinCtx

zk ,FEncValue
zk ,F sk+

zk )-hybrid model guarantees both receiver’s and sender’s
security.

Therefore, to guarantee both receiver’s and sender’s security, we should ensure
that both Π× and Π+ are IND-CPA secure, and functionalities FTwinCtx

zk ,
FEncValue

zk , and F sk+
zk are securely realized in the presence of malicious adversaries.

4 Instantiation of Blind Polynomial Evaluation over Z
∗
n

To instantiate the generic construction of blind polynomial evaluation, we utilize
a variant of ElGamal encryption scheme from [6] with the plaintext space of Z∗

n

and the Paillier encryption scheme from [23] with the plaintext space of Zn,
where n is a strong RSA modulus having two distinct prime factors of the same
length. It is easy to see that these two schemes are compatible. Given these
two schemes, we then provide protocols that securely realize FTwinCtx

zk , FEncValue
zk ,

and F sk+
zk in the presence of malicious adversaries, which immediately leads to a

secure blind polynomial evaluation protocol based on the generic construction.
For the following description, let κ and t be the security parameters, and negl

be a negligible function. Algorithms implicitly take as input 1κ. Our instantiation
in this paper relies on the following computational hardness assumptions.

– The Decisional Diffie-Hellman (DDH) assumption in a cyclic group G = 〈g〉
of order q ∈ Θ(2κ ) is that for all PPT adversaries A, we have

Pr
[

A(G, q, g, gx, gy, zb) = b :
x, y ←$Zq; z0 = gxy;
z1 ←$G; b ←$ {0, 1}

]

≤ 1/2 + negl(κ) .
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– The Decisional Composite Residuosity (DCR) assumption in Z
∗
n2 , where n ∈

Θ(2κ ) is a strong RSA modulus, is that for all PPT adversaries A, we have

Pr
[

A(n, zb) = b :
r ←$Z

∗
n; z0 = rn mod n2;

z1 ←$Z
∗
n2 ; b ←$ {0, 1}

]

≤ 1/2 + negl(κ) .

– The Quadratic Residuosity (QR) assumption in Z
∗
n, where n ∈ Θ (2κ ) is a

strong RSA modulus, is that for all PPT adversaries A, we have

Pr
[

A(n, zb) = b :
r ←$Z

∗
n; z0 ← r2 mod n;

z1 ←$ Jn; b ←$ {0, 1}

]

≤ 1/2 + negl(κ) ,

where Jn is the set of all elements of Z∗
n whose Jacobi symbols are +1.

4.1 ElGamal Encryption over Z
∗
n

We slightly modify a variant of ElGamal encryption scheme Z
∗
n-EG over Z

∗
n

introduced in [6] and use it as the multiplicatively homomorphic encryption
scheme Π×. The description of Z∗

n-EG is given below.

Key Generation. The key generation algorithm KGen takes as input the secu-
rity parameter 1κ and generates a strong RSA modulus n = pq where
p, q ∈ Θ(2κ ) are distinct randomly-chosen safe primes having the same length.
Then the algorithm follows the procedure below:
1. Compute g0 ←$Z

∗
n, g ← −g20 to obtain a generator of Jn of order λ =

lcm(p − 1, q − 1). Here Jn is the set of all elements of Z∗
n whose Jacobi

symbols are +1.
2. Compute v = [p−1 mod q] · p mod n, such that v ≡ 0 mod p and v ≡

1 mod q, and χ ← (1 − v) · gtp + v · gtq mod n for an even tp ←$Zλ and
an odd tq ←$Zλ. Compute θ, such that g2θ = χ2, based on the Chinese
Remainder Theorem.

3. Pick s ←$Zλ, and set h ← gs. Note that such (s, h) are components of
the private key and the public key in the generic ElGamal encryption
scheme.

4. Output the public key pk× ← (n, g, χ, h) and the private key sk× ←
(s, θ, p, q). Note that we can derive λ, v, tp, tq from sk×.

Encryption. The encryption algorithm Enc takes as input a message m ∈ Z
∗
n

and a public key pk×, and encodes m in Jn via (m1,m2) ← (ga, χ−am) ∈ J
2
n

for a ←$ {1, . . . , 
n/2�} that satisfies Jn(m) = (−1)a. Here Jn is an algorithm
to compute the Jacobi symbol of a given value. Then the algorithm computes
cJ ← Jn-EG.Enc(m2) = (c0 = gr, c1 = m2h

r) for r ←$ {1, . . . , 
n/2�}. Finally,
the algorithm returns the ciphertext c ← (cJ = (c0, c1),m1).

Decryption. The decryption algorithm Dec takes as input a ciphertext c =
(cJ = (c0, c1),m1) and a key pair (pk×, sk×), checks whether Jn(c1) = 1 and
outputs ⊥ if it is not. If the check passes, the algorithm recovers m2 via m2 ←
Jn-EG.Dec(cJ ) = c1/cs

0 mod n and computes m0 ← (1−v)·mtp
1 +v·mtq

1 mod n.
Finally, the algorithm returns the message m ← m0m2 mod n.
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Multiplication. The multiplication algorithm Mul takes as input two cipher-
texts c = (c0, c1,m1) and c′ = (c′

0, c
′
1,m

′
1), and outputs c′′ = (c0 · c′

0, c1 ·
c′
1,m1 · m′

1) = (c′′
0 , c′′

1 ,m′′
1). Assume that m is the plaintext of c and m′ is the

plaintext of c′. We can easily verify that c′′ is the ciphertext of m · m′.

For simplicity, we may omit the parameters pk× and sk× from input parame-
ters of the above algorithms in the setting of no confusion. We may also use
Z

∗
n-EG.Enc(m; r, a) to explicitly indicate the random coins (r, a) for encryption.

The correctness of Jn-EG is the same as the generic ElGamal encryption
scheme: c1/cs

0 = (m2h
r)/grs = (m2g

rs)/grs = m2 in Jn. For an isomorphism f
from Z

∗
n to Z

∗
p × Z

∗
q : f(x) = ([x mod p], [x mod q]), it is easily verified that

m0 = (1 − v) · m
tp
1 + v · m

tq
1 mod n ↔ (mtp

1 ,m
tq
1 ) = (gatp , gatq )

= (gtp , gtq )a ↔ (
(1 − v) · gtp + v · gtq mod n

)a mod n = χa mod n

and m0m2 = χaχ−am mod n = m.
In [6], the authors proved the above Z

∗
n-EG is IND-CPA secure under the

DDH assumption in Jn and the QR assumption in Z
∗
n.

4.2 Paillier Encryption over Zn

We use as the additively homomorphic encryption scheme the Paillier encryption
scheme [23] Zn-P, i.e., Π+ = Zn-P. Its description is as follows.

Key Generation. The algorithm KGen takes as input a security parameter
1κ, and generates a strong RSA modulus n = pq, where p, q ∈ Θ (2κ ) are
randomly-chosen safe primes having the same length. Then the algorithm
outputs a key pair ( pk+ = n, sk+ = (p, q)). From sk+, we can compute
λ ← lcm(p − 1, q − 1) and d ← [λ−1 mod n] · λ mod nλ. Note that the public
key pk+ = n is equal to n of the public key pk× of Z∗

n-EG.
Encryption. The algorithm Enc takes as input a message m ∈ Zn and the

public key pk+, and outputs the ciphertext c ← (1 + n)mrn mod n2, where
r ←$Z

∗
n.

Decryption. The algorithm Dec takes as input a ciphertext c, the key pair
(pk+, sk+), and returns the plaintext m = ([cd mod n2] − 1)/n.

Addition. The algorithm Add takes as input two ciphertexts c and c′, and
outputs c′′ = c · c′ mod n2. Assume that m is the plaintext of c and m′ is the
plaintext of c′. We can easily check that c′′ is the ciphertext of m + m′.

Multiplication. The scalar multiplication algorithm Mul takes as input a
ciphertext c and a constant s, and outputs c′ = cs mod n2. Note that comput-
ing a constant power of a ciphertext is equivalent to multiplying its encrypted
value by this constant.

Randomness Extraction. The algorithm ExtractR takes as input a ciphertext
c and a key pair (pk+, sk+). It first computes m ← Zn-P.Decpk+(c, sk+) and
c0 ← c ·(1+n)−m. Since p and q have the same length, we have gcd(λ, n) = 1.
Hence, the algorithm can find a value x, such that n · x mod λ = 1. Finally,
the algorithm outputs the random coin r ← cx

0 mod n.
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Since cd ≡ (1 + n)mdrnd ≡ (1 + n)m[λ−1 mod n]·λrn[λ−1 mod n]·λ ≡ (1 + n)m ≡
1+mn mod n2, we can easily extract the message via m ← ([cd mod n2]−1)/n.
We remark that Zn-P is IND-CPA secure under the DCR assumption [23]. For
simplicity, we may omit the parameters pk+ and sk+ from input parameters of
the above algorithms when the setting is clear. We may also use Zn-P.Enc(m; r)
to explicitly indicate the random coins r for encryption.

4.3 Instantiation of Functionalities

We introduce how to securely realize FTwinCtx
zk , FEncValue

zk , and F sk+
zk based on

Z
∗
n-EG and Zn-P. We provide protocols that are public-coin honest-verifier zero-

knowledge proof of knowledge. There are several approaches to compile such
protocols to protocols against malicious verifiers with low overhead, such as the
Fiat-Shamir heuristic [12]. Note that we could simply use proof of factoring
techniques, such as [24] to securely realize F sk+

zk for Zn-P.
We use ideas of [7] to realize FEncValue

zk in Fig. 2. Here the prover Sarah can
use Zn-P.ExtractR to extract the random coins r+ of the ciphertext c+.

Fig. 2. Protocol EncValue associated with Zn-P.

Proposition 1. The protocol EncValue associated with Zn-P is public-coin
honest-verifier zero-knowledge proof of knowledge.

Before we provide the protocol for FTwinCtx
zk , we introduce a zero-knowledge ideal

functionality FEncOne
zk associated with the language that a given ciphertext c×

encrypts 1 as follows:

LEncOne = {(c× = ((c0,c1),m1) ∈ (Z∗
n)3, pk× = (n, g, χ, h)) | ∃(s, θ), s.t.

h = gs mod n ∧ χ2 ≡ g2θ mod n ∧ c1 = m−θ
1 cs

0 mod n} .

If the plaintext of c× = ((c0 = gr, c1 = m2h
r),m1 = ga) is 1, which is encoded

by (m1,m2) = (ga, χ−a) ∈ J
2
n for an even a, we should have c1 = χ−ahr =

g−θagsr = m−θ
1 cs

0. Hence, the protocol that could be used to realize FEncOne
zk is

given in Fig. 3 and the proposition for its security is in the following.
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Fig. 3. Protocol EncOne associated with Z
∗
n-EG.

Proposition 2. The protocol EncOne associated with Z
∗
n-EG is complete, sound,

and honest-verifier zero-knowledge.

For FTwinCtx
zk , the prover Sarah proves to the verifier Bob that a given cipher-

text pair is a twin-ciphertext pair. We separate the protocol realizing FTwinCtx
zk

into two phases: offline and online phases, to obtain a more practical protocol1.
For the offline phase (Fig. 4), the prover Sarah possessing sk× first gener-

ates a random ciphertext pair (c0, c′
0), such that c0 = Z

∗
n-EG.Enc(m0) = (c0J =

(c00, c01),m01) and c′
0 = Zn-P.Enc(m′

0; r
′
0), where m0 = m′

0. Then P sends it to
the verifier Bob and convinces Bob that it is indeed a twin-ciphertext pair with-
out revealing information about the plaintexts and the corresponding random
coins. The generated (c0, c′

0) will then be used in the online phase of TwinCtx.
In the online phase (Fig. 5), Sarah proves a given ciphertext (c×, c+) is a

twin-ciphertext pair using (c0, c′
0), as required in FTwinCtx

zk .
Intuitively, since m′ is a random message and both Zn-P and Z

∗
n-EG are

IND-CPA secure, m and the random coins of (c×, c+) will be preserved if (c0, c′
0)

is correctly generated in the offline phase. We have the following proposition.

Proposition 3. The TwinCtx protocol associated with Z
∗
n-EG and Zn-P is

public-coin honest-verifier zero-knowledge proof of knowledge.

Here each execution of TwinCtx generates and consumes a (random) twin-
ciphertext pair, which is not desirable. We now introduce how to improve the
efficiency of the TwinCtx protocol using the idea in [6,17]. We first recall the
notion multi-exponentiation with encrypted bases (MEB). The zero-knowledge
functionality FMEB

zk is for the relation associated with the language below:

LMEB = {(n,{ωi}k
i=1 ∈ {0, 1}κ·k, C, {ci}k

i=1 ∈ (Zn2)k+1 | ∃(r, {mi, ri}k
i=1), s.t.

∀i ∈ {1, . . . , k}ci = Zn-P.Enc(mi; ri) ∧ C = Zn-P.Enc(
k∏

i=1

mωi
i ; r)} .

1 Such an approach is similar to that of [6]. However, their security goal indeed cannot
be achieved since the random coins of the ElGamal encryption cannot be extracted
and the group order is hidden. We overcome the security faults for our scenario.



Blind Polynomial Evaluation and Data Trading 115

Fig. 4. Protocol TwinCtx for Z
∗
n-EG and Zn-P—offline Phase.

Fig. 5. Protocol TwinCtx for Z
∗
n-EG and Zn-P—online Phase.
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A protocol to realize FMEB
zk was proposed in [6], and then it was improved and

its security was formally proved in [17]. We can use the 5-round protocol in [17]
to batch the executions of the online phase of TwinCtx. In this setting, the
prover P wants to prove to the verifier V that all pairs of (ci, c

′
i)i=1,...,k where

ci = Z
∗
n-EG.Enc(mi; ri, ai) and c′

i = Zn-P.Enc(m′
i; r

′
i) are all twin-ciphertext

pairs, i.e., mi = m′
i given only one random twin-ciphertext pair generated in the

offline phase of TwinCtx. Here the common reference string (CRS) contains the
description of a pseudo-random generator (PRG). The procedure for batching
the executions of the online phase of TwinCtx is as follows.

1. V sends ω ←$ {0, 1}κ to P.
2. Both parties use ω as a seed for PRG to generate (ωi)i=1,...,k. Then both

parties take ωith power for each entry of ci and add them together to obtain C,
such that C = Z

∗
n-EG.Enc(

∏k
i=1 mωi

i ;
∑k

i=1 ωiri,
∑k

i=1 ωiai). P picks ρ ←$Z
∗
n

and sends C ′ ← Zn-P.Enc(
∏k

i=1 m′ωi
i ; ρ) to V.

3. P and V uses FMEB
zk on ((ωi)i=1,...,k, C ′, (c′

i)i=1,...,k).
4. If FMEB

zk returns accept, P and V perform the online phase of TwinCtx for
(C,C ′), and V outputs what TwinCtx outputs. Otherwise, V returns reject.

MEB proves that C ′ is indeed the ciphertext of
∏k

i=1 m′ωi
i . If

∏k
i=1 mωi

i =
∏k

i=1 m′ωi
i for random (ωi)i=1,...,k, we have mi = m′

i for i = 1, . . . , k with an
overwhelming probability. Here we note that the messages from P in Step 2
and Step 3 can be combined, and the two protocols, MEB [17] and TwinCtx,
can be performed in parallel. We can further pack the procedure, such that the
online phase and the offline phase of TwinCtx are executed simultaneously. More
precisely, the online phase uses the generated random twin-ciphertext pair, and
meanwhile the offline phase proves that this generated ciphertext pair is indeed
a twin-ciphertext pair. Such an approach can reduce the number of rounds of
the encryption switching procedure (Step 3 of the generic construction) to 6.

5 Extension from Z
∗
n to Zn

The Z
∗
n-EG scheme encrypts values in Z

∗
n. However, in some scenarios, it would

be nice if one can encrypt the element 0. We illustrate a method to extend the
protocol from Z

∗
n to Zn in this section. We recall the definition of computational

equality as follows for our further discussion.

Definition 5 (Computational Equality [6]). For two finite sets S1 and S2

with cardinalities |S1|, |S2| ∈ Θ (κc ) for large enough constant c > 0, we call
them computationally equal if for every PPT adversary A, we have

Pr[m ∈ S1 ⊕ S2 : m ← A(S1, S2)] ≤ negl(κ) ,

where S1 ⊕ S2 denotes the symmetric difference of S1 and S2.
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We claim that Zn and Z
∗
n ∪ {0} is computationally equal, since if we can find a

value m ∈ Zn ⊕ (Z∗
n ∪{0}), we can factor the RSA modulus n, which contradicts

the assumption that it is computationally hard to factor n. Hence, we only need
to include 0 in the Z

∗
n-EG plaintext space to extend from Z

∗
n to Zn.

The ciphertext of the new encryption scheme Zn-EG is a tuple C = (c, u),
where u is called zero indicator. A messages m is encrypted as follows.

– If m �= 0, we compute c ← Z
∗
n-EG.Enc(m), u ← Z

∗
n-EG.Enc(1).

– If m = 0, we compute c ← Z
∗
n-EG.Enc(r) for r ←$Z

∗
n, and u ← Z

∗
n-EG.Enc(ḡ),

where ḡ ∈ Jn is a predefined fixed value for Zn-EG.

Multiplication of two encrypted values with tuples (c1, u1) and (c2, u2) is by
doing element-wise multiplications of these tuples. If the multiplication involves
an encrypted zero, the zero indicator encrypts a non-one value and the first
entry c encrypts a random value. Otherwise, the zero indicator encrypts 1,
and c encrypts the multiplication result. To decrypt a tuple (c, u), the decryp-
tion algorithm decrypts the zero indicator via z ← Z

∗
n-EG.Decpk×(u, sk×). If

z �= 1, the algorithm outputs m ← 0. Otherwise, the algorithm outputs
m ← Z

∗
n-EG.Decpk×(c, sk×). Because Zn-EG is based on Z

∗
n-EG, it is obvious that

Zn-EG is also IND-CPA secure. Otherwise, we can construct a distinguisher to
break the IND-CPA security of Z

∗
n-EG. For the zero indicator, we can further

encrypt values ḡ ∈ Jn without encoding and thus obtain shorter ciphertexts.
The extension from Z

∗
n to Zn affects the encryption switching procedure in

the generic construction (Step 3), and we now illustrate how to modify this
procedure in Fig. 6. Our goal is to switch a Zn-EG ciphertext (c, u) to a Zn-P
ciphertext. Let the maximum degree of the polynomial P be dmax. For u inside
(c, u), we know that u encrypts one value of {1, ḡ, . . . , ḡdmax}. We thus can con-
struct a Lagrange polynomial L of (at most) degree dmax, which maps 1 to 1 and
values in {ḡ, . . . , ḡdmax} to 0. If we evaluate L on the encrypted value of u, we
derive encrypted 1 for ciphertexts of non-zero values and encrypted 0 for cipher-
texts of zero according to the zero indicator. Then this encrypted evaluation
result multiplied by the encrypted value of c leads to the switched ciphertext.

The procedure in Fig. 6 utilizes the zero-knowledge functionality FEncMul
zk for

the multiplication of encrypted values relation associated with the language:

LEncMul = {(ca, cb, cc ∈ (Z∗
n2)3, pk+ = n) | ∃(a, b, c, ra, rb, rc), s.t.

ab ≡ c mod n ∧ ∀x ∈ {a, b, c}, Zn-P.Encpk+(x; rx) = cx} .

The protocol that realizes FEncMul
zk can be found in [7]. Note that since α and β

are random, c′
a+α and c′

b+β do not leak any information about a, b, Sarah learns
no information about C, c+ and v during the protocol.

Similar to the Z
∗
n case, we can pack the encryption switching procedure for

the Zn case. More precisely, Bob can switch for both c and terms of Lagrange
polynomial L on u simultaneously via batching TwinCtx. After obtaining the
switched ciphertexts (c+ and v), Bob starts Step 3 of the encryption switching
procedure from Zn-EG to Zn-P in parallel. Hence, we derive a 6-round procedure.
We present an illustration of this procedure for switching one ciphertext in Fig. 7,
and a very similar approach can be used to switch multiple ciphertexts.
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Fig. 6. Encryption switching procedure from Zn-EG to Zn-P with FEncMul
zk .

6 Fair Exchange on Blockchain

In this section, we introduce how to achieve fairness via blockchain, such that
the buyer Bob receives the evaluation result if and only if the seller Sarah gets
paid from Bob. We first briefly introduce the underlying ideas.

We stress that Sarah has a negligible advantage to provide an incorrect result
without being rejected if the blind polynomial evaluation protocol guarantees
receivers’ security. Meanwhile, Bob obtains no more information than the result
P (x) and cannot have any information about P (x) before Step 5 of the generic
construction. Therefore, we can compile the protocol EncValue associated with
Zn-P via Fiat-Shamir heuristic to make it non-interactive, and deploy the proof
verification process on smart contracts to achieve fair exchange. More precisely,
Bob programs a smart contract, uploads parameters for EncValue, and freezes his
payment on the contract. This smart contract receives Sarah’s decrypted result,
together with the proof, and verifies the proof. If the verification returns accept,
Sarah will retrieve the payment automatically. Bob can remove the blind factor
to obtain the final result. We call this approach active verification.
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Fig. 7. Packing encryption switching procedure for the Zn case.

It is indeed possible to further reduce the cost. It is reasonable to assume
that Sarah behaves mostly honestly, since Sarah may trade data many times with
different buyers, and it will influence Sarah’s credit if she is detected to behave
dishonestly. We could require Sarah to pay a deposit on the smart contract
when she submits her proof. The smart contract now does not verify this proof.
Alternatively, Bob verifies the proof off-chain, i.e., Bob retrieves the proof from
the smart contract and verifies it locally. If the proof is accepted, Sarah can
retrieve the payment and her deposit after a specified period called complaint
period. Hence, we save the cost of on-chain verification. Otherwise, Bob starts
the verification procedure on the smart contract during the complaint period.
If the smart contract indeed rejects the proof, it transfers the payment together
with Sarah’s deposit to Bob to penalize dishonest Sarah. Hence, if the latency of
the complaint period is acceptable, this passive verification approach is cheaper.
In what follows, we give a formal description and analysis for the ideas above.

6.1 Procedure Obliviousness

Before introducing the fair exchange protocol, we explicitly define for blind poly-
nomial evaluation a security property called procedure obliviousness. Informally,
the blind polynomial evaluation protocol achieves procedure obliviousness if the
receiver of the protocol learns nothing beyond the public information cx and pi
before the result retrieval procedure of the generic construction. This property is
to ensure that buyers must learn nothing if he aborts before the seller can claim
the payment. The definition is given as follows.

Definition 6 (Procedure Obliviousness). For every PPT adversary A with
input cx , pi and auxiliary input z playing receiver’s role until the beginning of
the fifth step in the generic construction, there exists a PPT simulator S tak-
ing cx , pi, z as input in the ideal model, such that the view simulated by S is
computationally indistinguishable from the view of A.
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Our generic construction in Sect. 3 indeed achieves procedure obliviousness.

Theorem 2. The generic construction in the hybrid model with the ideal func-
tionalities FTwinCtx

zk , FEncValue
zk , and F sk+

zk achieves procedure obliviousness.

6.2 Security Requirements

Given that the blind polynomial evaluation protocol is procedure obliviousness,
we proceed to introduce the fair exchange protocol for the result retrieval proce-
dure of the generic construction over blockchain. Note that in this procedure, the
seller Sarah will receive the blinded ciphertext c′

+,P (x) from the buyer Bob. Now
to achieve a fair exchange of the decryption result and the payment, we move
the transfer of the decryption result for c′

+,P (x) and the verification of EncValue
protocol to blockchain. After the fair exchange, Bob can simply remove the blind
factor to obtain the final result to finish the data trading procedure.

We first define the security requirements for the fair exchange of the data
trading scenario between a data buyer and a data seller via termination, buyer
fairness, and seller fairness in the following.

Termination. If at least one party is honest, the protocol will terminate, and
all coins for the contract will be unlocked.

Buyer Fairness. An honest buyer is guaranteed that only if the seller provides
the correct decryption result of the ciphertext c given by the buyer, the buyer
will pay the seller p coins.

Seller Fairness. An honest seller is ensured that only if the buyer pays p coins
to the seller, the buyer can learn the decryption result.

6.3 Protocol

We remark that our goal in this section is to integrate the transfer of the decryp-
tion result and the verification of EncValue protocol into the blockchain paradigm
to achieve the security requirements defined in Sect. 6.2.

We first introduce how to compile the EncValue protocol for a Paillier cipher-
text c, i.e., c′

+,P (x) in the generic construction, via the Fiat-Shamir heuris-
tic to make it non-interactive and secure against malicious verifiers. Given
a cryptographic hash function H : {0, 1}∗ �→ {0, 1}t, the prover first picks
s ←$Z

∗
n and computes the value a as in EncValue. Then the prover computes

e ← H(n, c,m, a) to generate the challenge e. Finally, the prover computes z as
in EncValue and sends (m, e, z) to verifiers. To verify the proof, verifiers compute
a ← znc′−e mod n2 and output accept if and only if e ← H(n, c,m, a). Note that
the size of the non-interactive proof is short to be deployed on blockchain, e.g.,
0.28125 KB for ||n|| = 2048 and t = 256. The idea for the fair exchange of the
evaluation result is to use a blockchain-enabled smart contract as a judge for the
verification of this non-interactive proof when disputes happen.

The description of our fair exchange protocol basically follows the symbols
and framework used in [10] (and also in [11]). As the same as [10], we abstract the
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communication by the synchronous communication model. This model assumes
that the protocol is executed in rounds and all parties are aware of the current
round. At the beginning of each round, parties receive all messages sent to them
in the previous round. Meanwhile, all messages are sent within one round and
received within the next round, i.e., the communication is instantaneous.

We model the hash function (e.g., keccak 256) used in the Fiat-Shamir
heuristic via the global random oracle H and use the global ledger L (see [10]
for more information) to model a blockchain (e.g., Ethereum). Here we focus on
the passive verification approach as described in Sect. 6. The ideal functionality
GL,H
FairExchange is to model the blockchain-enabled smart contract GFairExchange with

access to L and H. Note that GL,H
FairExchange, acting as a judge smart contract over

the blockchain, interacts with L, H, the buyer Bob, and the seller Sarah. The
description of GL,H

FairExchange is given in Fig. 8, and the description of the four-phase
protocol for fair exchange between an honest buyer Bob and an honest seller
Sarah is given in Fig. 9. In practice, because of the transparency of blockchain,
both parties can check the code of the smart contract and start the protocol
only if the smart contract correctly realizes the functionality of GL,H

FairExchange.
In the initiation phase, GL,H

FairExchange receives from the buyer Bob the public
key pk+ = n for the Paillier encryption, the Paillier ciphertext c, as well as the
price p for the evaluation result. Then GL,H

FairExchange locks p coins from Bob via L
for the payment. The buyer Bob also sends n and c to the seller Sarah.

If the message from Bob and GL,H
FairExchange are consistent, Bob submits

the decryption result and corresponding non-interactive zero-knowledge proof
derived from EncValue to GL,H

FairExchange in the submission phase. Additionally,
GL,H
FairExchange locks p coins from Bob via L, which would be used to penalize dis-

honest Bob.
In the complaint phase, upon receiving the acknowledgment of Sarah’s sub-

mitted message from GL,H
FairExchange, Bob could locally run the verification of the

non-interactive zero-knowledge proof. If the proof is incorrect, Bob needs to send
the message to complain the dispute during the complaint phase in time. Once
GL,H
FairExchange receives the complaint during the complaint phase, GL,H

FairExchange ver-
ifies the non-interactive zero-knowledge proof and resolves the dispute. If the
verification is indeed incorrect, GL,H

FairExchange unlocks 2p coins to Bob (p coins sent
back to honest Bob and p coins for penalizing dishonest Sarah sending incorrect
proof). Otherwise, GL,H

FairExchange unlocks these 2p coins to Sarah. If the verification
of the proof is accepted, Bob sends (finalize, id) to finalize the fair exchange.

If no complain message or finalize message from Bob is sent to GL,H
FairExchange

during the complaint phase, Sarah sends (finalize, id) to GL,H
FairExchange in the

payout phase. Then GL,H
FairExchange unlocks the 2p coins to Sarah.

We note that smart contract for active verification approach mentioned in
Sect. 6 is similar to GL,H

FairExchange. The smart contract for active verification merges
the submission, complaint, and payout phases together, i.e., the smart contract
verifies the proof once it receives the submit message. If the proof is correct,
coins are sent to the seller. Otherwise, coins are sent back to the buyer.
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Fig. 8. Ideal functionality GL,H
FairExchange for fair exchange smart contract.

6.4 Security Analysis

We now analyze the security requirements mentioned in Sect. 6.2 for the fair
exchange protocol.

Termination. The protocol always terminates, and all coins for the contract
will be unlocked in one of the following cases when at least one parties act
honestly.

No Abort. This case occurs when both parties act honestly, i.e., Bob sends a
complain message or finalize message to GL,H

FairExchange in the complaint phase.
According to the description of GL,H

FairExchange, all coins will be unlocked at the
end of the protocol.
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Fig. 9. Protocol associated with GL,H
FairExchange between honest buyer Bob and seller Sarah.

Buyer Bob Aborts. After the initiation phase, Bob’s abortion cannot stop the
execution of GL,H

FairExchange when an honest Sarah involves. In case that Bob does
not send (finalize, id) in the complaint phase, Sarah could send (finalize, id)
to GL,H

FairExchange in the payout phase and coins will be sent to Sarah. Therefore,
all coins will be unlocked at the end of the protocol.

Seller Sarah Aborts. This case occurs when Sarah does not submit decryp-
tion result and the corresponding non-interactive zero-knowledge proof in the
submission phase. Here GL,H

FairExchange will ask L to unlock all p coins back to
Bob and terminate the protocol.

Buyer Fairness. The non-interactive zero-knowledge proof derived from Enc-
Value guarantees the correctness of the decryption result for the ciphertext c.
Note that a computationally bounded seller cannot provide a correct proof due
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to the security of EncValue compiled by the Fiat-Shamir heuristic under the
random oracle model except a negligible probability.

Suppose that the decryption result m is incorrect, i.e., the proof is incorrect.
In that case, an honest buyer can complain to GL,H

FairExchange on time to prevent the
payment and retrieve coins back. Since the verification of the proof on GL,H

FairExchange

is the same as the verification executed by the honest buyer, coins will be back
to the buyer. Thus, the seller here cannot retrieve the payment, and the protocol
achieves buyer fairness.

Seller Fairness. For seller fairness, we should ensure that once the buyer learns
the decryption result of c, the honest seller should be paid. From the protocol,
the buyer Bob learns the decryption result of c only if the honest seller Sarah
submits it. For a submission of an honest seller, the buyer can choose to send
complain or finalize to GL,H

FairExchange, or does nothing.
Suppose the buyer sends a complain message to GL,H

FairExchange. In that case,
the correct proof will still be accepted by GL,H

FairExchange. Then the honest seller will
receive the payment, together with her p coins frozen in the submission phase.
For the finalize message, 2p coins will be sent to the seller directly. If the buyer
does nothing, the honest seller can send the message finalize to GL,H

FairExchange to
retrieve the payment together with her own p coins frozen in the submission
phase. Therefore, the protocol achieves seller fairness.

6.5 Possible Attacks and Countermeasures

We note that a malicious seller in practice may try to submit incorrect proof and
hope that the buyer does not verify the proof or send complain on time. For this
case, our solution is to penalize the malicious seller when her submitted proof
is incorrect. In the submission phase, the seller is required to deposit p coins on
GL,H
FairExchange when she submits the decryption result and the proof. Hence, if the

proof is incorrect, the buyer can complain to GL,H
FairExchange and retrieve these p

coins to penalize the seller.
A malicious buyer may be able to perform a Denial of Service (DoS) attack.

In a normal interaction of the data trading, the buyer Bob will perform compu-
tation on the encrypted dataset, run the encryption switching procedure with the
seller Sarah, and execute the fair exchange protocol to retrieve the final decryp-
tion result. However, malicious Bob may perform a DoS attack by performing
the encryption switching procedure with Sarah using garbage ciphertexts. These
garbage ciphertexts are generated randomly rather than through computation on
encrypted data. Then malicious Bob will always abort before the result retrieval
procedure, i.e., the fair exchange protocol. We note that the seller needs to con-
duct more computation than Bob during the TwinCtx protocol. Hence, if Bob
launches this attack, though malicious Bob learns nothing from the protocol, it
is unfair for Sarah to perform much more useless computation than Bob (since
Bob here only generates garbage ciphertexts and acts as a verifier in TwinCtx).
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This DoS attack cannot be avoided, but we still have countermeasures. A black-
list approach may be a possible solution, but alternatively, we provide another
solution here. The solution is to let the buyer deploy the smart contract and
freeze some coins on the contract before the data trading. These frozen coins
can only be retrieved back at the end of the fair exchange, after a specified
period, or directly treated as the payment. If the malicious buyer performs the
DoS attack, he needs to pay the fee for the smart contract’s deployment and
freeze some coins on the smart contract at first, and thus we make it expensive
to carry out such a DoS attack.

For the fair exchange protocol, if Sarah does not submit the decryption result
and the corresponding proof, Bob is allowed to retrieve his coins frozen for the
payment back. However, in practice, updates of blockchain follow a consensus
mechanism, which allows malicious buyers to launch an attack based on this sce-
nario of getting the payment back. In practice, it takes some time for the seller’s
submission to be confirmed on blockchain because of the consensus mechanism.
At this point, after seeing the seller’s submission, the malicious buyer can quickly
submit a request to the smart contract to retrieve the frozen payment pretending
that the seller has not submitted the decryption result. In this way, the malicious
buyer’s request may be confirmed by blockchain before the seller’s submission.
Thus, the malicious buyer gets the answer submitted by the seller while getting
back the frozen payment. Our solution to this attack is to set a time limit for
the withdrawal of frozen payments in smart contracts. Within this period, the
seller can submit the decryption result and proof, and the buyer is allowed to
retrieve the frozen payment only after this period. Therefore, if the seller can
submit the decryption result in time, malicious buyers’ request to retrieve the
frozen payment will not be accepted, so the attack cannot succeed.

7 Analysis

7.1 Round Complexity

We count the number of rounds of our two instantiations (both using the batch
technique for TwinCtx) for protocols that are honest-verifier zero-knowledge
(HVZK) or compiled by Fiat-Shamir heuristic. Since the offline phase of TwinCtx
involves a cut-and-choose procedure, we do not recommend compiling this pro-
cedure via the Fiat-Shamir heuristic, and it is regarded as a three-round protocol
even for the Fiat-Shamir heuristic. The total number of rounds of the protocol
is equal to the number of rounds of the encryption switching procedure plus the
number of rounds of the decryption procedure. For both the cases of Z∗

n and Zn,
our instantiations only need 5 rounds under the Fiat-Shamir heuristic and 10
rounds under HVZK, which is very cheap for practical use.

7.2 Experimental Performance

We provide a proof-of-concept implementation to evaluate the performance of
our blind polynomial evaluation protocol. The protocol is implemented in C++
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using the NTL library [25] for the underlying modular arithmetic on a single
core of MacBook Air (2018) with a 1.6 GHz Intel c©Core i5 CPU, 8 GB of RAM,
running macOS 10.15.4.

Table 2 provides the experimental performance of basic operations and
ciphertext sizes in our instantiations. We give the total running time of per
10000 addition and multiplication operations, respectively. For the instantiation
over Zn, we use zero indicators encrypting values of Jn, as mentioned in Sect. 5.

Table 2. Experimental performance of basic operations and size of ciphertexts.

Ptx space ||n|| 10k × Mul 10k × Add ElGamal ctx Paillier ctx

Z
∗
n 1024 0.2173 s 0.1996 s 0.375 KB 0.25 KB

Zn 1024 0.3834 s 0.1971 s 0.625 KB 0.25 KB

Z
∗
n 2048 0.6271 s 0.6199 s 0.750 KB 0.50 KB

Zn 2048 1.0387 s 0.6143 s 1.250 KB 0.50 KB

Table 3 presents the experimental performance of batching executions of
TwinCtx and corresponding communication cost for security parameter t = 32.
We measure the running time for both the verifier and the prover when a ran-
dom twin-ciphertext has been generated. The parameter k denotes the number
of ciphertext pairs that are proved to be twin-ciphertext pairs. As the bottleneck
of the protocol, its performance is efficient and practical.

Table 3. Performance of batching the executions of TwinCtx for t = 32.

||n|| k Verifier Prover Communication cost

1024 128 0.6421 s 4.6771 s 172.50 KB

1024 256 1.1878 s 9.2474 s 316.81 KB

1024 512 2.3242 s 18.5823 s 605.44 KB

2048 128 4.2374 s 28.7013 s 344.44 KB

2048 256 8.1683 s 58.3467 s 632.75 KB

2048 512 16.1003 s 117.2097 s 1209.38 KB

7.3 Cost on Blockchain

We give a proof-of-concept implementation for the blockchain part illustrated
in Sect. 6 by deploying it on a private network of Ethereum. We measure the
computation cost via gas consumption of the smart contract execution, which
only depends on the instructions executed by the Ethereum Virtual Machine.
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Table 4 presents the gas consumption and total transaction fee for both active
and passive verification, with different security parameters κ.2 Although our
proof-of-concept implementation is not fully optimized, the gas consumption
and fees are acceptable, especially for the passive verification approach.3

Table 4. Gas consumption of functions and total transaction fee for t = 256.

Mode ||n|| initiate submit complain getPaid Total Fee

Active 1024 620167 2807188 None None $5.41

Active 2048 1061626 13408995 None None $22.84

Passive 1024 635495 586386 2636802 30271 $1.98

Passive 2048 1076542 950408 13190574 30271 $3.25
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Abstract. Multi-party fair exchange (MFE) considers scenarios where
fairness means that either all exchanges as agreed upon between multiple
parties take place, or no item changes hands. The two-party case was
widely studied starting with the seminal work of Asokan et al. in ACM
CCS 1998. The state-of-the-art MFE protocol was shown by Kılınç and
Küpçü in CT-RSA 2015. Unfortunately, it only works on items that
can be efficiently verifiably encrypted, which, in particular, means that
it cannot efficiently handle exchange of large files in a peer-to-peer file
sharing scenario. In this work, first, we extend the optimistic two-party
fair computation definition of Cachin and Camenisch in CRYPTO 2000
for the MFE setting, and prove the security of our protocol with ideal-real
simulation. Secondly, we extend the CT-RSA 2015 solution of Kılınç and
Küpçü in a way that our protocol enables parties to exchange any item,
be it a large file. While doing so, we employ electronic payments, where
if a party does not obtain the desired item at the end of the protocol,
the payment of the item’s owner will be obtained instead. Third, we
achieve asymptotic optimality with O(1) rounds and O(n2) messages,
where n is the number of participating parties. Finally, we also provide
experimental results from our prototype code.

Keywords: Multi-party fair exchange · Optimistic model · Electronic
payments · Threshold cryptography

1 Introduction

Exchange protocols are suitable for scenarios where people want to exchange
their electronic goods such as signing electronic contracts [31,45], online shop-
ping, file sharing [23], or certified e-mail delivery [1]. These exchanges can be
in numerous exchange topologies that define who want whose goods. The most
well-known one is the complete topology where parties want to receive all other
parties’ goods (e.g., electronic contract signing, where each party needs the signa-
tures of all other parties). Another popular topology is the ring topology, where
a group of parties in some order wants to the receive previous party’s good. Ring
topology is particularly suitable for online shopping: a customer wants to buy
online an item from a seller: the seller sends the item to the customer, the cus-
tomer sends approval for the payment to her bank, the customer’s bank sends

c© Springer Nature Switzerland AG 2021
K. Sako and N. O. Tippenhauer (Eds.): ACNS 2021, LNCS 12726, pp. 130–160, 2021.
https://doi.org/10.1007/978-3-030-78372-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78372-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-78372-3_6


Coin-Based Multi-party Fair Exchange 131

the actual payment to the seller’s bank, and finally the seller’s bank puts the
money to the seller’s account. In all these scenarios, fairness is an ultimate secu-
rity requirement: either all parties in the exchange protocol receive the electronic
goods that they want, or no one receives anything useful.

Unfortunately, it is a known fact that fairness cannot be achieved without
honest majority [29,49]. In the two party setting, to minimize the requirement
of a trusted third party (TTP), Asokan et al. [4,5] introduced the notion of
optimistic fair exchange, where the TTP participates in the exchange protocol
if and only if a dispute between the participants occurs. While previous defini-
tions were game-based, in CRYPTO 2000, Cachin and Camenisch [16] provided
an ideal world definition for fair and secure multi party computation, which we
adapt for the multi-party fair exchange (MFE) setting. Thus, our first contribu-
tion is this adaptation and security proof in the ideal-real model.

Verifiable encryption [17,19] under the TTP’s key is the main cryptographic
primitive in an optimistic fair exchange protocol, because if any party cheats
(e.g., does not send his item), other parties ask the TTP to decrypt the verifi-
able encryption and receive the item. One may consider verifiable encryption as
an encryption together with a zero knowledge proof that the encrypted value is
correct. Since the encryption is verifiable, meaning that it is the encryption of
the correct item, the parties receive the missing item at the end when the TTP
decrypts it. For example, if parties exchange signatures, then it is efficiently pos-
sible to show that the encryption includes a signature of the contract with the
signing key of the party. Our second contribution lies in the following question:
What if the item is a large file with a known hash value? Although there has
been significant progress on the efficiency of zero-knowledge proofs in the recent
years, verifiably encrypting such files is still not practical, thereby eliminating
the previous MFE solutions for practical use in this scenario. In this paper, we
find a solution for this multi-party large-file exchange problem that works for any
exchange topology. To achieve fairness efficiently, we consider a different fairness
definition: if a party receives a wrong item, then (s)he can get the coin of the
party who provided the wrong item. Note that, some existing two-party proto-
cols (e.g., [12,40,43]) also apply this type of fairness definitions, and recently
Dziembowski et al. [27] used this type of fairness for file-exchange in two party
scenario using smart contracts. One may consider scenarios such as peer-to-peer
file sharing, where the hash of the file to be exchanged is known beforehand (e.g.,
via a trusted Tracker [23]). Our solution is inspired by the solution of Kılınç and
Küpçü [37] that is practical in the multi-party setting, but only for items that
can be efficiently verifiably encrypted. Our contribution is as follows:

– Our coin-based multi-party fair exchange (CMFE) protocol is the first prac-
tical multi-party exchange protocol that enables multiple parties to exchange
verifiable items that cannot be efficiently put in a verifiable encryption. For
example, files may be verifiable via their hashes, but still there is no efficient
way of putting a large file into a public-key verifiable encryption. Our CMFE
protocol enables very efficient exchange of any size of items, by relaxing the
fairness definition and employing electronic payments.
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– Our CMFE has an easy setup phase, which is employed only once for
exchanging multiple sets of items, thus improving efficiency even further
for repeated exchanges among the same set of participants. The topology
can change between repetitions, without the need to redo the setup.

– We construct CMFE with generic cryptographic primitives, and instantiate
it with practical solutions in the random oracle model and show its concrete
efficiency. For 10 parties, after a setup phase that takes at most 1.35 s and
527 KB, each exchange costs less than 87 ms and 105 KB overhead over
unfairly exchanging the files.

– CMFE has asymptotically optimal performance with round complexity of
O(1) and message complexity of O(n2) for n parties (for optimality, see the
combinatorial proofs in [34,45,50]).

– We prove the fairness of CMFE via ideal-real world simulation considering
it as a multi-party computation protocol.

– As an independent contribution, we define and use a verifiable deniable (k,n)-
threshold encryption scheme and show in the Appendix A that ElGamal
threshold scheme leads to an efficient instantiation.

2 Related Work

Two-party fair exchange (2FE) is a well studied problem [5–7,10,26,40,48], while
multi-party fair exchange (MFE) does not have the same popularity. Most of
the MFE protocols were constructed for the ring topology, where each party
expects an item only from the previous one. The one by Ba et al. [9] is not an
optimistic protocol and needs a trusted initiator besides the TTP. In addition, it
has the passive conspiracy problem [30], where a malicious party conspires with
an honest party. Gonzales-Deleito and Markowitch [32] removed the trust on
a party but their resolution protocol requires some parties being online, which
is not a reliable assumption. Liu and Hu [44] remove the passive conspiracy
problem of Bao et al. [9], but they still rely on the existence of online parties. In
all these ring-topology MFE protocols, no formal fairness proof exists. Instead,
case-by-case analyses are done to show that fairness is satisfied.

In addition, there is a fundamental difference between the fairness
notion in these protocols and that of ours. According to their definition, there
will be no honest party that does not receive his desired item from the pre-
vious party but sends his item to the next party. It implies that some parties
may receive their desired items while some other parties do not receive or send
anything. For instance, consider a ring topology with parties P0, P1, P2, P3 and
P4, and assume that P1 and P3 are malicious and colluding. In this case, the
following scenario can happen using the fairness notion in these protocols: P0

receives an item from P4 and P0 sends an item to P1, and similarly P4 receives
an item from P3 and P4 sends an item to P0. However, P2 did not send or
receive any item. This was previously considered fair. Whereas, according to our
definition, we need that either all parties receive their desired item or receive
monetary compensation from the party who did not send his item, or no party
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receives anything useful. We think that our way of defining fairness where the
whole exchange topology must be fairly completed is more suitable for multi-
party fair exchange (e.g., the online shopping scenario in the ring topology in
Sect. 1 should be fair according to our fairness understanding). Otherwise, MFE
protocols could have been simply achieved via multiple executions of two-party
fair exchange protocols.

Asokan et al. [4] protocol is the first optimistic MFE protocol that works
for any topology. Parties are restricted to “exchangeable items” where the TTP
can replace or revoke the items. In case the revocation or replacement is not
possible, the TTP signs an affidavit to be used external dispute handling system
such as a court. In exchange protocols where affidavit signature of the TTP is
not useful, this protocol shrinks the set of possible items to be exchanged. The
resolution protocol also requires the parties to be online all the time as in [9,32],
since the TTP may ask to re-execute the exchange. In addition, the protocol
needs broadcast to send the items, rendering the protocol inefficient.

Kılınç and Küpçü [37] constructed the first optimistic MFE protocol with
optimal round and message complexity in all topologies and has the first formal
fairness proof via ideal-real world simulation. Unfortunately, for practicality, they
also restrict the items to be those that can be efficiently verifiably encrypted. As
an important technical difference, since the file cannot be efficiently verifiably
encrypted, we employ symmetric-key encryption of the item, and then encrypt
this key under a shared public key, as well as the public key of the TTP. This dual
encryption is necessary to enable optimistic exchange and resolution with the
TTP both. Then, differently from [37], verifiable escrows (verifiable encryption
under the TTP’s public key) of both the payments and the decryption keys are
necessary in our solution. We also employ digital signatures to tie messages in
the exchange to each other. Moreover, we need to introduce additional resolution
protocols that deal with payments. Finally, the introduction of the symmetric-
key encryption complicates our security proof, requiring a whole new approach.
Overall, while we do employ ideas from [37], the technical contribution is non-
trivial. As a minor drawback, the TTP in CMFE is more powerful: it can spend
the payments put down by the honest parties. Reducing the trust put on the
TTP is left as future work. See Table 1 for the overall comparison of our protocol
and existing multi-party fair exchange protocols.

Blockchain-Based Fair Exchange: In recent years, blockchain started to
replace the TTP in fair exchange protocols [3,11,13,14,27,36,38,39] by giving
monetary compensation instead of the item to resolve fairness issues. However,
except FairSwap [27], which is a two-party fair exchange protocol, none of those
provide fair exchange efficiently for the exchange of very large files. FairSwap
[27] uses an efficient proving system based on Merkle trees to let the smart
contract detect the exchange of wrong items without knowing the whole item.
Instantaneous Decentralized Poker (IDP) [14] provides an optimistic multi-party
fair exchange with smart contracts that consists of a combination of multi-party
computation that outputs the encrypted exchange items and fair exchange of
keys. The fairness of this combination has been proven by Gordon et al. [33].
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Table 1. Comparison with existing MFE protocols with n parties. TTP-party inde-
pendence exists if the TTP does not have to contact a prespecified party to resolve
the fairness problem with another party. TTP privacy exists if the TTP does not learn
any information about the identity of the parties and exchanged items. TTP partial
privacy exists if TTP does not obtain whole item.

Topology Num.
messages

Large item
exchange

TTP-party
independence

TTP
privacy

Bao et al. [9] Ring O(n) Impractical No None

González-Deleito
and Markowitch [32]

Ring O(n2) Impractical No None

Liu and Hu [44] Ring O(n) Impractical No None

Asokan et al. [4] All O(n3) Impractical No None

Kılınç and Küpçü
(MFE) [37]

All O(n2) Impractical Yes Private

Ours (CMFE) All O(n2) Practical Yes Partial

Table 2. Fair exchange and secure computation protocols that use coin-based fairness
definition. ‘-’ shows that the notion is not applicable.

Type Topology Large item
exchange

Trusted
entity

Küpçü and Lysyanskaya [40] 2FE – Practical TTP

[3,11,13,14,36,38,39] Fair MPC All – Blockchain

FairSwap [27] 2FE – Practical Blockchain

Ours (CMFE) MFE All Practical TTP

However, IDP does not handle whether the items of the parties are correct or
not while providing fairness unless checking the correctness of them is encoded
in the MPC functionality. As we discussed previously, encrypting, for example,
a 1 GB file and showing that it is the encryption of the file with the expected
hash value decreases the efficiency significantly because the circuit size of such
a proving system is huge. In a nutshell, there does not exist any MFE proto-
col on smart contracts that enables exchanging very large items efficiently. We
also consider it as a future work. Overall, there exists no efficient and optimistic
MFE protocol to exchange very large files (see Table 2) even with the coin-based
fairness notion as we employ in this paper.

3 Definitions and Preliminaries

The fairness model of our coin-based MFE protocol is built on the ideal/real
world simulation as in the security model of secure multi-party computation
(MPC) protocols, because an MFE protocol is an MPC protocol (see [37]).
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Optimistic Fair Secure MPC: We extend the two-party fair and secure com-
putation definition by Cachin and Camenisch in CRYPTO 2000 [16] to the multi-
party case in the spirit of the standard secure computation definition. Besides
extending it to multi-party case, we slightly modify the ideal world definition
to fit the nature of fair exchange where the parties first provide some kind of
promise (e.g., verifiable encryption) before executing the item exchange.

Ideal World: It consists of honest party(s) Ph, an adversary A that corrupts
the parties in set Pc, the TTP, and the ideal functionality Uφ

fs. Here, φ is the
function that parties want to compute with their inputs and promise is a some
promise function, whose security is as defined below.

Definition 1 (Security of Promise). The function promise : W → X is a
secure promise function if for all PPT adversary A there exists another adversary
B such that for all w ←D W chosen according to a distribution D and for all
polynomial functions H and Leak, there exists a negligible function such that

Pr[A(1�, promise(w),H(w)) = Leak(w)] − Pr[B(1�,H(w)) = Leak(w)] < negl(�).

Here, H(w) models the public information related to w (e.g., H is a hash
function the exchange item with known hash scenario). Informally, knowing
promise(w) does not improve our current knowledge about w. We now define
the ideal protocol for secure and fair MFE.

Observe that an honest TTP always sends continue for each honest party.
In this case, Uφ

fs guarantees that either the adversary obtains {promise(wi)}Pi∈Pc

and honest parties obtain nothing, or each party Pi obtains φi. Therefore, as long
as the function promise is secure according to Definition 1, fairness is guaranteed
with Uφ

fs. Even though we never consider malicious TTP in CMFE (because
otherwise fairness is not possible [29,49]), for the sake of generality, Uφ

fs covers
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the case where the TTP is controlled by the adversary: bi = ⊥ represents the
TTP not responding to an honest party Pi, breaking fairness, and any other
bi ∈ Yi denotes that the TTP resolves with the party Pi such that Pi learns an
incorrect output, where Yi is the domain of φi. In Uφ

fs, promise(wi) represents
the information that parties provide each other before exchanging real items
in exchange protocols. We note that Uφ

fs also covers MFE protocols without
promise. These protocols can consider promise(wi) as a null function.

The outputs of honest parties and of A in an ideal execution between the
honest party(s) and A controlling the corrupted parties where Uφ

fs computes φ is
denoted IDEALfs

φ,TTP,A(aux),Pc
({wi}1≤i≤n, �), where {wi}1≤i≤n are the private

inputs of Pi, aux is an auxiliary input, and � is the security parameter.

Real World: No ideal functionality Uφ
fs exists in the real protocol π to compute

the functionality φ. A PPT A controls the set Pc of parties. The TTP participates
in the protocol when a dispute arises. REALfs

π,TTP,A(aux),Pc
(w1, w2, ...wn, �)

denotes the outputs of honest party(s) Ph and A in π that may employ the
TTP where {wi}1≤i≤n, aux, and � are as above.

Definition 2 (Fair and Secure Multi-Party Exchange). Let π be a PPT
protocol and let φ be a PPT MFE functionality. If ∃ a PPT simulator S for
every non-uniform PPT adversary A attacking π and for all w1, w2, ..., wn s.t.

{IDEALfs
φ,S(aux),Pc

({wi}, �)}
�∈N

≡c {REALfs
π,TTP,A(aux),Pc

({wi}, �)}
�∈N

then, we say that π securely realizes Uφ
fs. If the promise function of Uφ

fs is secure
according to Definition 1 and π realizes Uφ

fs, then we call that π is fair.

We denote an exchange topology by Υ = (ΥS , ΥR) where ΥR, ΥS ∈ {0, 1}n×n

where ΥR[i, i] = ΥS [i, i] = 0. If ΥS [i, j] = 1, it indicates Pi has to send his item
fi�j to Pj . Similarly, ΥR[i, j] = 1, it indicates the Pi needs to receive the item
fj �i of Pj . Each item fi�j where ΥS [i, j] = 1 has a public description Hi�j which
lets a receiver party Pj verify whether the received item is correct with a item
validation function H.

Definition 3 (Coin-based MFE (CMFE) Functionality). The function-
ality φ of a CMFE with parties P = {P1, P2, ..., Pn} defined on topology
Υ ∈ {0, 1}n×n, item validation function H, the list of item definitions Hij for
all ΥS [i : j] = 1 is the function: φ(z1, z2, ..., zn) = (φ1(z1, z2, ..., zn), φ2(z1, z2, ...,
zn), ..., φn(z1, z2, ..., zn)) where zi = {(coini �j , fi �j)}∀j:ΥS [i,j]=1. The output
is φi = {ρj : ∀j s.t. ΥR[j, i] = 1}, where ρj = fj �i if Hj �i = H(fj �i), or
ρj = coinj �i otherwise.

Here, fi�j is the item that a party Pi wants to exchange, and coini�j is
a collateral (e.g. an electronic payment [21,22]) that is issued to any Pj who
wants the items of Pi when Pi does not give his items. In exchange protocols,
validity of an item can be verified by a publicly known item description (e.g.,
the item description is the hash of the item and validation function is the hash
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function). For example, in BitTorrent [23], hashes of files are already obtained in
the torrent file before the exchange begins; hence they are known by each party.

Adversarial Model: The TTP resolves the disputes atomically, dealing with
one party at a time until that resolution protocol is finished. The communication
channel is defined similar to previous work [8,40–42], such that there are loosely-
synchronized clocks (e.g., we employ large timeouts on the order of potentially
hours or days since they only affect dispute resolution, not the execution of
the protocol), and while the communication channel is under the adversary’s
control, it is assumed that the adversary cannot prevent the honest parties from
reaching the TTP before the specified time interval ends. Essentially, we are
in a bounded-delay model [35], where the delay the adversary can enforce on
the communication between the honest parties and the TTP is bounded by
some α, which is assumed to be less than the timeouts stated in the protocols.
Note that there is no bound on the delay on the messages between the parties;
only those between a party and the TTP has a bounded delay. Thus, message
passing between parties and local aborts can be done in an asynchronous manner,
but communication with the TTP must be done via loosely synchronized clocks
with bounded adversarial delay [35]. Secure channels are used for exchanging the
decryption shares and endorsement of a coin. A secure and server-authenticated
channel (e.g., TLS) is employed when contacting the TTP. The adversary may
control up to n − 1 out of n parties in the exchange, and is PPT.

Definition 4 ((k, n)-Threshold Encryption [52]). It consists of the follow-
ing PPT algorithms where the number of parties is n and the threshold is k:

– ThGen(1�, k, n) → (pk, v, {xi}1≤i≤n): It takes a security parameter � in unary
and parameters k, n as input and outputs a public key pk, a verification key
v, and a secret key xi for each party Pi.

– ThEnc(pk,m) → E : It takes the public key pk and a message m as input
and outputs the ciphertext E.

– ThDShare(xi, pk, E) → di : It takes a private key xi, the public key pk, and
a ciphertext E as input and outputs the decryption share di.

– ThDSProve(xi, pk, di, E) → DSproofi : It takes as input a private key xi, a
ciphertext E, the public key pk, a decryption share di, and outputs a proof
DSproofi that the decryption share is valid.

– ThDSVerify(v, pk, E, di,DSproofi) → valid/invalid : It takes the verification
key v, the public key pk, a ciphertext E, and a decryption share di with
its proof DSproofi as input and outputs either valid or invalid based on the
verification of the proof.

– ThDec(DS, pk, E) → m : It takes a set of decryption shares DS where
|DS| ≥ k, pk, and a ciphertext E as input and outputs a plaintext m.

We use the zero-knowledge functionality UZK-R below with two parties Pi

as a prover and Pj as a verifier for the security of ThDSProve and ThDSVerify
where the prover is the party who proves that the di is correctly constructed for
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the encryption E and the verifier is the party who wants to verify that di is a
correct decryption share for E.

UZK-R with a relation R

– UZK-R receives (prove, id||Pi||Pj , w, δ) from party Pi.
– If (w, δ) ∈ R, then UZK-R outputs (proof, id||Pi||Pj , δ) to Pj . Otherwise, UZK-R

outputs (disproof, id||Pi||Pj , δ) to Pj .

Definition 5 (Deniable (k, n)-Threshold Encryption). It consists of all
algorithms in Definition 4 and also the PPT algorithm below. Assume that we
have E = ThEnc(pk,m) where its corresponding valid decryption shares are
DS = {di1 , di2 , ..., dit

} where {i1, i2, ..., it} ⊆ {1, 2, ..., n} and t = |DS| < k.
– ThDeny(E,DS, I,m′, pk) → DS′ : It takes as input a ciphertext E, decryp-

tion shares DS, an index set I such that |I| = k−|DS| and {i1, i2, ..., it} /∈ I,
a fake plaintext m′, and the public key pk. It outputs a set of fake decryption
shares DS′ for the indices in I such that ThDec(DS′ ∪ DS, pk, E) → m′.

Definition 6 ((Labeled) Public Key Encryption). A (labeled) public key
encryption scheme with security parameter � and message space M consists of
the following PPT algorithms: Key generation algorithm: PkGen(1�) → (sk, pk).
Encryption algorithm: PkEnc(pk,m; lbl) → E where m ∈ M is a message and lbl
is label which can be empty and E is the ciphertext. lbl is public and integrated
to E such that it cannot be modified. Decryption algorithm: PkDec(sk,E) → m.

Deniable encryption is employed in our security proof, to enable simulation to
succeed while initially encrypting random junk. Encryption labels are employed
to tie different messages together, as well as indicate exchange parameters to
the TTP. Below, we give the definition of verifiable escrow, which is the same
cryptographic primitive as verifiable encryption [17,19]. We use the name escrow
to indicate that the key of the encryption scheme belongs to the TTP.

Definition 7 (Verifiable Escrow [17,19]). Let ψ = [R,W,Δ] be a description
of a binary relation R on W × Δ, and M be a message space. A verifiable
escrow scheme is a (labelled) public key encryption scheme with the following two
additional potentially interactive PPT algorithms: ProveEnc run by a prover who
encrypts the message and VerifyEnc run by a verifier who receives the ciphertext.
– ProveEnc(pkT , w, δ; lbl) → (VS,VSproof) : It takes as input pk, a wit-

ness w ∈ W , and a statement δ ∈ Δ, and outputs the ciphertext VS =
PkEnc(pkT , w; lbl) and a proof VSproof that (w, δ) ∈ R.

– VerifyEnc(pkT , δ,VS,VSproof) → 1/0 : It takes as input pkT , δ,VS and the
proof VSproof, and outputs 1 if (w, δ) ∈ R, or 0 if (w, δ) /∈ R.

We give below the security of ProveEnc and VerifyEnc with the functionality
UVS-R for two parties Pi as a prover and Pj as a verifier which satisfies the secu-
rity properties of these algorithms: completeness, soundness, and zero knowledge
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[17,19]. The ideal verifiable escrow functionality UVS-R checks that pkT is the
public key of the TTP.

UVS-R with a relation R and TTP’s public key pkT

– UVS-R receives (VSprove, id||Pi||Pj , item, δ, pk′, lbl) from party Pi.
– If (item, δ) /∈ R or pk′ �= pkT , then UVS-R sends (VSdisproof, id||Pi||Pj ,

item, δ, pk′, label, ⊥) to the party Pj . Otherwise, UVS-R computes the cipher-
text PkEnc(pkT , item; lbl) → E and sends (VSproof, id||Pi||Pj , δ, pkT , lbl, E)
to Pj .

Remark that UVS-R covers the security condition that the label lbl cannot
be modified and attached to the ciphertext.

In Sect. 7, we show how to efficiently initialize these functionalities and prim-
itives using previous work and present concrete performance numbers.

Endorsed E-cash: Endorsed e-cash [18] consists of two pieces: unendorsed coin
‘coinu’ and endorsement ‘e’. coinu cannot be used as a coin without e. In addi-
tion, no one except the owner of coinu can construct a valid e for coinu. The
endorsement can be efficiently verifiably escrowed and can be verified to endorse
the matching unendorsed coin. Note that in our protocol, we can employ any
electronic payment scheme, as long as it can be efficiently verifiably escrowed
(e.g., electronic checks [22]). For the formal security definitions, we refer the
reader to [18], since those are not necessary for understanding our paper. In our
protocol, honest parties’ endorsements’ are never given to any other party.

Symmetric Encryption Scheme with the message space M consists
of the key generation algorithm SymGen(1�) → K, encryption algorithm
SymEnc(K,m) → E and the decryption algorithm SymDec(K,E) → m where
m ∈ M and � is the security parameter.

Signature Scheme consists of the key generation algorithm SgGen(1�) →
(sg, vk), the signing algorithm SgSign(sgi,m) → S and the verification algorithm
SgVerify(vk, S,m) → 0/1 where m ∈ {0, 1}∗ where � is the security parameter.

Notation Parties and their names in the protocol are represented by Pi, where
i ∈ {1, ..., n}. Ph denotes the set of honest parties, and the set of Pc denotes
the corrupted parties controlled by the adversary A. Ek(m) is used to denote a
ciphertext with a plaintext m and a key is k. VS is used to show verifiable escrow.
We denote by f and coin the item and the coin used during the exchange. In gen-
eral, Xi�j represents that Pi has generated X for Pj where X ∈ {VS, E, f, coin}.
We let dk

i denote a decryption share of the encryption Ei generated by a party Pk

(i.e., ThDShare(xk, pk, Ei) → dk
i ). Usually, we denote simulated values separately

e.g., the encryption of a random message is shown with Ẽi and its correspond-
ing valid decryption shares are shown with d̃i. We use the ideal functionalities,
UZK-Rds , UVS-Rvs-ds and UVS-Rcoin where the relations are, respectively:

Rds = {((xi, r), (pk, di, v)|ThDSharer(xi, pk, E) → di}, (1)
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where ThDSharer runs ThDShare with random coins r, and

Rvs-ds = {(({di,DSproofi}), (pk, pkT , {Ei}, v))|
∀i,ThDSVerify(v, pk, Ei, di,DSproofi) → valid} (2)

showing that Ei is the encryption of valid decryption shares and their proofs.
For electronic payments,

Rcoin = {(e, coinu)|e is the endorsement of unendorsed coin coinu} (3)

which denotes that a valid e-coin payment is escrowed.

4 Overview of Our Techniques

2FE vs. MFE: The classical MFE for any topology, where all parties obtain
their desired items or none of them obtain anything, is especially more difficult
than 2FE because the protocol should guarantee that all parties get items at the
same time [37], even when some parties do not need to exchange items with each
other according to the exchange topology (e.g., P3 and P1 on the left-hand side
in Fig. 1, or P4 and P2 on the right-hand side of Fig. 1). For example, we should
avoid cases in the ring topology in Fig. 1 such that P4 obtains her item before
P2 obtains his item or a certificate that lets him get the item from the TTP.
We prevent this type of unfair case by dividing the protocol into phases and let
the participants obtain their items at the very end of the protocol. However, the
issue in such phase-based protocols is synchronization: i.e., to move to the next
phase if and only if other parties move as well.

Fig. 1. Graph representation of the ring topology (left) and a random topology (right).
fi is the item of party Pi. The direction of the arrow shows the party who wants to
receive it.

Broadcast vs. Threshold Cryptography: One of the ways for this synchro-
nization could be broadcasting at the end of every phase to inform others with
the current view. However, broadcasting increases the message complexity to
O(n3), which is far from the optimal message complexity of O(n2) that we aim
for. Instead of broadcasting, we use the idea by Kılınç and Küpçü [37] connecting
the parties with threshold cryptography. Thanks to the threshold cryptography,
if a party cannot complete any intermediate phase successfully, others do not
obtain any item (from any other party) at the last phase of the protocol. This
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nice property removes the need for informing other parties regarding whether
the phase is completed or not, and thus decreasing the message complexity.

Resolutions with the TTP is another issue that requires special attention
in an MFE protocol in any topology. One of the main requirements to achieve
fairness is that the TTP should never help a party to obtain an item until making
sure that others can also obtain their items. In a 2FE protocol, this issue could
be solved much easily. For example, the TTP could ask the party who comes to
resolve to give his own item in exchange of helping him to obtain the other party’s
item. This way, when the other party comes, the TTP can give the item that
the other party wants. However, this solution cannot work in an MFE protocol
unless the TTP contacts the other parties to give their items, which is not ideal.
The protocol should not assume that the TTP knows how and when to contact
the parties; instead, we can only assume that the TTP is a server machine that
is available, and the parties should initiate contact, only when they need to.
Another requirement from the TTP specific to coin-based fairness is that the
TTP should never provide a coin to a party who comes for resolution, until it
makes sure that others can obtain either a coin or their desired item and also
the party who comes for the resolution cannot obtain the desired item.

Overview of CMFE: CMFE has three phases. In the first phase (Setup),
parties generate a public-key for the threshold encryption using their private
shares and then exchange coins that can be activated only by the TTP.

In the second phase (-EIE- Phase), they encrypt their item with a symmetric
key and send this encryption to the parties who want their item. Also, each
party sends the encryption of the symmetric key under the threshold encryption
scheme to everyone. Thus, everyone needs each other because each party must
obtain the decryption shares from all other parties, even if they do not expect
their item, to be able to decrypt the encrypted item. A signature is used to bind
these values together to be used for resolutions. If a party does not receive the
ciphertexts or valid signatures, she aborts locally.

In the final phase (-DSE- Phase), they fairly exchange the decryption shares
for each item so that the symmetric keys are reconstructed. Even if there is
one party who locally aborts in the EIE phase, no party obtains any item or
payment because this party never sends the decryption shares of hers during the
DSE phase, and her shares are essential to decrypt all encrypted items. The DSE
phase consists of two steps. In the first step, they send a verifiable escrow of the
decryption shares. If a party does not receive it, it executes a resolution protocol
with the TTP just to complain and comes back to the TTP later. Besides, this
party does not continue to the next step. In the second step, all parties who have
received the verifiable escrow send each other the decryption shares. If a party
does not receive them, this party contacts the TTP and gives the verifiable escrow
so that the TTP decrypts and learns some decryption shares. However, the TTP
does not release them to anyone until it collects all missing decryption shares of
the parties who complained. Remark that since the party who complained did
not send the decryption shares, the rest of the parties, including the malicious
parties who did not send the verifiable escrow, have to contact and give the
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verifiable escrow to the TTP if they want to obtain the item or the payment.
Otherwise, no one is able to get any item or payment. We note that all parties
need each other after the EIE-phase because the only way to obtain any item is
to receive the decryption shares from all parties. This is intentional for achieving
the fairness goal: either all parties obtain their desired item/payment or none of
them obtains anything. If the TTP succeeds in collecting the missing decryption
shares for all victims, it gives all of them to the parties who comes after a
deadline. After decrypting the encrypted item, either with the help of the TTP
or at the end of the DSE phase, if a party does not obtain the right item, then
she does a resolution with the TTP by proving efficiently (without sending the
large encrypted item) that the decrypted item is not the one she expected and
obtains the payment of the cheating party.

5 Coin-Based MFE Protocol (CMFE)

CMFE consists of n parties and a TTP. TTP acts in CMFE if and only if a party
does not follow the protocol and a dispute arises. Each party has an item fi to
be exchanged according to the topology Υ . For simplicity of presentation, we
describe our protocol by assuming that each party Pi will share only one item fi

instead of different items being shared with different receivers. The TTP has a
secret/public key pair (skT , pkT ) generated by PkGen(1�) where � is the security
parameter. The public values pkT , Υ,H and hashes Hf1 , . . . ,Hfn

of the items as
the item descriptions and timeouts t1, t2 are known by every party. The details
follow (see also Fig. 2).

Fig. 2. Our CMFE Protocol in the complete topology.
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Setup Phase ( 1 and 2 in Fig. 2): Each party Pi runs ThGen of a threshold
encryption scheme with the threshold n and obtains its secret share xi, the public
key pk, and the verification key v of a deniable (n, n)-threshold encryption.
Then, each Pi generates a signature signing-verification key-pair (sgi, vki) by
running SgGen(1�). Then, each party Pi generates a verifiable escrow of the
endorsement ei�j of an unendorsed coin coinu

i�j with pkT for each Pj , and sends
the encryption VSc

i�j = PkEnc(pkT , ei �j ; vki) proving that the payment is valid
((ei�j , coin

u
i�j) ∈ Rcoin) (see Relation (3)) where coinu

i is sent in clear.
The label of VSc

i�j is vki because it is necessary to link a later escrow
(explained below) with this one, so that the TTP can understand that both
were sent by the same party. Upon receipt, each party verifies the values. This
ensures that the coin will be valid once endorsed with the endorsement in the
escrow1. Remark that labels are non-malleable so that a malicious party cannot
modify them; e.g., cannot replace vki with another vk′

i labelled to the verifiable
escrow to fool the TTP with the signatures which are not generated by Pi.

The parties execute the Setup Phase only once. They can continue exchanging
multiple sets of items with the same set of parties by repeating only the following
phases. If a party Pi receives the coin of a party Pj during a dispute, to continue
with the next item exchange, Pj needs to send a new VSc

j �i to only Pi, without
the need to repeat the Setup Phase completely (note that electronic payment
schemes have methods to either prevent or penalize double spenders, and hence
we do not need to worry about some coin being used multiple times in our
protocol). In some sense, think of every participant putting down some money;
if theirs are spent, they need to renew it to continue.

Encrypted Item Exchange (EIE) Phase ( 3 in Fig. 2): The aim of this
phase is to transmit the encrypted item to the parties expecting it according
to Υ . First, parties agree on two time parameters t1 and t2 where t1 > α and
t2−t1 > α (hence allowing parties to reach the TTP even with adversarial delay;
see the adversarial model in Sect. 3), the topology Υ , and unique identification id
of the protocol (e.g., a counter).2 t1 and t2 are two deadlines to execute some of
the resolutions with the TTP. If the protocol executed honestly without the help
of the TTP, parties never take into account t1 and t2 in any step of the CMFE.
We denote the whole identifier of the protocol by ID = {id, t1, t2, Υ, v, pk}.

Each party Pi encrypts their item fi (e.g., a file) using a symmetric
encryption scheme with a key Ki generated by SymGen(1�) and obtains
EK(fi) = SymEnc(Ki, fi). Then, Pi encrypts Ki with the public key pk
of the threshold-encryption scheme: Epk(Ki) = ThEnc(pk,Ki). In addi-
tion, she encrypts Ki with pkT and obtains EpkT

(Ki) = PkEnc(pkT ,Ki)
which is useful during the resolutions. She generates the signature Si =
SgSign(sgi, EpkT

(Ki)||Hfi
||H(EK(fi))||ID). Si enables the TTP to under-

stand that VSc
i and EpkT

(Ki) are encrypted by the same party (remember,

1 For example, the verifiable escrow can be Camenisch-Shoup verifiable escrow [19],
which can be efficiently used to verifiably encrypt endorsed E-cash coins [18].

2 Time parameters and topology can also be agreed in the Setup Phase if they will
remain constant.
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VSc
i contains the signature verification key in its public non-malleable label)

and to learn the hash of the item and hash of its encryption. Pi sends
EK(fi), EpkT

(Ki), Epk(Ki), Si to each party Pj where ΥS [i, j] = 1 in a secure
channel. We note that we need only in this step a secure channel to hide the
encrypted item from other parties who does not want the item and preserve
privacy against the TTP. A party does not continue to the next phase till
she receives all expected encryptions and signatures. After receiving all encryp-
tions and valid signatures, each party Pi sends ciphertexts of keys, signatures
and hashes {Epk(Kj), EpkT

(Kj), Sj ,Hfj
,H(EK(fj))}∀j:ΥS [j,i]=1 to each party Pt

where t �= j, ΥS [j, t] = 0. Pi sends these to all parties who do not have them
because she needs help from all parties to decrypt Epk(Kj) ((n, n)-threshold
encryption). When a party receives these, he verifies signatures to check if they
belong to the exchange with ID. No party continues to the next phase with-
out completing the EIE phase: receiving all messages that they are supposed
to receive and verifying signatures. If anything goes wrong, parties can locally
abort and no party receives anything, so fairness preserved.

Decryption Share Exchange (DSE) Phase ( 4 and 5 in Fig. 2): This is
almost the same as the MFE protocol [37] except labeling. This phase guarantees
a fair exchange of symmetric keys. Pi first finds out the decryption shares that
she needs to generate based on Υ . For this, she generates a decryption share
and a proof with its secret share xi for all parties depending on the items that
they expect to receive (see FindDS below). For example, if Pu wants the item of
Pv (i.e., ΥR[u, v] = 1), then Pi generates a decryption share of the encryption
Epk(Kv) with xi for each party Pj �= Pi as follows:

FindDS(ΥR,DSj , j, xi) where DSj = ∅ initially
for all t where ΥR[j, t] = 1

dit ← ThDShare(xi, pk, Epk(Kt)) and DSproofit ← ThDSProve(xi, pk, d
i
t, Epk(Kt))

add (di
t,DSproof

i
t) to DSj

After populating DSj , Pi generates verifiable escrow. For this, she runs
ProveEnc(pkT ,DSj , δ; lbl) with δ = (pk, pkT , {Epk(Kt)}∀t:ΥR[j,t]=1, v) and lbl =
{ID||Pi} and gets VSi�j = PkEnc(pkT ,DSj ; lbl) and its proof VSproofi�j .
VSproofi�j proves that (DSj , δ) ∈ Rvs-ds (see Relation (2)). In simple terms,
VSi�j includes the encryption of the decryption shares generated by Pi that is
used to decrypt the encrypted items that Pj needs to receive. After receiving
them, Pj verifies VSi�j with VerifyEnc(pkT , δ,VSi�j ,VSproofi�j) and the label.

Remark: The name Pi in the label is used to show the owner of VS. The party
names can be random and distinct in each exchange, as long as the parties know
each others’ names, and so it does not violate the privacy of the parties. ID is to
show the protocol parameters to the TTP. Putting in wrong labels is not helpful
to the adversary to break fairness as it can be seen in the resolution protocols.

After sending the verifiable escrows, Pi waits for verifiable escrows from each
Pj . If anything is wrong with some VSj �i (e.g., verification fails or the label is
not as expected), or Pi does not receive a verifiable escrow from a party, she
goes to the TTP for Resolve 1 before t1 and does not continue with the next.
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If Pi receives all verifiable escrows, Pi continues with the step 5 . Pi sends
DSj to each party Pj . Then, she waits for the correct DSi from each Pj . If there
exists {dj

t ,DSproof
j
t} ∈ DSi such that ThVerify(v, pk, dj

t ,DSproof
j
t ) → invalid) or

if she does not receive some of them from Pj , she performs Resolve 2 with the
TTP, before t2 and after t1 (executing Resolve 2 necessitates running Resolve
3 as well, at the latest at time t2, where the parties may receive the decryption
shares that they are missing; see the resolution protocols for details). Otherwise,
Pi continues with the next step without waiting.

After receiving all the necessary values, Pi decrypts each Epk(Kt) by running
ThDec({dj

t}n
j=1, pk, Epk(Kt)) and obtains the key to decrypt EK(ft) for all t,

ΥR[i, t] = 1. Next, Pi decrypts EK(ft) to obtain some f ′
t . It is possible, since the

item was not verifiably encrypted, that Kt or f ′
t are wrong and the decrypted

file f ′
t has a different hash (i.e. H(f ′

t) �= Hft
). In this case, Pi runs Resolve 4.

Resolve 1: This resolution is the same as Resolve 1 in [37]. We give a more
generic version for any topology. The goal of Resolve 1 is to record the cor-
rupted parties that did not send their verifiable escrow in 4 . The parties do
not learn any decryption shares here; instead they just complain about other
parties. Resolve 1 needs to be done before t1 (Lines 2–4 in Algorithm 1). The
complainant party Pi gives ID, Pj to the TTP where Pj is the party that did not
send his proper VSj �i to Pi (complainee). The TTP creates a new complaintList
for the protocol with ID if it is the first resolution for the protocol with ID.
If there exists a list for ID, it checks if it is marked as DONE to make sure
not to execute a resolution for an exchange that has been already done. The
complaintList consists of tuples containing information about a dispute between
two parties because of missing or wrong VS. The first part of the tuple is the
complainant, the second part is the complainee, and the third part is the names
of the expected shares from the complainee according to Υ (Line 10 in Algo-
rithm 1). The name of an expected share dj

t is denoted by sharej
t . The TTP also

creates a list called solvedList, which is empty in Resolve 1 (Line 8 in Algorithm
1). In the next resolution protocols, the TTP adds any valid decryption shares
obtained to solvedList. See Algorithm 1.

Algorithm 1. Resolve 1
1: Pi sends ID, Pj where Pj is the party that did not send his proper VSj�i to Pi.
2: if currenttime > t1 then
3: send msg “Abort Resolve 1”
4: else
5: complaintList = GetComplaintList(ID)
6: if complaintList == NULL then
7: complaintList = EmptyList(pk, v, t1, t2, id, Υ ) // initialize empty list
8: solvedList = EmptyList(pk, v, t1, t2, id, Υ ) // will be used in Resolve 2
9: else if complaintList �= DONE then

10: complaintList.add(Pi, Pj , {sharej
t}∀t,ΥR[i,t]=1)

11: else
12: send message “The protocol is aborted”
13: end if
14: send message “Come after t1 for Resolve 2”
15: end if
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Remark that cheating on ID in Resolve 1 causes to have a completely differ-
ent complaintList which has no relation with the real one created by the correct
ID given by an honest party. So, it is not helpful for a malicious party who wants
an honest party’s item, because an honest party never comes with a wrong ID.

Resolve 2: It is the resolution protocol where the parties contact with the
TTP to provide some verifiable escrows to help the TTP to solve the problems
recorded in Resolve 1. However, the TTP does not send any decryption shares
in Resolve 2. He just stores the decryption shares obtained from the verifiable
escrows given by the parties who come for Resolve 2 in solvedList.

The party Pi, who comes for Resolve 2 between t1 and t2, gives all the
verifiable escrows that he has already received from the other parties and his
own verifiable escrow to the TTP in case of some owner of verifiable escrows
complained in Resolve 1. So, the TTP decrypts and verifies all verifiable escrows
that any party needs according to complaintList (Line 8–9 in Algorithm 2). After
the decryption, the TTP adds the decryption shares and proofs to solvedList to
distribute them in Resolve 3 if all the complains are solved (Line 10 in Algo-
rithm 2). Then, the TTP checks if any party in complaintList requires these
decryption shares. If there are some parties in complaintList who need them, the
TTP removes the corresponding name of the decryption shares, which are in
the third part of each tuple, marking that decryption share as received (Line
13–17 in Algorithm 2). If the third part of any tuple is empty after removal, the
TTP removes that tuple from complaintList (Line 19 in Algorithm 2) because it
obtained all the decryption shares for which a party in Resolve 1 complained.

If the complaintList is not empty during Resolve 2, Pi comes after t2 for
Resolve 3 (Line 25 in Algorithm 2). Otherwise, Pi performs Resolve 3 and
obtains all the decryption shares together with their proofs that he requests
immediately. Hence, in our model, the latest time an honest party would have
Resolve 3 performed is t2 + α (including adversarial delay).

Resolve 3: Resolve 3 is the only resolution protocol that the TTP may give the
missing decryption shares to the parties. If the complaintList still has parties,
even after t2, then the TTP answers each party saying that the protocol is
aborted (Line 12 in Algorithm 3) because the TTP could not obtain all the
missing decryption shares. It also marks complaintList with ID as DONE so
that no party executes Resolve1-2-3 with ID anymore. If the TTP aborts, it
means nobody is able to learn any item. The reason behind this is the following:
Remark that the parties who executed Resolve 1 do not send the decryption
shares in the last step of CMFE (step 5 ). Thus, their decryption shares are not
known by any other party. It implies that it is not possible for the rest of parties,
including the ones who did not send the verifiable escrow in step 4 , to decrypt
any encryption of the key (EKpk), and so it is not possible for them to decrypt
the encryption of the item (EfK ). If the complaintList is empty, then the TTP
decrypts any verifiable escrow with a correct label that is provided to him (Line
6 in Algorithm 3). If the complainants from Resolve 1 come, he gives the stored
decryption shares and proofs according to the topology Υ (Line 8 in Algorithm
3).
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Algorithm 2. Resolve 2
1: Pi gives ID and V,the set of all verifiable escrows and their proof that Pi generated and received.
2: if t1 < currenttime < t2 then
3: complaintList = GetComplaintList(ID)
4: if complaintList == DONE or complaintList == NULL then
5: send message “The protocol is aborted” and halt
6: end if
7: for all VSj �i in V do
8: if (∗, Pj ,∗ ) ∈ complaintList AND VerifyEnc(pkT , δ,VSj �i,VSproofj �i) → valid then

9: shares = PkDec(skT ,VSj �i)= {dj
t ,DSproofjt}∀t,ΥR[i,t]=1

10: Pj .solvedList.Append(shares)
11: for all (Pu, Pj ,∗ ) ∈ complaintList // all parties that complained about Pj in Resolve 1

do
12: lst = complaintList[(Pu, Pj)] // returns {sharej

k}∀k,ΥR[u,k]=1

13: for all sharej
k ∈ lst do

14: if (dj
k,DSproofjk) ∈ shares then

15: remove sharej
k from lst

16: end if
17: end for
18: if lst = ∅ then
19: remove (Pu, Pj , ∅) from complaintList
20: end if
21: end for
22: end if
23: end for
24: end if
25: if complaintList is empty then
26: send message “Perform Resolve 3”
27: else
28: send message “Come after t2 for Resolve 3”
29: end if

Resolve 4: The MFE protocol [37] does not have Resolve 4. Note that if the
parties reach this point, all complaints were already resolved in the Resolve 1-
2-3. The party Pi who does not obtain the valid item comes for Resolve 4 to
obtain the coin of the party Pj who gave the invalid item. Pi gives ID, Pj and
EpkT

(Kj),VSc
j �i, Sj ,Hfj

,H(EK(fj)) to the TTP. The TTP decrypts EpkT
(Kj)

and sends Kj to Pi (Line 7 - 8 in Algorithm 4) if the complaintList is empty
and if Pi should receive fj according to Υ (Line 6 in Algorithm 4). If Kj is a
correct key, then Pj obtains the item by decrypting EpkT

(Kj) with Kj . If Kj is
a wrong key, meaning that it decrypts EK(fj) to some f ′

j with H(f ′
j) �= Hfj

,
then Pi proves that Kj is not correct using the subprotocol [12,27] below (Line
9 in Algorithm 4), and obtains the endorsement ej in VSc

j from the TTP (Line
11 in Algorithm 4), thereby obtaining the payment of Pj . Here, the TTP obtains
the correct hashes by verifying the signature Sj of hashes with the verification
key of Pj in the label of VSc

j �i (Line 2 in Algorithm 4). If An honest party would
have performed Resolve 4 the latest at time t2 +2α (another delay after Resolve
3)

Prove Incorrect Key: The trivial solution to prove that the decryption of
EK(fj) with a key Kj is not equal to Hfj

is to send of EK(fj) and Sj . In
this case, the TTP first checks whether H(EK(fj)) matches with the hash in
the signature Si. Then, it decrypts EK(fj) with the Kj that is obtained by
decrypting EpkT

(Kj) and checks whether the hash of the decryption is equal
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Algorithm 3. Resolve 3

1: Pi gives ID and M, which is the set of
malicious parties that did not behave well

in step 4 or 5 , and VS is a set of veri-
fiable escrows that belongs to parties in M
who performed step 4 properly.

2: complaintList = GetComplaintList(ID)
3: if complaintList is empty then
4: for all Pj in M do
5: if VSj �i ∈ VS and ID ∈ label of VSj �i

then

6: send PkDec(skT ,VSj)
7: else
8: send {dj

t ,DSproofjt}∀t,ΥS [t,i]=1 ⊆
solvedList

9: end if
10: end for
11: else if currenttime > t2 then
12: send message “Protocol is aborted”
13: else
14: send message “Try after t2”
15: end if

Algorithm 4. Resolve 4
1: Pi sends v, pk, t1, t2, id, Υ, Pj and EpkT

(Kj),VS
c
j , Sj , Hfj

, H(EK(fj)) to the TTP where Pj is

the party whose item with hash Hfj
could not be obtained. The TTP does the following:

2: if currenttime < t2 or SgVerify(vkj , EpkT
(Kj)||Hfj

||H(EK(fj)), Sj)�invalid then

3: send msg “Abort Resolve 4”
4: end if
5: complaintList = GetComplaintList (pk, v, id, t1, t2, Υ )
6: if complaintList is empty and ΥR[i, j] = 1 then
7: Kj = PkDec(skT , EpkT

(Kj))

8: send Kj

9: execute “Prove Incorrect” with Pi and obtain output // only if requested by Pi

10: if output is true then
11: send PkDec(skT ,VSc

j) // Pi obtains coin of Pj instead of fj

12: else
13: send msg “Abort Resolve 4”
14: end if
15: else
16: send msg “Abort Resolve 4”
17: end if

to Hfj
. If it is not equal, the sub protocol ‘Prove Incorrect Key’ outputs true.

However, this solution requires heavy communication between the party and the
TTP since the item so its encryption is potentially large. Besides, in the case
that the key in EpkT

(K) is correct, the TTP learns all file and privacy against
the TTP is violated. Therefore, we prefer the communication efficient proving
techniques based on Merkle tree [47] by Belenkiy et al. [12] or by Dziembowski et
al. [27]. In this case, the hashes should be Merkle roots, and the TTP challenges
parts of the file. We note that in both techniques, the TTP receives some parts
of the file but not necessarily the complete file. Providing better privacy against
the TTP during resolutions is left as future work.

Multiple Exchanges with Single Setup: As long as the coins are not used,
multiple sets of items can be exchanged with a single setup. Even when coins
are used, it is indeed enough for those parties to renew their coins rather than
executing a full setup. Thus, step 1 need not be renewed but step 2 may need
to be (selectively) renewed.
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6 Fairness Proof of CMFE

Theorem 1. Assuming that the verifiable deniable (n,n)-threshold encryption
scheme is IND-CPA secure, the public key encryption scheme used for VS’s and
EpkT

’s (the encryption scheme used to encrypt with the TTP’s public key) is
IND-CCA secure, the payment scheme is unforgeable, the symmetric encryption
scheme is semantically secure, the signature scheme is existentially-unforgeable
under adaptive chosen-message attack, and the hash function is chosen from a
(target) collision resistant family (for the “proving key is not correct” protocol),
the CMFE protocol with the topology Υ in UVS-Rcoin , UVS-Rvs-ds , and UZK-Rds

hybrid models [20] realizes Uφ
fs where promise = SymEnc where φ is as in Defini-

tion 3 with zi = ({coini �j}∀j,ΥS [i,j]=1, (fi,Ki)). (fi,Ki) is valid if H(fi) = Hfi
.

Before starting the proof, we want to make it clear that promise = SymEnc
in Theorem 1 is a secure promise function according to Definition 1.

Proof. We do our proof in the UVS-Rcoin , UVS-Rvs-ds , and UZK-Rds hybrid model
[20]. The simulator S simulates the honest parties in Ph in the real world, and
the corrupted parties in Pc in the ideal world. S also simulates the TTP in the
real world if any resolution protocol occurs, since the TTP is an honest party.
First, S generates (skT , pkT ) as the TTP does and publishes pkT .

Setup Phase: S behaves as ThGen and generates all secret keys, the public
key pk, and the verification key v. S distributes each secret key xj to each
corrupted party Pj together with pk, v. After the key distribution, S behaves
as UVS-Rcoin . It sends (VSproof, sid||Pi||Pj , coin

u
i �j , pk, label, ṼS

c

i�j) on behalf of
each Pi ∈ Ph where ṼS

c

i�j includes fake endorsements. Then, it waits for
(VSprove, sid||Pi||Pj , ei,j , coin

u
i �j , pk, vi) from Pi ∈ Pc. S does not proceed to

the next phase until it receives all the necessary values properly.

EIE Phase: S receives from Uφ
fs the promises of honest parties, which are

{EK(fi)}Pi∈Ph
. At this point, it has the encryption of honest parties’ items.

In the real world, it needs to send the encryption of the key of these cipher-
texts under the keys pk and pkT , but it does not know the actual sym-
metric keys employed. For this, it picks some random keys {K̃i}Pi∈Ph

and
encrypts them under pk and pkT . We denote these fake key encryptions by
{Epk(K̃i), EpkT

(K̃i)}Pi∈Ph
. It generates the signatures {Si}Pi∈Ph

as in the EIE
Phase, and sends them to the corrupted parties. It also saves the signatures that
it sends as (i, Si) to the list SignList. At the same time, it waits for the cipher-
texts and signatures from the corrupted parties, and it does not execute the
next step before successfully completing this one. Whenever it receives cipher-
texts from the corrupted parties, S learns a symmetric key Kj and an item f ′

j of
malicious parties as follows: Assume that a corrupted party Pj gave Epk(Kj) to
an honest party Pi. S decrypts Epk(Kj) (S knows the secret shares of the cor-
rupted parties from the setup phase) and obtains Kj . Then, it decrypts EK(fj)
with Kj and obtains f ′

j . If H(f ′
j) �= Hfj

, it decrypts EpkT
(Kj) with skT and
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obtains a key. If this does not equal to Kj , it decrypts EK(fj) with this key.
If again the hash of the item is not equal to Hfj

, it means that the corrupted
party did not encrypt the correct item. If S obtains the correct fj , it stores it
as an item of the corrupted party Pj given to Pi. Otherwise, it stores a (or one
of the) random item fj obtained from Epk(Kj) as an item of Pj given to Pi.

DSE Phase: S does the same computations as in the step 4 on behalf of the
honest parties. Then, S as UVS-Rvs-ds waits for (VSprove, sid||Pi||Pj , w, δ, pkT ,
{di

t,DSproof
i
t}∀t,ΥR[j,t], lbl) from each corrupted party Pi for a party Pj

where (w, δ) = ({di
t,DSproof

i
t}∀t,ΥR[j,t], (pk, pkT , {Epk(Kt)}∀t,ΥR[j,t], v)) as in

Relation 2. Whenever S receives this message with valid a witness and
statement from a corrupted party Pi for an honest party Pj , it stores
{di

t,DSproof
i
t}∀t,ΥR[j,t]=1. It also sends to each corrupted party Pi the message

(VSproof, id||Pj ||Pi, δ, pkT , lbl, Ṽ Sj �i) on behalf of each honest party Pi. Ṽ Sj �i)
is a random encryption. At this point, one of the following situations must have
happened: (1) S stores all the decryption shares of the corrupted parties and (2)
S has some missing decryption shares of the corrupted parties.

Case (1): By time t1, if S received all {di
j ,DSproof

i
j}Pi∈Pc

to be given to
some honest parties, it means that all parties may obtain the items or coins
because S in the real world is now able to learn all decryption shares (or coins)
from the corrupted parties via Resolve 1, 2, 3, 4 (i.e., if verifiable escrows of all
corrupted parties were received by some honest party, even if corrupted parties
do not execute the next step, honest ones are able to obtain the decryption shares
of the corrupted parties via resolutions. Also, any honest party P who did not
receive any verifiable escrow in the DSE phase from corrupted parties can learn
all the decryption shares too, because the honest parties who have the verifiable
escrows from the corrupted parties execute Resolve 2 since P will not send their
decryption shares in the next phase). Since it is guaranteed that everyone gets
the item or the coin, S sends all {coinj , fj ,Kj}Pj∈Pc

for each honest party Pi

where ΥS [j, i] = 1 to U together with the promises {EK(fj)}Pj∈Pc
as ideal

adversary and {bi = continue}Pi∈Ph
as TTP to Uφ

fs. Afterwards, Uφ
fs checks

the correctness of each item fj using their public hash values. If some of them
is not the correct item, Uφ

fs sends corresponding coins to the parties in the ideal
world instead of item (fj ,Kj). Besides, Uφ

fs sends {fi,Ki}Pi∈Ph
to S. It is sure

that Uφ
fs outputs {fi,Ki}Pi∈Ph

to S because those come from the honest parties
in the ideal world; so neither can be a coin.

S should send his decryption shares to the corrupted parties in the real
world. However, S sent the encryption of random keys {K̃j}Pj∈Ph

in the EIE
phase. So, it cannot send the correct decryption shares of random ciphertexts
{Epk(K̃j)}j∈Ph

. Instead, for each Epk(K̃j) where Pj ∈ Ph, S runs ThDeny algo-
rithm to obtain decryption shares that make decryption of Epk(K̃j) be Kj that
learned from Uφ

fs. Assume that the correct decryption shares of Epk(K̃j) is {d̃i
j =

ThDShare(xi, pk, Epk(K̃j))}Pi∈P and the index set of honest parties is I such that
for all i ∈ I, Pi ∈ I. For all Epk(K̃j) where Pj ∈ Ph, S obtains fake {di

j}Pi∈Ph
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by running ThDeny(Epk(K̃j), {d̃t
j}Pt∈Pc

, I,Kj , pk) (See Definition 5) and uses
{di

j}i∈Ph
when simulating the step 4 for each Epk(K̃j). For each encryption

VSj �i where Pj ∈ Pc, S also runs ThDeny(Epk(Kj), {d̃t
j}Pt∈Pc

, I,Kj , pk) and
obtains valid decryption shares {di

j}i∈Ph
for Epk(Kj). S acts as UZK-Rds and

sends as DSproofi, (proof, id||Pi||Pj , (pk, Epk(K̃i)(or Epk(Kj)), {di
t}∀t,ΥR[j,t], v))

to each Pj ∈ Pc on behalf of Pi ∈ Ph. If all corrupted parties send their valid
decryption shares, then the simulation ends by the simulator outputting the
items and keys (if correct item is obtained in the real protocol) or coins of the
malicious parties (if item is incorrect, then S uses the coins obtained during
setup) on behalf of the real honest parties and whatever the adversary outputs
on behalf of the ideal corrupted parties.

Case (2): S behaves as the TTP and adds the corrupted parties who did not
send their verifiable escrows to the complaintList, because in reality the honest
party(s) would have complained about them before t1 in Resolve 1. In addition,
if a corrupted party performs Resolve 1, S behaves like the TTP and adds the
complainant and his complainee to the complaintList. Moreover, S does not send
any of Pi’s decryption shares to others if it does not receive a valid verifiable
escrow from at least one corrupted party, as in the real protocol. If some of the
corrupted parties come for Resolve 2, S behaves exactly as the TTP and clears
the parties from the complaintList according to the given verifiable escrows. Each
time it clears the complaintList, it learns the decryption shares of the complainee.
It performs Resolve 2 as honest parties. In the end, if complaintList is empty, it
means that S learned all the decryption shares of the corrupted parties. If so,
it sends {fj ,Kj , EK(fj)}Pj∈Pc

for each honest party Pi where ΥS [j, i] = 1 as
an ideal adversary and also {bi = continue}Pi∈Ph

as TTP to Uφ
fs. Uφ

fs sends
{fi,Ki}Pi∈Ph

to S. S learns the decryption shares as described in case (1). S
outputs the received items on behalf of real honest parties. If complaintList is
not empty at time t2, S sends message abort to Uφ

fs and will return an abort
message to all Resolve 3 attempts. S outputs ⊥ on behalf of real honest parties. In
all cases, S simulates the resolutions. It simulates Resolve 2 by replacing the line
9 in Algorithm 2 and Resolve 3 by replacing the lines between 5–6 in Algorithm
3 with the following where proof = (proof, id||Pj ||Pi, (pk, ṼSj , {dj

t}Pt∈P , v)):

Resolve 2:
if (∗, (Pj , hj),∗ ) ∈ complaintList and
VerifyEnc(pkT , δ,VSj �i,VSproofj �i)�valid

if Pj ∈ Ph

shares = {dj
t}Pt∈P , proof

else: shares = PkDec(skT ,VSj)

Resolve 3:
if VSj ∈ V and has correct label

if Pj ∈ Ph

send shares = {dj
t}Pt∈P , proof

else:
send PkDec(skT ,VSj)

The reason of this change in the simulations of Resolve 2 and 3 is that S
sent random verifiable escrows in the DSE phase. So, as a TTP, it cannot send
directly the decryption of random escrow to the party who comes for Resolve 2.
It also simulates Resolve 4 as follows:
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Resolve 4:
We replace lines 2–4 of Algorithm 4 with the ones below instead of actually

verifying the signatures using SgVerify. So, the signatures of the honest parties
that are not generated by the simulator are never accepted.

if currenttime < t2 or (Pj ∈ Ph and (j, Sj) /∈ SignList): send msg “Abort”
else: as in 2–4 in Algorithm 4
We replace line 7 of Algorithm 4 with below to give the correct key Kj of

honest parties since S sent a random encryption as an encryption of the key in
EIE.

if Pj ∈ Ph: K = Kj //the key send from Uφ
fs else: K = PkDec(E

KpkT
j , skT )

We replace line 11 of Algorithm 4 with below so that the honest parties’ fake
endorsements are never exposed.

if Pj ∈ Ph: send msg “Abort Resolve 4” else: as in line 11 in Algorithm 4
Finally, the simulator outputs whatever the adversary A outputs on behalf

of ideal corrupted parties. This finishes our description of the simulator. We now
show the simulator’s actions remain indistinguishable from the adversary’s view.

Lemma 1. The view of A in his interaction with the simulator S is indistin-
guishable from the view in his interaction with real honest parties and the TTP.

We prove this lemma via a sequence of hybrid games. The initial game corre-
sponds to the real protocol, whereas the final game corresponds to the simulator
S described above. In each game, we change one (or more) step of CMFE with
the steps which are different in the simulation above.
G 1 : The adversary A who corrupts the parties in Pc in CMFE wants to

break the fairness. We simulate the honest parties Ph and TTP in the
real protocol.

G 2 : It is the same as the previous game except that we simulate Resolve 2 and
3 as in the simulator and only line 7 of Resolve 4 as the simulator above. So,
everything is the same as Game 1 except, instead of decrypting verifiable
escrows and encryptions of honest parties, it returns the (already known)
decryption shares and keys of the honest parties. Remark that at this point,
{dj

i}’s and Kj ’s are correct, since we did not start putting fake decryption
shares yet. Because of the correctness of the verifiable encryption scheme,
this game is indistinguishable from the previous game.

G 3 : It is the same as the previous game except that we simulate lines 2–4 of
Resolve 4 as described in the simulation. The only difference between G 2
and G 3 is in the case that the TTP receives a valid signature that is not
generated by an honest party. One can easily prove that this case happens
with negligible probability due to the unforgeability of the signature scheme.

G 4 : It is the same as the previous game except that we simulate line 11 of
Resolve 4 as described in the simulation. The only difference between G
4 and G 3 is in the case that the TTP outputs true by running the sub
protocol “Prove Key is not Correct” even though the key is correct. We
can easily prove that this case happens with negligible probability via the
security of this sub protocol. Therefore, this game is indistinguishable from
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the previous game. Note that this reduction shows that a malicious party
cannot get both the file and coin of an honest party at the same time.

G 5 : It is the same as the previous game except that the honest provers send
encryption of random decryption shares in step 4 . Intuitively, they are
indistinguishable by the IND-CCA security of the verifiable escrow.
The reduction from G 4 to G 5 is the following:
We define hybrid game H5,i where first i parties behave as in G 4 and the
rest of the simulated parties behaves as in G 5. For the sake of clarity of the
hybrid argument, assume without loss of generality that Ph = {Pj}1≤j≤m.
H5,0 is equivalent to G 5 and H5,m is equivalent to G 4. We use the hybrid
argument to show the indistinguishability of H5,0 and H5,m. If the adversary
manages to distinguish H5,0 and H5,m with non-negligible advantage, it
must distinguish H5,i and H5,i+1 for some i. If so, we can construct an
adversary B which breaks the IND-CCA security of the verifiable escrow
scheme, as follows:
The IND-CCA challenger sends a pkT , and B publishes it as the public key
of the TTP. Then, B guesses i in range [0,m−1], and does the following: For
Pj ∈ {P1, ..., Pi}, B asks the challenger to encrypt {dj

t ,DSproof
j
t}∀t,ΥR[k,t]=1

and gets the encryption part of VSj �k. For Pj ∈ {Pi+2, ..., Pm}, B asks chal-
lenger to encrypt {rk}1≤t≤n for some random rk from the same distribution
of decryption shares and obtain encryption part of VSj �k.
As the challenge query, B sends m0 = {di+1

t ,DSproofi+1
t }∀t,ΥR[k,t]=1 for a

Pk ∈ P and sets m1 randomly and obtains back VSi+1�k. It then picks b′ ∈
{0, 1}. If b′ = 0, it asks challenger to encrypt {di+1

t ,DSproofi+1
t }∀t,ΥR[u,t]=1

and obtain encryption part of VSi+1�u for all Pu ∈ P\{Pk}. If b′ = 1, it asks
challenger to encrypt {ru}Pu∈P\{Pk} and obtain encryption part of VSi+1�u

for all Pu ∈ P \ {Pk}. It then continues interacting with the adversary as
prescribed. Observe that if m0 is encrypted by the IND-CCA challenger
and b′ = 0, then this corresponds to hybrid H5,i+1, and if m1 and b′ = 1 is
encrypted, then this is hybrid H5,i.
If corrupted parties do not send the decryption shares in step 4 , then B calls
decryption oracle to decrypt the corresponding encryption in VS values to
learn the missing decryption shares and continues simulation. Note that we
do not need to query the decryption oracle for VSi+1�k during resolutions,
since we changed the simulation of Resolve 2 and Resolve 3 since G 3 (i.e.,
TTP does not decrypt the verifiable escrows of the honest parties).
If the guess of i and b′ was correct and the adversary distinguishes between
G 4 and G 5 with adv(�) advantage, then B can guess whether m0 or m1

was encrypted with the same advantage. Hence the IND-CCA security of
the verifiable escrow is broken with at least adv(�)/2m advantage. Since
adv(�)/2m must be negligible if we use a secure verifiable escrow scheme,
adv(�) must be negligible as well, meaning that this behaviour of our sim-
ulator remains indistinguishable to the adversary.

G 6 : It is the same as the previous game except that we encrypt random keys
K̃ and fake endorsements with pkT to obtain EpkT

(K̃) and ṼS
c

for honest
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parties. They are indistinguishable because of the IND-CCA-security of the
encryption scheme (a very similar reduction as in G 5) and ṼS

c
, EpkT

(K̃)
of honest parties are never decrypted in the resolution protocols in G 4.

G 7 : It is the same as the previous game except that we simulate the hon-
est provers by encrypting random keys with pk in step 3 and using
decryption shares outputted by ThDeny algorithm. More specifically, each
honest prover Pi encrypts a random item K̃i and sends the encryption
Epk(K̃i) = ThEnc(pk, K̃i) to all other parties. Normally, the valid decryp-
tion shares of the honest parties and the corrupted parties for Epk(K̃i) are
{d̃j

i = ThDShare(xj , pk, Epk(K̃i))}Pj∈P . Instead of the valid ones, at step 5

each honest party Pj uses fake decryption shares as a decryption shares of
{Epk(K̃i)}Pi∈Ph

. The fake decryption shares {dj
i}Pj∈Ph

for each Epk(K̃i) are
the output of ThDeny(Epk(K̃i), {d̃j

i}Pj∈Pc
, I,Ki, pk). Intuitively, G 6 and G

7 are indistinguishable because of the IND-CPA security of the deniable
threshold encryption scheme. The reduction is as follows:
We define hybrid game H7,i, where the first i honest parties behave as in G 6
and the rest of the simulated parties behave as in G 7. For the sake of clarity,
assume without loss of generality that Ph = {Pi}1≤i≤m. H7,0 is equivalent
to G 7 and H7,m is equivalent to G 6. We use the hybrid argument to show
the indistinguishability of H7,0 and H7,m. Against the adversary, B plays
the honest parties {Pi}1≤i≤m. Against the IND-CPA challenger, B plays the
honest parties {Pi}m+1≤i≤n. If the adversary distinguishes H7,0 and H7,m

with non-negligible advantage, it must distinguish H7,i and H7,i+1 for some
i. If so, we can construct an adversary B which breaks the IND-CPA security
of the threshold encryption scheme, as follows:
B picks i in range [1,m]. Then, B obtains secret keys {xm+1, xm+2, ..., xn},
the public key pk, and the verification key v from the IND-CPA challenger.
As the challenge query, B sends the actual item Ki+1 and a random item
K̃i+1 and receives Epk(K∗

i+1), which either encryption of Ki+1 or K̃i+1.
Then, B simulates each party Pj ∈ {P1, ..., Pi} as encrypting the correct
item Kj , each party Pj ∈ {Pi+2, Pi+3, ..., Pm} as encrypting a random item
K̃j , and Pi+1 using Epk(K∗

i+1) as the key encryption of Pi+1. During the
simulation of UVS-Rvs-ds , it learns the decryption shares of the corrupted
parties from the adversary. B does not know the secret keys x1, x2, ..., xm

but it can generate the decryption shares of the honest parties as follows:
– For the decryption shares for the encrypted keys of the corrupted parties

and decryption shares of the encrypted items of {Pj}1≤j≤i: {dt
j}Pt∈Ph

=
ThDeny(Epk(Kj), {dt

j}Pt∈Pc
, I,Kj , pk)

– For the decryption shares of the encrypted items of {Pj}i+2≤j≤m:
{dt

j}Pt∈Ph
= ThDeny(Epk(K̃j), {d̃t

j}Pt∈Pc
, I,Kj , pk)

– For the decryption shares of the challenge ciphertext Epk(K∗
i+1) of Pi+1:

{dt
i+1}Pt∈Ph

= ThDeny(Epk(K∗
i+1), {dt

i+1}Pt∈Pc
, I,Ki+1, pk)

It simulates the proofs of all decryption shares via UZK-Rds . Observe that if
Epk(K∗

i+1) is not the encryption of Ki+1 then B simulates H7,i+1. Otherwise,
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it simulates H7,i. Therefore, if the guess of i was correct and the adversary
distinguishes between G 7 and G 6 with adv(�) advantage, then B can guess
whether the actual item Ki+1 or a random item was encrypted with the
same advantage. Hence the IND-CPA security of the threshold encryption
scheme is broken with at least adv(�)/m advantage. Since adv(�)/m must
be negligible if we use a secure verifiable deniable threshold encryption
scheme, adv(�) must be negligible as well, meaning that this behavior of
our simulator remains indistinguishable to the adversary.

G 7 is the same as our simulation of CMFE. Since G 7 and G 1 are indistin-
guishable, our simulation is indistinguishable as well.

Lemma 2. The distributions of the outputs of honest and corrupted players in
ideal and real worlds are indistinguishable according to Definition 2.

Proof. We showed in the previous lemma that the simulator’s actions, on behalf
of the honest parties in the real world, are indistinguishable from the CMFE
protocol. We also need to show the joint output of honest and corrupted parties
are indistinguishable in the real and ideal worlds.

S receives promises {EK(fj)}Pj∈Ph
from Uφ

fs and starts the simulation. S
sends the message {coini, (fi,Ki)}Pi∈Ph

and promises {EK(fi)}Pi∈Ph
as an ideal

adversary and {bi = continue}Pi∈Ph
as TTP to Uφ

fs whenever it is guaranteed
that the honest parties would get their desired items (coin or item). At these
cases (Case 1 and Case 2), each Pj ∈ Ph where ΥS [j, i] = 1 outputs Ki and
fi if H(fi) = Hfi

, and coini otherwise, in the ideal world. Similarly, at these
cases, the simulated honest parties also obtain Ki and fi if H(fi) = Hfi

, and
coini otherwise, in the real world as discussed in the simulation. S sends abort
message to Uφ

fs after the end of the EIE phase when complaintList is not empty
at time t2. After the end of the EIE phase, if S sends abort message, it means
that the adversary in the real world only has the promises of the honest par-
ties, which do not leak any information according to Definition 1. Indeed, S
outputs in the ideal world on behalf of corrupted parties whatever A outputs in
the real world; hence adversarial parties’ outputs in both worlds will always be
indistinguishable.

The outputs of parties in the ideal world are identically distributed to the
outputs of parties in the real protocol. It completes the proof of Theorem 1. ��
Security of Multiple Exchanges with Single Setup: Once the setup is per-
formed, all remaining actions of S can be repeated for each set of item exchanges.
Observe that the S never uses the secret keys, which means that the interaction
with the adversary cannot leak any useful information about the secret keys.
Moreover, the honest parties’ coins are never given to the adversary. Therefore,
we can simulate multiple exchanges with a single setup phase.

7 Performance Analysis

While we did not implement the full protocol, we provide performance numbers
based on the performance of the underlying primitives taken from Cashlib [15]
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and Charm [2] libraries. The yardstick of the values were obtained from a DELL
Latitude E7240 laptop with a 2.10 GHz i7 processor and 8 GB of RAM running
Ubuntu 16.04 LTS. The security parameter for the public-key operations is 1024
bits. KB represents kilobytes, MB is megabytes, and ms is milliseconds. We do
not include the network latency in our measurements, leaving it out of scope.
We note that CMFE works in optimal complexity in terms of the number of
rounds. Moreover, observe that the timeouts regarding resolution protocols do
not affect the execution time of the protocol. Given these numbers, our protocol
is ready for deployment in practice.

For the underlying primitives, we employ El Gamal [28] public key encryp-
tion, Cramer-Shoup [24] based verifiable escrows, Endorsed E-cash [18] for coins,
Camenish-Shoup [19] based verifiable escrows for coin endorsements, and RSA
[51] signatures. Zero knowledge proofs of knowledge are taken from ZKPDL [46]
implementation of efficient Sigma proofs [25] in the random oracle model.

Per participant, the communication complexity is O(n2) and the computa-
tional complexity is O(n).

Optimizations: Observe that, a party’s coin is decrypted by the TTP only if
during Resolve 4, some party manages to prove that this party sent a wrong
key/file. Therefore, if a party is honest, her coin will never be obtained by
another party. So, an honest party can prepare only one coin and VSc, and can
send the same coin to all other parties.3 Moreover, if parties may wish to change
the topology during CMFE repetitions after a single setup, then they need to
initially perform a complete topology type of one-time setup, where every pair of
parties exchange unendorsed coins and verifiably encrypted endorsements. But,
if a topology will be fixed for all the subsequent exchanges, the setup can be
more efficient. Consider the ring topology: Since the only other party who can
obtain a party’s coin in Resolve 4 is the succeeding party in the ring, it is enough
that each party sends her unendorsed coin and verifiably encrypted endorsement
only to the succeeding party in the ring. This makes the per-participant cost of
the Setup Phase for the ring topology independent of the number of participants.
Below, we provide performance numbers with these optimizations.

Communication Overhead: Table 3 shows that the total bit overhead of
CMFE is about 527 KB in the complete topology and 70 KB in the ring topology
for 10 participants. Since the Setup Phase of CMFE is executed once among
the same set of participants, if we do not consider this phase (for repeated
exchanges), the bit complexity for 10 parties is around 105 KB for the complete
topology and 20 KB for the ring topology.

Computation Overhead: We analyze the time complexity of CMFE in Table
4. The total computation is around 1.3 s in the complete topology and 0.4 s in
the ring topology for 10 parties. The setup is costly due to the electronic coin
requirement (and hence would be much faster with non-anonymous electronic

3 Of course, a malicious party can also do so, but remember that offline e-cash schemes
have penalties for double spenders, which is outside our scope.
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checks). If we do not consider the Setup Phase, then the computation time
decreases to 87 ms in the complete topology and 59 ms in the ring topology.

The main benefit of CMFE comes from not only repeated exchanges, but also
the fact that CMFE is the first multi-party fair exchange protocol that enables
efficient fair exchange of items that cannot be efficiently verifiably encrypted.

Table 3. The size of messages in
CMFE for each participant. The val-
ues in parenthesis show the size of the
messages in CMFE without the Setup
Phase. The unit of values is KB. # is
the number of parties.

# Complete T. (KB) Ring T. (KB)

2 49.8 (2.94) 49.8 (2.94)

4 155.9 (15.38) 54.87 (7.20)

6 270.9 (36.62) 59.93 (11.46)

8 394.6 (66.61) 64.98 (15.72)

10 527.1 (105.34) 70.04 (19.98)

Table 4. Required time for each party
for the computations in CMFE. The val-
ues in parenthesis show the time of com-
putation in CMFE without the Setup
Phase. The unit of the values is millisec-
ond. # is the number of parties.

# Complete T. (ms) Ring T. (ms)

2 387.5 (12.08) 387.5 (12.08)

4 623.1 (25.70) 400.1 (23.95)

6 861.8 (42.63) 412.4 (35.82)

8 1104.6 (63.52) 424.9 (47.68)

10 1350.3 (87.34) 437.3 (59.55)

Future Work: We leave reducing the trust on and increasing the privacy
against, or incentivizing the TTP as future work. The realistic valuation of the
exchange items is another open problem outside of the cryptographic scope.

Acknowledgements. We acknowledge the support of the Turkish Academy of Sci-
ences and TÜBİTAK (the Scientific and Technological Research Council of Turkey)
project 119E088.

A Deniable (n,n)- El Gamal Threshold Encryption

In this section, we use a group G with a generator g of a prime order p with
respect to a security parameter �. All operations are group operations. We use
multiplicative group notation.

Deniable (n, n)-threshold El-Gamal encryption consists of the proba-
bilistic polynomial time (PPT) protocols below:

– ThGen(�, n, n): It is an interactive protocol. Each party Pi picks xi ∈ Zp as
a secret share. Then, he sends hi = gxi as a verification key by proving the
relation Rdl = {(xi, (G, p, g))|hi = gxi} denoting knowledge of the discrete
logarithm. At the end, all parties agree on the public key h =

∏
gxi and the

verification key v = {gx1 , gx2 , ..., gxn}.
– ThEnc(h,m) → (a, b) where (a, b) = (gr,mhr) for random r ∈ Zp.
– ThDShare(xi, h, E) → di where di = axi and a is the first part of E.
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– ThDSProve(xi, E, h, di) → pi where pi = (c,D) such that c = H(W1,W2),
W1 = gr, W2 = ar and D = r − xic mod p. Remark that pi is the proof of
the relation Rdleq = {(xi, (G, p, g, hi, a, di|xi = logg hi = loga di}.

– ThDSVerify(v, h,E, di, pi) outputs valid if c = H(gDhc
i , a

Ddc
i ). Otherwise it

outputs invalid.
– ThDec({di}1≤i≤n, E) → m where m = b∏

di
= mhr

gr
∑

xi
= mhr

hr

– ThDeny(E,DS′, I,m1, h) → DS′′. Assume that DS′ ⊂ DS where DS is the
decryption shares of E = ThEnc(h,m0) with |DS′| < n and I is the index
set of missing decryption shares. ThDeny first picks randomly an index i ∈ I
and then randomly picks dj for all j ∈ I \ i. Then, finds a decryption share
di as follows: di = b

m1
∏

j∈I\i dj
and then outputs DS′′ = {dt}t∈I .
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Abstract. Cryptocurrency exchange services are either trusted central
entities that have been routinely hacked (losing over 8 billion USD), or
decentralized services that make all orders public before they are settled.
The latter allows market participants to “front run” each other, an illegal
operation in most jurisdictions. We extend the “Insured MPC” approach
of Baum et al. (FC 2020) to construct an efficient universally compos-
able privacy preserving decentralized exchange where a set of servers
run private cross-chain exchange order matching in an outsourced man-
ner, while being financially incentivised to behave honestly. Our protocol
allows for exchanging assets over multiple public ledgers, given that users
have access to a ledger that supports standard public smart contracts. If
parties behave honestly, the on-chain complexity of our construction is
as low as that of performing the transactions necessary for a centralized
exchange. In case malicious behavior is detected, users are automatically
refunded by malicious servers at low cost. Thus, an actively corrupted
majority can only mount a denial-of-service attack that makes exchanges
fail, in which case the servers are publicly identified and punished, while
honest clients do not to lose their funds. For the first time in this line
of research, we report experimental results on the MPC building block,
showing the approach is efficient enough to be used in practice.

Keywords: Multiparty computation · Secure asset exchange ·
Front-running · Blockchain

1 Introduction

Decentralized cryptocurrencies based on permissionless ledgers such as
Bitcoin [43] allow for users to perform financial transactions without relying
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on central authorities. However, exchanging coins among different decentralized
cryptocurrency platforms still mainly rely on centralized exchange services which
must hold tokens during the exchange process, making them vulnerable to theft.
Centralized exchange hacks have resulted in over 8 Billions dollars’ worth of
tokens being stolen [44], out of which over 250 Million dollars’ worth of tokens
were stolen in 2019 alone. The main alternative is to use decentralized exchange
services (e.g. [13]) that do not hold tokens during the exchange process but are
vulnerable to front-running attacks, since they make all orders public before
they are finalized. This allows for illegal market manipulation, for example by
leveraging the discrepancy between the most extreme buying and selling prices
to buy tokens at the smallest offered price and immediately selling them at the
highest accepted price.

Given the astounding volume of financial losses from centralized exchange
hacks, constructing alternatives that are not vulnerable to token theft is clearly
of great importance. However, ensuring that exchange orders remain private and
avoiding front-running has also been identified as a chief concern [10,28], since
this vulnerability reduces user trust and rules out regulatory compliance. In
essence, a solution is needed for reconciling order privacy, market fairness and
token security. In this work, we address the question:

Can we securely & efficiently exchange cryptocurrency tokens while preserving
order privacy, avoiding front-running and ensuring users never lose tokens?

1.1 Our Contributions

We introduce universally composable privacy preserving decentralized exchanges
immune to token theft and front-running, as well as optimizations to make our
approach feasible in practice. Our main contributions are summarized as follows:

– Privacy: A provably secure privacy preserving decentralized exchange pro-
tocol, which is immune to both front-running and secret key theft.

– Security: An Universally Composable [18] analysis of our protocol, showing
our approach is secure in real world settings.

– Efficiency: The first experimental results showing that Multiparty Compu-
tation on blockchains can be practical (i.e. faster than block finalization).

– Usability: An architecture that allows for deployment of a decentralized-
exchange-as-a-service where users only need to do very lightweight compu-
tation and complete a single blockchain transfer in connection with a single
round of efficient communication with the servers.

As the main building blocks of our work, we use publicly verifiable secure
multiparty computation (MPC) [5] and threshold signatures with identifiable
abort [21,33,34]. MPC allows for users to compute on private data without
revealing this data to each other, which is a central concern in our solution.
Moreover, using tools for public verifiability [4], it is possible to prove to any
third party that a given computation output has been obtained without revealing
inputs, which is paramount for proving validity in decentralized permissionless
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systems. We use standard (public) smart contracts to implement a financial
punishment system that incentivizes servers executing our protocol to behave
honestly and ensures that users are reimbursed in case servers cheat.

If parties do not cheat, our protocol requires no on-chain communication
except for the transactions needed to perform the exchanges and uses MPC
only for privately matching orders (to avoid front-running). We prove security
against an actively dishonest majority and argue how clients can be refunded in
case of malicious behaviour by up to n−1 servers. We analyse our solution in the
Universal Composability (UC) framework [18], which guarantees security even in
complex situations where multiple protocols are executed concurrently with each
other (i.e. real world scenarios as the Internet or decentralized cryptocurrency
systems). To that end, we introduce a treatment of decentralized exchanges in
the UC framework, allowing us to prove that our protocol is secure even in these
realistic scenarios.

1.2 Our Techniques

The Protocol in a Nutshell: Clients C1, . . . , Cm wish to exchange tokens
between ledgers La and Lb using servers P1, . . . ,Pn that facilitate the privacy-
preserving exchange. Any number of ledgers can be involved, as long as all parties
can use a standard smart contract (e.g. Ethereum) on a ledger LEx. Moreover,
all ledger pairs La,Lb must use cryptocurrency systems that allow for publicly
proving that a double spend happened, e.g. Bitcoin UTXOs [43] (which can
be emulated by attaching unique IDs to coins in account-based systems like
Ethereum). Our protocol works as follows:

– Smart Contract Setup: The servers send a collateral deposit to a smart
contract on ledger LEx that guarantees that the servers do not cheat.

– Off-chain communication: After setup, only off-chain protocol messages
are exchanged between the servers unless cheating happens, in which case
cheating servers can be identified by publicly verifiable proofs [4] and pun-
ished.

– Main Protocol Flow: Performing exchanges between client Ci who wants
to exchange tokens from ledger La held at their address Addrsrci with tokens
from Cj who holds tokens in ledger Lb at address Addrsrcj (or any other tuple
of users/ledgers/addresses):
1. Burner address setup: The servers set up threshold signature addresses

Addrexi and Addrexj on each ledger La and Lb.
2. Private order placement: Clients transfer their tokens to server threshold

addresses on each ledger (i.e. clients Ci and Cj transfer their tokens from
addresses Addrsrci and Addrsrcj on ledgers La and Lb to addresses Addrexi
and Addrexj , respectively) and send to the servers the addresses Addrtrgj

and Addrtrgi on La and Lb where they will receive exchanged tokens if
their orders match, respectively. They also send secret shared order infor-
mation, describing the prices they charge for their tokens in a way that
the servers do not learn the prices.
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3. Confirmation: If the servers have correctly received the secret orders and
deposits from all the clients on each ledger, they proceed. Otherwise,
they generate and send to the smart contract refund transactions trans-
ferring tokens from Addrexi and Addrexj back to client addresses Addrsrci

and Addrsrcj , respectively. Ci and Cj retrieve these transactions and post
them to La and Lb, respectively.

4. Private Matching: The servers execute a publicly verifiable MPC protocol
(e.g. [5]) to run any order matching algorithm on secret-shared orders so
that they can publicly prove that either a given set of orders have been
matched or that a server has cheated, never learning non-matched orders.

5. Pay out: Servers publish signed transactions for the final exchange oper-
ations to addresses Addrtrgj and Addrtrgi on La and Lb for matched order
pairs to pay out the exchange to the clients.

– Cheating Recovery: The main cheating scenario is that a server sent an
invalid message or failed to send a message. In that case, an honest server
complains to the smart contract on LEx and all servers have to send valid
protocol messages to complete the protocol to the smart contract. If a server
Pi does not send a valid message, it is identified as a cheater.
Any server Pi identified as a cheater loses its deposit to the smart contract,
which is used to reimburse the clients and the honest servers for their work.

Security Guarantees: Our main protocol achieves security against an actively
dishonest majority of servers without requiring the clients to put up expensive
collateral deposits, which is the case in previous approaches (e.g. [5]) where all
parties must provide such deposits. Moreover, we describe a modification where
even in a catastrophic failure where all servers become corrupted, even though
the client’s orders may leak, all clients are guaranteed to be refunded by the
smart contract.

Efficiency: Unless cheating happens, all communication is off-chain and the
only information stored on-chain on any ledger are the transactions necessary to
perform the exchange itself (improving on [5]). If cheating happens, the smart
contract must identify and punish the cheater, but this cost is covered by the
cheater’s deposit. Moreover, MPC is only used to match orders in the Private
Matching phase, while other operations are executed via efficient off-chain pro-
tocols. Finally, we do the first full implementation of the MPC component in
a secure computation with financial incentives setting, showing that MPC on
blockchains is efficient in practice (in particular for our matching application).

Alternative Approaches: Our protocol can be modified in the following ways:

– Preventing Denial-of-Service attacks by Clients: In our outlined pro-
tocol, either all clients transfer their money after registration or they all get
reimbursed. Then, a client who registers but does not transfer funds could
participate in a Denial-of-Service attack. We explain in Sect. 4.3 how to mod-
ify our protocol to avoid this.
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– Incentivizing Servers: Clients may pay fees to servers so that it is profitable
to execute a server. This can be achieved in a simple manner as part of the pay
out step. Concretely the servers will also post transactions to their respective
addresses, from the burner addresses used by the clients during the exchange,
instead of only posting a transaction paying out the exchange to the recipient.

– Guaranteed Success with Honest Majority of Servers: Assuming an
honest majority of servers, we can obtain a much more efficient protocol by
replacing the MPC protocol [5] used for the Private Matching with a much
cheaper honest majority MPC protocol. Moreover, in this case we can achieve
guaranteed output delivery, meaning that the privacy preserving exchange
always works regardless of the minority of malicious servers.

– Resilience under full corruption: Even though we consider a dishonest
majority where at least one server is honest, our technique can be modified
for the setting where all servers may be corrupted. If users are allowed to
register their orders (and destination addresses) on the smart contract, they
can prove that all servers have misbehaved and get reimbursed with tokens
from the exchange smart contract ledger, similarly to the approach of [31].

1.3 Related Work

MPC with Financial Incentives: A feature required by the MPC scheme in our
applications is that if a cheating party obtains the output, then all the honest
parties should do so as well (so all parties learn matching orders). Protocols which
guarantee this are also called fair but known to be impossible to achieve with
dishonest majorities [26]. Recently, [2,11] initiated a line of research that aims at
incentivizing fairness in MPC by imposing cryptocurrency based financial penal-
ties on misbehaving parties. Several works [5,9,12,40,41] improved the perfor-
mance with respect to on-chain storage and the size of the collateral deposits
from each party, while others obtained stronger notions of fairness [25,37]. None
of these works implemented the MPC component of this approach.

In our work, we rely on such techniques to ensure that servers cannot profit
from forcing exchange operations to fail. However, even the state-of-the-art [5]
of these works only considers the single blockchain setting (not allowing for
exchanges) and suffers from indefeasibly high overheads in both off-chain/on-
chain complexity that would make exchange operations infeasible. We address
these issues with an MPC protocol that operates on multiple blockchains, but
building a decentralized exchange service where we only use MPC for matching
orders; then later generating matched order transactions via an efficient thresh-
old signature. We propose concrete improvements on the off-chain/on-chain
overhead of [5] with the first concrete implementation of techniques from [4,6].
Furthermore, we achieve optimal communication (no more than in centralized
exchanges) in the optimistic setting, where no party behaves maliciously. For the
first time in this line of work [2,5,9,11,12,40,41], we fully implement the MPC
component of such a solution showing it is efficient in practice, whereas previous
works only focused on on-chain efficiency (which is still optimal in our protocol).
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Privacy Preserving Smart Contracts: Another related line of work [14,16,39] has
focused on constructing privacy preserving smart contracts that can be checked
for correct execution without revealing private inputs on-chain. However, these
are intrinsically unfit for our application because they require a trusted party
to learn all private inputs in order to generate zero-knowledge proofs showing
that a given computation output was obtained. This would allow a corrupted
trusted party (or insecure SGX enclave [15]) to perform front running (or even
steal funds), i.e. the same issues of centralized exchanges.

Distributed Markets and Exchanges: The use of MPC in traditional stock market
exchanges has been considered in [23,24,42] but these works focus on matching
stock market orders and do not address the issue of ensuring that exchange
transactions are performed correctly, which we do. Many commercial decentral-
ized exchange services (e.g. [13]) exist, but they are not private and suffer from
front-running as discussed before. A front-running resistant approach is sug-
gested in [10] but it relies on insecure trusted hardware [15] and has no privacy.

Fair Two-Party Data Exchange: Dziembowski et al. [31] showed how to use
financial incentives and a proof of cheating to enforce honest behaviour when two
parties are exchanging pre-images of a hash function using a distributed ledger.
Despite showing security in UC, their approach would not directly be efficient
for cross-chain token exchange, nor generalize to exchange order matching.

2 Preliminaries

Let τ be the computational and κ the statistical security parameter. We use n to
denote the number of servers and m for the clients. Let y

$← F (x) denote running
the randomized algorithm F with input x and implicit randomness, and obtain-
ing the output y. y ← F (x) is used for a deterministic algorithm. For a finite set
X , let x

$← X denote x chosen uniformly at random from X . For k ∈ N we write
[k] for {1, . . . , k}. We say a function f(x) is negligible in x (or negl(x) to denote
an arbitrary such function) if f(x) is positive and for every positive polynomial
p(x) ∈ poly(x) there exists a x′ ∈ N such that ∀x ≥ x′ : f(x) < 1/p(x). Two
ensembles X = {Xτ,z}τ∈N,z∈{0,1}∗ and Y = {Yτ,z}τ∈N,z∈{0,1}∗ of binary random
variables are said to be computationally indistinguishable, denoted by X ≈c Y ,
if for all z it holds that | Pr[D(Xτ,z) = 1] − Pr[D(Yτ,z) = 1] |∈ negl(τ) for every
probabilistic poly-time algorithm (distinguisher) D in τ .

2.1 (Global) Universal Composability and Verifiability

In this work, the (Global) Universal Composability or (G)UC framework [18,20]
is used to analyze security. Due to space constraints, we refer interested readers
to the aforementioned works for more details. We generally use F to denote an
ideal functionality and Π for a protocol.
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Several functionalities in this work allow public verifiability. To model this, we
follow the approach of Badertscher et al. [3] and allow the set of verifiers V to be
dynamic by adding register and de-register instructions as well as instructions
that allow S to obtain the list of registered verifiers. All functionalities with
public verifiability include the following interfaces, which can also be used by
other functionalities to register as a verifier of a publicly verifiable functionality,
and which are omitted henceforth for simplicity:

Register: Upon receiving (Register, sid) from some verifier Vi, set V = V ∪Vi

and return (Registered, sid,Vi) to Vi.
Deregister: Upon receiving (Deregister, sid) from some verifier Vi, set V =

V \ Vi and return (Deregistered, sid,Vi) to Vi.
Is Registered: Upon receiving (Is-Registered, sid) from Vi, return.

(Is-Registered, sid, b) to Vi, where b = 1 if Vi ∈ V and b = 0 otherwise.
Get Registered: Upon receiving (Get-Registered, sid) from the ideal adver-

sary S, the functionality returns (Get-Registered, sid,V) to S.

2.2 The Global Clock

As some parts of our work are inherently synchronous, we model the different
“rounds” of it using a UC clock functionality FClock as in [3,36,37]. This func-
tionality is assumed to be a global functionality, which means that other ideal
functionalities will be granted access to it. And while in the real protocol execu-
tion all parties send messages to and receive them from FClock, in the simulated
case only the ideal functionality, other global functionalities as well as the dis-
honest parties will do so. Hybrid functionalities in the simulation might also
be given access, but this is not necessary in our setting. For simplicity, we do
not introduce a session management in FClock as it is not necessary to state our
result. Throughout this work, we will write “update FClock” as a short-hand for
“send (Update, sid) to FClock” (Fig. 1).

Fig. 1. Functionality FClock for a global clock.



170 C. Baum et al.

2.3 Client-Input MPC with Publicly Verifiable Output

We focus on MPC with security against a static, rushing and malicious adversary
A corrupting up to n − 1 of the n servers where m clients provide the actual
inputs and where all clients might be malicious. This specific setting of MPC is
called out-sourced MPC and can efficiently be realized in a black box manner on
top of a “standard” MPC scheme where the servers are providing the output [35].
We let the MPC functionality compute the result y and share its output in a
verifiable way such that any potential verifier can either check that the output is
correct or identify a cheater, and hence allow for incentivized fairness. In Fig. 2
we formally define functionality FIdent adapted from [5] that captures this style of
MPC. We remark that differently from [5], we use a publicly verifiable version [4]
of the original protocol of [5] with optimizations from [6] where no homomorphic
commitments are needed and, in case no cheating is detected, no interaction
with the smart contract is needed apart from the initial deposits from servers
executing FIdent and the final output. Intuitively it specified an out-sourced MPC
functionality where clients C1, . . . , Cm supply private input that is computed on
in MPC by the servers P1, . . . ,Pn and where the output of the computation
is verifiably shared between the servers in such a manner that the shares can
verified by an external verifier V after the completion of the protocol to identify
any potential malicious behaviour. As FSC will need to interact with FIdent to
verify outputs, we consider FIdent as a global functionality. This does, however,
not change anything concerning it’s implementation or security proof, as FIdent

does not keep a common state across multiple sessions and ignores requests from
other sessions.

2.4 (Threshold) Signatures

In our work we rely on signatures and identifiable threshold signatures to rep-
resent transactions on ledgers. Therefore we will assume the existence of two
UC functionalities: FSig which is a standard functionality in UC [19] (with key
generation, signature generation and signature verification), as well as our own
formalization of general UC identifiable threshold signatures FTSig (which can
be seen as a generalization of signatures such as [21,22]). In comparison to
normal signatures, FTSig has a two-step process of signature generation, where
the parties first generate shares ρ of the overall signature σ which later on are
aggregated in a share combination phase. This share combination also exposes
parties that generated some shares wrongly. Additionally, FTSig also creates the
signing key in a distributed way. We treat both FSig and FTSig as global UC
functionalities, which means that both local and other global UC functionalities
can verify signatures on them. This is meaningful as we assume that ledgers are
global functionalities too, hence validating their transactions should be consis-
tent among any different session. Due to space constraints, the formalizations of
both FSig,FTSig only appear in the full version [7].
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Fig. 2. Functionality FIdent for MPC with publicly verifiable output.
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Fig. 3. The bulletin board functionality FBB that abstractly describes the source and
target public ledgers of transactions.

2.5 Bulletin Boards and Smart Contracts

Our approach does not require dealing with the specifics of blockchain consensus,
since we hold tokens in addresses controlled by threshold signatures in such a way
that transactions can only be issued when all servers cooperate. Since at least
one server is assumed to be honest, we do not have to confirm whether a trans-
action is registered. Even when we address the case of total server corruption,
our approach only requires identifying an attempt of double spending a client’s
deposit regardless of which transaction of the double spends gets finalized on
the ledger. Hence, in this work we do neither fully formalize distributed ledgers
as was done in previous work [3], nor do we use other existing simplified formu-
lations such as [37]. Instead, for the sake of simplicity, we use a public bulletin
board functionality FBB (see Fig. 3) to represent ledgers. What this functionality
affords, is basically to allow storage of authenticated messages as well as make
them available for all users. In Appendix A we also define the functionality FSC

which describes our needs of the smart contract functionality run by the ledger.

2.6 Representing Cryptocurrency Transactions

In order to focus on the novel aspects of our protocol, we represent cryptocur-
rency transactions under a simplified version of the Bitcoin UTXO model [43].
For the sake of simplicity we only consider operations of the “Pay to Public Key”
(P2PK) type, even though any other types of transaction can be supported as
long as it is possible to publicly prove that a double spend happened and to gener-
ate transactions in a distributed manner. In particular, even a privacy preserving
cryptocurrency that publicly reveals double spends could be integrated to our
approach by constructing a specific purpose multiparty computation protocol
for generating transactions in that cryptocurrency. Representing Addresses: An
address Addr = vk is simply a signature verification key, where vk and subsequent
signatures σ are generated by the signature scheme used in the cryptocurrency
(represented by FSig and FTSig).
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Representing Transactions: We represent a transaction in our simplified UTXO
model by the tuple tx = (id, In,Out,Sig), where id ∈ {0, 1}τ is a unique
transaction identification, In = {(id1, in1), . . . , (idm, inm)} is a set of pairs
of previous transaction id’s id ∈ {0, 1}τ and their values in ∈ N, Out =
{(out1, Addr1), . . . , (outn, Addrn)} is a set of pairs of values out ∈ N and signa-
ture verification keys Addr and Sig = {σ1, . . . , σm} is a set of signatures σ.

Transaction Validity: A transaction tx = (id, In,Out,Sig) is considered valid if,
for all (idi, ini) ∈ In and (outj , Addrj) ∈ Out, the following conditions hold:

– There exists a valid transaction txi = (idi, Ini,Outi,Sigi) in the public ledger
(in our case represented by FBB and FSC) such that (ini, Addri) ∈ Outi.

– There exists σi ∈ Sig such that σi is a valid signature of id|In|Out under
Addri according to the cryptocurrency’s signature scheme (FSig or FTSig).

– It holds that
∑m

i=1 ini =
∑n

j=1 outj .

Generating Transactions: A party controlling the corresponding signing keys
for valid UTXO addresses Addr1, . . . , Addrm containing values in1, . . . , inm can
generate a transaction that transfers the funds in these addresses to output
addresses Addrout,1, . . . , Addrout,n by proceeding as follows:

1. Choose a unique id ∈ {0, 1}τ .
2. Choose values out1, . . . , outn such that

∑m
i=1 ini =

∑n
j=1 outj .

3. Generate In,Out as described above and sign id|In|Out with the instances
of FSig or FTSig corresponding to Addr1, . . . , Addrm, obtaining Sig =
{σ1, . . . , σm}.

4. Output tx = (id, In,Out,Sig).

3 Modeling Fair Decentralized Exchanges in UC

In this section we formalize a decentralized exchange on a high level. We assume
that there are m clients C1, . . . , Cm. These clients can exchange between � ledgers
L1, . . . ,L�. Each Cj controls an amount of tokens amsrc

j in an address vksrcj which
is on ledger Lsrc

j . The goal of Cj is to acquire amtrg
j tokens on ledger Ltrg

j which
should be transferred to address vktrgj .

In order to compute transactions there exist two deterministic poly-time
algorithms compSwap and makeTX. On a high level, compSwap takes the exchange
order of each client between two specific ledgers, La and Lb, as input and returns
the order matches. Whereas makeTX takes as input the order matches computed
by compSwap for each possible pair of ledgers along with some metadata and
returns a list of all, unsigned, transactions to be carried out to complete the
exchange over all ledgers. More concretely, a bit δj indicates for each client Cj

whether said client wants to buy amsrc
j tokens on La using at most amtrg

j tokens
from Lb, or if they want to sell amsrc

j tokens from La for at least amtrg
j tokens
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on Lb. compSwap then returns a list of transfer orders. More concretely, a list of
tuples where each tuple contains two quantities, amj and amj′ and the identifiers
of two clients; client Cj who should have amj of its tokens transferred on La to
the other client Cj′ and client Cj′ should transfer amj′ of its tokens on Lb to Cj .
As our protocol will use individual burner addresses for each Cj controlled by
the servers, we assume for the computation that the asset was transferred by Cj

to an address vkexj using a transaction with id idj .

compSwap computes swaps between two ledgers. It takes as input m′ ≤ m tuples
of the form (Cj , δj , am

src
j , amtrg

j ) where Cj , am
src
j , amtrg

j ∈ N where δj = 0 if Cj

wants to swap from the first to the second and δj = 1 if it wants to swap from
the second to the first ledger. It outputs a list of tuples (Cj , amj , Cj′ , amj′),
where amj , amj′ ∈ N, which is viewed as a vector ya,b ∈ N

g for some g.
makeTX takes the � · (� − 1) outputs of compSwap for each pair of ledgers La,Lb

with 1 ≤ a < b ≤ � as well as a tuple (Cj ,Lsrc
j ,Ltrg

j , idj , vk
ex
j , vksrcj , vktrgj , amsrc

j )
for each Cj as input. It then outputs � transaction orders (ida, Ina,Outa) (still
missing the signatures however), one for each La, such that
1. Ina = {(idj , am

src
j )} for some Cj where Lsrc

j = La and Cj transferred the
amount amsrc

j to vkexj in a transaction with id idj .
2. Outa = {(outi

a, Addri
a)} where each Addri

a is either vksrcj for Cj with Lsrc
j =

La or vktrgj′ for Cj′ with Ltrg
j′ = La.

3.
∑

j in
j
a =

∑
outi

a and ida is computed as a hash of Ina,Outa.

Algorithms compSwap and makeTX only model the generation of UTXO-style
transaction descriptions that can later be turned into valid transactions by cre-
ating a signature Siga for each La. The exchange security requirements are then
modeled in the functionality (e.g. requiring that e.g. each Cj either gets its asset
back or also an asset on the other ledger according to some matching rule of
transactions). The exchange functionality FEX as well as the protocol ΠEx will
later use the algorithms compSwap, makeTX to generate the transactions. Looking
ahead we note that compSwap will be computed using outsourced MPC through
Fa,b

Ident, keeping the input amsrc
j , amtrg

j from each client hidden from every server
whereas makeTX will be computed openly. We furthermore note that since there
is always an honest party that can influence the choice of algorithms so that the
chosen algorithms are fair.
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Fig. 4. Functionality FEX for secure decentralized exchange.
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Fig. 5. Functionality FEX for secure decentralized exchange.
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3.1 The Fair Exchange Functionality

Functionality1 FEX as depicted in Fig. 4 and 5 generates the transactions for
clients via burner addresses. As our protocol later uses the global clock, FEX also
accesses FClock. The transactions that FEX will generate must be verifiable on
other ledgers and its signatures therefore come from a global threshold signing
functionality FTSig. FEX accesses FTSig in order to generate these, giving the
adversary S extra influence in the process. Notice that FEX implements a fair
secure swap given that compSwap and makeTX implement swapping algorithms.
S only learns the swap data ya,b after all transactions were determined but does
not learn the input orders like a centralized exchange does. S can only cause
an abort before the output is released by causing signature generation to fail.
In this case, all clients get reimbursed with either their original assets or with
a deposit (here coins) from S. If the functionality progressed far enough that
S learned the output, then it can only abort by losing its coins. Otherwise, the
swap output transactions will always be given to the clients.

4 Realizing the Exchange Functionality

We now describe a protocol ΠEx that GUC-realizes FEX, making sketch from
Sect. 1.2 more precise. As the smart contract which is used, abstractly described
in FSC (see Appendix A), is rather complex, we outline the interplay between ΠEx

and FSC beforehand. Due to space limitations, the smart contract description and
its formalization FSC as well as the full protocol ΠEx can be found in Appendix A.

4.1 Overview of the Protocol

ΠEx runs between n servers P and m clients C. The clients can exchange between
� ledgers L. Each Cj controls an amount of tokens amsrc

j on an address with public
key vksrcj on ledger Lsrc

j . The goal of Cj is to acquire amtrg
j tokens on Ltrg

j to an
address with public key vktrgj .

Smart Contract Setup. Initially, no servers or clients are registered anywhere.
The servers P run a pre-processing step where they use FTSig to (internally)
sample a common key sk for threshold-signing along with a public key vk for
threshold-signature verification. Each Pi also sends its individual verification
key v̂ki to all other servers. Finally the servers set up � · (� − 1) instances Fa,b

Ident

to accept inputs by clients who want to transfer between La and Lb.
To initiate the protocol each server sends vk, v̂k1, . . . , v̂kn, coins(d) to FSC.

FSC will wait for a certain period and then check if all servers put in enough

1 Throughout this work, we treat FEX as an ordinary UC functionality and not a global
functionality (which would intuitively make more sense). This is due to subtle issues
that would arise in the proof if FEX was global, namely the simulator would not be
able to equivocate the necessary outputs.
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deposit2 and signed messages consistently. If so, then the coins are locked and
FSC transitions to a state ready, otherwise the servers are reimbursed and FSC

goes back to its initial state init.

1. Burner Address Setup. If a client Cj wants to exchange an asset from
Lsrc

j to Ltrg
j it checks if FSC is in state ready. If so then Cj sends a registration

message to all P, who generate a burner address/public key vkexj on Lsrc
j using

FTSig. The servers sign the client’s data and vkexj using sk and send the signature
to Cj .

2. Private Order Placement. If the signature is correct, then Cj transfers
amsrc

j from vksrcj to vkexj and inputs its transfer information into the correct Fa,b
Ident.

3. Confirmation. Servers wait until all transfers to burner addresses were made
and inputs were provided to Fa,b

Ident by all clients. They then sign information
about the transactions to the burner addresses using sk. If either of this fails,
then at least one Pi signs an “abort” message using ŝki and sends it to FSC.

4. Private Matching. Afterwards the servers run compSwap on all Fa,b
Ident to

match transactions. If Share of each FIdent is completed, all servers sign a mes-
sage “ok” using sk that every server obtains. If this fails then each Pi signs
an “abort” message and sends it to FSC. If signing succeeded but a server sent
“abort”, then all Pi respond by sending the signed “ok” to FSC. If signing “ok”
was successful then all Pi use Optimistic Reveal of Fa,b

Ident, i.e. the swaps.

5. Pay Out. The servers will compute the resulting transactions txa = (ida, Ina,
Outa,Siga) using makeTX and by making signatures using FTSig under all burner
addresses of each La. These txa are then sent to clients Cj that are touched by the
transfer. In case of an error a server sends “abort” to FSC. Once all transactions
were signed, the servers sign a message done using sk and send this message to
FSC. Upon receiving done signed by sk FSC reimburses all Pi.

Cheating Recovery. If any server sends an “abort” to FSC, then FSC waits if
any other server publishes an “ok” or “done” signed by sk. If “done” is published
after an “abort” then FSC reimburses all Pi.

If “ok” is published then each Pi runs Reveal and Allow Verify for each
Fa,b

Ident and then posts all sk-signed client registrations, transaction ids as well as
FIdent-shares sa,b

i . This allows each server to compute ya,b =
∑

i s
a,b
i and hence

ida, Ina,Outa for each La using makeTX. For each such transaction the server
then computes its shares of Siga which it also posts. All this information allows
FSC to check if all servers revealed correct shares and signature shares or not.
In case of cheating FSC sends the cheaters’ deposit to all registered clients and
reimburses all honest servers. If posted data was correct, FSC instead reimburses

2 To ensure that all clients can be reimbursed in case of a malicious server, the deposit
from each server must have value equal or greater to the total value of input given
by clients during an exchange. However, in practice only a small percentage of this
would be sufficient to incentivize honest behaviour and the requirement could even
be considered equivalent to the reserve requirement of banks.
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all servers. Each client Cj identifies from FSC the parts necessary to compute its
swap transactions locally and then posts these to finalize the swap.

If no “ok” or “done” is published then each server posts all client registra-
tions signed by sk to FSC as well as the transactions that each client Cj made
to vkexj from vksrcj . After a certain delay passed the servers create reimbursing
transactions txj for each Cj . For this, each server Pi generates its share of the
signature using FTSig and sends this share to FSC, signed under ŝki.

FSC parses all signed client registrations and transactions, locally generates
idj , Inj ,Outj for each Cj and checks that each Pi generated its signature share
correctly. If any share is missing or if Pi did not provide a valid share, then the
deposit of all cheaters is shared among all clients. Finally, each honest server is
reimbursed. If all reimbursement transactions can be made, then each Cj reads its
transactions from FSC and posts them on FBB while FSC reimburses all servers.

Fig. 6. The protocol ΠEx.
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4.2 The Protocol

We discuss the practical deployment considerations of the protocol in Sect. 5 and
describe the full protocol in Figs. 6, 7 and 8 and now prove our main theorem:

Theorem 1. The protocol ΠEx GUC-implements the functionality FEX in the
FSC,FIdent,FClock,FSig,FTSig,FBB-hybrid model against any PPT-adversary cor-
rupting at most n − 1 of the n servers statically.

Proof. In order to prove the claim we construct a PPT simulator S which will,
in the ideal setting, interact with A, FEX and all the hybrid and global function-
alities in such a way that FEX ◦ S ≈ ΠEx ◦ A for any PPT environment Z, i.e.
that the interaction created by S is indistinguishable from a protocol transcript
in a composed setting. Additionally, the global functionalities will be present in
both cases and Z will be able to perform queries to these.

S, on a high level, runs as follows:

– Upon learning the sets I, J of corrupted servers and clients S simulates honest
servers Pi and honest clients Cj in a simulated instance of ΠEx.

– S follows the protocol ΠEx but with dummy inputs for Pi and Cj . S will
observe A’s behaviour during the protocol execution and from it extract
inputs that it sends to FEX on behalf of the dishonest servers and clients.

– During Initialize S will forward all messages sent by A to FTSig for generating
the key vk. It generates keys v̂ki for all the simulated servers and sends these
to A. It then for each party sends a signature on t as in the protocol, where
different values are signed by different honest parties if A sent different keys to
different honest servers. S will additionally provide messages coins(d) by each
simulated honest party to FSC. If FEX activates the clock and time progresses
then it sends coins(|I| · d) to FEX, otherwise it aborts.

– During Enroll Client S will simulate sign-up of honest clients based on
the output of FEX by sending the respective message to A. It forwards all
interactions of A to FTSig concerning the burner address. Ultimately it creates
“fake” inputs for each honest Cj to the respective FIdent instance. For all
the dishonest clients S observes FSC as well as the instances of FBB. Upon
receiving an enrollment message to all simulated honest servers it sends the
respective message to FEX. Their inputs will be extracted from the respective
instances of FIdent which can be observed by S. Alternatively send a message
to FEX if a dishonest client neither provided any input nor made a transfer.

– During Exchange S follows what the honest servers would do in the protocol
and forwards messages to FTSig accordingly. It aborts if the computation on
any FIdent fails or if the sharing fails. Finally, it sends the respective message
to FEX.

– During Open either start the abort if FEX does so or obtain the outputs
ya,b from FEX. In case that S obtains the output then make the output from
FIdent to A appear to be the correct corresponding output and run their
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Fig. 7. The protocol ΠEx.



182 C. Baum et al.

Fig. 8. The protocol ΠEx.

output phases3. Then forward all interactions towards FTSig of A. If a “done”
message gets signed then let each honest server send it to FSC. Upon obtaining
coins(|I| · d) back from FEX let FSC forward these to A.

– If FEX runs Abort without Outputs S simulates the behavior of the hon-
est servers by sending the signed messages that they learned during Enroll
Client to FSC. Furthermore it fetches the transaction tx from FBB that the

3 This is possible, even if FIdent is global, as S can alter all messages between A
and global functionalities. This will not be noticeable for Z as FIdent only outputs
information for a specific sid to TMs acting in that session.
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honest client made to send money to the burner address and puts it on FSC

as an honest client does in the protocol. If A does not send certain messages
to FSC then identify the respective sets J1, I1 and send them to FEX. If FEX

sends any coins(d) back to S then let FSC distribute these accordingly.
– Simulate Abort with Output like Output without Abort is simulated.

It is easy to see that the messages which an adversary reads during the
simulated protocol are consistent with the values that are returned both to
the honest parties and servers and with the outputs of the ideal functionality.
The state of FClock during each protocol step is identical with that during the
simulated protocol instance. Moreover, whenever the simulated protocol aborts
then this also leads to an abort of FEX and when honest servers let FEX abort
then this is reflected in FSC. Honest clients never abort in the simulation as they
cannot abort in ΠEx either. Finally, the coins that A puts into FSC and obtains
from FSC are identical with those that S inputs into FEX or obtains from it. 
�

4.3 Preventing Denial of Service Attacks by Clients

In ΠEx as sketched above, any client that registers but does not transfer funds
causes an abort of the exchange. This can be avoided with an extension of ΠEx

that we outline below. We did not include this extension in the formalization of
ΠEx in order to keep the protocol description as small as possible.

To avoid the attack, all Pi in Step 3 of the protocol (Confirmation) sign
information on which clients will be included and which will be excluded in the
exchange, using FTSig. For each excluded Cj , the servers send the signed message
of exclusion to Cj . If Cj ’s transaction txj to vkexj on Lsrc

j was confirmed after
this signature was generated, then Cj sends this signature together with txj and
its registration information to FSC as proof that it should be reimbursed4. Upon
having obtained this, FSC requires all Pi to create a signature on a reimbursement
transaction to Cj . If a server Pi does not send it’s signature share, then Cj will
be reimbursed from the collateral of Pi on the exchange ledger.

Observe that txj might not be a valid transaction on Lsrc
j , but the reimburse-

ment transaction will only be valid if txj was valid (as it spends txj), hence
a malicious Cj cannot obtain funds of an honest party. Also, if a dishonest Pi

refuses to sign an honest Cj ’s reimbursement transaction, then Cj will be reim-
bursed on the exchange ledger with funds of Pi.

5 Implementation

To demonstrate feasibility of our approach, we describe a simple algorithm for
order matching, i.e. compSwap, along with an efficient MPC-based privacy pre-
serving implementation of this, based on the ring-variant of the SPDZ proto-
col [30], called SPDZ2k [29].

4 All this information was signed by FTSig and must therefore be valid.
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We implemented a limited order-matching function, CcompSwap realizing the
algorithm compSwap, which we describe in full detail in the full version. We note
that CcompSwap is a simplified version of standard limit-order price-focused match-
ing algorithms, in the sense that it assumes all orders are for a constant amount
of tokens from ledger La and only matches according to price. That is, the algo-
rithm sorts the buy and sell orders according to their maximum and minimum
limits respectively. Then the largest acceptable buy price is then matched with
the smallest acceptable sell price, assuming the buy price is larger than the sell
price. The clearing price will then be the average of the two prices. The price
describes how many tokens of Lb must be swapped to get a constant amount of
the tokens on La. Orders which are not matched are simply discarded, without
disclosing their price limits. We chose to implement this simple matching algo-
rithm as it provides a minimally useful example of what is required by compSwap
by performing oblivious sorting and selecting, which are they key aspects we can
expect from any reasonable choice of algorithm.

Table 1. Complexity of the matching
protocol implementation in SPDZ2k .

Orders
(m)

k = 32, k = 26 k = 64, k = 57

#mult #rounds #mult #rounds

4 2269 151 4075 158

8 7417 262 13351 275

16 22833 410 41151 431

32 66465 595 119871 626

64 184449 817 332799 862

128 492097 1077 888127 1169

Complexity of Matching. It is easy
to see that comparison is the key primi-
tive used in our order matching. In most
arithmetic MPC schemes this primitive
can be realized using O(log(k)) multi-
plication gates and rounds of commu-
nication where k is the max bit-length
of the numbers being computed on [29].
Besides being used for deciding whether
a buy and sell order should be matched,
comparison is also the key component
in most oblivious sorting algorithms. In
particular, Batcher’s Odd-Even Merge-sort [38, Sec. 5.4.3], which our implemen-
tation uses, has comparison depth O(log2(m))) and uses a total of O(m log2(m))
comparisons. For this reason the overall round complexity of our concrete order-
matching algorithm, CcompSwap, ends up at O(log(k) · log2(m)) with multiplication
gate complexity of O(k · m log2(m)). The communication complexity associated
with a multiplication gate is O(k + κ) bits for SPDZ2k [29]. Hence we get at
most O((k + κ) · m) bit in bandwidth usage per round. The total amount used
for each of the different choices of m and k by our implementation, including
overhead by the framework, is expressed in Table 1.

Implementation of Matching. We implemented and ran CcompSwap using the
Fresco framework [1], which is an open-source MPC framework in Java for secure
computation in the dishonest majority setting. We chose Fresco as it offers a sim-
ple API allowing quick construction of MPC applications. Furthermore, since it
is Java-based, it also allows for easy cross-platform deployment and integration
with other software. Additionally, Fresco is a commonly used framework for
prototyping MPC applications [27,29] and supports a bring-your-own-backend
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approach, allowing easy switching of the underlying MPC scheme without hav-
ing to modify the program to be executed. Most importantly however, Fresco is
actively maintained, has high test coverage and offers an extensive API of oper-
ations, making it a great choice for prototyping MPC protocols, with a focus on
potential real-world deployment, despite it not being the fastest option available.

We note that we could have optimized our implementation by using newer
and more efficient approaches to MPC, such as approaches mixing both the
binary and arithmetic setting [32]. However, the goal of our implementation has
been to show feasibility and an upper bound on the time it would require to exe-
cute our protocol using a fully tested, documented and maintained framework.
Thus we leave such possible optimizations as future work.

Fig. 9. Online phase of LAN execution of oblivious matching using SPDZ2kon AWS
m5.xlarge.

Benchmarking Matching. We benchmarked the online execution of the
matching protocol in several different settings using Amazon’s Web Services
EC2. We show these benchmarks in Fig. 9 based on the average of 30 iterations
(executed after 30 “warm-up” iterations) and note that memory usage never
gets above 536 MB regardless of test. For all tests we used m5.xlarge instances
running Ubuntu 18.04 LTS. This means that each instance has 4 virtual CPUs
and 16 GiB of RAM along with a LAN connections of up to a 10 Gbps with
less than 0.1 ms latency, when running instances in the same data-center. For
the WAN setting we also used m5.xlarge instances, but data centers in different
countries. For the setting with 2 servers, one was located in Ireland and another
in the U.K., with a latency of around 10 ms. For the setting with 3 servers, we
kept the servers in Ireland and the U.K., but added a third server in Germany,
with a latency of up to 25 ms between the Germany and Ireland servers.

When working over 32-bit integers (k = 32), the statistical security parameter
is κ = 26, whereas when working over the 64-bit integers (k = 64) we have
κ = 57. This is due to the underlying implementation of SPDZ2k in Fresco, and
was originally made for efficiency choices [29].
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From Fig. 9 we notice a steep increase in execution time when expanding the
amount of orders and when moving from 2 to 3 servers. This is especially true in
the WAN setting. This is to be expected due to the underlying SPDZ2kprotocol
having round complexity in the multiplicative depth of the circuit being com-
puted and where each round involves every party sending two ring elements to
all other parties. Thus the overall execution time of the protocol becomes highly
depended on the underlying network, in particular its latency, when increasing
the amount of servers. This is also the case when increasing the amount of orders
as the round complexity is bounded by O(log(k) · log2(m)) and multiplication
gate complexity is bounded by O(k · m log2(m)).

We imagine our protocol being run by a small set of servers, either run by a
single or a few public organizations, whose servers will be in physically distinct
locations, running distinct systems and administered by different people. For
this reason we only benchmark for 2–3 servers, but note that if high scalability
is desired one can simply change the underlying MPC scheme to a constant
round scheme such as BMR [8] as done in “Insured MPC” [5].

We note that Fig. 9 only shows the online execution time. However, each mul-
tiplication gate used for such an execution requires to be preprocessed in advance
in SPDZ2k . This preprocessing is independent of the input of the function to be
computed and can thus be done before the clients even submit their exchange
orders. The most efficient SPDZ2k triple generation protocol with benchmarks
is due to Damg̊ard et al. [29], offering a throughput of 26,455 triples/second for
k = 32 and 9,496 triples/second for k = 64 in the 2 server setting on LAN. Thus
this can be done completed in about 1.5 min for m = 128 and k = 64.

Table 2. Complexity of the (threshold) signatures required by ΠEx for its different
phases. Time estimates are based on [34, Table 1].

FTSig FTSig FSig FSig/FTSig Wall-clock time (sec.)

keygen sign sign verify for m = 128

pr server pr server 2 servers 3 servers

LAN WAN LAN WAN

Initialize 1 0 1 0 1 1 1 1

Enroll m m m 0 125 125 246 246

Exchange 0 m+ 1 0 0 63 63 124 124

Open 0 <m+ 1 0 0 63 63 124 124

Abort w. out. 0 <m 0 0 62 62 123 123

Abort wo. out. 0 m 0 0 62 62 123 123

Signatures. We outline the computational need and timing estimates of FTSig

and FSig, which is required by our protocol ΠEx in Table 2. Note that timings in
this table are estimates based on benchmark of a the recent work by Gennaro and
Goldfeder [34] for threshold ECDSA (currently the most popular scheme in use
by cryptocurrencies) with identifiable abort (which is needed for our protocol).
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Total Execution Time. We only implemented and benchmarked the MPC
implementation of the CcompSwap algorithm since it is clearly going to be the
computation and communication related bottleneck when realizing FIdent in the
way discussed in Sect. 2.3. The only other cryptographic computation of this
realization is limited to committing and opening of O(n(m + s)) commitments
and sampling an equivalent amount of random elements in the MPC computa-
tion. Such commitments can be constructed very simply and efficiently in the
ROM [17]. In particular in the order of microseconds, when using a standard
hash function like SHA-256 to realize the random oracle. Furthermore, we note
that besides the realization of FIdent and FTSig there are no other heavy com-
munication or computation involved in realizing ΠEx, since the other parts is
basically straight-line executable business logic.

Taking the above discussion into account, it is easy to see that in a full online
execution, the execution CcompSwap with no malicious behaviour, will be slower
than the time required for computing the threshold signatures5.

However, we now argue that even with the unoptimized implementation of
CcompSwap and FTSig these are not going to be the bottle-neck in regards to wall-
clock execution time in practice. The reason being the time it takes to finalize
transactions on the ledgers, which is necessary for any cross-ledger exchange.
A block has been finalized once it has been written to the ledger and a certain
amount of other blocks have been written afterwards to the same chain. This
ensures that one can be reasonably certain that the block with the transaction
will not be overwritten, by another, longer branch of blocks. The frequency at
which blocks are constructed, and how many should be constructed before a
transaction can be considered finalized, depends highly on the specific choice of
ledger.

For Bitcoin, a new block is expected to be constructed every 10 min, and a
rule of thumb is that 6 further blocks must be written before a transaction can
be considered finalized. In case of Cardano, blocks are considered finalized after
10 min. This means that each round of ledger I/O will generally involve a latency
of several minutes and hence be the bottleneck in practice.

6 Conclusion

Comparison to Current Solutions. As discussed in Sect. 1, besides our
solution, there are generally only two other approaches to cross-chain exchange:
either a centralized exchange or using atomic-swaps (e.g. as in [13]). Only con-
sidering efficiency, even in the case of the centralized exchange, two transactions
must be carried out and finalized on the underlying ledgers; one transfer from
ledger La to the exchange and one from the exchange to ledger Lb. This means
that we can expect a centralized exchange to take an order of tens of minutes to
5 Although we should note that the benchmarks of threshold signatures by Gennaro

and Goldfeder [34] are not optimized and run on a single-core consumer laptop
whereas our benchmark of CcompSwap runs on a powerful AWS instance. We expect
that the time required for the threshold signatures can be reduced significantly.
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hours before it is has been fully finalized. If a system based on atomic swaps is
used, an extra transaction is required, so 3 sequential transactions are used to
finalize before the exchange can be considered complete.

When there is no malicious behaviour occurring, our system uses the opti-
mal 2 sequential transactions6 similarly to centralized exchanges. Specifically
our system involves the transaction by clients transferring their tokens to the
burner addresses and then the transaction of paying out the exchanged tokens.
Furthermore, we note that while waiting for the first transaction to finalize the
servers are sitting idle. This means that they could optimistically leverage this
finalization time and start the actual matching computation. If the tokens are
not transferred by all clients, the servers will generate refund transactions instead
of opening the transactions computed by the private matching. Since the total
computation time of ΠEx is less than the finalization time of most blockchains, it
means that its execution time will not be noticeable in the time it takes to carry
out and finalize a complete exchange. Hence using our protocol will not add any
time overhead to the current solutions (centralized or swapping). Furthermore,
since nothing (besides the one-time initialization of the server) is written to the
ledger, or executed by smart contracts, unless malicious behaviour occurs, it
means that there will be no added mining-related cost by our approach. Thus
achieving the added distributed security comes with no penalty in price or execu-
tion time as long as no malicious behaviour occurs. The only actual cost is what
is needed to keep the servers running and the one-time cost of initialization.

Deployment Considerations. In regards to creating a highly usable deploy-
ment we note that the clients actually don’t need to be involved during the
payout phase of the protocol. Instead of having each client Cj post the signed
transaction transferring their exchanged tokens to vktrgj on ledger Ltrg

j them-
selves, we can simply have one of the honest servers post this transaction on
their behalf. This means that they do neither need to wait for all other clients’
transfers of source tokens to be finalized, nor for all the servers to finish com-
puting the order-matching. This means that, unless one or more servers are
malicious, the only time the clients need to interact with the protocol is during
enrollment where they must register at the servers (and receive a signed confir-
mation). For clients this only involves giving outsourced input to Fa,b

Ident, which
can be done very efficiently and independently of other clients or the size of the
circuit to compute [35]. Thus this is something that can easily be done in the
user’s browser using a JavaScript web-app that integrates with a user’s browser-
wallet (e.g. MetaMask for Ethereum), where the server’s signed response can be
saved in the local web-page cache. Even if some servers act maliciously and the

6 Technically 4 transactions are needed since the servers must put down a deposit to
the smart contract, and receive this back at the end. However, the deposit can be
reused for an arbitrary amount of executions of exchanges, and we consider this as
purely overhead related to system setup. In case of malicious behaviour our protocol
uses at most 7 transactions to either complete the exchange or refund the clients
and return the honest servers’ deposits.
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abort branch of the protocol ends up being executed, assuming there is still a
single honest server, that honest server could simply act on behalf of the client
to ensure they get refunded. This is because all the information the client would
need to post to FSC is actually constructed and known by all the servers.

Appendix A Smart Contract Functionality FSC

We now describe the smart contract on a high level, meaning its different states
and state transitions. This is to ease understanding, the full description will be
presented later. The Smart Contract will have 7 different states init, ready,
abort, ok1, ok2, reimburse1, reimburse2 where init is the initial state. State
transitions are performed whenever the global clock FClock changes and depend-
ing on the messages that are present on the ledger that FSC acts upon.

init If a tick happens, then check if all servers signed the same vk, v̂k1, . . . , v̂kn

using their individual ŝki and that Pi sent coins(d). If so then change state
to ready, otherwise reimburse all servers and stay in init.

ready If a tick happens and a message “done” is present, signed by sk, then
reimburse all servers and set the state to init. If a tick happens and a message
“abort” is present, signed by a ŝki that initialized the contract, then change
the state to abort.

abort If a tick happens and a message “done” is present, signed by sk, then
reimburse all servers and set the state to init. Else, if a tick happens and a
message “ok”, signed by sk, is present, then change state to ok1. Else, if no
such message is present at the tick, then change to reimburse1.

ok1 Call Test Reveal on each Fa,b
Ident. If no parties J are returned as cheaters

by Test Reveal then check if for each Pi and each Fa,b
Ident a message sa,b

i

signed by ŝki is present. If indeed, then verify the output for each Fa,b
Ident using

Verify. If any of the aforementioned steps fails, then let I1 be the set of
cheating servers.
If I1 = ∅ then change the state to ok2. If I1 = ∅ then identify all the m
clients by finding all messages of the form (Cj |Lsrc

j |amsrc
j |vksrcj |vkexj |Ltrg

j |vktrgj )
that are signed by sk. Furthermore, identify all the transaction ids idj to
burner addresses vkexj signed by sk. For each party in I1 share the deposit
among all m clients. Then return the deposit of the parties in [n] \ I1 and
change the state to init.

ok2 Compute for each La in clear text the values ida, Ina,Outa from the outputs
of each Fa,b

Ident as well as the client registration data and transaction ids using
makeTX. For each La check if each Pi sent shares of Siga signed with ŝki. If
so, then check that each share of Siga is valid using FTSig by running Share
Combination. If any of the previous steps fails, then let I2 be the set of
cheaters.
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Fig. 10. The stateful smart contract functionality FSC.
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Fig. 11. The stateful smart contract functionality FSC.

If I2 = ∅ then reimburse all Pi with their deposit and change the state to
init. Otherwise identify all the m clients by finding all client registration
data and transaction ids to burner addresses signed by sk. For each party
in I2 share the deposit among all m clients. Then return the deposit of the
parties in [n] \ I2 and change the state to init.

reimburse1 If a tick happens, then continue to reimburse2. Intuitively, during
this step all clients that get reimbursed are already fixed so the servers will
create the signatures on reimbursement transactions.

reimburse2 If a tick happens, consider all messages provided by each Pi to
FSC that are of the form (Cj |Lsrc

j |amsrc
j |vksrcj |vkexj |Ltrg

j |vktrgj ) that are signed by
sk as well as all messages (idj |Inj |Outj , vksrcj ) ∈ M (transaction ids) where
Inj = (vksrcj , amsrc

j ) and Outj = (amsrc
j , vkexj ). If there are multiple messages for

Cj then ignore Cj

Locally compute for each Cj the transaction txj to reimburse Cj . Therefore
set Inj = (idj , am

src
j ), Outj = (amsrc

j , vksrcj ) and set idj as the hash of both.
If each Pj

i provided ρi
j then check using Share Combination on FTSig that

it outputs a valid signature Sigj on idj , Inj ,Outj . If all such Sigj are valid
signatures then reimburse all Pi and set the state to init. If some signature
shares are not valid or some shares ρi

j are not present on FSC then let J be
the set of cheaters. Reimburse all servers [n] \ J and distribute the deposit of
the parties of J evenly to all Cj . Then set the state to init.

Formalizing the Smart Contract. We use a combined smart contract and
public ledger functionality FSC. It is an extension to FBB, tailored to be combined
with an MPC protocol and similar to the functionality used in [5]. For technical
reasons, FSC has a hard-coded reference to the publicly verifiable MPC function-
ality FIdent in order to be able to verify outputs. FSC is described in Fig. 10 and
Fig. 11 and considered as an ordinary UC functionality in our work. Again, this
is due to technical limitations of UC, which would not make it possible for the
simulator we construct in our security proof to equivocate the necessary outputs.
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Abstract. We introduce a new key generation mechanism where users
can generate a “back up key”, securely nested inside the secret key of a
signature scheme.

Our main motivation is that in case of leakage of the secret key, estab-
lished techniques based on zero-knowledge proofs of knowledge are void
since the key becomes public. On the other hand, the “back up key”,
which is secret, can be used to generate a “proof of ownership”, i.e.,
only the real owner of this secret key can generate such a proof. To the
best of our knowledge, this extra level of security is novel, and could
have already been used in practice, if available, in digital wallets for
cryptocurrencies that suffered massive leakage of account private keys.
In this work, we formalize the notion of “Proof of Ownership” and “Fall-
back” as new properties. Then, we introduce our construction, which is
compatible with major designs for wallets based on ECDSA, and adds a
W-OTS+ signing key as a “back up key”. Thus offering a quantum secure
fallback. This design allows the hiding of any quantum secure signature
key pair, and is not exclusive to W-OTS+. Finally, we briefly discuss the
construction of multiple generations of proofs of ownership.

Keywords: Digital currencies · Hash-based signatures · Post-quantum
cryptography

1 Introduction

Digital wallets allow users to securely store secret cryptographic keys which
can be used to spend cryptocurrency funds. These wallets, and corresponding
keys, are becoming increasingly important as hackers attempt to exploit eventual
security flaws and, as a result, steal funds controlled by such wallets. In practice,
users rely on a few approaches. The most straightforward technique is to resort
to secure hardware, i.e. hardware wallets [1]. Another popular practice among
practitioners is the technique of hot/cold wallets [11], where, briefly, there is a
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hot wallet permanently connected to the network, typically initiated with the
public key and can generate addresses for receiving funds. The cold wallet, on
the other hand, stores the secret key and is kept without network connection.
This separation ensures that it is harder for attackers to gain access to secret
keys as they are kept offline. Despite these security enhanced wallets, we observe
that in the case of massive key leakage, including in the cold wallet, any attempt
of confirming the ownership of the leaked key is impractical, if possible.

Massive Leaks have Already Happened. We showcase our work by high-
lighting the hack involving the Trinity wallet [24], which resulted in the theft of
roughly 1.5M USD. Trinity, an open-source software wallet which enables users
to manage their IOTA tokens, suffered from a hack so severe that the IOTA
Foundation decided to halt the coordinator node and, as a result, temporarily
stopped the confirmations of all transactions on the network. To perform this
attack, the adversary gained the ability to load malicious code into the local Trin-
ity wallet instances running on the computers of the target users and retrieved
the secret seeds—along with the encryption passwords—to a malicious server
owned by the attacker. The adversary then waited for the release of a new soft-
ware update, which when installed resulted in overwriting the local cache of each
compromised user and cleaned the traces of the exploit. After performing this
attack, the adversary effectively gained access to secret keys that were—at least
temporarily—on hot storage, resulting in a massive leakage without a practical
solution for the users to prove ownership of their secret keys.

On a different threat vector, attacks against cold wallets storing elliptic curve
secret keys are believed to be possible with the uprising of quantum comput-
ing. Major cryptocurrencies are based heavily on the ECDSA signature scheme.
Therefore, an adversary capable of breaking the elliptic curve discrete logarithm
problem (ECDLP) can extract the secret keys behind a wallet address, even
though such keys never left the cold storage.

Structure in the ECDSA Secret Key. In both attacks mentioned earlier, the
target is the secret key, i.e. the secret information kept by the wallet. Prior to the
leakage, standard technique to prove ownership can be constructed by employing
Zero Knowledge Proof of Knowledge (ZKPK) Protocols. The security derives
directly from the zero knowledge and soundness properties of ZKPK. However,
in the case of a massive leakage, any party can generate such proof. Therefore
new techniques should be developed.

The main technical challenge is to combine two cryptographic schemes by
adding the creation of “some structure” in the ECDSA secret key, which allows
for the introduction of some sort of “proof of ownership” that prevents or at least
minimizes the damage of situations like the IOTA Hack, while also providing
quantum resistance, in the case of the massive leakage. Ideally, this new design
should also be compatible with the current address system of cryptocurrencies
by not significantly changing the ECDSA design.

We address the issue of guaranteeing backward compatibility with ECDSA
based wallets by adding a nested “back up key” to generate a quantum secure
“proof of ownership”. In other words, we propose a technique to embed a nested
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private key (in addition to the ordinary private key) to be used only in situations
when it is necessary to prove ownership.

1.1 Previous Work: Hash-Based Signatures

We briefly describe hash-based signatures and focus on the one-time use con-
structions, since these are the ones most closely related to our proposal and offer
quantum resistance.

Typically, every signature scheme requires the use of a cryptographic hash
function. Hash-based signature schemes rely solely on hash functions and, as a
result, do not require any additional cryptographic or computational assump-
tion. Since there are cryptographically-secure hash functions that are considered
unfeasible to invert (later we review a more formal definition), users can provide
a preimage that serves as proof of ownership of a specific public key.

Lamport [20] proposed a signature scheme that relies only on the security of
one-way functions and can be used to sign multiple bits at once. For simplicity,
we illustrate the example of the signing of a single bit, where the signer first
generates two secret key values (x, y), and publishes the corresponding pair of
hash values as the public key PK = (H(x),H(y)). The signer then releases the
secret value x in case the bit to be signed is 0, or releases the secret value y in
case the bit is 1. One of the main limitations of this scheme, however, is the fact
that it can only produce one-time signatures (OTS).

Shortly after Lamport’s publication, Winternitz [21] proposed a scheme known
as the Winternitz one-time signature (W-OTS), that allowed the signing of several
bits at once as opposed to individual bits. In this scheme, the public key is Hw(x)
instead of the pair (H(x),H(y)). If the message byte to be signed is, for example,
20, then the signature output is H20(x), such that Hi(x) means i nested hashes
of x. Moreover, to prevent an attacker from modifying the signature, the signer
also releases a checksum value associated with the signed byte. This checksum is
designed to prevent the adversary to attempt to produce a forgery by increasing
any of the bytes without invalidating the resulting signature.

Hülsing [16] published an upgrade called W-OTS+ that shortens the sig-
natures size and increases the security of the original Winternitz scheme. This
construction uses a chaining function in addition to a family of keyed functions,
along with the XOR of a random value (or mask) before applying the one-way
function to a specific ladder height.

1.2 Our Contribution

We start by defining two new properties we introduce. They are fallback and proof
of ownership. These properties extend the functionality of a signature scheme
by (1) allowing, considering a ECDSA scheme, the continued use of a signature
scheme despite the leakage of the secret key, albeit using a different scheme (i.e.
variant of W-OTS+), and (2) prove the ownership of a leaked key, even when it
becomes public.
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More concretely, regarding (1), in addition to the verification and secret
key, the generation algorithm of our constructions also outputs the “back up
key” which can be used with the secret key as a separate (quantum secure)
signature scheme for the fallback situation. In such situation, our construction
is usable for existing wallets, and relies solely on symmetric primitives which,
when instantiated with the correct security parameter, are conjectured secure
even against adversaries with quantum capabilities or adversaries with access
to elliptic curve secret key material stored on hot wallets. Our construction is
easily extendable and relevant in a hot/cold wallet setting where the hot wallet—
permanently connected to the network—contains the elliptic curve public key
and, if needed, the actual elliptic curve key pair. The cold wallet, on the other
hand, is kept without any network connection and stores the quantum-secure
key pair, including the “back up key”.

Regarding (2), we observe that a variant of the W-OTS+ signature scheme
nested into the main signature scheme can be used to prove the ownership of an
ECDSA secret key. Briefly, by design, the “back up key” is the secret key of the
internally nested scheme, i.e., W-OTS+, while the ECDSA secret key is derived
from the public key of the W-OTS+ variant. Given that we have an internal
signature scheme, the proof of ownership for the, potentially leaked ECDSA
secret key, is the W-OTS+ like signature. We emphasize that the combination of
two different signature schemes is the main technical challenge of this work, and
required a new breakthrough which is the new signature variant we propose: the
Extended W-OTS+, i.e. eW-OTS+. Note that, likewise we adapt the W-OTS+

signature scheme, other hash based signature schemes can also be adapted in a
similar fashion.

The ECDSA secret key is generated by combining the eW-OTS+ verification
key � tuple into a L-tree structure, similarly to other existing proposals for
other hash based signatures [10]. The resulting value is then treated as the
ECDSA secret key, making our practical key generation mechanism especially
suited for digital wallets, requiring no change on existing blockchain system
designs currently in use. We analyze the security of our construction starting by
studying our proposed signature scheme eW-OTS+ in the light of the existing
attacks against symmetric cryptographic primitives, including quantum ones as
described in [15,23]. Finally, we implemented a prototype with full test coverage
and compared our results with reference implementations.

In summary, in this work we:

– introduce new properties for a digital scheme named fallback and proof of
ownership;

– propose a new variant of the W-OTS+ based signature scheme: Extended
W-OTS+;

– construct a protocol, named Sleeve, for generation and verification of a (sin-
gle) proof of ownership π and formalize its security based on the Extended
W-OTS+;
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– report on the results of the experiments of our prototype, which implements
the main routines of our construction;

– discuss how to extend our Sleeve construction for multiple proofs of ownership.

We showcase our protocol Sleeve as a tool for a catastrophic scenario as
a massive leak of private information. As already happened [24], in order to
minimize the damage, the system could be halted, until all the honest users are
confirmed. The proof of ownership via Sleeve allows the users to confirm their
authenticity, and its addresses, using a back up key stored separately (as will be
formally introduced later when describing Sleeve) and used only in situations like
this. Furthermore, it is worth mentioning that although it does not help in the
return of the potentially already stolen funds, once the system is stopped, Sleeve

allows the quick and safe identification of the honest owners of the addresses.

2 Preliminaries

It is convenient to quickly review the ECDSA construction for digital signature
and W-OTS+ signature construction from [16].

Definition 1 (ECDSA). Given a hash function H, the ECDSA signature
scheme is the tuple (Gen,Sign,Verify), defined as in Table 1:

Table 1. ECDSA construction.

Gen(1λ) SignH(m, sk) VerifyH(m, vk, σ)

x
$← Zp z ← H(m) Parse: (r, s)

p← σ

sk ← x t
$← Zp If (r, s) /∈ Zp

vk ← gx (ex, ey) ← gt Return 0

return (vk, sk) r ← ex mod p w ← s−1

If r = 0 mod p z ← H(m)

Pick another t u1 ← zw mod p

and start again u2 ← rw mod p

s ← t−1 · (z + r · sk) (ex, ey) ← gu1 · vku2

If s = 0 mod p If (ex, ey) = (0, 0)

Pick another t Return 0

and start again Return r = ex mod p

Return σ = (r, s)

The W-OTS+ Construction. The Winternitz-OTS+ signature schemes intro-
duced by Hülsing [18] introduces an alternative signature scheme with quantum
resistance. Their construction relies on a hash family and a chaining function
which we now review.
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Definition 2 (Family of Functions). Given the security and the Winternitz
parameters, respectively, λ ∈ N and w ∈ N, w > 1, let a family of functions Hλ

be {hk : {0, 1}λ → {0, 1}λ|k ∈ Kλ} with key space Kλ.

Definition 3 (Chaining Function). Given a family of functions Hλ, x ∈
{0, 1}λ, an iteration counter i ∈ N, a key k ∈ Kλ, for j λ−bit strings r =
(r1, . . . , rj) ∈ {0, 1}λ×j with j ≥ i, then we have the chaining function as follows

ci
k(x, r) =

{
hk(ci−1

k (x, r) ⊕ ri), 1 ≤ i ≤ j;
x, i = 0.

Additionally, we review the notation for the subset of randomness vector
r = (r1, . . . , r�). We denote by ra,b the subset of (ra, . . . , rb).

Table 2. W-OTS+ construction.

Genk
W (1λ) Signk

W (m, sk)

Pick (� + w − 1) λ-bit strings ri Compute m → (m1, . . . ,m�1 ),

Set ski ← ri, for 1 ≤ i ≤ � for mi ∈ {0, . . . , w − 1}
Set sk = (sk1, . . . , sk�) Compute checksum C =

∑�1
i=1(w − 1 − mi),

Set r = (r�+1, . . . , r�+w−1) and its base w representation (C1, . . . , C�2 ),

Set vk0 = (r, k) for Ci ∈ {0, . . . , w − 1}
Set vki = cw−1

k (ski, r), 1 ≤ i ≤ � Parse B = m‖C as (b1, . . . , b�1+�2 )

Set vk = (vk0, vk1, . . . , vk�) Set σi = c
bi
k (ski, r), for 1 ≤ i ≤ �1 + �2

Return (sk, vk) Return σ = (σ1, . . . , σ�1+�2 )

Verifyk
W (m, vk, σ)

Compute m → (m1, . . . ,m�1 ),

for mi ∈ {0, . . . , w − 1}
Compute checksum C =

∑�1
i=1(w − 1 − mi),

and the base w representation (C1, . . . , C�2 ),

for Ci ∈ {0, . . . , w − 1}
Parse B = m||C as (b1, . . . , b�1+�2 )

Return 1, if the following equations hold

vk0 = (r, k)

vki = c
w−1−bi
k (σi, rbi+1,w−1) for 1 ≤ i ≤ �1 + �2

Definition 4 (W-OTS+). Given the security parameter λ, a chaining function
c, and k ← K from the key space K, the W-OTS+ signature scheme is the tuple
(GenW ,SignW ,VerifyW ), defined as in Table 2:

The Security of W-OTS+. The standard security notion for digital signature
schemes is existential unforgeability under adaptive chosen message attacks (EU-
CMA) which is defined using the following experiment. By Dss(1λ) we denote
a digital signature scheme (Dss) with security parameter λ, then we model the
security by defining the security experiment ExpEU-CMA

Dss(1λ) (A), as follows:
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Experiment ExpEU-CMA
Dss(1λ) (A)

(sk, pk) ←− keygen(1λ)
(M∗, σ∗) ←− ASign(sk,·)(pk)
Let {Mi, σi}q

1 be the query-answer pairs of Sign(sk, ·)
Return 1 iff Verify(pk,M∗, σ∗) = 1 and M∗ /∈ {Mi}1q

We define the success probability of the adversary A in the above EU-CMA
experiment as

SuccEU-CMA
Dss(1λ) (A) = Pr[ExpEU-CMA

Dss(1λ) (A) = 1].

Definition 5 (EU-CMA). Let λ, t, q ∈ N, t, q = poly(λ), Dss a digital signa-
ture scheme. We call Dss EU-CMA-secure, if the maximum success probability
InSecEU-CMA(Dss(1λ); t, q) of all possibly probabilistic adversaries A, running in
time ≤ t, making at most q queries to Sign in the above experiment, is negligible
in λ:

InSecEU-CMA(Dss(1λ); t, q) = max {SuccEU-CMA
Dss(1λ) (A)} = negl(λ).

We note that our construction relies on the W-OTS+ signature scheme, which
is EU-CMA secure as long as the number of oracle queries of A is limited to one
(i.e., q = 1).

Finally, we review a crucial property for the hash function which is a building
block of the W-OTS+ signature scheme.

Definition 6 (Second preimage resistance). Given a hash function family
Hn, we define the success probability of an adversary A against the second-
preimage resistance of Hn as

SuccSPR
Hn

(A) = Pr[K $←−− {0, 1}k;M $←−− {0, 1}m;

M ′ $←−− A(K,M) : M ′ �= M ∧ HK(M) = HK(M ′)].

3 New Properties: Proof of Ownership and Fallback

Our protocol relies on a Digital Signature. We assume there is a generation
algorithm Genπ(1λ) which outputs the pairs of keys, vk and sk, and backup
information bk. Whereas the pair is the regular verification key, used for verifying
a signature, and the secret-key used for issuing a signature, that allows the issuing
of a ownership proof π, with the backup information bk, with respect to vk.
More concretely, we require adding two extra algorithms, (Proof,Verify-proof),
to the tuple (Genπ,Sign,Verify), turning into our protocol named Sleeve. Given
Genπ(1λ) → (vk, sk, bk), we have

– Proof(bk, c) → π: it is a PPT algorithm that on input of the backup infor-
mation bk and the challenge c, it outputs the ownership proof π;
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– Verify-proof(vk, sk, π, c) → {0, 1}: it is a deterministic algorithm that on input
of a public-key vk, secret-key sk, a ownership proof π and a challenge c, it
outputs either 0, for an invalid proof, or 1 for a valid one.

We remark that sk is used as a regular secret key with Sign and Verify. Given
the earlier formulation, we now introduce the property of Proof of Ownership.

Definition 7 (Proof of Ownership). For any probabilistic polynomial time
(PPT) algorithm A, it holds

Pr[(vk, sk, bk) ← Genπ(1λ) : (c∗, π∗) ← A(sk, vk)
∧Verify-proof(vk, sk, π∗, c∗) = 1] < negl(λ)

for all the probabilities are computed over the random coins of the generation
and proof verification algorithms and the adversary.

Remark 1 (Prove of knowledge is not enough). Note that an alternative method
to prove ownership of a secret-key, fairly straightforward in discrete logarithm
based signatures, relies on regular Zero Knowledge Proof of Knowledge Protocol
(ZKP), when the signer simply proves the knowledge of the secret key. However
we argue that, in the case where the secret key is leaked, the security guarantees
are voided in such method. On the other hand, the early introduced definition
requires a proof of ownership, despite the secret key being already in possession
of the adversary, thus showing that knowledge of the secret key is not enough.

We now formally introduce the property which allows the permanent switch
from the secret key sk, e.g. in the case it is hopelessly public, to a brand new
“back up secret key” bk, that is, the new, and still protected, secret key is only
known to the signer. In addition to the new secret key bk, there is also a brand
new signature scheme where the new verification key is the assumed leaked secret
key sk.

Remark 2 (Informal meaning of proof). Our earlier definition for Proof of Own-
ership is formally not a “proof” in the sense of ZKP. For example, it is easy to see
we skip completeness and zero-knowledge like security properties. Still following
the analogy, our introduced property is equivalent to the ZKP “soundness”, and
that is enough for our purposes.

Definition 8 (Fallback). We say that the scheme (Genπ,Sign,Verify), with
secret and verification key respectively sk and vk such that Genπ(1λ) →
(vk, sk, bk), has fallback if there are sign and verification algorithms Signπ and
Verifyπ such that sk and bk can be used as verification and secret keys respec-
tively, along with Signπ and Verifyπ to satisfy Definition 5.

Remark 3 (Use case for current blockchains-Tranfer of funds). It is worth men-
tion that the current blockhain designs are not compatible with hash based
signatures such as W-OTS+. However our design could be used to authenticate
to a third party, as, for example, in the case of [24]. Another alternative is to rely
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on the fallback feature, and the proof of ownership, to transfer the potentially
endangered funds to an address or account of a newly created public/private
key. Note in such a case, the ECDSA secret key could be exposed since the fund
would be securely transferred to a new and safe pair of keys.

4 Protocol Design Overview

Our construction for the Proof of Ownership as presented in Sect. 3 is heavily
based on the W-OTS+ Signature Scheme. Before presenting how to construct
such proofs, we detail the adaptation of the original construction, described in
Definition 4, in order to introduce the Extended W-OTS+ which will be used in
combination with ECDSA.

4.1 Adaptation of W-OTS+

Roughly speaking, our construction allows users to generate a quantum secure
key pair and, from those values, derive an elliptic curve wallet to be used for cryp-
tocurrency transactions. For simplicity of explanation, we assume the quantum-
secure key material to be a W-OTS+ key pair and the elliptic curve wallet to use
the ECDSA algorithm. We note, however, that our construction can be easily
extended to use other cryptographic primitives.

The L-Tree Data Structure. We rely on the data structure introduced by
Dahmen et al. [10] to keep the W-OTS+ public key. The L-Tree of height h
stores 2h leaves (such that 2h ≥ � + 1, the size of W-OTS+ public key). Each
node of the tree is denoted by yi[j], for node index from left to right is j =
0, . . . , 2i − 1 and i = 0, . . . , h, and the root is the node y0[0]. The nodes of the
tree are computed using a hash function Hx selected from a keyed hash family
H = {Hx : {0, 1}2n → {0, 1}n}x∈K. On a given level i and node j of the tree,
each input is computed by the concatenation of the left and right children nodes
outputs, after each was bit wise XORed by the masks vi[0] and vi[1], for n-
bit strings chosen at uniformly at random. More formally, for i = h, . . . , 0 and
j = 0, . . . , 2i − 1, we have

yi[j] = Hx((yi+1[2j] ⊕ vi[0])‖(yi+1[2j + 1] ⊕ vi[1])).

The Typical Combination of W-OTS+ and L-Tree. Since its introduc-
tion in [10], L-Trees have been used in combination with hash based signature
schemes [17]. For simplicity, we describe a typical combination between W-OTS+

and L-Tree. Later we adapt this construction to suit our Extended W-OTS+

proposal. The L-Tree construction introduces three extra sets of values for the
verification key W-OTS+

vk, in addition to vk = (vk0, vk1, . . . , vk�) as given by
Table 2. They are
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– The hash family index x;
– The XOR masks vi[0] and vi[1] for i = 0, . . . , h;
– The root value y0[0].

In order to create a new wallet, a user randomly generates a cryptographicaly
secure seed value, to be used to derive the W-OTS+ public seed, the W-OTS+

secret keys (sk1, ..., sk�), and the hash key x. Once the derivation step is com-
pleted, clients use the chaining function to obtain all the W-OTS+ ladder values.
The top ladder values are the components of the W-OTS+ public key, which are
compressed into a single value using the earlier described L-Trees. Let this value
be Lv,x(vk0, vk1, . . . , vk�) for the set of h XOR masks and hash family index x.

L-Tree and Extended W-OTS+. We now propose a new construction for
W-OTS+, denoted Extended W-OTS+ (eW-OTS+). The motivation of the novel
design is to allow the nesting of the W-OTS+ public key into a regular ECDSA
secret key, and yet allow the construction of proofs of ownership. This combina-
tion of keys will be presented later. The main differences between W-OTS+ and
the eW-OTS+ designs are (1) the key generation algorithm incorporates the typ-
ical construction with L-Tree earlier described into the key generation, (2) the
regular W-OTS+ public key is changed to pk, and (3) the secret key tuple has
an extra term, i.e. sk0, instead of the regular terms sk1, . . . , sk�. eW-OTS+ is
introduced because we assume that the nested W-OTS+ public key is in the pub-
lic domain and, without this extension, any adversary would be able to obtain
the ECDSA secret key value by simply hashing the W-OTS+ public key. The
full construction is given by Definition 9.

Definition 9 (eW-OTS+). Given the security parameter λ, a chaining func-
tion c, and k ← K from the key space K, an unkeyed hash function H, then the
eW-OTS+ signature scheme is the tuple (GeneW ,SigneW ,VerifyeW ), defined as
in Table 3:

Note that the Extended W-OTS+ construction has as key pair (sk, pk) which
differs from the regular construction (sk, vk) of W-OTS+. The reader will cer-
tainly notice the need for the notation change in the public key from vk to pk
in the next section, when the combination between ECDSA and eW-OTS+ is
described and we use both terms.

The ECDSA Key Pair from eW-OTS+. We assume that the elliptic curve
wallet is generated in a one-way manner, which means that if the ECDSA wallet
is compromised, then the user can prove ownership of the wallet by providing
a signature from the eW-OTS+ key pair, which is assumed secure. More for-
mally pk = (vk0, L, sk0), as defined in Table 3, is the input in a unkeyed hash
function H, resulting in H(vk0,H(L, sk0)), which is the ECDSA private key,
sk, and can be used to calculate the public key using the trapdoor function
of the signature scheme. The ECDSA public and secret key are, respectively,
skECDSA = H(vk0,H(L, sk0)) and vkECDSA = gH(vk0,H(L,sk0)). Figure 1 illus-
trates a simplified diagram of our construction. Typically cryptocurrencies, such
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Table 3. Extended W-OTS+ Signature Scheme with the changes from the original
W-OTS+ construction (Table 2) highlighted in blue. The changes introduced by our
construction are necessary in order to be used in combination with ECDSA signatures.

Genk
eW (1λ) Signk

eW (m, sk)

Pick (� + w − 1) λ-bit strings ri Parse sk → (sk0, sk1, . . . , sk�)

Pick a hash index family x Parse sk0 → (v, x)

Pick h pairs v = (v1[0], v1[1], . . . , vh[0], vh[1]) Set σ0 = sk0

sk0 = (v1[0], v1[1], . . . , vh[0], vh[1], x) Compute m → (m1, . . . ,m�1 ),

Set ski ← ri, for 1 ≤ i ≤ � for mi ∈ {0, . . . , w − 1}
Set sk = (Setsk0, sk1, . . . , sk�) Compute checksum C =

∑�1
i=1(w − 1 − mi),

Set r = (r�+1, . . . , r�+w−1) w-base representation (C1, . . . , C�2 ),

Set vk0 = (r, k) for Ci ∈ {0, . . . , w − 1}
Set vki = cw−1

k (ski, r), 1 ≤ i ≤ � Parse B = m‖C as (b1, . . . , b�1+�2 )

SetSet L = Lv,x(vk1, . . . , vk�) Set σi = c
bi
k (ski, r), for 1 ≤ i ≤ �1 + �2

Set pk = (vk0, L, sk0) Return σ = (σ0, σ1, . . . , σ�1+�2 )

Return (sk, pk)

Verifyk
eW (m, pk, σ)

Parse pk → (pk0, pk1, pk2)

Parse pk0 → (r, k)

Parse σ → (σ0, σ1, . . . , σ�1+�2 ), σ0 → (v, x)

Compute m → (m1, . . . ,m�1 ),

for mi ∈ {0, . . . , w − 1}
Compute checksum C =

∑�1
i=1(w − 1 − mi),

and the base w representation (C1, . . . , C�2 ),

for Ci ∈ {0, . . . , w − 1}
Parse B = m||C as (b1, . . . , b�1+�2 )

Set vki = c
w−1−bi
k (σi, rbi+1,w−1) for 1 ≤ i ≤ �1 + �2

Compute the L-Tree root as Lv,x(vk1, . . . , vk�1+�2 )

Return 1, if the following equations hold

pk1 = Lv,x(vk1, . . . , vk�1+�2 )

pk2 = σ0

as Bitcoin [22], Ethereum [26], Cardano [2] and even general frameworks [19]
for wallet address are built by hashing the ECDSA public key. Therefore, to
integrate our construction in certain settings, an additional hash of the elliptic
curve public key value is necessary, i.e. H(vkECDSA).

4.2 Ownership Proof Generation and Verification

As described in Sect. 3, the signature scheme that offers Proof of Ownership is a
tuple (Genπ,Sign,Verify,Proof,Verify-proof), such that Genπ(1λ) → (vk, sk, bk),
Proof(bk, c) → π and Verify-proof(vk, sk, π, c) → {0, 1}. In order to construct
such scheme we combine the ECDSA and eW-OTS+ designs. The generation
and verification of signatures are respectively carried by Sign and Verify as reg-
ular ECDSA signatures. The proof of ownership is put forth by the eW-OTS+
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design via the Proof and Verify-proof algorithms. Put simply, the tuple (vk, sk)
is the regular ECDSA key pair, such that sk is generated from the under-
pinning eW-OTS+ public key pk. Whereas bk is the eW-OTS+ secret key
(sk0, sk1, . . . , sk�) corresponding to pk.

It remains to introduce the Genπ algorithm to generate the tuple (vk, sk, bk).

The Generation of the “back up key”. Intuitively, the proof of owner-
ship of the key, requires similar properties of an identification scheme between a
prover and a verifier instantiated by a particular signature scheme. In our con-
struction, the identification scheme is based on the earlier introduced eW-OTS+

design. More concretely, given a challenge as a message provided by the verifier,
the prover only needs to sign this message with bk. As described earlier, let the
ECDSA key pair be sk = H(pk), for pk = (vk0, L, sk0), and vk = gH(vk0,H(L,sk0))

for an unkeyed hash function H. Therefore the “back up secret key” bk is
(sk0, sk1, . . . , sk�), the eW-OTS+ secret-key, is illustrated in Table 3. For com-
pleteness, we present the construction of algorithm Genπ(1λ) → (vk, sk, bk).
Note that in the following construction, the key pair (vk, sk) can be used
as regular signature (i.e. for the ECDSA Signature), that is with algorithms
(Sign,Verify) as in Table 1.

Generation and Verification of the Proof π. Whereas the regular ECDSA
signatures are generated and verified via the pair of algorithms (Sign,Verify)
and the keys (sk, vk) generated via construction Table 4. The proof generation
and verification are done via the algorithms for W-OTS+ described by Table 3.
More concretely, the algorithm Proofk(bk, c), for a challenge c, is implemented
by the algorithm SigneW , whereas the proof verification Verify-proof(vk, sk, π, c)
is based on an adaptation of the signature verification Verifyk

eW (pk, σ,m). The
full description of the procedure is on Table 5.

We argue that the construction can be extended to provide multiple proofs
of ownership by adding more eW-OTS+ instances “underneath” the main one
presented in Table 4. For the purpose of this work and also for page limitation, it
is not necessary to fully describe the algorithms. However we present an informal
description of the construction later in Sect. 9.

Practical Considerations. The back up key bk is not necessary to the regular
use in combination with the ECDSA scheme, i.e. the blockchain use. In order
to guarantee a secure and legit use of the bk, that is the generation of proof
of ownership in case of a catastrophic leakage, bk should be kept in a separate
storage, i.e. cold storage.
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Table 4. The algorithm Genπ, likewise the eW-OTS+ construction, adds a L data
structure into its procedure, and outputs also the “back up secret key” bk.

Genk
π(1λ)

Pick uniform random strings (� + w − 1) λ-bit strings ri

Set bki ← ri, for 1 ≤ i ≤ �

Pick a hash index family x

Pick n-bit random masks vi[0] and vi[1], for i = 0, . . . , log �

Set bk0 = (v1[0], v1[1], . . . , vlog �[0], vlog �[1], x)

Set bk = (bk0, bk1, . . . , bk�)

Set r = (r�+1, . . . , r�+w−1)

Set vk0 = (r, k)

Set vki = cw−1
k (bki, r), 1 ≤ i ≤ �

Set nodes yi[j] for j = 0, . . . , � − 1 and i = log �, . . . , 0 as

ylog �[0] = Hx(vk1), . . . , ylog �[� − 1] = Hx(vk�)

yi[j] = Hx((yi+1[2j] ⊕ vi[0])‖(yi+1[2j + 1] ⊕ vi[1]))

Set L = y0[0]

Set sk = (vk0, L, bk0)

Set vk = gH(vk0,H(L,bk0))

Return (sk, vk, bk)

Table 5. The verification of the proof π adapts the verification procedure for eW-OTS+

by adding an extra check on the ECDSA verification key vk.

Verify-proof(vk, sk, c, π)

Parse sk → (sk0, sk1, sk2)

Parse sk0 → (r, k)

Parse π → (π0, π1, . . . , π�1+�2), π0 → (v, x)

Compute c → (c1, . . . , c�1),

for ci ∈ {0, . . . , w − 1}
Compute checksum C =

∑�1
i=1(w − 1 − ci),

and the base w representation (C1, . . . , C�2),

for Ci ∈ {0, . . . , w − 1}
Parse B = c||C as (b1, . . . , b�1+�2)

Set vki = cw−1−bi
k (πi, rbi+1,w−1) for 1 ≤ i ≤ �1 + �2

Compute the L-Tree root as L = Lv,x(vk1, . . . , vk�1+�2)

Return 1, if the following equations hold

sk1 = L

sk2 = π0

vk = gH(sk0,H(L,π0))
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5 Ownership, Fallback and eW-OTS+ Security

Here we argue about the properties of our construction for Sleeve, providing
Fallback and generation of Proof of Ownership. However, first we describe the
security level provided by our design based on the eW-OTS+ construction of
Table 3, and we consider it has a security level λ if a successful attack is expected
to require on average 2λ−1 evaluations of the used hash function family.

Unforgeability of eW-OTS+. More concretely, we base the security of the
extended W-OTS+ on the existential unforgeability of the underlying W-OTS+

signature scheme and the (multi-target) second preimage resistance of the used
hash function. Recall that the existential unforgeability under chosen message
attack (EU-CMA) for one-time signature schemes is defined when the number
of signature queries is limited to 1 [16]. Then we have the following theorem.

Theorem 1. Given the EU-CMA security of W-OTS+, the Extended W-OTS+

from Table 3 is existentially unforgeable under adaptive chosen message attacks,
if Hn is from a second-preimage resistant hash function family.

Proof. W-OTS+ uses a family of functions Fn : {fk : {0, 1}n → {0, 1}n|k ∈ Kn}
with a key space Kn. We know from [16] that, to attack the EU-CMA property,
an adversary A must be able to break the following security level, λ1, such that
λ1 � n − log2(w2� + w).

Alternatively, A may attempt to subvert the underlying hash function H we
introduce in our construction.

To successfully attack this additional step introduced in the extended
W-OTS+ and produce a forged signature, A must break the second-preimage
resistance property of H and find a colliding L(W-OTS+

vk)
′ that matches the

target hash output.
We show in Appendix A that the cost of this attack for an n-bit hash is 2n.

Additionally, we know that in a real-world cryptocurrency setting, the adversary
has the advantage of being able to perform multi-target attacks on any of the
existing d outputs, which results in the following security level of λ2 � n1 −
log2(d). Given the above tight bounds, we obtain the security level (λ) of the
extended W-OTS+, which is λ ≤ min {λ1, λ2}.

For simplicity, we assume that n = n1. We, therefore, obtain that the best
attack against the extended W-OTS+ construction is the same attack against
the original W-OTS+. As a result, if the adversary is able to break the EU-CMA
property of the extended W-OTS+, then it can break the unforgeability of the
original W-OTS+. Therefore, our construction is no weaker than the original as
long as the output of the used hash function H is n1 � n. ��
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Security Regarding Ownership and Fallback. Now we describe the secu-
rity of our scheme (Genπ,Sign,Verify, Proof, Verify-proof). Given the eW-OTS+

construction from Definition 9, let SigneW be the algorithm Proof, Genπ is given
by Table 4, while Verify-proof is given by Table 5, finally Sign and Verify are the
ECDSA algorithms for signing and verifying signatures, respectively. For read-
ability, let (Genπ,Sign,Verify, Proof, Verify-proof) be known as Sleeve (as already
mentioned in Sect. 3). Then we can claim the following properties of Sleeve.

Corollary 1. Sleeve generates a single proof of ownership π as per Definition 7.

Proof. (Sketch) The proof π is an eW-OTS+ signature on a challenge c. Given
the security of eW-OTS+ stated by Theorem 1, thereby π generated by Sleeve

satisfies Definition 7. ��
Now we show that tuple (Genπ,Sign,Verify), parsed from Sleeve provides a

Fallback signature scheme.

Theorem 2. The tuple (Genπ,Sign,Verify), derived from Sleeve, has the Fallback
property as per Definition 8.

Proof. (Sketch) Following Definition 8, we need to show that there are algorithms
Signπ and Verifyπ, such that sk and bk can derive regular verification and secret
signatures. By considering the original construction Sleeve, we have that Signπ =
Proof and Verifyπ = Verify-proof, and this ends the proof. ��

6 Applications

We divide this section into two parts. First, we describe a concrete example
of how to proceed upon the suspicion of the existence of a successful attack
against the computational assumptions that ensure the security of the ECDSA
algorithm. Secondly, we introduce different real-world use cases that allow users
to prove ownership of their wallet in the event where the ECDSA secret key is
leaked, but the Sleeve backup key remains safe.

Hard Fork. If an attacker A is able to steal the secret keys behind a cryptocur-
rency wallet, then A is able to steal all the funds associated with that wallet.
Since a Sleeve proof-of-ownership does not convince A to return the stolen funds,
at first glance it may appear that there is no reason to have a fallback mechanism
as all these funds are gone.

Sleeve is better suited for situations where the signature scheme associated
with the quantum-secure backup can be used as a direct replacement for the orig-
inal scheme. In a blockchain, this signature transition is only possible by making
significant changes in the protocol, which create an alternative blockchain. This
process is known as a hard fork. Using our construction, any blockchain can
perform a signature scheme transition and allow any user to claim ownership of
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potentially stolen funds. As quantum algorithms become practical, blockchain
platforms can recommend their users to create new wallet addresses using the
Sleeve structure such that, when a hard fork is required, any user can produce a
proof-of-ownership to transfer the funds to an address containing a new public
key.

Sleeve becomes even more applicable in token sales settings where the smart
contracts enforce lockup periods to restrict buyers from selling purchased tokens.
If there is evidence of a quantum attack against a blockchain, users can utilize the
Sleeve construction to prove ownership of potentially compromised tokens and
redeem them in an alternative manner while the lockup period is still active,
thus ensuring that no theft occurs.

Revoking Wallet Addresses. It is extremely important for users to have the
ability to revoke a wallet address they own. Therefore, user Alice should have
the ability notify the network that a specific wallet address is to be considered
invalid and rejected by the nodes when attempting to make a payment. Alice,
in this example, has her ECDSA secret key stolen and revokes her stolen wallet
address by creating a proof-of-ownership, using her backup key, to inform the
network that her address is compromised and, simultaneously introduce a new
wallet address to contain the funds associated with the initial wallet.

Insurance. An insurance company may, for example, need to refund a group
of protected customers after a set of ECDSA private keys are leaked and the
associated funds stolen. Any user whose key is present in this leak, if in possession
of their Sleeve backup key, can remotely prove that they are the true owners of a
specific wallet address and prove to the insurance company that they are entitled
to the refund. The insurance company knows that an adversary is not able to
produce such a forgery unless both keys are compromised.

7 Discussion

In this section we briefly discuss selected issues and analyze open problems as
well as some future work challenges.

Fail-Stop Signatures. Traditional digital signatures allow a user Alice to pro-
duce signatures such that everyone who knows the public key of the signer Alice
can verify such signature. Such signatures are computationally secure for the
signer as they can be forged by an adversary with quantum capabilities. Once
a signature is forged, it is difficult for the honest signer Alice to convince third
parties that she did not produce the forged signature.
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Fail-stop signatures [25] solve this problem by offering the signer a method to
prove that a forgery took place. After receiving such a proof, the system should be
stopped. As a result, the signer is protected from an arbitrarily powerful forgery
since all participants, or an eventual system operator, know the signature scheme
is broken, and should halt the system.

A possible enhancement for Sleeve is to alter the key generation to support
the integration of fail-stop signatures. Instead of generating an ECDSA keypair
from a hash-based key, users can generate a fail-stop keypair as this would allow a
user to prove that a rogue signature is indeed a forgery and therefore instantiate
the backup key to prove the true ownership of a key pair.

Tweakable Hash Functions. In hash-based signature schemes, it is impor-
tant to use constructions that use security notions such as second-preimage and
preimage resistance instead of collision resistance. Different hash-based schemes
focus on different ways to achieve these more specific security notions as they
substantially enhance the security level of the produced signatures. However, the
main idea behind the different constructions to achieve these specific security
notions is similar enough that it is possible to create an abstraction, such that
it is not necessary to provide a new security analysis for each of the alternatives
to move towards (second) preimage resistance.

The work from [5] introduces an abstraction—called tweakable hash
functions—which allows protocol designers to unify the description of hash-based
signature schemes, separating the exact details of how the scheme computes tree
nodes typically used in hash-based constructions. This division allows for the
separation of the analysis of the high-level construction from the analysis of how
this computation is done. As a result, changing the way nodes are computed in
a hash-based signature scheme only requires analyzing the hashing construction
as a tweakable hash function.

One optimization we introduce is the use of tweakable hash functions to
compress all the W-OTS+ top ladder values into a single root value, which
results in a more simplified implementation with better performance.

Cold Storage. Using Sleeve does not necessarily imply that both the ECDSA
secret key and the backup key should be stored in different cold storage units.
For example, a quantum adversary can gain rogue access to an ECDSA secret
key by breaking the discrete log problem using only public information such as
the public keys that are present in a blockchain. In this setting, the fallback key
remains securely stored and can be freely used by the wallet owner.

To increase the security of Sleeve it is possible, however, to use different
storage for the secret key and the backup key to ensure that if a wallet owner
moves the ECDSA secret key to a hot wallet, and such a wallet is compromised,
then the owner remains protected as the adversary A should not be able to gain
access to the cold wallet containing the Sleeve backup key.
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Backwards Compatibility. Ideally, users should be able to use the ideas
behind Sleeve to use the seed phrase of a hierarchical deterministic wallet and
retroactively prove ownership of a specific wallet address. The feasibility of this
remains undefined and represents an interesting future work challenge as it would
allow any user to utilize this approach and have the ability to prove ownership
of wallet address with guaranteed backwards compatibility with any wallet that
supports the use of seed phrases to generate hierarchical deterministic wallets.

We note that our construction preserves the structure of both the ECDSA
private and public keys, and if the user actually relies on two different cold
storage solutions—one for the ECDSA key and the other for the Sleeve backup
key—then it is possible to achieve backwards compatibility as the storage of the
ECDSA key pair does not require any particular or different treatment.

To support the Sleeve backup key, however, both the wallets and the
blockchain require protocol modifications. Wallets require modification to have
the ability to generate hash-based signatures, while the blockchain needs to be
modified to have the ability of verifying these hash-based signatures.

Compatibility with Different Post-quantum Signature Schemes. Sleeve

is designed in a modular manner that allows the hiding of any quantum secure
signature key pair, and is not exclusive to W-OTS+. In this paper, we particu-
larly focus on W-OTS+ as a fallback for ECDSA because it corresponds to the
real-world use case that inspired the creation of this construction. Platforms,
however, have the flexibility to use different signature schemes accordingly.

Informal Multiple Proofs Construction. The construction introduced in
Sect. 4 allows only a single proof. The reason is that eW-OTS+ signature scheme
is one-time signature scheme. Here we informally describe a construction to
allow the generation of several proofs. The basic change is in the generation of
the secret-key tuple bk0, bk1, . . . , bk�. Whereas in the previous constructions of
Tables 3 and 4 the values in the tuple are picked at random, the extended ver-
sion computes t tuples, where each set of values (bk(j−1)

0 , bk
(j−1)
1 , . . . , bk

(j−1)
� ) is

generated from executing a Key Derivation Function (KDF) from the previous
tuple (bk(j)0 , bk

(j)
1 , . . . , bk

(j)
� ), for j ≤ t. More concretely, bk(j−1)

1 = KDF (L(j)),
and bk

(j−1)
i = KDF (L(j)||salt(j−1)||i) for 1 < i ≤ �, randomly chosen val-

ues salt(j−1) and the L-Tree root value L(j) of the underlying construction i.e.
eW-OTS+ instance with index j. Thus, for a t-backup key value construction,
the generation is as follows:

– Pick bk
(j)
0 = (x(j), v

(j)
1 [0], v(j)

1 [1], . . . , v(j)log �[0], v(j)
log �[1]), for 1 ≤ j ≤ t;

– Pick vk
(j)
0 = (r(j), k(j)), for 1 ≤ j ≤ t, and (r(j), k(j)) chosen as (r, k) in

Table 4;
– Pick random values (bk(j)1 , . . . , bk

(j)
� );
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– Given bk
(j)
0 and (bk(j)1 , . . . , bk

(j)
� ), compute L(j);

– Compute bk
(j−1)
1 = KDF (L(i)), and bk

(j−1)
i = KDF (L(j)||salt(j−1)||i) for

1 < i ≤ �, t ≥ j ≥ 1 and randomly chosen values salt(j−1).

The intuition is to add t − 1 eW-OTS+ constructions “underneath” the
upmost one. The public key of the underlying eW-OTS+ instance, generates,
via KDF (which can be constructed by a hash function), the secret key of the
next (i.e. bk(j−1)

1 , the last line of the above description).
The verification algorithm for such multiple construction has to take into

account in which “level” (from t to 0, in the above description) the signature
was generated, and be continually updated on each new signature generation.
For comparison, the construction for a single proof only has one level. The “mul-
tilevel” p-th proof is of the form

π = ((π0, . . . , π�1+�2), (vk
(1)
0 , sk

(1)
0 , L(1), salt(1)), . . . ,

(vk(p+1)
0 , sk

(p+1)
0 , L(p+1), salt(p+1))),

for vk
(p)
0 = (v(p), x(p)) and sk

(p)
0 = (r(p), k(p)). Thus the verification procedure

transverse the underneath structure of eW-OTS+ instances from some point p,
i.e. the p-th proof, up to the upmost one 1. Roughly the procedure is as follows:

– Compute vk
(p−1)
i = cw−1−bi

k (πi, r
(p−1)
bi+1,w−1);

– Compute L(p−1) = Lv(p−1),x(p−1)(vk(p−1)
1 , . . . , vk

(p−1)
�1+�2

).

For p − 1 < j ≤ 1,

– Compute sk
(j)
i = KDF (L(j−1)||salt(j−1)||i);

– Compute vk
(j)
i = cw−1

k(j) (sk(j)i , r(j)bi+1,w−1);

– Compute L(j) = Lv(j),x(j)(vk(j)1 , . . . , vk
(j)
�1+�2

),

at this point the verification boils down to the correctness of the value L = L(1)

as before.

8 Experimental Results

To validate our results, we implemented a single-threaded prototype in
Golang [13].

We note that this implementation does not combine the W-OTS+ public key
values using an L-Tree structure. Instead, our implementation uses a tweakable
hash function to combine all the W-OTS+ ladder top values into a single root
value. Since our construction has a very concrete application, we implemented
an additional implementation variant that includes the BIP 39 [6] standard
to generate the hidden W-OTS+ fallback from a mnemonic seed. We verified
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the correctness of this code by comparing it with reference BIP39 implementa-
tions [7,14].

We ran our experiments on a 2.8 GHz Quad-Core Intel Core i7 with 16 GB of
RAM, running 64-bit macOS 10.15.6. Below, we expose a table containing the
corresponding performance of our prototype.

Table 6. Performance metrics of our custom implementation.

Algorithm Execution time (ms)

Gen Sign Verify

Sleeve 3.87 0.024 1.472

Sleeve w/ BIP39 7.51 0.024 1.472

ECDSA (on secp256r1) 0.77 0.069 0.084

These timings demonstrate that the key generation component of our design
is significantly slower than presently used key generation mechanisms. Depending
on the protocol instantiation, our key generation is between 5 to 10 times slower
than a normal ECDSA key generation algorithm. We highlight, however, that
this is an expected result given the amount of additional steps introduced by our
construction. We also note that the key generation can be easily accelerated by
performing the W-OTS+ ladder calculations in parallel. Regarding key storage,
our construction utilizes the same storage space as a normal ECDSA private key.
For example, the wallet storage of a Bitcoin secret key would require 256-bits
for both the Sleeve construction and for a normal wallet.

9 Conclusion

We proposed Sleeve as a new approach to integrate a quantum-secure fallback
inside an elliptic curve private key. The core idea is to have a hidden hash-based
signing key pair. The users can show they are the rightful owner of the cryp-
tocurrency secret keys even in the presence of an adversary capable of breaking
the elliptic curve discrete logarithm problem, which is not a possibility using any
of the existing curve-based cryptocurrency wallets. Moreover in catastrophic sce-
narios, where a massive leakage has potentially happened, and system is halted,
users can show to trusted third parties that they are the correct owners of the
wallet.

Along with Sleeve, we presented also novel ideas for security guarantees and
security analysis, aspiring that they will stimulate additional discussion, and
potential improvements in the cryptocurrency wallet research community. As
another contribution to the above mentioned discussion, we argue that the Sleeve

construction can be changed to scale, in the sense that it can be extended to
provide multiples proofs of ownership, i.e. πi for t ≥ i or to provide multiple
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signatures while in “fallback mode”, or even Sleeve can be used combined with
Fail-stop Signatures. As a final remark, we recall that although we presented a
construction based on W-OTS+ signature scheme, we believe other hash based
signature schemes can be adapted in similar fashion.

A Generic Attacks

The early presented constructions are hash based ones, therefore in this section
we present an extensive list of computational complexities of various generic
attacks against hash functions, while relating them with our constructions. Later
we rely on these complexities to analyse and prove security of our proposed
signature scheme.

Preimage Resistance. The adversary A may obtain a hash digest and attempt
to invert the one-way property of the used hash function. Assuming that the
inputs are uniform random n-bit values, then this preimage attack costs 2n in
the classical setting. In the post-quantum setting, using Grover’s algorithm, this
attack costs 2n/2.

Second Preimage Resistance (SPR). The adversary may instead attempt
to find a second preimage of an n-bit message. Assuming a non-compressing hash
function, that is, there is at least an n-bit-to-n-bit preimage to hash mapping,
then this attack costs 2n in the classic setting, and 2n/2 in the post-quantum
setting.

Enhanced Target Collision Resistance (eTCR). The notion of eTCR
implies that an adversary is allowed to choose a target message M . Upon choos-
ing this target message, A learns the function HK (by learning the key K) and
the adversary wins after presenting a new message M ′ and a (possibly new) key
K ′ such that HK(M) = HK′(M ′).

A possible application of the eTCR game in our setting involves the adver-
sary committing to a L(W-OTS+

vk) public key value and then obtaining the
hash function key. There are two ways an adversary may attempt to break
the eTCR property of a hash function. First, A may attempt to obtain a
new L(W-OTS+

vk)
′ such that HK(L(W-OTS+

vk)) = HK(L(W-OTS+
vk)

′). Sec-
ond, A may attempt to obtain a new key K ′ and L(W-OTS+

vk)
′ such that

HK(L(W-OTS+
vk)) = HK′(L(W-OTS+

vk)
′).

If A owns the secret keys corresponding to the colliding L(W-OTS+
vk)

′, then
A can forge a proof of ownership of the target wallet. This forgery costs at
least 2n pre-quantum, 2n/2 post-quantum (Grover’s algorithm), and results in
the adversary having the ability to prove ownership of an elliptic curve based
wallet with a different fallback public key. We highlight, however, that even if the
adversary can find a second preimage, it is not guaranteed that it corresponds
to a L(W-OTS+

vk)
′ actually controlled by A.
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Multi-target Attacks. The previous definitions assume an adversary attack-
ing one single target. We assume a hash function with n-bit outputs is used d
times and each of these d outputs is publicly posted (e.g., on a blockchain). The
adversary A may, therefore, attempt to invert any of these public d values, which
results in an attack complexity of 2n−log2(d) instead of 2n. In order to show the
effectiveness of a multi-target attack, we consider the case where all the secret
keys associated with the wallet addresses are publicly exposed and are generated
using our hidden key construction.

This setting results in a leakage of approximately 229 target wallet addresses,
for example [8,12], which results in an attack complexity cost of 2n−29. Typically,
ECDSA secret keys of 256 bits. Therefore, a multi-target attack in the setting
we describe results in a direct loss of 29 bits in security, resulting in a cost of
2227 instead of 2256. In a post-quantum setting1, however, the adversary must
perform 2n/2/

√
d, where d < 2n/3.

Decisional Second-Preimage Resistance (DSPR). In [4], Bernstein and
Hülsing introduce DSPR, which defines the advantage in deciding, given a ran-
dom input x, whether x has a second preimage.

An adversary could potentially use this definition to determine in advance
whether or not it is worth attacking the SPR (or eTCR) of a hash function. If
the DSPR advantage is non-negligible, then the adversary can choose a wallet
target, and determine in advance whether or not there is a second-preimage. For
example, if there is not a second-preimage associated with a target wallet address,
then the adversary can select another target address as opposed to spending
unnecessary computational resources trying to find a non-existent value. The
paper, however, proves that DSPR is at least as hard to break as preimage
resistance (PRE) or second preimage resistance (SPR) for uniform random hash
functions from {0, 1}n to {0, 1}n. This results in an attack cost of 2n in the
classical setting, and 2n/2 in the post-quantum setting.

The authors considered ways to attack DSPR for real hash functions, and
concluded that there is no obvious way for a fast attack to achieve any advantage.
Consequently, A cannot take advantage of the DSPR notion to gain any non-
negligible advantage in creating forged proof(s)-of-ownership.

1 We highlight the work of Banegas and Bernstein [3] that studies the existing overhead
beyond the quantum queries and shows that even in a post-quantum setting, the
collision-finding algorithms costs at least 2n/2, even if it requires a smaller number
of queries.
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B Simplified Description of the Construction

Fig. 1. Hidden key construction for eW-OTS+. The dotted boxes are the potentially
public values, while the normal boxes are the secret values. The diagram shows the
commonly know as “ladders”, i.e. the sequence of hash function executions up to the
verification values, and “rng seed” generating randomness for the private hash key x.
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Abstract. In thisworkwe show that an adversary can attack the integrity
of contact tracing systems based on Google-Apple Exposure Notifica-
tions (GAEN) by leveraging blockchain technology. We show that through
smart contracts there can be an on-line market where infected individu-
als interested in monetizing their status can upload to the servers of the
GAEN-based systems some keys (i.e., TEKs) chosen by a non-infected
adversary. In particular, the infected individual can anonymously and dig-
itally trade the upload of TEKs without a mediator and without running
risks of being cheated. This vulnerability can therefore be exploited to gen-
erate large-scale fake exposure notifications of at-risk contacts with seri-
ous consequences (e.g., jeopardizing parts of the health system, affecting
results of elections, imposing the closure of schools, hotels or factories).

As main contribution, we design a smart contract with two collateral
deposits that works, in general, on GAEN-based systems. We then also
suggest the design of a more sophisticated smart contract, using DECO,
that could be used to attack in a different way GAEN-based systems (i.e.,
this second smart contract can succeed even in case GAEN systems are
repaired making ineffective the first smart contract).

Our work shows how to realize with GAEN-based systems (in partic-
ular with Immuni and SwissCovid), the terrorist attack to decentralized
contact tracing systems envisioned by Vaudenay.

Keywords: Contact tracing · GAEN · Smart contracts

1 Introduction

During the COVID-19 pandemic, several governments have decided to use digital
contact tracing systems in addition to other practices to contain the spread of
SARS-CoV-2. The reason is that digital contact tracing could help in notifying
at-risk exposures to individuals that have been in close proximity to people who
subsequently tested positive to SARS-CoV-2. This could be very useful espe-
cially when the involved individuals do not know each other. If digital contact
tracing systems worked perfectly, they would certainly be effective in alerting
at-risk individuals who, following some prescribed procedures (e.g., informing

The full version of this work appears in [2].
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doctors, staying at home in self-quarantine), may significantly limit the spread
of the virus. Such systems have been highly recommended by some governments
and in some cases (e.g., in Switzerland) an alert received by a contact tracing
smartphone application allows to get a test for free.

The most used contact tracing systems rely on Google-Apple Exposure Noti-
fications (GAEN), a feature offered by recent updates of iOS and Android and
therefore available on a large fraction of currently used smartphones. These sys-
tems are widely used in Europe (e.g., Austria, Belgium, Germany, Ireland, Italy,
Poland, Spain, Switzerland) and cross-border compatibility has recently been
implemented1. Moreover, in the US, several states have adopted GAEN-based
systems. GAEN allows to run decentralized contact tracing where there is very
low control from governments, and this makes attacks from third parties gener-
ally simpler to mount and harder to mitigate.

GAEN-Based Contact Tracing Systems. The approach of GAEN-based contact
tracing systems is to use Bluetooth Low Energy (BLE) to detect close proximity
contacts among smartphones. Each smartphone broadcasts random pseudonyms
via BLE, and this information is received by smartphones in close proximity along
with some encrypted metadata. If a citizen is tested positive and decides to notify
others, she will upload a set of secret keys named Temporary Exposure Keys (we
will refer to themasTEKs in the remainder of the paper) corresponding to previous
days inwhich shewas presumably contagious. Starting fromaTEK, it is possible to
generate all the pseudonyms broadcast by a user during a day. The receivers of such
pseudonyms will then manage to decrypt the stored metadata to then evaluate a
risk factor2. The TEKs are disseminated to the users via a back-end server that
periodically posts a list of digitally signed TEKs. A detailed description of GAEN
can be found at https://covid19.apple.com/contacttracing.

An important point is that GAEN evaluates the reported TEKs if and only
if the digital signature verifies successfully under a public key that has been
previously communicated by the developers to Apple and Google. Google moti-
vates this requirement saying that it ensures that keys received by the devices
are actually from the authorized server and not from malicious third parties3.
Theoretically, one could also rely on server authentication using TLS, but the
use of Content Delivery Networks (CDNs) to disseminate TEKs (e.g., the CDN
used by Immuni is operated by Akamai, while the SwissCovid’s one is operated
by Amazon) requires protection against malicious modifications operated by the
CDN itself. Unfortunately, as we will see next, this requirement paves the way
for the development of dark economies where TEKs to be uploaded by infected
users are traded through smart contracts.

1 EU eHealth Network: European Proximity Tracing. An Interoperability Architecture
https://lasec.epfl.ch/people/vaudenay/swisscovid/swisscovid-ana.pdf.

2 For example, metadata include information useful to estimate the distance among the
smartphones which clearly impacts on estimating the risk of a contact.

3 Google: Exposure Notification Reference Key Server https://google.github.io/
exposure-notifications-server/.

https://covid19.apple.com/contacttracing
https://lasec.epfl.ch/people/vaudenay/swisscovid/swisscovid-ana.pdf
https://google.github.io/exposure-notifications-server/
https://google.github.io/exposure-notifications-server/
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False Positives due to Attacks. Since BLE was not originally designed to detect
a precise distance among devices, the evaluation of the risk factor is prone to sig-
nificant errors. To this regard, Leith and Farrell recently evaluated the reliability
of BLE for digital contact tracing in several real-world scenarios [12].

While false positives due to BLE limitations in measuring distance can indis-
criminately affect all individuals using the smartphone apps, a much more con-
cerning threat allowing to direct false positive alerts to specific targets has been
pointed out in prior work (e.g., see [17,23]). Indeed, GAEN-based contact trac-
ing systems4 can be heavily abused through replay attacks. In this case, the
pseudonyms sent by an individual considered at risk (e.g., a person who is tak-
ing a test) are transmitted by an adversary to a different location in order to
create a fake proximity contact. The attack can have a specific target but can
also be performed at large scale. Recently, in [18] Gennaro et al. discussed how
the capability of running such attacks at large scale can be used to put a cat-
egory of citizens in quarantine with the consequence of severely compromising
the results of an election. In general, the malicious generation of false positives
can be harmful in various ways, the health system can be overloaded of requests
that can penalize those citizens who instead are really affected by the virus.
A student can cause the complete closure of a school or university and similar
attacks can be directed to shops, malls, gyms, post offices, restaurants, factories.

Risks related to replay attacks were already known back in April 2020, and
GAEN systems have a pretty large time window (about 2 h)5 for pseudonyms
to be replayed successfully. Nevertheless, governments have so far considered
unlikely that such attacks can produce enough damage to cancel out the posi-
tive effects of genuine notifications of at-risk contacts. This is could be due to
complications involved in the attack. Indeed, an adversary may not want to get
herself infected, or it could not be easy to identify, and be in physical proximity
with, an individual that soon will report to be infected.

In [24], Vaudenay envisioned the possibility of using smart contracts to real-
ize a terrorist attack against decentralized systems, therefore the attack could
potentially apply to GAEN-based systems as well. In this case, the attacker
would spread on his targets some pseudonyms, subsequently promising through
a smart contract a reward to whoever uploads the corresponding keys. There-
fore, an infected individual who participates in the contract will cash a reward,
and false positive alerts will raise on the smartphones of the targets selected by
the terrorist. More details are discussed Sect. 1.2.

1.1 Our Contribution

In this paper, we show that the terrorist attack envisioned by Vaudenay can
be concretely mounted against currently deployed GAEN-based contact tracing
systems. In particular, we have analyzed its concrete feasibility with respect to

4 Sometimes for brevity we will just say GAEN systems.
5 Google: Exposure Notification Specification https://blog.google/documents/69/

Exposure Notification - Cryptography Specification v1.2.1.pdf.

https://blog.google/documents/69/Exposure_Notification_-_Cryptography_Specification_v1.2.1.pdf
https://blog.google/documents/69/Exposure_Notification_-_Cryptography_Specification_v1.2.1.pdf
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two systems, such as Immuni [8], used in Italy and SwissCovid [20], used in
Switzerland. We expect several other deployed GAEN systems to suffer from
the same vulnerabilities.

More generally, our work shows how to attack the integrity of currently
deployed GAEN-based contact tracing systems by leveraging blockchain tech-
nology. A very alarming side of our contribution is that current systems can be
compromised without the need for the attacker to get infected, or to be with
high probability in close proximity to individuals that will be soon detected
positive and will upload the keys. Our attacks consist of smart contracts to
establish a mediator-free market where parties, without knowing each other,
without meeting in person and without running risks to be cheated, can abuse
exposure notifications procedures of GAEN systems. We give a brief description
of the mentioned smart contracts in the following.

Trading TEKs Exploiting Publicly Verifiable Lists of Infected TEKs. As a main
contribution we show a smart contract named Take-TEK that allows a buyer
(i.e., the adversary willing to spread false positive alerts) to decide the TEKs
that will be uploaded by a seller (i.e., the infected individual that is willing to
monetize her right to upload TEKs to the servers of the GAEN system). The
smart contract requires the buyer to deposit the amount of cryptocurrency (we
will call it prize) that he is willing to give to the seller. The seller instead will
deposit an amount of cryptocurrency in order to reserve a time slot in which
she will try to upload the TEKs. In case she does not manage to complete the
upload of the TEKs, the deposit will be assigned to the buyer. The deposit of
the seller is therefore useful to make unlikely that a seller tries to prevent other
sellers from completing the job. Additionally, we can hide the TEKs so that,
even observing all transactions, it is not clear which TEKs have been traded
using the smart contract among the many TEKs jointly published by the server
of the contact tracing system during a slot.

Take-TEK crucially relies on the server publishing such lists of TEKs along
with a signature verifiable with a publicly known public key. We show that the
Take-TEK attack can be deployed to generate fake false positive alerts w.r.t.
both Immuni and SwissCovid. Indeed, both systems follow strongly the design
of GAEN and announce such signed lists of TEKs using ECDSA signatures.

Regardless of Immuni and SwissCovid making available or not their signa-
ture public keys, we have successfully extracted the public keys from previously
released signatures. Therefore, Take-TEK can be instantiated to attack both (and
possibly many more) systems. More details are discussed in Sect. 2.

Trading TEKs Without Publicly Verifiable Signatures: DECO. One might think
that realizing the terrorist attack via smart contracts (e.g., Take-TEK) crucially
relies on exploiting those signed lists of TEKs under a known (or extractable)
public key. At first sight, a fix to such vulnerabilities consists of hiding the
public keys and to use a signature scheme such that it is hard to extract the
public key from signed messages. However, we show that things are actually
more complicated for designers of contact tracing systems. In particular, we
show another way to buy/sell TEKs that follows a completely different approach.
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The key idea is requiring the seller to prove that a TLS session with the server
led to a successful upload of the buyer’s TEKs. The only requirements on the
communication between smartphone app and server are that 1) both the TEKs
and the positive (or negative) outcome of the upload procedure are part of the
exchanged application data in the TLS session, and 2) the upload phase consists
of just one request made by the client and the response of the sever (e.g., as
it is in SwissCovid). At first sight, the attack seems very hard to realize since
notoriously TLS produces deniable communication transcripts when it comes
to application data (i.e., exchanged messages are only authenticated and not
digitally signed). However, we exploit a very recent work of Zhang et al. [30].
They show how to build a fully decentralized TLS oracle, named DECO, for
commonly used ciphersuites. Further details are described in Sect. 3.

Remark on the Actual Work Done by our Smart Contracts. Both our smart
contracts provide full guarantees to both seller and buyer at the expense of
running some cryptographic operations that can obviously produce transaction
costs. Nevertheless, if we make an additional optimization based on pragmatism,
the expensive computations may happen very rarely in practice. Indeed, we
notice that the main computational cost for those smart contracts consists of
checking at the very end that the seller has completed the task of uploading
TEKs correctly. We observe that a buyer can check that TEKs are published
by the server on his own. As a result, he would be satisfied in finding out that
the trade has been completed successfully. Therefore, it is natural to expect that
the buyer would give his approval to the smart contract to transfer the money
to the seller avoiding the execution of expensive computations, and therefore
saving transaction costs6. Since this behavior would be visible in the wild, the
reputation of the buyer would also benefit from such approvals and more sellers
would want to run contracts with him. Moreover, a (somewhat irrational) buyer
that refuses to speed up the execution of the smart contract would anyway not
stop the final transfer of the deposited money to the seller. As a result, the buyer
would only get a worse reputation. In conclusion, the expensive work done by
our smart contracts belongs to pieces of code that would rarely be executed in
practice.

6 Obviously, the smart contract can be adjusted so that, in case the buyer does not
give his approval and the seller shows that she completed successfully her part of the
contract, the expensive transactions costs due to the lack of help from the buyer are
charged to the wallet of the buyer. A simple way to realize this could be asking for
an additional deposit made by the buyer which could clearly cover the transaction
costs of the seller in case the buyer does not give his approval and the seller shows
that she successfully completed the upload procedure.
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1.2 Related Work

The design of GAEN is very similar to the low-cost design of DP-3T7, and thus
several vulnerabilities identified in prior work generally apply to both systems.
Tang [21] observes that DP-3T is vulnerable to identification attacks and presents
an accurate survey about contact tracing systems. In [23], Vaudenay reports
both privacy and security issues. The most famous privacy attack is the so-
called Paparazzi attack. Basically, it is possible through passive antennas to track
infected individuals over a certain time window8 during which pseudonyms are
linkable.

Regarding security issues, Vaudenay extensively considers false alert injection
attacks, where the adversary manages to raise false alerts on the smartphone
apps of targeted victims. Within this category, there are replay and relay attacks.
GAEN is vulnerable to relay attacks and to replay attacks carried out within
two hours. Vaudenay in [23] and Pietrzak in [17] proposed, back in April 2020,
some solutions to defeat these attacks, but they have not been included neither
in DP-3T nor in GAEN designs so far. Baumgärtner et al. [3] provide empirical
evidence of the concrete feasibility of both Paparazzi and replay attacks. Pietrzak
et al. [1] analyze inverse-sibyl attacks in which multiple adversaries cooperate to
use the same pseudonyms. If one of the attackers gets to upload his TEKs, many
false alerts may be raised. This attack could be used in combination with either
the replay attack or our smart-contract based attacks in order to increase the
number of affected targets. Iovino et al. [9] concretely demonstrate the possibility
to inject false alerts by replaying released TEKs. In particular, pseudonyms
associated with already published TEKs are transmitted to smartphones whose
clock is corrupted in order to make them believe these pseudonyms are valid
for risk matching. They also show that several apps may publish TEKs that are
still valid. These TEKs can be used to generate false alerts without the need of
corrupting smartphones’ clocks.

Several GAEN-based systems are currently used in the world for digital con-
tact tracing. Vaudenay and Vuagnoux, and later Dehaye and Reardon, exten-
sively evaluated SwissCovid [4,5,25], confirming some vulnerabilities showed in
previous works and elucidating new ones.

Finally, another class of attacks leading to false alerts involves bribing. Vau-
denay envisions various possibilities for the development of dark economies [24]
which could support false alert injection attacks, allowing them to be carried
out at very large scales. In particular, the Lazy Student attack is connected to
replay attacks. It is based on a dark economy where a hunter (i.e., seller) collects
pseudonyms of individuals who will likely become infected later on, and deposits
them on a smart contract. If the TEKs corresponding to such pseudonyms are
uploaded to the server of the contact tracing system, the hunter gets a reward

7 Decentralized Privacy-Preserving Proximity Tracing https://github.com/DP-3T/
documents/blob/master/DP3T%20White%20Paper.pdf.

8 In GAEN, depending on the particular application, this time may amount to up 14
days if the adversary colludes with the authorities, and to one day assuming TEKs
are properly mixed and anonymized prior to publication.

https://github.com/DP-3T/documents/blob/master/DP3T%20White%20Paper.pdf
https://github.com/DP-3T/documents/blob/master/DP3T%20White%20Paper.pdf
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paid by a buyer (i.e., the lazy student). If replay attacks are doable, the buyer
can use them to make target victims’ apps raise false alerts. This dark economy is
sustainable only if the smart contract has a way to check that pseudonyms were
actually reported to the official server. Another form of dark economy described
by Vaudenay is the terrorist attack. It involves users reporting pseudonyms that
differ from the ones used during the previous days. In fact, in both Immuni and
SwissCovid there is no mechanism forcing users to upload genuine TEKs. Again,
a TEK could be posted on a smart contract automatically issuing a reward to
whoever reports it to the contact tracing system. This purchase may lead to a
massive amount of fake notifications, without relying on replay attacks.

On the (Missing) Risk Assessment of the Terrorist Attack. The huge impact of
false injection attacks seems to have gone unnoticed or just ignored. In [10] the
cybersecurity risks of contact tracing systems are reviewed and compared using
a subjective scoring scheme. The report considers injection of false alerts noti-
fications by only mentioning replay attacks or trivial attacks such as recruiting
people with symptoms, while the terrorist attack is not even mentioned.

Vaudenay and Vuagnoux expressed these and other concerns in their analysis
of SwissCovid [25]. The Swiss National Cyber Security Center (NCSC) answered
to their criticism seemingly downplaying those risks. The possible development
of dark economies was ignored9, and a recap table on security issues reports on
SwissCovid marks the concerns expressed by Vaudenay as addressed, including
false alert injection attacks10. Nevertheless, no solution or mitigation to such
problems is reported.

Bribing Attacks on Smart Contracts. As we discuss in Sect. 2, our smart con-
tracts make possible to trade TEKs reducing at a minimum the risks related to
interacting with a dangerous entity such as a criminal. Bribery attacks on smart
contracts for different scenarios have been proposed in the context of bribing
miners in Ethereum and Bitcoin [13,15,16,22,26].

2 Trading TEKs in GAEN Systems

The GAEN API has been created to provide an efficient platform for exposure
notifications on top of which countries can easily develop digital contact tracing
systems. GAEN is supposed to solve various technical problems (e.g., changing
BLE MAC address synchronously with the rotation of pseudonyms, keeping BLE

9 Swiss National Cyber Security Center: Security Issue Submission [INR-4434].
Detailed analysis. https://www.melani.admin.ch/dam/melani/de/dokumente/20
20/INR-4434 NCSC Risk assessment.pdf.download.pdf/INR-4434 NCSC Risk asse
ssment.pdf.

10 Swiss National Cyber Security Center: SwissCovid Proximity Tracing System -
Public Security Test, page 8 https://www.melani.admin.ch/dam/melani/de/doku
mente/2020/SwissCovid Public Security Test Current Findings.pdf.download.pdf/
SwissCovid Public Security Test Current Findings.pdf.

https://www.melani.admin.ch/dam/melani/de/dokumente/2020/INR-4434_NCSC_Risk_assessment.pdf.download.pdf/INR-4434_NCSC_Risk_assessment.pdf
https://www.melani.admin.ch/dam/melani/de/dokumente/2020/INR-4434_NCSC_Risk_assessment.pdf.download.pdf/INR-4434_NCSC_Risk_assessment.pdf
https://www.melani.admin.ch/dam/melani/de/dokumente/2020/INR-4434_NCSC_Risk_assessment.pdf.download.pdf/INR-4434_NCSC_Risk_assessment.pdf
https://www.melani.admin.ch/dam/melani/de/dokumente/2020/SwissCovid_Public_Security_Test_Current_Findings.pdf.download.pdf/SwissCovid_Public_Security_Test_Current_Findings.pdf
https://www.melani.admin.ch/dam/melani/de/dokumente/2020/SwissCovid_Public_Security_Test_Current_Findings.pdf.download.pdf/SwissCovid_Public_Security_Test_Current_Findings.pdf
https://www.melani.admin.ch/dam/melani/de/dokumente/2020/SwissCovid_Public_Security_Test_Current_Findings.pdf.download.pdf/SwissCovid_Public_Security_Test_Current_Findings.pdf
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advertisements on in background) on a large fraction of available smartphones11.
At the same time, the API is so inflexible that it forces anyone who is willing
to benefit from it to adopt a specific design for contact tracing. What is left in
the hand of the developers is merely the creation of the graphical interface, the
choice of some parameters and the realization of a server to gather and spread
data about infected users and, more importantly, an authentication mechanism
to avoid the upload of data by non-infected users.

Whenever a user is tested positive, she is given the right to upload her TEKs
to the server so that the other users can be notified a risk of infection. The
mechanism can be implemented in different ways. For example, a simple method
consists of a code generated by the app that is given first to the health operator
in order to activate it on the server. Then, once the server has authorized the
code, the app will upload the TEKs along with the code (e.g., Immuni follows
this approach). More complex mechanisms may be put in place. However, the
attack we show next works for every GAEN-based contact tracing system under
some natural assumptions that we will discuss later.

In order to evaluate the contagion risk, GAEN provides appropriate methods
that take as input two files containing the last TEKs and the related signature.
The matching is not performed if the signature does not verify under a public
key previously known to Google and Apple. The first file is named export.bin
and contains, along with other fields, a list of TEKs belonging to infected users
that have decided to perform the upload procedure. Each TEK has also a date
attached, which indicates when such TEK was used. The second file, named
export.sig, contains a digital signature of the file export.bin12. An example
of export.bin is reported in Appendix C.

2.1 Take-TEK Smart Contract: Buying/Selling TEKs Uploads

To simplify the description, we will refer to the TEKs file published by the server
as a list of pairs of values. In each pair, the first value is a TEK and the second
value is the corresponding date of usage date. Let the seller P be an infected user
who would like to monetize her right to upload TEKs, and buyer B someone who
is interested in paying P in order to upload TEKs of his interest. If the seller
can prove she acted as promised, this selling process can be executed remotely
remaining automated, anonymous, and scalable. GAEN’s design requiring the
list of TEKs to be signed makes the verification easy to the smart contract, and
greatly facilitates such trades. The trade can be performed using a blockchain
capable of executing sufficiently powerful smart contracts (e.g., Ethereum). Such
smart contract guarantees that P gets an economic compensation if and only if
P uploads to the server the TEKs specified by B.
11 Indeed, see the case of UK that tried to develop a system without GAEN but had

to give up https://www.bbc.com/news/technology-53095336.
12 Apple: Setting Up an Exposure Notification Server https://developer.apple.com/

documentation/exposurenotification/setting up an exposure notification server.
Google: Exposure Key export file format and verification https://developers.google.
com/android/exposure-notifications/exposure-key-file-format.

https://www.bbc.com/news/technology-53095336
https://developer.apple.com/documentation/exposurenotification/setting_up_an_exposure_notification_server
https://developer.apple.com/documentation/exposurenotification/setting_up_an_exposure_notification_server
https://developers.google.com/android/exposure-notifications/exposure-key-file-format
https://developers.google.com/android/exposure-notifications/exposure-key-file-format
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The high-level functioning of the smart contract is as follows. (1) B creates
the smart-contract posting a list of TEKs with the related date, and deposits a
prize to be redeemed by a seller. (2) An interested P also makes a small deposit
to declare her intention to upload the TEKs specified by B (the purpose of this
small deposit is explained later). After having made this deposit, (3) P has a
specified amount of time to complete the upload procedure. Before the time
runs out, P must provide a list of TEKs which includes all the pairs (tek, date)
specified by B, along with a valid signature under the server’s public key. If P
manages to do so, she gets a reward, otherwise both deposits go back to B.

By making a deposit, the seller reserves a time slot during which she can
perform the upload. Such deposit protects the buyer from denial of service (DoS)
attacks by sellers who actually do not have the right to upload TEKs. Here, as
in the remainder of the paper, with the word DoS we mean attacks carried out
by fake sellers which prevent honest sellers from participating to the trade.

We name the above smart contract Take-TEK and the attack that leverages
the use of this smart contract Take-TEK attack. The time window given to P
must be wide enough to take into account that new TEKs are not continuously
released by the server, in fact, several hours may pass between the submission
of a TEK and its publication. Obviously, the amounts of both deposits will be
significantly higher than transaction fees. A custom software is needed to upload
arbitrary TEKs. However, this simple software may be developed even by other
entities (not just the buyers), and publicly distributed on the Internet or other
sources (e.g., Darknet). Therefore, all the seller would need to do is just running
a software on a smartphone/computer; something that is easily doable by a large
fraction of the infected citizens willing to gain money13. Additionally, the time
given to the seller to complete the upload after having been tested positive must
be long enough to reserve a slot on the blockchain (i.e., enough to wait that the
transaction related to the seller’s deposit gets confirmed) and subsequently send
the TEKs via the custom software.

Attack Description. B and P owns wallets pkB and pkP respectively. The buyer
has no assurance that the seller is actually an infected person, and she is not just
a malicious party trying to slow down the buyer’s plan. Thus, some collateral
must be deposited by P too. The seller will lose the collateral deposit in case
she is not able to prove that she sent the buyer’s TEKs to the server S. We use
a signature scheme (GenS, SignS, VerS). The protocol description is depicted in
Fig. 1 and a brief overview of the main functions follows below.

Constructor(TB, vkS, t, dP): It takes as input a set of tuples TB := (tekB
i ,

dateB
i )i∈[n] with n ≤ maxteks14, where teki is the i-th TEK of the buyer

and datei is the associated date, the verification key vkS to be used to verify
the signature of the TEKs list, a timestamp t, indicating the maximum time

13 COVID-19 by itself caused a global economic crisis which led to lower wages and
job losses. More details at https://en.wikipedia.org/wiki/COVID-19 recession.

14 The maximum number of TEKs that can be uploaded in one shot depends on the
particular contact tracing system.

https://en.wikipedia.org/wiki/COVID-19_recession
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the seller has to provide the correct list and signature, and the collateral value
dP that the seller must deposit.

Deposit(): must be triggered by B and takes as input a quantity p of coins as
the payment for the seller.

Promise(): must be triggered by the seller P by sending a quantity of collateral
deposit dP as a payment when invoked.

SendTeks(TKS, σT ): must be triggered by the seller P to provide a list of TEKs
together with its signature σT . Let the list released by the server be T =
(teki, datei)i∈[N ], where N is the number of published TEKs. It checks that:

– TB ⊆ T and VerS(T, σT; vkS) = 1.
If the checks passes, dB coins are transferred to the seller’s wallet pkP .

Fig. 1. The steps followed by buyer B and seller P to carry out the Take-TEK attack.

2.2 On the Practicality of Take-TEK Attack

Various proposed upload authorization mechanisms include manual steps (e.g.,
SwissCovid uses an authorization code, termed covidcode, which lasts for 24 h)
which, in order to function properly, naturally give the seller enough time to
perform the steps mentioned in the section above. For example, if a code is
communicated to the infected user via a phone call, she should be given a fairly
large amount of time to write down the code and insert it in the app later
on (the needs of people with disabilities and of elder people must be taken into
account). Even systems that have fairly strict requirements on the time by which
the upload procedure must be completed should allow for errors and recovery
procedures, which may give additional time to the future seller. For example,
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Immuni requires that the infected user dictates, via phone call, a code that
appears on her device. After that, the user must complete the upload within two
minutes. If this does not happen, the procedure must be repeated. Additionally,
the system should be tolerant. People should have the opportunity to perform
the upload procedure later on if they are unable to do it in that precise moment.
It is worth noting that strict requirements on the upload phase reduce users’
privacy. A clear example is Immuni, where the medical operator, by checking
whether a code has been used or is instead expired, gets to know whether or not
the infected user actually uploaded her TEKs.

Implementation. We implemented our results as a smart contract for Ethereum,
published it in a public repository15 and tested it locally. Since Ethereum does
not use ECDSA-SHA256 (i.e., the one used in GAEN) for built-in transaction
signature verification, there is the need to use specific solidity smart contract
libraries16 which lead to extra gas usage. Considering the change of 206 dollars
per single ETH token on the 20th of July 2020, signature verification costs around
11 dollars (1235000 of gas). In order to compute the full cost, one should add
about 0.4 dollars (45000 of gas) for each TEK that is contained in the export.bin
file17. Note that our smart contract can handle export files large as the maximum
data that an Ethereum transaction can handle at most. Details on how to deal
with such limitation can be found in Appendix D.

2.3 Subtleties in the Wild

In Sect. 2.1 we gave a high-level overview of how TEKs uploads can be sold
safely via blockchains. However, there are some subtleties we overlooked for the
sake of simplicity. We first analyze the advantages for adversaries when using
automated trade compared to already known attacks. Then, we consider certain
problems that arise while trying to concretely mount our attack against deployed
GAEN-based contact tracing systems. We also show how these difficulties are
easily tackled if very small modifications to our attack are made.

Advantages of Automated Trade (for an Adversary). One might think that mali-
cious injection of fake TEKs is inherent in decentralized contact tracing systems
since there is no control over the smartphone used by infected individuals and
thus, when the time of the upload comes, the infected person can always use a
smartphone belonging to someone else.

While it is true that such simple attacks are very hard to tackle, they have
limited impact for at least two main reasons: 1) the buyer must handover his

15 Code available at https://github.com/danielefriolo/TEnK-U.
16 The one we used for signature verification is available at https://github.com/

tdrerup/elliptic-curve-solidity.
17 The cost of 45000 of gas includes TEK extraction, hashing of the export file for

signature verification, checking if the stored TEKs are in the extracted ones. To
simplify the gas evaluation, we assume that B stores only one TEK in the contract.

https://github.com/danielefriolo/TEnK-U
https://github.com/tdrerup/elliptic-curve-solidity
https://github.com/tdrerup/elliptic-curve-solidity
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smartphone to the seller, and this requires physical proximity; 2) sellers and buy-
ers must trust each other since an illegal payment must be performed without
being able to rely on justice in case of missing payment or aborted upload of keys.
Indeed, even if in need of money, people are generally afraid of dealing with crim-
inals since they may get scammed or threatened. Additionally, the buyer might
expose the sellers’ identities to the authorities in case he gets arrested or legally
persecuted. Equally, the buyer may share the same concern with respect to an
unreliable seller. It goes without saying that some citizens are prone to violate
the rules18 when they believe that risks are low compared to the advantages.

As such, attacks involving the exchange of smartphones, or the usage of a
malicious app uploading TEKs sent by a criminal contacted directly by the
infected citizen, do not scale and their damage may be considered tolerable.
Having a mechanism which allows this trade to happen remotely, in anonymity
and ensuring no party is cheated, solves all the above problems for parties willing
to abuse contact tracing systems. In fact, it provides a framework for large-scale
black markets of TEKs. The seller would not feel threatened in any way and
could easily earn money, on the other hand, the buyers would benefit from a
larger set of users to be in business with, therefore succeeding in many possible
attack scenarios. Other systems for black markets based on reputations could
also be used, but they are clearly less appealing than the transparency and
usability of mediator-free smart contracts.

A Worry-Free Seller. The effectiveness of a digital contact tracing system is
strictly related to various factors among which the percentage of active popula-
tion using them. Appropriate measures should be taken to earn citizens’ trust
since it is the only way to guarantee broad adoption. With this in mind, the
European Commission released a series of recommendations in relation to data
protection stating the need of identifying solutions that are the least intrusive
and comply with the principle of data minimization [7]. A similar recommen-
dation has been given by the Chaos Computer Club (CCC)19, the Europe’s
largest ethical hackers association, which explicitly states that “data which is
no longer needed must be deleted”. Corona-Warn, the German contact-tracing
system, declares to be fully compliant with CCC’s guidelines20. Many other sys-
tems are inspired by similar principles. For example, the Italian system Immuni
also declares that data is deleted when no longer needed21, as well as the Swiss
system SwissCovid which also specifies a retention period for the TEKs and
the upload authorization codes22. In its recommendation to build a verification

18 The infected person also commits a violation by allowing the injection of fake TEKs.
19 10 requirements for the evaluation of “Contact Tracing” apps https://www.ccc.de/

en/updates/2020/contact-tracing-requirements.
20 Criteria for the Evaluation of Contact Tracing Apps https://github.com/corona-

warn-app/cwa-documentation/blob/ec703906c109bd7c3cc84bc361b7e703b20650ea/
pruefsteine.md.

21 https://github.com/immuni-app/immuni-documentation.
22 Corona-Warn-App Solution Architecture https://github.com/corona-warn-app/

cwa-documentation/blob/master/solution architecture.md.

https://www.ccc.de/en/updates/2020/contact-tracing-requirements
https://www.ccc.de/en/updates/2020/contact-tracing-requirements
https://github.com/corona-warn-app/cwa-documentation/blob/ec703906c109bd7c3cc84bc361b7e703b20650ea/pruefsteine.md
https://github.com/corona-warn-app/cwa-documentation/blob/ec703906c109bd7c3cc84bc361b7e703b20650ea/pruefsteine.md
https://github.com/corona-warn-app/cwa-documentation/blob/ec703906c109bd7c3cc84bc361b7e703b20650ea/pruefsteine.md
https://github.com/immuni-app/immuni-documentation
https://github.com/corona-warn-app/cwa-documentation/blob/master/solution_architecture.md
https://github.com/corona-warn-app/cwa-documentation/blob/master/solution_architecture.md
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server authenticating the uploaded TEKs, Google states that identifiable infor-
mation should not be associated with uploaded data23.

The adoption of the above measures ensures that uploaded data do not link
to, nor identify a particular individual. This is very important considering that
GAEN systems are vulnerable to the Paparazzi attack24 [23].

Evaluation of Seller’s Risks. Considering the above data minimization princi-
ples, are the seller and the buyer at risk of being legally persecuted for a trade
that may be deemed as illegal? The answer seems to be no. If data is handled
as specified above, there would be no way to associate the seller to its uploaded
TEKs at a later time. Data exchanged during the attack would also not directly
compromise neither the buyer nor the seller25.

However, there is a problem for a seller who really wants to minimize the
chance of getting caught. In fact, since the TEKs proposed by the buyer are
posted in clear on the blockchain, authorities may become aware of them and
activate ad-hoc procedures monitoring the incriminated TEKs and exploiting
the upload authorization process to identify the guilty seller. This, in fact, does
not seem to directly contradict the data minimization principle when national
security is at stake. If the server getting the TEKs upload monitors the requests
(e.g., by storing connection logs) without colluding with the health authority,
the seller could be easily incriminated after the TEKs have been detected in
the smart contract by just looking at her IP stored together with such request.
However, in this case, the usage of an anonymity service like Tor [6] can easily
reduce the chance of getting caught. If the authorities are colluding, the upload
authorization codes (e.g., the covidcode) may be associated with the identities
of infected users, and TEKs could be in turn mapped to a precise individual via
such codes. However, by slightly increasing the complexity of the smart contract,
such risk may be completely avoided. It suffices for the buyer to encrypt his TEKs
with a public key provided by the seller, who then will use a non-interactive zero-
knowledge (NIZK) proof system to prove that the TEKs encrypted under the
specified public key are indeed contained in the list signed with the server’s public
key. This requires an additional interaction with the buyer, who has to publish
the encrypted TEKs (see Appendix B for more details). Once again, the seller is
protected by a timer which assigns her all the deposits if the buyer does not reply.

23 Google: Exposure Notification Verification Server https://developers.google.com/
android/exposure-notifications/verification-system.

24 In Paparazzi attack, through passive antennas one can link pseudonyms used by an
infected user tracing him over the duration of a TEK or for more days if the TEKs
are linked. Therefore leaving open the possibility to link such data to a person’s real
identity would be extremely incautious.

25 In this analysis, we refer only to contact tracing system data and messages exchanged
via the blockchain during the execution of the attack. We do not take into account
border-line situations as, for example, the case where there is only a single infected
individual. We also ignore additional information that may help investigators figuring
out who the seller is, for example how the money are spent after the trade.

https://developers.google.com/android/exposure-notifications/verification-system
https://developers.google.com/android/exposure-notifications/verification-system
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Efficient Ethereum implementations of NIZK proofs (see Appendix A.3) are
known in literature, like NIZKs for Σ-protocols [27] or zk-SNARKs [19,31,32].

Even if the buyer decides to claim the authorship of the attack at a later point
in time (e.g., as it usually happens for terrorist attacks) by opening the encrypted
values on the blockchain to published TEKs, the seller would not be at risk if data
was handled according to the principles of data economy and anonymity. Any
evidence based on contact tracing data would be a clear indicator that those
principles have been violated. This could result in a big disincentive in using
the app, since citizens may think (probably rightfully) that data could also be
abused for other reasons, perhaps for mass surveillance purposes. Finally, we
want to point out that even if several researchers raised the concern about the
possible birth of black markets [18,24], we did not find any document related
to any contact-tracing system, either issued by governments or national security
agencies, which deeply evaluates these risks. To the best of our knowledge, no
risk analysis ever mentions to monitor the dark web and blockchains looking for
suspicious smart contracts. It goes by itself that if blockchains are not monitored,
all extra measures taken in this paragraph to protect the seller are not necessary.

Other Subtleties. There are two other subtleties with limited impact to consider
for the actual realization of the attack. We describe them in Appendix E.1 and
Appendix E.2 and shortly mention here:

– Extracting public keys from signatures: Generally, servers’ public keys do not
seem to have been made publicly available neither by Google and Apple,
nor by the countries which deployed GAEN-based contact tracing systems26.
However, the signature algorithm used (i.e., ECDSA) allows to retrieve this
public key starting from a pair of signed messages.

– Updates of public keys: The structure of the export.bin file allows for updates
of the used digital signature key (see Appendix C). Therefore, it might happen
that, after the seller makes the deposit and accepts to upload the buyer’s
TEK, the server, by coincidence, decides to use a new key which was never
used before, thus producing a signature that is not verifiable under the public
key posted on the smart contract. However, by making a slight modification
to the smart contract, it is possible to handle also this unfortunate event.
Moreover, keys have changed very rarely in export files up to now.

3 Connecting Smart Contracts to TLS Sessions

The Take-TEK attack relies on the fact that a digital signature is used to autho-
rize uploads. Additionally, the ability to extract the public key from signed mes-
sages may also play a key role. Therefore, one might think that to protect GAEN

26 Once a contact tracing system handles his public key to Google, it can completely
rely on GAEN APIs to perform signature verification without storing the public
key in clear to the app source code (see https://developers.google.com/android/
exposure-notifications/exposure-key-file-format for more details).

https://developers.google.com/android/exposure-notifications/exposure-key-file-format
https://developers.google.com/android/exposure-notifications/exposure-key-file-format
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systems the public key should remain hidden and the signature scheme should
be such that extracting the public key from message-signature pairs is hard. In
this way, due to the inability of allowing a smart contract to verify that a TEK
is officially in a list of infected TEKs, the attack would fail. However, things are
not so easy. The previous smart contract exploited the public verifiability of the
signatures because this is what is used in GAEN systems. If a different method
is used, it might be abused again. Indeed, we show that TLS oracles can be used
to prove to a smart contract that an upload was successfully performed, without
relying on signatures of TEKs.

3.1 Decentralized Oracles

Recently, Zhang et al. [30], introduced the concept of Decentralized Oracles.
Roughly, an oracle is an entity that can be queried by a client to interact with
a TLS server and help the client proving statements about the connection tran-
script. Previously known oracle constructions rely on trusted/semi-trusted exe-
cution environments [29], thus not giving any help in our case. DECO [30] is
the first work where a fully-decentralized construction is proposed for specific
ciphersuites such as CBC-HMAC and AES-GCM coupled with DH key exchange
with ephemeral secrets. We recall that a TLS connection is divided in two parts:
a handshake phase where key exchange is performed, and a phase during which
the transferred data is encrypted/decrypted by the client/server using the key
exchanged in the previous phase. GAEN servers usually accept Elliptic-Curve
Diffie-Hellman key Exchange (ECDHE) for the first phase, while for the sec-
ond phase some servers accept only AES-GCM (e.g., Immuni), whereas others,
like SwissCovid’s one, accept also CBC-HMAC as a ciphersuite. To guarantee
the integrity of data, the plaintext is usually compressed and a MAC on the
compressed string is calculated using a key derived from the DH exchanged key.

Decentralized Key-Exchange. We provide below an informal description of the
key-exchange in DECO for ECDHE that is called Three Party Handshake
(3PHS).

We assume three entities: a prover P, a verifier V and a server S. P and V
jointly act as a TLS client. The overall idea of DECO is that the prover and
verifier, after performing some two-party computations, compute shares of the
exchanged key, while the server computes the entire key without even noticing
that P and V are two distinct interacting entities.

When using CBC-HMAC, the keys kMAC
P , kMAC

V (such that kMAC
P + kMAC

V = kMAC)
are learned by P and V respectively, while kEnc is only known to P. When using
AES-GCM, the same key is used for both encryption and MAC, therefore both
P and V just get a share of it. While P and V only learn their secret shares of
the key, the server S gets to know both kEnc and kMAC.

Let G be an EC group generator. The key exchange phase works as follows:

– P establishes a TLS connection with the server S.
– When receiving the DH share YS = sS · G from S, P forwards it to V.
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– V samples a DH secret sV and sends his DH share YV = sV · G to P.
– P samples her DH secret sP , calculates her DH share YP = sP ·G, calculates

the combined DH share Y = YP + YV , and sends Y to S.

Finally, S computes the DH exchanged key as Z = sS ·Y . P and V will compute
their secret shares of Z as ZP = sP ·YS and ZV = sV ·YS. Note that ZP +ZS = Z,
where + is the EC group operation. Now that P and V have secret shares of EC
points, they use secure two-party computation (2PC) to evaluate a PRF (that
we call TLS-PRF) to derive the keys kMAC

P and kMAC
V . The authors face and solve

several challenges in order to derive keys efficiently via 2PC. We do not cover
this part, a more detailed description can be found in [30].

Encrypted Communication. At the end of the 3PHS, P and V have to engage in a
2PC protocol to correctly calculate the MAC and the encryption on the plaintext
to be sent to the server, without revealing the shares to each other. Privacy of
the plaintext is also ensured with respect to V. For CBC-HMAC, the encryption
of such plaintext is computed exclusively by P who holds the encryption key.
The authors [30] provide hand-optimized protocols which are much more efficient
then the ones obtained by directly applying 2PC techniques. The 2PC protocol
for AES-GCM is a lot slower than the one for CBC-HMAC since for AES-GCM
P and V must cooperate also for the encryption.

Proving Statements. An important feature of DECO is that P, when the com-
munication with S ends, can prove, in zero knowledge, statements on the commu-
nication transcript in a clever and efficient way. However, to make their protocol
practical for our goal, we do not try to maintain the transcript private. As a
result, we will not discuss this part of DECO which can be found in [30]. In the
following, we describe how to adapt DECO to our scenario.

3.2 A Smart Contract Oracle

Our goal is to make the smart contract play the role of the DECO verifier. In this
way, the smart contract would be able to verify that the intended communication
between the seller and the server took place and to reward the seller accordingly.
Unfortunately we can not just plug DECO into a smart contract for several
reasons. For example, DECO requires to run intensive 2PC related tasks, to
sample random values and to maintain a private state27.

Therefore, we keep running the DECO protocol off-chain but we find a way to
connect the DECO run between the prover and the verifier to the state of the smart
contract, so that the smart contract will eventually be able to act as an impartial
judge punishing the malicious party when a deviation from the prescribed honest
behavior is detected. In particular, the seller acts as a prover and the buyer as a
verifier, and we guarantee no party is able to cheat (i.e., the seller is paid if and only

27 Keeping a private state inside a smart contract is not possible and computationally
intensive operations generate high costs.
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if she performs the upload of the requested TEKs) by binding the off-chain execu-
tion to the state of the smart contract itself. Furthermore, we guarantee privacy
of the messages exchanged between the server and the prover only until their TLS
connection is open. After the communication ends, the seller proves that she acted
honestly by providing the application-level messages exchanged with the server,
along with the corresponding MAC tags w.r.t. the MAC key which is bound to
the smart contract. To be more specific, the smart contract freezes a share of the
MAC key and the seller has to show a communication transcript (i.e., the messages
exchanged with the server and corresponding MAC tags) which is consistent with
such share. Privacy of the upload request message to be sent to the server is crucial
while the TLS session is open because the verifier may abort the protocol and use
the authorization token of the prover to upload data by himself without paying out
the promised reward. On the other hand, making the communication public after
it took place does not endanger the prover, apart from the considerations made in
Sect. 2.3, and makes the verification procedure much more practical. What we need
is that the shares of the prover and the verifier are kept private until the end of the
protocol, and then revealed to the smart contract, along with other information,
for verification and reward paying. In addition, the TLS session timeout should be
big enough to allow for the 2PC execution. To this regard, Zhang et al. already ver-
ified the practical feasibility of their protocol [30]. Obviously, P must know how
to reach V to carry out the protocol. To address concerns regarding anonymity,
V may set up a Tor hidden service28. Using hidden services may significantly slow
down the process, however we found both Immuni and SwissCovid servers to give a
generous time out window of two hours29. Another point to consider is that upload
authorization tokens may have a limited duration. For example, in SwissCovid, the
smartphone, by interacting with an appropriate server (different from the TEKs
upload server, called CovidCode-Service), exchanges the covid code for a signed
JWT token that is valid for 5 min30. Then, this token is sent by the smartphone to
the server along with the TEKs to complete the upload. Thus, the upload message,
containing the TEKs and the authorization token, must be computed and sent to
the server within 5 min from the reception of the JWT token. Given the high effi-
ciency of DECO when CBC-HMAC is used, even when bandwidth is limited [14], it
is reasonable to think that the attack is feasible in SwissCovid. In Immuni instead,
no signed token is used. In fact, the upload must be completed within 2 min after
the infected user has communicated the code to the health operator. Therefore, in
Immuni the attack would less likely be operative, especially with Tor, given that
the slower AES-GCM ciphersuite is required.

Protocol Description. From now on, we refer to the seller and the buyer as
prover P and verifier V respectively; we denote the server as S. In the following,
28 More on Tor hidden services can be found at https://2019.www.torproject.org/docs/

onion-services.
29 Interestingly, in June the timeout of a TLS session with both Immuni and SwissCovid

upload servers was limited to 5 min, but it has been then extended to two hours.
30 See CovidCode-Service configuration https://github.com/admin-ch/CovidCode-

Service/blob/develop/src/main/resources/application-prod.yml.

https://2019.www.torproject.org/docs/onion-services
https://2019.www.torproject.org/docs/onion-services
https://github.com/admin-ch/CovidCode-Service/blob/develop/src/main/resources/application-prod.yml
https://github.com/admin-ch/CovidCode-Service/blob/develop/src/main/resources/application-prod.yml
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we explain the detailed attack for the CBC-HMAC ciphersuite. When creating
the smart contract, V also posts the DH share YV = sV · G he is willing to use
during the 3PHS, along with requested TEKs (and dates).

First, P transacts on the smart contract to reserve a time slot of duration t1
by which a DECO protocol run must be performed together with V and S, and
the data needed to redeem the reward must be posted on the smart contract
by P. If time t1 elapses, P loses her slot. This reservation mechanism is needed
to prevent V from getting back the reward while an honest P performs the
upload of the requested TEKs. In fact, the verifier could also act as a prover and
simulate a reward-paying interaction with the server to the smart contract, which
would have no mean to distinguish it from a fake one. By adding a reservation
mechanism, we are sure a malicious V cannot play a simulated transcript in
the smart contract while honest P is performing with him the DECO protocol
run. Furthermore, since the communication for the upload between the server
and the prover consists of just a single query followed by a single response, it is
not possible for a cheating verifier to make the timer expire avoiding to pay the
prover while at the same time the upload of the TEKs successfully completes.
In fact, once V cooperates with P to build a valid request, S will reply to P
independently of what V does, thus giving V all she needs to redeem the reward.

When executing the 3PHS, P checks that the value Y ′
V sent by V during

the handshake corresponds to the value YV posted on the smart contract. This
prevents V from providing an erroneous DH share and blaming P for it. If this
is not the case, P aborts. Since no upload message has been sent to the server
yet, no party gains advantage from this operation. If V’s share is correct (i.e.,
YV = Y ′

V), parties engage in the communication with S and jointly compute the
MAC (via 2PC as in [30]) on the upload request mc generated by P . If the
connection ends successfully31, the elected P posts (only who reserved this slot
is allowed to post this message) on the smart contract the following:

– The entire communication transcript, that is (mc,ms) together with the
MACs (θc, θs), calculated by the client(s) P ↔ V and the server S.

– The prover’s secret sP .
– The DH share of the server YS received during the 3PHS.

Then, the smart contract starts a timer t2 indicating the maximum time V has
to reveal his secret sV . In case V does not do that, the prize is automatically
transferred to the seller P. If V reveals sV , the smart contract does the following:

– Check that YV = sV · G and if not, transfer the prize to P.
– If the check passes, reconstruct the secret Z from sV , sP , Ys, and apply TLS-

PRF to derive the MAC key kMAC.
31 This can be inferred from the communication. For example, as in SwissCovid (see

SwissCovid Server Controller: https://github.com/DP-3T/dp3t-sdk-backend/blob/
a730a5b276591e5cc8b6c609e2b0ba29c6069eb6/dpppt-backend-sdk/dpppt-backend-
sdk-ws/src/main/java/org/dpppt/backend/sdk/ws/controller/GaenController.
java), S may reply P with either a success message such as “200 OK” or an error
message.

https://github.com/DP-3T/dp3t-sdk-backend/blob/a730a5b276591e5cc8b6c609e2b0ba29c6069eb6/dpppt-backend-sdk/dpppt-backend-sdk-ws/src/main/java/org/dpppt/backend/sdk/ws/controller/GaenController.java
https://github.com/DP-3T/dp3t-sdk-backend/blob/a730a5b276591e5cc8b6c609e2b0ba29c6069eb6/dpppt-backend-sdk/dpppt-backend-sdk-ws/src/main/java/org/dpppt/backend/sdk/ws/controller/GaenController.java
https://github.com/DP-3T/dp3t-sdk-backend/blob/a730a5b276591e5cc8b6c609e2b0ba29c6069eb6/dpppt-backend-sdk/dpppt-backend-sdk-ws/src/main/java/org/dpppt/backend/sdk/ws/controller/GaenController.java
https://github.com/DP-3T/dp3t-sdk-backend/blob/a730a5b276591e5cc8b6c609e2b0ba29c6069eb6/dpppt-backend-sdk/dpppt-backend-sdk-ws/src/main/java/org/dpppt/backend/sdk/ws/controller/GaenController.java
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Now the smart contract has everything it needs to check that the fields inside
message mc (from the prover to the server) are correct (i.e., the buyer’s TEK are
present), the response message (from the server to the prover) is positive, and that
the MACs (θc, θs) verify w.r.t. kMAC. If all the checks pass, the prize is transferred
to P, otherwise P gains no prize and the deposit is returned back to V.

As mentioned before, V is not encouraged to provide a different public key
w.r.t. the one he used in DECO execution, otherwise P will just abort. On
the other hand, the prover is not able to earn a reward without uploading the
promised TEKs. In fact, the probability for the prover to come up with a pair
(m′

c, θ
′
c) (resp. (m′

s, θ
′
s)) that verifies under the key k′MAC derived from Z ′ =

Z ′
P + Z ′

V with Z ′
P := s′

P · Y ′
S and ZV := sV · Y ′

S is negligible due to the fact that
sP is fixed and honestly generated, thus randomizing Z ′, hence k′MAC.

A Note on DoS Attacks. It is important to prevent DoS attacks run by sellers
who actually do not have the right to upload TEKs and end up by just wast-
ing the buyer’s precious time. In the previous discussion this protection is not
provided: before sending the jointly computed message (mc, θc), the seller can
decide to not forward the message to the server. Now, the buyer has to open his
commitment to show his secret sV in order to not lose the prize. As a result,
the committed value cannot be used in other runs. To address this issue, the
smart contract can be modified to handle multiple sessions. Instead of storing
YV as a single DH contribute, the buyer stores the root of a Merkle tree. Now,
when the seller interacts with the contract to reserve a session, a session id (a
simple counter j suffices) is assigned to her: the DH contribute used in the 3HPS
will correspond now to the j-th leaf of the Merkle tree. Now, when the buyer
has to open his secret sV , he also reveals the path of the Merkle tree from the
root to the leaf j. The smart contract will now verify that the contribute is cor-
rectly derived from the root by following a path with correct openings. Let us
consider a Merkle root committing to 2k elements, thus allowing the buyer to
open as many sessions. For a k large enough, a malicious seller should spend a
considerable amount of money in order to reserve all the sessions.

AES-GCM. Carrying out the attack when AES-GCM ciphersuite is required is
more involved. A discussion on this is reported in Appendix F.1.

4 Conclusion

In our work we showed that the terrorist attack, previously envisioned by Vaude-
nay, is concretely realizable against GAEN systems with the aid of cryptographic
tools and a blockchain capable of executing smart contracts (e.g., Ethereum).
In particular, the Take-TEK attack exploits the fact that the list of infected
TEKs, published by the server daily, has always a digital signature attached
to it. Such signature allows the smart contract to easily verify that the upload
was performed as requested by the terrorist. Even beyond the use of signatures,
we have shown a different instantiation of the terrorist attack using DECO. In
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conclusion, we advise protocol designers not to look at the effects of a specific
realization, but to prove the protocol secure against any automated instantiation
of a terrorist attack. Our work shows that the power of blockchain technology to
trade digital assets is still overlooked even when critical features are digitized.
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A Tools

A.1 MACs and Signature Schemes

A Message Authentication Code consists of a tuple of algorithms (Gen, Tag, Ver)
such that

Gen(1λ): Takes as input the security parameter and outputs a key k in the key
space K.

Tag(m; k): Takes as input a message m in the message space M and a key k,
and outputs a tag θ.

Ver(m, θ; k): Takes as input a message m and a key k, and outputs 1 iff θ is a
correct tag on m under key k.

It must satisfy the following properties:

– Completeness: The probability that Ver((m, θ); k) outputs 1 for an honestly
generated tag θ ← Tag(m; k) is 1.

– Unforgeability: The probability that an adversary, knowing only challenge
message m∗ and having access to an oracle giving back tags θi on messages
mi �= m∗ (for all i ∈ [n] with n polynomially bounded in the security param-
eter), outputs a pair (m∗, θ∗) such that Ver(m∗, θ∗; k) = 1 is negligible.

A Signature Scheme consists of a set of algorithms (Gen, Sign, Ver), such that

Gen(1λ): Takes as input the security parameter and outputs a pair (sk, vk) sam-
pled from the key space, where sk is the signing key and vk the verification
key.

Sign(m; sk): Takes as input a message m in the message space M and a signing
key sk, and outputs a signature σm on that message.

Ver(m,σ; vk): Takes as input a pair (m,σ) and the verification key vk, and
outputs 1 if the signature σ correctly verifies under vk.

It must satisfy the following properties:

– Completeness: The probability that Ver((m,σ); vk) outputs 1 for an hon-
estly generated signature σ ← Sign(m; sk) is 1.
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– Unforgeability: The probability that an adversary, knowing only the chal-
lenge message m∗ and having access to an oracle giving back signatures σi

on messages mi �= m∗ (for all i ∈ [n] with n polynomially bounded in the
security parameter), outputs a pair (m∗, σ∗) such that Ver(m∗, σ∗; vk) = 1 is
negligible.

A.2 Public-Key Encryption Schemes

A Public-Key Encryption Scheme is a tuple of algorithms (Gen, Enc, Dec) such
that

Gen(1λ): Takes as input the security parameter, outputs a couple (pk, sk) of keys
sampled in the key spaces.

Enc(m; pk): Takes as input a message m in the message space and a public key
pk, and outputs the ciphertext c in the ciphertext space.

Dec(c; sk): Takes as input a ciphertext c and a secret key, and output a message
m′.

A PKE scheme is CPA-Secure if the following properties are satisfied

– Completeness The probability that m = m′, where m′ ← Dec(c; sk) with
c ←$ Enc(m; pk) for an honestly generated pair (pk, sk) ←$ Gen(1λ) is 1.

– CPA-Security The probability that an attacker, after choosing two messages
(m0,m1), giving them to a challenger, and receiving back the encryption of
one of the two (chosen by the challenger flipping a coin), can distinguish
which of the two messages were encrypted, is negligible.

A.3 NIZK Proofs

In a zero-knowledge proof system an entity P, called prover, can prove to another
entity, called verifier, that an NP-statement x is in some language L (i.e., there
exists at least a witness w such that the relation RL(x,w) for the language L
is satisfied) without revealing a single bit of information on the used witness.
Informally, the following properties must be satisfied by a zero-knowledge proof
system:

– Completeness: The probability that an honest prover P (i.e. computing
the proof by providing a valid (x,w) such that RL(x,w) = 1) convinces the
verifier V about the validity of the statement is 1.

– Soundness: The probability that a cheating prover convinces the verifier
that a statement x is not in the language L is negligible.

– Zero Knowledge: If the statement x is true, the verifier learns no more
information other than the fact that the statement is true. This concept is
formalized by showing that there exists an efficient simulator that, given only
the statement, can produce a protocol transcript that is indistinguishable
from a real protocol execution.
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A proof is said to be non-interactive when the interaction consists solely on a
message sent by the prover to the verifier. A zero-knowledge proof of knowledge is
a zero-knowledge proof where the prover shows that he actually knows a witness
for the statement x and this is formalized by showing an efficient extractor that
gives a witness in output. When we refer to NIZK proofs throughout the paper
we usually intend NIZK proofs of knowledge.

In the random oracle model, both prover and verifier access to a crypto-
graphic hash function that in the security proof is modeled as a random oracle.
The simulator for the zero-knowledge property and the extractor for the proof
of knowledge property have the power to program the random oracle.

B Adding Seller’s Privacy

As discussed in Sect. 2.3, using publicly posted TEKs is dangerous for the seller
due to possible risks of incrimination. This could disincentivize the seller to
utilize such smart contract mechanism. To guarantee seller’s privacy, in all of
our attacks we can enrich our playground by assuming the existence of a CPA-
Secure PKE encryption scheme (Gen, Enc, Dec) and a NIZK proof system. The
proposed protocols can be modified as follows:

– When the buyer creates the smart contract, he waits that a seller P is elected
before providing his TEKs. When P is elected, B posts his TEKs encrypted
with P’s public key pkP , by triggering an algorithm SendBuyerTeks(CB)
where CB = (c1, . . . , cn), with ci ←$ Enc(ti) for each ti ∈ TB. TEKs are pairs
ti = (teki, datei).

– When the signed TEKs list is available, the seller triggers SendTeks(T, σT ,Π,
T̃), where T = (t̃1, . . . , ˜tN ) are the published TEKs, σT the corresponding
signature, and Π = (π1, . . . , πn) is a sequence of proofs in which πi is a NIZK
proof that the prover knows ti ← Dec(ci; skP) and that at least one element
t̃j in a subset T̃ ⊆ T such that |T̃| > |TB| is equal to ti. The smart contract
checks all the proofs, and if all of them verify, transfer the prize to the seller.

Now the only information that an external observer can deduce by looking at
the proofs is that all the encrypted buyer’s TEKs are indeed inside the list (or
in a subset of them). Depending on how the date field is handled it may be
also necessary to encrypt it and to prove a slightly more complicated statement.
To be sure that an observer cannot pinpoint the buyer’s TEKs precisely, it is
sufficient that the proofs use as a statement a subset of the published TEKs that
contains at least one more TEK w.r.t the buyer’s TEKs (proving on a subset
and not on the entire list can be beneficial in terms of proof size and efficiency).
The only harmful case is when the number of published keys matches with the
number of the buyer’s keys. We can argue that this condition happens quite
rarely, considering that one external more key is sufficient to guarantee buyer’s
safety, and if GAEN recommendations are followed, a decent amount of keys
should be present in the list.
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C GAEN Export Files

An example of an export.bin file for Immuni, the Italian contact tracing app is
reported below. The meaning of the main fields is commented on the side. The
start timestamp and end timestamp are expressed in UTC seconds,
rolling start interval number is expressed in 10 min increments from UNIX
epoch. The export.sig contains the digital signature of the export.bin file,
along with the field signature infos.
The content description of the export.bin file follows.

start_timestamp: 1591254000 //start of the time window of included keys

end_timestamp: 1591268399 //end of the time window of included keys.

region: "222" batch_num: 1 batch_size: 1

signature_infos {

verification_key_version: "v1" //version of used verification key

verification_key_id: "222"

signature_algorithm: "1.2.840.10045.4.3.2"

1: "it.ministerodellasalute.immuni"}

keys {

key_data: ".." //base64 encoded TEK

transmission_risk_level: 8

rolling_start_interval_number: 2651616 //date of usage of TEK

rolling_period: 144}...

D Implementation Improvements

As noted in Sect. 2, our smart contract implementation of Take-TEK can han-
dle export files large as the maximum transaction size at most. This limitation
can be overcome by making the smart contract accepting the file split in mul-
tiple chunks (a transaction for each chunk), and then extracting the keys and
verifying the signature by hashing the concatenation of all the stored chunks.
A trivial solution to this problem can be to store n − 1 chunks in the smart
contract, and when the seller sends the n-th chunk, the smart contract performs
the concatenation, extracts the keys, and verifies the signature. Unfortunately,
storing data in a smart contract is the most expensive operation in terms of gas
cost, and storing such a big piece of data in a smart contract state may be too
expensive. However, exploiting the Merkle-Damg̊ard construction used by SHA
to hash multiple blocks, way less amount of data needs to be stored. Let us
define Hash as the hashing algorithm and Hi as the hash of the i-th chunk Ci.
TEKs extraction and signature verification in the chunk-based mechanism can
be done in the following way:
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– The seller divides the export file in different chunks in such a way that, when
each chunk is hashed, the hash climbs up to the same level of the Merkle tree
of the other hashed chunks.

– When the seller sends a new chunk to the smart contract, the latter extracts
all the TEKs contained in the chunk, checks which of the buyer’s TEK are
present in the chunk and stores this information32. After that, it hashes the
chunk and stores the hashed value Hi.

– When the last chunk is sent to the smart contract by the seller (together
with the signature of the entire export file), the smart contract extracts the
last pieces of information, checks if the TEKs contained in the last chunk
cover the not yet appeared buyer’s TEKs, computes its hash Hn, hashes its
concatenation with the previously stored hashed chunks (i.e. it calculates
Hout = Hash(H1, . . . , Hn)) and triggers the signature verification procedure
giving the value Hout and the signature file as input.

As can be noticed, the application of the hashing algorithm to the concatenation
of the His makes the hashing algorithm climbing up to the root of the Merkle
tree, thus giving the expected hash of the entire file as output. Now the amount
of bits needed to be stored is around |H| · n = 512 · n, vs |Ci| · n (usually
the maximum transaction size, and so Ci in our case, is around 44 Kbytes in
Ethereum).

E Other Subtleties: Details

E.1 Extracting Public Keys from Signatures

Take-TEK (cfr., Sect. 2.1) requires that the server’s public key is known to both
the involved parties. This guarantees that the buyer is sure the reward is paid
only to sellers who actually upload data to the contact tracing system, and
that honest sellers are sure they will be able to satisfy the conditions to be paid,
namely obtaining a valid digital signature for reward redemption. A Github issue
asking for the public key of the Italian contact tracing app was opened on the 7th
of June 2020 and it has still not been addressed at the time of writing. SwissCovid
Android app contains a configuration file specifying the production version of the
bucket public key (the value BUCKET PUBLIC KEY can be found in https://github.
com/DP-3T/dp3t-app-android-ch/blob/master/app/backend certs.gradle) that
is used to perform signature verification outside GAEN. Anyway, as we can notice
with Immuni, this is not a requirement. One might think that keeping the verifi-
cation keys secret may prevent attacks as the one of Sect. 2.1. However, it turns
out that it is actually not the case. In fact, since GAEN uses ECDSA, starting
from a signature and the related message we can recover two candidate public
keys, one of which will match the actual one with overwhelming probability. A

32 During the chunk splitting, some TEKs may be cut in half. The smart contract
should take care of the first and the last bits of each chunk and reconstruct the
missing information.

https://github.com/DP-3T/dp3t-app-android-ch/blob/master/app/backend_certs.gradle
https://github.com/DP-3T/dp3t-app-android-ch/blob/master/app/backend_certs.gradle
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practical example showing this procedure can be found in [28]. Such message/sig-
nature pairs are generally made publicly available and are easily accessible by
appropriately querying the server of the specific contact tracing system. Multiple
pairs per day may be released. A comprehensive description on how to get this
data has been provided by the Testing Apps for COVID-19 Tracing (TACT)
project, along with scripts to automate the downloading process [11]. We also
practically performed the extraction procedure, successfully extracting the keys
for both SwissCovid and Immuni.

E.2 Updates of Public Keys

There is a subtle technical problem with the attack described in Sect. 2.1. The
digital signature keys that the server uses may change over time. In fact, as
shown in Appendix C, the export.bin file includes a field indicating a version
for the verification key. This field follows a progressive numeration, that is the
first version is termed v1, the second one v2 and so on. This means that the
server may change the verification key it uses, perhaps within a set of keys that
have been pre-shared with Google and Apple. Therefore, it might happen that,
after the seller makes the deposit and accepts to upload the buyer’s TEK, the
server, by coincidence, decides to use a new key which was never used before,
thus producing a signature that is not verifiable under the public key posted on
the smart contract.

However, by making a slight modification to the smart contract, it is possible
to handle also this unfortunate event. Having realized that she would be unable
to redeem the reward, the seller might activate a special recovery condition. After
this, the buyer will be able to collect both deposits if and only if he manages
to provide a pair of export files which have an end timestamp (cfr., Appendix
C) subsequent to the time of the recovery request and verify under the public
key originally posted on the smart contract; otherwise the deposits are returned
to the original owners. Obviously, enough time should be given to the buyer to
provide the export files, similarly to what happens to the seller after her deposit.

This event is certainly very annoying for the seller and might play as disin-
centive to join the trade, but taking a look at real-world data one realizes that
this is a relatively rare event. We considered several countries which are currently
using a digital contact tracing system, namely: Italy, Switzerland, Austria, Ger-
many, Ireland, Northern Ireland, Denmark, Latvia, Canada and US Virginia.
Until January 13th 2021 (last time we checked), only US Virginia and Italy have
switched to the second version of the verification key. In particular, the change
to the Italian system dates back to the 15th of June 202033 and no modifications
have been made since then. Notably, some countries’ systems, like Switzerland
and Germany’s ones, are active from several months now and the verification
key has not changed at all. To the best of our knowledge, the criteria by which
the verification key should change is not documented anywhere.

33 This change occurred in the 4th export file.
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F Further Notes on Our Smart Contract Oracle

F.1 CBC-HMAC vs AES-GCM

Differently from CBC-HMAC, AES-GCM relies on the same key for both encryp-
tion and MACs. The impact of AES-GCM is twofold: 1) more computation is
needed to perform the required 2PC to calculate messages from/to the server,
due to the AES algorithm itself, 2) the prover does not learn the encryption
key after 3PHS, meaning that both encryption and decryption must be done
via 2PC as well. On the smart contract side, this difference boils down to a
lack of fairness. After V and P have calculated together the upload message and
sent it then to S, V could decide not to help the prover to decrypt the server’s
response. Now, P has no witness in her hands to give to the smart contract in
order to prove that she has correctly performed the TEKs upload. As a result,
she cannot redeem the prize. The problem can be easily solved by giving to
the smart contract the burden of decrypting the server’s ciphertext. In our app-
roach, V must commit to his key and open it later. When this happens, the
server reconstructs the MAC/encryption key, decrypts the ciphertext, does the
necessary checks, and pay the prize to P. The CBC-HMAC version of DECO
is way faster then the AES-GCM one. However, looking at practical evaluations
made by the authors [14,30] it is reasonable to think that all their solutions may
fit in the time window given by contact tracing servers (e.g., 2 h in Immuni and
SwissCovid) for the TLS connection, even when hiding V through Tor hidden
services. What is less likely is that, in the case of Immuni which uses AES-GCM
and requires the upload to be completed within two minutes, the upload request
message (mc, θc) is computed and sent to the server in time; especially when the
prover and the verifier communicate via Tor.
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Abstract. Sanitizable signatures (SaS) allow a (single) sanitizer, chosen
by the signer, to modify and re-sign a message in a somewhat controlled
way, that is, only editing parts (or blocks) of the message that are admis-
sible for modification.

This primitive is an efficient tool, with many formally defined security
properties, such as unlinkability, transparency, immutability, invisibility,
and unforgeability. An SaS scheme that satisfies these properties can
be a great asset to the privacy of any field it will be applied to, e.g.,
anonymizing medical files.

In this work, we look at the notion of γ-sanitizable signatures (γSaS):
we take the sanitizable signatures one step further by allowing the signer
to not only decide which blocks can be modified, but also how many
of them at most can be modified within a single sanitization, setting a
limit, denoted with γ. We adapt the security properties listed above to
γSaS and propose our own scheme, ULISS (Unlinkable Limited Invisible
Sanitizable Signature), then show that it verifies these properties. This
extension of SaS can not only improve current use cases, but also intro-
duce new ones, e.g., restricting the number of changes in a document
within a certain timeframe.

1 Introduction

One of the main properties of digital signatures is integrity – indeed, it is impor-
tant that any modification made to a message after it was signed would invalidate
said signature.
However, one might wish to modify a signed message without altering its core
meaning, for example to anonymize a document, while not wanting (or not being
able) to take the time necessary to get the original signer to sign again.

Sanitizable signatures, as introduced in [1] can serve such a purpose by allow-
ing a form of controlled malleability, where a signer will sign a message along
with a list of admissible modifications with respect to a second entity called the
sanitizer. That sanitizer will be allowed to re-sign a message, producing a valid
signature as long as the message was only modified within the limits defined by
the list.
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The relationship between the signer and the sanitizer will depend on the use
case (e.g. they can be a boss and their employee, or a service provider and their
client) and for this reason the means and content of any communication between
those two entities (including credentials used to sign/sanitize) is out of scope of
this paper.

A frequent usage example for such a signature scheme would be the
anonymization of medical data destined to be analyzed: the name of the patients
is – with a high probability – not relevant for the analysis, neither is their email
address or phone number; however, it is important to know that the data is
authentic, hence the need for it to still be verifiable once it has been anonymized.

However, we do believe that this still leaves too great a latitude to the san-
itizer, and that this latitude should be somewhat narrowed down, which is the
aim of this work.

Contribution. In this paper, we look at a variant of sanitizable signatures, that
we refer to as γ-Sanitizable Signatures. This variant restricts the sanitizer to only
modify a certain number of blocks at once, a number which is referred to as the
limit, and denoted with γ. In this variant, even if a signature has been sanitized
multiple times, the number of blocks that differ between the original message
and this one should not be above the limit. When the signer signs the original
message, they will thus also set that limit.

We detail some applications for this limit in Sect. 5, all of which are inachiev-
able with regular sanitizable signatures: for example, we show how to use γ-
Sanitizable Signatures to limit the number of changes a user can make to their
social media profile over a certain period of time, similar to what Facebook
currently does with birthdays1.

This idea of adding a limit was first introduced as an important research
problem by Klonowski and Lauks [24] and later applied by Canard and Jambert
in [13], but as we detail below in related works, the scheme they proposed satisfies
less security properties and is not practical compared to this work. Our first
contribution is to adapt the various security properties of sanitizable signatures
by taking the limit into account, namely:

Unforgeability: the users cannot produce a valid signature without the
secret keys.
Immutability: the sanitizer cannot sanitize on an unauthorized modifica-
tion.
Transparency: the verifier cannot tell whether a given signature was sani-
tized or not.
Unlinkability: the verifier cannot link a sanitized signature with its original.
Invisibility: the verifier cannot tell what (or how many) modifications are
authorized on a signature without knowledge of any secret key.

In this work, we do not focus on accountability, which ensures that the signer
can cancel the transparency a posteriori, as this property does not depend on

1 facebook.com/help/563229410363824/.

http://facebook.com/help/563229410363824/
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the limit and achieved for any sanitizable signature scheme by using the generic
transformation of [11]. Our second contribution is the scheme ULISS (Unlinkable
Limited Invisible Sanitizable Signature), for which we prove all of the above
properties in the random oracle model (ROM).

Our Scheme. Our aim when creating ULISS was to build a signature that is
originally issued by a signer and that can be modified by the sanitizer, who has
to prove that it was done within the authorized limits (i.e., the blocks that were
modified are admissible and the number of blocks that were modified is below
the limit). We also want the resulting signatures to not leak whether they come
from the signer or the sanitizer. We focused on the idea that the sanitizer must
prove that the sanitization was done properly, as allowed, and for this we base
our scheme on the use of (non-interactive) zero-knowledge proofs.

The signer first computes commitments pertaining to the authorized modifi-
cations and the limit, and signs them, then encrypts some necessary information
for the sanitizer. To edit the signature, the sanitizer will retrieve the encrypted
data and use it to build some new proofs related to the original commitments,
and sign everything (along with the modified message, of course) using the ring
signature. Since the information about the modifications and the limit is com-
mitted, it cannot be deduced from the signature, which makes ULISS invisible.

Reaching both invisibility and unlinkability is a difficult task; to the best of
our knowledge, the scheme presented in Bultel et al. [11] is the only one that
achieves these two properties together, thanks to class-equivalence signatures.
We use a similar trick for ULISS: a sanitized signature uses the same signed
commitments as the original signature. This could be used by an adversary to
link these two signatures, however, we use a class-equivalence signature to sign
the commitments, which allows the sanitizer to randomize the commitments and
the signature in such a way that the messages in the signed commitments are
not modified.

Related Work. Sanitizable signatures were, as cited above, first introduced by
Ateniese et al. [1], proposing applications, among others, in the medical field.
This primitive is related to (but should not be confused with) redactable signa-
tures [7], where a sanitizer can erase some parts of the message but not modify
it. The security properties were originally presented in [1], but formalized later
on by Brzuska et al. in [8] and [9], the latter adding the idea of unlinkability.
Invisibility was formalized in [12], and invisible constructions are proposed in [12]
and [3]. In [11], the authors propose a scheme that is both unlinkable and invis-
ible, using class-equivalent signatures. To the best our knowledge, this scheme
is the only one that achieves these two properties together. They also provide
a generic way to add accountability on any sanitizable signature scheme, using
verifiable ring signatures [10]. Note that these schemes allow the sanitizer modify
parts of the message in an unlimited way.

On the other hand, related primitives with a more general application can be
used to achieve γ-Sanitizable Signatures, including functional signatures [6] and
delegatable functional signatures [2], which allows a user to sign messages that
verify some functions or predicate, policy-based signatures [4], where signers are
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authorized to sign a message if it satisfies some policy, and homomorphic signa-
tures [23]. All of these offer much more variety on what (the equivalent of) the
sanitizer can do compared to traditional sanitizable signatures, while being gen-
erally much less efficient specifically because of their fine-grained possibilities,
using heavy generic primitives (e.g., generic zero-knowledge proofs for garbled
boolean circuits or homomorphic encryption). We believe our work lies some-
where in between, offering more control on the sanitizations while remaining
practical.

The γ-sanitizable signature schemes were introduced in [24] and revisited by
Canard and Jambert in [13], the latter proposing the first security model for
γ-sanitizable signatures. To the best of our knowledge, there is no other such
scheme in the literature – moreover, these two works are neither invisible nor
unlinkable. Adding unlinkability to these schemes is not straightforward, as they
use chameleon hashes [25] on modifiable parts of the signatures, which implies
that these hashes are the same for both the sanitized signature and the original
one. Moreover, adding invisibility does not seem trivial either, as the size of
the public parameters of the sanitizer is linear in the limit γ (which must be
secret in invisible schemes). Furthermore, the design of the schemes in [13,24]
has inherent limitations making them unsuitable for practical applications:

– The signer must use a new public key (of size linear in γ) generated by
the sanitizer at each new signature, implying that the signature algorithm is
interactive and requires the presence of the sanitizer.

– If the same signature is sanitized several times such that the total number
of modified parts is greater than γ, then the key of the sanitizer is leaked to
anybody, even if the sanitized signatures considered separately are within the
limit γ, which drastically restricts the number of sanitizations of a signature.

– To verify that the limit γ is respected on a sanitized signature, the verifier
must also have the original signature. However, if the verifier knows the orig-
inal signature and the original message, sanitizable signatures are useless by
design.

For these reasons, we believe that security notions and constructions of γ-
Sanitizable Signatures must be revisited, to produce a more practical and more
secure scheme. As explained above, this cannot be achieved by modifying the
proposed schemes: we must instead get our inspiration from a regular sanitizable
signature scheme that satisfies both unlinkability and invisibility – i.e., [11]. We
will show that the cost of introducing a new feature to sanitizable signatures
is acceptable, especially since compared to Canard and Jambert’s scheme, we
obtain a much more practical scheme, and satisfy more security properties.

Outline. This work is organized as follows: in Sect. 2, we present the different
cryptographic tools that we use, along with the security definitions, then in
Sect. 3 we describe our security model. Our scheme is explained and analysed
in Sect. 4. Some applications are presented in Sect. 5. The complete proofs are
given in Appendix A for the most technical ones. Due to the page limitation,
the less “major”, more classical proofs are given in the full version.
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2 Cryptographic Tools

In this section, we give or recall the definitions of various cryptographic tools that
will be used when building our scheme, or when proving its security properties.

Definition 1 (DDH).Let G be a multiplicative group of order p generated from
a security parameter λ (with �log(p)� = λ) with generator g, the Decisional
Diffie-Hellman (DDH) assumption states that for a, b and c randomly chosen
in Z

∗
p, it is difficult for a polynomial-time adversary A to decide whether he has

been given (ga, gb, ga·b) or (ga, gb, gc), i.e., the following function is negligible:

AdvDDH
G

(λ) = |Pr[1 ← A(ga, gb, gc)] − Pr[1 ← A(ga, gb, ga·b)]|.

Definition 2 (NIZKP [16]). A non-interactive zero-knowledge proof (NIZKP)
for a language L is a pair of algorithms (Prove,Verify) such that:

Prove(s, w): It outputs a proof π that s ∈ L using witness w,
Verify(s, π): It checks whether π is a valid proof that s ∈ L.

A NIZKP must satisfy the following properties:

Soundness. No adversary A (possibly unbounded in time) is such that A(L)
can, with non-negligible probability, output (x, π) where Verify(x, π) = 1 and
x /∈ L.

Completeness. For any statement s ∈ L and its witness w,
Verify(s,Prove(s, w)) = 1.

(Perfect) Zero-Knowledge. The proof π does not leak any information, in
other words, there exists a probabilistic polynomial-time (PPT) simulator Sim
(which has the ability to program the outputs of the random oracle in the ran-
dom oracle model) such that Sim(s) follows the same probability distribution
as Prove(s, w).

Definition 3 (2-Ring Signature (2RS) [5]). A 2-Ring Signature scheme R
is a tuple of 4 PPT algorithms defined as follows:

R.ini(1λ): It returns a setup value set.
R.gen(set): It returns a pair of public/private keys (pk, sk).
R.sig(sk, {pk0, pk1},m): This algorithm computes a signature σ from the message

m using the secret key sk and two public keys (pk0, pk1) (such that sk is the
private key corresponding to one of them).

R.ver({pk0, pk1},m, σ): This algorithm returns a bit d.

A 2RS scheme R is said to be correct if for all (pk0, sk0), (pk1, sk1) output by the
algorithm R.gen(set) where set was output by R.ini(1λ), for any message m, and
for b ∈ {0, 1}:

R.ver({pk0, pk1},m,R.sig(skb, {pk0, pk1},m)) = 1.

We use two security notions for 2-Ring Signatures: strong unforgeability, and
anonimity, formally defined below.
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Definition 4 (Strong Unforgeability). Let P be a 2-ring signature, then P
is strongly unforgeable if for any polynomial-time adversary A, the probability
Pr[ExpSUFP,A(λ) = 1] that A wins the experiment in Fig. 1 is negligible.

Definition 5 (Anonymity). Let P be a 2-ring signature, then P is (per-
fectly) anonymous if for any polynomial-time adversary A, the probability
Pr[ExpanonP,A (λ) = 1] that A wins the experiment in Fig. 1 is negligibly close to
1/2.

Definition 6 (Equivalence-Class Signature (EQS) [22]). An Equivalence-
Class Signature scheme S on a bilinear group of prime order p generated from
a security parameter λ (described as BG = (G1,G2,Gt, g1, g2, gT , e, q)) is a tuple
of 5 algorithms defined as follows:

S.ini(1λ): It returns a setup value set which contains the bilinear group BG.
S.gen(set): It returns a public/private key pair (pk, sk).
S.sig(sk,m): It computes and returns a signature σ on the equivalence class [m]

of the message m using the private key sk.
S.ver(pk, σ,m): It verifies the signature σ under the key pk on the equivalence

class [m] of the message m.
S.ChRep(pk, σ,m, t): It computes and returns a signature σ′ on (the same) equiv-

alence class [mt] = [m] of message mt.

An EQS scheme is said to be correct if for all (pk, sk) output by S.gen(set) where
set was output by S.ini(1λ), for any message m, any scalar t ∈ Z

∗
p:

S.ver(pk,S.sig(sk,m),m) = 1, and

S.ver(pk,S.ChRep(pk,S.sig(sk,m),m, t),mt) = 1

Definition 7 (EUF-CMA). An equivalence-class signature scheme P is said
to be existentially unforgeable under chosen message attacks (EUF-CMA) if for
any polynomial-time adversary A, the probability Pr[ExpEUF-CMA

P,A (λ) = 1] that A
wins the EUF-CMA experiment given in Fig. 1 is negligible.

Definition 8 ((Perfect) Signature Adaptation). An equivalence-class sig-
nature scheme P is said to (perfectly) adapt signatures if, for all tuples
(pk, sk, σ,m, t) such that (pk, sk) is a public/private key pair and S.ver(pk, σ,
m) = 1, it holds that S.sig(sk,mt) and S.ChRep(pk, σ,m, t) are identically dis-
tributed. Formally, this translates into the fact that for any polynomial-time
adversary A, the probability Pr[ExpadaptP,A (λ) = 1] of winning the adapt experi-
ment given in Fig. 1 is negligibly close to 1/2.

Definition 9 (Class-Hiding). A message space M = G
� (with � > 1) of an

equivalence-class signature scheme is said to be class-hiding if for all polynomial-
time adversary A, the probability Pr[Expclass-hidM,A (λ) = 1] of winning the class-hid
experiment given in Fig. 1, in which [m] is the equivalence class of m, is negligibly
close to 1/2.
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Fig. 1. Security experiments and oracles of our cryptographic tools.

Lemma 1 [22]. A message space M = G
� is class-hiding if and only if the DDH

assumption holds in G.

Definition 10 (IND$-CCA). An encryption scheme E=(E.ini,E.gen,E.enc,
E.dec) with security parameter λ is said to be indistinguishable from random
under adaptive chosen ciphertext attack (IND$-CCA) if for any polynomial-time
adversary A, the probability Pr[ExpIND$-CCA

E,A (λ) = 1] that A wins the experiment
in Fig. 1 is negligibly close to 1/2. Note that this notion is equivalent to its more
classic version, IND-CCA, in which the adversary must guess which of the two
messages sent to the challenger was encrypted.

3 Security Model

In this section, we define our notion of γ-Sanitizable Signature, as well as the
various security properties of our model.

Definition 11 (γ-Sanitizable Signature (γSaS)). A γ-Sanitizable Signature
scheme is a tuple of 6 algorithms defined as follows:

Init(1λ): It returns a setup value set.
SiGen(set): It returns a pair of signer public/private keys (pk, sk).
SaGen(set): It returns a pair of sanitizer public/private keys (spk, ssk).
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Sig(m, sk, spk,Adm, γ): This algorithm computes a signature σ from the message
m using the secret key sk, the sanitizer public key spk, the admissible func-
tion Adm and the limit γ. Note that we assume that Adm can be efficiently
recovered from any signature as in the definition of Fleischhacker et al. [19].
Moreover, for a modification Mod we write that Adm(Mod) = 1 to signify
that the modification is allowed, and for a block number i, we write i ∈ Adm
to say that the ith block can be modified.

San(m,Mod, σ, pk, ssk, spk): Let Adm be the admissible function according to the
signature σ. If Adm(Mod) = 1 and Ver(m,σ, pk, spk) = 1 then this algorithm
returns a signature σ′ of the message m′ = Mod(m) using the signature σ,
the signer public key pk and the sanitizer public/private key pair (ssk, spk).
Else it returns ⊥.

Ver(m,σ, pk, spk): It returns a bit b: if the signature σ of m is valid for the two
public keys pk and spk then b = 1, else b = 0. This algorithm is deterministic.

A γ-SaS is said to be correct if for all set output by Init(1λ), all Sig and San
key pairs (pk, sk), (spk, ssk) output by SiGen(set) and SaGen(set), respectively, all
admissible functions Adm, limits γ, modifications Mod, messages m, we have:

Ver(m,Sig(m, sk, spk,Adm, γ), pk, spk) = 1,

and for all σ such that Ver(m,σ, pk, spk) = 1, and for all σ′ output by San(m,
Mod, σ, pk, ssk, spk) such that σ′ �=⊥:

Ver(Mod(m), σ′, pk, spk) = 1.

We now adapt the security properties of sanitizable signatures to fit our
notion. In most cases, the limit must be treated in a similar way as the admissible
function – however, it is important to consider this additional feature carefully,
as it does of course introduce new trivial attacks. The detailed meaning and
formal definition of each adapted property is given below.

Strong Unforgeability: The (strong) unforgeability property ensures that an
adversary cannot create a valid message-signature pair without knowing the
corresponding private key (i.e., sk for the signer and ssk for the sanitizer). The
adversary has access to the signing oracle and the sanitizing oracle, and must
provide a message- signature pair. Of course, the adversary cannot be allowed to
trivially win the experiment by sending a pair produced by either of the oracles
to the challenger – but can, however, produce a pair containing a message that
had been signed by either of the oracles.

Definition 12 (Strong Unforgeability). Let P be a γSaS of security param-
eter λ, then P is strongly unforgeable if for any polynomial-time adversary A,
the probability Pr[ExpSUFULISS,A(λ) = 1] that A wins the SUF experiment given in
Fig. 2 is negligible.

Immutability: A γSaS is immutable when no adversary is able to sanitize a
signature without the corresponding sanitizer secret key or to sanitize a signature
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using a modification function that is not admissible (i.e., Adm(Mod) = 0 or the
number of modifications is higher that the limit γ). The adversary has access to
a signature oracle.

Definition 13 (Immutability [8]). Let P be a γSaS. P is Immut-secure
(or immutable) when for any polynomial time adversary A, the probability
Pr[Expimmut

ULISS,A(λ) = 1] that A wins the immut experiment given in Fig. 2
is negligible, where qSig is the number of calls to the oracle Sig(·, sk, ·, ·, ·),
(mi,Admi, γi, spki) is the ith query to the oracle Sig(·, sk, ·, ·, ·) and σi is the
corresponding response.

Transparency: The transparency property guarantees that no adversary is able to
distinguish whether a signature is sanitized. In addition to the signature oracle,
the adversary has access to a sanitize oracle San(·, ·, ·, ·, ssk). Moreover, the adver-
sary has access to a challenge oracle Sa/Si(b, pk, spk, sk, ssk, ·, ·, ·, ·) that depends
on a randomly chosen bit b: this oracle signs a given message and sanitizes it, if
b = 0 then it outputs the original signature, otherwise it outputs the sanitized
signature. To succeed in winning the experiment, the adversary must guess b. In
order to exclude trivial attacks, we must keep track of the outputs of the chal-
lenge oracle. Indeed, the adversary can easily determine whether the Sa/Si called
Sig or San by sanitizing the output signature and figuring out how many modi-
fications are allowed. The limit does indeed introduce some new and somewhat
tricky trivial attacks for the transparency property. For example, let us consider
a message m of length 2, with both blocks being admissible for modifications,
and a limit of γ = 1. The adversary can query Sa/Si with a modification Mod1

on the first block, then query San on the output with a modification Mod2 on
the second block. If Sa/Si queried Sig, i.e., if the ouput is an original signa-
ture on Mod1(m), then the modification would be allowed, as Mod1(m) and
Mod2(Mod1(m)) only have one difference, but if Sa/Si queried San, i.e., if the
ouput is a sanitized signature of m on Mod1(m), then the sanitization is not
allowed, since m and Mod2(Mod1(m)) have two differences.

Definition 14 (Transparency). Let P be a γSaS. P is Trans-secure (or
transparent) when for any polynomial time adversary A, the probability
Pr[ExptransULISS,A(λ) = 1] that A wins the trans experiment given in Fig. 2 is negli-
gible.

Unlinkability: The unlinkability property ensures that a sanitized signature can-
not be linked with the original one. We consider an adversary that has access
to the signature and the sanitize oracles. Moreover, the adversary has access to
a challenge oracle LRSan(b, pk, ssk, spk, ·, ·) that depends on a bit b: this oracle
takes as input two signatures σ0 and σ1, the two corresponding messages m0

and m1 and two modification functions Mod0 and Mod1 chosen by the adver-
sary. If the two signatures have the same admissible function Adm, if Mod0

and Mod1 are admissible according to Adm and if Mod0(m0) = Mod1(m1)
then the challenge oracle sanitizes σb using Modb and returns it. The goal of
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the adversary is to guess the bit b. The adversary is allowed to query LRSan on
two signatures with different limits, thus to prevent trivial attacks the resulting
output will artificially be limited to the smaller of the two. This means that the
challenger must keep track of the outputs of all three oracles.

Definition 15 (Unlinkability). Let P be a γSaS of security parameter λ. P
is Unlink-secure (or unlinkable) when for any polynomial time adversary A, the
probability Pr[ExpunlinkULISS,A(λ) = 1] that A wins the unlink experiment given in
Fig. 2 is negligibly close to 1/2.

Invisibility: The invisibility property ensures that an adversary who does not
know any private key can neither decide whether a block is admissible for modi-
fication or not, nor how many blocks can be modified. The adversary we consider
has access to the sign oracle, the sanitize oracle, and a left-or-right admissible
oracle LRADM that depends on the bit b chosen by the challenger. The adversary
will give a message m along with two Adm functions Adm0, Adm1 and two γ
values γ0, γ1 as input to this oracle, which will output a signature with Admb

as its admissible function, and γb as a limit. The adversary will try to guess the
value of b. To exclude trivial attacks, we must artificially limit the number of
modified blocks to min(γ0, γ1) on any signature created by LRADM no matter
the value of b, and we must also prevent the adversary from querying a saniti-
zation with a Mod function that is admissible by Adm0 but not by Adm1 or
vice-versa.

Definition 16 (Invisibility). Let P be a γSaS of security parameter λ, then
P is said to be Invis-secure (or invisible) if for any polynomial-time adversary
A, the probability Pr[ExpinvisULISS,A(λ) = 1] that A wins the invis experiment given
in Fig. 2 is negligibly close to 1/2.

4 Scheme

We now present our scheme, ULISS, and detail the role of each of its building
blocks. We first give an idea of the aim of the centerpiece of our scheme, i.e.,
the zero-knowledge proofs, and more specifically, their commitments, before giv-
ing the formal definition of our scheme, after which we detail the goal of each
primitive.

Recall that whoever signs a message must be able to prove that it was done
within the authorized bounds. When a message is signed, the signer also com-
putes some commitments that will be used in the zero-knowledge proofs. Each
commitment is a hash of some value concatenated with the public parameters.
All commitments are initially elevated to an identical, random exponent x, and
signed by the signer. To avoid traceability, the sanitizer will present them ele-
vated to another, random exponent t in each sanitization. This resulting expo-
nent is used as a witness in the zero-knowledge proof. The implications of this
(change of) exponent are detailed after the definition of our scheme, at the end
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Fig. 2. Security experiments and oracles for γSaS properties.
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of this subsection. For simplicity, we omit both the exponent and the public
parameters in the following explanation.

Commitments are divided in two categories: those meant to show that only
admissible blocks are modified, and those meant to show that the number of
modifications is below the limit. For the first kind, they are as follows: if a
block i can be modified, then its corresponding commitment is a hash of its
index, otherwise it is a hash of its index concatenated with its content. The
sanitizer will thus have to show that for each block of the modified message, the
commitment is either equal to the hash of the index or the hash of the index
concatenated with its content – if at least one unauthorized block was modified,
then the sanitizer cannot produce a valid proof. We also add to this batch a
commitment of the public parameters, to authenticate them.

The second kind is slightly more intricate: one commitment is the hash of
the limit γ, then for each block, the commitment is the concatenation of the
index and the content of that block. The sanitizer will have to show that there
exists a value v such that the hash of v is equal to the first commitment, and,
considering there are n message blocks, at least n − i blocks of the modified
message are such that the hash of their index and their content is equal to their
corresponding commitment.

Scheme 1 (ULISS). Let G be a group of prime order p, and g be a generator
of G. Let E be a public key encryption scheme such that E = (E.ini, E.gen,
E.enc, E.dec), S be an Equivalence-Class Signature such that S = (S.ini,S.gen,
S.sig,S.ver,S.ChRep), R be a 2-Ring Signature scheme such that R = (R.ini,
R.gen,R.sig,R.ver), and F and H be two hash functions (of domain {0, 1}∗ and
codomain G). Our scheme instantiated with (G, E, S, F,H) is a γ-sanitizable
signature scheme defined by the following algorithms:

Init(1λ): It runs setE ← E.ini(1λ), setR ← R.ini(1λ) and setS ← S.ini(1λ), then it
returns the setup set = (setE , setR, setS).

SiGen(set): It parses set = (setE , setR, setS), runs (pkS , skS) ← S.gen(setS),
(pkR, skR) ← R.gen(setR), and returns (pk, sk) = ((pkS , pkR), (skS , skR)).

SaGen(set): It parses set, runs (spkE , sskE) ← E.gen(setE), (spkR, sskR) ←
R.gen(setR), and returns (spk, ssk) = ((spkE , spkR), (sskE , sskR)).

Sig(m, sk, spk,Adm, γ): It parses sk as (skS , skR), spk as (spkE , spkR) and m as
m1‖ . . . ‖mn and sets pp = pk‖spk. It picks x

$← Z
∗
p, sets V ← F (pp)x and

C = H(γ‖pp)x, then for all i in [n]:
– It computes Ai ← H(i‖mi‖pp)x.
– If i ∈ Adm, it computes Bi ← F (i‖pp)x, else it computes Bi ←

F (i‖mi‖pp)x.
It then computes the two following proofs:

π1 ← NIZK

{
x :

n∧
i=1

(
(Bi = F (i‖pp)x ∧ V = F (pp)x)

∨ (Bi = F (i‖mi‖pp)x ∧ V = F (pp)x)

)}

π2 ← NIZK

{
x :

n∨
i=1

(
∃ J ⊆ [n], (|J| = n − i) ∧ (∀ j ∈ J,

(Aj = H(j‖mj‖pp)x) ∧ (C = H(i‖pp)x))
)}
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Finally, it generates the following values:
– s ← S.sig(skS , (A1, B1, . . . , An, Bn), C, V ),
– e ← E.enc(spkE , (x, (Ai, Bi)i∈[n], C, V, s)),
– r ← R.sig(skR, {pkR, spkR}, (m, (Ai, Bi)i∈[n], C, V, π1, π2, s, e)),

and returns σ = ((Ai, Bi)i∈[n], C, V, π1, π2, s, e, r).
San(m,Mod, σ, pkssk, spk): This algorithm computes m′

1‖ . . . ‖m′
n ← Mod(m),

sets pp = pk‖spk, parses pk as (pkS , pkR) and ssk as (sskE , sskR),
parses σ as ((Ai, Bi)i∈[n], C, V, π1, π2, s, e, r), picks t

$← Z
∗
p, runs

(x, (Ãi, B̃i)i∈[n], C̃, Ṽ , s̃) ← E.dec(sskE , e), sets x′ = x · t, V ′ = F (pp)x′
and

C ′ = H(γ‖pp)x′
, and runs e′ ← E.enc(spkE , (x, (Ãi, B̃i)i∈[n], C̃, Ṽ , s̃)). The

algorithm verifies that the signatures (s and r) are valid, and verifies that
Adm(Mod) = 1, else it aborts. For all i in [n], it sets A′

i = Ãt
i, B′

i = B̃t
i , then

it computes the signature s′ ← S.ChRep(pkS , s̃, (Ã1, B̃1, . . . , Ãn, B̃n, C̃, Ṽ ), t).
It then computes the two following proofs:

π′
1 ← NIZK

{
x′ :

n∧
i=1

( (
B′

i = F (i‖pp)x′ ∧ V ′ = F (pp)x
′ )

∨
(

B′
i = F (i‖m′

i‖pp)x
′ ∧ V ′ = F (pp)x

′ )
)}

π′
2 ← NIZK

{
x′ :

n∨
i=1

(
∃ J ⊆ [n], (|J| = n − i) ∧ (∀ j ∈ J,(

A′
j = H(j‖m′

j‖pp)x′ ) ∧
(

C′ = H(i‖pp)x′ ))
)}

Finally, it computes r′ ← R.sig(sskR, {pkR, spkR}, (Mod(m), (A′
i, B

′
i)i∈[n], C

′,
V ′, π′

1, π
′
2, s

′, e′)) and returns σ′ = ((A′
i, B

′
i)i∈[n], C

′, V ′, π′
1, π

′
2, s

′, e′, r′).
Ver(m,σ, pk, spk): It parses σ as ((Ai, Bi)i∈[n], C, V, π1, π2, s, e, r), pk as

(pkS , pkR) and spk as (spkE , spkR), then if π1 and π2 are valid, and:
– S.ver((A1, B1 . . . , An, Bn, C, V ), pkS , s) = 1,
– R.ver((m, (Ai, Bi)i∈[n], C, V, π1, π2, s, e), {pkR, spkR}, r) = 1,

then it returns 1, else 0.

From the definition of the Verify algorithm, we see that the correctness of
our scheme relies on the correctness of the NIZKP, as well as the correctness of
the 2-Ring Signature and the Equivalence-Class Signature.

Having now introduced all notations, we can give a more in-depth description.

Non-interactive ZKPs. The commitments denoted as V and {Bi}i∈[n] are linked
to the admissible function, with Bi being the ith block’s commitment, and V
being the public parameter’s commitment. We see that it serves its purpose:
the prover must show that for each block (denoted by

∧n
i=1) in the (modified)

message, the corresponding commitment is either equal to the hash of the index,
or (denoted by ∨) the hash of the index and the content.

The C and {Aj}j∈[n] commitments are linked to the limit γ, with C com-
mitting the limit and Aj committing the original content of block j. Again, they
follow the idea described at the beginning of the section: the prover must show
that there is a value i ∈ [n] (denoted by

∨n
i=1), for which there exists a subset

J ⊆ [n] such that [n]\J has a size i, such that i is committed in C, and such
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that for all indices j ∈ J , the hash of j and the content of block j is equal to
Aj . The soundness of these proofs implies the immutability.

Recall that, to compute a sanitization, the sanitizer will generate its own
random value t and elevate all commitments to the power of t in order to produce
a signature with different commitments, using x′ = x · t as its witness in the
proofs.

All information about the admissibility or the limits are hidden by the com-
mitments. Since the proofs are zero-knowledge, they do not leak this information
to the verifier, which ensures that ULISS is invisible. Moreover, since all the
other parts of the signature are computed in the same way by the signer and the
sanitizer, ULISS is transparent.

Class-Equivalence Signature. The signer first signs the commitments using a
class-equivalence signature. Indeed, as mentioned above, the sanitizer will modify
the commitments by elevating them all to the same power, i.e., using different
elements from the same equivalence class. Thus, using class-equivalence signature
allows the sanitizer to authenticate this change by changing the representative.
Thanks to the adaptability, the sanitizer can randomize all the commitments
and update the class-equivalence signature accordingly. Since the other parts of
the sanitizable signature are re-generated by the sanitizer (the ciphertext, the
2-ring signature, and the proofs), the verifier cannot link the sanitized signature
to the original one, making our scheme unlinkable.

Encryption Scheme. Each sanitization will be done on the original commitments
and not on the (potentially) sanitized ones. Thus, the signer must include an
encryption of the commitments along with the exponent x in the signature. In
order for the signatures to remain unlinkable, the sanitizer will re-encrypt the
commitments and their exponent when it sanitizes a signature instead of simply
keeping the same ciphertext.

2-Ring Signature. The actual signature of the message itself is done with a 2-
Ring Signature, which has the interesting property of taking one secret key and
two public keys as input, and does not give the information of which public key
verifies the signature when it is checked. This allows us to verify the transparency
property, as the signer and the sanitizer will input both of their public keys when
signing the message, and everything else that was computed, i.e., commitments,
proofs, the equivalence-class signature, and the encryption.

Instantiation of the Zero-Knowledge Proofs. ULISS uses two NIZKP for
discrete logarithm relations, as detailed above.
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Fig. 3. LogEq protocols.

Even if the languages of these proofs seem non-
trival, we show how to efficiently instantiate them
without heavy generic zero-knowledge proofs by
using specific Schnorr-like protocols only, which
guarantees that our signature is practical. We use
the interactive proof of two discrete logarithms
equality given in [14] by Chaum and Pederson as
a building block, which we recall in Fig. 3. We use
the technique given in [15] to transform a proof
that an instance belongs to some language into a
proof that k-out-of-n instances belong to some lan-

guages. This transformation works on sigma protocols, like the Chaum and Ped-
erson proof. The proof π1 is an AND-proof of n 1-out-of-2 discrete logarithm
equality proofs: we can obtain such a proof by performing n 1-out-of-2 discrete
logarithm equality proofs separately. Since each discrete logarithm equality uses
the same pair of basis/element of the group (V = F (pp)x in our protocol), the
proof that each discrete logarithm is the same x is implicit.

The proof π2 is a 1-out-of-n proof, where each of the n instances is actu-
ally i-out-of-n discrete logarithm equality proof instances, for each i such that
1 ≤ i ≤ n. This proof can be obtained by using the transformation of [15] on
the Chaum and Pederson proof twice. We applied the Fiat-Shamir transforma-
tion [18], in order to obtain non-interactive versions of these proofs, by using the
commitments hash as a challenge.

Performance. We now look at the complexity of π1 and π2. More precisely, we
study the number of exponentiations performed by the prover and by the verifier,
and we deduce the size of the proof by counting the number of group elements. The
size of a k-out-of-n proof is n times the size of the original proof, and the verifica-
tion algorithm requires n times the computation time of the original proof verifica-
tion. The proof algorithm uses a simulator of the original proof: since the Chaum
and Pederson proof is zero-knowledge, there exists at least one simulator that per-
fectly simulates the proof. We can use the simulator Sim(g1, g2, h1, h2) that picks
(c, z) $← (Z∗

p)
2, computes R1 = gz

1/hc
1 and R2 = gz

2/hc
2, and return (R1, R2, c, z).

The proof algorithm of a k-out-of-n proof requires k times the computation time
of the original proof algorithm, and n − k times the computation time of the sim-
ulator. We recap the performances of our zero-knowledge proofs in Table 1.

Table 1. NIZKP performance

• Prove Verify Size

Chaum Pederson [14] 2 4 3

k-out-of-n on [14] 4 · n − 2 · k 4 · n 3 · n
π1 6 · n 8 · n 6 · n
π2 3 · n2 − n 4 · n2 3 · n2
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Scheme Complexity. We use the NIZKPs previously given, the class-
equivalence signature presented in Fuchsbauer et al. [20], the Fujisaki-Okamoto
CCA-transformation [21] on El Gamal [17] as a Public-Key Encryption, and
the Ring-Signature presented in Bultel and Lafourcade [10]. Note that this ring-
signature is not the most efficient one, however this scheme is verifiable, meaning
it makes our scheme accountable according to the generic transformation given
in [11]. We provide the size of our parameters with these choices in Table 2, as
well as the number of exponentiations and pairings in Table 3. For the sake of
simplicity, we don’t differentiate elements of group G of prime order p where
DDH holds, and elements of Z∗

p. The number of message blocks is denoted by n.
In average, the computational and size cost of having the limit is a factor n in
comparison with [11].

Table 2. Parameter size comparison.

Size of the parameters (group elements)

Scheme Sig. sk Sig. pk San. sk San. pk Signature

ULISS 2 2 2 2 3n2 + 10n + 22

[11] n +1 n + 1 2 2 4n + 18

Security Proofs. In this section, we list the conditions under which our scheme
verifies the security properties defined in Sect. 3. We give brief sketches of the
proofs of each theorem, for which complete versions can be found in Appendix A
(for Theorems 1, 3, and 5), or in the full version.

Theorem 1 (Strong Unforgeability). For any underlying strongly unforge-
able 2-Ring Signature scheme R, our scheme ULISS is strongly unforgeable.

Table 3. Complexity comparison.

Complexity (exponentiations and pairings)

Scheme Sign Sanitize Verify

ULISS exp 3n2 + 9n + 16 3n2 + 7n + 12 4n2 + 8n + 8

pairing 0 0 2n + 5

[11] exp 5n + 13 3n + 16 8

pairing 0 0 4n + 6

Proof. The complete proof is given in Appendix A.1.
We show that if ULISS is not unforgeable, then neither is the 2-Ring Sig-

nature Scheme R. This is done by building an adversary B against the SUF
property of R who simulates the experiment for A by computing everything but
signatures from R. B can simply forward A’s forgery to its challenger.
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Theorem 2 (Immutability). If the underlying class-equivalence signature
scheme S is existentially unforgeable under chosen-message attack, and proofs
π1 and π2 are sound, then our scheme ULISS is immutable.

Proof. The complete proof is given in the full version.
We show that ULISS is immutable by first listing how A could win the experi-

ment and then show how (un)likely these events are to occur. In order to produce
a sanitized signature that either (1) uses a previously unseen public key spk∗,
(2) has modifications on inadmissible blocks, or (3) has too many modifications,
the adversary A must: exploit a collision in the commitments that would match
two signatures, if there are none, it must fake the zero-knowledge proofs, and if
that is not possible, then it must forge the equivalence-class signature. We thus
show how the advantage of A against the immutability of ULISS is related to
these three events.

Theorem 3 (Unlinkability). If our scheme is strongly unforgeable, and for
any IND$-CCA underlying encryption scheme, any class-hiding and adaptable
underlying class-equivalence signature, any zero-knowledge NIZKP, and under
the DDH assumption, our scheme ULISS is unlinkable in the random-oracle
model.

Proof. The complete proof is given in Appendix A.2.
The general idea of this proof is to follow a classical game-hops strategy

where we replace some elements with random, progressively, to show that the
adversary A cannot distinguish which signature was sanitized if the final result
is indistinguishable from random. In the beginning, we ensure the signatures
input by A using the challenger’s signer and sanitizer keys are not forgeries, i.e.,
were computed by the challenger. We then use the IND$-CCA property of the
encryption to replace its input with random, then we use the adaptability of
the class-equivalence signature to replace every change of representative (from
m to mt) to a signature (of mt), breaking that link between a sanitization and
its original signature, then we use the zero-knowledge property of the NIZKP
to replace them with simulations, in order to afterwards replace the original
commitments with random (using DDH), so that we can finally use the class-
hiding property of the message space used in the class-equivalence signature to
replace the commitments with random in the sanitizations, thus breaking the
final relevant link with the original signature.

Theorem 4 (Transparency). If our scheme ULISS is strongly unforgeable,
then for any underlying class-equivalence signature scheme with perfect signature
adaptation S, any zero-knowledge NIZKP, any underlying anonymous 2-Ring
Signature scheme R, any IND$-CCA underlying encryption scheme, and under
the DDH assumption, ULISS is transparent in the random oracle model.

Proof. The complete proof is given in the full version.
The idea of this proof is that an adversary A can either distinguish who signed

via the equivalence-class signature S (“is it a signature on mt, or a change of
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representative on a signature of m?”), via the commitments (“are these hashes
of m or Mod(m)?”), or via the 2-Ring Signature R (“was it signed by pkR or
spkR?”), or by replacing the signature with a forgery whose properties are the
same but whose γ is not artificially controlled by the challenger. If our scheme
is strongly unforgeable, if S has perfect signature adaptation, if DDH holds, the
proofs are zero-knowledge, if the encryption is IND$-CCA, and if R is anonymous,
then A cannot answer any of these questions.

The proof first ensures no forgery can happen, then replaces the commit-
ments with random (also replacing the input to the encryption and the NIZKP),
then the proof uses a hybrid argument, with experiment 1 (E1) being the b = 1
experiment, then hybrid experiment H which is like E1 except the 2-Ring sig-
natures are all signed with the signer’s key, and experiment 0 (E0) is the b = 0
experiment. Differentiating E1 from H implies breaking the anonymity of the
2RS, and differentiating H from E0 implies breaking the perfect adaptation of
the class-equivalent signature.

Theorem 5 (Invisibility). If our scheme ULISS is strongly unforgeable, for
any IND$-CCA underlying encryption scheme, any zero-knowledge NIZKP, and
under the DDH assumption, ULISS is invisible in the random oracle model.

Proof. The complete proof is given in Appendix A.3.
Using the same logic as for the unlinkability, we first ensure that the adversary

does not produce and use forgeries, then we progressively replace elements with
random and show that the resulting signature is indistinguishable from the real
one. The only commitments linked to the limit and the admissible function are
C and {Bi}i∈[n], thus we first use the IND$-CCA property of the encryption to
replace its input with random, then we replace the zero-knowledge proofs with
simulated ones, so that we can ultimately use the DDH property to replace the
C and {Bi}i∈[n] commitments with random instead of generating them honestly.

5 Application

In this Section, we detail several examples of how γ-Sanitizable Signatures could
be used in practice. All scenarios below follow the same basic idea: someone (the
signer) wishes to allow another person (the sanitizer) to modify pre-specified
blocks of some authenticated data without losing the authentication, but not all
of these pre-specified blocks at once. Recall that this limit (the “not all allowed
blocks at once”) is not present in regular SaS, hence the need for γSaS in the
following examples.

Medical Data. To keep the usual application on medical data, we believe that
it is both important to anonymize – hiding personal information and perhaps
uncommon diseases – and censor whatever is irrelevant to the data analysis, while
also preventing a too large modification that would allow dishonest results, e.g.,
linking two unrelated medical conditions. In this example, the signer would be
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anyone from the medical staff, while someone who is more on the administrative
side would be a sanitizer.

In [11], the authors highlight the importance of having both invisibility and
unlinkability in sanitizable signature using the following example: a physician
signs the medical record of a patient in such a way that the sanitizer can (1)
remove the personal information and send the anonymized record for analysis,
and (2) remove everything except for the personal information, for financing pur-
poses. Unlinkability ensures that the two sanitized signatures cannot be linked,
which would mean reconstructing the full medical record. Invisibility maintains
secrecy about what has been modified or not, preventing the verifier from assum-
ing anything about the patient’s possible pathology. However, without limitation,
the sanitizer can modify both medical and personal data in the record, and can
therefore create just about any false record. Our primitive corrects this flaw: by
preventing the sanitizer from modifying more than half of the modifiable parts,
we strongly reduce its capacities of generating false records.

Identity Theft. Another (completely different) angle could be usurpation-
resistance on websites, mostly social media: some information about a user may
change (name, address, phone number, etc.) but usually not all of them at once...
unless the user was pretending to be someone else.

Thus, a website moderator could sign a profile with γSaS, allowing a user
to modify γ elements at once. After some time has passed since the last mod-
ification, the moderator will re-sign the current profile state, allowing the user
to change “new” things. This ensures that the profile will remain close to the
original even when changes are made.

A similar control is done on Facebook, where you can only change your
birthday or the name of your page2 every once in a while.

Figure 4 explains how our scheme could be used, in a simple case where a
user can edit their name and their birthday, but only one of them each time,
with the moderator re-signing every time t days pass without a modification. In
this case, we use a 1SaS scheme (more generally, a γSaS scheme where the user
is allowed to modify γ pieces of information). Assume that the information of
the user is info0 = “name : Alice; bday : 01/01/01”. The social media generates
the signature

σ0 ← Sig(info0, sk, spk,Adm, 1)

to validate Alice’s information, where Adm accepts the messages of the form
“name : ∗;bday : ∗” where * can be replaced by any word. If Alice want to change
her name to Bob, she can sanitize σ by computing:

σ′
0 ← San(info0,Mod, σ0, pk, ssk, spk),

where Mod(info0) = “name : Bob; bday : 01/01/01”. The sanitized signature
still authenticates the social network, and thanks to the transparency and the
unlinkability properties, no user can guess what information has been modified

2 facebook.com/help/271607792873806.

http://facebook.com/help/271607792873806
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to obtain σ′
0, even when having access to σ0. After t days, the social network

generates a new signature on info1 = “name : Alice; bday : 01/01/01”:

σ1 ← Sig(info1, sk, spk,Adm, 1).

Alice can then modify the parameters to further change her profile.

Fig. 4. A timeline of our proposed application.

Contracts. Yet another angle is that of contracts, with a focus on employment
contracts. Regulations may differ within a company from branch to branch, com-
pared to what the country’s law dictates and what the company’s headquarters
decide (e.g., in France, trade unions may negotiate with management to obtain
better deals, for example on paid leave) and: the director (the signer) could
issue and sign a basic contract that can be edited afterwards by the branches
(sanitizers), within specified bounds. In this case, we only wish to allow mod-
ifications to cover exceptions to the contract while staying as close as possible
to the original: SaS are not fine-grained enough to obtain this, which is why we
need γSaS.

Takeaway. Ultimately, we simply wish to trust the sanitizer as little as possible:
in a broader consideration, we can argue that this limit allows the sanitizer to
correct potential mistakes made on a signed document while not being able to
act dishonestly, i.e., the signer could write something incorrect at n potential
places, but will probably not be wrong more than γ different times.

6 Conclusion

In this work, we looked at an interesting feature for Sanitizable Signatures that
we call γ-Sanitizable Signatures, which allows to not only control which blocks of
a message a sanitizer can modify, but how many of them can be changed at once.
We extended the security properties of unlinkability, invisibility, transparency,
(strong) unforgeability, and immutability to these γ-Sanitizable Signatures. We
proposed our scheme, ULISS, (which stands for Unlinkable Limited Invisible
Sanitizable Signature), whose basic building blocks are class-equivalence signa-
tures, 2-ring signatures, and zero-knowledge proofs, and showed that it verifies
all of the properties listed above. In the future, we aim to design a scheme as effi-
cient as the ones without limits, i.e., with linear complexity and signature size.
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We also intend to work on designing unlinkable and invisible schemes for other
restrictions, such as limiting the set of possible messages for each modifiable
parts, in a hidden way.
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A Complete Proofs

A.1 Proof of Theorem 1

Proof. Let A be an adversary that wins the strong unforgeability game for ULISS
and let B be an adversary against the strong unforgeability of the underlying 2-
Ring Signature R. Let C be B’s challenger. We show how B can perfectly simulate
the experiment for A to win its own experiment.

Indeed, to simulate A’s experiment, B can compute everything on its own
(the encryption, the class-equivalence signatures) except for the 2-ring signature.

At the beginning of the experiment, B generates the necessary key pairs
(pkE , skE) and (pkS , skS) to simulate the encryption and the equivalence-class
signatures. B also creates an empty set S ← {}. C sends (pk0, pk1) to B, who
can set pk ← (pkS , pk0) and spk ← (pkE , pk1) and send that to A.

Upon receiving a query for a signature (or sanitization) of a message m (or
a modified message Mod(m)), B acts as follows:

Sig(·, sk, ·, ·, ·): A sends (m,Adm, spk, γ), B parses m into n blocks, generates
x

$← Z
∗
p, sets pp = pk‖spk, then computes V ← F (pp)x and C ← H(γ||pp)x

as well as the (Ai, Bi)i∈[n] and the two proofs π1 and π2 as described in
Scheme 1.
B then computes s ← S.sig(skS , (Ai, Bi)i∈[n], C, V ) and e ← E.enc(spkE , x,
(Ai, Bi)i∈[n], C, V, s), and queries C for (0, (m, (Ai, Bi)i∈[n], C, V, π1, π2, s, e)),
receiving s as an answer. B finally outputs σ ← ((Ai, Bi)[n], C, V, π1, π2, s, e, r)
to A, and adds (m,σ) to S.

San(·, ·, ·, ·, ssk): A sends (m,Mod, σ, pk), B parses Mod(m) as n blocks, parses
σ as ((Ai, Bi)[n], C, V, π1, π2, s, e, r), picks t

$← Z
∗
p, deciphers e to get c =

x, (Ãi, B̃i)[n], C̃, Ṽ , s̃ and computes x′ = x · t, before re-encrypting it as e′.
B then sets pp = pk‖spk, computes V ′ = F (pp)x′

, C ′ = H(γ||pp)x′
, then

all A′
i and B′

i as described in Scheme 1, and computes the signature s′ as
S.ChRep(pkS , s, (Ãi, B̃i)i∈[n], C̃, Ṽ , t). B can then compute the proofs π′

1 and
π′
2 as described in Scheme 1. B then queries C for a signature r′ as an answer

to (1, (Mod(m), (A′
i, B

′
i)i∈[n], C

′, V ′, π′
1, π

′
2, s

′, e′)), and finally answers A with
σ′ ← ((A′

i, B
′
i)i∈[n], C

′, V ′, π′
1, π

′
2, s

′, e′, r′), adding (Mod(m), σ′) to S.

At the end of the experiment, A will produce a pair (m,σ). If this pair
is in S, then B returns 0, as this is considered a trivial win and thus
excluded. Otherwise, B parses σ as ((Ai, Bi)[n], C, V, π1, π2, s, e, r), sets m̄ =
(m, (Ai, Bi)[n], C, V, π1, π2, s, e)) and sends (m̄, r) as its answer to C.
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Note that the winning conditions for B and for A actually coincide: if
(m, (�, r)) is in S, then C has the pair ((m, �), r) in its own set, and vice-versa.
There is a direct correspondence between the sets.

To be thor-
ough, let (m,σ) = (m, ((Ai, Bi)[n], C, V, π1, π2, s, e, r)) be A’s answer. If there
exists (m,σ′) = (m, ((A′

i, B
′
i)[n], C

′, V ′, π′
1, π

′
2, s

′, e′, r′)) with σ′ �= σ in S (and
the corresponding (m̄0, r

′) = ((m, (A′
i, B

′
i)[n], C

′, V ′, π′
1, π

′
2, s

′, e′), r′) in C’s set),
then the pair (m̄1, r) = ((m, (Ai, Bi)[n], C, V, π1, π2, s, e), r) that B forwards to
C can be such that r = r′ or m̄0 = m̄1, but not both, since σ′ and σ differ by at
least one variable, and thus (m̄0, r

′) is not in C’s set.
For the other way around, we apply the same logic to the case where the pair

(m′, σ) such that m′ �= m is in S to see that (m̄0, r
′) is not in C’s set in this case

either. Thus:
AdvSUFULISS,A(λ) ≤ AdvSUFR,B(λ).

A.2 Proof of Theorem 3

Proof. An adversary A wins the unlinkability experiment by distinguishing
which of two signatures σ0 or σ1 was sanitized. We exclude trivial ways of winning
by asking for valid signatures with the same admissible function Adm0 = Adm1,
identically admissible modification functions (Adm0(Mod0) = Adm1(Mod1)),
sanitized such that the signed message is identical (Mod0(m0) = Mod1(m1)).
Note that all calls to H and F are implicitly simulated by a random oracle.

We show that

AdvunlinkULISS,A(λ) ≤ qSigqLRSanAdv
class-hid
S (λ) + AdvadaptS (λ) + AdvIND$-CCA

E (λ)

+ qSig(qH + qF ) · AdvDDH
G

(λ) + AdvSUFULISS(λ).

In the following sequence of games, let Si be the event that A wins at Game i.

Game 0. This is the original ExpunlinkULISS,A(λ) experiment, hence:

AdvunlinkULISS,A(λ) = Pr[S0] − 1/2

Game 1. This game is the same as Game 1 except the challenger aborts and
returns a random bit if A queries LRSan on a forgery. Denoting with abort1 the
event that the challenger aborts in this game, we have that

Pr[abort1] ≤ AdvSUFULISS(λ),

and since |Pr[S1] − Pr[S0]| = Pr[abort1],

|Pr[S1] − Pr[S0]| ≤ AdvSUFULISS(λ).

After this game, the adversary can only query LRSan on signatures output
by the challenger.
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Game 2. This game is identical to Game 1 except the input to the encryption
scheme is replaced with random. We claim that:

|Pr[S2] − Pr[S1]| = AdvIND$-CCA
E (λ)

Proof. We show that if there exists a PPT adversary A capable of distinguishing
between Games 2 and 1 then we can build an adversary B against the IND$-CCA
security of the encryption scheme.

Let C be B’s challenger, we show how B can simulate A’s challenges. At the
beginning, C generates the encryption key pair (pkE , skE), picks a bit b, forwards
pkE to B and whenever B sends a message m, C answers with the encryption of
a random message if b = 0, and with the encryption of m if b = 1. B will embed
its challenges into A’s challenges.

B picks a random bit b′. B generates key pairs (pkS , skS) for the equivalence-
class signature S, then two key pairs (pkR, skR), (spkR, sskR) for the 2-
Ring Signature, then sets (pk, sk) ← ((pkS , pkR), (skS , skR) and (spk, ssk) ←
((pkE , spkR), sskR). B then forwards (pk, spk), to A, sets L ← [ ] to keep track of
the limits, Q ← [ ] to keep track of the commitments (indeed, B won’t be able to
query C for decryptions on the challenges), and answers A’s queries as follows:

Sig(·, sk, ·, ·, ·): A sends (m,Adm, ¯spk, γ), B computes the signature as
described in Scheme 1, except if ¯spk = spk, instead of encrypting c =
(x, (Ai, Bi)i∈[n], C, V ) itself, it sends c to C and receives e in exchange,
sets Q[e] = c, then continues normally to obtain a signature σ, then sets
L[σ] = (m, γ), and returns σ.

LRSan(b′, pk, ssk, spk, ·, ·): on input ((m0,Mod0, σ0)(m1,Mod1, σ1)), this ora-
cle returns ⊥ if for i ∈ {0, 1}, any of the following conditions do not
hold: (1) Ver(mi, σi, pk, spk) = 1, (2) Adm0 = Adm1, (3) Adm0(Mod0) =
Adm1(Mod1) and (4) Mod0(m0) = Mod1(m1), else it gets (m̄i, γi) ← L[σi]
for i ∈ {0, 1}, then if D(Mod0(m0), m̄0) ≤ γ0 and D(Mod1(m1), m̄1) ≤ γ1,
it computes the sanitization of σb′ :

– B follows all of the sanitization as described in Scheme 1 to sanitize σb′

except for the decryption/encryption; let eb′ be the encryption in σb′ , then
B retrieves c ← Q[eb′ ], queries C for a new encryption e′ of c, then contin-
ues normally, producing a sanitized signature σ′ using e′ as its encryption.
finally, B sets L[σ′] ← (m̄b,min(γ0, γ1), and Q[e′] ← c, and returns σ′,

else it returns ⊥.
San(·, ·, ·, ·, ssk, spk): on input (m,Mod, σ, p̄k), B gets (m̄, γ) ← L[σ], then if we

have D(Mod(m), m̄) ≤ γ it computes the sanitization:
– B computes the sanitized signature normally except for the encryp-

tion/decryption; let e be the encryption in σ, if p̄k �= pk, then B queries C
for a decryption of e and obtains c then re-encrypts it to obtain e′, else if
p̄k = pk, B gets c ← Q[e] then queries C on c for an encryption e′, setting
Q[e′] = c; B then uses the content of c to follow the steps and compute
the sanitized signature σ′, then sets L[σ′] = L[σ], and returns σ′,

else it returns ⊥.
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At the end of the experiment, A returns a bit b∗. If b∗ = b′, then B returns
1, else it returns 0.

Analysis: If b = 0 then B perfectly simulates Game 2 to A, else it perfectly
simulates Game 1. If B returns 1, it means A wins (b∗ = b′), thus :

Pr[B → 1|b = 1] = Pr[b∗ = b′|b = 1] = Pr[A wins|b = 1] = Pr[S1]
and Pr[B → 1|b = 0] = Pr[b∗ = b′|b = 0] = Pr[A wins|b = 0] = Pr[S2]

so |Pr[S1] − Pr[S2]| = |Pr[B → 1|b = 1] − Pr[B → 1|b = 0]| = AdvIND$-CCA
E (λ)

After this game, the content of the encryption cannot be used to link the
sanitization with the signature.

Game 3. This game is the same as the previous one, except every occurrence
of S.ChRep(pkS , s,m, t) is replaced with S.sig(pkS ,mt). We argue that

|Pr[S3] − Pr[S2]| = AdvadaptS (λ).

Proof. Indeed, we show that if there exists a PPT adversary A capable of distin-
guishing between Games 3 and 2, then we can build a PPT adversary B against
the adaptability of the underlying equivalence-class signature, S.

Let C be B’s challenger. At the beginning of the experiment, C picks a random
bit b and generates a signing key pair (pkS , skS), which is sent to B. B generates
the remaining key pairs to complete (pk, sk) and (spk, ssk) (i.e., the pairs for the
2-Ring Signature, and the pair for the encryption scheme), and forwards pk and
spk to A. B also picks a random bit b′.

B answers A’s queries as follows:

Sig(·, sk, ·, ·, ·): A sends (m,Adm, ¯spk, γ), B computes the signature as described
in Scheme 1 and returns it, except if ¯spk = spk, instead of encrypting c =
(x, (Ai, Bi)i∈[n], C, V ), it encrypts a random string to obtain e, sets Q[e] = c,
then continues normally to obtain a signature σ, then sets L[σ] = (m, γ), and
returns σ.

LRSan(b′, pk, ssk, spk, ·, ·): on input ((m0,Mod0, σ0)(m1,Mod1, σ1)), this ora-
cle returns ⊥ if for i ∈ {0, 1}, any of the following conditions do not
hold: (1) Ver(mi, σi, pk, spk) = 1, (2) Adm0 = Adm1, (3) Adm0(Mod0) =
Adm1(Mod1) and (4) Mod0(m0) = Mod1(m1), else it gets (m̄i, γi) ← L[σi]
for i ∈ {0, 1}, then if D(Mod0(m0), m̄0) ≤ γ0 and D(Mod1(m1), m̄1) ≤ γ1,
it computes the sanitization of σb′ :

– B follows all of the sanitization as described in Scheme 1 to sanitize σb′

except for the decryption/encryption and the change of representative for
the equivalence-class signature s:

• let eb′ be the encryption in σb′ , then B retrieves c ← Q[eb′ ], encrypts
a random string to obtain e′, and sets c ← Q[e′], then

• after computing everything else normally (using the content of c), B
queries C for a signature s′ with ((pkS , skS), s, ((Ai, Bi)i∈[n], C, V ), t),
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then B continues ordinarily, producing a sanitized signature σ′ using e′

as its encryption and s′ as its equivalence-class signature. Finally, B sets
L[σ′] ← (m̄b,min(γ0, γ1), and returns σ′,

else it returns ⊥.
San(·, ·, ·, ·, ssk, spk): on input (m,Mod, σ, p̄k), if p̄k �= pk it computes the sani-

tization normally, else B gets (m̄, γ) ← L[σ], then if D(Mod(m), m̄) ≤ γ it
computes the sanitization:

– B computes the sanitized signature as above, i.e., normally except for the
decryption/encryption for which it uses Q and encrypts a random string,
respectively, and for the equivalence-class signature, for which it queries
C,

else it returns ⊥.

At the end of the experiment, A returns a bit b∗: if b∗ = b′, then B answers
1 (guessing that C used S.ChRep), else it answers 0.

Analysis: If b = 0 then B is perfectly simulating Game 3 (every change of repre-
sentative is actually a new signature), and if b = 1 then B is perfectly simulating
Game 2. Using the same justification as in the previous game, we have:

|Pr[S3] − Pr[S2]| = |Pr[B → 1|b = 1] − Pr[B → 1|b = 0]| = AdvadaptS (λ).

This game “unlinks” the class-equivalence signature in the sanitization from
the one in the original signature.

Game 4. This game is the same as the previous one except that the NIZKPs
are faked by the simulator Sim. As the simulator is “perfect”, we argue that:
Pr[S4] = Pr[S3].

Proof. Indeed, if there exists a PPT adversary A capable of distinguishing
between Games 4 and 3, then we can build an adversary B against the zero-
knowledge property of the NIZKP π1, π2.

Let C be B’s challenger, we show how B can simulate A’s challenges. At the
beginning, C picks a random bit b, and C will answer queries with a fake NIZKP
if b = 0, and a real one if b = 1.

B generates all key pairs for the encryption E, the 2-Ring Signature scheme
R, and the class-equivalence signature scheme S, and forwards the public keys
to A. B picks a random bit b′ and embeds its challenges into A’s challenges by
answering the queries as follows:

Sig(·, sk, ·, ·, ·): A sends (m,Adm, ¯spk, γ), if ¯spk �= spk, B computes everything
normally, else B computes the signature as described in the previous game
(including adding elements to L and Q) except instead of computing π1 and
π2 itself, they are queried from C.

LRSan(b′, pk, ssk, spk, ·, ·): on input ((m0,Mod0, σ0)(m1,Mod1, σ1)), this ora-
cle returns ⊥ if for i ∈ {0, 1}, any of the following conditions do not
hold: (1) Ver(mi, σi, pk, spk) = 1, (2) Adm0 = Adm1, (3) Adm0(Mod0) =
Adm1(Mod1) and (4) Mod0(m0) = Mod1(m1), else it gets (m̄i, γi) ← L[σi]
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for i ∈ {0, 1}, then if D(Mod0(m0), m̄0) ≤ γ0 and D(Mod1(m1), m̄1) ≤ γ1,
it computes the sanitization of σb′ as in the previous game (again, including
for L and Q), except it uses S.sig((, c)t) instead of S.ChRep(c, t) to get s′,
and queries C for the proofs π1, π2 instead of computing them; then finally
returns the obtained sanitized signature σ′, else it returns ⊥.

San(·, ·, ·, ·, ssk, spk): on input (m,Mod, σ, p̄k), if p̄k �= pk, it computes the sani-
tizations normally, else B gets (m̄, γ) ← L[σ], then if D(Mod(m), m̄) ≤ γ it
computes the sanitization as in the previous game (once more, including for L
and Q), except it uses S.sig(,i)nstead of S.ChRep as described for LRSan, and
queries C for the proofs π1 and π2, finally returning the obtained sanitized
signature σ′, else it returns ⊥.

In the end A returns a bit b∗, if b∗ = b′ B sends 1 to C (guessing that the proofs
are real) else it answers 0.

Analysis: If b = 0 then B is perfectly simulating Game 4 (the proofs are sim-
ulated), and if b = 1 then B is perfectly simulating Game 3. Using the same
justification as in the previous games, we have: Pr[S4] = Pr[S3].

After this game, the commitments and the proofs are not linked.

Game 5. This game is the same as the previous one except we replace the
commitments with random elements when computing a signature (i.e., when
generating them).

We argue that :

|Pr[S5] − Pr[S4] ≤ (qH + qF ) · AdvDDH
G

(λ),

where qH (resp. qF ) is the number of queries made to the random oracle for hash
function H (resp. F ).

Proof. First, we propose the definition of fixed n-DDH, based on the n-DDH:

Definition 17 (fixed n-DDH). Let G be a multiplicative group of prime order
q, with g a generator. For an instance {(ga, gbi , gcb,i)}1≤i≤n such that for i ∈ [n],
bi

$← Z
∗
p, and a

$← Z
∗
p and b

$← {0, 1} such that c0,i
$← Z

∗
p and c1,i = a · bi,

the fixed n-DDH problem is guessing b, and the fixed n-DDH assumption states
than no PPT algorithm can solve this problem with a non-negligible advantage.

Lemma 2. For any n ∈ N, fixed n-DDH holds under the DDH assumption, with

Advfn-DDH
G

(λ) ≤ n · AdvDDH
G

(λ).

Proof. The proof of this lemma is given in the full version.

We now show the indistinguishability of Games 5 and 4 using a hybrid argu-
ment.

Let qSig be the number of queries made to the Sig oracle, let Hi be the
experiment such that the i first queries to the Sig oracle use honest commitments,
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and the qSig − i last queries use random commitments. Suppose there exists an
PPT adversary A capable of distinguishing Hi from Hi+1 for 0 ≤ i < qSig, then
we show how to build an adversary B against fixed qH + qF -DDH in G.

Let C be B’s challenger, we now show how B simulates A’s challenges. C starts
by picking a random bit b. C will send B tuples that will amount into a fixed
(qH + qF )·DDH instance, i.e., tuples of the form (g,X = gx, Y = gy, Z = gz)
with a different Y,Z in each tuple. B generates all necessary keys to build the
pair (pk, sk) for the signer and (spk, ssk) for the sanitizer, then picks a random
bit b∗, and forwards (pk, spk) to A. B also initiates empty lists L and Q as above,
along with a new list D, to keep track of the DDH queries, and a counter cSig
initated to 0, counting the number of calls to Sig. For clarity, we separate the
random oracles by expliciting them, as they are the ones affected by the change:

H(·) (resp. F (·) upon a query u, if H[u] (resp. F [u]) exists, B returns H[u] (resp
F [u]), else if u is of the form u′||pp, B queries C for a challenge (g,X, Y, Z),
sets H[u] = Y (resp. F [u] = Y ), D[Y ] = Z, and returns Y , else it generates
a random hash h, set H[u] = h (resp. F [u] = h), and returns h.

In the beginning, B sets F (pp) = g. B will embed its challenges in A’s chal-
lenges by answering its queries as follows:

Sig(·, sk, ·, ·, ·): A sends (m,Adm, ¯spk, γ), if ¯spk �= spk, then B computes every-
thing normally, else B computes the signature as described in the previous
game (including adding elements to L and Q) except it always fakes the
NIZKP, and when generating the commitments, it proceeds as follows:

– if cSig ≤ i, it generates the commitments honestly,
– else if cSig = i + 1, first, B generates a random t and sets V = Xt(=

(gx)t = F (pp)xt), then for all other commitments, if we denote with u
their corresponding input to H or F (e.g., for C, u = γ||pp) then we
get a hash h = F (u) (for Bi) or h = H(u) (for Ai and C), and the
“actual” commitment is then D[h]t (so if C’s bit is 1, the commitment is
Zt = (Y x)t = hxt, otherwise it is random)

– else (so, if cSig > i + 1), B generates random commitments,
then B continues, to obtain a signature σ in the end, which it returns after
incrementing cSig.

LRSan(b′, pk, ssk, spk, ·, ·): on input ((m0,Mod0, σ0)(m1,Mod1, σ1)), this ora-
cle returns ⊥ if for i ∈ {0, 1}, any of the following conditions do not
hold: (1) Ver(mi, σi, pk, spk) = 1, (2) Adm0 = Adm1, (3) Adm0(Mod0) =
Adm1(Mod1) and (4) Mod0(m0) = Mod1(m1), else it gets (m̄i, γi) ← L[σi]
for i ∈ {0, 1}, then if D(Mod0(m0), m̄0) ≤ γ0 and D(Mod1(m1), m̄1) ≤ γ1,
it computes the sanitization of σb′ as in the previous game (again, including
for L and Q), returning a sanitized signature σ′; else it returns ⊥.

San(·, ·, ·, ·, sskR, ·): on input (m,Mod, σ, pk, spk), B gets (m̄, γ) ← L[σ], then if
D(Mod(m), m̄) ≤ γ it computes the sanitization as in the previous game
(once more, including for L and Q), finally returning a sanitized signature σ′;
else it returns ⊥.
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In the end A returns a bit b∗, if b∗ = b′ B sends 1 to C (guessing that the DDH
elements are real) else it answers 0.

Analysis: In the case where b = 1, as explained in LRSan above, B simulates Hi.
Now if b = O, there is no relation between x and the y and z values, and thus
the commitments are completely random, simulating Hi+1. Hence, following the
same logic as in the previous games:

|Pr[Hi+1] − Pr[Hi]| = Adv
f(qH+qF )-DDH
G

(λ) ≤ (qH + qF ) · AdvDDH
G

(λ)

Moreover, in HqSig the commitments are done honestly, meaning H0 is identical
to Game 4, and in H0 all commitments are random, meaning HqSig is identical to
Game 5.

Summing the hybrids yields the following inequality:

|Pr[S5] − Pr[S4]| = |Pr[H0] − Pr[HqSig ]|
≤ qSig(qH + qF ) · AdvDDH

G
(λ)

After this game, the commitments are not linked to each other. This step is
a necessary setup for the next game.

Game 6. This game is the same as the previous one except the commitments
are replaced with random elements when sanitizing a signature.

We argue that:

|Pr[S6] − Pr[S5]| ≤ qLRSanqSig · Advclass-hidS (λ),

where qSig is the number of calls to the Sig oracle and qLRSan is the number
of calls to the LRSan oracle.

Proof. We show the indistinguishability of Games 6 and 5 using a hybrid argu-
ment.

Let Hi be the experiment such that the first i queries to LRSan have honestly
computed commitments, while the qLRSan − i last queries are computed using
random commitments.

We show that if there exists a PPT adversary A capable of distinguishing
Hi+1 from Hi, for 0 ≤ i < qLRSan, then we can build an adversary B against the
class-hiding property of the message space of S. Let C be B’s challenger, we now
show how B simulates A’s challenges. C starts by picking a random bit b. C will
send B pairs of the form (C,C ′) ∈ (G�)2 such that C ′ is in the equivalence class
of C if b = 1, and randomly sampled otherwise. B generates all necessary keys
to build the key pair (pk, sk) for the signer and (spk, ssk) for the sanitizer, then
picks a random bit b∗, and forwards pk and spk to A. B also initiates, as before,
empty lists L and Q. It also generates an empty list T to remember C’s queries,
and a counter cLRSan counting the queries to LRSan.

B will embed its challenges in A’s challenges by answering its queries as
follows:
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Sig(·, sk, ·, ·, ·): A sends (m,Adm, ¯spk, γ), as usual, if ¯spk �= spk, B acts normally,
else B computes the signature as described in the previous game (including
adding elements to L and Q) except when generating the commitments, it
queries C to get a pair (M,M ′) and uses M as the commitments (which are
thus random), to obtain a signature σ in the end, which it returns, and sets
T [σ] = (M,M ′).

LRSan(b′, pk, ssk, spk, ·, ·): on input ((m0,Mod0, σ0)(m1,Mod1, σ1)), this ora-
cle returns ⊥ if for i ∈ {0, 1}, any of the following conditions do not
hold: (1) Ver(mi, σi, pk, spk) = 1, (2) Adm0 = Adm1, (3) Adm0(Mod0) =
Adm1(Mod1) and (4) Mod0(m0) = Mod1(m1), else it gets (m̄i, γi) ← L[σi]
for i ∈ {0, 1}, then if D(Mod0(m0), m̄0) ≤ γ0 and D(Mod1(m1), m̄1) ≤ γ1,
it computes the sanitization of σb′ as in the previous game (again, including
for L and Q), except the commitments are computed as follows, first B gets
(M,M ′) ← T [σb′ ], then

– if cLRSan ≤ i, it compute the commitments normally, i.e. using M
– else if cLRSan = i + 1, it generates a random t and uses (M ′)t, i.e., the

elements of M ′ elevated to the power of t, as the commitments (which will
thus be in the class of M if M ′ also is, otherwise they will be random),

– else (if cLRSan > i + 1), it computes random commitments,
then finally returns the obtained sanitized signature σ′ and sets T [σ′] =
(M,M ′); else it returns ⊥.

San(·, ·, ·, ·, ssk, spk): on input (m,Mod, σ, p̄k), if p̄k �= pk, then B computes the
sanitization normally, else B gets (m̄, γ) ← L[σ], then if D(Mod(m), m̄) ≤ γ
it computes the sanitization as in the previous game (once more, including
for L and Q), except it computes commitments as described honestly for
LRSan, i.e., gets (M,M ′) ← T [σ], generates a random t and uses M t as
commitments, finally computing the sanitized signature σ′ and returning it,
then setting T [σ′] = (M,M ′); else it returns ⊥.

In the end A returns a bit b∗, if b∗ = b′ B sends 1 to C (guessing that the elements
are in the same equivalence-class) else it answers 0.

Analysis: If b = 1, then B perfectly simulates Hi+1, as explained in LRSan above,
since the first i+1 queries are answered honestly, else if if b = 0, then B perfectly
simulates Hi, as (M ′)t is not linked to M and thus the i+1st query uses random
commitments. Using the same justification as in the previous games, we have:

|Pr[Hi+1] − Pr[Hi]| = |Pr[B → 1|b = 1] − Pr[B → 1|b = 0]| = qSigAdv
class-hid
S (λ).

In H0 all commitments are computed randomly, which makes it identical to
Game 6, and in HqLRSan all commitments are honest, which makes it identical to
Game 5. Summing the hybrids, we get

|Pr[S5] − Pr[S6]| = |Pr[HqLRSan ] − Pr[H0]|
≤ qLRSanqSigAdv

class-hid
S (λ)

At this point, there is no link between the original signature and its saniti-
zation, that would differentiate the sanitization of σ0 from that of σ1, thus the
adversary cannot do any better than just guessing. Thus: Pr[S6] = 1/2.
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A.3 Proof of Theorem 5

Proof. Upon querying the LRADM oracle on (m, (Adm0, γ0), (Adm1, γ1)), the
adversary A receives a signature σ = ((Ai, Bi)i∈[n], C, V, π1, π2, s, e, r), on m
with Admb, γb, where b is the challenger’s bit. In σ, the C value is directly
linked to γb, and the Bi values are directly linked to Admb. No other value
depends on them. The idea of this proof is thus to randomize C and Bi in an
indistinguishable way.

We show that:

AdvinvisULISS,A(λ) ≤AdvSUFULISS(λ) + AdvIND$-CCA
E (λ) + (qH + qF ) · AdvDDH

G
(λ),

where qH and qF are the number of queries to the random oracle simulat-
ing H and F , respectively. We follow a logic very similar to the proof for the
unlinkability and will thus refer to this proof for the straightforward game hops.

Game 0. This is the original ExpinvisULISS,A(λ) experiment, hence:

AdvinvisULISS,A(λ) = |Pr[S0] − 1/2|

Game 1. This game is the same as the previous one except the challenger aborts
and returns a random bit if A queries the San oracle on a forged signature.

|Pr[S1] − Pr[S0]| ≤ AdvSUFULISS,A(λ).

We showed in Appendix A.1 that this is negligible. After this game, all signa-
tures input to San were generated by the challenger. This means, in particular,
that A cannot try to guess if a signature was sanitized or not by trying to
“copy” the output of LRADM into a new forged signature to test the limit or
admissibility.

Game 2. This game is the same as the previous one, except the challenger
replaces the input to the encryption scheme with random. We claim that:

|Pr[S2] − Pr[S1]| ≤ AdvIND$-CCA
E (λ).

Proof. Follows the idea of the proof of Game 2 in the proof of unlinkability,
i.e., we construct a secondary adversary B against IND$-CCA who injects its
challenges by using them as the encryptions in A’s queries to LRADM, and
in San if A wishes to sanitize a signature that was output by LRADM. As in
previous proofs, B must keep track of what should have been encrypted, as it
cannot decrypt its challenges.

Game 3. This game is the same as the previous one, except that the NIZKPs
are faked by the Simulator. We argue that: Pr[S3] = Pr[S2].

Proof. Follows the idea of the proof of Game 4 in the proof of unlinkability. We
construct a secondary adversary B against the zero-knowledge property of the
NIZKPs. Now, in LRADM and in calls to San for signatures output by LRADM, B
encrypts random messages instead of the commitments, to apply game 2 above,
and queries its challenger for the proofs π1 and π2.
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Game 4. This game is the same as the previous one, except that the commit-
ments that are computed when creating a signature are generated randomly. We
argue that:

|Pr[S4] − Pr[S3]| ≤ qLRADM(qF + qH) · AdvDDH
G

(λ).

Proof. Follows the idea of the proof of Game 5 in the proof of unlinkability. As
in that game, we use hybrids, i.e. in experiment Hi the first i queries to LRADM
have honest commitments and the rest are random, from which we construct an
adversary B against fixed (qH +qF )-DDH, as defined in Definition 17. Recall that
a challenger for (qH +qF )-DDH outputs tuples (g,X = gx, Yi = gyi , Zi = gzi) for
i ∈ [n], with the same x every time but a different yi, and such that either every
zi is equal to x · yi, or they are all random. As in the proof of unlinkability (and
transparency), we set F (pp) = g, and B uses the random oracles as described
in these proofs, setting hashes of values ending with pp as the Yi challenges.
In LRADM, as in the unlinkability and transparency, B will use the Zi values
as commitments in the i + 1st query, which will be legit if B’s challenger is
giving real DH elements, thus simulating hybrid Hi+1, and random otherwise,
thus simulating Hi. As all elements of the signatures output by LRADM linked
to Adm or γ are random, we have that Pr[S4] = 1/2.
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Partially Structure-Preserving Signatures:
Lower Bounds, Constructions and More

Essam Ghadafi(B)
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Abstract. In this work we first provide a framework for defining a large
subset of pairing-based digital signature schemes which we call Par-
tially Structure-Preserving Signature (PSPS) schemes. PSPS schemes
are similar in nature to structure-preserving signatures with the excep-
tion that in PSPS schemes messages are scalars from Zp instead of being
group elements. This class encompasses various existing schemes which
have a number of desirable features which makes them an ideal building
block for many privacy-preserving cryptographic protocols. Such schemes
include the widely-used schemes of Camenisch-Lysyanskaya (CRYPTO
2004) and Pointcheval-Sanders (CT-RSA 2016). We then provide vari-
ous impossibility and lower bound results for variants of this class. Our
results include bounds for the signature and verification key sizes as
well as lower bounds for achieving strong unforgeability. We also give
a generic framework for transforming variants of PSPS schemes into
structure-preserving ones. As part of our contribution, we also give a
number of optimal PSPS schemes which may be of independent interest.
Our results aid in understanding the efficiency of pairing-based signa-
ture schemes and show a connection between this class of schemes and
structure-preserving ones.

Keywords: Digital signatures · Bilinear groups · Lower bounds ·
Structure-preserving

1 Introduction

Digital signatures are a fundamental cryptographic primitive which besides being
useful in their own right, they are used as an essential building block for various
more complex protocols.

The emergence of pairing-based cryptography has been associated with the
introduction of many pairing-based digital signature schemes. One of the exten-
sively used pairing-based signature schemes is that of Camenisch and Lysyan-
skaya (CL) [16]. The scheme has a number of desirable features which makes it
an ideal building block for various privacy-preserving protocols, including group
signatures, e.g. [10,16], anonymous credentials, e.g. [16], and direct anonymous
attestation, e.g. [20]. Notably, the scheme besides having fully and perfectly ran-
domizable signatures, it is compatible with Pedersen-like commitment schemes
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[41] and thus it is possible to sign committed messages. A recent improvement to
the CL scheme is the Pointcheval and Sanders (PS) scheme [42], which besides
enjoying better efficiency and preserving all of its desirable features, it yields
constant-size signatures regardless of the size of the message. Despite its rela-
tively young age, the PS scheme has been used in the construction of various
protocols. A common feature to the structure of both aforementioned schemes
is that the signer is generic, and when viewing the signature components as an
exponentiation of the respective group generator to a fraction of polynomials,
the denominator polynomials are independent of the message. This is to the con-
trary of other pairing-based schemes, e.g. [11,12,43,45], which even though are
based on non-interactive intractability assumptions, they do not enjoy some of
the desirable features of the CL and PS schemes, e.g. the randomizability of the
signatures, having a generic signer, the ease of being combined with Pedersen-like
commitments, and a short verification key.

The dual-form signature framework [27] was used by [18,27] to obtain (less
efficient) variants of some existing schemes, e.g. CL and PS schemes, whose
security relies on static intractability assumptions.

Structure-Preserrving Signature (SPS) schemes [4] are also pairing-based sig-
nature schemes with the extra requirement that the messages, the verification
key and the signatures consist of only source group elements. Verification of
signatures in those schemes only involves evaluating Pairing-Product Equations
(PPEs) and checking group memberships. Such properties make them compat-
ible with widely-used constructs such as ElGamal encryption [21] and Groth-
Sahai proofs [35] and hence they render themselves as a tool for designing cryp-
tographic protocols which dispense with relying on random oracles [22] despite
the efficiency degradation. SPS schemes have numerous applications, including
group signatures, e.g. [4,38], blind signatures, e.g. [4,24], and anonymous cre-
dentials, e.g. [15,23].

A numerous number of SPS schemes have been proposed in the 3 differ-
ent bilinear groups settings. In the most efficient bilinear group setting, i.e. the
Type-3 setting (cf. Sect. 2), existing schemes include [4,5,7,19,29,31,34]. Abe
et al. [5] proved that a Type-3 signature must contain at least 3 bilateral ele-
ments and require at least 2 PPEs for verification. Optimal SPS schemes rely on
security proofs in the generic group model [40,44]. Abe et al. [6] proved that the
unforgeability of an optimal Type-3 scheme cannot be based on a non-interactive
intractability assumption. Ghadafi [31] showed that by restricting the message
space to the set of Diffie-Hellman (DH) pairs (cf. Sect. 2) it is possible to cir-
cumvent the lower bound and obtain optimal unilateral signatures consisting
of 2 elements. Such variants provide some efficiency gains for some protocols,
including direct anonymous attestation [13] and attribute-based signatures [39].
Other constructions for this message space include, e.g. [4,28,29,32,33].

Constructions of SPS schemes relying on non-interactive assumptions include
[1–3,8,14,26,36–38]. Chase and Kohlweiss [17] gave a transformation which uti-
lizes pairwise-independent hash functions and the Groth-Sahai proof system [35]
to obtain structure-preserving signatures based on standard assumptions from
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some pairing-based signature schemes for scalar messages. Their transformation
is rather costly as it yields signatures consisting of tens of group elements.

Motivation and Our Contribution. While structure-preserving signatures
and their efficiency are well studied, other types of pairing-based signature
schemes still have some open problems pertaining to their feasibility and bounds
for their efficiency are still lacking. For instance, it is not currently known
whether efficient strongly unforgeable generic-signer schemes with a similar
structure to the CL and PS schemes are possible. Moreover, it is not currently
known whether the recent efficient PS scheme is optimal or whether it is possible
to improve efficiency while preserving all of its desirable features.

SPS schemes might be less desirable than pairing-based schemes for scalar
messages for some applications due to the loss in efficiency. This is particularly
the case for applications where relying on random oracles is tolerated, appli-
cations requiring a stand-alone signature scheme, or applications not requiring
proof systems to hide the message.

Towards a better understanding of the efficiency of pairing-based signature
schemes for scalar messages, we first define a framework for capturing a large
class of such schemes which we refer to as Partially Structure-Preserving Signa-
ture (PSPS) schemes1. Other than the messages being scalars from Zp rather
than source group elements, PSPS schemes have similar properties to structure-
preserving signatures, including having a generic signer and signatures and ver-
ification keys consisting solely of source group elements. We provide different
variants of our definition. More precisely, we define Strongly Partially Structure-
Preserving (SPSPS) schemes and Linear-Message Strongly Partially Structure-
Preserving (LmSPSPS) schemes. The former requires that the PSPS scheme does
not involve the message in the denominator of any of the signature components
whereas the latter additionally requires that the message is embedded in the
signature components in a linear manner. The CL and PS schemes for example
fall into the LmSPSPS class.

We provide various lower bounds and impossibility results for LmSPSPS sch-
emes. More precisely, we prove that existentially unforgeable under random-
message attacks (EUF-RMA) schemes must have at least 2 elements in the sig-
nature and that strongly existentially unforgeable under chosen-message attacks
(sEUF-CMA) schemes must have bilateral signatures consisting of at least 3 ele-
ments. Also, we prove that optimal schemes, including one-time schemes, cannot
have a verification key consisting of fewer than 2 elements. In essence, this proves
that the PS scheme and our new LmSPSPS scheme are optimal in every respect.
In Table 1 we summarize our lower bound results for the size of the signature
and compare them to those for structure-preserving signatures.

We also construct optimal one-time sEUF-CMA LmSPSPS schemes with
one-element signatures and a new optimal EUF-CMA LmSPSPS scheme for a
vector of messages. We prove the security of the latter using a new interactive
intractability assumption which we show holds in the generic group model. The
1 We remark that such a term was used informally in [31] to refer to SPS schemes

where some message components are allowed to be scalar messages.
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Table 1. Summary of the lower bounds for |σ| in the Type-3 bilinear setting. B stands
for bilateral elements whereas U stands for unilateral elements.

Notion # sign queries EUF-RMA sEUF-CMA

LmSPSPS (this work) 1 1 1
>1 2U 3B

SPS for unilateral messages [5,7] 1 1 1
>1 3B 3B

SPS for DH pairs [32,33] 1 1 1
>1 2U 3B

efficiency of our scheme matches that of the PS scheme [42] whose security also
relies on an interactive assumption in every respect.

Finally, we show a connection between LmSPSPS schemes and SPS schemes
by showing that if a LmSPSPS scheme satisfies an extra requirement which is
that the signature and verification key components in either source group are
disjoint, which for instance is satisfied by the CL and PS schemes as well as our
new scheme, such a scheme automatically yields an analogues SPS scheme where
the message space is the set of Diffie-Hellman pairs. The obtained SPS scheme
has the same key pair as the original LmSPSPS scheme and is unforgeable in
the generic group model. We also show some instantiations of our framework.

Besides being a step closer towards a better understanding of the efficiency
of pairing-based signature schemes, our results uncover a link between LmSP-
SPS and SPS schemes.

Paper Organization. Some preliminary definitions are in Sect. 2. In Sect. 3 we
define PSPS schemes. In Sects. 4 and 5 we present our LmSPSPS constructions.
In Sect. 6 we give our transformation from LmSPSPS to SPS schemes and provide
example instantiations. Finally, in Sect. 7 we give our feasibility results.

Notation. We write y = A(x; r) when algorithm A on input x and randomness
r outputs y. We write y ← A(x) for the process of setting y = A(x; r) where
r is sampled at random. We also write y ← S for sampling y uniformly at
random from a set S. A function ν(.) : N → R

+ is negligible (in n) if for every
polynomial p(.) and all sufficiently large values of n, it holds that ν(n) < 1

p(n) . By
PPT we mean running in probabilistic polynomial time in the relevant security
parameter. We use [k] to denote the set {1, . . . , k} and [i, k] to denote the set
{i, i + 1, . . . , k}. For vectors x,y ∈ Z

n
p we denote by xy the operation

∏n
i=1 xyi

i .

2 Preliminaries

In this section we provide some preliminary definitions.
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2.1 Bilinear Groups

A bilinear group is a tuple P := (G,H,T, p,G, H̃, e) where G, H and T are
groups of a prime order p, and G and H̃ generate G and H, respectively. The
function e is a non-degenerate bilinear map e : G×H −→ T. We refer to G and
H as the source groups whereas we refer to T as the target group. We will use
multiplicative notation for all the groups. To distinguish elements of H from those
of G we will accent the former with .̃ We let G× := G\{1G} and H

× := H\{1H}.
We limit our attention to the efficient Type-3 setting [25], where G �= H and
there is no efficiently computable homomorphism between the source groups in
either direction. We assume an algorithm BG that on input 1κ, for some security
parameter κ ∈ N, outputs a description of a bilinear groups P.

We call a pair (M, Ñ) ∈ G × H a Diffie-Hellman (DH) pair [4] if it satisfies
e(M, H̃) = e(G, Ñ). We denote the set of DH pairs by DH.

2.2 Digital Signatures

A digital signature scheme DS over a bilinear group P generated by BG for a
message space M consists of the following algorithms:

KeyGen(P) on input P, it outputs a pair of secret/verification keys (sk, vk).
Sign(sk,m) on input sk and a message m ∈ M, it outputs a signature σ.
Verify(vk,m, σ) outputs 1 if σ is a valid signature on m w.r.t. vk and 0 otherwise.

Definition 1 (Correctness). A digital signature scheme DS over a bilinear
group generator BG is (perfectly) correct if for all κ ∈ N

Pr

⎡

⎢
⎢
⎣

P ← BG(1κ)
(sk, vk) ← KeyGen(P)
m ← M
σ ← Sign(sk,m)

: Verify(vk,m, σ) = 1

⎤

⎥
⎥
⎦ = 1·

Besides the correctness requirement, we require existential unforgeability.

Definition 2 (Existential Unforgeability). A digital signature scheme DS
over a bilinear group generator BG is Existentially-Unforgeable against adaptive
Chosen-Message Attack (EUF-CMA) if for all κ ∈ N for all PPT adversaries
A, the following is negligible (in κ)

Pr

⎡

⎣
P ← BG(1κ)
(sk, vk) ← KeyGen(P)
(σ∗,m∗) ← ASign(sk,·)(P, vk)

: Verify(vk,m∗, σ∗) = 1 ∧ m∗ /∈ QSign

⎤

⎦ ,

where QSign is the set of messages queried to Sign.
Strong Existential Unforgeability against adaptive Chosen-Message Attack

(sEUF-CMA) requires that the adversary cannot even output a new signature
on a message that was queried to the sign oracle.
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A weaker variant of EUF-CMA is Existential Unforgeability against a
Random-Message Attack (EUF-RMA) in which the sign oracle samples a mes-
sage uniformly from the message space and returns the message and a signature
on it. In one-time signatures, the adversary is restricted to a single signing query.

Sometimes it is desirable that signatures are publicly re-randomizable where
there is an algorithm Randomize that on input (vk,m, σ) outputs a new signature
σ′ on m which is indistinguishable from a fresh signature on the same message.

Structure-Preserving Signatures. Structure-preserving signatures [4] are
signature schemes defined over bilinear groups where the messages, the veri-
fication key and signatures are all group elements from either or both source
groups, and verifying signatures only involves deciding group membership of the
signature components and evaluating pairing-product equations (PPEs) of the
form of Eq. (1).

∏

i

∏

j

e(Ai, B̃j)ci,j = 1T, (1)

where Ai ∈ G and B̃j ∈ H are group elements appearing in P,m, vk, σ, whereas
ci,j ∈ Zp are constants.

Generic Signer. We refer to a signer that can only decide group membership,
evaluate the bilinear map e, compute the group operations in groups G,H and
T, and compare group elements as a generic signer.

3 Partially Structure-Preserving Signatures

In this section we define a class of prime-order pairing-based digital signature
schemes which we call Partially Structure-Preserving Signature (PSPS) schemes.
Informally, a PSPS scheme is a pairing-based signature scheme for scalar mes-
sages from Z

n
p for n ≥ 1 where the signature components and verification key

contain only source group elements and the signature components are computed
by raising source group elements to fraction of polynomials involving the secret
key, the messages and the randomness chosen as part of the signing process. We
then define 2 variants of PSPS schemes to capture most of the practical schemes
existing in the literature. First, we define Strongly Partially Structure-Preserving
Signature (SPSPS) schemes which additionally require that the denominator
polynomials used in computing the signature components are independent of
the messages to be signed. Then we define a variant of SPSPS which we refer
to as Linear-Message Strongly Partially Structure-Preserving Signature (LmSP-
SPS) schemes which additionally requires that the numerator polynomials are
linear in the message to be signed. The latter captures a large class of existing
schemes for scalar messages, including variants of the CL and PS schemes.

Definition 3 (Partially Structure-Preserving Signatures). A digital sig-
nature scheme DS over a bilinear group generator BG is Partially Structure-
Preserving Signature (PSPS) scheme if it satisfies all the following:
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• BG(1κ) generates a bilinear group description P := (G,H,T, p,G, H̃, e).
• The verification key vk consists of P and source group elements (X,Y ) ∈
G

μ × H
μ′

.
• The message space is M := Z

n
p for some n ≥ 1.

• A signature on a message m ∈ M is of the form σ := (S, T̃ ) ∈ G
ν × H

ν′

which is computed by a generic signer by sampling a vector r ∈ Z
n′
p

(independently of the message m) and computing Si := G
αi(sk,m ,r )
α′

i
(sk,m ,r ) and

T̃j := H̃
βj(sk,m ,r)
β′

j(sk,m ,r) for some formal multivariate polynomials αi, α
′
i, βj , β

′
j ∈

Fp[X1, . . . , Xμ, Y1, . . . , Yμ′ ,M1, . . . ,Mn, R1, . . . , Rn′ ] of total degree bounded
by d(κ).

• Signature verification involves deciding group membership2 and evaluating a
set of pairing-product equations of the following form:

ν∏

i=1

e(Si,

μ′
∏

j=1

Ỹj)
ρ1,i,j

(m )
ν′
∏

i=1

e(
μ∏

j=1

Xj , T̃i)
ρ2,i,j

(m )

ν∏

i=1

e(Si,

ν′
∏

j=1

T̃j)
ρ3,i,j

(m )
μ∏

i=1

μ′
∏

j=1

e(Xi, Ỹj)
ρ4,i,j

(m )

= Z�, (2)

where ρ
i,j,k

∈ Fp[M1, . . . ,Mn] are multivariate polynomials of total degree
bounded by d′(κ) whereas Z� ∈ T is a public constant. In the strict sense, one
can necessitate that Z� = 1T.

Definition 4 (Strongly Partially Structure-Preserving Signatures). A
digital signature scheme DS over a bilinear group generator BG is Strongly
Partially Structure-Preserving Signature (SPSPS) if it is partially structure-
preserving and it holds that for all i ∈ [ν] and for all j ∈ [ν′], the polynomials
α′

i and β′
j are independent of the message.

Definition 5 (Linear-Message Strongly Partially Structure-Preserving
Signatures). A digital signature scheme DS over a bilinear group generator
BG is Linear-Message Strongly Partially Structure-Preserving Signature (LmSP-
SPS) if it is strongly partially structure-preserving and it holds that for all i ∈ [ν]
and for all j ∈ [ν′], αi and βj are linear in M , i.e. for all k ∈ [n], for all i ∈ [ν],
for all j ∈ [ν′], the degree of Mk in αi and βj is either 0 or 1 and for all η, η′ ∈ [n]
neither of the polynomials contain the monomial MηMη′ .

We now define a subset of PSPS schemes which we call Disjoint Partially
Structure-Preserving Signature (DPSPS) schemes. Informally, a DPSPS scheme
is a PSPS scheme where the spans of the sets of fraction of formal polynomials
corresponding to the verification key and signature components in the source
groups are disjoint.

2 For more generality, we allow membership checks of the forms Si ∈ G
× and T̃j ∈ H

×.
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Definition 6 (Disjoint Partially Structure-Preserving Signatures). Let
γ1,i(SK)
γ′
1,i(SK) for i ∈ [μ] and γ2,j(SK)

γ′
2,j(SK) for j ∈ [μ′] be the fraction of formal polynomi-

als used to compute the verification key X ∈ G
μ and Y ∈ H

μ′
(excluding the

default source group generators), respectively. We say a signature scheme DS
over a bilinear group generator BG is a Disjoint Partially Structure-Preserving
Signature (DPSPS) scheme if it is partially structure-preserving and additionally
meets the following requirement:

Span

({γ1,1(SK)

γ′
1,1(SK)

, . . . ,
γ1,μ(SK)

γ′
1,μ(SK)

,
α1(SK,M ,R)

α′
1(SK,M ,R)

, . . . ,
αν(SK,M ,R)

α′
ν(SK,M ,R)

})

∩ Span

({γ2,1(SK)

γ′
2,i(SK)

, . . . ,
γ2,μ′(SK)

γ′
2,μ′(SK)

,
β1(SK,M ,R)

β′
1(SK,M ,R)

, . . . ,
βν′(SK,M ,R)

β′
ν′(SK,M ,R)

})
= {0}·

We call a LmSPSPS scheme a Disjoint LmSPSPS (DLmSPSPS) scheme if it
satisfies the above disjointness requirement. Examples of schemes conforming to
this requirement include the PS scheme and our new scheme.

We later show that DLmSPSPS schemes yield equivalent structure-preserving
signature schemes for DH pairs. In our transformation, the disjointness require-
ment ensures that a generic adversary against the SPS scheme cannot feed ele-
ments obtained from previous queries to the sign oracle back into the sign ora-
cle since they do not have a matching component in the opposite source group,
i.e. they do not form DH pairs. This restricts the messages the SPS adversary can
query back into her sign oracle to being constant polynomials, i.e. scalars from
Zp, similarly to the generic adversary against the underlying DLmSPSPS scheme.

4 A New Optimal LmSPSPS Scheme

Here we give a new LmSPSPS scheme for signing a vector m ∈ Z
n
p . The idea of

the new scheme is based on the signature scheme underlying the blind signature
scheme in [30]. The efficiency of our scheme matches that of the PS scheme in
every respect.

Given the description of a Type-3 bilinear group P output by BG(1κ), the
scheme is as follows:

• KeyGen(P): Select x, y1, . . . , yn−1, z ← Z
×
p . Set X̃ := H̃x, Ỹi := H̃yi for

all i ∈ [n − 1] and Z̃ := H̃z. Set sk := (x, y1, . . . , yn−1, z) and vk :=
(X̃, Ỹ1, . . . , Ỹn−1, Z̃) ∈ H

n+1.

• Sign(sk,m): Select r ← Z
×
p and set (S1, S2) :=

(

Gr, G
r(x+m1+

∑n
i=2 miyi−1)
z

)

.

The signature is σ := (S1, S2) ∈ G
×2.

• Verify(vk,m, σ): Return 1 if S1 �= 1G and e(S2, Z̃) = e(S1, X̃H̃m1
n∏

i=2

Ỹ mi
i−1)

and 0 otherwise.
• Randomize(vk,m, σ): Select r′ ← Z

×
p and return σ′ := σr′

.
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4.1 Security of the Scheme

Correctness of the scheme is straightforward and easy to verify. Also, it is easy
to verify that the scheme conforms to the requirements of a DLmSPSPS scheme.
We now define the following new interactive intractability assumption to which
we reduce the unforgeability of the scheme.

Definition 7 (New PSPS (NPSPS) Assumption). Let P = (G,H,T, p,G, H̃, e)
be the description of a Type-3 bilinear group generated by BG(1κ). Let X̃ := H̃x

and Ỹ := H̃y for some x, y ← Z
×
p . Let ÔX̃,Ỹ (·) be an oracle that when queried

on m ∈ Zp, selects r ← Z
×
p and returns the pair (Gr, G

r(x+m)
y ) ∈ G

2. The
NPSPS assumption holds (relative to BG) if for all PPT adversaries A given
(P, X̃, Ỹ ) and unlimited access to ÔX̃,Ỹ (·), the probability that A outputs a new

pair (R∗, R∗ (x+m∗)
y ) ∈ G

×2 for some m∗ ∈ Zp which was not queried to ÔX̃,Ỹ (·)
is negligible (in κ).

The following theorem proves that the NPSPS assumption holds in the generic
group model.

Theorem 1. For a generic adversary A which makes qG group operation
queries, qP pairing queries and qO queries to the ÔX̃,Ỹ oracle, the probabil-

ity that A breaks the NPSPS assumption is O( q2
G+q2

P +q2
O

p ) where p if the prime
order of the bilinear group.

Proof. Let qO be the number of queries to the ÔX̃,Ỹ oracle, qG be the number of
group operation queries and qP be the number of pairing queries the adversary
makes in her game. We first prove that no linear combinations of the formal
Laurent polynomials in Zp[R1, . . . , RqO

,X, Y ±1] yields a tuple that constitutes
a solution for the underlying NPSPS problem.

In the game, we keep 3 different lists LG, LH and LT for the Laurent polyno-
mials corresponding to group elements from groups G, H and T, respectively. At
the end of the game, the total number of (non-constant) Laurent polynomials
used is |LG| + |LH| + |LT| ≤ 2 + qG + qP + 2qO.

Since both elements in the adversary’s output (R∗, S∗) are from G, it follows
that r∗ and s∗ can only be constructed using linear combinations of the Laurent
polynomials corresponding to elements from G. Thus, we must have that:

r∗ = ar +
qO∑

i=1

br,iri +
qO∑

i=1

cr,i

(
rix

y
+

rimi

y

)

s∗ = as +
qO∑

i=1

bs,iri +
qO∑

i=1

cs,i

(
rix

y
+

rimi

y

)

For the pair (R∗, S∗) ∈ G
×2 to be a valid solution, we must have that:

s∗y = r∗x + r∗m∗ (3)



Partially Structure-Preserving Signatures 293

Thus, we must have:

asy +
qO∑

i=1

bs,iriy +
qO∑

i=1

cs,i (rix + rimi)

= arx +
qO∑

i=1

br,irix +
qO∑

i=1

cr,i

(
rix

2

y
+

rimix

y

)

+

(

ar +
qO∑

i=1

br,iri +
qO∑

i=1

cr,i

(
rix

y
+

rimi

y

))

m∗

There is no term in y or riy on the RHS, so we must have as = 0, bs,i = 0 for
all i ∈ [qO]. Thus, we have:

qO∑

i=1

cs,i(rix + rimi) = arx +
qO∑

i=1

br,irix +
qO∑

i=1

cr,i(
rix

2

y
+

rimix

y
)

+
(
ar +

qO∑

i=1

br,iri +
qO∑

i=1

cr,i(
rix

y
+

rimi

y
)
)
m∗

There is no term rix
2

y on the LHS, so we must have that cr,i = 0 for all i ∈ [qO].
Also, no term in x on the LHS, so we must have that ar = 0. Thus, we have:

qO∑

i=1

cs,i (rix + rimi) =
qO∑

i=1

br,irix +
qO∑

i=1

br,irim
∗

The monomial rix implies cs,i = br,i for all i ∈ [qO]. Since we must have that
that R∗ ∈ G

×, we must have r∗ �= 0 and therefore we must have at least a single
value of cs,i = br,i �= 0. The monomial ri implies cs,imi = br,im

∗ which means
m∗ = mi for some i. Thus, the pair (R∗, S∗) is not a valid new pair.

Thus far we have proven that the adversary is unable to symbolically produce
a valid tuple for a new scalar. What remains is to bound the probability that the
simulation fails. The adversary wins if for any two different Laurent polynomials
F and F ′ in any of the 3 lists evaluate to the same value. Note that the only
indeterminate in those Laurent polynomials with a negative power is Y . Thus,
for any Laurent polynomial F on any of those 3 lists, we can view F as a frac-
tion of polynomials F = Fn

Fd
for some polynomials Fn ∈ Zp[R1, . . . , RqO

,X, Y ]
and Fd ∈ Zp[Y ]. Note that Zp[Y ] ⊂ Zp[R1, . . . , RqO

,X, Y ]. Thus, the equality
check F (r1, . . . , rO, x, y, y−1) − F ′(r1, . . . , rO, x, y, y−1) = 0 can be substituted
by checking whether Fn(r1, . . . , rO, x, y)F ′

d(y) − F ′
n(r1, . . . , rO, x, y, )Fd(y) = 0.

It follows that for F, F ′ ∈ LG we have deg(Fn) ≤ 2 and deg(Fd) ≤ 1. Thus, the
probability that Fn(r1, . . . , rO, x, y)F ′

d(y) − F ′
n(r1, . . . , rO, x, y)Fd(y) = 0 is ≤ 3

p .
For F, F ′ ∈ LH, we have deg(Fn) ≤ 1 and deg(Fd) = 0. Thus, the probability
that Fn(r1, . . . , rO, x, y)F ′

d(y) − F ′
n(r1, . . . , rO, x, y)Fd(y) = 0 is ≤ 1

p . From this
it follows that for F, F ′ ∈ LT the probability that Fn(r1, . . . , rO, x, y)F ′

d(y) −
F ′

n(r1, . . . , rO, x, y)Fd(y) = 0 is ≤ 4
p .
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Summing over all choices of F and F ′ in each case we have that the proba-
bility ε of the simulation failing for this reason is

ε ≤
(|L1|

2

)
3
p

+
(|L2|

2

)
1
p

+
(|LT |

2

)
4
p

≤ 2(2 + qG + qP + 2qO)2

p
·

Thus, we have that the probability of the simulation failing is O( q2
G+q2

P +q2
O

p ).
Since by definition we have that qO, qG and qp are all polynomial in κ whereas
log p ∈ Θ(κ), it follows that the adversary’s advantage is negligible. 
�

The following theorem proves the unforgeability of the scheme.

Theorem 2. The scheme is EUF-CMA if the NPSPS assumption holds.

Proof. Let A be an adversary against the unforgeability of the scheme, we use A
in a blackbox manner to construct an adversary B against the NPSPS assump-
tion.

Adversary B gets (P, X̃, Ỹ ) from her game and chooses y1, . . . , yn−1, α1,
. . . , αn−1 ← Z

×
p and sets Z̃ := Ỹ and Ỹi := Ỹ αiH̃yi for all i ∈ [n − 1]. B ini-

tiates A on vk := (X̃, Ỹ1, . . . , Ỹn−1, Z̃). Note that verification key is distributed
identically to that of the scheme.

When A queries the sign oracle on a vector m ∈ Z
n
p , B computes m′ :=

m1 +
n∑

i=2

yi−1mi and queries her ÔX̃,Ỹ oracle on m′ to get a tuple (S1, S2) ∈ G.

B computes S′
2 := S2S

∑n
i=2 αi−1mi

1 and returns σ := (S1, S
′
2) to A as a signature

on m. This is a valid signature on m w.r.t vk since:

e(S′
2, Z̃) = e(S

x+m1+
n∑

i=2
yi−1mi

z
1 S

n∑

i=2
αi−1mi

1 , Z̃)

= e(S
x+m1+

n∑

i=2
yi−1mi+z

n∑

i=2
αi−1mi

1 , H̃)

= e(S
x+m1+

n∑

i=2
(yi−1+αi−1z)mi

1 , H̃)

= e(S1, X̃H̃
m1+

n∑

i=2
(yi−1+αi−1z)mi

, H̃)

= e(S1, X̃H̃m1

n∏

i=2

Ỹ mi
i−1)·

Eventually, when A halts and outputs her forgery (m∗, σ∗), B computes

m∗′ := m∗
1 +

n∑

i=2

yi−1m
∗
i and returns (σ∗,m∗′) as her output in her game.

It is easy to see that if σ∗ = (S∗
1 , S∗

2 ) is a signature on the new vector m∗

which was not queried to the sign oracle, σ∗ is a valid NPSPS tuple on the new
scalar m∗′ which B did not submit to her oracle ÔX̃,Ỹ .
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We need to handle the case where m∗ /∈ {mi}q
i=1 but m∗′ = m′

i for some
i ∈ [q] in which case A wins her game but B will not be able to break the
NPSPS assumption since the returned tuple is not on a new scalar that was not
queried to her oracle. Note that A’s view is independent of the yi’s and hence
the probability that this event happens is ≤ q

p which is negligible. 
�

5 A New Optimal One-Time sEUF-CMA
LmSPSPS Scheme

Here we give an optimal one-time LmSPSPS scheme for a vector of messages
with one-element signatures and a verification key of size n|G|+ |H|. The scheme
is optimal in every respect.

Given the description of Type-3 bilinear groups P output by BG(1κ), the
scheme is as follows:

• KeyGen(P): Select x1, . . . , xn, y ← Z
×
p . Set sk := (x1, . . . , xn, y), vk :=

(X1, . . . , Xn, Ỹ ) = (Gx1 , . . . , Gxn , H̃y) ∈ G
n × H.

• Sign(sk,m): To sign m ∈ Z
n
p , compute σ = S := G

1+
n∑

i=1
ximi

y .

• Verify(vk,m, σ = S): Return 1 iff e(S, Ỹ ) = e(G
n∏

i=1

Xmi
i , H̃) and 0 otherwise.

Correctness of the scheme is straightforward to verify. We now prove the one-time
strong unforgeability of the scheme.

Theorem 3. The scheme is sEUF-CMA secure in the generic group model.

Proof. We prove that no linear combinations corresponding to polynomials in the
discrete logarithms of the elements the adversary sees correspond to a forgery.

At the start of the game, the only elements in H the adversary sees are H̃,
Ỹ , which correspond to the discrete logarithms 1, y respectively. Note the sign
oracle produces no new elements in H. When queried on a message m, the oracle

will return a signature S = G

1+
n∑

i=1
ximi

y ∈ G. The forgery σ∗ = S∗ can only be
a linear combination of the group elements from G, i.e. a linear combination of
G,S,X1, . . . , Xn. Thus, we have

s∗ = αs + βs

(1 +
n∑

i=1

mixi)

y
+

n∑

i=1

γ
si

xi

For the forgery to be accepted, (s∗,m∗) has to satisfy s∗y = 1 +
n∑

i=1

m∗
i xi.

Therefore, we must have
⎛

⎜
⎜
⎝αs + βs

(1 +
n∑

i=1

mixi)

y
+

n∑

i=1

γ
si

xi

⎞

⎟
⎟
⎠ y=1 +

n∑

i=1

m∗
i xi
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Therefore, we must have

αsy + βs

(

1 +
n∑

i=1

mixi

)

+
n∑

i=1

γsi
xiy = 1 +

n∑

i=1

m∗
i xi

There is no terms of the form y or xiy for any i ∈ [n] on the RHS, so we must
have that αs = 0 and γsi

= 0 for all i ∈ [n]. Thus, we have that

βs +
n∑

i=1

βsmixi = 1 +
n∑

i=1

m∗
i xi

The constant term implies that βs = 1. The monomial xi implies that βsmi =
m∗

i from which it follows that we must have that m∗
i = mi for all i ∈ [n] which

means the forgery can only be the same signature on m the adversary obtained
from the sign oracle.

The probability of the simulation failing is ≤ 3(n+2+qG+qP )2

2p ,

i.e. O(n2+q2
G+q2

P

p ). Since by definition we have that n, qG and qp are all poly-
nomial in κ whereas log p ∈ Θ(κ), it follows that the adversary’s advantage is
negligible. 
�

6 From LmSPSPS Schemes into SPS Schemes

In this section we give a generic framework for transforming any disjoint LmSP-
SPS scheme into a structure-preserving scheme for the message space DHn.

Let P := (G,H,T, p,G, H̃, e) be the bilinear group description gen-
erated by BG. Let DLmSPSPS =

(
KeyGen,Sign,Verify, [Randomize]

)
be a

(s)EUF-CMA (resp. (s)EUF-RMA) DLmSPSPS scheme. The following trans-
formation yields a (s)EUF-CMA (resp. (s)EUF-RMA) SPS scheme SPS =(
KeyGen

SPS
,Sign

SPS
,Verify

SPS
, [Randomize

SPS
]
)
.

• KeyGen
SPS

(P): Run (sk, vk) ← KeyGen(P). Return (sk
SPS

:= sk, vk
SPS

:= vk).

• Sign
SPS

(
sk

SPS
,
(
(M1, M̃1), . . . , (Mn, M̃n)

))
:

◦ Decompose the PPE equations of DLmSPSPS to the following form:

ν∏
i=1

e(Si,

μ′∏
j=1

Ỹj)
ai,j,�

ν∏
i=1

μ′∏
j=1

n∏
k=1

e(Si, Ỹj)
a′

i,j,�,kmk

ν′∏
i=1

e(

μ∏
j=1

Xj , T̃i)
bi,j,�

ν′∏
i=1

μ∏
j=1

n∏
k=1

e(Xj , T̃i)
b′
i,j,�,kmk

ν∏
i=1

e(Si,
ν′∏

j=1

T̃j)
ci,j,�

ν∏
i=1

ν′∏
j=1

n∏
k=1

e(Si, T̃j)
c′

i,j,�,kmk

μ∏
i=1

μ′∏
j=1

e(Xi, Ỹj)
di,j,�

μ∏
i=1

μ′∏
j=1

n∏
k=1

e(Xi, Ỹj)
d′

i,j,�,kmk = Z�·
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◦ Initialize 2 empty lists E1 and E2 of triples representing PPE equations.
◦ For each signature component Sj ∈ G of DLmSPSPS:

∗ Parse Sj as G

q∑

i=1
x
c
i , j y

c ′
i , j r

c ′′
i , j

(

a
i,j

+
n∑

k=1
d

i,j,k
mk

)

∑

i
b
i,j

x
e
i , j y

e ′
i , j r

e ′′
i , j

.
∗ Define the set Î ⊆ [q] as the subset of indices i where ∃k ∈ [n] where

di,j,k �= 0 and let Ĭ := [q]\Î. Compute Sj of SPS as:

Sj =
(

G

∑

i∈Ĭ

a
i,j

x
c
i , j y

c ′
i , j r

c ′′
i , j

∏

i∈Î

n∏

k=1

M
di,j,kx

c
i , j y

c ′
i , j r

c ′′
i , j

k

)

1
∑

i
b
i,j

x
e
i , j y

e ′
i , j r

e ′′
i , j

·

◦ For each signature component T̃j ∈ H of DLmSPSPS:

∗ Parse T̃j as H̃

q∑

i=1
x
c
i , j y

c ′
i , j r

c ′′
i , j

(

a
i,j

+
n∑

k=1
d

i,j,k
mk

)

∑

i
b
i,j

x
e
i , j y

e ′
i , j r

e ′′
i , j

.
∗ Define the set Î ⊆ [q] as the subset of indices i where ∃k ∈ [n] where

di,j,k �= 0 and let Ĭ := [q]\Î. Compute T̃j of SPS as:

T̃j =
(

H̃

∑

i∈Ĭ

a
i,j

x
c
i , j y

c ′
i , j r

c ′′
i , j

∏

i∈Î

n∏

k=1

M̃
di,j,kx

c
i , j y

c ′
i , j r

c ′′
i , j

k

)

1
∑

i
b
i,j

x
e
i , j y

e ′
i , j r

e ′′
i , j

·

◦ For each PPE verification equation of DLmSPSPS:
∗ For each pairing of the form e(Si, Ỹj)a′

i,j,�,kmk where a′
i,j,�,k �= 0:

· If Ỹj �= H̃, append (if it does not already exist) S′
i = Msi

k to S,
replace the pairing with e(S′

i, Ỹj)a′
i,j,�,k and append (if it does not

already exist) the tuple (S′
i, Si, M̃k) to E1. Note that Si is inde-

pendent of the message mk so knowledge of the discrete logarithm
mk is not required to compute S′

i.
· Otherwise, replace the above pairing with e(Si, M̃k)a′

i,j,�,k .
∗ For each pairing of the form e(Xi, T̃j)b′

i,j,�,kmk where b′
i,j,�,k �= 0:

· If Xi �= G, append (if it does not already exist) T̃ ′
j = M̃

tj

k to T ,
replace the pairing with e(Xi, T̃

′
j)

b′
i,j,�,k and append (if it does not

already exist) the tuple (T̃ ′
j , T̃j ,Mk) to E2. Note that T̃j is inde-

pendent of the message mk so knowledge of the discrete logarithm
mk is not required to compute T̃ ′

j .
· Otherwise, replace the pairing with e(Mk, T̃j)b′

i,j,�,k .
∗ For each pairing of the form e(Xi, Ỹj)d′

i,j,�,kmk where d′
i,j,�,k �= 0:

· If Xi = G, replace the pairing with e(Mk, Ỹj)d′
i,j,�,k .

· If Xi �= G but Yj = H̃, replace the pairing with e(Xi, M̃k)d′
i,j,�,k .

· If Xi �= G and Ỹj �= H̃, append (if it does not already exist)
S|S |+1 = Mxi

k to S, replace the pairing with e(S|S |+1, Ỹj)d′
i,j,�,k

and append the tuple (S|S |+1,Xi, M̃k) to E1.
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∗ For each pairing of the form e(Si, T̃j)c′
i,j,�,kmk where c′

i,j,�,k �= 0: Note
that by definition mk cannot appear in the denominator of Si or T̃j .
Also, we must have that at least one of the signature components is
independent of mk.

· If Si is independent of mk, append (if it does not already exist)
S′

i = Msi

k to S, replace the pairing with e(S′
i, T̃j)c′

i,j,�,k and append
(if it does not already exist) the tuple (S′

i, Si, M̃k) to E1.
· Otherwise, append (if it does not already exist) T̃ ′

j = M̃
tj

k to T ,
replace the pairing with e(Si, T̃

′
j)

c′
i,j,�,k and append (if it does not

already exist) the tuple (T̃ ′
j , T̃j ,Mk) to E2.

• Verify
SPS

(
vk

SPS
,
(
(M1, M̃1), . . . , (Mn, M̃n)

)
, σ

SPS

)
: Return 1 if all the following

holds and 0 otherwise:
◦ All modified PPEs of DLmSPSPS verify correctly.
◦ For each tuple i in E1, it holds that: e(E1[i][0], H̃) = e(E1[i][1],E1[i][2]).
◦ For each tuple i in E2, it holds that: e(G,E2[i][0]) = e(E2[i][2],E2[i][1]).
◦ All signature group membership required by DLmSPSPS verify correctly.
◦

(
(M1, M̃1), . . . , (Mn, M̃n)

)
∈ DHn.3

Efficiency. What determines the added cost in σSPS compared to σ is dis-
tinct pairings of the form e(Si, Ỹj)a′

i,j,�,kmk where a′
i,j,�,k �= 0 and Yj �= H̃,

e(Xi, T̃j)b′
i,j,�,kmk where b′

i,j,�,k �= 0 and Xi �= G, and e(Si, T̃j)c′
i,j,�,kmk where

c′
i,j,�,k �= 0 in the verification equations of the DLmSPSPS scheme. Each distinct

pairing of those 3 types adds an extra signature component in H, G, and G/H
depending on which component is independent of the message, respectively, to
σSPS compared to σ. Also, each distinct pairing of any of those 3 types would
add an additional PPE equation involving 2 pairings to the verification over-
head of SPS compared to that of DLmSPSPS. Each distinct pairing of the form
e(Xi, Ỹj)d′

i,j,�,kmk where Xi �= G, Ỹj �= H̃ and d′
i,j,�,k �= 0 incurs an additional

signature component in G and an additional PPE involving 2 pairings. Note that
the latter cost is constant for multiple signatures on the same message.

One maintains the same signature size and verification overhead of
DLmSPSPS (modulo the cost for verifying the well-formedness of the messages
in SPS) when the verification of DLmSPSPS does not involve any pairings of the
above forms. Also, it is easy to see that if the original scheme yields randomizable
signatures, the same applies to the resultant SPS scheme.

6.1 Example Instantiations

We give some example instantiations of our transformation for the sake of illus-
tration. The first example shown in Fig. 1 shows how to transform our new
LmSPSPS scheme into an SPS scheme for a vector of messages which also cap-
tures the single-message SPS scheme from [31] as a special case. The second
3 Batch verification techniques, e.g. [9], can speed up this step.
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example shown in Fig. 2 shows how to transform the PS scheme [42] into a SPS
scheme for a vector of messages which also captures the single-message SPS
scheme from [29] as a special case.

Fig. 1. Transforming our new scheme into a SPS scheme for a vector of messages

6.2 Security

Correctness follows from that of DLmSPSPS and the fact that any added PPE
to the verification of the SPS scheme will verify. We now prove the following
theorem regarding the unforgeability of the obtained SPS scheme.

Theorem 4. If DLmSPSPS is (s)EUF-CMA (resp. (s)EUF-RMA), SPS is
(s)EUF-CMA (resp. (s)EUF-RMA) in the generic group model.

Proof. Since DLmSPSPS is unforgeable, it holds that no generic adversary
against it can obtain a forgery using linear combinations of the (fraction of)
polynomials corresponding to the group elements she sees in the game. We prove
that a generic adversary ASPS against SPS does not see any additional group
elements other than what ADLmSPSPS can see in her game and hence it holds
that no linear combinations of the (fraction of) polynomials ASPS sees leads to
a forgery against SPS.

Before the 1st sign query, the group elements ASPS sees are the same as
those ADLmSPSPS can see at the start of her game which include the public key
(X, Ỹ ) ∈ G

μ × H
μ′

. By definition, such a key is disjoint. Now at the first sign
query on a valid message vector

(
(M1,1, M̃1,1), . . . , (M1,n, M̃1,n)

)
, it follows that
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Fig. 2. Transforming the PS scheme [42] into a SPS scheme for a vector of messages

the discrete logarithm m1,i of the message component (M1,i, M̃1,i) for all i ∈ [n]
corresponds to a constant polynomial. The 1st sign query will return a signature
of the form σ1 = (S1, T̃1). By definition such a returned signature still conforms
to the disjointness requirement and thus such a sign query would not generate
any new identical (fractions of polynomials) in groups G and H which ASPS can
feed back as a message into a subsequent sign query, i.e. all subsequent sign
queries are on message vectors corresponding to constant polynomials.

We now argue that the additional elements ASPS sees could be obtained by
ADLmSPSPS in her game and hence the former does not have any more advantage
over the latter.

• Additional elements of the form S′
i = Msi

k can be obtained by ADLmSPSPS by
calling her exponentiation oracle for G to get Smk

i .
• Additional elements of the form T̃ ′

i = M̃ ti

k can be obtained by ADLmSPSPS by
calling her exponentiation oracle for H to get T̃mk

i .
• Additional elements of the form S′

j = Mxi

k can be obtained by ADLmSPSPS by
calling her exponentiation oracle for G to get Xmk

i .

Since the SPS forgery must be on a message in DHn, i.e. the message correspond
to a constant polynomials, and DLmSPSPS is unforgeable, it follows that no
linear combinations of the group elements ASPS sees in her game leads to a
forgery against SPS. 
�

7 Impossibility Results

In this section we provide some feasibility results for LmSPSPS schemes.
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7.1 A Bound on the Number of Signatures for LmSPSPS Schemes

Here we prove, similarly to the case of structure-preserving signatures proven by
Abe et al. [7], that a EUF-RMA LmSPSPS scheme must have for each message
superpolynomially many potential signatures.

Theorem 5. An EUF-RMA LmSPSPS scheme (against q > 1 sign queries)
must have for each message superpolynomially many potential signatures.

Proof. We can write the j-th signature component of the �-th signing query as:

Sj = G

∑

i
x
c
i , j y

c ′
i , j r

c ′′
i , j

�
(a

i,j
+

n∑

k=1
d

i,j,k
mk)

∑

i
b
i,j

x
e
i , j y

e ′
i , j r

e ′′
i , j

� or T̃j = H̃

∑

i
x
c
i , j y

c ′
i , j r

c ′′
i , j

�
(a

i,j
+

n∑

k=1
d

i,j,k
mk)

∑

i
b
i,j

x
e
i , j y

e ′
i , j r

e ′′
i , j

�

for some (fixed) a
i,j

, b
i,j

, di,j,k ∈ Zp, ci,j ,ei,j ∈ Z
μ
p , c′

i,j ,e
′
i,j ∈ Z

μ′
p , c′′

i,j ,e
′′
i,j ∈

Z
n′
p which are independent of m.

If there are only polynomially many potential signatures for a message vector,
there is a polynomial set {ri}poly(κ)i=1 from which the randomness vector r is cho-
sen. Thus, with probability 1

poly(κ)2 we have that the 2 signatures σ1 = (S1, T̃1)

and σ2 = (S2, T̃2) on 2 random messages vectors m1 and m2 where m1 �= m2,
respectively, were produced using the same randomness vector r� ∈ Z

n′
p . Thus,

we have that σ∗ := σ1−γ
1 σγ

2 is a valid forgery on the new message vector
m∗ = (1 − γ)m1 + γm2 for any γ ∈ Z

×
p \{1} and therefore such a scheme is

not EUF-RMA secure. 
�

7.2 Impossibility of LmSPSPS Schemes with One-Element
Signatures

Here we prove that an EUF-RMA (aganist q > 1 sign queries) LmSPSPS scheme
cannot have one-element signatures. However, as we show in Sect. 5, one-time
sEUF-CMA LmSPSPS schemes with one-element signatures are possible.

Theorem 6. An EUF-RMA LmSPSPS scheme (against q > 1 sign queries)
must have at least 2 elements in the signature.

Proof. WLOG, let’s assume σ = S ∈ G. The proof for the case where σ = T̃ ∈ H

is similar. Since there is only one unknown in the verification equation, i.e. the
signature S, it follows that 1 PPE verification equation is sufficient for such a
scheme. Thus, the scheme would have a verification equation of the following
form:

e(S,

μ′
∏

j=1

Ỹj)
aj+

n∑

k=1
a′

j,kmk
μ∏

i=1

μ′
∏

j=1

e(Xi, Ỹj)
di,j+

n∑

k=1
d′

i,j,kmk

= Z, (4)

where a
j
, a′

j,k
, d

i,j
, d′

i,j,k
∈ Zp and Z ∈ T are public constants. By definition, we

must have that for all k ∈ [n] that a′
j,k = 0.
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Given signatures σ∗
1 = S1 and σ∗

2 = S2 on random messages m1 and m2

where m1 �= m2, respectively, we have that σ∗ := σ1−γ
1 σγ

2 is a valid forgery
on the message m∗ = (1 − γ)m1 + γm2 for any γ ∈ Z

×
p \{1}. Therefore such a

scheme is not EUF-RMA secure against an adversary which makes 2 (random-
message) sign queries. 
�

7.3 Lower Bounds for sEUF-CMA LmSPSPS Schemes

The following theorem proves that the signatures of a sEUF-CMA LmSP-
SPS scheme secure against q > 1 sign queries must have bilateral signatures.

Theorem 7. There is no sEUF-CMA (against q > 1 sign queries) LmSP-
SPS scheme with unilateral signatures.

Proof. WLOG let’s assume that the signature is of the form σ = S ∈ G
ν . The

proof for the case where σ = T̃ ∈ H
ν′

is similar. Such a scheme would have a
number of PPE verification equations of the following form:

ν∏

i=1

e(Si,

μ′
∏

j=1

Ỹj)
ρ1,i,j,�

(m )
μ∏

i=1

μ′
∏

j=1

e(Xi, Ỹj)
ρ2,i,j,�

(m )

= Z�, (5)

where ρ1,i,j,�
, ρ2,i,j,�

∈ Fp[M1, . . . ,Mn] are multivariate polynomials and Z� ∈ T

are some fixed constants.
By definition, the denominator polynomials used in computing the signature

components are independent of the message to be signed. Also, since the sig-
nature is unilateral, i.e. the signature components only appear on the LHS of
the pairings, the numerator polynomials are linear in the randomness vector r
whereas the denominator polynomials are independent of the randomness vec-
tor. By Theorem 5 such a scheme must have superpolynomially many potential
signatures. By querying the sign oracle twice on any message vector m from
the message space, with overwhelming probability we obtain 2 distinct signa-
tures σ1 = S1 and σ2 = S2. We have that σ∗ = σ1−γ

1 σγ
2 is with overwhelming

probability a new signature on m for any γ ∈ Z
×
p \{1}. 
�

The following theorem proves that sEUF-CMA LmSPSPS schemes with 2-
element bilateral signatures do not exist. This result holds even without the
restriction that the message is linear. This sets a lower bound of 3 bilateral
elements for such schemes.

Theorem 8. There is no sEUF-CMA (against q > 1 sign queries) LmSP-
SPS scheme with 2-element bilateral signatures.

Proof. The signature is of the form σ = (S, T̃ ) ∈ G×H whereas the verification
key is of the form (X, Ỹ ) ∈ G

μ × H
μ′

. As we prove in Lemma 1 in Theorem 9,
1 PPE verification equation is sufficient for a LmSPSPS scheme with 2-element
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signatures. Therefore, such a scheme would have a PPE verification equation of
the following form:

e(S,

μ′
∏

j=1

Ỹj)
aj

e(
μ∏

j=1

Xj , T̃ )
ρ2,j

(m )

e(S, T̃ )
c

μ∏

i=1

μ′
∏

j=1

e(Xi, Ỹj)
ρ4,i,j

(m )

= Z,

where ρ2,j
, ρ4,i,j

∈ Fp[M1, . . . ,Mn] are multivariate polynomials, and aj , c ∈ Zp,
and Z ∈ T are some public constants.

If for all j ∈ [μ′], aj = 0 and c = 0, the verification equation is independent
of S and hence by Theorem 6 such a scheme is not secure. Thus, we must have
that either for some j ∈ [μ′] that aj �= 0 or c �= 0, which we consider below:

• Case aj �= 0 for some j ∈ [μ′]: Given a signature σ = (S, T̃ ) on a ran-
dom message m, we compute a new signature on m as σ∗ = (S∗, T̃ ∗) :=(

S
aj

aj+γc

μ∏

i=1

X
−γρ2,i(m )

ai+γc

i , T̃
aj+γc

aj

μ′
∏

i=1

Y
γai
aj

i

)

. We have σ∗ �= σ for any γ ∈ Z
×
p .

• Case aj = 0 for all j ∈ [μ′] and c �= 0: Given a signature σ = (S, T̃ ) on a
random message m, we compute a new signature on m as σ∗ = (S∗, T̃ ∗) :=(

S
1
γ

μ∏

i=1

X
(1−γ)ρ2,i(m )

γc

i , T̃ γ

)

. We have that σ∗ �= σ for any γ ∈ Z
×
p \{1}.

This concludes the proof. 
�

7.4 Lower Bounds for the Verification Key of Optimal Schemes

We have seen that an optimal (w.r.t. signature size) EUF-RMA LmSP-
SPS scheme must have at least 2 elements in the signature. Here we prove that
a scheme with ≤ 2 elements in the signature cannot have a verification key con-
sisting of 1 element even for the case when signing single messages, i.e. when
n = 1. This sets a lower bound of 2 elements in the verification key for even
optimal one-time EUF-RMA schemes. Note some of our proofs below assume
that the RHS of the PPE equations in Eq. (4) is Z� = 1T.4

Theorem 9. There is no EUF-RMA LmSPSPS scheme (against q ≥ 1 sign
queries) with signatures consisting of ≤ 2 elements and one-element verification
key.

Proof. We start by proving the following lemma regarding the number of PPE
verification equations required for schemes with 2-element signatures.

Lemma 1. One PPE verification equation is sufficient for a LmSPSPS scheme
with 2-element signatures.

4 Those proofs also hold if the discrete logarithm of Z� in the case Z� �= 1T is known.
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Proof. If the scheme has 2 PPE equations, both equations must impose non-
trivial constraint on the signature components as otherwise they can be reduced
to a single equation. Since each PPE equation must involve at least 1 signature
component, we have 3 cases:

• Both equations involve both signature components: This means we have 2
quadratic/linear equations in the discrete logarithm of the signature compo-
nents. Such an equation system have at most 4 distinct solutions implying
that there are at most 4 potential signatures for the message vector which
contradicts the proof of Theorem 5.

• One equation involves both components whereas the other equation involves
one component: In this case, one equation is quadratic/linear involving both
signature components, whereas the remaining equation is linear in one of
the components. By substituting the value of the signature component in
the linear equation into the other equation we end up with one verification
equation that is sufficient for verifying the signature.

• Each verification equation involves a single signature component: Since the
other constants (the verification key, the public parameters (if any) and the
messages) are fixed, we have that each verification equation is a linear equa-
tion in one of the signature components, i.e. each equation is a linear equation
in one unknown. Thus, there is exactly 1 potential signature for the message
vector which contradicts the proof of Theorem 5. 
�
The following 4 lemmata complete the proof of the theorem.

Lemma 2. There is no EUF-RMA SPSPS scheme (against q ≥ 1 sign queries)
with one verification equation and unilateral signatures and a unilateral verifi-
cation key containing elements from the same source group.

Proof. Let’s consider the case where the signature and the verification key both
belong to group G. The proof for the opposite case is similar. The scheme yields a
signature σ = (S1, . . . , Sν) ∈ G

ν , has a verification key vk = (X1, . . . , Xμ) ∈ G
μ

where WLOG X1 = G, and has a verification equation of the form

ν∏

i=1

e(Si, H̃)
ρ1,i

(m)
μ∏

i=1

e(Xi, H̃)
ρ2,i

(m)

= Z·

for some polynomials ρ1,i
and ρ2,i

.
Given a signature σ = (S1, . . . , Sν) on a random message m ∈ Zp, we can

construct a new forgery σ∗ = (S∗
1 , . . . , S∗

ν) on a different message m∗ �= m
by fixing some i ∈ [ν] and computing let S∗

j := Sj for all j ∈ [ν]\{i} and

S∗
i :=

(
S

ρ1,i(m)
i

∏

j �=i

S
ρ1,j(m)−ρ1,j(m

∗)
j

μ∏

j=1

X
ρ2,i(m)−ρ2,i(m

∗)
j

) 1
ρ1,i(m∗)

. It is easy to

see that such a forgery is a valid signature on the message m∗. 
�
Lemma 3. There is no one-time EUF-RMA LmSPSPS scheme with one veri-
fication equation, one-element signatures and one-element verification key.
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Proof. Note here that we assume that Z = 1T. The case where both the signature
and verification key lie in the same group follows from Lemma 2. Assume a
scheme has a signature σ = S, a verification key vk = Ỹ and a verification
equation of the following form:

e(S, H̃a1+a′
1mỸ a2+a′

2 m) = e(G, H̃b1+b′
1mỸ b2+b′

2m)·
By definition, we must have that a′

1 = a′
2 = 0. Note that we cannot have that

a1 = a2 = 0 as the equation would be independent of the signature, or b′
1 = b′

2 =
0 as the equation would be independent of the message.

Given a signature σ = S on a random message m, we construct a forgery
on m∗ = γm + (γ−1)(b1a2−a1b2)

a2b′
1−a1b′

2
for any γ ∈ Zp\{1} as σ∗ = S∗ :=

G
(γ−1)(b1b′

2−b′
1b2)

a2b′
1−a1b′

2 Sγ . This is a valid forgery unless a2b
′
1 = a1b

′
2 which we deal

with below:

• Case a2b
′
1 = a1b

′
2 �= 0 or b′

1 = a1 = 0: Given a signature σ = S on a random
message m, we construct a forgery σ∗ = S∗ := GγS1 on m∗ = m + γa2

b′
2

for
any γ ∈ Z

×
p .

• Case b′
2 = a2 = 0: Given a signature σ = S on a random message m, we can

construct a forgery σ∗ = S∗ := GγS1 on m∗ = m + γa1
b′
1

for any γ ∈ Z
×
p . 
�

Lemma 4. There is no SPSPS scheme with two-element bilateral signatures
and one-element verification key that is secure against a key-only attack.

Proof. Note here that we assume that Z = 1T. The signature is of the form
σ = (S, T̃ ) ∈ G × H whereas the verification key is either of the form Ỹ ∈ H or
X ∈ G. We prove the first case but the proof for the second case is similar. The
scheme has a verification equation of the following form:

e(S, H̃ρ1(m)Ỹ ρ2(m))e(G, T̃ )ρ3(m)e(S, T̃ )ρ4(m) = e(G, H̃ρ5(m)Ỹ ρ6(m))·
for some polynomials ρi for i ∈ [6]. Given the verification key, we can construct
a forgery on any message m∗ ∈ Zp by choosing γ ← Z

×
p and computing:

σ∗ = (S∗, T̃ ∗) := (Gγ , H̃
ρ5(m∗)−γρ1(m∗)
ρ3(m∗)+γρ4(m∗) Ỹ

ρ6(m∗)−γρ2(m∗)
ρ3(m∗)+γρ4(m∗) )·


�
Lemma 5. There is no one-time EUF-RMA LmSPSPS scheme with two-
element unilateral signatures and a verification key consisting of one-element
from the opposite source group.

Proof. Note here that we assume that Z = 1T. Let’s consider the case where the
signature is of the form σ = (S1, S2) ∈ G

2 whereas the verification key is of the
form Ỹ ∈ H. The proof for the opposite case is similar. Such a scheme would
have a verification equation of the form

2∏

i=1

e(Si, H̃
ai,1+a′

i,1mỸ ai,2+a′
i,2m) = e(G, H̃d1+d′

1mỸ d2+d′
2m)·
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By definition, we must have that either a′
1,1

= a′
1,2

= 0 or a′
2,1

= a′
2,2

= 0.
Let’s assume the former case. Note that if a1,1 = a1,2 = 0, the equation is
independent of S1 and hence by Lemma 3 the scheme is not secure against q ≥ 1
sign queries. Similarly, if a2,1 = a′

2,1 = a2,2 = a′
2,2 = 0, the verification equation

is independent of S2 and hence by Lemma 3 it is not secure against q ≥ 1 sign
queries.

Given a signature σ = (S1, S2) on a random message m, we can con-
struct a new forgery σ = (S∗

1 , S∗
2 ) on a new message m∗ �= m by setting

S∗
1 := G

α
S1 S

β
S1

2 S1 and S∗
2 := G

α
S2 S

β
S2

2 where

αS1
:=

(
d′
2(a2,1 + a′

2,1m
∗) − d′

1(a2,2 + a′
2,2m

∗)
)
(m∗ − m)

a1,2(a2,1 + a′
2,1m

∗) − a1,1(a2,2 + a′
2,2m

∗)

βS1
:=

(a′
2,1a2,2 − a2,1a

′
2,2)(m

∗ − m)

a1,2(a2,1 + a′
2,1m

∗) − a1,1(a2,2 + a′
2,2m

∗)

αS2
:=

(a1,2d
′
1 − a1,1d

′
2)(m

∗ − m)

a1,2(a2,1 + a′
2,1m

∗) − a1,1(a2,2 + a′
2,2m

∗)

βS2
:=

a1,2(a2,1 + a′
2,1m) − a1,1(a2,2 + a′

2,2m)

a1,2(a2,1 + a′
2,1m

∗) − a1,1(a2,2 + a′
2,2m

∗)

Thus, we can find a forgery unless a1,2(a2,1 + a′
2,1m

∗) − a1,1(a2,2 + a′
2,2m

∗) = 0
for all m∗ ∈ Zp. We have 2 cases to deal with the above as follows:

• Case a1,1 = a2,1 = a′
2,1 = 0: Note that as stated earlier, if a1,2 = 0 or

a2,2 = a′
2,2 = 0, the verification equation is independent of one of the signature

components and hence is not secure. We have 2 cases as follows:
◦ Case d1 �= 0: Give a signature σ = (S1, S2) on a random message m ∈ Zp

satisfying d1 + d′
1m �= 0, we have that σ∗ = (S∗

1 , S∗
2 ) where

S∗
1 := G

−γa2,2(d1+d′
1m∗)

a1,2d1 S

d1+d′
1m∗

d1+d′
1m

1 S∗
2 := GγS2

is a valid forgery on any m∗ �= m satisfying d1+d′
1m

∗ �= 0 for any γ ∈ Z
×
p .

◦ Case d1 = 0: Given a signature σ = (S1, S2) on a random message m ∈
Z

×
p , we have that σ∗ = (S∗

1 , S∗
2 ) where

S∗
1 := G

d2(m−m∗)−γm(a2,2+a′
2,2m∗)

a1,2m S

a2,2(m∗−m)
a1,2m

2 S
m∗
m

1 S∗
2 := GγS2

is a valid forgery on the message m∗ �= m for any γ ∈ Z
×
p .

• Case a2,2a1,1 = a1,2a2,1, a′
2,2a1,1 = a1,2a

′
2,1 and a1,1 �= 0: If a1,2 = 0, we have

a2,2 = a′
2,2 = 0 and hence we cannot have any of the following cases:

◦ d2 = d′
2 = 0: Since verification would be independent of the key Ỹ .

◦ a2,1 = a′
2,1 = 0: Since verification would be independent of S2.

◦ a′
2,1 = d′

1 = d′
2 = 0: Since verification would be independent of m.

We have that σ∗ = (S∗
1 , S∗

2 ) where

S∗
1 := G

a1,2γ(a2,1d′
1−a′

2,1d1)+a1,1

(
d2(a′

2,1γ−d′
1)+d′

2(d1−a2,1γ)

)

a1,1(a1,1d′
2−a1,2d′

1) S∗
2 := Gγ
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is a valid forgery on m∗ := a1,1d2−a1,2d1
a1,2d′

1−a1,1d′
2
. The forgery is valid unless a1,2d

′
1 −

a1,1d
′
2 = 0. We have 2 cases to deal with this as follows:

◦ Case a1,2d
′
1 = a1,1d

′
2 = 0: Given a signature σ = (S1, S2) on a random

message m ∈ Zp, we have that σ∗ = (S∗
1 , S∗

2 ) where

S∗
1 := G

−γ(a2,1+a′
2,1m∗)+d′

1(m∗−m)

a1,1 S
a2,1+a′

2,1m

a1,1
2 S1 S∗

2 := Gγ

is a valid forgery on any m∗ �= m for any γ ∈ Z
×
p .

◦ Case a1,2d
′
1 = a1,1d

′
2 �= 0: Given a signature σ = (S1, S2) on a random

message m ∈ Zp, we have that σ∗ = (S∗
1 , S∗

2 ) where

S∗
1 := G

−γa1,2(a2,1+a′
2,1m∗)+d′

2a1,1(m∗−m)

a1,1a1,2 S

a2,1+a′
2,1m

a1,1
2 S1 S∗

2 := Gγ

is a valid forgery on any m∗ �= m for any γ ∈ Z
×
p .

If it is required that S∗
i ∈ G

×, we have to additionally handle the case
that d1a

′
2,1 = a2,1d

′
1 and d2a

′
2,1 = a2,1d

′
2. Note that we cannot have that

a′
2,1 = 0 as otherwise the signature will either be independent of S2 or m.

We have that given a signature σ = (S1, S2) on a random message m ∈ Z
×
p ,

we have that σ∗ = (S∗
1 , S∗

2 ) := (Sγ
1 , S2) is a valid forgery on any message

m∗ = a2,1(γ−1)+a′
2,1γm

a′
2,1

for any γ ∈ Z
×
p \{1}. 
�

This concludes the proof. 
�
We have proved that an (optimal) scheme with two-element unilateral sig-

natures must have at least 2 elements in the verification key besides the default
source group generators. An intriguing question is whether, similarly to the
one-time EUF-CMA scheme we give in Sect. 5, an EUF-RMA scheme with two-
element unilateral signatures and a two-element bilateral verification key exists.
We answer this question negatively by proving the following theorem. In essence,
this means the PS scheme and our new LmSPSPS scheme are optimal w.r.t. the
size of the verification key.

Theorem 10. There is no EUF-RMA (against q > 1 sign queries) LmSP-
SPS scheme with two-element unilateral signatures and a two-element bilateral
verification key.

Proof. Let’s consider a scheme with signatures of the form σ = (S1, S2) ∈ G
2

whereas the verification key is of the form (X, Ỹ ) ∈ G × H. The proof for the
opposite case is similar.

Such a scheme has a PPE verification equation of the form

2∏

i=1

e(Si,H̃
ai,1+a′

i,1mỸ ai,2+a′
i,2m)

= e(Gd1,1+d′
1,1mXd2,1+d′

2,1m, H̃)e(Gd1,2+d′
1,2mXd2,2+d′

2,2m, Ỹ )·
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By definition, we must have that either a′
1,1 = a′

1,2 = 0 or a′
2,1 = a′

2,2 = 0
as otherwise the message features in the denominator polynomial of a signature
component. Let’s assume WLOG that a′

1,1 = a′
1,2 = 0 as the other case is similar.

Such a scheme is not secure against an adversary that receives two signatures
σ1 = (S1,1, S1,2) and σ2 = (S2,1, S2,2) on two random distinct messages m1 and
m2, respectively. We can construct a forgery on a new message m∗ /∈ {m1,m2}
as follows:

Define A1 =
[

a2,1 a1,1

a2,2 a1,2

]

, A2 =
[

a′
2,1 a1,1

a′
2,2 a1,2

]

and A3 =
[

a2,1 a′
2,1

a2,2 a′
2,2

]

Let α := (|A1|+|A2|m1)(m
∗−m2)

(|A1|+|A2|m∗)(m1−m2)
and

βs1,1 :=
m2 − m∗

m2 − m1
βs1,2 :=

m1 − m∗

m1 − m2

γs1,1 :=
|A3|(m∗ − m2 + (m2 − m1)α)

|A2|(m2 − m1)
γs1,2 := −γs1,1

γs2,1 := α γs2,2 := − (|A1| + |A2|m2)(m
∗ − m1)

(|A1| + |A2|m∗)(m1 − m2)

We have that σ∗ = (S∗
1 := S

βs1,1
1,1 S

βs1,2
2,1 S

γs1,1
1,2 S

γs1,2
2,2 , S∗

2 := S
γs2,1
1,2 S

γs2,2
2,2 ) is a valid

forgery on any message m∗ ∈ Zp\{m1,m2,
−|A1|
|A2| } satisfying |A1| + |A2|m∗ �= 0.

Thus, we obtain a forgery on a new message unless |A2| = 0 which is dealt with
by the following 3 cases:

• Case a1,1 = 0: We have 2 cases:

◦ Case a1,2 = 0: The verification equation is independent of the signature
component S1 and hence is not secure.

◦ Case a′
2,1 = 0: Given signatures σ1 = (S1,1, S1,2) and σ2 = (S2,1, S2,2) on

random messages m1 and m2, respectively, we have that σ∗ = (S∗
1 , S∗

2 )
where

S∗
1 := Sγ

1,1S
1−γ
2,1 S

− a′
2,2(γ2−γ)(m1−m2)

a1,2
1,2 S

a′
2,2(γ2−γ)(m1−m2)

a1,2
2,2 S∗

2 := Sγ
1,2S

1−γ
2,2

is a valid forgery on m∗ = γm1 + (1 − γ)m2 for any γ ∈ Z
×
p \{1}.

• Case a′
2,2 = 0 and a1,1 �= 0: Given signatures σ1 = (S1,1, S1,2) and σ2 =

(S2,1, S2,2) on two random messages m1 and m2, respectively, we compute

S∗
1 := Sγ

1,1S
1−γ
2,1 S

− a′
2,1(γ2−γ)(m1−m2)

a1,1
1,2 S

a′
2,1(γ2−γ)(m1−m2)

a1,1
2,2 S∗

2 := Sγ
1,2S

1−γ
2,2

We have that σ∗ = (S∗
1 , S∗

2 ) is a valid forgery on m∗ = γm1 + (1 − γ)m2 for
any γ ∈ Z

×
p \{1}.
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• Case a′
2,2a1,1 = a1,2a

′
2,1 �= 0: Given signatures σ1 = (S1,1, S1,2) and σ2 =

(S2,1, S2,2) on two distinct random messages m1 and m2, respectively, we
compute

S∗
1 := S

m2−m∗
m2−m1
1,1 S

m1−m∗
m1−m2
2,1 S

− a′
2,1(m∗−m1)(m∗−m2)

a1,1(m1−m2)

1,2 S

a′
2,1(m∗−m1)(m∗−m2)

a1,1(m1−m2)

2,2

S∗
2 := S

m2−m∗
m2−m1
1,2 S

m1−m∗
m1−m2
2,2

We have that σ∗ = (S∗
1 , S∗

2 ) is a valid forgery on any new message m∗ ∈
Zp\{m1,m2}.

This concludes the proof. 
�
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Abstract. Certificate-based cryptography optimizes certificate manage-
ment of the traditional public key infrastructure (PKI) and overcomes
the problems of the key escrow and the key distribution in identity-based
cryptography (IBC). Currently, many certificate-based signature (CBS)
schemes have been proposed in the random oracle model or standard
model. However, all existing schemes in the standard model are quietly
inefficient. In this paper, we propose an efficient certificate-based signa-
ture over bilinear groups in the standard model. Compared with the state-
of-the-art constructions in the standard model, the proposed scheme is
superior in both communication cost and computational overhead.

Keywords: Certificate-based signature · Standard model · Bilinear
pairing.

1 Introduction

In the traditional public key cryptography (PKC) [2], users choose a random
string as the public key of their own. Here the public key is unrelated to the
identity information of the user, which cause an attack that an adversary can
replace user’s public key with its own. In order to solve this problem, a trusted
Certificate Authority (CA) is introduced by public key infrastructure (PKI) to
produce an unforgeable certificate linking the user’s public key and identity
together for each user. It is not hard to see that certificate management of the
CA becomes more and more complex and costly as the number of users increases.

To address the aforementioned problems, Shamir [26] came up with a new
concept, named identity-based cryptography (IBC), in 1984. In the identity-
based cryptosystem, there exists a trusted party named Private Key Generator
(PKG) who generates a private key for the user based on the user’s public
key, where the public key maybe a phone code or IP address. Obviously, IBC
avoids the certificate management problem in PKC [7]. And it can also resist
public key replacement attack simultaneously. Nevertheless, new problems of
key escrow and key distribution [18] appeared in IBC due to the user trusts
the PKG unconditionally. To efficiently reduce the complexity and overhead of
certificate management in PKC, and overcome problems of the key escrow and
c© Springer Nature Switzerland AG 2021
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key distribution in IBC, the concepts of certificateless-based cryptography (CLC)
[1] and certificate-based cryptography (CBC) [7] were put forward.

In certificateless-based cryptography, there exists a trusted Key Generation
Center (KGC) that produces a partial private key and transmits it to the user
via a secure channel. The user then obtains a full private key by combining the
partial private key from the KGC and the secret key generated by his/her own.
Note that the secret key is only known to the user. Therefore, CLC avoids the key
escrow problem of IBC and certificate management problem of PKC. However,
CLC needs to establish a secure channel to distribute the partial private key.
And the schemes in CLC are vulnerable to public key replacement attack.

In certificate-based cryptography, the user first generates his/her own pair
of private/public keys, then sends information including public key and user’s
identity to the CA. Later, the user receives certificate which can be regarded as
signature generated by CA with the private key. Note that the certificate in CBC
is different from the one in PKC which can be utilized as a part of the user’s
private key. It is clear that the complexity and costs of certificate management
of the CA are efficiently reduced. In addition, this method avoids the problems
of key escrow and key distribution in IBC.

Currently, many certificate-based signature schemes have been proposed. In
2004, Kang et al. [12] first introduced the concept of certificate-based signature
and gave two CBS schemes in the random oracle. Subsequently, Li et al. [14]
presented a secure and efficient CBS scheme in the random oracle model. Huang
et al. [10] also proposed a secure scheme in the random oracle. Furthermore,
there exist several works focusing on the CBS schemes in the standard model.
Liu et al. [18] constructed a CBS scheme in the standard model. Lu and Li
[20] proposed a novel CBS scheme in the standard model. In 2017, Zhou and
Cui [32] also gave a CBS scheme in the standard model. To our best knowledge,
all existing schemes in the standard model are inefficient.

1.1 Our Contribution

In this paper, we focus on constructing a CBS scheme with better efficiency in
the standard model. Our contributions can be summarized as follows:

– We present an efficient certificate-based signature scheme in the standard
model based on the PS assumption and EPS assumption which are proven to
be intractable in the generic group model.

– The proposed scheme satisfies the desired properties of correctness and exis-
tential unforgeability under adaptive chosen-message attack. Besides, com-
pared with the state-of-the-art constructions in the standard model, the pro-
posed scheme is superior in both communication cost and computation over-
head.

1.2 Related Work

In 2004, Kang et al. [12] introduced the concept of certificate-based signature
(CBS) and described the necessary security requirements of certificate-based sig-
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nature. Additionally, they also proposed two certificate-based signature schemes
in the random oracle model. In 2007, Li et al. [14] introduced a new attack
called the key replacement attack and pointed out that one of the schemes [12]
is insecure against the attack mentioned above. They then redefined the secu-
rity model of certificate-based signature and designed a secure and efficient CBS
scheme in the random oracle model. Liu et al. [18] presented a pairing free CBS
scheme in the random oracle model. Later, the scheme in the random oracle
model mentioned above was broken by Zhang [30]. After that, Zhang et al. [31]
presented an efficient CBS scheme in the random oracle model based on bilinear
pairings. In 2009, Wu et al. [28] proposed a generic conversion from an existing
secure CLS scheme to a secure CBS scheme and then gave a secure CBS scheme
in the random oracle model. Liu et al. [19] constructed a short certificate-based
signature (SCBS) scheme in the random oracle. Unfortunately, Cheng et al. [4]
pointed out that the scheme [19] was insecure. Concurrently, Li et al. [16] also
designed an SCBS scheme in the random oracle model. Hung et al. [11] claimed
that the scheme [16] is insecure and then gave an improved scheme. However,
the improved scheme [11] was also broken by Kumar and Sharma (see [13]). Wu
et al. [27] gave a new CBS scheme under the k-CAA assumption and Inv-CDH
assumption in the random oracle model. Ma et al. [21] proposed a new CBS
scheme based on the CDH assumption in the random oracle model. Recently,
Huang et al. [10] proposed a generic conversion from an existing secure proxy
scheme to a secure CBS scheme and then gave a secure CBS scheme in the
random oracle model.

Several works focusing on the CBS in the standard model have been found.
Liu et al. [18] constructed a CBS scheme in the standard model. Subsequently,
Li et al. [15] described a CBS scheme in the standard model based on the CDH
assumption. In 2016, Lu and Li [20] further considered a new attack, named
malicious-but-passive CA attack. And then they pointed out that several CBS
schemes [15,18] in the standard model are insecure against the attack above.
Additionally, they also proposed an improved scheme based on CDH assumption
in the standard model. Subsequently, Zhou and Cui [32] described an enhanced
security model of the CBS which can resist the malicious-but-passive CA attack.
They then designed a CBS scheme in the standard model utilizing bilinear pair-
ing. To our best knowledge, all existing CBS schemes in the standard model are
insecure or inefficient.

1.3 Organization

The rest of this paper is organized as follows. In Sect. 2, we describe some pre-
liminaries used in this paper. In Sect. 3, we propose an efficient certificate-based
signature scheme. In Sect. 4, we provide the security and efficiency analysis of
the proposed scheme. Finally, the conclusions are given in Sect. 5.

2 Preliminaries

In this section, we describe some necessary preliminaries used in this paper.
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2.1 Bilinear Pairing

Let G, Ĝ and T be multiplicative cyclic groups with prime order p, and let G
and Ĝ be generators of G and Ĝ, respectively. The pairing e : G × Ĝ → T is a
bilinear one if it satisfies the following properties:

– Bilinearity: e(Ga, Ĝb) = e(G, Ĝ)ab for ∀a, b ∈ Zp.
– Non-degeneracy: e(G, Ĝ) �= 1T, where 1T is the unit element of T.
– Computability: e is efficiently computable.

If G = Ĝ then the pairing is symmetric, called Type 1 pairing [3,6]. The pair-
ing is asymmetric (Type 2 or 3 pairing) when G �= Ĝ. For Type 2 pairing there
exists an efficiently-computable isomorphism Ψ : Ĝ → G. For Type 3 pairing
no such isomorphism is known between Ĝ and G. Moreover, literature [3] shows
that Type 3 pairing is currently the optimal choice in terms of efficiency and
security trade-off. Currently, Type 3 pairing is widely utilized in some schemes
[5,8,9].

2.2 Intractable Assumptions

In this section, we describe two intractable assumptions which will be utilized
in the security analysis of the proposed scheme in this paper.

Definition 1 (PS assumption). We assume that a Type 3 bilinear group is
described as (G, Ĝ,T, e, p,G, Ĝ), and let V̂ = Ĝv, Ŵ = Ĝw for some random
scalars v, w ∈ Zp where Ĝ is a generator of Ĝ. Let OPS(·) be an oracle on
input m ∈ Zp that returns a tuple (Gr, Gr(v+mw)) for a random r ∈ Z

∗
p. Given

(Ĝ, V̂ , Ŵ ) and unlimited access to this oracle, any adversary can not efficiently
generate such a valid tuple for a new scalar m∗, not asked to OPS.

This assumption introduced by Pointcheval and Sanders in [24] has been shown
to be intractable in the generic group model. Subsequently, PS assumption is
widely utilized in some schemes [17,22–24,29,33].

Definition 2 (EPS assumption). We assume that a Type 3 bilinear group is
described as (G, Ĝ,T, e, p,G, Ĝ), and let O = Go, Ô = Ĝo,X = Gx, X̂ = Ĝx,
Ŷ = Ĝy, Ẑ = Ĝz for some random scalars o, x, y, z ∈ Zp where Ĝ is a generator
of Ĝ. Let OPS(·) be an oracle on input l ∈ Zp that returns a tuple (α1, α2) =
(Gr1 , Gr1(y+lz)) for a random r1 ∈ Z

∗
p. Let OEPS(·) be an oracle on input

(l∗,m) ∈ Z
2
p that returns a triple (β1, β2, β3) = (Gr2 , Gr2r3 , Gr3(r2(y+l∗z)+o+xm))

for random r2, r3 ∈ Z
∗
p, where l∗ is not allowed to access the oracle OPS(·).

Given (G, Ĝ,O, Ô,X, X̂, Ŷ , Ẑ) and unlimited access to oracles OPS and OEPS,
any adversary can not efficiently generate such a valid tuple for a new pair
(l∗,m∗), not asked to OEPS.

We show the intractability of the EPS assumption in the general model using
the Schwartz-Zipple lemma [25]. Please refer to Appendix A.
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2.3 Definition and Security Requirements of CBS

In this section, we provide the formal definition [20,32] and security requirements
[28,32] of CBS scheme.

Definition 3 (CBS). A certificate-based signature scheme is defined by the fol-
lowing five algorithms:

– CBS.Setup(1λ): It is usually executed by the CA to take a security param-
eter 1λ as input, and then outputs a public parameter Params and the CA’s
master secret key MSK where the private key MSK keeps secret.

– CBS.UKGen(Params, ID): It is executed by the user to take the public
parameter Params as input and outputs private/public keys (SKID, PKID)
for the user.

– CBS.Cert(Params, ID, PKID,MSK): It is executed by the CA to take
(Params, ID, PKID,MSK) as input where the identity information ID and
the public key PKID are from the user, and then it outputs a certificate
CERTID for the user.

– CBS.Sign(Params, ID, SKID, CERTID,m): It is executed by the user to
take (Params, ID, SKID, CERTID,m) as input and outputs a signature σ
on m.

– CBS.Verify(Params, ID, PKID,m, σ): It is executed by the verifier to take
as input (Params, ID, PKID,m, σ) and outputs 1 meaning the signature
passing the verification process or 0 otherwise.

A CBS scheme should satisfy correctness and existential unforgeability under
adaptive chosen-message attack (EUF-CMA).

Definition 4 (Correctness). A CBS scheme is correct if for all (Params,
MSK) ← CBS.UKGen(1λ), all (SKID, PKID) ← CBS.UKGen(Params,
ID), all CERTID ← CBS.Cert(Params, ID, PKID,MSK), all σ ←
CBS.Sign(Params, ID, SKID, CERTID,m), we have that

CBS.Verify(Params, ID, PKID,m, σ) = 1.

EUM-CMA of CBS. There exist two types of adversaries considered in the
existential unforgeability under adaptive chosen-message attack of CBS. One is
an uncertified user who has the ability to obtain the object user’s private key
and replace all user’s key pairs, but does not get the object user’s certificate.
The other one is a malicious-but-passive certifier who has the ability to hold
the system master secret key, but can not obtain the target user’s private key.
We give the existential unforgeability under adaptive chosen-message attack of
CBS by describing two games Game 1 and Game 2, where Game 1 is operated
between an uncertified user and a challenger, and Game 2 is run between a
malicious-but-passive certifier and a challenger.

Game 1
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Setup. In this stage, the adversary A obtains public parameter Params from
the challenger C.

Queries. In this stage, A issues a number of different queries adaptively as
follows.

– User-Creation oracle OU : Given an identity ID. C first checks whether
ID exists in Table T which is maintained by C and records the already cre-
ated information of the user’s identity and keys. If it does, C returns corre-
sponding PKID to A. Otherwise, C runs algorithm CBS.UKgen, generates
(SKID, PKID), and writes the item (ID, SKID, PKID) in Table T . Finally,
C returns PKID to A.

– Certificate oracle OC : Given an identity ID and public key PKID exist-
ing in table T . C runs algorithm CBS.Cert and returns the corresponding
certificate CERTID to A.

– Replace public key oracle OR: Given an identity ID created and a new
key pair (SK

′
ID, PK

′
ID). C searches the item (ID, SKID, PKID) in Table T

and updates (ID, SKID, PKID) with (ID, SK
′
ID, PK

′
ID).

– Private key oracle OP : Given an identity ID created. C searches the item
(ID, SKID, PKID) in Table T , and returns SKID associated with ID to A.

– Signature oracle OS : Given a message m, an identity ID. C checks whether
the item (ID, SKID, PKID) exists in Table T . If it does, C returns the sig-
nature on m to A by running algorithm CBS.Sign.

Forgery. In this stage, A forges a signature σ∗ on the message m∗ under
(ID∗, PKID∗). We say A wins in Game 1 when the following conditions are
satisfied.

– σ∗ passes the validation of CBS.Verify.
– ID∗ has never been queried to the oracle OC .
– (m∗, ID∗) has never been queried to the oracle OS .

Definition 5 (EUF-CMA-1). A CBS scheme is existentially unforgeable
against adaptive chosen message attack in Game 1, if a probability polynomial
time (PPT) A succeeds in the Game 1 with a negligible advantage.

Game 2

Setup. In this stage, A executes algorithm CBS.Setup to generate (Params,
MSK), and gives (Params,MSK) to the challenger C.

Queries. In this stage, C provides polynomial queries to A. Given the oracles
OU , OP , and OS as defined in Game 1.

Forgery. In this stage, A forges a signature σ∗ on the message m∗ under
(ID∗, PKID∗). We say A wins the Game 2 when the following conditions are
satisfied.

– σ∗ passes the validation of CBS.Verify.
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– ID∗ has never been queried to the oracle OP .
– (m∗, ID∗) has never been queried to the oracle OS .

Definition 6 (EUF-CMA-2). A CBS scheme is existentially unforgeable
against adaptive chosen message attack in Game 2, if a PPT A succeeds in
the Game 2 with a negligible advantage.

3 An Efficient Certificate-Based Signature Scheme

In this section, we propose an efficient certificate-based signature scheme based
on the PS assumption and EPS assumption. Then we give the correctness anal-
ysis.

– CBS.Setup(1λ): On input the security parameter 1λ, the CA first ran-
domly chooses three different multiplicative cyclic groups G, Ĝ and T with
prime order p, where G and Ĝ are generators of G and Ĝ respectively, and
denotes a non-degenerate bilinear mapping e : G × Ĝ → T. Then CA selects
a collision-resistant hash function H : {0, 1}∗ → Zp, and randomly picks
four scalars o, x, y, z ∈ Zp, computes O = Go, Ô = Ĝo,X = Gx, X̂ = Ĝx,
Ŷ = Ĝy, Ẑ = Ĝz, and generates the CA’s private key MSK = (o, x, y, z)
and public key MPK = (O, Ô,X, X̂, Ŷ , Ẑ). Finally, the CA publishes public
parameter Params = (G, Ĝ,T, e, p,G, Ĝ,H,MPK).

– CBS.UKGen(Params, ID): On input the public parameter Params and
the user’s identity information ID. The user selects two random scalars v, w ∈
Zp, computes V̂ = Ĝv, Ŵ = Ĝw, and then generates private key SKID =
(v, w) and public key PKID = (V̂ , Ŵ ).

– CBS.Cert(Params, ID, PKID,MSK): On input the public parameter
Params, the user’s identity information ID, the user’s public key PKID

and the CA’s private key MSK. The CA selects a random scalar t, computes
(α1, α2) =

(
Gt, G(y+zH(ID||PKID))t

)
, and then sends certificate CERTID =

(α1, α2) to the user.
– CBS.Sign(Params, ID, SKID, CERTID,m): On input the public param-

eter Params, the user’s identity information ID, the user’s private key
SKID, the user’s certificate CERTID and a message m ∈ {0, 1}∗. The
user selects a random scalar r and computes σ1 = Gr, σ2 = αr

1 and σ3 =
(α2OXH(m)Gv+wH(m))r. The user outputs the signature σ = (σ1, σ2, σ3).

– CBS.Verify(Params, ID, PKID,m, σ): On input the public parameter
Params, the user’s identity information ID, the user’s public key PKID,
the message m and the signature σ. The verifier checks whether e(σ3, Ĝ) =
e(σ2, Ŷ Ẑh)e

(
σ1, ÔX̂H(m)V̂ ŴH(m)

)
where h = H(ID||PKID). If it does, it

accepts the signature.
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Correctness. The correctness of the proposed scheme follows directly from the
equation below.

e(σ3, Ĝ) = e
((

α2G
o+xH(m)+v+wH(m)

)r

, Ĝ
)

= e(Grt(y+zh), Ĝ)e
(
Gr(o+xH(m)+v+wH(m)), Ĝ

)

= e(Gtr, Ĝ(y+zh))e
(
Gr, Ĝo+xH(m)+v+wH(m)

)

= e(σ2, Ŷ Ẑh)e
(
σ1, ÔX̂H(m)V̂ ŴH(m)

)

where h = H(ID||PKID).

4 Security and Efficiency Analysis

In this section, we provide the security and efficiency analysis of the proposed
scheme.

4.1 Security Analysis

Theorem 1. The proposed CBS scheme is existentially unforgeable against
adaptive chosen message attack in Game 1 if the EPS assumption holds.

Proof. Suppose there exists a PPT A who breaks the existential unforgeability
of the proposed CBS scheme in Game 1 with a non-negligible advantage ε, then
we can build an adversary C to solve the EPS assumption with a non-negligible
advantage AdvC .

Assume that A can carry out at most qU user-creation queries, qC cer-
tificate queries, qP private key queries, qR replace public key queries and
qS signature queries. Let OPS(·) and OEPS(·) be oracles defined in the
EPS assumption, C can access them polynomially many times and is given
(G, Ĝ,T, e, p,G, Ĝ,O, Ô,X, X̂, Ŷ , Ẑ), C works as follows.

Setup. C sets MPK = (O, Ô,X, X̂, Ŷ , Ẑ) and chooses a collision-resistant hash
function H : {0, 1}∗ → Zp. C outputs Params = (G, Ĝ,T, e, p,G, Ĝ, H,MPK)
to A.

Suppose that an index π is randomly selected from {1, ..., qU} by C.

Queries. A issues a number of different queries adaptively as follows.

– OU : Given an identity IDi. C first checks whether the IDi has been created
and written in the table T maintained by C, which is used to record the
user’s identity information and key pair and initially empty. If it does, C
returns PKIDi

of IDi to A. Otherwise, C executes algorithm CBS.UKgen to
produce key pair (SKIDi

, PKIDi
) = ((vIDi

, wIDi
), (V̂IDi

, ŴIDi
)) belonging

to IDi. C puts (IDi, SKIDi
, PKIDi

) into table T and returns PKIDi
to A.

– OC : Given an identity IDi created.
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• IDi �= IDπ. C first computes H(IDi||PKIDi
) and then accesses the oracle

OPS to generate a valid tuple (α1, α2) =
(
Gr, Gr(y+H(IDi||PKIDi

)z)
)
.

Finally, C returns it to A.
• IDi = IDπ. C aborts.

– OP : Given an identity IDi created. C first searches the table T to get the
private key (vIDi

, wIDi
), and then returns it to A.

– OR: Given identity IDi existing in table T and a valid key pair
(SK

′
IDi

, PK
′
IDi

). C first searches the table T to find out the item
(IDi, SKIDi

, PKIDi
), and then updates it with (IDi, SK

′
IDi

, PK
′
IDi

).
– OS : Given an identity IDi existing in table T and a message m.

• IDi �= IDπ. C first accesses the oracle OPS and obtains a valid tuple
on (IDi, PKIDi

). Then it searches the table T to find out the item
(IDi, SKIDi

, PKIDi
). Finally, C generates a signature by using the algo-

rithm CBS.Sign and returns it to A.
• IDi = IDπ. C first accesses the oracle OEPS(·) to get a valid tuple

(β1, β2, β3) on the pair (H(IDπ||PKIDπ
),H(m)). Then it searches the

table T and obtains item (IDπ, vIDπ
, wIDπ

, V̂IDπ
, ŴIDπ

). Finally, C com-
putes σ1 = β1, σ2 = β2, σ3 = β3β

vIDπ+wIDπ H(m)
1 and returns σ =

(σ1, σ2, σ3) to A.

Forgery. A outputs a forged signature σ∗ = (σ∗
1 , σ

∗
2 , σ

∗
3) on (ID∗, PKID∗ ,m∗).

If ID∗ �= IDπ, C aborts. Otherwise, C computes

β∗
3 =

(
σ∗
3

σ∗
1

vID∗+H(m∗)wID∗

)

= Gr∗((y+H(ID∗||PKID∗ )z)t∗+o+xH(m∗))

and outputs a new valid tuple (β∗
1 = α∗

1, β
∗
2 = α∗

2, β
∗
3) on the pair

(H(ID∗||PKID∗), H(m∗)) not asked the oracle OEPS. It is clear that C breaks
the EPS assumption.

Now we estimate the successful advantage of C. In order to complete the
simulation without aborting, the following conditions should be satisfied.

– In all certificate queries, IDi �= IDπ;
– In the forgery phase, ID∗ = IDπ.

The probability of IDπ selected by A in the forgery phase is 1/qU . The
probability of IDi �= IDπ in the certificate queries is (1 − qC/qU ). Thus, we can
draw the conclusion that the successful advantage of C is

AdvC ≥ ε(qU − qC)
q2U

,

which is non-negligible. Therefore, the proposed CBS scheme is existentially
unforgeable against adaptive chosen message attack in Game 1 if the EPS
assumption holds.

Theorem 2. The proposed CBS scheme is existentially unforgeable against
adaptive chosen message attack in Game 2 if the PS assumption holds.
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Proof. Suppose there exists a PPT A who breaks the existential unforgeability
of the proposed CBS scheme in Game 2 with a non-negligible advantage ε. Then
we can build an adversary C to solve the PS assumption with a non-negligible
advantage AdvC .

Assume that A can carry out at most qU user-creation queries, qP pri-
vate key queries and qS signature queries. Let OPS(·) be oracles defined in
the PS assumption, C can access them polynomially many times and is given
(G, Ĝ,T, e, p,G, Ĝ, V̂ , Ŵ ). C works as follows.

Setup. Given a Type 3 bilinear group described as (G, Ĝ,T, e, p,G, Ĝ). A
randomly selects scalars o, x, y, z ∈ Zp, sets MSK = (o, x, y, z), and com-
putes MPK = (O, Ô,X, X̂, Ŷ , Ẑ) = (Go, Ĝo, Gx, Ĝx, Ĝy, Ĝz). It then chooses
a collision-resistant hash function H : {0, 1}∗ → Zp at random. Finally, A pub-
lishes Params = (G, Ĝ,T, e, p,G, Ĝ, H,MPK), and sends MSK = (o, x, y, z)
to C.
Assume that an index π is randomly selected from {1, ..., qU} by C.

Queries. A issues a number of different queries adaptively as follows.

– OU : Given an identity IDi. C first checks whether the IDi has been created
and written in the table T maintained by C, which is used to record the
user’s identity information and key pair and initially empty. If it does, C
returns PKIDi

of IDi to A. Otherwise, C performs the following procedures
and returns PKIDi

to A.
• IDi �= IDπ. C executes algorithm CBS.UKgen to produce key pair

(SKIDi
, PKIDi

) = ((vIDi
, wIDi

), (V̂IDi
, ŴIDi

)) belonging to IDi. C puts
(IDi, SKIDi

, PKIDi
) into the table T and returns PKIDi

to A.
• IDi = IDπ. C puts (IDπ,⊥, (V̂IDπ

, ŴIDπ
)) into the table T and returns

(V̂IDπ
, ŴIDπ

) to A.
– OP : Given an identity IDi created.

• IDi �= IDπ. C first searches the table T to get the private key (vIDi
, wIDi

),
and then returns it to A.

• IDi = IDπ. C aborts.
– OS : Given a IDi existing in table T and a message m.

• IDi �= IDπ. C searches the table T to obtain the item (IDi, SKIDI
,

PKIDi
). Then it executes algorithms CBS.Cert and CBS.Sign to gen-

erate the signature on the pair (IDi,m) and returns it to A.
• IDi = IDπ. C first accesses the oracle OPS to generate a valid tuple

(α1, α2) = (Gr, Gr(v+wH(m))) on the message m. Then it computes the
signature σ1 = α1, σ2 = αt

1, σ3 = α
t(y+H(IDπ||PKIDπ )z)+o+xH(m)
1 α2 and

returns (σ1, σ2, σ3) to A.

Forgery. A outputs a forged signature σ∗ = (σ∗
1 , σ

∗
2 , σ

∗
3) on (ID∗, PKID∗ ,m∗).

If ID∗ �= IDπ, C aborts. Otherwise, C computes

α∗
2 =

(
σ∗
3

σ∗
1

o+xH(m∗)σ∗
2

y+H(ID∗||PKID∗ )z

)

= G(vID∗+H(m∗)wID∗ )r∗
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and outputs a new valid tuple (α∗
1 = σ∗

1 , α
∗
2) on the new scalar H(m∗) not asked

the oracle OPS. It is clear that C breaks the PS assumption.
Now we estimate the successful advantage of C. In order to complete the

simulation without aborting, the following conditions should be satisfied.

– In all private key queries, IDi �= IDπ;
– In the forgery phase, ID∗ = IDπ.

The probability of IDπ selected by A is 1/qU . The probability of IDi �= IDπ

in the private key queries is (1− qP /qU ). Thus, we can draw the conclusion that
the successful advantage of C is

AdvC ≥ ε(qU − qP )
q2U

,

which is non-negligible. Therefore, the proposed CBS scheme is existentially
unforgeable against adaptive chosen message attack in Game 2 if the PS assump-
tion holds.

4.2 Efficiency Analysis

In this subsection, we compare the proposed CBS scheme with the schemes
[20,32] in the communication cost and computation overhead.

Communication Cost. We provide the communication cost comparison of the
three schemes above in Table 1, where n is the output length of collision-resistant
hash function in [20,32]. For the sake of simplicity, we denote by PK system
public parameter, by PK public key of user. We denote the size of the signature
as Sig.Size, the size of the certificate as Cert.Size. Moreover, let G1, G2 be two
groups belonging to Type 1 pairing. And let |G1|, |G2|, |G| and |Ĝ| be the size
of the group element in G1, G2, G and Ĝ, respectively.

Table 1. Comparison of communication cost

Scheme PP PK Sig.Size Cert.Size

Scheme [20] (n + 6)|G1|+ |G2| 3|G1|+ |G2| 3|G1| 2|G1|
Scheme [32] (n + 3)|G1| 4|G1| 3|G1| 2|G1|
Our scheme 3|G|+ 5|Ĝ| 2|Ĝ| 3|G| 2|G|

Compared with the schemes [20,32], the proposed scheme is superior in the
communication cost. Specifically, the size of PP in the proposed scheme is inde-
pendent of parameter n which only requires 3 group element in G and 5 group
elements in Ĝ. Moreover, the size of PK in the proposed scheme is reduced to 2
group elements in Ĝ.
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Computation Overhead. We give the computation overhead comparison of
the three schemes above in Table 2, where n is the output length of collision-
resistant hash function in [20,32]. We respectively use Cert, Sign and Verify to
denote the algorithms of issuing certificate, signature and verification. We denote
by M1 a multiplication operation in G1, by M2 a multiplication operation in G2,
by MG a multiplication operation in G, by M

Ĝ
a multiplication operation in Ĝ,

by MT a multiplication operation in T, by E1 an exponentiation operation in G1,
by E2 an exponentiation operation in G2, by EG an exponentiation operation in
G, by E

Ĝ
an exponentiation operation in Ĝ, by P1 a Type 1 pairing operation,

by P2 a Type 3 pairing operation.

Table 2. Comparison of computation overhead

Scheme Cert Sign Verify

Scheme [20] (n+ 1)M1 +3E1 (n+ 3)M1+ 6E1 (n+ 2)M1 +3M2 +E1 +E2 +7P1

Scheme [32] (n+ 1)M1 +3E1 M1 +4E1 nM1+ 3M2 +7P1

Our scheme 2EG 3MG +5EG 4M
Ĝ
+MT+3E

Ĝ
+ 3P2

Compared with the schemes [20,32], the proposed scheme requires lower com-
putation overhead. More precisely, it is obvious that the computation complexity
of the phases of Cert and Verify in the proposed scheme is independent of param-
eter n. And the proposed scheme is more efficient than [20] in the phase of Sign.
Furthermore, note that fewer number of operations are performed in the phase
of Sign of the scheme [32], but overall all algorithms of the proposed scheme
mentioned above require less computational overhead than the scheme [32].

5 Conclusion

In this paper, we propose an efficient certificate-based signature scheme in the
standard model based on the PS assumption and EPS assumption. We then
show that the proposed scheme achieves the desired security properties. Finally,
compared with the state-of-the-art constructions in the standard model, the pro-
posed scheme is superior in both communication cost and computation overhead.

Acknowledgment. This work is supposed by the National Cryptography Develop-
ment Fund (No. MMJJ20180110).

A Appendix

Theorem 3. The EPS assumption holds in the general bilinear group model:
after q OPS oracle queries, k OEPS oracle queries and qG group-oracle queries,
no adversary can generate a valid tuple for a new pair with probability greater
than 2(6 + 2q + 3k + qG)2/p.
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Let (G, Ĝ,T, e, p,G, Ĝ) be a Type 3 bilinear group, where G and Ĝ are gen-
erators of G and Ĝ, respectively. Let O = Go, Ô = Ĝo, X = Gx, X̂ = Ĝx,
Ŷ = Ĝy, Ẑ = Ĝz for some random scalars o, x, y, z ∈ Zp. Let r1,i ∈ Z

∗
p be

the scalar such that the ith oracle answer from OPS(·) on scalar li is answered
by (α1,i = Gr1,i , α2,i = Gr1,i(y+liz)). Let r2,j , r3,j ∈ Z

∗
p be the scalars such

that the jth oracle answer from OEPS(·) on pair (l∗,mj) is answered by
(β1,j = Gr2,j , β2,j = Gr2,jr3,j , β3,j = Gr2,j((y+l∗z)r3,j+o+xmj)). Note that l∗ is
not allowed to access the oracle OPS(·).

In the following, we associate group elements with polynomials whose formal
variables are the above unknown scalars: o, x, y, z, r1,1, ..., r1,q, r2,1, ..., r2,k,

r3,1, ..., r3,k, with first all the inputs available to the adversary: Ô = Ĝo, X̂ = Ĝx,
Ŷ = Ĝy, Ẑ = Ĝz in Ĝ, O = Go X = Gx in G, (α1,i, α2,i) = (Gr1,i , Gr1,i(y+liz))
for i = 1, ..., q, and (β1,j , β2,j , β3,j) = (Gr2,j , Gr2,jr3,j , Gr2,j((y+l∗z)r3,j+o+xmj))
for j = 1, ..., k in G. We must first prove that an adversary A is unable to sym-
bolically produce a new valid tuple, and then that an accidental validity is quite
unlikely.

For the output tuple (β∗
1 , β∗

2 , β∗
3) = (Gr∗

2 , Gr∗
2r∗

3 , Gr∗
2 ((y+l∗z)r∗

3+o+xm∗)) on a
new pair (l∗,m∗), since (Gr∗

2 , Gr∗
2r∗

3 , Gr∗
2 ((y+l∗z)r∗

3+o+xm∗)) are elements in G,
they can just be combinations of previous tuples (α1,i, α2,i),(β1,j , β2,j , β3,j), G,O

and X (without any help from elements in Ĝ): they have been built with queries
to the oracle of internal law in G, and so we know ((u1,i, v1,i, u2,i, v2,i, v3,i, u3,i)i,
(a1,j , b1,j , c1,j , a2,j , b2,j , c2,j , a3,j , b3,j , c3,j)j , (w1, w2, w3), (w′

1, w
′
2, w

′
3), (w

′′
1 , w′′

2 ,
w′′

3 )) ∈ Z
6q+9k+9
p such that:

Gr∗
2 = β∗

1 = Gw1Ow′
1Xw′′

1

q∏

i=1

α
u1,i

1,i α
v1,i

2,i

k∏

j=1

β
a1,j

1,j β
b1,j

2,j β
c1,j

3,j ,

Gr∗
2r∗

3 = β∗
2 = Gw2Ow′

2Xw′′
2

q∏

i=1

α
u2,i

1,i α
v2,i

2,i

k∏

j=1

β
a2,j

1,j β
b2,j

2,j β
c2,j

3,j ,

Gs∗
= β∗

3 = Gw3Ow′
3Xw′′

3

q∏

i=1

α
u3,i

1,i α
v3,i

2,i

k∏

j=1

β
a3,j

1,j β
b3,j

2,j β
c3,j

3,j ,

and thus

r∗
2 = w1 + ow′

1 + xw′′
1 +

q∑

i=1

(u1,ir1,i + v1,i(r1,i(y + liz)))

+
k∑

j=1

(a1,jr2,j + b1,jr2,jr3,j + c1,j(r2,jr3,j(y + l∗z) + r2,j(o + mjx)))
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r∗
2r

∗
3 = w2 + ow′

2 + xw′′
2 +

q∑

i=1

(u2,ir1,i + v2,i(r1,i(y + liz)))

+
k∑

j=1

(a2,jr2,j + b2,jr2,jr3,j + c2,j(r2,jr3,j(y + l∗z) + r2,j(o + mjx)))

s∗ = w3 + ow′
3 + xw′′

3 +
q∑

i=1

(u3,ir1,i + v3,i(r1,i(y + liz)))

+
k∑

j=1

(a3,jr2,j + b3,jr2,jr3,j + c3,j(r2,jr3,j(y + l∗z) + r2,j(o + mjx)))

The validity of the new tuple implies that s∗ = r∗
2r

∗
3(y + l∗z) + r∗

2(o + m∗x),
which leads to:

w3 + ow′
3 + xw′′

3 +
q∑

i=1

(u3,ir1,i + v3,i(r1,i(y + liz)))

+
k∑

j=1

(a3,jr2,j + b3,jr2,jr3,j + c3,j(r2,jr3,j(y + l∗z) + r2,j(o + mjx)))

= y(w2 + ow′
2 + xw′′

2 +
q∑

i=1

(u2,ir1,i + v2,i(r1,i(y + liz)))

+
k∑

j=1

(a2,jr2,j + b2,jr2,jr3,j + c2,j(r2,jr3,j(y + l∗z) + r2,j(o + mjx))))

+ l∗z(w2 + ow′
2 + xw′′

2 +
q∑

i=1

(u2,ir1,i + v2,i(r1,i(y + liz)))

+
k∑

j=1

(a2,jr2,j + b2,jr2,jr3,j + c2,j(r2,jr3,j(y + l∗z) + r2,j(o + mjx))))

+ (o + m∗x)(w1 + ow′
1 + xw′′

1 +
q∑

i=1

(u1,ir1,i + v1,i(r1,i(y + liz)))

+
k∑

j=1

(a1,jr2,j + b1,jr2,jr3,j + c1,j(r2,jr3,j(y + l∗z) + r2,j(o + mjx))))

For the two multivariable polynomials to be equal, the same monomials should
appear on both sides:

– no constant term on the right, so w3 = 0;
– no term in r1,i on the right, u3,i = 0 for all i;
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– no term in r2,j nor r2,jr3,j on the right, a3,j = b3,j = 0 for all j;
– no monomials of degree 4 on the left, so c1,j = c2,j = 0 for all j;
– no term in y, yo, yx, y2r1,i and yr2,j on the left, so w2 = w′

2 = w′′
2 = 0,

v2,i = 0 for all i, a2,j = 0 for all j;
– no term in o2, ox, or1,i, or1,iy and or2,jr3,j on the left, so w′

1 = w′′
1 = 0,

u1,i = v1,i = 0 for all i, b1,j = 0 for all j:

w′
3o + w′′

3x +
q∑

i=1

(v3,ir1,i(y + liz)) +
k∑

j=1

(c3,j(r2,jr3,j(y + l∗z) + r2,j(o + mjx)))

= w1o + w1xm∗ +
q∑

i=1

(u2,i(r1,i(y + l∗z))) +
k∑

j=1

(b2,j(r2,jr3,j(y + l∗z))

+ a1,jr2,j(o + m∗x)).

The monomial o implies w′
3 = w1, the monomial x implies w′′

3 = w1m
∗.

The monomials r1,iy imply v3,i = u2,i for all i, and the monomials r1,iz imply
v3,ili = u2,il

∗ for all i. Since li �= l∗ for all i, so v3,i = u2,i = 0 for all i.
The monomials r2,jr3,jy imply c3,j = b2,j for all j, the monomials r2,jo imply
c3,j = a1,j for all j, and the monomials r2,jx imply c3,jmj = a1,jm

∗ for all j.
Since r∗

2r
∗
3 �= 0, so there is at least one b2,j = c3,j = a1,j �= 0, and then m∗ = mi.

Therefore, the tuple is not for a new pair which means that an adversary is
unable to symbolically produce a valid tuple for a new pair.

Now, we evaluate the probability for an accidental validity: the same value is
output by two different polynomials involved in the answers to the oracle. Note
that the elements generated by the oracle and the public elements are associated
with polynomials of degree at most 3 and 1, thus polynomials generated by
querying to the different group oracle are of degree at most 4. We denote the
maximum number of group-oracle queries by qG. There are at most 2q+6+3k+qG

polynomials and at most (2q+6+3k+qG)2/2 pairs of distinct polynomials could
evaluate to the same value. By the Schwartz-Zippel lemma, the probability of
such an event occurs is ≤ 2(6 + 2q + 3k + qG)2/p which is negligible.
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Abstract. Intel Software Guard eXtension (SGX) is a technology to cre-
ate enclaves (i.e., trusted memory regions) hardware isolated from a com-
promised operating system. Recently, researchers showed that unpriv-
ileged adversaries can mount code-reuse attacks to steal secrets from
enclaves. However, modern operating systems can use memory-forensic
techniques to detect their traces. To this end, we propose SnakeGX,
an approach that allows stealthier attacks with a minimal footprint;
SnakeGX is a framework to implant a persistent backdoor in legit-
imate enclaves. Our solution encompasses a new architecture specif-
ically designed to overcome the challenges SGX environments pose,
while preserving their integrity and functionality. We thoroughly eval-
uate SnakeGX against StealthDB, which demonstrates the feasibility of
our approach.

Keywords: SGX · TEE · Code-reuse attacks

1 Introduction

Intel Software Guard eXtention (SGX) is a trusted computing technology that
enables the creation of restricted user-space memory regions, called enclaves [34].
When digitally-signed, an enclave is a Trusted Execution Environment (TEE)
that hardware-supported microcode isolates. This design, coupled with a full
encryption of an enclave’s content, provides advanced protection mechanisms
and a trusted communication channel between the enclave and the host—the
main application the enclave belongs to.

The success of SGX stems from its strict threat model. The attacker model—
the Iago attacker [15]—considers the OS malicious: one can thus tamper with
applications, modify their behavior, exfiltrate sensitive information, and so on.
In this context, SGX disallows kernel- and user-space code to manipulate enclave
memory pages, thus guaranteeing integrity and confidentiality in the presence of
any Iago attacker.
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The strong isolation introduced by SGX stimulated researchers and practi-
tioners to develop new attacks vectors [14,23,27,29]. Among them, an interest-
ing research line is to exploit memory-corruption errors inside the enclave code
and run one-shot code-reuse attacks to steal enclave secrets (e.g., cryptographic
keys) [40]. Recently, we observed many solutions that identify such flaws in
enclaves [17,44] and new code-reuse techniques tailored for SGX [12,27]. First,
Lee et al. discussed Dark-ROP [27] that combines a colluded OS and oracles
to identify gadgets for return-oriented programming (ROP) [40]. An advanced
technique was proposed by Biondo et al. with Guard’s Dilemma [12] that does
not require the assistance of the OS to perform the attack. In this scenario,
however, the authors did not consider an OS that may employ existing memory
forensic techniques to identify the intrusions [22,25,32,42]. For instance, in case
of external intrusion into a remote server running SGX enclaves, the adversary
is also interested in reducing the amount of traces left; otherwise, analysts may
detect the intrusion and act consequently. This is even more critical in case the
enclave secret changes and the adversary has to repeat the attack many times.
Consequently, we pose a new research question:

Can we carry out an attack against SGX enclaves without being noticed by
an healthy Operating System?

We answer this question with a new approach that pushes further the stealth-
iness of code-reuse attacks in non-compromised OSs. Our intuition is to implant
a permanent payload inside the target enclave as a backdoor, thus exploiting the
SGX protections to avoid inspection. Our strategy definitely overcomes the lim-
itations of the state-of-the-art; the adversary does not need to repeat the attack
and we minimize the traces left. We implement our intuition in SnakeGX, a
framework to implant data-only backdoors in legitimate enclaves. We build on
the concept of data-only malware [46] but extend it with a novel architecture to
adhere to the strict requirements of SGX environments.

Contrary to prior one-shot attacks [12,27], our backdoor acts as an additional
secure function (Sect. 5), which is: (i) persistent in the context of the enclave,
(ii) stateful as it maintains an internal state, (iii) interactive with the host by
means of seamless context switches. Core to this is the identification of a design
flaw that affects the Intel SGX Software Development Kit (SDK) and allows
an attacker to trigger arbitrary code in enclaves (Sect. 4).1 SnakeGX facilitates
the creation of versatile backdoors concealed in enclaves that evade memory
forensic analysis by inheriting all the benefits SGX provides. Our aim is to raise
awareness of TEEs—and SGX in particular—and how attackers may abuse that,
which requires the community to reason more on the need of monitoring systems
and advanced forensic techniques for SGX.

We evaluate the properties of SnakeGX against StealthDB [45], an open-
source project that implements an encrypted database on top of SGX enclaves.
In particular, StealthDB uses dynamically generated AES keys to protect the
database’s fields, thus urging the need of multiple one-shot attacks. SnakeGX
exfiltrates the keys upon the verification of specific conditions with a minimum

1 We reported the flawed behavior to Intel, which acknowledged it.
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footprint. Our evaluation focuses on three aspects of SnakeGX (Sect. 6). First, we
illustrate our use-case: we show how SnakeGX achieves its goals while preserving
the original functionality of the enclave. Second, we measure and compare the
stealthiness of SnakeGX against the state-of-the-art. Finally, we discuss possible
countermeasures.

In summary, we make the following contributions:

– We propose SnakeGX, a framework built around an Intel SGX SDK design
flaw (Sect. 4), and a novel architecture designed to create persistent, stateful,
and interactive data-only malware for SGX (Sect. 5).

– We demonstrate the feasibility of SnakeGX on a real-world open source
project.2

– We measure and compare the attack footprint with current SGX state-of-the-
art techniques (Sect. 6).

2 Background

In this section, we illustrate the technical background for SGX (Sect. 2.1) and
discuss code-reuse attacks applied to SGX enclaves (Sect. 2.2).

2.1 SGX Overview

The Intel SGX technology provides secure containers that execute so-called
secure functions in an isolated context, thereby shielding them from tamper-
ing and monitoring attempts. These containers, properly known as enclaves, are
the core of SGX programming patterns; they are digitally signed at compile time
and represent the building blocks on which SGX achieves attestation.

SGX achieves a strong isolation by implementing a fine-grain memory access
control at Memory Management Unit (MMU) level. These checks are imple-
mented by using microcode and thus hardware assistant. This strategy allows
SGX to validate memory access independently by the Operating System (OS).
At enclave boot time, the OS sets enclave page permission. If those permissions
differ from enclave signature, the microcode will raise an exception. Also, the
kernel cannot change the page permission at run-time since microcode performs
a double-check. Therefore, SGX ensures that the enclave is loaded as intended.
This means that classic hacking strategies, which aim at setting a page as exe-
cutable, are not useful against SGX. Some researchers exploited enclave mis-
configurations to load a shellcode [12], but this is not the standard case. Since
we cannot load custom code in an enclave, we opted for code-reuse program-
ming (like ROP) [13]. This strategy allows us to re-use code already in memory
without breaking enclave attestation.

In Fig. 1, we depict two basic interaction mechanisms between enclave and
host process: synchronous and asynchronous. The synchronous interaction is
implemented by two new leaf functions: EENTER and EEXIT. This interaction
2 SnakeGX’s source code is available at https://github.com/tregua87/snakegx.

https://github.com/tregua87/snakegx
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Fig. 1. The two types of enclave interaction, the pair EENTER and EEXIT are used in the
synchronous interaction, while the pair AEX and ERESUME are used in the asynchronous
one.

Table 1. ENCLU registers specification for x86 64bit.

Instr. leaf RAX RBX RCX

EENTER 0x02 TCS AEP

ERESUME 0x03 TCS AEP

EEXIT 0x04 Target address

is used to invoke secure functions within the enclave. The asynchronous one,
instead, handles enclave exceptions (both software and hardware) and it is rep-
resented by an Asynchronous Enclave Exit (AEX). When an AEX happens, the
exception is first thrown to the host (i.e., to an Asynchronous Exit Pointer – AEP)
that will examine the exception in the untrusted memory. The AEP can, even-
tually, resume the enclave execution through the leaf function ERESUME. Finally,
the enclave can decide whether to internally manage the exception or interrupt
the secure function execution.

The leaf functions described so far are implemented by using the real opcode
ENCLU, that is available only in user-space. In x86 64bit, which is the platform
we refer, we can execute EENTER, ERESUME, or EEXIT by calling ENCLU and setting
CPU registers as described in Table 1.

Reading Table 1, we notice that EENTER and ERESUME require a Thread Con-
trol Structure (TCS) address as an input. A TCS is a structure that represents
a thread in SGX programming pattern. This means that the threading policy is
handled by the untrusted memory. EEXIT, instead, requires only a virtual-address
as a target address in register rbx. This address contains the next instruction to
execute inside the host process after the control leaves the enclave. EENTER and
ERESUME can be used only by the host process in user-space, while EEXIT works
only from inside the enclave.
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2.2 Code-Reuse Attacks for SGX

In this section, we discuss code-reuse attacks techniques applied to the SGX
realm and relative limitations.

Generally speaking, a code-reuse payload [12,27] requires specific structures
that point to code inside the enclave (i.e., gadgets). However, SGX does not allow
an adversary to arbitrary write these structures inside an enclave. To achieve the
intrusion, there are two strategies from the literature: (i) inject the entire payload
inside the victim enclave as a malicious input buffer [27], or (ii) maintain the pay-
load in the untrusted memory and tamper with the rsp register to point to the
payload (i.e., stack-pivoting) [12]. In both cases, the adversary has to maintain a
copy of the payload in the untrusted memory. This enables an analyst to use known
memory forensic techniques [22,25,32,42] to detect the payload, whose precision
strictly depends on the amount of traces in memory. Furthermore, the adversary
has to create new payloads every time she performs an attack, i.e., a one-shot pay-
load gets corrupted after being triggered [46]. These limitations increase the risk
of being detected. Therefore, minimizing the amount of data in memory improves
the probability of success of an intrusion. We achieve this goal with the installa-
tion of a permanent backdoor inside the enclave, thus avoiding the need of new
attacks and evading the detection as well. In this way, SnakeGX makes stealthier
and more sophisticated attacks than previous one-shot ones.

3 Threat Model and Assumptions

In this section, we first describe our threat model. Then, we perform a pre-
liminary analysis to measure the widespread of our assumptions over real SGX
open-source projects.

Threat Model. One of the differences between SnakeGX and the previous one-
shot code-reuse works is in the threat model. Advanced code-reuse techniques
require an unprivileged attacker [12]. However, a non-compromised host can
identify the presence of an adversary in the system memory (Sect. 2.2). There-
fore, we have to consider three players in our scenarios: the attacker, the victim
enclave, and the host. Below, we list their requirements, respectively.

Attacker Capabilities. In our scenario, the attacker is highly motivated and
has the following assumptions:

– The enclave contains a memory corruption vulnerability. The adver-
sary is aware of a memory corruption error (e.g., a buffer overflow) in the
target enclave. This error can be exploited to take control of the enclave
itself. Having a memory-corruption is an assumption already taken by sim-
ilar works [12,27]. This is even more likely in projects that use SGX as a
sub-system container [10,11,39,43]. Such projects host out-of-the-box soft-
ware and, therefore, enclaves inherit their vulnerabilities.

– A code-reuse technique. SnakeGX does not require any specific code-
reuse techniques (e.g., ROP, JOP, BROP, SROP) as long as this enables the



338 F. Toffalini et al.

attacker to take control of the enclave execution. For the sake of simplicity,
we use the term chain to indicate a generic code-reuse payload (e.g., a ROP-
chain).

– Knowledge of victim enclave memory layout. The attacker can infer
the memory layout by inspecting the victim address-space. It is also possible
to leak memory information from within the enclave, as also assumed in [12].

– Adversary Location. In our scenario, the adversary resides in user-space.
SnakeGX will reduce the adversary footprint, thus evading standard memory
forensic techniques [22,25,32,42], whose effectiveness relies on the amount of
traces left in memory (see Sect. 2.2).

Enclaves Capabilities. These are the assumptions for the enclave:

– Legitimate enclaves. The system contains one or more running enclaves.
It is possible to exploit enclaves based on both SGX 1.0 or 2.0.

– Intel SGX SDK usage. The victim enclave should be implemented by using
the standard Intel SGX Software Development Kit (SDK), we tested our
approach with all the SDK versions currently available.3 This is a reasonable
assumption since the Intel SGX SDK provides a framework for developing
applications on different OSs: Linux and Windows.

– Multi-threading. This is not strictly required, but the victim enclave should
have at least two threads for a more general approach. The rationale behind
this requirement is that the proposed implementation may disable a trusted
thread [2] and in case of a single-thread application this is a problem. An
enclave without free threads cannot process secure functions, thus attracting
the analysts attention. We might partially ease this requirement with the
introduction of SGX 2.0. However, multi-thread enclaves are a reasonable
assumption since different open-source projects use already this feature [6,8,
43,45,49] and SGX-based applications are growing in complexity.

Host Capabilities. This is the assumption for the host:

– Memory Inspection. The host can inspect the processes memory and use
standard approaches to detect traces of previous or ongoing attacks [22,25,
32,42].

We extend the threat model of previous works [12] by assuming the host
can perform memory forensic analysis. Therefore, an adversary has the need of
hiding her presence in the machine and minimizing the interactions with the
victim enclave.

Preliminary Analysis of Assumptions. We collected a set of 27 stand-alone
SGX open-source projects from an online hub [9] to investigate the correctness
of our assumptions (see full list in Appendix D). The results show that among
the 27 projects, 24 of them were based on the Intel SGX SDK, while others were
3 At the time of writing, the last SDK version is 2.9.
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developed with Graphene [43], Open Enclave SDK [28], or contained mocked
enclaves. From the Intel SGX SDK based projects, we counted 31 enclaves
in total, among which 24 were multi-threading (77%). This preliminary analysis
indicates that our threat model fulfills real scenarios. Furthermore, we discuss
the porting of SnakeGX over SDKs other than the Intel one in Sect. 7.

4 Intel SGX SDK Design Limitation

SnakeGX can trigger a payload inside the enclave without the need of repeating
a new attack. This feature is challenging because the enclave has a fixed entry
point, thus an adversary cannot activate arbitrary code inside the enclave from
the untrusted memory. SnakeGX achieves this goal through a design error that
affects all the SGX Software Development Kit (SDK) versions released by Intel.
In this section, we make a deep analysis of the Intel SGX SDK in order to
highlight these issues and propose possible mitigation.

4.1 SDK Overview

SGX specifications define only basic primitives for creating and interacting with
an enclave. Thus, Intel also provides an SDK that helps building SGX-based
applications. The Intel SGX SDK contains a run-time library that is composed
by two parts: an untrusted run-time library (uRts) that is contained in the host
process, and a trusted run-time library (tRts) that is contained in the enclave.
Specifically, uRts handles operations like multi-threading, while tRts manages
secure functions dispatching and context-switch.

The Intel SGX SDK exposes a set of APIs that are built on top of the leaf
functions described in Sect. 2. ECALL, ERET, OCALL, and ORET are the most impor-
tant APIs for SnakeGX. Figure 2 shows the interaction between the host process
and the enclave. At the beginning, the host process invokes a secure function
by using an ECALL, which is implemented by means of an EENTER (Fig. 2, step
1). When a secure function is under execution, it may need to interact with
the OS (e.g., for writing a file). Since a secure function cannot directly invoke
syscalls, Intel SGX SDK uses additional functions that reside in the untrusted
memory (i.e., called outside functions). A secure function can invoke an outside
function by using an OCALL (Fig. 2, point 2), that performs two steps: (i) save
the enclave state, and (ii) pass the control to the outside function. More pre-
cisely, OCALL first saves the secure function state by using a dedicate structure
called ocall context, which we deeply analyze in Sect. 4.2. Then, OCALL uses
the EEXIT leaf function to switch the context back to the uRts, that finally dis-
patches the actual outside function. Once an outside function ends, the control
passes back to the secure function by using an ORET (Fig. 2, point 3). Since SGX
does not allow to trigger arbitrary code from the untrusted memory (i.e., the
enclave entry point is fixed), the Intel SGX SDK implements ORET as a special
secure function (whose index is −2) that follows the standard ECALL specifi-
cations. As we discuss in the next sessions, ORET has the ability of activating
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Fig. 2. Example of interaction between host process and enclave by using the Intel
SGX SDK. The host process invokes the secure function S1 from the main function
(ECALL). S1 function invokes O1 (OCALL), and this latter returns to S1 (ORET). Finally,
S1 returns back to the main function (ERET).

arbitrary portion of code in an enclave. Normally, the ORET restores the state
previously stored by the OCALL. Once the ORET is done, the secure function can
continue its execution, and finally, invoke an ERET to terminate (Fig. 2, point 4).

4.2 OCALL Context Setting

The ocall context is the structure that holds the enclave state once an OCALL
is invoked. The way in which the structure is set slightly differs between Intel
SGX SDK before and after version 2.0. In this discussion, we consider the case
of the Intel SGX SDK greater than 2.0. However, a similar approach can be also
applied to previous versions.

New ocall contextes are located on top of the stack, as shown in Fig. 3,
moreover, the new structures should follow a specific setting. In particular, three
ocall context fields should be tuned:

– pre last sp must point to a previous ocall context or to the stack base
address. This needs to handle a chain of nested ECALLs, which are basically
ECALLs performed by an outside function.

– ocall ret is used from SDK 2.0 to save extended process state [7]. More pre-
cisely, the system allocates a xsave buff pointed by ocall ret. This buffer
must be located after the new ocall context.

– rbp must point to a memory location that contains the new frame pointer and
the return address, consecutively. This is because the asm oret() function
will use this structure as epilogue [12].

It is important to underline that SGX does not validate ocall context integrity.
Therefore, an attacker that takes control of an enclave may craft a fake
ocall context. This problem has been existing in all SDK version available
so far. In the next section, we discuss why this is an underestimated problem
and what threats can lead to.
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Fig. 3. Example of ocall context disposition in an enclave stack, the fields point to
structures within the stack itself in a precise order.

4.3 Exploiting an ORET as a Trigger

ORET is the only secure function that can trigger arbitrary code in an enclave.
Therefore, an adversary enabled to abusing this function has also privileged
access to the enclave itself. To understand why it is possible, we analyze the
pseudo-code in Fig. 4, which shows the do oret() secure function implemen-
tation. Essentially, do oret() extracts the thread-local storage (TLS) from the
current thread (Line 6). The TLS contains information of the last ocall context
saved. After some formal controls (Line 8), the ocall context structure is
used to restore the secure function execution through the asm oret() func-
tion (Line 15). The formal checks performed by do oret() over the previous
ocall context are quite naive. There are three basic requirements: (i) the
ocall context must be within the current stack space, (ii) the ocall context
must contain a constant (hard-coded) magic number, and (iii) the pre last sp
must point before the actual ocall context.

After the previous analysis, we realized that the Intel SGX SDK has no
strict mechanisms to verify the integrity of an ocall context. In other words,
any ocall context that fulfills the previous conditions can be used to restore
any context in an enclave. First steps in this direction were explored by previous
works [12], which exploited asm oret() simply to control the processor registers
in a one-shot code-reuse attack. However, we want to push further the limitation
of the Intel SGX SDK and show which consequences these issues can lead to. In
fact, SnakeGX uses a combination of ORET and tampered ocall contextes to
restore arbitrary chains inside the enclave without performing further exploits.
In particular, SnakeGX abuses of this flaw for two reasons: (i) as a trigger to
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Fig. 4. Simplified do oret() pseudo-code.

activate a custom payload hidden inside the enclave; (ii) for the payload to
perform a reliable context-switch between host and enclave. Therefore, crafting
malicious ocall contextes leads to the possibility of implanting backdoor in a
trusted enclave without tampering the enclave code itself. As such, the back-
door is shielded by the SGX features by design. Moreover, the fact of using a
single ORET to trigger the backdoor reduces the interactions required by a weak
adversary for new attacks. We discuss technical details in Sect. 5 and show our
proof-of-concept (PoC) in Sect. 6.

4.4 Mitigation

There are many strategies to improve the ocall context integrity. A pure soft-
ware solution could be computing an encrypted hash of ocall context when
it is generated. The hash might be appended as an extra field to the struc-
ture. Another approach, instead, could be encrypting the entire structure itself.
However, pure software mitigation can be potentially bypassed by any code-reuse
attack. Once the attacker gains control of the enclave, she can basically revert or
fake any encrypted processes. A stronger solution could be introducing dedicated
leaf functions that manage the generation and consumption of ocall contextes.
For instance, during an OCALL, the enclave might use a dedicated leaf function
that creates an ocall context and saves a copy (i.e., an hash) in a memory
location out of the attacker control (similar to TCS or SECS pages [18]). An
ORET, then, should use another leaf function that performs extra checks and val-
idate the integrity of the ocall context. This solution might raise the bar for
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attacks, but it has two important drawbacks: (i) it forces Intel to re-thinking the
SGX structures at low level, (ii) it leaves less freedom to developers that want
to adapt the Intel SGX SDK to their own needs (e.g., to customize or introduce
new structures). After this consideration, we believe this issue would last for
long before being fixed. We reported this limitation to Intel that is reviewing its
memory corruption protections.

5 SnakeGX

SnakeGX is the first framework that facilitates the implanting of persistent,
stateful, and interactive backdoors inside SGX enclaves. The framework design
is challenging because we want to preserve the original enclave functionality and
configuration. Even though SGX 2.0 encompasses run-time page permissions
setting [3], an unexpected configuration may attract analysts attention (i.e.,
the host can read the enclave page permissions). On the contrary, our solutions
purely rely on code-reuse techniques that do not affect the enclave functionality
and configuration. To the best of our knowledge, no previous works on SGX
code-reuse attacks never addressed these challenges. We also recall we assume
two conditions: (i) the target enclave has to be built with the Intel SGX SDK,
and (ii) it contains at least one exploitable memory-corruption vulnerability
(e.g., a stack-based buffer overflow).

5.1 Overview

The backdoor implanting is composed by three main phases: (i) enclave memory
analysis, (ii) installation phase, and (iii) payload triggering.

Enclave Memory Analysis. In this phase, the attacker has to achieve two
goals: (i) inspect the process memory layout to identify enclave elements, and
(ii) find a suitable location to install SnakeGX. Since SGX does not implement
any memory layout randomization, an adversary can easily inspect the victim
process memory by only using user-space privileges (e.g., the enclave pages are
assigned to a virtual device called isgx in Linux environments). Moreover, we
target enclaves made with the Intel SGX SDK that follow the Enclave Linear
Address Range (ELRANGE) [18]. As a result, an adversary with solely user-
space privileges can obtain: (i) the enclave base address, (ii) the size, and (iii)
the enclave trusted thread locations. In Sect. 5.2, we discuss how to obtain a
reliable memory location.

Payload Installation. The installation phase is a one-shot attack that exploits
an enclave vulnerability and uses a code-reuse technique for installing the pay-
load. This attack has to achieve three goals: (i) copy the payload inside an enclave
(e.g., the chain and the fake ocall context), (ii) set a hook to trigger the pay-
load, (iii) resume the normal application behavior. These three goals make this
phase quite critical for three reasons. First, either enclave and host process have
to remain available after the payload installation, or else we have to re-start
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the enclave. Second, the enclave behavior does have not to change, or else the
host should realize the attack. Finally, we have to remove the payload in the
untrusted memory, or else it could be detected. This phase can be implemented
by using any current code-reuse attacks for SGX enclaves [12,27].

Payload Triggering. After the installation phase, the adversary only needs
to trigger an ORET to activate the payload (Sect. 5.3). This allows an external
adversary to activate the payload without attacking the enclave from scratch.
The payload contains the logic for interacting with the OS and the enclave. To
achieve persistence, we design a generic architecture that fits the SGX realm
(Sect. 5.4). Moreover, since the payload can potentially leave the enclave, we
designed a generic context-switch mechanism that enables the payload to keep
control over the enclave (Sect. 5.5).

5.2 Getting a Secure Memory Location

We employ a trusted thread as backdoor location because it allows us to abuse
the design error described in Sect. 4. If an enclave does not have any available
trusted thread, SnakeGX can still work by stealing one of the available threads.
In this case, the target application may notice some degradation of the per-
formances. However, the system does not raise any exception because it is not
possible to determinate the real cause. In this way, we can take control of an
enclave trusted thread without affecting enclave functionality. These properties
are SGX specific and were not considered in previous code-reuse works.

Un-releasing a Trusted Thread. This technique is based on a misbehaviour
of the thread binding mechanisms in the uRts library. Once a secure function
is invoked through the Intel SGX SDK, the uRts searches a free trusted thread
and marks it as busy. Then, the trusted thread is released when the secure
function ends. However, an attacker can exploit a secure function and leaves the
enclave skipping the releasing phase in the uRts. As a result, the trusted thread
remains busy and it will never be assigned to future executions, in this way it is
stolen. The strategy of this technique is composed by two phases: (i) invoking
and exploiting a secure function, then (ii) exiting from the enclave (e.g., by
using EEXIT) and skipping the releasing of the trusted thread. This approach
requires the enclave has at least two trusted threads, otherwise the application
might realize that the enclave is unavailable. We use this approach for our PoC.

Making a New Thread. SGX 2.0 and recent versions of the Intel SGX SDK
allow creating trusted threads at run-time. Therefore, an attacker may force the
enclave to create a new trusted thread without tampering with the pool. How-
ever, this approach should be used wisely, otherwise unexpected trusted threads
may attract the analyst attention, thus affecting the stealthiness of SnakeGX.

5.3 Set a Payload Trigger

We design our trigger on top of the Intel SGX SDK flaw highlighted in Sect. 4.
We assume that an attacker has already gained control of an enclave by means
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of a code-reuse attack. Moreover, either the payload and the trigger must be
tuned for the trusted thread under attack.

To install the trigger, the adversary has to mimic an OCALL such that the next
ORET will activate the backdoor (i.e., a chain) instead of resuming the execution
of a secure function. To achieve this goal, the adversary has to perform three main
operations: (i) set a fake ocall context on the stack that satisfies the formal
requirements as described in Sect. 4.2; (ii) call the function save xregs() (which
is contained in tRts) to save extended process features, the function should take
as an argument the xsave buff location of the fake ocall context previously
copied; (iii) call the function update ocall lastsp() (which is contained in
tRts) by passing the pointer to the fake ocall context. This function will set
TLS last sp to the fake ocall context, thus simulating an OCALL.

This setting allows us to resume the payload execution by performing an
ORET on the attacked trusted thread. More precisely, asm oret() will restore
the context previously installed and it will activate the first gadget. By default,
ocall context does not perform a pivot (i.e., it does not set the rsp register).
To bypass this issue, we used a pivot gadget that is contained in asm oret()
function itself: mov rsp, rbp; pop rbp; ret. This gadget is present in any
SDK version released so far, so it is a generic technique for SGX backdoors. We
observed the same gadget also in Windows tRts. Therefore, the first instruction
triggered by the fake ocall context is a pivot gadget. Then, we set the rbp to
point to a fake stack inside the stolen thread. In this way, the ORET always pivots
to the fake stack that contains the actual payload. Notice that this mechanism
just pivots to the fake address indicated by the fake ocall context (i.e., rbp).
As such, an attacker only needs one fake ocall context that pivots to a fixed
location. Then, she can just copy different fake stacks to the same location to
activate different payloads.

5.4 Backdoor Architecture

Figure 5 shows the payload architecture that we adopted for SnakeGX. This
solution allows us to achieve payload persistence in an SGX enclave by only
using the stack address space. By default, the Intel SGX SDK sets the stack size
at 40 KB, therefore, we design SnakeGX to fit this size. For the sake of simplicity,
we describe the switching mechanism in Sect. 5.5.

As underlined in [46], classic code-reuse attacks (e.g., ROP) are designed
to be one-shot. After executing a chain, it may be destroyed due to gadgets
side effects. Therefore, we need a location to keep a backup of the structures
used. According to this consideration, we split the stack address memory in four
sections:

Fake Frame. SnakeGX requires a dedicated location for installing an
ocall context. This structure is used to either perform the payload trigger
and the context-switch (see Sect. 4). These features are crucial to implement a
persistent backdoor in the SGX realm since classic techniques cannot be used.
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Fig. 5. Trusted thread stack after SnakeGX installation. The memory is split in four
areas: FakeFrame, buffer, workspace, and backup. Moreover, the stack contains copies
of Bc, Pc, and Rc.

Buffer. This area contains temporary variables that are used by payloads. For
instance, our PoC stores the previous data exfiltrated (see Sect. 6).

Workspace. The fake frame previously installed is tuned to pivot the execution
to this location. Generally speaking, any payload is coped here before being
executed.

Backup. This location contains a copy of all the structures needed by SnakeGX
to work properly. After the SnakeGX installation, this location should not be
overwritten.

Since the chains used may be destroyed after payload execution, we need
a mechanism that brings SnakeGX to the initial state after the payload has
been executed. More precisely, it has to make the payload available for future
invocations. To achieve this goal, we use three chains: Boot Chain (Bc), Payload
Chain (Pc), and Reset Chain (Rc). Each of them is formed by a fake stack that
is maintained in the backup zone and moved in the workspace on demand:

Boot Chain (Bc). This is the first chain that is triggered by the hook, its duties
are: (i) copy Pc and Rc into the workspace, and (ii) pivot to Pc. This chain is
usually quite short.

Payload Chain (Pc). This contains the actual payload and is strictly enclave
dependent. When the payload ends, it just pivots to Rc.

Reset Chain (Rc). This chain resets the payload inside the enclave and makes
it ready for the next calls without the need of the installation phase. This is
achieved with the following operations: (i) copy Bc into workspace, (ii) copy the
ocall context in the fake frame, (iii) set TLS to point to ocall context.

After the execution of Rc, SnakeGX can be triggered again by a new ORET.
The loop boot-payload-reset chain, along the architecture shown in Fig. 5, is a
simple framework that can be used by the adversaries to design their customized
payload for SnakeGX.
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5.5 Context-Switch

To allow SnakeGX to interact with the host OS, while maintaining the enclave
control, we need to perform three operations: (S1) temporarily copy part of
the payload outside, (S2) leave the enclave, and (S3) resume the execution
inside the enclave. The first two operations are relatively simple: the Intel SGX
SDK already provides standard routines (e.g., memcpy) to move data outside the
enclave. Moreover, it is possible to pivoting outside the enclave by abusing the
EEXIT opcode (Sect. 2). On the contrary, resuming the enclave execution requires
SnakeGX to invoke an EENTER opcode. However, it is not possible to arbitrarily
jump inside an enclave (i.e., the entry point is fixed). Therefore, we abuse again
of the Intel SGX SDK deign error described in Sect. 4.

To perform the context-switch, we split the payload in three chains, called
outside-chain (Oc), payload-one (P1), and payload-two (P2). Oc is the part of
the payload copied in the untrusted memory, while P1 and P2 remain inside the
enclave. During the context-switch, we execute P1, Oc, and P2, consequently.
More precisely, once P1 requires to interact with the host, it performs (S1) to
prepare the Oc activation, installs a fake frame (Sect. 5.4), and prepares P2 in the
workspace. At this point, P1 can perform (S2): leave the enclave and pivot to Oc.
When the operations in untrusted memory are terminated, Oc only needs to run
an ORET that will activate P2 (S3). Finally, P2 can clean the traces left by Oc and
continue the backdoor execution. It is possible to perform many context-switch
by tuning the payload accordingly.

6 Experimental Evaluation

We evaluate the real impact of our framework against StealthDB [45], an open-
source project that leverages on the SGX technology. We opted for StealthDB
because it is a generic representation of our scenario, as we describe in Sect. 6.1.
We split our evaluation in three parts: (i) a technical discussion of our use-case
(Sect. 6.2), (ii) a measurement of the traces left (Sect. 6.3), and (iii) a discussion
about the countermeasures (Sect. 6.4).

6.1 StealthDB

StealthDB [45] is a plugin for PostgreSQL [20] that uses Intel SGX enclaves
to implement an encrypted database. This project is the ideal use-case for
SnakeGX: StealthDB lifetime is bounded to PostgreSQL, thus we can rely on its
enclaves as a secure save point for storing the payload and launching the attacks.

StealthDB uses a single SGX enclave to handle encrypted fields and opera-
tions that are performed inside the enclave itself. In this way, the database can
securely save encrypted fields on disk, while the plain values are handled only
inside the enclave. The encryption algorithm is AES-CTR with keys 128 bits
long. These keys are sealed on the disk through the standard SGX features. A
user can define multiple keys that are loaded on-demand inside the enclave, how-
ever, the StealthDB enclave maintains in memory only a single key at a time.



348 F. Toffalini et al.

In this scenario, one-shot state-of-the-art techniques require multiple interactions
to obtain all the keys. This approach leaves more copies of the payload in the mem-
ory, thus increasing the risk of being detected. Even if an adversary manages to
obtain all the sealed keys, she still has to perform new attacks whenever a new key
is generated. SnakeGX is able to understand when a new key is loaded and per-
forms the exfiltration steps accordingly. In this way, the attacker transparently
hides and activates complex logic that resides inside a trusted enclave.

6.2 Use-Case Discussion

In this section, we discuss the properties of our PoC payload and some implemen-
tation details. For more technical details about our payload see Appendix A. Our
setup is composed by an application that loads StealthDB enclave and performs
the attacks. We extracted the gadgets for the chains by running ROPGadget [1]
on the compiled enclave. As our threat model details in Sect. 3, we introduced a
memory corruption vulnerability in StealthDB to simplify the payload delivery.
We developed our data-only malware for SGX in a host OS running Linux with
kernel 4.15.0 and Intel SGX SDK version 2.9.

We composed our PoC of three steps. First, the application starts and loads
the enclave. Second, we exploit the enclave vulnerability and implant the pay-
load. Third, we alternatively invoke normal secure functions and the backdoor.
This shows that SnakeGX does not alter the normal enclave functionality. Once
the backdoor is triggered, SnakeGX exfiltrates the keys only when the condition
is satisfied. Without using SnakeGX, the adversary has to perform many attacks
to achieve the same goal, which potentially leaves traces for an analyst. More-
over, SnakeGX avoids the burden of crafting new payloads at each exfiltration.

The Payload. Our payload shows three important features: (i) persistence, (ii)
internal state, and (iii) context-switch. More precisely, the payload exfiltrates
a key if and only if it changes. This is crucial in our threat model (Sect. 3),
which assumes a non-compromised host, thus the attacker has to reduce un-
useful actions. In fact, all the payload structures are kept inside the enclave, and
an adversary only needs to trigger an ORET against the compromised thread.
Once activated, the payload is able to self-check its status, and in case, leak the
key. The payload is composed by three chains:

– P1 is the first payload to be activated. It checks if the key changed, and in
case activates the exfiltration.

– O is the outside-chain that actually exfiltrates the key. It is temporary copied
in the untrusted memory by P1.

– P2 is the second payload that is triggered by O after the exfiltration. The
purpose of P2 is to wipe out all the temporary structures previously copied
in the untrusted memory, i.e., O and the key.

From an external analyzer, all the structures (i.e., P1, P2, and O) are always
contained in the enclave when the payload is not activated. The only chain
temporary copied outside is O, but P2 cleans its traces. Moreover, to activate
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the payload, the attacker only needs to trigger an ORET instead of preparing
complex code-reuse attacks. In Sect. 6.3, we measure and compare the traces of
SnakeGX w.r.t. the state-of-the-art attacks.

Chains Composition. Our payload maintains an internal state and interacts
with the host. To handle the state, the payload is able to perform a conditional
pivoting by comparing the current key and a copy of the last key exfiltrated [40].
The conditional chain is implemented in P1. Once the key changes, P1 will pivot
to a chain that performs the exfiltration. Otherwise, the payload will pivot to
another chain that simply resumes the normal enclave behavior. We describe
the gadgets used to perform conditional pivoting in Appendix B. The interac-
tion with the OS, instead, requires two types of chains: some that run inside the
enclave (i.e., P1 and P2), and others that run outside (i.e., O). Table 2 shows
some statistics about chains composition. The chains inside the enclave are
entirely composed by gadgets from the tRts. More precisely, P1 and P2 invokes
27 and 13 functions such as memcpy(), and update ocall lastsp(), respec-
tively. In terms of memory, P1 and P2 occupy 2816 and 1232 byes, respectively.
The chain O, instead, is composed by classic gadgets from libc. More precisely,
O is composed by 20 small standard gadgets. The internal ecosystem of tRts,
and the libc in Linux systems, provide enough gadgets and functions to create
useful payloads. We describe the gadgets used for these chains in Appendix C.

Table 2. Statistics of the gadgets used for the payload.

Chain # fnc/sys # gadgets Size [B]

P1 27 23 2816

P2 13 7 1232

O 4 20 312

Sum 44 50 4360

6.3 Trace Measurements

We analyze our PoC and measure the advantages SnakeGX introduces. We recall
that our threat model assumes a weak adversary which has no control of the
host, and therefore, she has to improve her stealthiness. To perform the same
goal of our PoC by using state-of-the-art one-shot attacks [12], an attacker has
to leave in the untrusted memory around 4 KB of structures (i.e., P1, P2 and
O). These traces can be found by using previous results already shown in the
literature [22,25,32,42]. Moreover, their identification results even simpler since
they use peculiar structures such as sgx exception info t (see Appendix A).
On the contrary, SnakeGX requires only one ORET to trigger the payload. In
particular, our PoC implements an ORET by using only 4 gadgets and leaving
a negligible footprint of 56 byes in memory. As a result, the trigger used by
SnakeGX is able to activate payloads arbitrary complex by leaving a minimal
footprint.
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6.4 Countermeasures

SnakeGX poses new challenges for forensic investigators and backdoor analysts
as well as for experienced reverse engineers. The current state-of-the-art tools
cannot detect and dissect this new threat. It is necessary to develop new tools
and techniques for the detection and possibly the prevention of threats affecting
SGX and similar technologies. Here, we discuss some possible directions for the
detection that can be used to observe the presence of SnakeGX in a system.
Moreover, we analyze how the current state-of-the-art defenses can mitigate our
attack and which future research lines can be taken. This is not a comprehensive
study and we leave this part for future work. We hope this research paves the
way for new works in the malware analysis field.

Memory Forensic Analysis. SnakeGX is an infector of legitimate enclaves and
is by definition stealthier. This means that any form of memory forensics is no
more possible. The memory of the enclave cannot be inspected. As explained in
Sect. 2, SGX makes impossible to read memory pages that belong to an enclave.
Any attempts at reading such pages will result in a fake value 0xFF. Another
possible approach is to use new attacks based on microcode flaws [14] or fault
injections [29] to dump an enclave content. Alternatively, it is possible to use
side-channel attacks to infer specific enclave manipulations, as discussed in [31].
It should also be pointed out that it is still possible to retrieve uRts information.
For instance, we could compare the number of trusted threads in uRts and the
number of trusted threads in the ELRANGE structure. An inconsistency will bring
to clues regarding the state of that enclave.

Sandboxes. Recently, researchers proposed sandboxes to reduce the interaction
of a malware-enclave and the system [48]. These solutions are designed for sys-
tems that cannot assess the origin of an enclave beforehand, thus they do not
trust it. These defenses can, in principle, reduce the attack surface of SnakeGX.
However, since we target only systems that host known and trusted enclaves, we
do not expect sandboxes in place. In the worst case, we can still detect the pres-
ence of a sandbox by probing the process (i.e., through a syscall) and interrupt
the attack.

Syscalls Trace. Even though the payload is hidden from reading, it is still pos-
sible to analyze the syscall interaction of the outside-chains. This approach has
been extensively studied and it is quite common in the field of malware anal-
ysis. Researchers may design a tracer and superficially focus on the interaction
with the enclave. For instance, this tool may spot that SnakeGX generated a file
operation that did not appear in previous interactions. In this way, analysts can
infer the behaviour of the code inside the enclave.

Control Flow Integrity Checks. Control Flow Integrity checks (CFI) are
strong weapons already used in standard programs to mitigate code-reuse
attacks. Such mechanisms rely on different strategies to force a program to
execute only valid paths at run-time. In the current enclave implementation,
the system relies on classic stack canary to avoid buffer overflow. However, Lee
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et al. [27] discussed a technique to bypass such protection. Other non-standard
systems, such as SGX Shield [39], implement a custom CFI to mitigate these
issues. However, Biondo et al. [12] managed to bypass their protection too. So
far, there are not effective defenses against code-reuse attacks in the context of
enclaves. This approach might raise the bar for attackers who would attempt to
deploy SnakeGX or to perform code-reuse attacks in general.

Detecting Fake Structures. SnakeGX exploits the possibility to craft fake
structures that are used in critical tRts functions, i.e., ocall context. We
deeply analyzed this issues and proposed mitigation strategies in Sect. 4.4.

7 Discussion

Here, we discuss various aspects of SnakeGX generalization.

7.1 SnakeGX Portability

The current implementation of SnakeGX is based on a specific version of the
Intel SGX SDK, for a specific application and operating system. In this section,
we study the portability of our PoC and show the approach is generic and can
be easily adapted to other SDKs and OSs. Recently, new SGX frameworks were
released on the market, or research prototypes, to provide an abstraction layer
that simplifies the enclave development. In particular, projects such as Open
Enclave [28], Google Asylo [21], and SGX Shield [11] use the standard Intel
SGX SDK to perform host interaction (i.e., OCALL/ORET), thus inheriting the
same limitations described in Sect. 4. From our point of view, we can implant
SnakeGX in any enclave developed with these frameworks if they follow our
threat model assumptions (Sect. 3). We also analyzed the Intel SGX SDK for
Windows, in which we found and tested the same flaw described in our work.
Finally, the standard tRts libraries contain all the gadgets used in our PoC. In
general, SnakeGX can potentially affect enclaves developed on different SDKs
as long as: (i) they are abstraction layers of the Intel SGX SDK, or (ii) they
use a host interaction that relies on unprotected structures like ocall context.
In this paper, we proposed an instance of SnakeGX targeting StealthDB on
Linux. However, the idea is generic and the persistence, stateful, and context-
switch properties can be found and achieved also in other OSs and popular SDKs
based on the Intel one.

7.2 Persistence Offline

SnakeGX maintains persistence in memory as long as the host enclave is loaded.
This is similar to what Vogl et al. [46] have shown with “Chuck”. In their proof
of concept they achieved persistence on the running system. Their ROP rootkit
did not survive after reboot. In our scenario, SnakeGX may achieve a more com-
plete persistence by exploiting the sealing mechanism. In this case, the malicious
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payload would not be affected if the enclave is restarted. This sealing mechanism
is a common SGX practice. It saves the enclave state (i.e., its data) before the
enclave shuts down. If the victim enclave has a loophole in the restoring phase,
this could be exploited to inject SnakeGX again after a reboot. However, this
is strictly enclave-dependent and therefore we did not include in our discussion
and it is left for the future.

7.3 SnakeGX 32bit

In this paper, we designed our PoC for 64bit architectures. However, Intel SGX
supports also 32bit code to run in enclaves. From our point of view, the main
difference between 32bit and 64bit is the calling convention. Therefore, the tech-
niques we discussed and used for SnakeGX are still valid and can be easily ported
to 32bit applications.

8 Related Work

SnakeGX combines properties from different research areas. Here, we discuss the
difference with classic malware-enclaves works (Sect. 8.1), memory corruption
errors (Sect. 8.2) and data-only- malware (Sect. 8.3).

8.1 Enclaves as Malware

SnakeGX implants a malware (i.e., a backdoor) in a legit enclave. Researchers
already investigated SGX isolation properties as malware container in previous
works [4,5,19,33,36–38]. However, all these approaches require the introduction
of a new enclave in the system. The main issue of this approach is that an unex-
pected enclave can be detected and, consequently, attract analysts’ attentions.
On the contrary, SnakeGX hides its presence in a running and legitimate enclave
thus proposing a new approach for malware-enclave.

Nguyen et al. [30] proposed EnGarde, which is an enclave loader that checks
whether the enclave matches a set of predefined policies in order to avoid loading
potentially dangerous code. In this way, it is no more possible to introduce a new
malicious enclave in the system. However, once an enclave is loaded, it follows
standard SGX specification and SnakeGX can take control of it if its assumptions
are satisfied.

To mitigate malware-enclaves, Weiser et at. introduced SGXJail [48], which
is the first sandbox for untrusted enclaves. In their scenario, the authors assume
that a malicious enclave is developed on purpose and then deployed in a
machine without being inspected (e.g., the enclave is shipped as encrypted).
Once installed, the malicious enclave can launch several attacks, e.g., leak infor-
mation, compromise the host. SGXJail restricts the enclave interaction by mean
of a sandboxed process with a very narrowed number of syscalls enabled. In prin-
ciple, the design of SGXJail reduces the attack surface of SnakeGX. However,
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since we attack only trusted enclaves (i.e., enclaves that were verified before-
hand), we consider reasonable not to assume sandboxes in place. In addition,
we can implement a sandbox detection to avoid the infection, i.e., we can probe
the host process by running specific syscalls during the installation phase and,
in case, interrupt the attack.

8.2 Memory Corruption

SGX applications are not immune to flaws that may lead to memory corruption
attacks. In this scenario, the attacker can use classic exploitation techniques.
However, it is important to underline that the SGX isolation by default compli-
cates the exploitation phase. In this hostile environment, Lee et al. [27] developed
Dark-ROP, a technique to gain information about the enclave to build a success-
ful attack. The work of Lee et al. [27] forces a victim enclave to crash and restart
many times to look up the gadgets and build the ROP-chains. Their strategy
is reasonable since they assume the entire host as compromised, and therefore,
the adversary has no need to hide its presence. An optimized strategy has been
proposed by Biondo et al. [12], in which they assume a non-compromised host.
The goal of Biondo is to gain control of the enclave in a single iteration. However,
as we discussed in Sect. 6.3, the strategy of Biondo leaves a certain amount of
traces that can be detected. SnakeGX, instead, improves its stealthiness by per-
manently injecting a backdoor in the enclave. As a result, SnakeGX just needs
an ORET to activate payloads arbitrary complex. This increases the stealthi-
ness of our attack in case of a non-compromised host. To achieve our goal, we
overcame new challenges, such as persistence in an enclave by solely using code-
reuse attacks and expanding the data-only malware model by proposing new
techniques. To the best of our knowledge, these novel challenges have not been
discussed and solved for SGX technology before.

Other works in the literature investigated memory integrity mechanisms
for SGX enclaves. Dmitrii et al. implemented SGXBounds [26]. This tool
instruments enclave code to mitigate memory corruption errors. Unfortunately,
SGXBounds has been developed only for SCONE [10], which is a project that
enforces Docker containers by using small enclaves. Schuster et al. describe
VC3 [35], which is a Map-Reduce framework based on SGX. Since VC3 takes
custom software as an input, the authors developed a set of static-code checks
to limit memory corruption issues. To reduce memory corruptions flaws, Wang
et al. [47] described a Rust environment for SGX. However, as underlined by
the authors, even with a framework written in a safe programming language we
cannot solve all the memory corruption issues. Shih et al. [41] proposed T-SGX,
which reduces the amount of information gathered from enclave crashes and lim-
ited the impact of attacks like Dark-ROP. SnakeGX, however, is a generic frame-
work that can rely on any code-reuse attack for SGX enclaves. For instance, Van
Bulck et al. [44] conducted a systematic study of the memory errors in the SGX
run-time libraries and they found several flaws in different projects. Cloosters et
al. [17] proposed TeeRex, an automatic analyzer for memory corruption errors
in enclaves. All these defensive works show a limitation in the SGX design. This
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technology shields all the threats from the outside but has almost no protections
to harden a flawed application running inside the enclave. Unfortunately, all the
proposed defensive solutions are not ready for a real production deployment and
do not entirely solve the problem. In many cases they can be bypassed and, at
the moment, there are code-reuse attacks [12,27] able to disarm standard and
additional SGX memory-integrity mechanisms.

8.3 Data-Only Malware

Data-only malware is any malicious payload that does not introduce or change
any existing code into the system [46]. Data-only malware are based on code-
reuse techniques such as ROP and JOP, and can hijack the control flow of the
target application. This is possible by exploiting a vulnerability and crafting a
specific payload. The payload implementing the malicious functionality is usually
“one-shot”. The first data-only malware proposed by Hund et al. [24] and Chen
et al. [16] managed to bypass state-of-the-art protections and they were based on
ROP and JOP techniques, respectively. However, both works lack of persistence.
This means that if the attacker wants to repeat the same action, she needs to
exploit again the same vulnerability. The concept of persistence for data-only
malware and more in general for code-reuse attacks has been discussed and
solved by Vogl et al. [46] for the x86 architecture. They proposed “Chuck” the
first persistent data-only (ROP) rootkit. However, the solutions used in Chuck
cannot be transparently adapted to the SGX realm, and therefore, we expanded
their work and introduced novel techniques to have a data-only malware for
SGX. Our contributions are described in Sect. 5.

9 Conclusion

Recent code-reuse attacks against SGX enclaves can exfiltrate secrets without
depending on compromised OSs. This scenario opens new possibilities in which
the OS can inspect the memory and identify the intrusion as well. Furthermore,
analyzing the state-of-the-art of code-reuse techniques for SGX, we realized that
current memory-forensic results can find traces of the attack.

With this in mind, we proposed a new stealthy code-reuse attack that min-
imizes its presence against a healthy OS. Our intuition is to implant a back-
door inside the victim enclave. Consequently, an adversary just needs a minimal
trigger without repeating the attack from scratch. We implemented our idea in
SnakeGX, which is a framework to install backdoors in SGX enclaves that behave
like additional secure functions. SnakeGX extends and adapts to the strict SGX
environment the concepts of data-only malware [46]. In particular, SnakeGX has
a reliable context-switch mechanism based on a newly discovered design error of
the Intel Software Development Kit for SGX, which we reported to Intel.

We evaluated our findings against StealthDB, an open-source project that
implements an encrypted database. Our experiments show that we can reduce
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the memory footprint of the payload while preserving the enclave functionality.
Our proof-of-concept is publicly available for the community.4
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A Code-Reuse Technique

To show the feasibility of SnakeGX, we choose for our proof-of-concept the tech-
nique described by Biondo et al. [12]. This means that SnakeGX uses ROP.
However, as stated in Sect. 3, SnakeGX does not rely on a specific technique,
but it does require one to control its behavior. Moreover, we adapted their app-
roach to work on the Intel SGX SDK newer versions.

In the original approach, the authors exploited asm oret() and
continue execution() functions. More precisely, they crafted a set of fake
frame in order to create a loop between these functions. In the x64 architec-
ture, the first four function parameters are passed by registers. Therefore, the
authors used asm oret() for setting continue execution() registers pointing
to a controlled structure. However, as also Biondo underlined, it is more compli-
cated to use asm oret() for SDK 2.0. This is why in our approach we substituted
asm oret() with a glue gadget. This might be any gadget that sets the input
register for the continue execution() function. Since we developed our proof-
of-concept for Linux 64bit, continue execution() expects the first argument
(i.e., a sgx exception info t address) in the rdi register. This is achievable by
using a classic pop rdi gadget. Windows, instead, follows a different calling con-
vention and continue execution() expects an ocall context address shifted
by 8 byes in the rcx register. Therefore we used a pop rcx as a glue gadget. In
our evaluation, we found pop rdi and pop rcx gadgets in the Intel SGX SDK
version for Linux and Windows, respectively.

Fig. 6. Chain used in the proof-of-concept of SnakeGX.

4 SnakeGX’s source code is available at https://github.com/tregua87/snakegx.

https://github.com/tregua87/snakegx
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Figure 6 describes our code-reuse technique. The attacker crafts a fake
stack that can reside inside or outside the enclave, we used both approaches.
The fake stack is composed by frames, one of which contains in order: (i)
a glue gadget address, (ii) a fake sgx exception info t address, (iii) the
continue execution() address. Once the first glue gadget is triggered, it will
set rdi (or rcx in Windows) register pointing to the fake sgx exception info t
structure. Then, the continue execution() will set registers according to
sgx exception info t and it will also pivot to the actual gadget. Since
continue execution() allows us to control all general registers, we can eas-
ily invoke another function instead of a simple gadget (e.g., memcpy in Frame 1).
Finally, the gadget will return at the beginning of the next frame. At this point,
the CPU will trigger a new glue gadget and the attack continues.

Our technique is more flexible compared to the one described by Biondo. By
using a glue gadget, we can easily drive continue execution() without relying
on other SDK functions that might change in future versions.

B Conditional Chain

Conditional ROP-chain, the chain is triggered by using sgx exception info t
structure that configures the initial registers (see Appendix A). The SP register
is perturbed if the value of &lastKey differs from the value of &key in order to
pivot a true or a false ROP-chain, respectively.

1 /// we s e t the f o l l ow i n g r e g i s t e r s through
2 /// a s g x e x c e p t i o n i n f o t s t r u c tu r e :
3 /// rd i = &lastKey ; l a s t key e x f i l t r a t e d
4 /// rax = &key ; cur r ent key loaded
5 /// rdx = #o f f s e t ; to p ivot to the f a l s e ROP−chain
6 /// rcx = &true−chain ; address o f the true ROP−chain
7 mov eax , dword ptr [ rax ] ; r e t
8 mov rdi , qword ptr [ r d i + 0x68 ] ; r e t
9 cmp eax , ed i ; s e t e a l ; movzx eax , a l ; r e t

10 neg eax ; r e t
11 and eax , edx ; r e t
12 add rax , rcx ; r e t
13 xchg rax , rsp ; r e t
14 // 0x80 nops f o r padding
15 // beg inning o f t rue ROP−chain
16 pop rd i ; r e t
17 // context to p ivot to the ROP−chain that implements the

t rue branch
18 &cont ex t t ru e
19 // address o f con t inue execu t i on func t i on
20 &cont inue execu t i on
21 // beg inning o f f a l s e ROP−chain
22 pop rd i ; r e t
23 // context to p ivot to the ROP−chain that implements the

f a l s e branch
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24 &con t e x t f a l s e
25 // address o f con t inue execu t i on func t i on
26 &cont inue execu t i on

C Context-Switch Chain

Details of the sgx exception info t structures used to leak the key and to
switch outside the enclave. The structures are used according to the techniques
described in Appendix A.

1 /∗ . . . p r ev ious s g x e x c e p t i o n i n f o t s t r u c t u r e s . . . ∗/
2 // l e ak s the key out s id e the enc lave
3 // memcpy( key , bu f f )
4 ctxPc [ 2 ] . cpu context . r s i = &key ; // address o f the key
5 ctxPc [ 2 ] . cpu context . r d i = &bu f f ; // memory r eg i on s where

l e ak ing the key
6 ctxPc [ 2 ] . cpu context . rdx = KEY LENGTH; // length o f the key
7 ctxPc [ 2 ] . cpu context . r i p = &memcpy ;
8 // prepares the next boot chain in the workspace
9 // memcpy( boot chain , workspace )

10 ctxPc [ 3 ] . cpu context . r d i = &workspace ; // workspace address
11 ctxPc [ 3 ] . cpu context . rdx = s i z e o f ( boot cha in ) ;
12 ctxPc [ 3 ] . cpu context . r s i = &boot chain backup ;
13 ctxPc [ 3 ] . cpu context . r i p = &memcpy ;
14 // s e t the fake OCALL frame in the enc lave
15 // memcpy( fake frame , enc lave )
16 ctxPc [ 4 ] . cpu context . r d i = &fake f rame ;
17 ctxPc [ 4 ] . cpu context . rdx = s i z e o f ( fake f rame ) ;
18 ctxPc [ 4 ] . cpu context . r s i = &fake frame backup ;
19 ctxPc [ 4 ] . cpu context . r i p = &memcpy ;
20 // saves CPU extended s t a t e s f o r asm oret
21 // save x r eg s ( x s av e bu f f e r )
22 ctxPc [ 5 ] . cpu context . r d i = &xsav e bu f f e r ;
23 ctxPc [ 5 ] . cpu context . r i p = &save x r eg s ;
24 // s e t s the t ru s t ed thread as i t i s per forming an OCALL
25 // upd a t e o c a l l l a s t s p ( fake f rame )
26 ctxPc [ 6 ] . cpu context . r d i = fake f rame ;
27 ctxPc [ 6 ] . cpu context . r i p = &upda t e o c a l l l a s t s p ;
28 // p ivo t s to the outs ide−chain
29 // eenc lu [ e x i t ] −> ou t s i d e cha i n
30 ctxPc [ 7 ] . cpu context . rax = 0x4 ; // EEXIT
31 ctxPc [ 7 ] . cpu context . rsp = &ou t s i d e cha i n s t a c k ;
32 ctxPc [ 7 ] . cpu context . rbx = &ou t s i d e c h a i n f i r s t g a d g e t ;
33 ctxPc [ 7 ] . cpu context . r i p = &enc lu ;
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Details of the outside ROP-chains used to resume payload inside the enclave.

1 /∗ . . . p rev ious gadgets f o r sh ipp ing the password remotely
. . . ∗/

2 // gadgets to resume payload with in the enc lave
3 pop rax ; r e t
4 0x2 // EENTER
5 pop rbx ; r e t
6 &tc s add r e s s
7 pop rd i ; r e t // rd i = −2 −> ORET
8 0 x f f f f f f f f f f f f f f f e // −2
9 pop rcx ; r e t // f o r async e x i t handler

10 &Lasync ex i t po i n t e r
11 &enc l u u r t s

D Preliminary Analysis of Assumptions

Table 3 contains a list of 27 stand-alone SGX projects extracted from [9]. For
each project, we indicate their category, if it used the Intel SGX SDK, the
number of trusted threads for each enclave of the project, and a note. We also
list details for each enclave, if the project contains many. We counted 24 out of
27 projects developed on top of Intel SGX SDK, two projects use alternative
SDKs (i.e., Open Enclave SDK [28] and Graphene [43]), while one contains a
simulated enclave. Among the projects based on the Intel SGX SDK, we counted
a total of 31 enclaves, and 24 out of 31 are multi-threading (77%).
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Table 3. SGX open-source projects extracted from [9].

Category/Project Intel SGX SDK # of threads

Blockchain

teechain 10

private-data-objects 10

1

2

fabric-secure-chaincode 10

8

eevm Open Enclave SDK [28]

lucky Based on a mock SGX implementation

node-secureworker 1

town-crier 10

10

1

6

bolos-enclave 1

Machine learning framework

gbdt-rs 1

bi-sgx 1

slalom 4

Applications

sgxwallet 16

sgx-tor 10

10

obscuro 50

channel-id-enclave 10

sfaas 3

phoenix Graphene [43]

posup 4

tresorsgx 10

Private Key/Passphrase Management

sgx-kms 8

keystore 1

safekeeper-server 10

Database

talos 50

opaque 10

stealthdb 10

sgx sqlite 10

shieldstore 8
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Abstract. Convolutional Neural Networks (CNNs) are the target of
several side-channel attacks aiming at recovering their parameters and
hyper-parameters. Attack vectors include monitoring of the cache, power
consumption analysis and execution time measurements. These attacks
often rely on the knowledge of a certain – large – set of hyper-parameters
among which the victim model lies. The goal of the potential attacker is
then to reduce that search space or even deduce the correct architecture.
One such attack, Cache Telepathy by Yan et al., monitors access to a
common matrix multiplication algorithm, GeMM (Generalized Matrix
Multiply), in order to determine the victim model’s hyper-parameters.
In this paper, we propose to change the order in which the computations
are made and add randomness to the said computations in order to miti-
gate Cache Telepathy. The security analysis of our protection shows that
the Cache Telepathy attack on a protected VGG-16 has an increased
search space: from 16 to 222.

Keywords: Side-channel attack · CNN protection · Model extraction

1 Introduction

Thanks to their high accuracy and performance, Deep Neural Networks (DNNs)
are applied to an increasing number of tasks. Among those are image processing
[16] and game playing [24]. They are now overly present in our daily lives, for
instance in mobile phones [14]. The NN models implemented on those mobile
devices require long training and a careful selection of their architecture in order
to achieve a high accuracy. The resulting architecture and parameters of those
trained models therefore constitute intellectual property.

However, NNs are the target of several reverse-engineering attacks. In those,
the attacker aims at recovering the target NN’s architecture and/or parame-
ters [4–6,11–13,15,28,31]. While [6,15] are cryptographic attacks and [28] is
based on equation-solving, most attacks are side-channel ones. Side-channel
c© Springer Nature Switzerland AG 2021
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attacks rely on information leakages due to the implementation of an algorithm
rather than the algorithm itself. For instance, an attacker can observe memory
access patterns [27], the cache [11,12,31] or power and electromagnetic traces [4]
and infer secret information from those collected traces.

The knowledge of the architecture can make launching other attacks – such
as adversarial ones [20] or membership inference ones [18] – easier [22]. Once
the architecture is available, the parameters can also be deduced by possible
attackers, either through side-channel attacks [13] or through equation solving
[6,15,28].

Protecting the architecture of such NN models is therefore paramount both
to protect the intellectual property and to avoid making other attacks easier.

The architecture of a model is mainly comprised of its number of layers, layer
types, connections and activation functions. Cache Telepathy [31] targets the
cache behavior of the GeMM (Generalized Matrix Multiply) algorithm in order
to recover those hyper-parameters. Most Machine Learning (ML) frameworks,
such as TensorFlow [1] or PyTorch [21] use this algorithm to compute certain
layers on CPUs. The number of GeMM operations in the computations, as well
as the sizes of the matrices involved provide sensitive information about the
target NN.

In this paper, we aim at limiting the information leaked through this attack
vector. Since the leakage observed is due to the layers being computed sequen-
tially, we propose to reorder independent neuron computations to make the
Cache Telepathy attack harder.

As in Cache Telepathy [31], we consider an attacker who has a black-box
access to a model in a Machine Learning as a Service (MLaaS) context, and
aims at recovering its architecture. The attacker’s only prior knowledge is a
family of possible architectures for the targeted model, called the search space.
The attacker shares the same cache as the process running the model and her
only possibility is to monitor the cache. This can for instance be achieved by
inducing the victim to install a malicious chrome add-on [12]. Thus, we consider
a software attack, as Cache Telepathy does not apply to the hardware context.

Even if nowadays many computations are carried out on GPUs, some recent
MLaaS platforms such as Amazon’s SageMaker [3] allow CPU computations for
inference, as mentioned in [31].

Our contributions are as follows:

– We propose a way of reordering neuron computations. We compute blocks of
neurons instead of complete layers at a time.

– We explain how to add randomness to the order of the computations.
– We carry out the Cache Telepathy attack with and without our protection

and discuss our methodology. In particular, we analyze the added security
and show its practicability regarding its overhead in terms of performances.

After detailing the background and related works in Sect. 2 and Sect. 3, we
detail our reordering strategy in Sect. 4. We then explain how to add randomness
to the computing order in Sect. 5. We discuss our results, limitations and the
security of our strategy in Sect. 7. Finally, Sect. 8 concludes.
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2 Background

2.1 NNs

Neural Networks (NNs) are algorithms trained to recognize patterns. They can
be represented as graphs where the nodes are the neurons and the edges are the
weights. The weights are values that change over the course of the training so as
to solve an optimization problem.

NNs are usually comprised of several layers, which can be of various types.

– Fully connected (FC) layers: A neuron’s value is equal to the sum of the
previous layer’s neurons multiplied by the corresponding weights. A bias is
generally added to the value. Thus, for an input X = x1≤i≤m, weights W =
w1≤i≤n,1≤j≤m and biases β = β1≤i≤n, an FC layer computes:

Oi =
m∑

k=1

wi,k × xk + βi =⇒ O = W · X + β

– Convolutional layers: These layers operate a convolution between one –
or several – filter(s) and the input. For a given filter F1≤i≤k,1≤j≤k, input
x1≤i≤n,1≤j≤n and a bias β the output is computed as follows:

Oi,j =
k∑

l=1

k∑

h=1

wi+l,j+h × xl,h + β

– Pooling layers: They consider the output by blocks, and take one significant
value for each block. Their goal is to reduce the dimensionality of the input.
One common pooling layer is the max pooling: they take the maximum among
all block values.

Each layer is followed by a nonlinear activation function. It activates or deacti-
vates neurons depending on some criteria. For instance, ReLU(x) = max(0, x)
deactivates negative neurons.

Convolutional and FC layers can be rewritten as a matrix multiplication. This
is what many ML frameworks, such as TensorFlow [1], do to compute them when
executing on CPUs. Figure 1 shows how a convolutional layer is transformed into
a matrix multiplication. Each row in the filter matrix Fi corresponds to one filter.
Each column in the input matrix Ri corresponds to one convolutional window
of the size of the filter.

2.2 GeMM

The matrix multiplication in FC and convolutional layers is computed using
Goto’s GeMM algorithm [9]. The latter efficiently divides the input matrices in
smaller blocks so that the computations completely fill the cache. As in [31], let us
consider the OpenBLAS library. In OpenBLAS, the algorithm makes use of three
interesting functions: itcopy, oncopy and kernel. The pattern of appearance
of these three functions is highly correlated with the dimensions of the matrices
involved in the matrix multiplication. Thus, monitoring these three functions is
enough for an attacker to recover the matrices’ dimensions.
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Fig. 1. Convolutional layer into matrix multiplication. Ii is layer i’s input, Ri its
reshaped form. Oi and O′

i are the layer’s output and its reshaped form. Di is layer
i’s number of input channels. k(i) is layer i’s filter size.

2.3 Flush and Reload Attack [32]

The goal of cache attacks is to determine whether a target function has been
accessed within a certain period of time.

The cache is a small but fast memory space used to store the recently accessed
data. If a process tries to access d, the CPU will first search the cache for it. If
it is found in the cache, this is a cache hit. If it is not there, this is a cache miss,
and the processor needs to access the much larger and slower main memory.

This difference in the time necessary to return the data d can be exploited by
attackers to monitor certain sensitive addresses, such as those of itcopy, oncopy
and kernel. Let d denote the target address. The Flush and Reload attack then
consists in the three following steps:

1. Flush the address from the cache.
2. Wait for a certain period of time twait, to enable the victim to access d if it

needs to.
3. Access the address, and measure the access time taccess.

If taccess is lower than a certain threshold T , then d was already in the cache
when the attacker accessed it. Thus, the victim accessed it during step 2. If
taccess is greater than T , then the victim did not access d during step 2. If T and
twait are selected properly, this method enables a potential attacker to recover
the number of times d was accessed, as well as when it was accessed.

2.4 Cache Telepathy Attack

The authors of [31] exploit the sequence of appearance of itcopy, oncopy and
kernel in Goto’s algorithm to recover the matrix sizes in GeMM computations.
This provides a potential attacker with the filter, input and output sizes of a
given layer. Thus, an attacker can proceed as follows:
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1. Determine the number of layers by counting the matrix multiplications.
2. For each multiplication, recover the itcopy, oncopy and kernel pattern.
3. Deduce the filter, input and output sizes m, thanks to the observed patterns.
4. Determine the connections between layers thanks to the input and output

sizes.

Even though the architecture can usually not be recovered in its entirety as
multiple options for the sizes and connections remain possible, this method can
still significantly reduce the search space for the target architecture.

To achieve this, the attacker needs to count the matrix multiplications and
monitor the loops, by observing the cache, and carrying out a Flush and Reload
attack for instance. The authors of Cache Telepathy [31] explain that common
ML frameworks’ backends rely on linear algebra libraries such as OpenBLAS,
Intel MKL and Eigen. They launched their attack on both OpenBLAS and MKL,
as they work in a very similar way. In the OpenBLAS library, they observe
the pattern formed by the functions itcopy, oncopy and kernel to count the
number of matrix multiplications and deduce the matrix sizes. In this paper,
we only considered the OpenBLAS case. But the similarities bewteen MKL and
OpenBLAS lead us to believe that our protection would work similarly on the
MKL library.

3 Related Work

Reordering for Hardware Acceleration: Several papers propose to modify the way
convolutional layers are generally computed, with the aim of accelerating CNN
computations on hardware devices. The authors of [23] consider each neuron
individually, and compute its value as soon as it is ready. Indeed, in convolutional
layers, only a small window of values from the previous layer is used to compute
a given neuron. In [23], a buffer in layer i stores the values as they arrive in a
sequential order. Once enough values arrive to compute a neuron, it executes the
computation and sends the value to the following layer. The scheme is described
in Fig. 2.

The authors of [2] consider computing CNN layers in a similar fashion. The
aim of [2] and [23] is to limit the bandwidth necessary to make NN computations,
by only loading on chip the necessary values. It also enables a parallelization of
some computations.

As the following sections will explain it, we consider a similar approach as
[23] and [2], but outside of the hardware context. Furthermore, our goal is not
to accelerate the computations but to protect them from architecture extraction
attacks.

Security: [29] also considers the computations in NNs in a different order, but
their goal is to run the victim NNs in Trusted Execution Environments (TEEs).
Since TEEs have a limited memory space, all weights and inputs cannot be
loaded at once. Therefore, they partition the target NNs in three different ways
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Fig. 2. The blue neurons from convolutional layer i (left) are the ones needed to com-
pute the green neuron in layer i+ 1 (right), when layer i’s filter size is 3. (Color figure
online)

(per layer, within a layer and branched partitioning) when loading them into the
TEEs.

Some papers [7,8,19] also aim at protecting NNs from architecture extraction
attacks. [7] considers a hardware masking approach to protect neuron computa-
tions against power-based side-channel attacks. In the latter, the attacker runs
the victim NN and measures its power traces in order to recover the architecture
[4]. By masking the hardware computations, the authors of [7] aim at making the
power traces leakage free. [19] and [8] mitigate memory access pattern attacks.
In memory access pattern attacks, the attacker observes which memory loca-
tions have been accessed in order to deduce (part of) the NN’s architecture [13].
The authors of [19] and [8] randomize memory access patterns in order to miti-
gate the aforementioned attacks. To the extent of our knowledge, no paper has
considered protections against cache-based side-channel attacks on CNNs yet.

In this paper, we mix two ideas: the interleaving of layers presented in [23]
and the block multiplications as in GeMM. We apply them to the software
level rather than the hardware one. We also have a different aim: while existing
approaches [2,23] applied the interleaving of layers for efficiency, we applied it
for security purposes. As detailed in Sect. 5, we also added a randomization
element. This mix of the two ideas along with the randomization led us to some
experimental results showing our idea does thwart the Cache Telepathy attack
(see Sect. 7).

4 Reordering Computations: The Convolutional Case

In this paper, our goal is to mitigate cache attacks targeting the GeMM computa-
tions during the inference phase of a victim CNN. We consider out of scope other
side-channel vectors such as power consumption or memory access patterns. Fur-
thermore, our proposed method concerns convolutional and maxpooling layers.
Even though Cache Telepathy also targets FC layers, we will see in Sect. 7.1
that our approach still mitigates the attack.
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4.1 Convolutional Layer

The protection we propose is based on two observations:
First, the sequential execution of layers enables a potential attacker to deter-

mine the depth of an NN. Indeed, the depth directly results from the number of
observed matrix multiplications.

Second, the hyper-parameters of a given layer can be deduced by a potential
attacker because each layer is executed as a whole before moving on to the next
one.

Therefore, a depth-first computation should improve the security of an NN.
In CNNs, several neurons in a layer i can be executed before layer i − 1 has
been fully computed. Indeed, a neuron only requires a window of values from
the previous layer, as described in Fig. 2.

Based on these observations, we propose to compute layers in a depth-wise
fashion. But instead of computing a neuron in layer i as soon as all necessary
neurons in layer i − 1 are ready, we wait for a block of neurons in layer i to be
ready before starting the execution. With this method, we aim at making layer
computations overlap, without being restricted to computing one neuron at a
time.

Let us detail our proposed method. Our goal is to make the computations
of several layers overlap. We start executing layer i + 1 before the execution of
layer i is over. The GeMM algorithm is thoroughly optimized, and makes sure
the entire cache is used for large matrix multiplications. Making one neuron
computation at a time – to execute neurons as soon as enough data is available
– would lead to too much overhead. Thus, a balance needs to be reached between
the added overhead and the number of subdivisions of matrix multiplications.

Let us first consider the case of convolutional layers. Let layer i be a convo-
lutional one, with n

(i)
k filters of size k(i) ×k(i). Let R denote the reshaped matrix

– as in Fig. 1 – of the input I (of size n × n). For an example of a standard way
to reshape the input, see Appendix C, Fig. 8. Let F denote the n

(i)
k × (k(i) · k(i))

matrix where each row is a flattened filter.
Here, our goal is to compute the matrix multiplication F × R by blocks.

Every time a block A of neurons in matrix R is ready, we multiply A with the
corresponding filter blocks in F . Let us detail how this is achieved.

If there is no padding, the reshaped matrix R has dimensions (k(i)2 · n
(i)
k ) ×

(n−k(i)+1)2. Let B ∈ N. R is divided in N non-overlapping blocks {RBl
}1≤l≤N

of size B×B. There are W (i) :=
⌈
(n−k(i)+1)2

B

⌉
blocks RB width-wise and H(i) :=

⌈
k(i)×k(i)

B

⌉
blocks height-wise, corresponding to a total of N (i) :=

⌈
(n−k(i)+1)2

B

⌉
×

⌈
k(i)×k(i)

B

⌉
blocks RB.

Each such block RBr
needs to be multiplied by filter blocks FBr

of size
n
(i)
k × B. We can further divide FBr

into M
(i)
r blocks {Fbr,l}1≤l≤M

(i)
r

of size
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B × B. If n
(i)
k is not a multiple of B, we pad the last block Fb

M
(i)
r

. Thus, each

block RB needs to be multiplied by M
(i)
r :=

⌈
n
(i)
k

B

⌉
filter blocks.

Once the layer receives all the values in the r−th block RBr
from the previous

layer, all the multiplications {RBr
× Fbr,j}1≤j≤M

(i)
r

are computed. The results
are added to those of the other RB blocks involving the same columns in R. Since
there are H(i) blocks RB height-wise, H(i) matrix multiplications are required
to compute one neuron for layer i + 1. Since, moreover, computations are made
with sub-matrices of sizes B × B, B neurons are computed at a time.

Let us note that GeMM computations are more efficient when matrix sizes
are multiples of 32 [9]. Thus, the default block size should be a multiple of 32 as
well. Moreover, the number of computations is correlated with the block sizes:
if we increase the block size, there are fewer matrix multiplications. But the
efficiency of the computations also depends on the cache size, the various layers’
input sizes and the padding added. It is therefore important to tailor the block
size to the architecture’s hyperparameters. Furthermore, taking into account the
matrix sizes in each layer is important: if the block sizes are too large, no overlap
can occur between a convolutional layer and the following one. Thus, block sizes
need to be adapted to the architecture at hand.

Fig. 3. Process for a layer of size 4 × 4 receiving values from the previous layer. The
block size is B = 3 and the filter’s width and height are equal to 3.

Figure 3 summarizes the process for one convolutional layer. In Step 1, layer
i − 1 sends neuron 7 to layer i, which adds it in the reshaped matrix R.
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Algorithm 1: add elts: Receive elements from the previous layer, and
compute ready blocks

input : Block size B. Arrays A C, B C. Value v to add. Accumulator acc

1 L = get indices reshaped input(v) /* Gets indices where v needs to be added. */

2 for i ∈ L do

3 b c = get block index(i); /* Gets index of the layer block i belongs to. */

4 B C[b c] += 1;
5 if B C[b c] = B × B then

/* If the block is now full */

6 filter blocks = get associated filter blocks(b c) ;
7 for F ∈ filter blocks do
8 R = compute sgemm(F, b c);

/* Send values to next layer. */

9 accumulator handler(B, A C, B C, acc, R, get next layer());

10 endfor

11 end

12 endfor

Algorithm 2: accumulator handler: Add computed elements and
send computed neurons to the next layer

input : Block size B. Arrays A C, B C. Array acc. Matrix of computed values R. Pointer to
the next layer: next layer

/* acc stores the current values of the layer’s elements. A C is used to check
whether a value in acc is ready. B C is used to check whether a block is ready. R
is the result of a matrix multiplication. */

1 indices = get indices acc(R)
2 n = len(R)
3 for i = 0 to n do
4 acc[indices[i]] += R[i];
5 A C[indices[i]] += 1;

6 f c = get full ac(indices[i], B); /* Gets the number of matrix multiplications

necessary to have a correct value in acc[indices[i]] */
7 if A C[indices[i]] == f c then
8 next layer→add elts(indices[i], A C, B C);
9 end

10 endfor

Since neuron 7 fills the red block RBr
, a matrix multiplication can occur.

Step 2 corresponds to the multiplications with the blue and green filter blocks
{Fbr,j}j∈{1,2}. The results are added to the output matrix (O′ in Fig. 1). A value
in the output matrix is only correct when the associated column in R is fully
computed.

Algorithms 1 and 2 provide the pseudo-code for our method. Algorithm 1
receives a list of elements from layer i−1 and checks whether a block RBr

is full
(line 5). If it is the case, it computes {Fbr,j ×RBr

}1≤j≤Mr
(using compute sgemm,

line 10) whether layer i − 1’s execution is over or not. It sends the temporary
values to layer i by calling Algorithm 2: accumulator handler (lines 7–10).
Algorithm 2 takes those output elements, adds them to the correct locations in
R(i) (lines 1–4) and checks whether a neuron is completely computed (line 7). If
it is the case, it sends the result to layer i + 1.
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4.2 Dealing with Pooling Layers

Pooling layers need to be dealt with differently. The reason why is twofold: first,
in such layers, the various channels are managed independently. Filter sizes are
small, resulting in a small height for reshaped matrices. It is therefore more
practical to consider blocks width-wise only. Second, no GeMM multiplication
is involved in the computation. They are therefore not the target of the cache
attack considered.

However, executing a pooling computation introduces overhead in between
block computations. This leaks some information to a potential attacker and she
might determine the number of multiplications required to obtain one column
in the reshaped pooling input. This provides the attacker with a small range
of possible hyper-parameter values. If the victim waits for several columns in
the reshaped pooling layer to be ready before starting the execution, the range
of possible hyper-parameter values increases, making it harder for an attacker
to recover the correct architecture. It is therefore important to also consider a
blocked computation for layers without GeMM computations, such as pooling
ones.

We propose to adapt the methodology described in Sect. 4.1 to pooling layers.
We still compute several neurons at once. But here, we wait for multiple entire
columns to be completed instead of blocks. Moreover, we deal with the various
channels independently. We consider a pooling layer i with a window size of
k(i) × k(i). Let B ∈ N. Given the maxpooling layer’s input I of size n × n, let
R (of size k(i)2 × ( n

k(i) )2) be its reshaping. We divide R into N (i) :=
⌈
(n/k(i))2

B

⌉

blocks {RBr
}1≤r≤N(i) width-wise. Whenever all of block RBr

’s values are ready
– i.e. whenever they were relayed by the previous layer –, the computation can
be executed for that block. This results in B neurons that need to be passed on
to the following layer.

5 Randomization of Block Sizes

Computing the matrix multiplications by blocks as explained in Sect. 4 helps
mitigate the attack at hand, as the attacker only recovers a set of possible hyper-
parameter values. However, it is still possible to increase that range of values,
by injecting randomness in the block sizes.

5.1 Improving Security Through Randomization

So far, within a layer i, all block sizes were identical. Having different block sizes
within a layer provides more entropy in the number of multiplications per layer
(see Sect. 7.1 for a more detailed analysis of the protection’s security).

Let us first consider the convolutional case. When the architecture of the
target NN is created, we generate two arrays tw and th of random block sizes.
The first array corresponds to the number of columns of each block, while the
second corresponds to the number of rows of each block. tw[l] returns the index
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Algorithm 3: full computation: Full computation with random
input : Model’s input I. Arrays A C, B C. Block size B

1 For each convolutional layer, generate random arrays W (block widths) and H (block
heights)

2 for input blocks ib do
3 filter blocks = get associated filters(ib);
4 for F ∈ filter blocks do
5 R = compute sgemm(F, i b);
6 accumulator handler(B, A C, B C, acc, R, get next layer());

7 endfor

8 endfor

of the column at which the l− th block width-wise starts, and th[j] returns the
index at which the j−th block height-wise starts. A block with coordinates (l, j)
therefore has th[l]−th[l-1] rows and tw[j]−tw[j-1] columns. Appendix C
provides an example of such a subdivision.

In that scenario, the blocks in the same column have the same width, and
those in the same row have the same height. To prevent an attacker from using
this, we can zero-pad the blocks right before each multiplication to turn the rect-
angle blocks into squares. Thus, each block is a square of size max(width, height),
where width and height are the block’s original width and height. This way, the
blocks in a same row or in a same column can have different block sizes.

As explained in Sect. 4.2, the reshaped pooling matrices cannot be divided
height-wise due to their small height. Therefore, only one array of random block
sizes is created, to divide the matrix width-wise.

In the random case, Algorithm 1 needs to be updated to take into account
the height and width of the considered block. Only lines 5 and 6 in Algo-
rithm 1 change. Before the loop on line 5, we get the correct block width and
height thanks to the generated arrays tw and th. These are then provided to
accumulator handler.

Algorithm 3 is the full computation. For all input elements, the function
computes the GeMM multiplications (line 5) and sends them, one by one, to the
accumulator handler (line 6). This is enough to start the whole process.

6 Full Scheme

Let us now clearly state the steps of our proposed countermeasure, that we call
Telepathic Headache.

1. For each convolutional layer: Generate two arrays of block sizes, for the width
and the height. Possible block sizes need to fulfill two conditions:
(a) Not too large: it would defeat the purpose of the countermeasure, as we

need an overlapping of layers. For instance, B ≤ n where n is the input
size. But higher B values are often possible.

(b) Not too small: it would lead to too much overhead (for instance, B > 1).
2. For each pooling layer: Generate an array of width-wise block sizes. Block

sizes need to fulfill the two previous conditions as well.
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Fig. 4. Flush and Reload on an unprotected (a) and a protected (b) architecture with
two convolutional layers (filter size: 3 × 3) separated by a max pooling layer (window
size: 2 × 2). The y-axis corresponds to the number of clock cycles it takes to access
the correct cache line. The x-axis indicates the time elapsed since the beginning of the
experiment.

3. Start the first layer computations.
4. If a block in layer i is full, compute the matrix multiplications.
5. If the previous computations lead to at least one neuron being completely

computed, send the value to layer i + 1 and pursue computations in layer
i + 1 if possible.

6. Repeat steps 4 and 5 until all values have been computed.

Steps 1 and 2 are part of the architecture creation, and are only executed
once for a given model. Generating the new, protected architecture only once
per model and user prevents a potential attacker from carrying out statistical
attacks.

Let us further detail the way we deal with convolutional GeMM computations
in step 4. Let RBr

be a full block in layer i, and w and h be its corresponding
width and height respectively. As explained in Sect. 4.1, each RBi

is associated
with filter blocks {Fbr,j}1≤j≤M

(i)
r

. M
(i)
r multiplications Fbr,l ×RBr

∀0 ≤ l ≤ M
(i)
r
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are computed. The output of those multiplications are sent to the next layer.
Since RBr

’s columns are only subcolumns from the reshaped input R’s columns,
the outputs computed are only partial results. The results for all height-wise
input blocks need to be summed in order for some neurons to be ready in the
following layer.

Figure 4 shows that contrary to a normal execution, our protection leads to
an overlap of layer computations.

7 Results

7.1 Security Analysis

We consider an attacker whose goal is to recover the architecture of a target
CNN. The list of hyper-parameters to recover is therefore:

– Number and types of layers, and connections between layers.
– Filter sizes for convolutional layers and window sizes for pooling ones.
– Input and output sizes.
– Padding.

The authors of Cache Telepathy restrict the possible target architectures to
a search space. The latter is built thanks to the following assumptions:

– In convolutional layers with filter size k × k, we have that: k ∈ {1, ..., 11}.
– The padding p is such that p ≤ k.
– In each layer, the number of output channels is such that: nout is a multiple

of 64 and nout ≤ 64 × 32.

We make the same assumptions in this paper.
As explained in Sect. 2, the attackers in Cache Telepathy monitor GeMM

computations in order to recover those hyper-parameters. The number of con-
volutional layers in the target CNN is equal to the number of matrix multi-
plications. Filter sizes are deduced from the sizes of the matrices involved in
the multiplications. The possibilities for padding values and pooling sizes are
restricted thanks to constraints on the dimensions of each layer.

The Flush+Reload attack on GeMM functions (as explained in Sect. 2) along
with these assumptions enable the attacker in [31] to limit the search space to
a very small set of possible architectures. For instance, for the VGG-16 archi-
tecture [25], the Cache Telepathy attack reduces the search space from over
5.4 × 1012 possible architectures to 16.

Let us consider layers 4 (Conv4), 5 (Conv5) and 6 (MaxPool) of VGG-
16. They are two convolutional layers followed by a max pooling layer. Conv4
and Conv5 have input size n × n = 112 × 112. Let k(i) × k(i) denote Convi’s
filter size. In our case, k(4) = k(5) = 3. The input size is the same in both layers
because a padding of two (p = 1) is applied in both directions to Conv4’s output.
Conv4 has in4 = 64 input channels and out4 = 128 output channels. Conv5 has
in5 = out5 = 128 input and output channels (see Fig. 5).
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Fig. 5. VGG-16 architecture. The sizes mentioned in the figure are the input sizes of
the layers in the form: (input width × input height × number of channels).

The reshaped input image R4 for Conv4 has width W (4) = (n+2 · p−k(4) +
1)2 = 112 × 112 and height H(4) = k(4) × k(4) × in4 = 576. The reshaped filter
matrix F4 for Conv4 has width F

(4)
W = H(4) = k(4) ×k(4) × in4 = 576 and height

F
(4)
H = out4 = 128.

A potential attacker is assumed to know n and in4. This is a reasonable
assumption, since the input size is known to an attacker who can query the
target model. Furthermore, for simplicity, let us assume that the attacker knows
that layers are sequentially connected.

Recovering the Unprotected Architecture with Cache Telepathy: By
monitoring GeMM multiplications, the attacker in Cache Telepathy can identify
the two convolutional layers, as each corresponds to one matrix multiplication.
Moreover, the lack of a max pooling layer in between the two layers is identified
through timing analysis. Indeed, a max pooling layer incurs a time overhead
between GeMM operations. The attacker also determines the matrix sizes. This
directly provides her with out4 = in5 and H(4). Since H(4) = k(4)×k(4)×in4 and
in4 is known, the attacker can deduce k(4). The attacker also directly observes
that n′ = (n + 2 · p − k(4) + 1)2. Since the attacker now knows n and k(4), she
can easily recover p =

√
n′−n+k(4)−1

2 . MaxPool’s window size is determined to
be 2 by comparing the input and output sizes of the pooling layer.

Thus, monitoring GeMM computations enables an attacker to find: the num-
ber of convolutional layers by counting the GeMM operations; the input and
output shapes (including channels) of Conv4 and Conv5 thanks to the matrix
sizes; the filter sizes for the two layers thanks to the matrix sizes.

In short, the attacker manages to recover all the hyper-parameters of Conv4
and Conv5.
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Protected Case, When Convolutional Layers Can be Distinguished: Let
us now study the impact of our protection on those two convolutional layers. The
attacker has at her disposal the same information as before. Once again, the goal is
to recover the hyper-parameters of Conv4 and Conv5. By launching Cache Telepa-
thy, the attacker is able to recover all matrix sizes in the GeMM multiplications.
In our case, the layers are not executed sequentially but in blocks of various sizes,
and depth-wise. This means that as soon as a block of values – of random size, as
explained in Sect. 5 – in layer i is ready, it is executed, regardless of whether layer
i − 1 has finished its execution. Thus, the layers interleave, as shown in Fig. 4.

Because the order of multiplications is changed and the layers are not exe-
cuted sequentially, the attacker knows neither the number of layers nor which
layer a matrix multiplication belongs to. However, an attacker can detect a
pooling layer computation, since it incurs a latency between multiplications.
Therefore, she can determine the number of multiplications required for the first
blocked max pooling computation to occur. We should also bear in mind that
several architectures have multiple consecutive convolutional layers [17,25].

For a clearer explanation, we first focus on the unlikely case where the
attacker can observe a change of layer (and therefore identify the first Conv5
operation). Let us note that we believe this case to be mainly hypothetical. For
it to hold, there should be a notable latency in between convolutional layers. The
said latency should also be different from the overhead incurred by maxpooling
layers. We present this scenario for pedagogical purposes. In Appendix A, we
compute the number tot4,5 of multiplications in Conv4 required to start com-
puting Conv5 depending on the block sizes B. We use that analysis to then
compute, in Appendix B, the number of multiplications necessary for the first
block in MaxPool to get executed.

Let us first consider tot4,5. Because each block size is random, we can compute
a range of possible values for tot4,5 by considering the two extreme cases, where
Bmin = 32 and Bmax = 64.

tot4,5B,B =

(
b−1∑

q=0

H(4)
q × M (4)

r

)
+

⌈
ch

B

⌉
× H

(4)
b (1)

where b is the number of the block (width-wise) containing the last element we
need to compute in Conv4; H

(4)
j is the number of filters height-wise in Conv4,

for width-wise block j; M
(4)
q is the number of filters associated to block q; ch is

the channel of element (B,B) in Conv5’s input (see Appendix A for details).
Here, we have: tot4,5 ∈ [74, 292]. This range of values can be obtained because

we know the padding, input and output shapes, and filter sizes. A potential
attacker, however, only knows the number of input channels and the input shape.

The remaining question is whether the range of values for different filter and
padding sizes overlap. If it is the case, then an attacker cannot differentiate between
the various hyper-parameter values. Let us suppose, for simplicity, that k = k(4) =
k(5) and compute all the possible values for tot4,5x,y ((x′

min, y
′
min) = (32, 32) and

(x′
max, y

′
max) = (64, 64)), given out4, out5 and in5. Table 1 shows the resulting

values.
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Table 1. Maximal and minimal number of multiplications depending on the filter size,
when the attacker can distinguish between convolutional layers.

k(4) 1 2 3 4 5 6 7 8 9 10 11

tot4,5
x′
min,y

′
min

2 8 306 928 1,400 4,896 5,488 7,168 6,480 8,000 6,776

tot4,5x′
max,y

′
max

1 4 9 16 25 36 49 64 324 400 242

If k = 1, tot4,5 ∈ [1, 2]. If k = 2, tot4,5 ∈ [4, 8] and so on. Because of those
ranges, if an attacker manages to recover tot4,5, she can determine whether
k = 1 or k = 2. However, the ranges for k > 2 overlap, meaning that for a given
tot4,5, she has at least two possibilities for k. In our architecture, we have that
tot4,5 ∈ [74, 292]. An attacker observing this number only knows that 9 > k > 2.
This multiplies by 6 the number of possible architectures for that set of layers.
There are 13 convolutional layers in VGG-16. If we extrapolate and assume we
have 6 possibilities for each layer, the reduced search space is multiplied by 613.
This is an overevaluation of the added uncertainty. But we see that because of
the overlapping, we have at least two possibilities per layer for the filter value,
when there was previously no uncertainty. This leads to a multiplication of the
search space by at least 213. Let us note that it represents a high increase in
the search space, as recovering the correct architecture then requires training all
of the remaining possibilities. In [31], the authors reduced the search space for
VGG-16 to 16 possibilities. With our protection, we can increase it to 217.

Furthermore, this computation does not provide the attacker with the pad-
ding, as she does not know the full output size, resulting in an even larger search
space.

Protected Case, When an Attacker Can Only See Max Pooling Layers:
In reality, as stated before, it is difficult for an attacker to differentiate between
convolutional layers. This means that tot4,5 is not observable, and the attacker
can only recover the number of multiplications required to reach the following
max pooling layer MaxPool. We therefore need to compute tot4,6. If we denote
(x, y) the last element in the first MaxPool block B, and (x′, y′) the last element
in Conv5 that needs to be computed for B to be ready, then: tot4,6x,y = tot4,5x′,y′ +
tot5,6x,y.

This time, we consider the possible ranges of tot4,6, given that in5 and out5
are not available to the attacker. The results are shown in Table 2.

Table 2. Maximal and minimal number of multiplications depending on the filter size,
when the attacker cannot distinguish between convolutional layers.

k(4) 1 2 3 4 5 6 7 8 9 10 11

tot4,6xmin,ymin >9 · 106 >10 · 106 >10 · 106 >11 · 106 >11 · 106 >12 · 106 >13 · 106 >15 · 106 >19 · 106 >28 · 106 >54 · 106

tot4,6xmax,ymax 42 42 44 44 46 48 54 64 80 116 226
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All k(4) values are possible. The attacker cannot determine k(4), k(5) or k(6).
In all cases, we have at least 2 possibilities for each of the filter sizes. Since there
are 18 max pooling and convolutional layers in VGG-16, we can extrapolate once
again and say that our protection could lead to a multiplication of the search
space by 218. This leads to a reduced search space of 222. Let also remind the
reader that k(4) and k(5) can actually differ, making a potential attacker’s life
even harder.

7.2 Performance Evaluation

Experimental Platform. We launch our experiments on a DELL work station
OptiPlex 7040 with a 4-core Intel Core i7 processor and three levels of cache of
sizes, respectively, 32 KB, 256 KB and 8192 KB. Our experiments are carried out
using Debian 4.19.152-1.

Performance. Let us consider a perfect attacker, who can recover the Flush and
Reload traces without any noise. To simulate this, we use the GNU Debugger
(GDB) to log all calls to itcopy and oncopy, along with the cycles at which
they were called. Figure 6a shows such a simulation of an unprotected model.

Fig. 6. Simulation of Flush and Reload on an unprotected (a) and a protected (b)
model. The model considered has 2 convolutional layers separated by a max pooling
one. Block sizes are between 32 and 38 in (b).

Once again, we can see in Fig. 6 that the layers’ traces are interleaved, and
it is difficult for an attacker to distinguish between the various layers.

Let us now consider our protection’s overhead. Note that we do note take the
creation of the architecture into account here, as it only needs to be executed
once, rather than at each inference computation. We consider three architectures
in our experiments. In all cases, there is only 1 input and output featuremap,
the convolutional filter size is 3 × 3, the pooling window size is 2 × 2 and there
is no padding. The architectures are as follows:
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1. Conv – MaxPool – Conv – MaxPool (arch1)
2. Conv – MaxPool – Conv (arch2)
3. Conv – Conv (arch3).

We average the execution time over 1,000 runs for several input sizes, as shown
in Table 3. The time overhead depends heavily on the architecture’s depth, the
input size, the layer types and the block sizes. The case B = 1 in Table 4 is
included to show the importance of correctly selecting the minimal block size.
The high overhead incurred in the case where one neuron is computed at a
time confirms our assertion in Sect. 4.1, stating that considering one neuron
at a time would take too long. Let us now consider the case B = 32. In some
cases, such as arch2 with input shape 1 × 20 × 20, the randomized protection
has almost the same execution time as a normal execution. We believe that the
higher overhead in arch3 is due to the lack of maxpooling layers: this leads
to higher input sizes for the convolutional layers, and convolutional layers take
naturally longer to compute than maxpooling. Let us remind the reader that
we did not use common frameworks such as PyTorch [21] or TensorFlow [1], as
explained in Sect. 7.4. Moreover, because the GeMM operation is operated on a
very low level and ensures an optimally filled cache, it is very efficient. It is not
the case for our high-level block subdivisions and multiplications. Thus, since
common ML frameworks are heavily optimized, and so is the GeMM operation,
we believe that the worst case in Table 3 being 8 times more time consuming
than an unprotected operation is reasonable, and the time overhead could be
improved a lot with further optimization. This is especially the case since we
compare our implementation’s execution time to a standard, highly optimized,
Keras – with TensorFlow as a backend – one. Furthermore, despite the incurred
overhead, we believe that our countermeasure is a first important step towards
a secure real time execution.

Table 3. Execution times for three different architectures, depending on the type of
protection added. In all cases, the block size is B = 32.

Input shape Protection type arch1 arch2 arch3

1 × 28 × 28 None / / 842µs 1 606µs 1

Blocks, no random / / 1634µs ×1.94 4966µs ×8.19

Blocks, random / / 1714µs ×2.04 4995µs ×8.24

1 × 22 × 22 None 698µs 1 610µs 1 764µs 1

Blocks, no random 904µs ×1.30 927µs ×1.52 2340µs ×3.06

Blocks, random 1004µs ×1.44 989µs ×1.62 2391µs ×3.13

1 × 20 × 20 None / / 635µs 1 542µs 1

Blocks, no random / / 745µs ×1.17 1718µs ×3.17

Blocks, random / / 816µs ×1.29 1765µs ×3.26
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Table 4. Execution times for three different architectures, depending on the block size
considered. We compare the case B = 1 to the case B = 32 to show how crucial it is
to select the correct block size. In all cases, we consider the random protection.

Block size Input shape arch1 arch2 arch3

1 1 × 28 × 28 / 2539µs 50198µs

1 × 22 × 22 1047µs 1006µs 13923µs

1 × 20 × 20 / 842µs 9406µs

32 1 × 28 × 28 / 1714µs 4995µs

1 × 22 × 22 1004µs 989µs 2391µs

1 × 20 × 20 / 816µs 1765µs

7.3 Discussion

Our approach is similar to [2] and [23] in the sense that we obtain the value of
some neurons in layer i+1 before the execution of layer i is done. But besides the
fact that we do not consider a hardware context, our suggestion differs in that
we introduce randomization in the computation of neurons: we do not compute
the value of a neuron as soon as enough elements are ready. Rather, we compute
them in a random way determined at the creation of the architecture. Moreover,
our goal is different: we aim at increasing the security by mitigating cache attacks
based on the GeMM computations during an NN inference.

One limitation in our method is the pooling layer. Indeed, because its exe-
cution differs from that of convolutional layers, and no GeMM is applied, a
potential attacker can detect when an execution switches between a convolu-
tional layer and a pooling one. As shown in Sect. 7.1, however, our methodology
still mitigates Cache Telepathy in architectures with pooling layers. We believe
that architectures such as Fully Convolutional Networks (FCN) [17], which have
several consecutive convolutional layers, could make the architecture almost com-
pletely leakage free.

The overhead induced depends on the block sizes and the model’s depth.
Balancing security of the protection – linked to the random block sizes – and the
incurred overhead is however possible, as the said overhead is still manageable.
We also believe that a better optimization of our implementation should reduce
the observed overhead.

Even if our protection targets Cache Telepathy specifically, we believe it could
be used against other side-channel attacks such as CSI [4], DeepRecon [12] or
How to 0wn NAS [11]. Both CSI [4] and How to 0wn NAS [11] mention that
reordering would indeed be a countermeasure to their method. CSI [4] bases its
attack on the sequential nature of NNs. It proceeds layer by layer to find the
number of neurons and the weights in each layer. In each layer, and for each
multiplication w ·x (where w is the weight and x is an input value), the attacker
makes two hypotheses: either this multiplication takes place in layer i, or it
takes place in layer i + 1. If the layers are not computed sequentially, then the
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hypotheses no longer make sense, as the multiplication could take place at a later
layer. In the case of [11], layers as a whole are targeted. Indeed, specific functions
corresponding to specific layers are monitored. Thus, splitting the layers would
prevent them from targeting the pre-existing functions.

7.4 Scope and Limitations

Let us now discuss the scope and limitations of our countermeasure.
First of all, because the proposed approach needs to compute layers in a non-

sequential order, it does not apply to FC layers, even though Cache Telepathy
targets them as well. Indeed, these layers require all neurons from the previous
layer to be computed before they can start their execution. We therefore limit
our countermeasure to CNNs. However, as CNNs are now widely used in various
fields such as the medical one [30], image processing [14] or game playing [24], our
countermeasure can still apply to many commonly used architectures [10,25,26].

Second, as in the Cache Telepathy paper [31], we place ourselves in the CPU
context. Indeed, as mentioned in [12], monitoring GeMM functions requires them
to be in the same instruction line in the cache for the victim and the attacker.
They therefore need to run on the CPU. As mentioned in Sect. 1, several popular
MLaaS frameworks [3] provide CPU computations for inference.

Third, instead of using high-level, highly optimized frameworks such as Ten-
sorFlow [1] or PyTorch [21], we wrote our own implementation in C++. Indeed,
we required more freedom when writing code, as commonly used functions in
those frameworks apply to entire layers, when we needed to deal with neurons
individually. Moreover, using C++ still enabled us to apply GeMM, which is
the target of the attacker. This C++ implementation – necessarily less opti-
mized than common ML frameworks – partially explains the overhead observed
in Table 3 in Sect. 7.2.

Finally, as detailed in Sect. 7.2, our goal is to mitigate the Cache Telepathy
attack by preventing an attacker from getting a tractable search space for the
victim model’s architecture. Thus, even though not all leakages are eliminated,
an attacker still cannot recover the correct architecture without training over
217 architectures, which is not feasible in a reasonable period of time.

8 Conclusion

In this paper, we introduce Telepathic Headache, a protection against cache-
based attacks targeting the GeMM algorithm used by most ML frameworks
to implement fully connected and convolutional layers in a CPU setting. To
achieve this protection, we mix layers by computing neurons depth-wise, as soon
as certain random-sized blocks of values in a layer are ready.

The security analysis of our method shows a multiplication by at least 218 of
the reduced search space obtained by Cache Telepathy on VGG-16. This makes
our protection effective against the Cache Telepathy attack. The methodology we
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introduce could also be effective against other timing attacks such as DeepRecon
and electromagnetic-based side-channel attacks such as CSI.

Further work could include a deeper analysis of the overhead incurred and
how to limit it depending on the architecture. In the future, we can also study
the effectiveness of our defense against other reverse-engineering attacks.

Acknowledgments. We would like to thank for all the insightful remarks and sug-
gestions made to our article after its submission. They helped us to improve it a lot.

A Protected Case: When the Attacker can Distinguish
between Convolutional Layers

As explained in Sect. 7, we consider layers 4 (Conv4), 5 (Conv5) and 6
(MaxPool) in a VGG-16 architecture [25] (depicted in Fig. 5). Conv4 and Conv5
are computed according to the process in Fig. 1. In that process, inputs I4 and
I5 are reshaped into R4 and R5 respectively. Let us note that in order to have an
output size equal to the input size, the input needs to be padded. We consider I4
and I5 to be the padded inputs. Their shape is (64, 114, 114) and (128, 114, 114)
respectively. Let O(j) denote the reshaped output of layer j – i.e. the output of
the layer’s matrix multiplication.

Let H(4) = {H
(4)
1 , ...,H

(4)
t } be the number of blocks height-wise for each

width-wise column of blocks. Let us denote w(4) = {w
(4)
1 , ..., w

(4)
t′ } – respectively

h(4) = {h
(4)
1 , ..., h

(4)
t } – the sizes of the blocks width-wise – respectively height-

wise. These are determined as described in Sect. 5. Further, let {M
(4)
i,j }1≤i≤t,1≤t′

denote the number of filter blocks associated with each of Conv4’s input blocks.
The reshaped filters are F4 and F5 respectively. The blocks we consider are
submatrices in R4,5 and F4,5. R4 and R5 both have width W4,5 = 112 × 112. R4

has height 3 × 3 × 64 while R5 has height 3 × 3 × 128.
In our case, each block has size between 32 × 32 and 64 × 64. Let (xb, yb)

be the coordinates of the last element in the first block in R5. If we take the
minimal block size, then (xmin, ymin) = (32, 32). In the case of the maximal block
size, (xmax, ymax) = (64, 64).

Let toti,jx,y denote the number of matrix multiplications in layer i required so
that the element (x, y) in Rj is ready. Since our goal is to determine the number
of multiplications in Conv4 necessary to have the first block in Conv5 ready, we
actually need to compute tot4,5xb,yb

. We will consider block size extremes to give
a range of values for tot4,5xb,yb

:

tot4,5xmax,ymax
≤ tot4,5xb,yb

≤ tot4,5xmin,ymin

In order to compute that value, we need to find the coordinates of element
e = (x, y) in I5 rather than R5. Indeed, this will provide us with the blocks that
need to be computed in Conv4 to obtain e.
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First, let us find which input channel ch element e belongs to. Because of the
way R5 is obtained, we have that:

ch =
⌊

x

k(4) × k(4)

⌋

Thus:

chemin =
⌊

32
k(4) × k(4)

⌋
= 3

chemax =
⌊

64
k(4) × k(4)

⌋
= 7

where emin = (xmin, ymin) and emax = (xmin, ymin) indicate the maximal and
minimal block sizes respectively.

Let us now find the coordinates (row, col) of element e in channel ch. Let
n′ = n+2·p = 114 be the padded input width and height. With an input of shape
(n′, n′), a convolution results in an output of size (n′ − k(4) + 1, n′ − k(4) + 1) =
(n, n) here. Because of the way I5 is reshaped, each column in R5 is a k(5) ×k(5)

window in I5. Thus,

row =
⌊ y

n

⌋
+

⌊
x mod (k(5) × k(5))

k(5)

⌋

col = y mod n + (x mod (k(5) × k(5))) mod k(5)

As mentioned before, these coordinates include the padding. We need to
remove said padding to find out how many computations from the previous
layer need to have been made. If (row, col) does not correspond to a padding
value, we have:

rowunpadded = row − p

colunpadded = col − p

If row < p with ch = 0, then no value from the previous layer needs to be
computed for the first block to be executed. This results in tot4,5x,y = 0. The same
goes for row = p, ch = 0 and col < p.

If (x, y) is a padding value outside of the two previous cases, then we consider
the previous non-padding value in I5. This corresponds to:

rowunpadded = row − 1
colunpadded = n′

Indeed, we then need to take the last (non-padding) element in the previous row.
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With (xmin, ymin) and (xmax, ymax), we have that:

rowmin =
⌊

32
112

⌋
+

⌊
32 mod (3 × 3)

3

⌋
= 2

colmin = 32 mod 112 + (32 mod (3 × 3)) mod 3 = 34

rowmax =
⌊

64
112

⌋
+

⌊
64 mod (3 × 3)

3

⌋
= 0

colmax = 64 mod 112 + (64 mod (3 × 3)) mod 3 = 65

Because emax = (xmax, ymax) is in the first row of I5, it corresponds to a
padding element. However, not all elements in that block stem from padding
elements. Instead, we can take the last non-padding element in the previous
channel. We therefore need to consider channel ch′

emax
= chemax −1 = 6. We also

need to select the last element of the (3 × 3) input window, meaning:

row′
max = 2

col′max = 66

We then remove the padding from emin = (xmin, ymin) so as to find the coordi-
nates in Conv4’s output. This gives us:

row′
min = 1

col′min = 33
ch′

emin
= 3

row′
max = 2

col′max = 66
ch′

emax
= 6

These are the coordinates of the last element we need in the output of Conv4.
The coordinates c of that element in the said output are:

cmin = (ch′
emin

, row′
min × n + col′min) = (3, 145)

cmax = (ch′
emax

, row′
max × n + col′max) = (6, 290)

We now have enough information to compute tot4,5e .
Let b = arg minb′

(∑b′

q=0 w1 ≥ c
)
. b is the number of the block width-wise con-

taining c. For each block number b′ < b, we need to multiply all the blocks
height-wise with their associated block filters, meaning H

(4)
b′ × M

(4)
b′ multipli-

cations for each block b′. For b, we need to compute all the height-wise block

multiplications up to the block containing ch. This is equal to:
⌈

ch

h
(4)
1

⌉
× H

(4)
b .

The full formula is then:

tot1,2e =

(
b−1∑

q=0

H(4)
q × M (4)

q

)
+

⌈
ch

h
(4)
1

⌉
× H

(4)
b (2)



386 H. Chabanne et al.

We can apply that to emax and emin, considering constant block shapes of either
(32, 32) for emin or (64, 64) for emax:

bemin =
⌈

145
32

⌉
= 5 (3)

H
(4)
q,min =

⌈
3 × 3 × 64

32

⌉
= 18 ∀q ≤ b (4)

M
(4)
q,min =

⌈
128
32

⌉
= 4 ∀q ≤ b (5)

⌈
che′

min

32

⌉
× H

(4)
b,min = 4 (6)

tot4,5emin
= bemin × H(4)

q × M (4)
q +

⌈
che′

min

32

⌉
× H

(4)
b (7)

= 292 (8)

bemax =
⌈

290
64

⌉
= 5 (9)

H(4)
max = H(4)

q,max =
⌈

3 × 3 × 64
64

⌉
= 9 ∀q ≤ b (10)

M (4)
max = M (4)

q,max =
⌈

128
64

⌉
= 2 (11)

⌈
che′

max

64

⌉
× H

(4)
b,max = 2 (12)

tot4,5emax
= (bemax − 1) × H(4)

max × M (4)
max +

⌈
che′

max

64

⌉
× H

(4)
b,max

(13)

= 74 (14)

Thus, the total number of matrix multiplications required for one block in
Conv5 to be ready ranges between 74 and 292 depending on the block sizes.
This range of values can be obtained because we know the padding and filter
sizes. A potential attacker, however, does not have access to this information.
She only knows the number of input channels and the input shape.

Table 5. Maximal and minimal number of multiplications depending on the filter size,
when the attacker can distinguish between convolutional layers.

k(4) 1 2 3 4 5 6 7 8 9 10 11

tot4,5
x′
min,y′

max
2 8 306 928 1,400 4,896 5,488 7,168 6,480 8,000 6,776

tot4,5
x′
max,y′

min
1 4 9 16 25 36 49 64 324 400 242
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Let us compute all the possible values for tot1,2x,y (x′
min, y

′
min) = (32, 32) and

(x′
max, y

′
max) = (64, 64), given out4, out5 and in5 and depending on k(4) = k(5).

Table 5 shows the resulting values.

B Protected Case: When the Attacker Cannot
Distinguish Between Convolutional Layers

Since the attacker cannot distinguish between convolutional layers, we need to
compute tot4,6. If we denote (x, y) the last element in the first MaxPool block
RB, and (x′, y′) the last element in Conv5 that needs to be computed for RB to
be ready, then: tot4,6x,y = tot4,5x′,y′ + tot5,6x,y. In our case, MaxPool has window size
k(6) = 2, and does not require any padding. Furthermore, all channels need to
be computed at once in the pooling case. Thus, the coordinates of (x, y) in the
output of Conv5 are:

row =
⌊

k(6) · y

n

⌋
+

⌊ x

k(6)

⌋

col =
(
y mod

n

k(6)

)
× k(6) + x mod k(6)

c = row × n + col

We also have that b = arg minb′
(∑b′

q=0 w1 ≥ c
)
. Applying it to our case for

(xmin, ymin) = (32, 32) and (xmax, ymax) = (64, 64), we have:

rowmin =
⌊

2 · 32
112

⌋
+

⌊
32
2

⌋
= 16

colmin =
(

32 mod
112
2

)
× 2 + 32 mod 2 = 64

cmin = row × 112 + col = 1856

bmin =
⌈cmin

32

⌉
= 58

rowmax =
⌊

2 · 64
112

⌋
+

⌊
64
2

⌋
= 33

colmax =
(

64 mod
112
2

)
× 2 + 64 mod 2 = 16

cmax = row × 112 + col = 3712

bmax =
⌈cmax

64

⌉
= 58

In O(5), we need the element with coordinates (ch,B ·b) where ch is the last filter
of Conv5, since MaxPool requires all channels to be completed. That element
requires element (x′, y′) = (in5 × k(5) × k(5), B · b) in I(5). Indeed, the column
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number in O(5) and I(5) must be the same. Furthermore, the whole column must
be computed, which is why x′ = in5 × k(5) × k(5). Thus, the previous formulas
directly provide us with (x′, y′):

(x′
min, y

′
min) = (in5 × k(5) × k(5) − 1, 32 · bmin) = (128 × 9 − 1, 1856)

(x′
max, y

′
max) = (in5 × k(5) × k(5) − 1, 64 · bmax) = (128 × 9 − 1, 3712)

Thus, given Conv5 has 128 input and output channels:

H
(5)
min =

⌈
128 × 9 − 1

32

⌉
= 36

H(5)
max =

⌈
128 × 9 − 1

64

⌉
= 18

M
(5)
min =

⌈
128
32

⌉
= 4

M (5)
max =

⌈
128
64

⌉
= 2

tot5,632,32 = bmin × H
(5)
min × M

(5)
min = 8352

tot5,664,64 = bmax × H(5)
max × M (5)

max = 2088

Here, we have H(5) ×M (5) for width-wise block b as well because the whole b-th
block width-wise needs to be computed, as well as all channels.

Applying the same process as previously to compute tot4,5emin
and tot4,5emax

, we
have:

tot4,5x′
min,y

′
min

= 4338

tot4,5x′
max,y

′
max

= 1053

Thus, we have:

tot4,6x′
min,y

′
min

= tot5,6xmin,ymin
+ tot4,5

in5×k(5)×k(5),emin·bmin
= 12690

tot4,6x′
max,y

′
max

= tot5,6xmax,ymax
+ tot4,5

in5×k(5)×k(5),emax·bmax
= 3141

Thus, the total number of multiplications for one MaxPool block to be ready
ranges between 3, 141 and 12, 690 in the set of layers we study from the VGG-16
architecture.

Once again, the attacker does not know k(4), k(5), k(6) or the padding values.
For each layer, k(i) ∈ {1, ..., 11}. We also suppose, like before, that k(4) = k(5).
The padding p between Conv4 and Conv5 (the only one that intervenes in the
computations) is such that p < k(4). We get tables of possible values depending
on k(4) = k(5), p and k(6). As before, we take the maximum and minimal values
over all possible p. Table 6 considers the range of tot4,6 depending on k(4).
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Table 6. Maximal and minimal number of multiplications depending on the filter size,
when the attacker cannot distinguish between convolutional layers but knows out4, in5

and out5.

k(4) 1 2 3 4 5 6 7 8 9 10 11

tot4,6xmin,ymin
2,712 10,976 24,912 44,800 70,600 102,528 141,120 185,856 237,168 295,200 360,096

tot4,6xmax,ymax 126 504 1,134 1,984 3,100 4,464 5,978 7,808 9,882 12,000 14,520

Once again, the ranges for all possible tot4,6 values overlap, making it harder
for the attacker to determine the architecture. In our case, we had tot4,6 ∈
[3141, 12041]. An attacker could therefore only deduce that 1 < k(4) < 11. The
range can be further deduced depending on the value actually observed, but
there are at least two filter size values in every case. Furthermore, for most k(6)

values, 2 < k(4) < 10.
So far, we had assumed, for simplicity, that the number of input and output

channels are known for all layers. But it is generally not the case. Taking this
last fact into account, the possible tot4,6 values are given in Table 7.

Table 7. Maximal and minimal number of multiplications depending on the filter size,
when the attacker cannot distinguish between convolutional layers.

k(4) 1 2 3 4 5 6

tot4,6xmin,ymin
>9.6 · 106 >10.5 · 106 >10 · 106 >11 · 106 >11 · 106 >12 · 106

tot4,6xmax,ymax 42 42 44 44 46 48

k(4) 7 8 9 10 11

tot4,6xmin,ymin
>13.4 · 106 >15.8 · 106 >19.2 · 106 >28.3 · 106 >54.7 · 106

tot4,6xmax,ymax 54 64 80 116 226

C Reshaping

See Fig. 7 and Fig. 8.

Fig. 7. Example of a subdivision of a reshaped input
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Fig. 8. Reshaping the input to turn a convolution into a matrix multiplication. The
input size is n× n and the filter size is k × k.
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Abstract. Elliptic curve cryptography (ECC) is one of promising cryp-
tosystems in embedded systems as it provides high security levels with
short keys. Scalar multiplication is a dominating and time-consuming
process that ensures security in ECC. We implement hardware mod-
ules for generic ECC over 256-bit prime fields on field-programmable
gate array (FPGA). The key points in our design are (1) secure and
exception-free for any scalar with less memory usage, (2) long-bit modu-
lar arithmetic modules utilizing today’s advanced and high-performance
programmable logic and considering balance between the modules in
terms of propagation delay, (3) parallelism extraction inside each elliptic
curve point computation as well as between the point computations, and
(4) efficient hardware–software co-processing facilitated by application
interfaces between a processing core and hardware modules. The evalu-
ation results demonstrate that our design achieves the best performance
to existing FPGA designs without using a table for generic ECC.

Keywords: Elliptic curve cryptosystem · Complete addition ·
Exception-free · FPGA

1 Introduction

Elliptic curve cryptography (ECC) is one of promising cryptosystems in embed-
ded systems as it provides high security levels with short keys. Therefore, ECC
is becoming a mainstream cryptosystem in embedded systems where memory
resources are constrained. However, the use of ECC still requires considerable
processing time as well as memory, especially for software in embedded systems
with constrained processing speed. Hardware acceleration is a promising option
to reduce the overhead of software processing.

The dominant computation of ECCs is scalar multiplication, which computes
kP for an elliptic curve point P and a scalar k. Thus, the security and efficiency
of the scalar multiplication are paramount. To implement scalar multiplication,
several types of coordinates for elliptic curves exist (such as affine, Jacobian, or
c© Springer Nature Switzerland AG 2021
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Projective). To be secure against simple power analysis (SPA), these coordinates
need to be combined with secure scalar multiplication algorithms without any
branch instruction such as Joye’s RL algorithm [17].

Recently, more advanced security notion of exception free is introduced [32],
where scalar multiplication should work for any scalar k including k = 0. Since
complete addition (CA) formulae can work in the same formulae of addition and
doubling formulae [32], combining with Joye’s RL algorithm is secure against
SPA and exception-free for any scalar k. Although various ECC FPGA imple-
mentations have been proposed so far [6–8,12–14,22,26], any of them neither
employs CA formulae nor satisfies exception-free secure. They fail to execute a
case that the MSB of k is equal to 0 as well as k = 0. However, CA formulae uses
three coordinates of X, Y , and Z to represent an elliptic curve point and, thus, it
is far from less memory. Recently, another approach to use exception-free affine
coordinate, which is a combination of affine and extended affine coordinates, is
proposed [16]. Combining exception-free affine coordinates with improved Joye’s
RL algorithm is secure against SPA for any scalar k. Importantly, exception-
free affine coordinates can represent an elliptic curve point by two coordinates,
which can work with less memory compared with combination of CA formulae
and Joye’s RL algorithm. To give high performance of the scalar multiplication
while keeping the resistance to SPA, one of simple ways is to focus on a specified
elliptic curve such as NIST P-256 [14], which chooses an affine coordinate for
the reason of less memory and works efficiently on only NIST P-256. However,
their design cannot be applied to any other elliptic curves. For universal usage,
an important point is generic elliptic curve design, which provides an architec-
ture available to any elliptic curve over a finite field. Another strategy to give
the high-performance is to use a precomputation table such as window methods
[25,30]. However, it requires additional memory. For example, the implementa-
tion in [24] can work on a generic elliptic curve and is secure against SPA and
exception-free. However, since it is based on window methods, it needs additional
memory of points.

In this paper, we aim at efficient hardware–software FPGA design of generic
ECC with less-memory which is secure against SPA and satisfies exception-free
for ∀k. Especially, we focus on system-on-chip (SoC) type of FPGA device. Com-
pared to conventional FPGA devices with programmable logic only, SoC FPGA
device provides a tightly coupled system so that data transfer between a proces-
sor core and a programmable logic part is performed at high speeds. We imple-
ment EC point computations as hardware modules by making complete use of
advanced and high-performance programmable logic in today’s FPGA devices.
Software processing performs scalar multiplication by invoking each hardware
module when needed. In real-time applications, EC scalar multiplication pro-
cessing shorter than 1 ms is highly desirable as many control tasks use a period
less than or equal to 1 ms [34]. Our design achieves this requirement by utilizing
high-performance resources in today’s FPGA devices. To the best of our knowl-
edge, our accelerator performs secure and exception-free scalar multiplications
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faster than any FPGA implementations for a generic ECC without any table
over 256-bit prime fields [6,7,12–14,22,26].

This paper is organized as follows. First, we summarize basic notion of ellip-
tic cryptosystems in Sect. 2. Then, we describe related works in Sect. 3. Subse-
quently, we clarify our targets in Sect. 4. We describe the details of our design
in Sect. 5. Experimental results are shown in Sect. 6. We conclude our work in
Sect. 7.

2 Operations in Elliptic Curve Cryptography

2.1 Addition Formulae on Elliptic Curve

Elliptic curve cryptography (ECC), which was proposed in the 1980s [19,29],
is a public-key cryptography system, and its cipher strength depends on the
difficulty of the elliptic curve discrete logarithm problem. This section describes
our target elliptic curve and addition formulae.

We target the elliptic curve E over a prime field Fp(p > 3) expressed by the
following short Weierstrass form:

E/Fp : y2 = x3 + ax + b (a, b ∈ Fp, 4a3 + 27b2 �= 0)

For a set of points on this curve and a point at infinity, O, the addition is
geometrically defined. In the affine coordinate system, for a point P1 = (x1, y1)
and a point P2 = (x2, y2) (P1 �= P2), point addition, P3 = (x3, y3) = P1 + P2, is
calculated as follows:

x3 = (
y2 − y1
x2 − x1

)2 − x1 − x2

y3 = (
y2 − y1
x2 − x1

)(x1 − x3) − y1

Similarly, point doubling, P3 = 2P1, is defined as follows:

x3 = (
3x2

1 + a

2y1
)2 − 2xp

y3 = (
3x2

1 + a

2y1
)(x1 − x3) − y1

Compared to the formulae for other projective coordinate systems, the above
calculation of the affine coordinate system is desirable in terms of memory usage.
As the variables in the above formulae (x1, y2, and so on) are multi-bit data
(longer than 32- or 64-bit) and P3 must be an element in Fp, multi-bit modular
addition (subtraction), multi-bit modular multiplication, and multi-bit modular
inversion for division are required. Performing multi-bit division directly would
involve high computational complexity. Instead, an inverse element should be
obtained and multiplied.
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2.2 Scalar Multiplication

While processing encryption and decryption in elliptic curve cryptography sys-
tems, multiplication of a point on the elliptic curve and scalar dominates the
total computation cost. Scalar multiplication can be performed by applying point
addition and point doubling in Sect. 2.1. The simplest approach is to use a binary
method [10]: variables R and Q, initialized to O and P , respectively, are pre-
pared. A scalar value in binary is scanned from the least significant bit to the
most significant bit (or in the opposite direction). When the corresponding bit
is zero, Q is updated by 2Q. Otherwise, Q is updated by 2Q after R is updated
by R + Q. (For the opposite scanning direction, R is updated by addition after
Q is updated by doubling.) The final R is the result of scalar multiplication, kP .

In the above method, the execution time of a loop iteration varies according
to the value of the corresponding bit. That is, it performs only point doubling, or
both point addition and point doubling. This indicates that the method is vul-
nerable to simple power analysis (SPA) attacks that exploit energy dissipation
measured and infer the input value [20]. To alleviate this problem, Joye’s m-ary
Ladder [17] was proposed by reforming the binary method, where the computa-
tion in an iteration is made uniform. This uniformity is achieved by transforming
each digit in the m-ary expression of the scalar into a nonzero form such that
an addition and a m-times multiplication are executed every time. However, it
is not completely secure against SPA, as there can be exceptional addition with
O in the processing of point addition on the affine coordinates.

To solve the problem of exceptional addition with O, Jin et al. proposed
the New 1-bit 2-ary Right-to-Left Powering Ladder [16]. This algorithm does
not involve exceptional addition by avoiding initialization with O in the above-
mentioned method. In addition, the algorithm is extended to the New 2-bit
2-ary Right-to-Left Powering Ladder, where the main loop is unrolled such
that processing for every two bits in k is done in an iteration. In the itera-
tion, affine double-quadruple [23] is used to obtain double and quadruple values,
with only one inversion computation involved. As a result, the combination of
loop unrolling and affine double-quadruple reduces the amount of computation
in the main loop.

To reduce the amount of hardware resources required, our target algorithm
is the above-mentioned New 1-bit 2-ary Right-to-Left Powering Ladder, rather
than the 2-bit derivation. We implement a scalar multiplication accelerator by
analyzing dataflow in point addition and point doubling and extracting full paral-
lelism in the algorithm, as well as fully utilizing advanced and high-performance
FPGA logic resources.

3 Related Work

In this section, we review several FPGA implementations of scalar multipli-
cation. FPGA implementations over prime fields are classified into specific-
prime-field and general-prime-field. The examples of the former are observed in
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[2,9,26,27,33]. The use of specific primes enables fast modular reduction, lead-
ing to division replaced by a series of additions and subtractions; however, it has
some inflexibility, where the accelerators are limited to supporting specific prime
fields, for example, the NIST primes, i.e., generalized Merssene primes. In con-
trast, implementations over general prime fields provide considerable flexibility
in terms of selecting a prime number, p, and they can be applied to various appli-
cations such as digital signature generation and key agreement. Some examples
of FPGA implementations over general-prime-fields include [6,7,12–14,22].

Another perspective is regarding the choice of coordinate system. One is an
affine coordinate system, and the other is a projective or Jacobian coordinate
system. The former has the advantage of smaller memory usage than the latter
with an additional axis of coordinates, leading to a smaller number of registers
in FPGA resources. However, inversion calculation is required for every point
addition and doubling over affine coordinates, whereas it is performed once at
the end of scalar multiplication over projective or Jacobian coordinates. In this
study, because we prioritize the flexibility of prime fields and memory/hardware
resource usage, we focus on FPGA designs for scalar multiplication over general
prime fields and affine coordinates.

Ghosh et al. proposed an FPGA implementation that performs point addition
and point doubling in parallel [6]. This parallelism is naive and common in
various hardware implementations. For modular multiplication, their interleaved
multiplication algorithm takes k+1 cycles, where k is the bit length of p, i.e., 257
cycles when 256-bit p is assumed. Similarly, the modular multipliers in [12,13,22]
used similar algorithms and took at least k cycles. As modular multiplication
is one of the main calculations in EC scalar multiplication, the cycles taken by
these implementations result in long computation time for scalar multiplication.
In contrast, our implementation of modular multiplication described in Sect. 5,
which utilizes DSP modules embedded in FPGA devices, takes 28 cycles with
256-bit p, leading to a much faster execution of EC scalar multiplication. Today’s
FPGA devices include high-performance embedded DSP modules. Using them is
better than constructing complicated multipliers with programmable logic based
on look-up tables and long-delayed wiring.

Javeed et al. used a modular multiplier that includes a radix-8 Booth encoded
multiplier with iterative addition and reduction modulo p of partial products [14].
Although this modular multiplier reduces the execution cycles compared with
the above-mentioned modular multipliers, it still requires 88 cycles for 256-bit p,
whereas our implementation requires only 28 cycles. In addition, the cascaded
adders structure in [14] makes the critical path long, thereby preventing the
clock frequency from improving.

In the implementations in [26,33] (which are dedicated to NIST P-256 prime
fields), redundant signed digit (RSD) arithmetic is used, where multi-bit addi-
tion can be performed without carry propagation at the expense of additional
FPGA resource areas. In contrast, our implementation of addition/subtraction
simply utilizes fast carry logic in today’s FPGA slices and achieves one-cycle
addition/subtraction with 256-bit operands at over 200 MHz. Similar to the use
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of DSP modules, we can expect that using fast carry logic yields faster and
smaller adders than RSD-based adders.

Considering the use in embedded systems, the amount of hardware required
for EC accelerators is important. The accelerator in [7] saves on hardware by
sharing hardware resources among different finite-field modular arithmetic oper-
ations and among EC point computations at the sacrifice of parallelism inside
point addition and doubling. In contrast, our implementation decouples multi-bit
arithmetic units from EC point computations to reuse arithmetic units between
point computations that are serially processed while duplicating the arithmetic
units to extract full parallelism inside each point computation and among point
computations running in parallel.

Unlike the above-mentioned designs, some implementations use projective or
Jacobian coordinate systems. The use of these coordinate systems eliminates
division in every EC point addition/doubling at the cost of increased stor-
age space, accelerating scalar multiplication. The implementations in [8,24] are
examples. These designs can be applicable to real-time applications since they
achieve less than 1 ms of processing for scalar multiplication, whereas all the
designs in affine coordinates mentioned above take more than 2 ms. Our objec-
tive is to achieve less than 1 ms of processing for scalar multiplication in the
affine coordinate system to satisfy the performance and cost requirements in
various real-time applications.

4 Target Algorithm and Modular Arithmetics

4.1 Algorithms for Scalar Multiplication

Algorithm 1 proposed in [16] computes a scalar multiplication with a point, P , on
the elliptic curve and an integer scalar, k, and outputs Q = kP . This algorithm
has two important features. First, an affine coordinate is used to reduce the
memory usage. Second, it satisfies secure generality (i.e., it can operate on any
input scalar k). To achieve secure generality, this algorithm does not include
exceptional initialization or exceptional computation and is thus secure against
a side-channel attack (SCA). Therefore, we choose this algorithm.

The algorithm comprises three parts: initialization, main loop, and final cor-
rection. The initialization starts with R[0] =← −P and R[1] ← P in Steps 1 and
2, respectively, avoiding exceptional initialization with O and exceptional com-
putation O +P in the main loop while leaving the computation for adjustment,
+2R[1], in Step 10 in the final correction. Steps 3 and 4 perform affine point
doubling and affine point addition, respectively, and help in avoiding exceptional
computations, P +P or P −P . The extra computations are adjusted in the final
correction. The main loop from Steps 5 to 8 dominates the execution time of
scalar multiplication. In each iteration, affine point addition and affine point
doubling are performed in Steps 6 and 7, respectively.

After the main loop, the final correction is performed. This is one of the
important security-enhanced parts. They introduced extended affine point addi-
tion and doubling that can execute exceptional computation such as P −P and
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Algorithm 1. New 1-bit 2-ary Rright-to-Left Powering Ladder (Algorithm 7 in
[16])

Input: P ∈ E(Fq), k =
∑l−1

i=0 ki2
i, k ∈ [0, N ]

Output: Q = kP

Initialization
1: R[0] ← −P
2: R[1] ← P
3: A ← 2P
4: R[k0] ← R[k0] + A

Main Loop
5: for i = 1 to l − 1 do
6: R[ki] ← R[ki] + A
7: A ← 2A
8: end for

Final Correction
9: R[k0] ← R[k0] − P
10: A ← (−A + R[0]) +E 2ER[1]
11: return A

2P = O. In Step 9, an affine point addition is applied to R[k0] and the com-
plement of P . The conventional affine coordinates are used in Steps 1 to 9. In
contrast, in Step 10, while affine point addition, −A + R[0], is computed using
conventional affine coordinates, extended affine point doubling is applied to R[1],
described by 2ER[1]. Finally, these two results are added by an extended affine
point addition (+E in Step 10). Extended affine point addition and extended
affine point doubling are used to avoid exceptional computations. Details regard-
ing the extended affine point addition and affine point doubling can be found
in [16]. Importantly, our elegant FPGA design does not increase the FPGA
resource usage as arithmetic calculators in the extended affine point addition
and doubling are shared with other point computations.

4.2 Modular Arithmetic

Elliptic curve (EC) point computations comprise multi-bit modular arithmetic:
addition, subtraction, multiplication, and inversion. Modular addition (subtrac-
tion) is a combination of multi-bit addition (subtraction) and conditional sub-
traction (addition) for the residue. In our implementation, subtraction (addition)
for the residue is performed only when it is indispensable. Each addition or sub-
traction is performed without the residue, thereby reducing the computation
complexity at the expense of additional most-significant bits. After several addi-
tions/subtractions, subtraction or addition for the residue is applied to reduce
the value to the field range.

For modular multiplication, we use the Montgomery multiplication algorithm
[31] that involves multi-bit additions/subtractions and multi-bit multiplications.
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Several algorithms, such as the Karatsuba method [18], are candidates for multi-
bit multiplications. We adopt a simple method for the parallel generation of
partial products as the operand length is at most 264 bits. For inversion calcula-
tion, a constant binary extended GCD algorithm [3] is selected, wherein the shift
and subtraction operations are performed in each iteration, while the number of
iterations is constant.

5 Design and Implementation

Our method offers programmability (i.e., application programming interfaces)
in designing an accelerator for scalar multiplications such that higher-layer EC
cryptography protocols such as ECDH and ECDSA [4] can invoke the hardware
accelerator when required. EC point computations along with modular/multi-bit
arithmetic calculators are provided as hardware modules, whereas the control
sequence among the modules is provided via software processing, which achieves
hardware–software co-processing for scalar multiplication. Current tightly cou-
pled SoC-type FPGA devices facilitate fast communication between processor
cores and FPGA modules, thereby making hardware–software co-processing effi-
cient.

5.1 Design of Arithmetic Units

Based on the directions mentioned in the previous section, we designed and
implemented the following arithmetic units in hardware description language
(VHDL): multi-bit adder, multi-bit subtractor, multi-bit multiplier, modular
Montgomery multiplier, and modular inversion calculator.

Multi-bit Adder/Subtracter. While our ECC system targets 256-bit ele-
ments over the prime field Fp with 256-bit p, 260-bit adders and subtractors are
implemented since 260-bit temporary data emerge internally as the result of post-
poned residue operations. In addition, a 520-bit adder is required inside Mont-
gomery multipliers, wherein multi-bit multiplication generates 520-bit operands.
Furthermore, a 264-bit subtractor is used in Montgomery multipliers. These
adders and subtracters are designed to output the results in one clock cycle, as
current FPGA devices include fast carry logic and can achieve one-cycle 520-bit
addition at over 200 MHz. Simple ‘+’ operators in the HDL source files generate
these calculators.

Multi-bit Multiplier. In the process of Montgomery multiplications, 264-bit ×
264-bit multiplications are performed. Our multi-bit multiplier generates a mul-
tiplication result in four clock cycles, as depicted in Fig. 1. In the first cycle, the
2’s complement values are obtained when the operands are negative. In the sec-
ond and third cycles, each 264-bit operand is divided into two 132-bit segments,
and 132-bit × 132-bit multiplications in parallel generate partial products. For
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these multiplications, embedded multipliers in the target device, DSP48E2 [36],
which perform 27-bit × 18-bit multiplication, are allocated through logic syn-
thesis in the FPGA design tool Vivado [37]. Finally, in the fourth cycle, the
summation of the partial products as well as the 2’s complement operation, if
necessary, yields a multiplication result. Simple ∗ and + operators are used in
the HDL source files for partial multiplication and addition, respectively.

Fig. 1. 264-bit × 264-bit multiplier.

Multi-bit Modular Montgomery Multiplier. The algorithm of our modular
multiplication is based on the Montgomery reduction technique. The designed
Montgomery multiplier receives two 260-bit input data, x1 and x2, and generates
a 260-bit result, z, through two 520-bit additions, two 264-bit subtractions, and
six 264-bit × 264-bit multiplications. These calculations are performed serially
since no parallelism is inherent in the Montgomery multiplication algorithm. The
dataflow for Montgomery multiplication is shown in Fig. 2. In Steps 1, 2, 3, 6,
7, and 8, the above-mentioned multi-bit multiplier is used. Each multiplication
process takes four cycles. In Steps 4 and 9, a multi-bit adder is used in one cycle.
Subtraction is performed for residue calculation in Steps 5 and 10. A total of 28
cycles are used for processing.

Multi-bit Modular Inversion Calculator. An inversion calculator is
designed such that it inputs a 260-bit data and outputs a 256-bit result that
is the corresponding inverse element over a prime field. The calculation is based
on the binary extended GCD algorithm [28], wherein one subtraction or two sub-
tractions in parallel along with one-bit shift operations (insignificant delay) are
conditionally performed in each loop iteration. Considering that the operands
are 260-bit data and that, in contrast, 520-bit additions are performed in one
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Fig. 2. Dataflow in Montgomery multiplication.

clock cycle in the Montgomery multiplier, our strategy is to unroll two consecu-
tive iterations so that two subtractions are serially performed in one clock cycle.
As a result, it executes half the number of iterations compared with the original
algorithm and spends half of the clock cycles.

Figure 3(a) shows the pseudocode of the original binary extended GCD algo-
rithm. The variables u, v, B, and D are used in the computation. According to
their values, shift, subtraction, or subtraction and shift operations are applied.
The shift operations are performed without combinational logic in the hard-
ware implementation, as they are achieved simply by connecting wires appropri-
ately, whereas the subtractions are performed by subtractors. In contrast, in our
inversion algorithm, shown in Fig. 3(b), two consecutive iterations in the original
algorithm are unrolled and executed in an iteration. Additional variables—u0,
v0, B0, and D0—hold the temporal results of the first part that are then used
in the second part. This unrolling technique causes two subtractions, at most,
to be cascaded in an iteration. For example, two subtractions in lines (A) and
(B) in Fig. 3(b) are serially executed, when u, v, u0, and v0 are odd, u ≥ v,
and u0 ≥ v0. These cascaded subtractions are within one clock-cycle delay in
our implementation. In addition, six subtractors are implemented and reused,
whereas 12 subtractions are to be executed in the algorithm.

The number of iterations in the original binary extended GCD algorithm
depends on the input data. As a measure against side-channel attacks, dummy
iterations are added after completing the calculation until it reaches a predefined
upper bound, so that the execution time is fixed regardless of the input data. In
addition, random calculations are performed in dummy iterations to maintain
the energy dissipation. As the predefined upper bound, we use 742 for a 256-bit
prime field, which is the theoretical upper bound for the binary extended GCD
algorithm [3]. This leads to an execution time of 742/2 = 371 clock cycles for
the main loop in the algorithm.
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Fig. 3. Inversion algorithms.

5.2 Design of EC Point Computation Modules and Parallelism

Based on the directions mentioned in the previous section, we designed and
implemented the following EC point computation modules: affine point addi-
tion module (PADD), affine point doubling module (PDBL), extended affine
point addition module (EXA PADD), and extended affine point doubling mod-
ule (EXA PDBL).

EC Point Computation Modules. PADD, PDBL, EXA PADD, and EXA
PDBL modules are composed of the aforementioned arithmetic units (adders/
subtractors, Montgomery multipliers, and inversion calculators) with predefined
control sequences. The data are transmitted between the arithmetic units via
260-bit temporary registers. To achieve parallel processing between the EC point
computation modules, as described later, the designed system is equipped with
six temporary registers: one of them is occupied by the PADD module, the other
two are shared by the PADD and EXA PADD modules, and the remaining three
are shared by the PDBL, EXA PDBL, and EXA PADD modules.

Figures 4(a) and (b) show the dataflow in PADD and PDBL, respectively, and
Figs. 5(a) and (b) show the dataflow in EXA PADD and EXA PDBL, respec-
tively. Parallel processing contributes not only to high-performance processing,
but also to resistance to SPA, as it makes power analysis more difficult than
in sequential processing. The system utilizes two types of parallelism: intra-
module and inter-module parallelism. In terms of the former, parallelism inside
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Fig. 4. Dataflow in (a) PADD and (b) PDBL.

EXA PADD is described as an example. Analyzing the dataflow and consider-
ing the processing time of each arithmetic unit offers the possibility of parallel
execution among arithmetic. In Fig. 5(a), during the inversion processing, addi-
tion, subtraction, and three Montgomery multiplications can be processed and
completed. The same strategy is applied to the other EC point computation
modules (PADD, PDBL, and EXA PDBL), although the amount of parallelism
extracted is small for them. After scheduling the arithmetic units and allocating
registers, the number of necessary temporary registers is known. That is, three
registers are necessary for PADD, PDBL, and EXA PDBL, whereas five registers
are necessary for EXA PADD.
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Fig. 5. Dataflow in (a) EXA PADD and (b) EXA PDBL.

After intra-module parallelism is fixed, inter-module parallelism is estab-
lished. In the main loop of Algorithm 1, an affine point addition (Step 6) and
affine point doubling (Step 7) are executed. The latter does not have read-after-
write dependency with the former. Therefore, affine point doubling can be exe-
cuted in parallel with the preceding affine point addition. Affine point doubling
has a write-after-read relation with the affine point addition in terms of A, that
is, update of A by affine point doubling has to be performed after the affine
point addition reads it. This is solved by introducing synchronization mecha-
nisms, as described in the next subsection. In addition to this parallelism, at
Step 10 in the final correction, affine point addition and extended affine point
doubling are processed in parallel. Considering the inter-module parallel process-
ing and the number of temporary registers required by each EC point computa-
tion module, the temporary registers are efficiently shared between modules as
mentioned above. As a result, the introduction of the two extended affine point
computations does not require additional registers. Thus, enhancing security for
exceptional addition can be done with no additional registers.
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5.3 APIs for Inter-module Parallelism and Synchronization

To achieve parallel processing and synchronization between EC point computa-
tion modules, the software procedures shown in Table 1 are implemented. These
APIs enable our efficient hardware–software co-processing.

For each EC point computation module, the corresponding Start *() proce-
dure invokes the hardware module and finishes (or returns to the caller) asyn-
chronously, i.e., without waiting for the completion of the hardware operation. In
contrast, when End *() is called, it waits for the completion of the correspond-
ing hardware processing. As affine point doubling has a write-after-read relation
with the affine point addition in the main loop, its result is not directly writ-
ten in the corresponding buffers (described later) but written in the temporary
registers. The execution of Sync PDBL() moves the result to the target buffer.

Using these procedures, the main loop of Algorithm 1 is written in C lan-
guage, as in Fig. 6. With the use of the APIs described above, PDBL and PADD
run in parallel. Here, Start *() procedures have parameters for EC point data.
For Start PDBL(), the buffer identifier “2” is specified since Buffer[2] contains
an EC point A. Similarly, for Start PADD(), the buffer identifiers “2” and “ki”
are specified so that Buffer[ki] is updated by Buffer[2] + Buffer[ki]. In contrast,
Sync PDBL() is accompanied by the destination buffer identifier “2” so that the
temporary register value is copied to Buffer[2].

In addition to the parallelism between affine point doubling and affine point
addition, affine point addition and extended affine point doubling can run in
parallel in Step 10 of Algorithm 1. Considering these chances of parallelism,
resource sharing for temporary registers and arithmetic units is performed. The
possible combinations of EC point computations for parallel processing are a
pair of PADD and PDBL and a pair of PADD and EXA PDBL. Each EC point
computation module uses a set of an adder, a subtractor, a Montgomery multi-
plier, and an inversion calculator. To reduce the total hardware amount, a set of
arithmetic units is shared between PADD and EXA PADD and another set is

Table 1. Application Programming Interfaces (APIs).

Procedure Action

Start PADD() Invokes PADD

End PADD() Waits for completion of PADD

Start PDBL() Invokes PDBL

End PDBL() Waits for completion of PDBL

Sync PDBL() Stores the result of PDBL in buffers

Start EXA PADD() Invokes EXA PADD

End EXA PADD() Waits for completion of EXA PADD

Start EXA PDBL() Invokes EXA PDBL

End EXA PDBL() Waits for completion of EXA PDBL
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Fig. 6. Software code of main loop in Algorithm 1.

shared between PDBL and EXA PDBL (Fig. 7). Similarly, temporary registers
TMP-Reg 1 and TMP-Reg 2 can be shared between PADD and EXA PADD,
and TMP-Regs 3 to 5 are shared between PDBL, EXA PDBL, and EXA PADD.

5.4 System Structure

The designed ECC system was implemented in Xilinx Zynq UltraScale+ MPSoC
ZU7EV device [39]. Figure 7 depicts the system structure, including the designed
arithmetic units and EC point computation modules. A Cortex-A53 core in the
processing system (PS) executes software code at a clock frequency of 500 MHz.

EC point computation modules with arithmetic units are implemented in
programmable logic (PL), working at a clock frequency of 214.286 MHz1. In the
figure, the multi-bit adder, subtractor, multiplier, Modular Montgomery multi-
plier, and inversion calculator are depicted as ADD, SUB, MUL, MONT MUL,
and INVERSE, respectively. Each EC point computation module includes a con-
trol register and a status register. PS software calls Start *() procedure, which
writes an invocation signal as well as buffer identifiers in the control register.
Similarly, it calls End *() and reads from the status register to recognize the
completion of module processing. The control and status registers are memory-
address-mapped and accessed via conventional load/store instructions2.

Data transfer between PS and PL is performed through a high-speed on-chip
bus (AXI), and the unit of transfer is 64 bits. EC point data are transferred via
four global buffers (Buffer[0–3] in the figure). These buffers are memory-address-
mapped and accessed by conventional load/store instructions. Each buffer con-
tains point data (256 bits × 2) on the elliptic curve. Each EC point computation
module uses buffers specified by the control register. During computation, the
temporary registers (TMP-Regs 0 to 5 in the figure) are used to store the results
of the arithmetic units.

1 Phase Locked Loop (PPL) in the device generates 214.286 MHz by 33.3 MHz ×
90/14.

2 As ARM processors use relaxed memory models, memory barrier (DMB) instruc-
tions must be properly inserted to guarantee access order to the control and status
registers.
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Fig. 7. System structure for Algorithm 1.

5.5 Execution Cycles

Table 2 shows the execution clock cycles of the arithmetic units, EC point com-
putation modules, and scalar multiplication. Our design gives constant execution
times for all the computation modules. PADD and PDBL take almost the same
number of cycles, leading to balanced parallel processing in the main loop.

The execution cycles for scalar multiplication are 120 403, corresponding to
0.562 ms at the clock frequency in our implementation, that is, 214.286 MHz.
These cycles do not include software execution, such as API procedures and
operands transfer. The total execution time of the hardware–software co-
processing is described in the next section.

6 Analysis

This section presents the evaluation results in terms of performance and
hardware-resource usage. Table 3 compares our designs with the other existing
FPGA designs for generic ECC over 256-bit prime fields described in Sect. 3.
As the FPGA devices used are different in terms of their generations, the table
includes, in the right-most column, the processing time normalized to 200-MHz
processing for reference. It also compares them from the point of view of security
of exception-free for any k and usage of pre-computation tables.
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Table 2. Execution clock cycles of arithmetic units, EC point computation modules,
and scalar multiplication.

Arithmetic unit Cycles EC point computation module Cycles

ADD/SUB 1 PADD 463

MUL 4 PDBL 461

MONT MUL 28 EXA PADD 488

INVERSE 372 EXA PDBL 460

Scalar multiplication Cycles

PDBL×1 + PADD×258 + EXA PADD×1 120,403

6.1 Execution Time

The designed ECC system was synthesized and implemented with Xilinx Vivado
v2019.2. The processing time of the ECC scalar multiplication was measured on a
ZCU104 evaluation board [38]. Software with Linux 4.14.0 runs on the processor
(Cortex-A53) in PS at 500 MHz. The software code is written in C language
and compiled using gcc 6.3.0 with -O4 option. The elapsed time was obtained
using the gettimeofday() library function. The elapsed time includes not only
the hardware processing time but also the software processing time.

For comparison, software-only processing, “Soft,” that executes Algorithm 1
using GNU Multiple Precision Arithmetic Library (GMP) Version 6.1.2 [1] is pre-
pared. Our proposed system of processing with hardware modules is “w/HW.”
Another implementation is “w/HW-auto,” equipped with an auto loop mecha-
nism, where the main loop sequence is automatically processed in the hardware
(without Start/End PADD/PDBL()) to mitigate the overhead of PS-from/to-
PL communication/synchronization.

For our implementations (Soft, w/HW, and w/HW-auto), the average pro-
cessing time of scalar multiplication for 1000 pairs of (k, P ) is presented in
Table 3. Soft takes 7.943 ms, which is not fast enough for various real-time appli-
cations. In contrast, the execution time of w/HW is 0.742 ms, which is approxi-
mately 11 times faster than Soft. In addition, w/HW-auto takes 0.575 ms, which
is 23% faster than w/HW and 14 times faster than Soft. This result implies that
the overhead of invoking hardware and recognizing its completion, i.e., writing
to/reading from control/status registers, is non-negligible.

Table 3 shows that our design is the fastest among the existing FPGA imple-
mentations without a precomputation table. Let us compare our design with [24],
which uses 15 points for a pre-computation table. Thanks to the pre-computation
table, it can reduce the number of point additions to 71 from the original 256.
Nevertheless, our design is comparable to it, although processing executes 256
point additions and doublings without pre-computation table, each of which
involves inversion calculation. This indicates that the number of clock cycles to
be taken by our design is sufficiently low. In other words, our design achieves
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Table 3. Comparison of scalar multiplication over arbitrary 256-bit prime fields.

Design Exception

free (any k)

Pre-comp.

Table (#

points)

Device Area Frequency

(MHz)

Time

(ms)

Time at

200MHz

(ms)

Soft

(GMP)

Yes No Cortex-A53 N/A 500 7.943 –

This work

w/HW Zynq 6.3K slices 0.742 0.795

w/HW-

auto

Yes No UltraScale+ (42K

LUTs)

214.286 0.575 0.626

+ 256

DSPs

[22] (2019) No No Virtex-7 5.4K slices 124.2 3.730 2.316

[13] (2018) No No Virtex-4 9.4K slices 20.44 29.840 3.050

[12] No No Kintex-7 11.3K

slices

121.5 3.270 1.987

[14] (2016) No No Virtex-6 (No

report)

70 2.800 0.980

Virtex-4 1.3K slices 40 5.000 1.000

Virtex-4 (no report) 54 6.260 1.690

[7] (2011) No No Virtex-II Pro 12K slices 36 9.380 1.688

(20K

LUTs)

[6] (2009) No No Virtex-4 20K slices 43.32 7.700 1.668

(34K

LUTs)

[24] (2013) Yes Yes (15

pts)

Virtex-5 1.7K slices 291 0.380 0.553

(4.2K

LUTs)

+ 37 DSPs

[8] (2010) No No Stratix II 9K ALMs 157.2 0.680 0.534

+ 96 DSPs

more efficient processing per cycle. Therefore, we conclude that our ECC system
should be based on a highly efficient digital logic design.

The performance gain of our designs is attributed to the high performance
in inverse calculation and utilization of intra-/inter-module parallelism. Table 4
shows the performances of several high-performance designs for modular inver-
sion over 256-bit prime fields. All implementations, including our design, in the
table are based on the extended Euclidean algorithm or its variants. This means
that the processing time of these implementations depends on the input values.
Their processing times in Table 4 are from the corresponding literature, which
are regarded as the average execution times. In contrast, our implementation
of inversion, “Ours w/ UB” in the table, shows the execution time of inversion
with the upper bound mentioned in Sect. 5.1, which is the fixed execution time,
whereas “Ours w/o UB”, which is for reference, corresponds to the average exe-
cution time when the upper-bounded loop execution is not applied. The table
shows that our designed inversion calculator is the fastest among the recently
published designs.
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Table 4. Performance of modular inversion over 256-bit prime fields.

Design Device Area Frequency
(MHz)

Time (µs) Time at
200MHz
(µs)

Ours w/o
UB

Zynq 6,926 LUTs 214.286 1.279 1.370

Ours w/UB UltraScale+ 1.736 1.860

[21] (2019) Virtex-7 1,069 slices 168.560 2.013 1.697

[5] (2018) Virtex-7 617 slices 144.011 2.220 1.599

[11] (2015) Virtex-7 1,480 slices 146.380 2.329 1.705

[15] (2016) Virtex-6 4,758 LUTs 151.000 3.391 2.560

6.2 FPGA Resources

Table 3 and Table 4 include the information of FPGA resources (Area) occupied
by each design. As the FPGA devices used are different from design to design,
directly comparing their sizes is difficult. For example, the UltraScale+ archi-
tecture has a slice structure containing eight 6-input look-up tables (LUTs),
whereas a slice in Virtex-6/7 has four 6-input LUTs, or Virtex-4 has 4-input
LUTs. Nevertheless, the proposed system seems to occupy more resources than
the others. However, the size is sufficiently practical since the area information
of our implementation reported in Table 3 is not only for scalar multiplication
processing but also for all other components including the high-speed on-chip
bus and the DDR4 DIMM controller, and the total hardware can be accommo-
dated using low-price FPGA devices such as a Xilinx Artix-7 XC7A200T that
comprises 134 600 LUTS and 740 DSPs [35].

7 Conclusion

We have investigated various methods for efficient FPGA implementations of
scalar multiplication on elliptic curve cryptosystems over any prime field. Our
design makes the most of the advanced and high-performance programmable
logic in today’s FPGA devices and extracts the full parallelism inherent in the
algorithms. Our proposed hardware–software coprocessing outperforms the exist-
ing FPGA implementations for generic ECC over 256-bit prime fields without
a pre-computation table and is also secure against SPA and exception-free for
any scalar. The processing time result of 0.575 ms shows that our design could
be applicable to any real-time embedded system.

Acknowledgments. This work was supported by enPiT (Education Network for
Practical Information Technologies) at MEXT, Innovation Platform for Society 5.0
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Abstract. Access control encryption (ACE) enforces both read and
write permissions. It kills off any unpermitted subliminal message chan-
nel via the help of a sanitizer who knows neither of the plaintext, its
sender and receivers, nor the access control policy. This work aims to
solve the open problem left by the seminal work of Damg̊ard et al.
(TCC 2016), namely, “to construct practically interesting ACE from
noisy, post-quantum assumptions such as LWE.” We start with revisit-
ing group encryption (GE), which allows anyone to encrypt to a certified
group member, whom remains anonymous unless the opening authority
decided to reveal him/her. We propose: 1) the notion of sanitizable GE
(SGE), with specific changes for non-interactive proof, 2) the notion of
traceable ACE (tACE), which helps damage control by tracing after-
the-fact if some secret were leaked unluckily, 3) a generic construction of
(t)ACE for equality policy (ACE-EP) from SGE, 4) a generic construc-
tion of ACE for general policy from ACE-EP, 5) a lattice-based instan-
tiation of SGE, which comes with 6) a simple mechanism for checking
that the randomness of ciphertexts can span the randomness space.

Keywords: Access control encryption · Group encryption ·
Lattice-based encryption · Learning with error · Post-quantum
security · Chosen-ciphertext security · Sanitization · Traceability

1 Introduction

Sensitive data should not propagate arbitrarily without restriction; encryption
techniques can enforce access control over the read but not write permissions.
Meanwhile, enforcing control over who can write to whom is equally important.
Consider a CEO who worries about leaking any strategic plan to arbitrary staff
(e.g., interns), say, via a malware-infected program s/he used for processing the
related sensitive data. Note that digital signatures do not help since the recipient
of the sensitive data can ignore any verification. Even worse, the data can be sent
via a subliminal means, e.g., embedding it as the randomness of a ciphertext.
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It seems necessary to have a sanitizer to “monitor” the traffic for enforcing access
control, especially over the write permissions. Ideally, the sanitization process
should be “blindfolded,” i.e., without the need to know who the sender is, who
the recipient is, and what the access control policy is. Such an idea is formalized
by Damg̊ard, Haagh, and Orlandi [12] as access control encryption (ACE).

1.1 Designs from Two Ends of a Spectrum, and Open Problems

Sanitizing a ciphertext blindfolded is not an easy task. Damg̊ard et al. [12]
proposed two constructions. They first started with ACE for a single user (1-
ACE) from standard (e.g., decisional Diffie-Hellman) assumptions. To make it
a fully-fledged ACE scheme, i.e., supporting the general policy P : {0, 1}� ×
{0, 1}� → {0, 1} which sender IDs ∈ {0, 1}� can write to receiver IDr ∈ {0, 1}�

if and only if P(IDs, IDr) = 1, it runs 2� parallel copies of 1-ACE, making both
the master public key and the ciphertext O(2�)-long. This is not only for hiding
the intended reader but also for a uniform treatment in sanitization without
knowing who the writer is. They also proposed a construction that offers poly(�)
efficiency, yet, it relies on a sanitizable variant of general-purpose functional
encryption (FE) [6]. While FE for limited functionality (mostly inner-product)
can be efficient, general-purpose FE is much more powerful and less efficient.
Damg̊ard et al. instantiated it with indistinguishability obfuscation.

Follow-up works mostly fall into two extremes: using practically-inefficient
techniques to construct a regular ACE scheme, or practically-efficient tech-
niques to construct an ACE scheme with limited functionality. Kim and Wu [18]
built an ACE scheme from FE for randomized functionality (rFE) [2] and
predicate-encryption (PE). Sanitization uses an FE key to create a PE cipher-
text. Although the FE scheme can be instantiated by the LWE (learning-with-
error) assumption, expressing the encryption algorithm of PE as a circuit is not
that efficient. For the second paradigm, Fuchsbauer et al. [13] proposed a generic
construction and a pairing-based construction for equality policy (ACE-EP), i.e.,
the receiver is the sender. They also proposed to use many ACE-EP instances
for interval membership policy, which is useful, albeit still not general.

A concurrent work by Wang and Chow [26] does not fall into the above
two categories. In some sense, their generic construction can be considered as
a “dual” of our proposed approach here. However, most of its building blocks,
specifically structure-preserving signatures and broadcast encryption, are more
“pairing-friendly,” meaning that lattice-based instantiations are still limited now.

One of the open problems left by Damg̊ard et al. in their original work [12] is
as follows: “to construct practically interesting ACE from noisy, post-quantum
assumptions such as LWE” and they commented that “the challenge here is that
it always seems possible for a malicious sender to encrypt with just enough noise
that any further manipulation by the sanitizer makes the decryption fail.”

Tan et al. [25] use Gentry–Sahai–Waters fully-homomorphic encryption [14]
to instantiate 1-ACE. Their 2�-extension still suffers from O(2�) ciphertext size.
The scheme of Kim and Wu [18] still relies on a general-purpose rFE scheme for
arbitrary functions (albeit it can be LWE-based). Both fail to close the above
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open problem. Furthermore, both require the sanitizer to have a private saniti-
zation key. Removing this requirement is also left as an open problem by Kim
and Wu [18]. In this work, we ask ourselves a bigger question: “Can we achieve
the best of both worlds, i.e., using practically interesting lattice-based building
blocks to build a general-policy ACE scheme, supporting keyless sanitization?”

1.2 Viewing ACE Through the Lens of Group Encryption (GE)

Recurrent research activities in the cryptography community include identifying
similarities and differences between primitives and connecting them if possible
(e.g., [11]). Our starting point is group encryption (GE), introduced by Kiayias
Tsiounis, and Yung [17]. GE is like public-key encryption (PKE). Anyone can
encrypt to a certified group member. GE shares one basic feature of ACE, which
is hiding who can decrypt a given ciphertext. In normal circumstances, this
group member remains anonymous. When needed, an opening authority can
reveal him/her. These features make GE an attractive primitive for privacy-
preserving applications [17], e.g., filtering encrypted traffic or “oblivious retriever
storage systems” [10]. There are a few existing GE schemes [3,8,21]. Notably,
Libert et al. [20] proposed a lattice-based scheme (to be adapted by this paper).

However, GE falls short as ACE in many regards, notably the writing per-
mission control: 1) Anyone can encrypt (no policy enforcement). 2) It does not
feature a sanitization algorithm that randomizes a ciphertext (still without the
need to know who can decrypt). It also falls short in terms of the reading per-
mission control: 3) It encrypts to a single reader (not for the general policy).

The first two features can be added generically. Recall that an encryptor
in GE first retrieves the public key of the intended receiver and its certificate
issued by the group manager (GM) as a signature. The ciphertext contains a zero-
knowledge proof of the certificate. By viewing the decryptor in GE also as the
encryptor, we get ACE-EP. Sanitization, roughly, can be done by randomizing
the ciphertext based on this hidden public key “accordingly” (which turns out
to be tricky, see below). Indeed, these tricks are just rediscovery of the generic
ACE-EP construction of Fuchsbauer et al. [13], who also mentioned, “A similar
concept had previously been introduced in [15]1.” We do not claim any novelty of
extending GE with sanitizability [15]. What we deem important is that revisiting
this conceptual connection allows us to borrow the existing results in lattice-
based GE to solve our problems in ACE, forming the starting point of this work.

1.3 Sanitizable Group Encryption for Sanitization in ACE

We first describe what sanitizable group encryption (SGE) is and how its sani-
tizability is defined. Similar to how sanitizable PKE [13] (SPKE, see Sect. 3.3)

1 Izabachene et al. [15] proposed mediated traceable anonymous encryption that pre-
dates ACE. The mediator is essentially the sanitizer here. Like GE, it is a PKE
scheme, and hence the missing feature is the enforcement of who can write. Their
scheme design shares conceptual similarity with the 1-ACE scheme [12].
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extends PKE, SGE extends GE with a San algorithm sanitizing ciphertexts. San
essentially randomizes its input ciphertext without knowing the public key of its
intended receipt. We expect sanitizability, which requires sanitized versions of
an adversarially generated ciphertext and honest encryption of a random mes-
sage remain computationally (instead of statistically [12]) indistinguishable. This
definition is a variant of the subliminal-channel freeness of mediated traceable
anonymous encryption [15] and similar to the no-write rule requirement of ACE.

With the working mechanisms of ACE-EP and SGE as outlined above, this
paper starts with a generic construction of ACE-EP from any SGE. As a by-
product, we obtain traceable ACE, with traceability analogous to the anonymity
revocation of SGE, which traces the information (leakage) flow.

1.4 Meaningful Chosen-Ciphertext Security Under Sanitizability

It would be nice if there is a generic upgrade from any GE to SGE. However,
the development of GE emphasizes security against chosen-ciphertext attacks
(CCA) [3,8,20,21]. A CCA-secure GE is unsanitizable by definition. For exam-
ple, the lattice-based GE construction of Libert et al. [20] (the scheme we will
modify) uses the transformation of Canetti, Halevi, and Katz (CHK) [7] to
achieve CCA security. Encryption starts by picking a one-time signature key.
The verification key is attached to the label of an underlying encryption that is
secure against chosen-plaintext attacks (CPA-secure), such that no one can mod-
ify the label. The whole ciphertext is then signed by this one-time key, intuitively
providing the integrity needed by CCA security. However, the label for tightly
coupling the signature key with the ciphertext forms a convenient channel for a
malicious writer that the sanitizer cannot easily randomize/sanitize.

This illustrates why most ACE literature did not consider CCA security.
Notably, Badertscher, Matt, and Maurer [4] formulate a meaningful CCA secu-
rity notion for ACE that protects the integrity of unsanitized ciphertexts. Con-
sider a non-CCA-secure scheme and an attacker without any write permission.
By capturing only one ciphertext before it reached the sanitizer, the attacker
might be able to maul it to encrypt an arbitrary message and write to whomever
the original creator is authorized to. Their CCA notion prevents such attacks.

Similarly, our SGE notion aims for such a flavor of CCA security. Following
the generic GE construction of El Aimani and Joye [3], we propose a generic SGE
construction from a CPA-secure, key private, and sanitizable PKE scheme that
still features a “compatible” public ciphertext validity check. Roughly, similar
to the trick of Badertscher et al., the ciphertext produced by our SGE scheme
allows the sanitizer to easily check (for CCA security) and drop the “validity
tag.” Any potential subliminal channel formed by this tag will be completely
killed off, while the remaining parts can be sanitized.

1.5 Challenges in Sanitization

The property we stipulated above, namely, “rerandomizability without knowing
the underlying public key,” turns out to be non-trivial to achieve in lattices.



Access Control Encryption from Group Encryption 421

Although rerandomization can be done by applying similar tricks of the existing
ACE-EP construction via additive homomorphism, there is a mismatch in the
threat models. In normal PKE usage, the encryptor has no intention to use
imperfect randomness, while it is completely the opposite case for ACE, in which
a malicious encryptor is motivated to establish a subliminal channel. To the best
of our knowledge, no existing lattice-based PKE scheme is proven sanitizable.

To prevent the encryptor from cheating, i.e., crafting a ciphertext c such that
even an honest rerandomization of c will not result in a perfectly rerandomized
ciphertext, we propose an efficient technique to detect such kind of adversarial
behavior. At a high level, the vectors of randomness are required to be linearly
independent to span the whole randomness space, so the sanitizer can use it to
fully rerandomize a ciphertext. To filter out the randomness that fails to span the
whole space, we leverage the lemma for rank relation of matrix multiplication for
a ciphertext component formed by a multiplication between the public key and
the randomness. This structure is not readily available, and we need to adapt
an existing LWE-based scheme (see Footnote 4). The underlying sanitization
technique requires a dedicated analysis, which may own independent interest.

1.6 Efficient ACE for General Policy from ACE for Equality Policy

Finally, we propose a generic upgrade extending an ACE for equality policy to
a general-policy scheme for 2� users. Our crucial observation is to strategically
manage the credentials, which does not require 2�-repetition of an underlying
ACE scheme [12]. We still set the “legitimate decryptor” as the sender itself as in
ACE for equality policy. Instead of granting the decryption key to the sender, we
grant the decryption key to all the users that this particular sender can encrypt
to. In this way, we obtain an ACE scheme for general policy, featuring constant-
size ciphertexts, but at the cost of a decryption key that can be as long as the
maximum number of senders a particular user can receive messages from.

1.7 Putting It Altogether

Our instantiation mostly uses the building blocks underlying the lattice-based
GE scheme of Libert et al. [20], but with two major changes as explained above.
We replace the underlying encryption scheme with a modified version of Regev’s
LWE encryption [23], in which we build an efficient detection technique for con-
firming if its ciphertext “spans.” For CCA security, we use the Naor–Yung trans-
formation [22,24]. This leads to our lattice-based construction of SGE. With
our generic transformation, we get a lattice-based ACE scheme for general pol-
icy, featuring keyless sanitization and constant-size ciphertexts. It provides a
solution to two open problems: one from Damg̊ard et al. [12] since it does not
use general-purpose FE for circuits, and another from Kim and Wu [18] that
asks for a general-policy ACE scheme with public sanitizer key (which rules out
FE-based sanitization [12,18]). It is also the second in the ACE literature that
features CCA security. Like other LWE-based schemes, it is also post-quantum
secure.
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Organization. Section 2 recalls the definitions of ACE. Section 3 defines the
SGE notion and presents our generic SGE construction. We upgrade it to ACE-
EP and ultimately general-policy ACE in Sect. 4. Finally, Sect. 5 presents our
SGE instantiation from lattices, which leads to our general-policy ACE.

2 Access Control Encryption with Keyless Sanitization

2.1 Definition

ACE is defined by the following probabilistic polynomial-time (PPT) algorithms.

– Setup(1λ,P) → pp: This algorithm takes the security parameter λ and a policy
P : {0, 1}� × {0, 1}� → {0, 1} as input. It outputs the public parameter pp,
which includes the message space M and two ciphertext spaces C and C′.

– MKGen(pp) → (mpk,msk): This algorithm takes pp as input. It outputs a
master public-secret key pair (mpk,msk). We assume mpk is an implicit input
for all algorithms below.

– EKGen(msk, IDi) → ekIDi
: This algorithm takes the master secret key msk and

an identity IDi ∈ {0, 1}� as input. It outputs an encryption key ekIDi
.

– DKGen(msk, IDj) → dkIDj : This algorithm takes the master secret key msk
and an identity IDj ∈ {0, 1}� as input. It outputs a decryption key dkIDj

.
– Enc(ek,M) → c: This algorithm takes an encryption key ek and a message

M as input. It outputs a ciphertext c ∈ C.
– San(c) → c′: This algorithm transforms an incoming ciphertext c ∈ C into a

sanitized ciphertext c′ ∈ C′ ∪ {⊥}. We only consider keyless sanitization.
– Dec(dk, c′) → M : The algorithm takes a decryption key dk and a ciphertext

c ∈ C′ as input. It outputs a message M ∈ M ∪ {⊥}.

For all M ∈ M and IDi, IDj ∈ {0, 1}� with P(IDi, IDj) = 1, an ACE scheme
is correct if: Pr[Dec(dkIDj

,San(Enc(ekIDi
,M))) �= M ] ≤ negl(λ) where pp ←

Setup(1λ,P), (mpk,msk) ← MKGen(pp), ekIDi
← EKGen(msk, IDi), and dkIDj

←
DKGen(msk, IDj). The probability space is over the coin flips of all the algorithms.

2.2 Security

ACE is for enforcing two access-control rules: the no-read rule and the no-write
rule. Most existing works [12,13,18,25] consider them under only CPA-based
definitions, where the adversary is given access to the oracles for encryption,
encryption-key generation, and decryption-key generation. Badertscher et al. [4]
consider a CCA-based definition with a malicious insider who can maul an
honestly-generated and unsanitized ACE ciphertext into a carrier for sending
a message to a receiver that is forbidden by the policy otherwise. Even though
ACE needs to assume an operational environment where ciphertexts must be
routed through the sanitizer before reaching their final destination, it does not
assume that no one can eavesdrop and maul them before reaching the sanitizer.



Access Control Encryption from Group Encryption 423

Instead of a typical decryption oracle, Badertscher et al. proposed an oracle
that first sanitizes the ciphertext then decrypts it, i.e., a sanitize-then-decrypt
oracle. If an ACE scheme remains CCA-secure in this sense, no one can maul an
unsanitized ciphertext. Note that the CCA protection does not extend to a sani-
tized ciphertext. Also, in practice, the sanitizer can sign on the sanitized cipher-
texts and publish them on a public bulletin board for (anonymous) retrieval.

Let ACE = (Setup,MKGen,EKGen,DKGen,Enc,San,Dec) be an ACE scheme
for policy P : {0, 1}� × {0, 1}� → {0, 1} over a message space M. For a security
parameter λ and a random bit b drawn from a fair coin flip, the general exper-
iment ExpACE,A(λ) for a PPT adversary A starts with the challenger sampling
pp ← Setup(1λ,P) and (mpk,msk) ← MKGen(pp). Then ExpACE,A(λ) diverges
into no-read rule experiment ExpNoRead

ACE,A(λ) or no-write experiment ExpNoWrite
ACE,A (λ)

with a different challenge oracle and a different set of training oracles as below.

– OEnc(M, IDi) → c: On input M ∈ M and a sender identity IDi ∈ {0, 1}�, the
encryption oracle outputs c ← Enc(EKGen(msk, IDi),M).

– OSanEnc(M, IDi) → c′: On input a message M ∈ M and a sender identity
IDi ∈ {0, 1}�, it outputs c′ ← San(Enc(EKGen(msk, IDi),M)).

– OEKGen(IDi) → ekIDi
: On input a sender identity IDi ∈ {0, 1}�, the encryption

key generation oracle outputs ekIDi ← EKGen(msk, IDi).
– ODKGen(IDj) → dkIDj : On input a receiver identity IDj ∈ {0, 1}�, the decryp-

tion key generation oracle outputs dkIDj
← DKGen(msk, IDj).

– ODec(IDj , c) → M : With a receiver identity IDj ∈ {0, 1}� and an unsanitized
ciphertext c ∈ C, it outputs M ← Dec(DKGen(msk, IDj),San(c)).

– ONoRead((M0,M1), (ID0, ID1)) → cb: This is the challenge oracle for the no-
read experiment. On input a pair of messages (M0,M1) ∈ M×M and a pair
of sender indices (ID0, ID1) ∈ {0, 1}� × {0, 1}�, the challenger responds with
cb ← Enc(EKGen(msk, IDb),Mb).

– ONoWrite(c, ID∗) → cb: This is the challenge oracle for the no-write experiment.
On input an unsanitized ciphertext c ∈ C and a sender identity ID∗ ∈ {0, 1}�,
it sets c∗

0 ← c. Then the challenger samples M∗ ← M, computes c∗
1 ←

Enc(EKGen(msk, ID∗),M∗), and responds with cb ← San(c∗
b).

A outputs a bit b′ ∈ {0, 1} as the output of the experiment at the end.

Definition 1 (No-Read Rule). A wins the no-read game with OEnc, OEKGen,
ODKGen, ODec, and ONoRead if b′ = b, |M0| = |M1|, for all queries IDj ∈ {0, 1}�

that A makes to the ODKGen, P(ID0, IDj) = P(ID1, IDj) = 0, and cb has never been
queried to ODec. ACE satisfies the no-read rule if for all PPT A, the advantage
for A to win the no-read game is AdvA = Pr[A wins ExpNoRead

ACE,A(λ)]− 1
2 ≤ negl(λ).

The adversary can compromise the sanitizer under the above definition since
the challenge ciphertext is not sanitized, and our ACE notion does not have
any sanitizer key. The no-read rule ensures payload privacy, i.e., no unintended
receivers can learn anything about the message. It also guarantees (outsider)
sender anonymity, which holds against any coalition of receivers that cannot
decrypt the challenge ciphertext. This definition is weaker than requiring sender
anonymity to hold even against an adversary who can decrypt the ciphertext.
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Definition 2 (No-Write Rule). Given the oracles of OSanEnc, OEKGen,
ODKGen, ODec, and ONoWrite, A wins the no-write game if b′ = b, San(c) �= ⊥,
and:

– The adversary A makes at most one query2 to the challenge oracle ONoWrite.
– For all identities IDi ∈ {0, 1}� that A submits to OEKGen prior to its challenge

and all identities IDj ∈ {0, 1}� that A submits to ODKGen, P(IDi, IDj) = 0.

We say that an ACE scheme satisfies the no-write rule if for all PPT adver-
sary A, the advantage of A is AdvA = Pr[A wins ExpNoWrite

ACE,A (λ)] − 1
2 ≤ negl(λ).

The no-write rule means that a sender can only encrypt to receivers per-
mitted by the policy. Even an adversary can somehow embed in a ciphertext
some subliminal information, it will be killed off after sanitization. Likewise,
this property should hold even when multiple senders and receivers collude.

Sender Policy and Message Policy. The formulation of Kim and Wu [18]
additionally considers “fine-grained sender policy” with the access control policy
also governs the messages a sender can send. This policy is embedded in and
authorized via the encryption key. They also suggested that an encryption key
for multiple policies over the message can be supported in a straightforward
manner by granting the sender multiple certified encryption keys.

In this paper, we consider a variant definition that the message policy can
be ad hoc, i.e., the sender can create ciphertexts encrypting different messages
satisfying different relations to any legitimate receiver. This flexibility has (seem-
ingly inherent) implications on privacy and the no-write rule since the sanitizer
needs to know about the relation and cannot “sanitize” the relation.

2.3 Traceable ACE

To obtain traceable ACE (tACE), we equip the traceability feature via two
algorithms below, and with Enc algorithm now takes, besides the user encryption
key ek, also an input of opening-authority public key tpk for the tracing feature.

– TKGen(pp) → (tpk, tsk): This algorithm takes as input the public parameter
pp and outputs the tracer public/secret key pair (tpk, tsk).

– Trace(tsk, c′) → ID: This algorithm takes the input of the tracer secret key
tsk and a sanitized ciphertext c′ ∈ C′. It outputs the sender identity ID of c′.

Tracing the sender can be desirable in the context of ACE since we can locate
which user has his/her machine compromised that tried to leak information. One
may consider an alternative formulation that traces the receiver.

Here, we only consider a primitive form of tracing that recovers a user identity
ID associated with a ciphertext [15]. Akin to traceable signatures [16], one could
consider using a user-specific trapdoor for ID to check [1] whether ID is associated
with a ciphertext [21] or to trace [9] all ciphertexts associated with a specific ID.
2 A standard hybrid argument shows that security against an adversary that makes a

single challenge query implies security against one that makes multiple such queries.
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Traceability Correctness and Soundness. For all M ∈ M and IDi ∈ {0, 1}�,
pp ← Setup(1λ,P), (mpk,msk) ← MKGen(pp), (tpk, tsk) ← TKGen(pp), and c ←
Enc(EKGen(msk, IDi),M), traceability correctness means Pr[Trace(tsk,San(c))
�= IDi] ≤ negl (λ). The probabilities are taken over the randomness of all
algorithms.

A tACE scheme has traceability soundness if, for any PPT adversary A who
queries to OEKGen and outputs a ciphertext c, the advantage for A to win, defined
to be Pr[ID /∈ QEKGen|Trace(tsk,San(c)) = ID], is negligible, where QEKGen denotes
the set of queries to OEKGen, i.e., c should not trace to an uncompromised user.

3 Sanitizable Group Encryption

3.1 Syntax of Sanitizable Group Encryption

A sanitizable group encryption scheme consists of the following algorithms.

– Setup(1λ) → pp: On input a security parameter λ, this probabilistic algorithm
outputs the public parameter pp as an implicit input of what follows.

– (Gr,SampleR): On input of λ, Gr generates the key pair (pkR, skR) of the
relation R concerning a message M one might want to prove about. skR can
be empty if R is publicly sampleable. We assume there is a PPT algorithm
that can check if (pkR, skR) is a valid output of Gr. On input of (pkR, skR),
SampleR produces (x,M) where x is an instance and M is a witness for R.

– KeyGenE(pp) → (pkE , skE): This algorithm outputs the key pair (pkE , skE)
of the entity E in the system. E can either be the group manager GM, the
opening authority OA, or a group member u identified by ID.

– Join(skGM, pkGM, pkID) → certpkID : This algorithm outputs a certificate certpkID
on public key pkID and stores (ID, pkID, certpkID) in a directory db.

– Vfcert(pkGM, pkID, certpkID): It verifies the validity of certpkID for pkID.
– Enc(pkGM, pkOA, pkID, certpkID , (pkR, x, ) M) → c: On input the respective pub-

lic key pkGM, pkOA, and pkID of GM, OA, and a group member certified by
certpkID , and optionally a relation pkR with a public value x, it returns a
ciphertext c of the plaintext M , which (x,M) ∈ R is supposed to hold.

– Vf(pkGM, pkOA, (pkR, x, ) c) → {0, 1}: It outputs 1 if c is valid; 0 otherwise.
– San(c) → c′: On input a valid ciphertext c, this algorithm outputs its saniti-

zation c′ (or a rejection symbol ⊥).
– Dec(skID, c′) → M : On input the private key skID and a sanitized ciphertext

c′, this algorithm decrypts c′ and outputs the message M (or ⊥).
– Open(skOA, c′) → pkID: On input the private key skOA of OA and a sanitized

ciphertext c′, this algorithm recovers from c′ the public key pkID.

Similar to the application scenario of ACE, we consider SGE ciphertexts to
be (verified and) sanitized before reaching the final destination. This explains
why our Dec and Open algorithms only work on sanitized ciphertexts. One might
consider an alternative definition that they also work on unsanitized ciphertexts.
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Our SGE formulation is kept as non-interactive as possible. Instead of having
an explicit Prove algorithm/protocol in the prior GE formulation, the ciphertext
produced by Enc contains a non-interactive proof. Existing schemes can indeed
be formulated in this setting, some at the cost of using Fiat–Shamir heuristics.
Also, the Join protocol is reduced to a pair of algorithms that the GM uses the
algorithm Join to sign on a given public key for generating a certificate on it3,
which the user can then run Vfcert to verify its validity. This helps to simplify
the security definitions. We remark that the security definition for existing non-
interactive GE schemes [8,21] still separates the proof from the ciphertext.

Correctness. We require for an SGE scheme, the correctness game Corr defined
in Fig. 1 returns 1 with overwhelming probability.

Fig. 1. Experiment for the correctness of SGE

3.2 Security Model of Sanitizable Group Encryption

In the following, we assume the adversary A is stateful. By maintaining the state
information state, A becomes aware of at which stage it is.

Message Indistinguishability (IND). An SGE scheme meets the IND-CCA
notion if the success probability of any PPT adversary A to distinguish among
encryptions of a chosen message and of a random message is at most negligibly
better (in parameter λ) than 1

2 in the experiment Ind in Fig. 2a, where the oracles
are defined as below.

– OJoin∗
L () is a stateful oracle that simulates executions for honest users who

request to join the group. It maintains as state information an initially
empty list L. For its i-th invocation, the simulator executes (pkIDi

, skIDi
) ←

3 The public key can be proven valid by an external mechanism (e.g., via any proof-of-
possession mechanism over its secret key). Our final goal is to reduce ACE to GE. In
ACE, each public key is generated by a trusted key generator, and hence it suffices.
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KeyGenu(pp), sends it to the adversary, which responds with certpkIDi
. The

output (pkIDi
, skIDi

, certpkIDi
) of the user is stored in L if the Join()-executing

A provides a valid certificate certpkIDi
.

– ODec
¬(ID∗,cb)

(ID, ci) is a stateless decryption oracle. On input a ciphertext ci, it
runs M ′ ← Dec(skID,San(ci)) and returns M ′ if (ID, ci) �= (ID∗, cb).

– ORoR
b (pkID, pkR, x,M) is a real-or-random challenge oracle that is only queried

once. For a bit b, it samples a random plaintext M0 uniformly from M, and
sets M1 = M . It returns cb ← Enc(pkGM, pkOA, pkID, certpkID , (pkR, x, ) Mb).

Fig. 2. Experiments for (2a) IND-CCA and (2b) ANO-CCA notions of SGE

Anonymity. The formal definition of anonymity against chosen-ciphertext
attacks (ANO-CCA) is as follows. The notion is met if the success probabil-
ity of any PPT adversary A is at most negligibly better than 1

2 . We introduce
the following oracles and the game Ano in Fig. 2b.

– OOpen
¬cb

(skOA, ·) returns Open(skOA,San(c)) on input of a ciphertext c �= cb,
– OAno

b (pkGM, {pkIDd
, certpkIDd

}d∈{0,1}, pkR, x,M) is a challenge oracle that is
only queried once. It returns cb ← Enc(pkGM, pkOA, pkIDb

, certpkb , (pkR,
x, ) M).

Soundness. In a soundness attack, A creates adaptively the intended group of
receivers communicating with the genuine GM. A is successful if it can output a
ciphertext c and a chosen pkR such that (1) c is not in the valid ciphertext space
denoted by CpkGM,pkOA,db,pkR,x = {Enc(pkGM, pkOA, pkID, certpkID , (pkR, x, ) M) :
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((x,M) ∈ R) ∧ (pkID ∈ db) ∧ Vfcert(pkGM, pkID, certpkID) = 1}, and (2) opening c
results in a public key that does not belong to any group member.

An SGE scheme is sound if, for any PPT A, the experiment ExpSoundA (λ)
outputs 1 with negligible probability. We introduce the following oracle and the
game Sound in Fig. 3a.

– OJoin
db (skGM, pkGM, ·) is a stateful oracle that simulates GM and maintains db

storing each registered public key pkID along with its certificate certpkID .

Fig. 3. Experiments for the (3a) Soundness and (3b) Sanitizability of SGE

Sanitizability. Sanitizability requires that sanitization of two ciphertexts, one
given by the adversary and the other randomly picked from the ciphertext space,
cannot be distinguished as long as the adversary has no decryption key that
decrypts any one of the ciphertexts. An SGE scheme is sanitizable if, for any
PPT A, the experiment ExpwSanA (λ) outputs 1 with negligible probability. With
the two oracles OJoin∗

L () and ODec
¬(ID∗,c)(ID, ci) introduced in Fig. 2a, we introduce

an additional oracle below and the game wSan in Fig. 3b.

– OwSan(pkR, skR, c) → cb is a real-or-random challenge oracle that is only
queried once, It aborts if Vf(pkGM, pkOA, pkR, x, c) = 0. For a bit b, it first
sets c∗

0 ← c and runs (x,M∗) ← SampleR(pkR, skR) to sample M∗ uniformly
from M under the constraint that (x,M∗) ∈ R. It then computes c∗

1 ←
Enc(pkGM, pkOA, pkID, certpkID , (pkR, x, ) M∗) and returns cb ← San(c∗

b).

3.3 Sanitizable Public-Key Encryption

Let E = (Setup,KeyGen,Enc,San,Dec) be a key-private sanitizable PKE scheme.
We omit to repeat the standard definitions of correctness, key privacy, and CPA
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security here [13]. Sanitizability requires any adversary generating two pairs of
message and randomness (M0, r0), (M1, r1) cannot distinguish the random bit
b when given a sanitized ciphertext San(Enc(pk,Mb; rb)), where Enc(pk,M ; r)
refers to using r as its internal randomness.

3.4 Generic SGE Construction

We construct SGE by adapting the generic GE construction of El Aimani and
Joye [3]. In a nutshell, the membership certificate is a signature. To create a GE
ciphertext, the message and the public key are encrypted in two ciphertexts, and
the validity of the certificate and well-formedness of the GE ciphertext are proven
by non-interactive zero-knowledge (NIZK) proof. To achieve CCA security, they
use tag-based public-key encryption with label and employ the CHK transform.
A one-time signature verification key is put as the label, which is not sanitizable.

Instead of the CHK transform, we use the Naor–Yung technique [22,24] to
upgrade from CPA- to CCA-security. At a high level, two “component” cipher-
texts, both encrypting the same message, are proven to be so via non-malleable
NIZK. To simulate the decryption oracle, the reduction knows the decryption key
for one of the two PKE instances, and hence decryption is trivial. The challenge
ciphertext can be simulated via simulation soundness of NIZK, which ensures
that the adversary has no advantage even if the simulated NIZK for the challenge
query is for a wrong statement, and can easily be achieved via, e.g., Fiat–Shamir
heuristic. With this approach, we can achieve a CCA-security definition akin to
that of ACE we defined in Sect. 2.2, following the prior definition [4]. Namely,
the sanitizer first checks the well-formedness of the ciphertexts, drops the proof
and the redundant ciphertext, and then performs rerandomization.

Let Σ = (Gen,Sign,Vf) be a signature scheme that is existentially unforgeable
against chosen-message attacks (EUF-CMA). Let h be a collision-resistant hash
function from the public-key space to the message space of E . With an NIZK
proof system, an SGE scheme is constructed as follows.

– Setup(1λ) → pp: This algorithm runs the setup algorithms (if any) for the
building blocks and outputs all the public parameters as pp. Let R be a
relation with a key pair (pkR, skR) for sampling pairs (x,M) ∈ R.

– KeyGenGM(pp) → (pkGM, skGM): This key generation algorithm for the group
manager outputs (pkGM, skGM), which is set to be (Σ.pk, Σ.sk) ← Σ.Gen(1λ).

– KeyGenOA(pp) → (pkOA, skOA): It runs E .KeyGen(1λ), which output the pairs
(E .pkOA, E .skOA) and (E .pk∗

OA, E .sk∗
OA). It returns ((E .pkOA, E .pk∗

OA), E .skOA).
– KeyGenu(pp) → (pkID, skID): It runs E .KeyGen(1λ) twice. Let the outputs be

(E .pkID, E .skID) and (E .pk∗
ID, E .sk∗

ID). It outputs ((E .pkID, E .pk∗
ID), E .skID).

– Join(skGM, pkGM, pkID) → certpkID : It runs certpkID ← Σ.Sign(skGM, pkID) and
returns certpkID to user ID. GM also stores (pkID, certpkID) in db.

– Vfcert(pkGM, pkID, certpkID): It outputs Σ.Vf(pkGM, pkID, certpkID).
– Enc(pkGM, pkOA, pkID, certpkID , (pkR, x, ) M) → c: It firstly generates cM ←

E .Enc(E .pkID,M), c∗
M ← E .Enc(E .pk∗

ID,M), cOA ← E .Enc(E .pkOA, h(pkID)),
and c∗

OA ← E .Enc(E .pk∗
OA, h(pkID)), and a non-malleable NIZK proof π for:
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(x,M) ∈ R, Σ.Vf(pkGM, certpkID , pkID) = 1,
cM ← E .Enc(E .pkID,M), c∗

M ← E .Enc(E .pk∗
ID,M),

cOA ← E .Enc(E .pkOA, h(pkID)), c∗
OA ← E .Enc(E .pk∗

OA, h(pkID))

with statement (pkGM, pkOA, pkR, x) and witness (M, coins, pkID, certpkID), and
coins denotes the randomness used in all invocations of E .Enc() above. It
outputs c = (cM , c∗

M , cOA, c∗
OA, π). Note that (pkR, x) can be optional.

– Vf(pkGM, pkOA, (pkR, x, ) c) → {0, 1} : For c = (cM , c∗
M , cOA, c∗

OA, π), it verifies
the NIZK proof π, and outputs 1 if the proof is accepted, 0 otherwise.

– San(c) → c′: It calls Vf on c and returns ⊥ if it is invalid. It then parses c
into (cM , c∗

M , cOA, c∗
OA), and outputs c′ = (E .San(cM ), E .San(cOA)).

– Dec(skID, c′) → M : Parsing c′ = (c′
M , c′

OA), it returns M ← E .Dec(skID, c′
M ).

– Open(skOA, c′) → pkID: It parses c′ = (c′
M , c′

OA), runs h∗ ← E .Dec(skOA, c′
OA),

then looks up at db and outputs the public key pkID such that h(pkID) = h∗.

The following theorems assert the security of our generic construction.

Theorem 1. Our SGE scheme satisfies IND-CCA security if E is IND-CCA-
secure, Σ is EUF-CMA-secure, and NIZK is zero-knowledge proof-of-knowledge.

Theorem 2. Our SGE scheme satisfies ANO-CCA anonymity if E is ANO-
CCA-anonymous, Σ is EUF-CMA-secure, and NIZK is zero-knowledge proof-
of-knowledge.

Theorem 3. Our SGE scheme satisfies soundness if Σ is EUF-CMA-secure
and NIZK is zero-knowledge proof-of-knowledge.

Theorem 4. Our SGE scheme satisfies sanitizability if Σ is EUF-CMA-secure,
E is key-private and sanitizable, and NIZK is zero-knowledge proof-of-knowledge.

The proofs for the first three mostly follow those for the generic GE construc-
tion of El Aimani and Joye [3]. The proof for the sanitizability mostly follows that
for the no-write rule of the generic ACE construction of Fuchsbauer et al. [13].
Their details are deferred to the full version.

4 ACE from Sanitizable Group Encryption

4.1 Our Generic Construction of (t)ACE-EP

Using an SGE scheme, we can construct a (t)ACE scheme for the equality policy,
i.e., P(IDi, IDj) = 1 iff IDi = IDj as follows. Setup of (t)ACE includes Setup of
SGE. (Gr,SampleR) is optional. ACE, by default, does not expect the message
as a witness of some relation. However, incorporating so means that we can also
enforce what kind of messages (even) a legitimate sender can send (cf., [18]).

The key generator takes the roles of GM of SGE. It generates keys for users
in the system by calling KeyGenu and Join to generate the public/secret key pair
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and create a certificate on the public key sequentially. To support sender tracing,
the key generator stores (ID, pkID, certpkID) in a directory db.

For access control, any sender of (t)ACE should be a group member in SGE.
The group member keeps the certificate certpkID on pkID returned from GM pri-
vately as the encryption key for proving the write permission and keeps skID as
the decryption key for exercising the read permission. During encryption, the
sender calls the algorithm Enc of SGE to generate a ciphertext consists of an
NIZK proof for the following relation: (1) the anonymous decryptor is a group
member, (2) the payload message is encrypted under the public key of that
decryptor, and for tACE (3) the hash of the public key of the decryptor is
encrypted in a ciphertext attached which is decryptable by the secret tracing
key. The ciphertext is sent to the sanitizer. If the sanitizer accepts the proof
embedded inside the ciphertext, it sanitizes the ciphertext and broadcasts it.
Finally, the receiver calls the algorithm Dec of SGE to decrypt. The tracer can
call the algorithm Open of SGE to search for the corresponding ID if the need
arises.

Let GE = (Setup, (Gr,SampleR),KeyGenGM,KeyGenOA,KeyGenu, Join,Vfcert,
Enc,Vf,San,Dec,Open) be an SGE scheme. Our (t)ACE scheme for equality
policy, or (t)ACE-EP, is constructed as follows.

– Setup(1λ,P) → ppACE : With security parameter λ and the policy P, this
algorithm runs pp ← GE .Setup(1λ) and returns ppACE = pp.

– MKGen(ppACE) → (mpk,msk): It runs (pkGM, skGM) ← GE .KeyGenGM(pp) and
returns master public/secret key tuple as (mpk,msk) = (pkGM, skGM).

– TKGen(ppACE) → (tpk, tsk): It runs (pkOA, skOA) ← GE .KeyGenOA(pp) and
returns (tpk, tsk) = (pkOA, skOA).

– EKGen(msk, IDi) → ekIDi
: With the input of IDi, it first calls (pkIDi

, skIDi
) ←

GE .KeyGenu(pp) then certpkIDi
← GE .Join(skGM, pkGM, pkIDi

) (and stores in a
directory db (ID, pkIDi

, certpkIDi
) for tracing). Finally, ekIDi

= (pkIDi
, certpkIDi

).
– DKGen(msk, IDj) → dkIDj

: For a receiver with identity IDj , this algorithm
returns skIDj

that has been generated by EKGen(msk, IDi). In practice, the key
generator can use a pseudorandom function output of IDj as the randomness
used by GE .KeyGenu(pp) within EKGen(msk, IDi). It outputs dkIDj

= skIDj
.

– Enc(ekIDi , tpk,M) → c: Using an encryption key ekIDi = (pkIDi
, certpkIDi

),
possibly with a tracer public key tpk = pkOA (in tACE), this algorithm
encrypts a message M via c ← GE .Enc(pkGM, pkOA, pkIDi

, certpkIDi
,M), or

c ← GE .Enc(pkGM, pkOA, pkID, certpkID , pkR, x,M) if the message policy with
respect to (pkR, x) where (x,M) ∈ R is also enforced.

– San(c) → c′: Output c′ ← GE .San(c) if Vf(pkGM, pkOA, c) returns true; ⊥
otherwise. If the policy also mandates (x,M) ∈ R, San takes additional inputs
of (pkR, x) and runs Vf(pkGM, pkOA, pkR, x, c) instead.

– Dec(dkIDj
, c′) → M : On input a ciphertext c′ and secret key dkIDj

= skIDj
,

this algorithm runs M ← GE .Dec(skIDj
, c′), which either returns M or ⊥.

– Trace(tsk, c′) → ID: On input a ciphertext c′ and the tracing secret key tsk,
it runs pkID ← GE .Open(skOA, c′) and returns ID by looking up stored db.
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The correctness of this (t)ACE-EP scheme directly follows from the correct-
ness of the SGE scheme GE . Since the SGE does not require any sanitizer key,
the sanitization of our construction is done without any sanitizer key as well.

The proofs for correctness and security are mostly straightforward since san-
itizable group encryption and (traceable) access control encryption are almost
equivalent, modulo to the terminologies. They are deferred to the full version.

4.2 Extension to General Policy

Similar to the scheme of Fuchsbauer et al. [13], this (t)ACE-EP construction can
also be extended to support range policies and a disjunction clause over them,
with both the ciphertext size and decryption key size being poly(�).

Beyond the above policies, we show that (t)ACE-EP can be extended to
support general policy. Our intuition is as follows. For a receiver IDj , the system
generates the decryption key skIDi

of the (t)ACE-EP scheme for each IDi where
P(IDi, IDj) = 1, i.e., receiver IDj holds a set of decryption keys {dkIDi

}P(IDi,IDj)=1.
Let (t)ACEeq = (Setup,MKGen, (TKGen),EKGen,DKGen,Enc,San,Dec,

(Trace)) be an (t)ACE-EP scheme for Peq(IDi, IDj) = 1 iff IDi = IDj . We con-
struct out (t)ACE scheme for general policy by changing the DKGen and Dec
algorithms (all other algorithms remain unchanged).

– DKGen(msk, IDj) → dkIDj
: With the input of msk and an identity IDj , for

any identities IDi with predicate P(IDi, IDj) = 1, this algorithm computes
dkIDi ← ACEeq.DKGen(msk, IDi) and returns the set {dkIDi}P(IDi,IDj)=1 as the
decryption key for receiver IDj .

– Dec(dk, c) → M : With the input of a ciphertext c′ and decryption key dkIDj
=

{dkIDi}P(IDi,IDj)=1, this algorithm decrypts c′ using each dkIDi . It outputs the
message M if one of the decryptions succeeds, ⊥ otherwise.

Our method needs not to replicate the whole cryptosystem for 2� copies [12].
The ciphertext size of our ACE scheme for the general policy is the same as the
underlying (t)ACE-EP scheme, which is O(1). The encryption key size remains
the same as the underlying, i.e., O(1) too. The decryption key size is bounded by
the maximum number of senders any user can receive messages from (denoted by
smax). Theoretically speaking, this can still be as long as 2� when a particular
user can receive from all other users. In practice, we can always heuristically
assign a special identity to this kind of users to reduce the key size. Table 1
compares the size of the parameters of interests for our general-policy ACE
instantiation (from ACE-EP) and the existing one (from 1-ACE [12, §3]).

Note that this scheme only achieves sender anonymity against outsiders. In
other words, a legitimate decryptor can learn information about who the sender
is. This matches the level of Kim–Wu ACE [18]. As argued [18], it suffices for
all application scenarios originally envisioned [12].
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Table 1. Comparison of key size and ciphertext (Ctxt.) sizes

Instantiations from different building blocks Enc. Key Dec. Key Ctxt. San. Key

General-policy ACE from 1-ACE [12, §3] O(2�) O(1) O(2�) O(2�)

General-policy ACE from ACE-EP (This work) O(1) O(smax) O(1) Nil

5 Lattice-Based Access Control Encryption

To achieve our final goal, we adapt Libert et al. [20]’s lattice-based GE scheme,
which is not sanitizable due to a non-randomizable tag. We thus disassemble it
and replace its encryption scheme with a new lattice-based SPKE scheme.

5.1 Lattice Background

We quickly review some preliminaries in lattice-based cryptography. We cite a
special version of the leftover hash lemma [23], which argues the indistinguisha-
bility from a uniform distribution. For our scheme, we consider Zn

q as the Abelian
group G and m = 2n log q be the maximum number of samples to be summed up.

Theorem 5 ([23]). Let G be some finite Abelian group and let k be some integer.
For any m elements g1, . . . , gm ∈ G, consider the statistical distance between the
uniform distribution on G and the distribution given by the sum of a random
subset of g1, . . . , gm. The expectation of this statistical distance over a uniform
choice of g1, . . . , gm ∈ G is at most

√|G|/2m. In particular, the probability that
this statistical distance is more than 4

√|G|/2m is at most 4
√|G|/2m.

The decisional-LWE problem asks to distinguish samples from a perturbed
linear system and random elements from the uniform distribution.

Definition 3 (Decisional Learning with Error [23]). Let Zq be the ring of
integers modulo a positive integer q, and Z

n
q be the set of n-vectors over Zq. Given

a probability distribution χ over Z, a positive integer n, and a positive integer q
of size dependent on n, the goal of learning with error LWEq,χ is to distinguish
between the sample (a,b) from distribution As,χ, defined as b = as+e with e ← χ
for some uniform secret s ← Z

n
q and (a,u) is sampled (via oracle accesses) from

a uniform distribution on Z
n
q × Zq for randomly sampled a.

Definition 4 (Noise Sample Space [23]). For α ∈ (0, 1) and a prime q, let
Ψα denote the distribution over Zq of the random variable 
qX� mod q, where
X is a normal random variable with mean 0 and standard deviation α/2

√
π.

Specifically, if the noise added to the perturbed linear system being an
amplified-then-quantized Gaussian noise (as mentioned in the above definition of
noise sample space), one can apply the following theorem to reduce the hardness
of LWE to existing lattice problems, which helps us to decide the parameters.
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Theorem 6 (Regev’s Reduction [23]). For α ∈ (0, 1) and prime q, if there
exists an efficient, possibly quantum, algorithm for deciding the (Zq, n, Ψα)-LWE
problem for αq > 2

√
n, then there is an efficient quantum algorithm for approxi-

mating the shortest independent vector problem and the gap shortest vector prob-
lem, to within Õ(n/α) factors in �2 norm, in the worst case.

5.2 Lattice-Based Sanitizable Encryption

We start with Regev’s encryption scheme based on the LWE problem [23]. It fea-
tures ciphertext indistinguishability, meaning that an honestly generated cipher-
text is indistinguishable from a random element in the ciphertext space, which
implies key privacy. Sanitization relies on encryption of 0 as randomizers. When
the randomizers form a basis for spanning the randomness space of Regev’s
scheme, the ciphertext can be rerandomized by adding a random subset-sum
of the randomizers. This requires additive homomorphism. However, the noise
accumulates after homomorphic evaluations. We thus change the parameters of
the scheme such that the evaluation correctness (decryption correctness of an
evaluated ciphertext) holds for a bounded number of additions. Namely, we scale
up the modulo size to increase the noise tolerance of decryption.

This sanitization technique assumes an honest encryptor to prepare linearly
independent randomness components, which mismatches the threat model that
randomness is adversarially picked. We address this by a specific structure of the
randomizer that allows us to check the rank of the randomizer, which implies
the rank of the underlying randomness used by the randomizer.

Denote matrix and vector by bold capital and small letter, respectively; our
SPKE scheme (Setup,KeyGen,Enc,Dec,San) is as follows.

– Setup(1λ) → pp: Set n = O(λ), prime q = Õ(n) > 16m(m + 1), m = 2n log q,
k = poly(n). The probability distribution χ is taken to be Ψα, with α =
1/(

√
mω(

√
log n)). Sample Ā ← Z

n×m
q and compute rĀ = Rank(Ā). Output

pp = (q, n,m, k, χ, Ā, rĀ).
– KeyGen(pp) → (pk, sk): Sample s ∈ Z

n
q and e ← χm. Compute b = Āᵀs+e ∈

Z
m
q . Output (pk, sk) = (b, s).

– Enc(pk,m) → c: Given m ∈ {0, 1}k, sample Rm ← {0, 1}k×m and lin-
early independent Rr ← {0, 1}m×m. Set cm = (RmĀᵀ,Rmb + m · 
q/2) ∈
Z
(k+1)×n
q and cr = (RrĀᵀ,Rrb) ∈ Z

(m+1)×n
q . Output c = (cm, cr).

– Dec(sk, c′) → m: We suppose c′ has been sanitized by San. Parse c′ = (c0, c1).
Set m′ = c1 − c0s mod q. For each entry i of m′, say m′

i, set mi = 0 if m′
i is

closer to 0 than 
q/2. Otherwise, set mi = 1. Output m.
– San(c) → c′: Parse c = ((cm,0, cm,1), (cr,0, cr,1)). Check if Rank(cr,0) = rĀ,

output ⊥ if it is not. Otherwise, sample R ∈ {0,±1}k×m and output c′ =
(cm,0 + Rcr,0, cm,1 + Rcr,1) ∈ Z

(k+1)×n
q .

Correctness. The decryption correctness of sanitized ciphertext largely follows
the original scheme [23] and by scaling up the modulo q by m+1 times to preserve
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the correctness after the additions done by San. Decryption outputs

c1 − c0s = (cm,1 + Rcr,1) − (cm,0 + Rcr,0)s
= (Rmb + m · 
q/2 + RRrb) − (RmĀᵀ + RRrĀᵀ)s
= (Rm + RRr)(b − Āᵀs) + m · 
q/2
= (Rm + RRr)e + m · 
q/2.

Since Rm, R and Rr are binary matrices, the absolute value of entries in R′e
for R′ = Rm + RRr is upper bounded by (m + 1)

∑m
i=1 ei, where ei is the i-th

entry of vector e. To recover m, we need to show that the entry of R′e is upper
bounded by q/16; in other words,

∑m
i=1 ei is upper bounded by q/16(m + 1).

By the definition of Ψα, ei = 
qxi� mod q, where xi’s are independent normal
variables with mean 0 and variances α2. Note that

∑m
i=1 ei is at most m/2 ≤

q/32 away from
∑m

i=1 qxi mod q. It suffices to show that |∑m
i=1 qxi mod q| ≤

q/16(m + 1) with high probability. Since xi’s are independent, |∑m
i=1 xi mod q|

is distributed as a normal variable with mean 0 and standard deviation
√

m ·α ≤
1/ω(

√
log n). Thus, by the tail inequality on normal variables, the probability

that the absolute value of the entry in R′e greater than q/16 is negligible.

Security. The proof mostly follows the existing [23]. We sketch its two hybrids.
The first hybrid game shows that a “well-formed” public key is indistinguish-

able from a random element based on the decisional-LWE assumption (Defini-
tion 3). By this assumption, replacing the component of the public key b (the
LWE instance) with a random element u is indistinguishable.

The second hybrid game shows that a ciphertext is statistically indistinguish-
able from a random element by the leftover hash lemma (Theorem 5). Since the
ciphertext (rᵀĀᵀ, rᵀu) is a random subset-sum of (Āᵀ,u) as r ∈ {0, 1}m, it
is statistically indistinguishable from a uniform distribution. It completes our
argument for indistinguishability from random.

Sanitizability. Although checking for uniformly-sampled randomizer is diffi-
cult, one can check whether the randomizers are linearly independent (for ran-
domness space being a vector) instead so that the randomizers always span
the whole randomness space. Recall that one of the components of the cipher-
text is cr,0 = RrĀᵀ, we leverage the following lemma for the rank of matrix
multiplication in linear algebra to check whether the randomness Rr is lin-
early independent or not.4 Given m-dimensional square matrix R and (n × m)-
dimensional matrix A, if R is full rank, Rank(RAᵀ) = Rank(Aᵀ). Hence, if
4 We remark that the dual version of our sanitizable encryption scheme has no such

efficient machinery (which explains our choices). Although randomly adding random-
izer to payload-part can still rerandomize its randomness, “linearly independence”
is not well-defined (the randomness space is Zn

q but it needs n log q linearly indepen-
dent vectors to rerandomize, where linear independence means none of the samples
is a subset-sum of the other samples), and checking seems to have the same com-
plexity as the NP-complete subset-sum problem. Also, the corresponding ciphertext
component to be checked is perturbed by noise, which ruins the structure.
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Rank(cr,0) = Rank(Āᵀ), it implies that Rr is full rank (linearly independent),
and the corresponding randomizers can be used to span the whole randomness
space. For example, sanitization changes the randomness from Rm to Rm+RRr.

For the indistinguishability of sanitized ciphertexts from a random element
in the space of sanitized ciphertexts because of the changes in randomness space
(from binary to integer), an appropriate version of the leftover hash lemma can
be used. In its proof [23, Sect. 5], selecting a subset-sum or an integer combination
of the basis vector does not affect the argument.

Verifiable Encryption. We show the proof system [20] for the ciphertext’s
well-formedness of our SPKE scheme. The ciphertext is transformed into a linear
relation in the form of P · x = v, where witness x has the same Hamming
weight for 0 and 1. Consider the payload-part of a single-bit encryption cm =
(rmĀᵀ, rmb + m · 
q/2) as an example. One can trivially extend to the multi-
bit version as in our scheme since the matrix witness can be formulated as
a single vector by concatenating the columns of the matrix one-by-one. Also,
the randomizer cr is an encryption of 0. By matrix arrangement (joining two
relations via an “AND” relation), the well-formedness of the whole ciphertext is
guaranteed. Consider the relation:

R = {((cm,0, cm,1, Ā), (rm,b)) :
cm,0 = rmĀᵀ ∧ cm,1 = rmb + m · 
q/2 ∧ rm ∈ {0, 1}m ∧ m ∈ {0, 1}}.

With the techniques of Libert et al. [20], the quadratic relation cm,1 = rmb +
m ·
q/2 boils down to (cm,1 = qz+m ·
q/2)∧(z = expand⊗(rm, vdecm,q(b))),
where expand⊗ is a function that exhausts all possibilities of two binary vectors,
one obtained from the binary decomposition function vdec, and z ∈ {0, 1}4m2 log q

such that qz = rmb. Hence, we have

P =
[
A 0n×m 0 0 0
0 0 q 
q/2 0

]
, x =

⎡

⎢⎢⎢⎢
⎣

rm
rc
m

z
m
mc

⎤

⎥⎥⎥⎥
⎦

, v =
[
cm,0

cm,1

]
,

with z = expand⊗(rm, vdecm,q(b)) as an additional part to be verified. Within x,
rc
m is a padding (complement) to make the concatenation of rm and rc

m having
the same Hamming weight for 0 and 1. The term mc is for similar usage.

5.3 Lattice-Based Sanitizable Group Encryption

With our generic ACE construction from any SGE, it remains to instanti-
ate our generic SGE construction. We mostly adopt the building blocks of
Libert et al. [20], i.e., the signature scheme Σ = (Setup,KeyGen,Sign,Vf)
based on the short-integer-solution assumption they used [5,19] (its detailed
description [20, Appendix A.1] is not repeated here) and their techniques in



Access Control Encryption from Group Encryption 437

zero-knowledge arguments for matrix-vector relations, but with the encryption
scheme replaced by our SPKE scheme E = (Setup,KeyGen,Enc,San,Dec).

We omitted (Gr,SampleR) and the related inputs and steps of Enc below
since they are independent of the cryptosystem. The encryptor can add the
NIZK proof for the desired relation, e.g., for inhomogeneous SIS [20], if needed.

– Setup(1λ) → pp:
1. Run E .pp ← E .Setup(1λ) and Σ.pp ← Σ.Setup(1λ).
2. Pick two random matrices F,F∗ ← Z

n×m log q
q , which will be used to hash

a user public key from Z
m log q
q to Z

n
q .

3. Set matrix Hn,q ∈ Z
n×m̄
q such that for any x ∈ Z

n
q , x = Hn,q · vdecn,q(x),

and vdecn,q : Z
n
q → {0, 1}m̄ is an injective vector-decomposition func-

tion [20, Sect. 3.1 ].
Output pp = (E .pp, Σ.pp,F,F∗).

– KeyGenGM(pp) → (pkGM, skGM): Output (pk, sk) ← Σ.KeyGen(1λ).
– KeyGenOA(pp) → (pkOA, skOA):

1. Run E .KeyGen(1λ) for twice to get (E .pkOA, E .skOA) and (E .pk∗
OA, E .sk∗

OA).
2. Output ((E .pkOA, E .pk∗

OA), E .skOA).
– KeyGenu(pp) → (pkID, skID):

1. Run E .KeyGen(1λ) for twice to get (E .pkID, E .skID) and (E .pk∗
ID, E .sk∗

ID).
2. Output ((E .pkID, E .pk∗

ID), E .skID).
– Join(skGM, pkGM, pkID) → certpkID :

1. Parse pkID as (E .pkID, E .pk∗
ID) and compute a single hash value of them:

hID = F · vdecm,q(E .pkID) + F∗ · vdecm,q(E .pk∗
ID) ∈ Z

n
q .

2. Output certpkID ← Σ.Sign(skGM,hID) and store (pkID, certpkID) in db.
– Vfcert(pkGM, pkID, certpkID): Output Σ.Vf(pkGM, pkID, certpkID).
– Enc(pkGM, pkOA, pkID, certpkID , (pkR, x, ) m) → c: To encrypt m ∈ {0, 1}m,

1. Parse pkOA as (E .pkOA, E .pk∗
OA) = (bOA,b∗

OA).
2. Parse pkID as (E .pkID, E .pk∗

ID) = (bID,b∗
ID).

3. Compute the hash value hID = F · vdecm,q(E .pkID) + F∗ · vdecm,q(E .pk∗
ID).

4. Compute the ciphertexts cm ← E .Enc(E .pkID,m), c∗
m ← E .Enc(E .pk∗

ID,
m), cOA ← E .Enc(E .pkOA, vdecn,q(hID)), and c∗

OA ← E .Enc(E .pk∗
OA,

vdecn,q(hID)).
5. Generate the non-interactive proof π with witnesses:

• for signature verification: [dᵀ
1 ||dᵀ

2 ||τ [1] · dᵀ
2 || · · · ||τ [l] · dᵀ

2 ]
ᵀ, b, b∗, r,

• for vector decomposition: w = vdecn,q(D0 · r + D1 · h), h =
vdecn,q(hID),

• for encryption of message: Rm, b, m, Rm,r, R∗
m, b∗, R∗

m,r,
• for encryption of hash of public key: ROA, hID, ROA,r, R∗

OA, R∗
OA,r,

in the following relations:
• Σ.Vf(pkGM, certpkID , pkID) = 1 with (A,A0, . . . ,Al,D,D0,D1) from
pkGM and (τ,d, r) from certpkID :

u = [A|A0| · · · |Al] · [dᵀ
1 ||dᵀ

2 ||τ [1]dᵀ
2 || · · · ||τ [l]dᵀ

2 ]ᵀ + (−D) · w mod q,

0 = Hn,q · w + (−D0) · r + (−D1) · h mod q

0 = Hm,q · h + (−F) · vdecm,q(b) + (−F∗) · vdecm,q(b∗) mod q.
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• cm ← E .Enc(E .pkID,m) and c∗
m ← E .Enc(E .pk∗

ID,m) with (b,b∗)
from public key pkID and (Rm,Rm,r,R∗

m,R∗
m,r) as the randomness:

cm,0 = RmĀᵀ, cm,1 = Rmb + m · 
q/2,
cm,r,0 = Rm,rĀᵀ, cm,r,1 = Rm,rb,

c∗
m,0 = R∗

OAĀ
ᵀ, c∗

m,1 = R∗
mb∗ + m · 
q/2,

c∗
m,r,0 = R∗

m,rĀ
ᵀ, c∗

m,r,1 = R∗
m,rb

∗.

• cOA ← E .Enc(E .pkOA,h) and c∗
OA ← E .Enc(E .pk∗

OA,h) with h =
vdecn,q(hID), (bOA,b∗

OA) from pkOA and (ROA,ROA,r,R∗
OA,R∗

OA,r) as
the randomness:

cOA,0 = ROAĀᵀ, cOA,1 = ROAbOA + h · 
q/2,
cOA,r,0 = ROA,rĀᵀ, cOA,r,1 = ROA,rbOA,

c∗
OA,0 = R∗

OAĀ
ᵀ, c∗

OA,1 = R∗
OAb

∗
OA + h · 
q/2,

c∗
OA,r,0 = R∗

OA,rĀ
ᵀ, c∗

OA,r,1 = R∗
OA,rb

∗
OA.

Some witnesses are transformed to binary representation, which fits with
the existing proof for the linear system [20] that uses binary witness.

6. Output the ciphertext c = (cm, c∗
m, cOA, c∗

OA, π).
– Vf(pkGM, pkOA, pkR, x, c): Return the verification result of proof π against c.
– San(c) → c′: Call Vf over c and output ⊥ if it is invalid; otherwise, parse

c = (cm, c∗
m, cOA, c∗

OA, π) and output (E .San(cm), E .San(cOA)).
– Dec(skID, c′) → m: Parse c′ as (c′

m, c′
OA) and output m ← E .Dec(skID, c′

m).
– Open(skOA, c′) → pkID: Parse c′ as (c′

m, c′
OA) and run h ← E .Dec(skID, c′

OA).
Compute h∗ = Hm,q · h and search for the public key hashes to the value h∗

by F · vdecm,q(·) + F∗ · vdecm,q(·). Output the corresponding public key pkID;
or ⊥ if it is not found.

Optimization. Instantiating our generic construction as above is not optimized.
Specifically, for the ciphertexts marked with ∗, i.e., c∗

m,r and c∗
OA,r, their ran-

domizer components are redundant because these ciphertexts are not sanitized
at San but simply dropped instead. One can remove these randomizers from the
ciphertexts, which also reduces the size of the witness.

Furthermore, the randomizers for encryption of m for a user and vdecn,q(hID)
for OA can be shared by using only single randomness R as a witness instead
of two Rm,r,ROA,r. Specifically, cm,r,0 and cOA,r,0 can be shared, i.e., cm,r and
cOA,r are changed into (cr = RrĀᵀ, cm,r = Rrb, cOA,r = RrbOA), with San
algorithm inputs (cr, cm,r) for cm and (cr, cOA,r) for cOA as randomizers.

Concerns with Subliminal Channel over Error. One may concern that the
error term may form a subliminal channel, as mentioned in the open problem of
Damg̊ard et al. [12]. We briefly explain how our construction prevents it. First,
the public key is certified that the error term there cannot be changed. Second,
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our encryption algorithm by itself does not need any other noises (beyond the
involvement of the public key). Third, if the adversary tries to introduce an error
term to the ciphertext, it will fail the proof verification.

Our sanitization mechanism critically relies on homomorphism. As argued
before, a sanitized ciphertext of our construction, which is a homomorphically-
evaluated HE ciphertext, remains a random element in the ciphertext space
to any adversary without the decryption key. The noise analysis of lattice-based
encryption schemes, e.g., for breaking circuit privacy, is not applicable here since
it requires the knowledge of the decryption key.

6 Concluding Remarks

We connect two seemingly related but different primitives, namely, access con-
trol encryption and group encryption. We borrowed the wisdom from the group
encryption literature and proposed a new access control encryption scheme.
Together with our sanitization technique for LWE-based encryption, we pro-
vide a candidate solution to the open problem left by Damg̊ard in their seminal
work in access control encryption, namely, a practically interesting access con-
trol encryption scheme from noisy, post-quantum assumptions, instead of using
heavyweight tools such as indistinguishability obfuscation or fully homomorphic
encryption.

While we slightly optimized our instantiation (compared to the existing
lattice-based group encryption scheme), there is still room for improvement,
especially for the delicate proof techniques. For practical efficiency, our sugges-
tion is to use the latest access control encryption scheme of Wang and Chow [26],
which comes with timing figures for a prototype implementation (and appears to
be adaptive secure in the random oracle model, or selective secure in the common
reference string model by replacing Fiat–Shamir proof with ZK non-interactive
succinct argument of knowledge). A long-term research problem is to improve
the efficiency of cryptosystems with resiliency to potential quantum computers.
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Abstract. A password protected secret sharing (PPSS) allows a user to
store shares of a secret on a set of L servers, and use a single password
to authenticate itself to any subset of k servers at a later time to access
the shares and reconstruct the secret. Security of PPSS ensures that a
coalition of up to k − 1 servers cannot reveal any information about the
secret message or the password. A related primitive is threshold pass-
word authenticated key exchange protocol (TPAKE) that allows a user
to establish individual authenticated shared secret keys with members of
a subset of k out of L servers, using a single password. These primitives
are well motivated, with applications such as secure storage of secret
keys, and secure group communication using passwords for authentica-
tion. In this paper, we give the first construction of these primitives that
provide post-quantum security. We prove security of our constructions
in concurrent setting, and in the standard model, reducing security to
the decisional LWE problem.

Keywords: Password authentication · Secret sharing · LWE

1 Introduction

Secure storage of secret keys on mobile devices is increasingly becoming com-
monplace for applications such as issuing transactions or accessing resources.
This however has the risk of device getting lost or compromised, and the secret
becoming unrecoverable or falling in the hand of others. To provide protec-
tion against these threats one can use secret sharing to generate and store the
shares of the secret on multiple cloud servers, and reconstruct the secret on the
device when needed. This however requires the user to authenticate herself to
the clouds, requiring individual secrets or passwords to be used to authenti-
cate to each cloud. This however results in a new problem of secure storage or
remembering multiple secrets.
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Password protected secret sharing schemes (PPSS), proposed by Bagherzandi
et al. [3], provides an elegant solution to this problem by allowing the user to
store the shares of the secret on L clouds such that any subset of k out of the L
clouds can be used to recover the secret, while authentication to clouds requires
a single human memorizable password. This makes the system highly usable.
Security of PPSS has been considered in passive and active case where in the
former case protection is against offline password attacks and collusion of the
server, and in the latter case also includes arbitrary tampering and modifications
of protocol messages by malicious servers and network attackers.

PPSS is closely related to a previously studied cryptographic primitive
known as threshold password authenticated key exchange (TPAKE), proposed
by Mackenzie et al. [15], where the goal of the user is to establish individual
authenticated shared keys with each of the k clouds out of a set of L clouds.
TPAKE extend two party password authenticated key exchange (PAKE) [4] to
multiuser setting. Bagherzandi et al. [3] show that one can use a TPAKE to con-
struct a PPSS, and vice versa. All known constructions of TPAKE [1,8,15,21]
however require interaction among servers, while PPSS constructions in [3] and
the follow-up works in [2,5,6,12–14] do not require server to server interactions.

1.1 Our Contributions

We propose the first PPSS scheme that is quantum-safe in the sense that it relies
on a hard problem for which efficient quantum algorithms are not known. Our
construction starts with the general approach of Bagherzandi et al. [3] but using
cryptographic primitives that are quantum safe, but requires significant redesign
of the protocol because of the properties of the primitives. First, we design a basic
scheme secure against semi-honest adversary assuming secure channel, that is
based on the hardness of decisional learning with error problem (dLWE) and
prove its security in the standard model, and then extend it to the full mali-
cious adversary case. The main building block of the proposed protocols is an
additive homomorphic encryption with bounded number of multiplications and
a threshold decryption protocol. The basic PPSS protocol uses fully homomor-
phic encryption scheme (FHE) by Gentry, Sahai and Waters (GSW)1 [11] (see
Sect. 2.2 for an overview of the scheme). Using this encryption scheme instead
of ElGamal scheme used in Bagherzandi et al.’s work, requires redesign of their
basic protocol. Further, to provide security against malicious adversaries without
assuming secure channels between the user and the servers, we need to ensure
that compromised servers are not able to convince a user to construct a wrong
secret message and also transcript of the protocol cannot be used for off-line
attacks. Our proposed PPSS protocol provides security against malicious adver-
saries, and provides strong security in the sense that in addition to the transcript
of the protocol, adversary also receives a bit indicating whether the local output
of a user instance has output some secret message or a rejection symbol “⊥”.

1 Throughout the paper, we will denote FHE of [11] by GSW scheme. The acronym is
the authors’ initials.
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Construction of strongly secure PPSS against malicious adversary enables the
first lattice-based construction of TPAKE using the efficient generic conversion
of [3].

1.2 Overview of Our Technique

Our lattice-based constructions of PPSS protocol follows the general structure
of Bagherzandi et al. [3] where to store a secret message M with servers and
use a password pw to recover it, the user encrypts M and the password pw,
and distributes among the servers the secret key of the encryption scheme using
Shamir’s secret sharing [20]. The user only need to memorize the password and
there is no other secret information. To recover the secret message, the user
triggers a distributed decryption process using only the password and public
parameter(s). We also follow the same design rationale to construct lattice-based
PPSS.

A challenge of using lattice-based schemes is that the existing group homo-
morphic encryption schemes [10,18] do not support re-randomization of the
secret key which is a crucial technique used in [3]. To overcome the difficulty
and to construct strongly secure PPSS against malicious adversaries without
assuming secure channel, we take advantage of fully homomorphic encryption
scheme of Gentry-Sahai-Waters (GSW) [11] to compute over ciphertexts.

PPSS consists of two algorithms: initialization Init and recovery Rec. The
Init algorithm is performed by a user U and the Rec algorithm consists of two
interactive algorithms User (performed by U) and Server (performed by server
Sj). Let the secret message M ∈ {0, 1}log q and the password pw belongs to
dictionary D which is hashed into Zq using a collision-resistant hash function
H. For (H(pw),M) ∈ Zq × {0, 1}log q, the initialization algorithm Init(pw,M)
runs the key generation algorithm of GSW to output (A ∈ Z

m×(n+1)
q ,v ∈ Z

N
q )

as GSW key-pair and secret share the vector v: {shi}L
i=1

(k,L)←−−− ShamirShare(v)
among servers using (k, L) secret sharing [20].

Init(pw,M) outputs public parameters st0 which contain public-key of the
GSW scheme (A), collision-resistant hash function (H), GSW encryptions of
H(pw) (viz. Cpw) and message M (viz. CM ); and private information of servers
sti ← shi. The recovery algorithm Rec(p̃w, st0, sti∈Q) is a 3-round protocol.
Servers initiate Rec by sending encryptions of random elements (viz. CRj

’s
for random Rj ’s) to the user. The user then replies to every server with a fresh
encryption of her password Cp̃w and the set of all encryptions of random elements
{CRj

}. Each of the servers compute the encryption CFj of
∑

j Rj(p̃w−pw)+M
from the ciphertexts, obtained from the user during the protocol and from the
public state st0, utilizing the capability of computing over ciphertexts provided
by the underlying FHE and sends CFj · shj to the user. A linear combination of
these quantities performed by the user reveals M to her.

The encryptions CRj
’s mask the encryption of password in such a way that

the offline dictionary attack can be withstood. This basic PPSS protocol is secure
in the semi-honest setting assuming secure channel (private and authenticated
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channel) between the user and each server. However, this basic protocol cannot
be easily extended to provide security guarantees in the presence of malicious
parties and without assuming the existence of secure channels.

This basic PPSS protocol is secure in semi-honest setting, and assuming
secure channel (private and authenticated channel) between the user and each
server. To provide security against malicious adversaries and in the absence of
secure channels, Bagherzandi et al. [3] exploit the secret key re-randomization
technique of El-Gamal encryption scheme, and use non-interactive simulation-
sound zero-knowledge proofs (SS-NIZK). In lattice based setting, to provide
strong security in the absence of secure channels, we replace secret key re-
randomization property of encryption with the homomorphic properties of the
GSW encryption scheme, and to protect against adversarial tampering of proto-
col messages, use a lattice-based EUF-CMA signature that will be instantiated
using [7].

In the following we describe how we modify the steps of our basic protocol to
provide security against malicious adversary without any secure channel. As in
the basic protocol, each participating server initiates Rec by sending an encryp-
tion of a random element viz. CRj

to the user as the first step. However, now
CRj

’s can be modified by a malicious adversary to remove the random masking
of encryption of password. Therefore we let the servers sign their corresponding
CRj

’s using a lattice-based EUF-CMA signature that can be instantiated using
[7] to protect against such modifications. That is why the user includes the sign-
ing keys of servers in their secret states sti’s, and includes all the corresponding
verification keys into st0. In the basic protocol, the user is supposed to reply with
an encryption of her password with fresh randomness. However, a malicious user
may re-randomize the encrypted password stored in st0 which will ultimately
prove her as a legitimate user. To resist this attack, we force the user to forward
fresh encryption of password. To this end, the legitimate user generates another
GSW key pair (Ā, v̄)2 during the Init and append the public key Ā in st0. User
needs to encrypt the same password, using A and Ā with the same randomness
and sends the two encryptions along with the “proof” of same randomness. User
also sends an encryption CX with respect to the public key A of a random
element X.

Verification of use of the same randomness is possible by a non-interactive
simulation-sound zero-knowledge proof (SS-NIZK) for which we need lattice-
based SS-NIZK. Recently, Peikert et al. [17, Theorem 5.4] proposed non-
interactive zero-knowledge proof system for any NP language based on the hard-
ness of decisional LWE. Generic conversion proposed by Sahai [19] transform any
ordinary non-interactive zero-knowledge proof system into SS-NIZK. Thus, we
have SS-NIZK based on the hardness of decisional LWE, which can be used in the
proposed protocol. After verifying, through SS-NIZK, that the user has honestly
generated fresh encryptions of her password using same randomness, each of the

2 It is worth mentioning that the secret key v̄ does not play any role at any point
during the execution of Rec. Thus user neither requires v̄ to be shared and stored
among the servers nor to keep it with her - she can delete v̄ after executing the Init.
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servers compute encrypted information CFj of
∑

j Rj(p̃w − pw) + M + X and
sends CFj · shj to the user to facilitate threshold decryption of the secret M .
Of course, each of the servers has to sign CFj · shj to prevent any modification
by an adversary. Here, shj denotes the Shamir share of secret key v of the j-th
server. In the end, the user can simply compute a linear sum of CFj · shj to
retrieve M + X and then remove X to obtain M . Note that, an eavesdropper
also can retrieve M + X from CFj · shj’s but since X was randomly chosen, the
secret message M is perfectly hidden from the eavesdropper.

One last point to address is that malicious server(s) may try to convince
the user with a different message M ′ �= M . The user signs the secret message
M during Init phase using EUF-CMA signature to output σ. Finally, the user
encrypts M‖σ instead of just encrypting M . At the end of the recovery phase,
the user checks the veracity of the recovered secret message by the verification
key of signature, which ensures soundness. As a consequence, the user needs to
add the verification key of the user’s signature in st0 during the execution of Init.

1.3 Related Works

Bagherzandi et al. [3] proposed the first password protected secret sharing
scheme (PPSS) in the PKI model. They also showed how to generically transform
a PPSS scheme into a TPAKE scheme. This generic transformation successfully
removed the need for server-to-server communication for authenticating a user in
a TPAKE protocol. Moreover, their security model does not relax the power of a
network adversary – the adversary remains as powerful as the TPAKE adversary.
In their scheme, secret data m is encrypted as (gr, yr ·m) using ElGamal encryp-
tion and the user password pw is encrypted using a lifted ElGamal (gr, yr · hpw)
and both are made public. The secret key (the strong secret) x of ElGamal
is secret shared among the servers. The security of Bagherzandi et al.’s PPSS
is defined through any PPT adversary’s inability to distinguish between two
instantiations of the protocol run with two adversarially chosen messages and
a uniformly chosen (outside adversary’s view) password pw from the dictionary
space. In summary, the adversary does not have any non-negligible advantage
to attack the system – the best it can do is to perform online attack which is
always inherently present in any password based secure systems. Security of the
proposed scheme is based on DDH assumption and in the concurrent security
model.

Camenisch et al. [6] proposed a universally composable security definition for
the two-server case in the public-key setting. Their instantiation is secure under
the hardness of DDH problem in the random oracle model. Jarecki et al. [12] put
forward a scheme without PKI authentication in the reconstruction such that
the reconstruction procedure takes a single round (two messages) between a user
and each server. Indistinguishability based definition of PPSS security in the crs
model is proposed in their paper. The scheme guarantees that the user is able
to recover her shared secret data in the single protocol instance as long as it has
unobstructed communication with at least k honest servers and if 2k − 1 ≤ n.
The construction makes use of a verifiable oblivious pseudorandom function
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(VOPRF) to achieve this property. The follow up work by Jarecki et al. [13]
improves the performance of [12]. Their protocol relaxed the verifiable property
of the OPRF, giving up the ability to discard incorrect computations during
interactions with servers. Finally, Jarecki et al. [14] used a universally composable
threshold oblivious pseudorandom functions to produce PPSS in the crs model.

Among other important works, Abdalla et al. [2] studied general method-
ologies to ensure robustness in PPSS reconstruction and Camenisch et al. [5]
discussed proactive security for distributed password verification and can be
applied to PPSS also.

However, none of the schemes presented so far are secure in the post-quantum
world – almost all of them are instantiated based on the hardness of the Diffie-
Hellman assumption and its variants.

2 Preliminaries

We denote the sets of real numbers and the integers by R and Z respectively. We
denote column-vectors by lower-case bold letters (e.g. b), so row-vectors are rep-
resented via transpositions (e.g. bT ). Matrices are denoted by upper-case bold let-
ters and we sometimes treat a matrix X interchangeably with its corresponding
ordered set representation of column vectors {x1,x2, . . .}. We use I for the iden-
tity matrix and 0 for the zero matrix, where the dimension will be clear from the
contexts. We use [∗|∗] to denote concatenation of vectors or matrices of matching
dimensions and 〈., .〉 to denote inner product of two vectors of same dimension.
We denote the shares of a (k, L) threshold Shamir secret sharing [20] of a vector

v by {shi}L
i=1

(k,L)←−−− ShamirShare(v), where each coordinate of shi is share of
corresponding coordinate of v. A negligible function is denoted by negl(n). The
statistical distance between two distributions X and Y over a finite or countable
domain Ω is defined as 1

2

∑
w∈Ω |Pr[X = w] − Pr[Y = w]|.

We now state some important concepts and notations from Gentry et al.
[11] which are required for our proposed constructions. Let a,b ∈ Z

k
q , � =

�log q�+1, and N = k�. BitDecomp(a) denotes the N -dimensional vector (a1,0, ..,
a1,�−1, . . . , ak,0, . . . , ak,�−1), where ai,j is the j-th bit in ai’s binary represen-
tation where bits are ordered from least significant to most significant. For
a′ = (a1,0, . . . , a1,�−1, . . . , ak,0, . . . , ak,�−1), let BitDecomp−1(a′) = (

∑l−1
j=0 2j ·

a1,j , . . . ,
∑l−1

j=0 2j · ak,j) be the inverse of BitDecomp. Note that the inverse func-
tion BitDecomp−1 remains well-defined even when the input is not a 0/1 vector.
For N -dimensional a′ define, Flatten(a′) = BitDecomp(BitDecomp−1(a′)), to be
an N -dimensional vector with 0/1 entries. When X is a matrix, BitDecomp(X),
BitDecomp−1, or Flatten(X) denotes the matrix formed by applying the corre-
sponding operation to each row of X separately. Finally, let Powersof2(b) =
(b1, 2b1, . . . , 2�−1b1, . . . , bk, 2bk, . . . , 2�−1bk) denotes an N -dimensional vector
obtained from b ∈ Z

k
q. Following are two useful facts from [11] required for

our constructions:
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– 〈BitDecomp(a),Powersof2(b)〉 = 〈a,b〉.
– For any N -dimensional a′,

〈a′,Powersof2(b)〉 = 〈BitDecomp−1(a′),b〉 = 〈Flatten(a′),Powersof2(b)〉.

2.1 Lattices

A lattice Λ is a discrete additive subgroup of Rm. Specifically, a lattice Λ in R
m

with basis B =
[
b1 · · · bn

] ∈ R
m×n, where each bi is written in column form,

is defined as Λ := {∑n
i=1 bixi|xi ∈ Z ∀i = 1, . . . , n} ⊆ R

m. We call n the rank of
Λ and if n = m we say that Λ is a full rank lattice. The dual lattice Λ∗ is the set
of all vectors y ∈ R

m satisfying 〈x,y〉 ∈ Z for all vectors x ∈ Λ. If B is a basis
of an arbitrary lattice Λ, then B∗ = B(BTB)−1 is a basis for Λ∗. For a full-rank
lattice, B∗ = B−T . We refer to B̃ as a Gram-Schmidt orthogonalization of B.

In this paper, we mainly consider full rank lattices containing qZm, called
q-ary lattices, defined as the following, for a given matrix A ∈ Z

n×m
q and u ∈ Z

n
q

Λq(A) :=
{
z ∈ Z

m : ∃ s ∈ Z
n
q s.t. z = A�s mod q

}
.

Λ⊥
q (A) := {z ∈ Z

m : Az = 0 mod q}.

Λu
q (A) := {z ∈ Z

m : Az = u mod q} = Λ⊥
q (A) + x for x ∈ Λu

q (A).

Gaussian on Lattices: Let Λ ⊆ Z
m be an integer lattice. For a vector c ∈ R

m

and a positive parameter σ ∈ R, define: ρc,σ(x) = exp
(
π ‖x−c‖2

σ2

)
and ρc,σ(Λ) =

∑
x∈Λ ρc,σ(x), where ‖x − c‖ denotes the regular euclidean distance between

vectors. The discrete Gaussian distribution over Λ with center c and parameter
σ is Dc,σ(Λ)(y) = ρc,σ(y)

ρc,σ(Λ) ,∀y ∈ Λ.

Learning With Errors (LWE) [18]: The Learning with Errors (LWE) problem
was introduced by Regev [18]. We define the decisional version of LWE, the
security of our schemes are based on this hardness assumption.

Definition 1 (Decisional LWE (dLWE)). Consider a prime integer q, positive

integers n,m and a noise distribution χ over Zq. Suppose B $←− Z
n×m
q , s $←− Z

n
q ,

b $←− Z
m
q and e $←− χm are sampled. The dLWEn,m,q,χ problem is to distinguish

the following two distributions:

(B,B�s + e) and (B,b).

The noise distribution χ is said to be B-bounded if its support is in [−B,B].
We denote by χmax(< q) to be the bound on the noise distribution χ. The
difficulty of the problem is measured by the ratio q/χmax. This ratio is always
bigger than 1 and the smaller it is the harder the dLWE problem.

Lemma 1 ([18]). Let n,m, q, χ be such that the dLWEn,m,q,χ holds. Let R $←−
Z

N×m
q , A =

[
B�s + e B

] ∈ Z
m×(n+1)
q , where B $←− Z

n×m
q , s $←− Z

n
q , and

e $←− χm are sampled. Then the joint distribution (A,R · A) is computation-
ally indistinguishable from uniform over Z

m×(n+1)
q × Z

N×(n+1)
q .
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2.2 The GSW Scheme [11]

We briefly summarize the encryption scheme of GSW which we need for our
constructions.

SetUp(1λ):

– Let χ be a χmax-bounded distribution for which dLWEn,m,q,χ is hard, where
n is an integer, q = poly(n) large enough prime power, and m = Θ(n log q).
Let params = (n, q, χ,m) and N = (n + 1) · (�log q� + 1). For convenience,
we will assume that q is power of 2.

KeyGen(Params):

– Sample t ← Z
n
q , and set s = (1,−t1, . . . ,−tn) ∈ Z

n+1
q .

Let v = Powersof2(s) ∈ Z
N
q .

– Sample B ← Z
m×n
q , and e ← χm. Compute b = B · t + e and set A =

[
b B

] ∈ Z
m×(n+1)
q .

– Output (pk, sk) = (A,v).

Enc(Params, pk,M): On input a message M ∈ Zq, sample RM ← {0, 1}N×m

and compute ciphertext C as follows:

C = Flatten (M · IN + BitDecomp(RM · A)) ∈ Z
N×N
q .

Dec(Params, sk,C): On input a ciphertext C and sk = v, compute

C · v = M · v + small.

Observe that first �log q� coefficients of v are 1, 2, · · · , 2	log q
−2, and therefore
if C · v = M · v + small, then the first �log q� − 1 coefficients of C · v are
M ·g+small, where g = (1, 2, · · · , 2	log q
−2). Recover LSB(M), least-significant-
bit of M , from M · 2	log q
−2 + small, then recover the next-least-significant-bit
from (M − LSB(M)) · 2	log q
−3 + small, and so on.

2.3 Non-interactive Simulation-Sound Zero-Knowledge Proofs

To assure that protocol messages are well-formed we use simulation-sound non-
interactive zero-knowledge (SS-NIZK) proofs. To construct our lattice-based
PPSS, we need lattice-based SS-NIZK. Recently, Peikert et al. [17, Theorem
5.4] proposed non-interactive zero-knowledge proof system for any NP language
based on the hardness of dLWE. Generic conversion proposed by Sahai [19] trans-
form any ordinary non-interactive zero-knowledge proof system into SS-NIZK.
Thus, we now have SS-NIZK based on the hardness of dLWE.

Loosely speaking, a NIZK proof system for language L is a triplet of algo-
rithms, prover P which produces a proof π on input a statement instance x,
witness ω and public parameters PP ; verifier V which accepts or rejects on
input (PP, x, π); and a simulator S which outputs a (simulated) proof on the
input PP and x. We briefly recall that for a (TS , qP , εZK , εSS) SS-NIZK, there
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is a simulator algorithm S running in time TS which answers up to qP prover
queries with simulated proofs on statements of adversary‘s choice (which can
include false statements) such that (1) the statistical difference between the
view of an interaction with S and an interaction with the real prover is at most
εZK , and (2) the probability that any adversary interacting with S outputs a
correct proof on a new false statement, i.e. a for a statement different from those
for which it receives simulated proof from S, is at most εSS .

We need such proofs for the language Lst0
U corresponding to the one protocol

message from User to Servers (see Sect. 3.2) parameterized by public parameters
st0 ← {A, Ā,H,Cpw,CM , {Veri}L

i=1}, where
Lst0

U = {(Cp̃w, C̄p̃w) ∈ Z
N×N
q | ∃ (Hp̃w,Rp̃w) ∈ Zq × {0, 1}N×m where Cp̃w =

Flatten(Hp̃w · IN + BitDecomp(Rp̃w · A)) & C̄p̃w = Flatten(Hp̃w · IN +
BitDecomp(Rp̃w · Ā)).

2.4 Password Protected Secret Sharing (PPSS)

We follow the definition of Bagherzandi et al. [3] for password protected secret
sharing (PPSS). A PPSS scheme is a protocol involving a user U, and L servers
(S1, . . . ,SL). The scheme is a tuple (Init,Rec), where Init(pw,M) is an initial-
ization algorithm (followed by U) which on inputs pw from a dictionary D and
secret message M from message space M outputs st = (st0, st1, . . . , stL), where
st0 are public parameters and sti is the private state of server Si; Rec consists
of two interactive algorithms – User(p̃w, st0) followed by user U on its password
p̃w along with public parameters st0 and Server(sti) is followed by Si on input
its secret state sti.

Definition 2 ((k, L)-Password Protected Secret Sharing [3]). A (k, L)-
PPSS scheme for secret message space M, and dictionary D is a tuple (Init,Rec)
involves user U and L servers S1, . . . ,SL:

– st ←− Init(pw,M): On input a secret message M ∈ M and password pw ∈ D
outputs st = (st0, st1, . . . , stL), where st0 is public parameters/state and sti is
the private state of server Si.

– M ′/⊥ ←− Rec(p̃w, st0, sti∈Q): Rec is an interactive protocol between user U
and a subset of k servers indexed by Q ⊂ {1, . . . , L} such that

• M ′/⊥ ←− User(p̃w, st0): On input a password p̃w ∈ D and st0, outputs
M ′/⊥. User is an interactive protocol followed by U.

• Server(st0, sti): Server is an interactive protocol, followed by Si, runs on
input (st0, sti). Server algorithm has no local output.

Definition 3 (Correctness). If honest user U interacts with k or more uncor-
rupted servers then it must reconstruct the same secret message M that was
input of Init; i.e., for any M ∈ M, any pw ∈ D with st ←− Init(pw,M) and
M ′ ←− Rec(pw, st0, sti∈Q), we have M = M ′.

In this paper, we consider the reconstruction process Rec to be performed among
the user and exactly k many servers.
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The security of a (k, L)-PPSS scheme as described in Bagherzandi et al.
[3], is defined in terms of adversary’s advantage in distinguishing between two
PPSS instances initialized with two different secret messages (M0,M1), where
the adversary can access the public parameters st0, the private states {sti}i∈F of
a set of servers F with |F| = k − 1 it corrupts, and has concurrent oracle access
to instances of the User and Server algorithms executing on inputs defined by
the Init algorithm.

Definition 4 (Security). A (k, L)-PPSS scheme on dictionary D and secret
message space M is said to be (L, k,Time, qU , qS , ε)-secure if for any M0 �= M1 ∈
M, and any probabilistic algorithm A with running time Time which interacts
with at most qU user and qS server sessions, it must hold that

|p0 − p1| ≤
⌊

qS

|D|
⌋

+ ε,

where pb := Pr[1 ← AUser�(pw,st0),Server
�(st0,{sti}i∈F )(Mb, st0, {sti}i∈F )] for a ran-

dom pw ∈ D and st ←− Init(pw,Mb). Here, User�(pw, st0) is an oracle which
allows A to interact with any number of User(pw, st0) instances concurrently;
Server�(st0, {sti}i∈F ) is an oracle which allows A to interact with any number
of Server(st0, {sti}i∈F ) instances concurrently. Note that, in addition to protocol
transcript, we let A learn a bit which indicates whether User(pw, st0) instance
locally outputs some secret s or it locally outputs a rejection sign ⊥.

Note 1. We consider the strong security notion of PPSS. If we do not allow the
adversary to obtain a bit corresponding to the local output of the user instance
then a weak-secure model of PPSS is captured [3].

Definition 5 (Soundness). A PPSS scheme on dictionary D and secret mes-
sage space M is δ-sound if for any (M, pw, p̃w) ∈ M×D×D and User(p̃w, st0)
interacting with A(M, pw, p̃w, st), Pr[M ′ /∈ {M,⊥}] < δ, where st is output by
Init(pw,M) and M ′ is output by User(p̃w, st0). We define weak soundness in the
same way but restricting p̃w to p̃w = pw.

3 Password Protected Secret Sharing (PPSS)

In this section, we present our constructions of (k, L)-PPSS. First, we describe
a basic PPSS scheme secure against semi-honest adversaries assuming secure
channel(s) between user and server(s). We then extend the basic protocol to have
security against malicious adversaries without assuming any secure channel.

3.1 (k, L)-PPSS Secure Against Semi-Honest Adversaries Assuming
Secure Channel

We set the parameters as the following:
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– Let χ be a χmax-bounded distribution for which dLWEn,m,q,χ is hard, where
n is an integer, q = poly(n) large enough prime power, and m = Θ(n log q).
For convenience, we will assume that q is power of 2.

– Let N = (n + 1) · (�log q� + 1).

The proposed PPSS consists of the following algorithms:
Init(pw,M): On input a secret message M ∈ Zq and password pw ∈ D,

1. Run KeyGen of GSW:
• Sample t ← Z

n
q , and set s = (1,−t1, . . . ,−tn) ∈ Z

n+1
q .

• Let v = Powersof2(s) ∈ Z
N
q .

• Sample B ← Z
m×n
q , and e ← χm.

• Compute b = B · t + e and set A =
[
b B

] ∈ Z
m×(n+1)
q .

2. Choose collision resistant hash function H : {0, 1}∗ → Zq. Compute Hpw =
H(pw).

3. Run Enc of GSW to encrypt Hpw ∈ Zq and M ∈ Zq:
• Sample Rpw,RM ← {0, 1}N×m.
• Compute

Cpw =Flatten (Hpw · IN + BitDecomp(Rpw · A)) ∈ Z
N×N
q ;

CM =Flatten (M · IN + BitDecomp(RM · A)) ∈ Z
N×N
q .

4. Compute {shi}L
i=1

(k,L)←−−− ShamirShare(v).
5. Output st = (st0, st1, . . . , stL), where st0 ← {A,H,Cpw,CM} is the public

parameters, and sti ← shi is the secret state of server Si for i = 1, . . . , L.

Rec(p̃w, st0, sti∈Q): On input st0 and secret states sti of k many servers
indexed by Q and password p̃w ∈ D, perform the following steps:

– Server 1: Server Sj (for every j ∈ Q) performs the following steps:
1. Randomly choose Rj ∈ Zq and run Enc of GSW to encrypt Rj :

• Sample RSj
← {0, 1}N×m.

• Compute

CRj
=Flatten

(
Rj · IN + BitDecomp(RSj

· A)
) ∈ Z

N×N
q .

2. Sends CRj
to the user U.

– User 1: User U with input p̃w (possibly equal to pw) and st0 performs the
following steps:
1. Compute Hp̃w = H(p̃w) and run Enc of GSW to encrypt Hp̃w:

• Sample Rp̃w ← {0, 1}N×m and compute

Cp̃w =Flatten (Hp̃w · IN + BitDecomp(Rp̃w · A)) ∈ Z
N×N
q .

2. Compute λj =
∏

i�=j(−IDi)
∏

i�=j(IDj−IDi)
mod q. Here IDj denotes server ID of

j-th server session, where IDj ∈ Q ⊆ {1, . . . , L} and |Q| = k.
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3. Send (Cp̃w, {CR̃j
, λj}j∈Q) to {Sj}j∈Q.

– Server 2: Server Sj (for all j ∈ Q) proceeds as follows:
1. Compute

CFj =
(∑

i∈Q\{j} CR̃i
+ CRj

)
· Cp̃w −

(∑
i∈Q\{j} CR̃i

+ CRj

)
· Cpw +

CM .
2. Compute Wj = λjCFj · shj .
3. Send Wj to the user U.

– User 2: User U proceeds as follows:
1. Computes

∑
i∈Q λi · CFi · shi, and outputs M .

Correctness and Security. In this section, we analyze the correctness and
security of the above PPSS.

Theorem 1 (Correctness). The above scheme with parameters proposed in
Sect. 3.1 is correct.

Proof. When all the servers and user are honest, all the CFi of User2 round are
same, say, CF. Hence,

∑
i∈Q λi · CFi · shi = CF · (

∑
i∈Q λishi) = CF · v (by

Lagrange’s interpolation). Correctness of the above scheme now follows from the
correctness of decryption algorithm of GSW scheme. ��

We note that in the above scheme, the eavesdropping attack is warded off
by the assumption of secure channels. Moreover, offline attack is resisted due to
the masking of p̃w by the random element

∑
i∈Q Ri. Hence, the security follows

from the security of FHE [11] and secret sharing scheme [20]. We have the
following theorem, the security proof of which follows from the proof technique
of Theorem 4 with proper restrictions.

Theorem 2. The above construction is secure against semi-honest adversary,
according to the Definition 4, assuming secure channel and the hardness of the
dLWEn,m,q,χ.

3.2 (k, L)-PPSS Secure Against Malicious Adversaries

We set the parameters as follows:

– Let χ be a χmax-bounded distribution for which dLWEn,m,q,χ is hard, where
n is an integer, q = poly(n) large enough prime power, and m = Θ(n log q).
For convenience, we will assume that q is power of 2.

– Let N = (n + 1) · (�log q� + 1).

The proposed PPSS consists of the following algorithms:
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Init(pw,M): On input a secret message M ∈ Zq and password pw ∈ D,
perform the following steps:

1. Generate EUF-CMA Signature algorithm [7] {(Sigi,Veri)}L
i=1.

2. Run KeyGen of GSW:
• Sample t ← Z

n
q , and set s = (1,−t1, . . . ,−tn) ∈ Z

n+1
q .

• Let v = Powersof2(s) ∈ Z
N
q .

• Sample B ← Z
m×n
q , and e ← χm.

• Compute b = B · t + e and set A =
[
b B

] ∈ Z
m×(n+1)
q .

3. Independently run KeyGen of GSW i.e. choose t̄, B̄, ē and construct Ā =
[
b̄ B̄

] ∈ Z
m×(n+1)
q .

4. Choose collision resistant hash function H : {0, 1}∗ → Zq. Compute Hpw =
H(pw).

5. Run Enc of GSW to encrypt Hpw and M with respect to A:
• Sample Rpw,RM ← {0, 1}N×m.
• Compute

Cpw =Flatten (Hpw · IN + BitDecomp(Rpw · A)) ∈ Z
N×N
q ;

CM =Flatten (M · IN + BitDecomp(RM · A)) ∈ Z
N×N
q .

6. Compute {shi}L
i=1

(k,L)←−−− ShamirShare(v).
7. Output st = (st0, st1, . . . , stL), where st0 ← {A, Ā,H,Cpw,CM , {Veri}L

i=1},
and {sti ← {shi,Sigi}}L

i=1.

Rec(p̃w, st0, sti∈Q): On input st0 and secret states sti of k many servers indexed
by Q and password p̃w ∈ D, perform the following steps:

– Server 1: Server Sj (for each j ∈ Q) performs the following steps:
1. Randomly choose Rj ∈ Zq and run Enc of GSW to encrypt Rj w.r.t A:

• Sample RSj
← {0, 1}N×m

• Compute

CRj
=Flatten

(
Rj · IN + BitDecomp(RSj

· A)
) ∈ Z

N×N
q .

2. Compute Sigj(CRj
).

3. Send CRj
and Sigj(CRj

) to the user U.

– User 1: User U does the following:
1. Check {Veri(Sigi(CR̃i

)) = accept or reject}i∈Q.
• If any Veri(Sigi(CR̃i

)) �= accept for i ∈ Q, send ⊥ to {Sj}j∈Q.
2. Otherwise,

(a) Compute Hp̃w = H(p̃w) and randomly choose X ∈ Zq.
Run Enc of GSW to (i) encrypt Hp̃w with respect to A and Ā with
the same randomness Rp̃w and (ii) encrypt X with respect to A.
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• Sample Rp̃w,RX ← {0, 1}N×m.
• Compute

Cp̃w =Flatten (Hp̃w · IN + BitDecomp(Rp̃w · A)) ∈ Z
N×N
q ;

C̄p̃w =Flatten
(
Hp̃w · IN + BitDecomp(Rp̃w · Ā)

) ∈ Z
N×N
q ;

CX =Flatten (X · IN + BitDecomp(RX · A)) ∈ Z
N×N
q .

(b) Compute λj =
∏

i�=j(−IDi)
∏

i�=j(IDj−IDi)
mod q where IDj denotes server ID

of j-th server session, where IDj ∈ Q ⊆ {1, . . . , L} and |Q| = k.
(c) Compute {πj ← P[Lst0

U ]((Cp̃w, C̄p̃w), (Hp̃w,Rp̃w))}j∈Q.
(d) Send (Cp̃w, C̄p̃w,CX , πj , {CR̃j

,Sigj(CR̃j
), λj}j∈Q) to {Sj}j∈Q.

– Server 2: Server Sj (for all j ∈ Q) proceeds as follows:
1. Check {Veri(Sigi(CR̃i

)) = accept or reject}i∈Q.
• If any Veri(Sigi(CR̃i

)) �= accept for i ∈ Q, send ⊥ to user U.
2. If V[Lst0

U ]((Cp̃w, C̄p̃w), (Hp̃w,Rp̃w)) = reject, send ⊥ to user U.
3. Otherwise,

• compute
CFj =

(∑
i∈Q\{j} CR̃i

+ CRj

)
· Cp̃w −

(∑
i∈Q\{j} CR̃i

+ CRj

)
· Cpw +

(CM + CX)
• compute Wj = λjCFj · shj

• compute Sigj(Wj)
4. Send

(
Wj ,Sigj(Wj)

)
to the user U.

– User 2: User U performs the following steps:
1. If receive ⊥ from any server Si (for i ∈ Q) then output ⊥.
2. Check {Veri(Sigi(Wi)) = accept or reject}i∈Q.

• If any Veri(Sigi(Wi)) �= accept for i ∈ Q, output ⊥.
3. Otherwise,

• compute
∑

i∈Q Wj =
∑

i∈Q λiCFi · shi to retrieve M + X.
• output M = (M + X) − X.

Correctness and Security. We now analyze the correctness and security of
the above PPSS.

Theorem 3 (Correctness). The above scheme with parameters proposed in
Sect. 3.2 is correct.

Proof. When all the servers and user are honest, all the CFi of User2 round are
same, say, CF. Hence,

∑
i∈Q λi · CFi · shi = CF · (

∑
i∈Q λishi) = CF · v (by

Lagrange’s interpolation). So, by the decryption algorithm of GSW scheme, user
will get M . ��
Theorem 4. The above construction is secure against malicious adversary,
according to the Definition 4, assuming the hardness of dLWEn,m,q,χ.
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Proof. Let A be an algorithm followed by an adversary attacking the PPSS
scheme, running in time T , accessing at most qU user and qS server sessions,
and corrupting servers {Si}i∈F for some set F such that |F| = k − 1. The proof
follows by sequence of games. Let pi = Pr[1 ← (A ⇐⇒ Gamei)].

Game 0: Game0 models the interaction of A with the PPSS scheme. For con-
venience, we will assume following modification: A can engage in at most qS

sessions but it is up to A to decide which servers will be involved in these ses-
sions. We handle this in the security game by creating qS distinct sessions for
each server, thus n · qS total sessions, even though a qS-limited adversary will
utilize only qS of them.

Game 1: Game0 and Game1 are similar apart from following exception: in
Game0, shi’s are (k, L)-secret-sharing of a random value of ZN

q whereas in Game1
shi’s are (k, L)-secret-sharing of 0 ∈ Z

N
q . Therefore unless A knows k shares,

the view of A in Game1 is identical to its view in Game0. Now, A gets to know
k − 1 shares of v simply by corrupting k − 1 servers. However server queries
could possibly leak information about shi’s from Wj . But in any server query,
if adversary does not use the legitimate password, Wj is masked with a random
value in both Game0 and Game1. Thus, the maximum number of shi that is effec-
tively used by the adversary in either game is k − 1. Hence, Game0 and Game1
are identical in the view of adversary which follows from the perfect secrecy of
[20].

Game 2: Game1 and Game2 are similar apart from following exception: in
Game2, User� chooses a random diagonal matrix from Z

N×N
q and a random

matrix from {0, 1}N×m, and computes Cp̃w and C̄p̃w using A and Ā, respec-
tively; replies with Cp̃w and C̄p̃w in each of qu sessions. Server� follows Game1.
As Cp̃w and C̄p̃w are output of GSW [11], the view of A in Game2 is computation-
ally indistinguishable to its view in Game0, i.e., |p1−p2| = qu ·(εGSW +εSig +εSS),
since we have to add the probability εSig that some signature sent to the each user
session is not verified for some Sigj(CR̃j

) and we have to add the probability εSS

that some (Cp̃w, C̄p̃w) sent to the each user session is not verified to be of the form
(Flatten(Hp̃w ·IN +BitDecomp(Rp̃w ·A)),Flatten(Hp̃w ·IN+BitDecomp(Rp̃w ·Ā)).

Game 3: Game2 and Game3 are similar apart from following exception: in
Game3, Server� replies a random value from Z

N×N
q as CFj , in each of n · qs

sessions. User� follows Game2. Due to the security of GSW, CFj is pseudoran-
dom. Hence, the view of A in Game3 is computationally indistinguishable to its
view in Game2, i.e., |p2 − p3| = n · qs · (εGSW + εSig), since we have to add the
probability εSig that all signature sent to the each server session is not verified
for some Sigj(CR̃j

).

Game 4: Game3 and Game4 are similar apart from following exception: in
Game4, A is always chosen as a random element of Zm×(n+1)

q in Init phase.
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It remains to show that Game3 and Game4 are computationally indistinguish-
able for a PPT adversary, which we do by giving a reduction from the dLWE
problem.

Reduction to dLWE: Suppose A has non-negligible advantage in distinguishing
Game3 and Game4. We use A to construct an dLWE algorithm B. The simulator
B uses the adversary A to solve dLWE in the following way:
Given access to dLWE instance (B∗,b∗) over Z

n×m
q × Z

m
q , we can transform it

to A∗ =
[
b∗ B∗ ] ∈ Z

m×(n+1)
q . Replace A by A∗ in Init phase. If A∗ is random

element from Z
m×(n+1)
q , then the view of A is exactly same as Game4. If A∗

follows dLWE distribution, then the view of A is exactly same as Game3. Hence,
B’s advantage in solving dLWE is the same as A’s advantage in distinguishing
Game3 and Game4, as required. This completes the proof. ��

Soundness: The PPSS protocol described in Sect. 3.2 satisfies the correctness
property (see Definition 3) and strong security property (see Definition 4). How-
ever, the malicious server(s) may try to convince a honest user to output a
wrong secret message M ′ �= M by sending manipulated or ill-formed ciphertexts
during the protocol described in Sect. 3.2. To protect against such malicious
attacks, or in other words, to achieve soundness (see Definition 5) the user signs
the secret message M during Init phase using EUF-CMA signature to obtain
σ and encrypts the concatenation M‖σ instead of just encrypting M . At the
end of the recovery phase, the user checks the veracity of the recovered secret
message by the verification key of signature. As a consequence, the user needs to
add the verification key VerU of the user’s signature in st0 during the execution
of Init. With this modification, the resulting scheme is δ-sound, where δ = εSig
is the forgery probability of (SigU ,VerU ).

Note that to encrypt M‖σ using GSW, we first need to encode the concate-
nated value. One possible encoding technique is to use trapdoor hash function of
[9]. ��

3.3 Constructing Lattice Based TPAKE from PPSS

We briefly describe a generic conversion of the PPSS protocol into a TPAKE
which was proposed by Bagherzandi et al. [3] in the PKI model. The conver-
sion required three primitives - a strongly secure PPSS protocol, a CCA secure
encryption scheme and an EUF-CMA signature scheme. However, the generic
conversion could not be instantiated to achieve post quantum security due to
the absence of strongly secure quantum safe PPSS scheme. Our lattice based
strongly secure PPSS construction removes the obstacle and enables us to have
an instantiation of TPAKE in quantum safe platform.

We recall that in a TPAKE protocol, a user establishes (symmetric) keys in
a secure manner with a “threshold” number of servers by authenticating herself
to the servers. Moreover, the authentication of the user is performed jointly by
a threshold number of servers on the basis of a password that was chosen by the
user during the initial set up phase.
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In the generic conversion of a PPSS into a TPAKE, the user chooses a CCA
secure lattice based encryption scheme [16] (based on the hardness of dLWE
problem), generates the public key and secret key pair (pk, sk), runs the Init
procedure of PPSS with secret message sk and password pw and includes pk
into the public state st0. During the Rec procedure of PPSS (Sect. 3.2), every
server Sj which does not abort the process (i.e., in step Server 2 the servers have
successfully verified the well-formedness of ciphertexts of the password computed
by the user), randomly chooses a key kj , signs the key with the EUF-CMA Sig-
nature of [7] to produce σj , encrypts (kj , σj) with pk to output ej and sends
ej to the user along with Wj . Suppose the local output of the user is sk′ in a
particular PPSS instance. If sk′ = ⊥ then the user sets kj = ⊥ and aborts the
process, otherwise user decrypts ej to obtain (kj , σj) and verifies whether σj is
a valid signature of kj . If yes, then the user locally outputs kj as its common
secret key with server Sj.

The EUF-CMA signatures and CCA encryption scheme guarantee that no
network adversary can re-route messages from a session in which honest players
are involved, or modify them in any manner, which implies in particular that all
the User sessions are independent of each other.

4 Conclusion

The existing literature on PPSS does not have any treatment on post-quantum
security, which leaves a research gap. In this paper, we construct a lattice-based
PPSS to fill this gap. Our construction assumes PKI and supports concurrent
execution against quantum adversaries in the standard model. As an impor-
tant consequence, we successfully achieved the first quantum-safe construction
of a TPAKE, by a generic transformation, which resolves a long standing open
problem.
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Abstract. In the past few years, significant progress on homomorphic
encryption (HE) has been made toward both theory and practice. The
most promising HE schemes are based on the hardness of the Learn-
ing With Errors (LWE) problem or its ring variant (RLWE). In this
work, we present new conversion algorithms that switch between differ-
ent (R)LWE-based HE schemes to take advantage of them. Specifically,
we present and combine three ideas to improve the key-switching proce-
dure between LWE ciphertexts, transformation from LWE to RLWE, as
well as packing of multiple LWE ciphertexts in a single RLWE encryp-
tion. Finally, we demonstrate an application of building a secure channel
between a client and a cloud server with lightweight encryption, low
communication cost, and capability of homomorphic computation.

Keywords: Homomorphic encryption · Learning with Errors · Key
switching

1 Introduction

In recent years, there have been remarkable advances in cryptographic primitives
for secure computation without compromising data privacy. Specifically, homo-
morphic encryption (HE) [28] has been considered as one of the most attractive
solutions due to its conceptual simplicity and efficiency. HE is a cryptosystem
which supports arithmetic operation on encrypted data, so that any computa-
tional task can be outsourced to a public cloud while data provider does not need
to either perform a large amount of work or stay online during the protocol exe-
cution. In addition, the concrete efficiency of HE has been improved rapidly by
theoretic and engineering optimizations [4,15,41]. Recent studies demonstrated
that this technology shows reasonable performance in real-world tasks such as
biomedical analysis and machine learning [20,33,34].

Currently, all the best-performing HE schemes, such as BGV [8], BFV [6,23],
TFHE [18] and CKKS [16], are based on the hardness of Learning with Errors
(LWE) or its ring variant (RLWE). In particular, ring-based HE systems have
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shown remarkable performance in real-world applications due to the efficient use
of the ciphertext packing technique [43]. Each HE scheme has its own pros and
cons, but it has been relatively less studied how to take advantage of various HE
schemes by converting ciphertexts of different types [5].

Our Contribution. In this paper, we provide a toolkit to transform (R)LWE-
based ciphertexts and generate another ciphertext under a new key or of a differ-
ent structure. Specifically, we present three conversion methods: (1) to perform
a new key-switching (KS) operation between LWE ciphertexts; (2) to transform
an LWE ciphertext into an RLWE-based ciphertext; and (3) to merge multiple
LWE ciphertexts into a single RLWE ciphertext. The first two conversions (from
LWE to LWE/RLWE) have quasi-linear complexity Õ(N) where N denotes the
dimension of (R)LWE. The last packing algorithm is a generalization of LWE-
to-RLWE conversion which achieves a better amortized complexity. Our algo-
rithms are almost optimal in the sense that their complexities are quasi-linear
with respect to the size of input ciphertext(s). Moreover, there is no reduction of
ciphertext level (modulus) because all building blocks (e.g. homomorphic auto-
morphism) are depth-free. The proposed methods have wide applications in the
literature: For example, our KS algorithm can replace the old KS method in the
FHEW and TFHE schemes [18,22], and our LWEs-to-RLWE packing method
can improve the performance of [5,10] which present a hybrid framework between
different HE schemes. In addition, the proposed methods can be easily general-
ized to design better key-switching methods between (R)LWE ciphertexts with
different dimensions, or more generally, Module LWE [8,35] based schemes with
different parameters.

Finally, we present experimental results to show that our techniques achieve
better asymptotic and concrete performance than previous methods. Moreover,
we provide a secure outsourcing solution of storage and computation to a cloud
with low communication cost. A client encrypts data via an LWE-based sym-
metric encryption on a lightweight device. On receiving LWE ciphertexts, the
public server transforms or packs them into RLWE encryptions to provide better
functionality for homomorphic arithmetic. Compared to prior works based on
block or stream ciphers [3,9,21,27,37], our approach has advantages in terms of
flexibility, functionality and efficiency.

Technical Overview. Let N be the dimension and q the modulus of an LWE
problem. An LWE ciphertext with secret s ∈ Z

N is of the form (b,a) ∈ Z
N+1
q

and its phase is defined as μ = b+ 〈a, s〉 (mod q). Typically, the phase is a noisy
encoding of some underlying plaintext. Performing homomorphic operations on
a ciphertext will increase this noise and thus the phase will be changed, but as
long as the noise is below a given threshold, the underlying plaintext is preserved.
Similarly, in the case of RLWE over R = Z[X]/(XN + 1) and its residue ring
Rq = R/qR, the phase of an RLWE ciphertext (b, a) ∈ R2

q of secret s is defined
as μ = b + as (mod q).

Suppose that we are given some ciphertexts of a cryptosystem (which is not
necessarily an HE scheme) and wish to publicly transform them into ciphertexts
of another HE scheme for secure computation. In general, this task can be done
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by evaluating the decryption circuit of the initial cryptosystem using an HE
system if a homomorphically encrypted secret key is given. Furthermore, the
conversion can be more efficient if input ciphertexts are encrypted by an LWE-
based cryptosystem because it suffices to homomorphically evaluate the phase,
instead of performing the full decryption which usually includes expensive (non-
arithmetic) operations such as bit extraction or rounding [12,26].

We remark that this approach can be still inefficient in some cases. For exam-
ple, if we aim to convert an LWE encryption (b,a) ∈ Z

N+1
q under secret s ∈ Z

N

into an RLWE ciphertext, the secret key owner should generate and publish an
RLWE ‘encryption’ of s as the evaluation key, and the conversion can be done
by computing the LWE phase μ = b + 〈a, s〉 homomorphically over an RLWE-
based HE system. In fact, the evaluation key consists of N key-switching keys
from individual s[i] to the RLWE secret and the conversion requires N RLWE
KS operations. Consequently, the total complexity grows quadratically with the
security parameter. The techniques we present in this work do not follow the
existing framework of the phase evaluation.

Our first idea is to embed elements of Z
N
q or Zq into Rq. Given an LWE

ciphertext (b,a) ∈ Z
N+1
q of the phase μ0 = b + 〈a, s〉, we consider the RLWE

ciphertext ct = (b, a) ∈ R2
q for a =

∑
i∈[N ] a[i]·Xi and the secret s =

∑
i∈[N ] s[i]·

X−i ∈ R. The ciphertext ct is not a completely valid RLWE ciphertext but its
phase μ = b + as (mod q) contains μ0 = μ[0] in its constant term. We use this
idea to accelerate the KS procedure between LWE ciphertexts. For another LWE
secret s′, we first perform a RLWE KS procedure from s to s′ =

∑
i∈[N ] s

′[i]·X−i.
Then the phase of the output ciphertext is approximately equal to μ in R, so it
is enough to extract an LWE ciphertext from the ciphertext.

Our second algorithm is an efficient conversion from LWE to RLWE. In the
example above, the RLWE ciphertext ct cannot be directly used for further
homomorphic computation because the phase μ contains invalid values in its
coefficients except the constant term. We observe that the field trace function
TrK/Q of the number field K = Q[X]/(XN + 1) zeroizes all the monomials Xi

for 0 �= i ∈ [N ] but keeps the constant term (scaled by a factor of N). We
homomorphically evaluate the trace function to obtain an RLWE ciphertext
whose phase is approximately equal to the constant polynomial N ·μ0 (the extra
factor N can be easily removed). To minimize the conversion complexity, we
present a recursive algorithm that includes only log N automorphism evaluations,
based on the tower of number fields. Furthermore, our algorithm reduces the
number of key-switching keys to log N compared to N of the previous method.

Finally, we present a packing algorithm that takes at most N LWE cipher-
texts as the input and returns a single RLWE ciphertext. Suppose that we are
given n ≤ N input ciphertexts of phases μj ∈ Zq. A naive solution is to perform
our LWE-to-RLWE conversion on each LWE ciphertext and adds up the output
RLWE ciphertexts into a single ciphertext, which requires n log N homomorphic
automorphisms. We can improve the complexity by performing the FFT-style
ciphertext packing algorithm. The first step is a tree-based algorithm which
generates an RLWE ciphertext of phase μ ∈ Rq such that μ[(N/n) · j] ≈ n · μj
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Table 1. Computational costs (number of scalar operations) and storage (number of Zq

elements to store a switching key) of conversion algorithms. N denotes the dimension
of (R)LWE, n denotes the number of input LWE ciphertexts to be packed in an RLWE
ciphertext, and d denotes the gadget decomposition degree.

Type Previous works [17,39] This work
Complexity Storage Complexity Storage

LWE-to-LWE O(dN2) dN2 O(dN logN) 2dN

LWE-to-RLWE O(dN2) 2dN2 O(dN log2 N) 2dN logN

nLWEs-to-RLWE O(dN2 logN) 2dN2 O(dN logN(n+
log(N/n)))

2dN logN

for all j ∈ [n], i.e., it collects the phases μj ’s in an element
∑

j∈[n] μj · Y j of
Kn = Z[Y ]/(Y n + 1). In the following step, we evaluate the field trace TrK/Kn

to annihilate the useless coefficients μ[i] for (N/n) � i and finally return an
RLWE ciphertext of phase ≈ N · ∑

j∈[n] μj · Y j . The whole process requires
(n − 1) + log(N/n) homomorphic automorphisms, so we achieve an amortized
complexity of < 1 + n−1 · log N automorphisms per an LWE ciphertext.

Related Works. In [25,26], the authors presented a method to switch the
underlying field of HE ciphertexts. In these works, ciphertexts were taken as the
input of the trace function to reduce the dimension of the base ring dynamically
during computation purely for efficiency reasons. Meanwhile, in our LWE(s)-
to-RLWE algorithm, we utilize the trace function in a totally different way for
a different purpose. We homomorphically evaluate the field trace on plaintexts
(phases) to generate a valid RLWE ciphertext over a larger ring Rq from LWE
ciphertexts over Zq.

It has been studied in [17,39] how to convert multiple LWE ciphertexts into
a single RLWE ciphertext. Given n LWE ciphertexts {(bj ,aj)}j∈[n], it vertically
stacks the i-th entries of all ciphertexts in a polynomial by b =

∑
j∈[n] bj ·Xj and

ai =
∑

j∈[n] aj [i]·Xj for i ∈ [N ]. Then it homomorphically evaluates b+
∑

i ai ·si

over an RLWE-based HE scheme. Different from our packing algorithm, this
method has a fixed complexity of N RLWE KS operations, independently from
the number n of input ciphertexts. This implies that it needs to pack Ω(N) many
ciphertexts to achieve minimal amortized complexity.

Boura et al. [5] presented various transformations between ciphertexts of dif-
ferent RLWE-based HE schemes. Our work is in an orthogonal direction to [5]
as we aim to switch the secret key or change the type of ciphertexts (e.g. LWE,
RLWE) while preserving their phases (encoded plaintexts). In addition, the per-
formance of [5] can be improved by replacing the underlying KS methods by our
conversion algorithms.

Cheon and Kim [13] considered converting an ElGamal-like public key
encryption scheme to an HE scheme. This involves evaluating the decryption
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circuit homomorphically, which consumes at least 10 levels, while our approach
is almost depth-free.

In Table 1, we provide the performance of previous works and analyze the
computational costs of our algorithms. Our LWE-to-RLWE conversion consists
of several iterations in which we evaluate an automorphism and add the resulting
ciphertext to the original input. There have been proposed a few algorithms [11,
12,14,31] which are technically similar to our conversion algorithm. However, to
the best of our knowledge, this is the first study to reinterpret and apply this
building block to the KS (conversion) of HE ciphertexts.

Recently, Gentry and Halevi [24] and Brakerski et al. [7] presented a new
framework that compresses multiple HE ciphertexts into a single ciphertext with
the nearly optimal rate of 1−o(1). Our approach solves an associated but funda-
mentally different problem. In our application, we could build a lightweight and
low-latency communication from the client to the cloud because fresh ciphertexts
are high-rate and extremely small. However, they should be packed or converted
into an RLWE ciphertext before computation. Meanwhile, previous works [7,24]
aim to compress HE ciphertexts after computation and thereby minimize the
communication cost from the cloud to the client.

2 Background

We denote vectors in bold, e.g. u, and the i-th entry of a vector u will be denoted
by u[i]. For simplicity, we identify Z ∩ (−q/2, q/2] as a set of representatives of
Zq and write the index set [N ] = {0, 1, . . . , N − 1}. For a finite set S, U(S)
denotes the uniform distribution on S.

2.1 Cyclotomic Field

Let ζ = exp(πi/N) for a power-of-two integer N . We denote by K = Q(ζ) the
2N -th cyclotomic field and R = Z[ζ] the ring of integers of K. We will identify
K (resp. R) with Q[X]/(XN +1) (resp. Z[X]/(XN +1)) with respect to the map
ζ 	→ X. The residue ring of R modulo an integer q is denoted by Rq = R/qR.
For a, b ∈ Z (or R, Rq), we informally write a ≈ b (mod q) if a = b + e for some
small e ∈ Z (or R).

An element of K (resp. R, Rq) can be uniquely represented as a polynomial
of degree less than N with coefficients in Q (resp. Z, Zq). The i-th coefficient of a
polynomial a(X) will be denoted by a[i]. We use the map ι : a 	→ ∑

i∈[N ] a[i] ·Xi

to identify a polynomial and the vector of its coefficients.

2.2 (Ring) Learning with Errors

Given the dimension N , modulus q and error distribution ψ over Z, the LWE
distribution with secret s ∈ Z

N is a distribution over Z
N+1
q which samples

a ← U(ZN
q ) and e ← ψ, and returns (b,a) ∈ Z

N+1
q where b = 〈a, s〉+ e (mod q).
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The (decisional) LWE assumption of parameter (N, q, χ, ψ) is that it is compu-
tationally infeasible to distinguish the LWE distribution of a secret s ← χ from
the uniform distribution U(ZN+1

q ).
The RLWE problem [36] is a variant of LWE which has been widely used to

design HE schemes, e.g. [8,16,18,23]. The key s is chosen from the key distri-
bution χ over R, and an RLWE sample (b, a) ∈ R2

q by sampling random a and
noise e from U(Rq) and the error distribution ψ over R and computing b = as+e
(mod q). The RLWE assumption with parameter (N, q, χ, ψ) is that the RLWE
distribution of a secret s ← χ and U(R2

q) are computationally indistinguishable.

2.3 Gadget Decomposition

Let q be an integer and g = (g0, . . . , gd−1) be an integral vector. A gadget
decomposition [38], denoted by g−1 : Zq → Z

d, is a map satisfying 〈g−1(a),g〉 =
a (mod q) for all a ∈ Zq. We can naturally extend its domain and define g−1 :
Rq → Rd by a =

∑
i∈[N ] ai · Xi 	→ ∑

i∈[N ] g
−1(ai) · Xi.

The base (digit) decomposition [6,8] and prime decomposition [4,15] are typ-
ical examples. This technique has been widely used to control the noise growth
during homomorphic computation such as key-switching, which will be described
in the next section.

2.4 Key Switching

We describe a well known KS method for RLWE ciphertexts. The goal of KS
procedure is to transform a ciphertext into another ciphertext under a different
secret key while approximately preserving its phase.

• KSKeyGen(s ∈ R, s′ ∈ R) : Sample k1 ← U(Rd
q) and e ← χd. Compute

k0 = −s′ · k1 + s · g + e (mod q) and return the KS key K = [k0|k1] ∈ Rd×2
q .

• KeySwitch(ct;K) : Given an RLWE ciphertext ct = (c0, c1) ∈ R2
q and a KS

key K ∈ Rd×2
q , compute and return the ciphertext ct′ = (c0, 0) + g−1(c1) · K

(mod q).

Roughly speaking, a KS key consists of d RLWE ‘encryptions’ of s · gi under
s′, i.e., K · (1, s′) ≈ s · g (mod q). For an RLWE ciphertext ct ∈ R2

q and a KS
key K ← KSKeyGen(s, s′), the output ct′ ← KeySwitch(ct;K) satisfies that

〈ct′, (1, s′)〉 = c0 + g−1(c1) · K · (1, s′)

= c0 + 〈g−1(c1), s · g + e〉 = 〈ct, (1, s)〉 + eks (mod q) (1)

for the KS noise eks = 〈g−1(c1), e〉 ∈ R.

2.5 Galois Group and Evaluation of Automorphisms

We recall that K ≥ Q is a Galois extension and its Galois group Gal(K/Q)
consists of the automorphisms τd : ζ 	→ ζd for d ∈ Z

×
2N , the invertible residues



466 H. Chen et al.

modulo 2N . The automorphisms τd ∈ Gal(K/Q) gives some distinctive func-
tionalities to the HE system. For example, many of RLWE-based schemes such
as BGV [8], BFV [6,23] and CKKS [16] utilize the Discrete Fourier Transform
(DFT) to encode multiple plaintext values in a single polynomial, so that the
slots of a ciphertext can be permuted by evaluating an automorphism.

We describe a well-known method to homomorphically evaluate an automor-
phism τd : a(X) → a(Xd).

• AutoKeyGen(d ∈ Z
×
2N ; s ∈ R) : Run Ad ← KSKeyGen(τd(s), s).

• EvalAuto
(
ct ∈ R2

q , d ∈ Z
×
2N ;Ad

)
: Given a ciphertext ct = (c0, c1) ∈ R2

q , an
integer d ∈ Z

×
2N and an automorphism key Ad, compute and return the cipher-

text ct′ ← KeySwitch ((τd(c0), τd(c1));Ad).

Security. The homomorphic automorphism algorithm is a simple application
of KS, so its security basically relies on the hardness of RLWE for KSKeyGen.
Moreover, an additional circular security assumption should be made because
Ad is a special encryption of τd(s) with secret s.

Correctness. Suppose that ct ∈ R2
q is an RLWE ciphertext such that μ =

〈ct, (1, s)〉 (mod q) and Ad ← AutoKeyGen(d; s) is an automorphism key. Then
the output ciphertext ct′ ← EvalAuto(ct, d;Ad) satisfies that

〈ct′, (1, s)〉 ≈ 〈(τd(c0), τd(c1)), (1, τd(s))〉 = τd (〈ct, (1, s)〉) = τd(μ) (mod q),

from the property of KeySwitch.

In the rest of this paper, we simply write EvalAuto(ct, d;Ad) = EvalAuto(ct,
d) by assuming that an automorphism key Ad ← AutoKeyGen(d; s) is properly
generated and implicitly taken as input of the EvalAuto algorithm. We remark
that homomorphic automorphism has almost the same complexity as the KS
procedure because the computation of τd(ci) is very cheap.

3 Conversion Algorithms

This section presents core ideas and their application to efficient conversion
between HE ciphertexts of different secret keys or algebraic structures.

3.1 Functionality of Automorphisms on Coefficients

We examine how the elements of Gal(K/Q) act on the coefficients of an input
polynomial. Let us define the sets Ik =

{
i ∈ [N ] : 2k ‖ i

}
1 for 0 ≤ k < log N

and Ilog N = {0}. Then, the index set [N ] can be written as the disjoint union⋃
0≤k≤log N Ik. We are interested in how the automorphism τd(·) acts on the

monomials for d = 2� + 1, 1 ≤ � ≤ log N . We note that the map i 	→ i · d

1 2k ‖ i if and only if 2k | i and 2k+1
� i.
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(mod N) is a signed permutation on Ik, i.e., if i ∈ Ik, then τd(Xi) = ±Xj for
some j ∈ Ik. In particular, we see that

τd(Xi) = Xi for i ∈
⋃

k>log N−�

Ik,

τd(Xi) = −Xi for i ∈ Ilog N−�. (2)

In other words, the map μ 	→ μ+τd(μ) doubles the coefficients μ[i] if 2log N−�+1| i,
but zeroizes the coefficients μ[i] if 2log N−�‖ i.

3.2 LWE to LWE

Let (b,a) ∈ Z
N+1
q be an LWE ciphertext under a secret s ∈ Z

N with phase
μ0 = b + 〈a, s〉 (mod q). We aim to design an efficient LWE-to-LWE conversion,
which replaces the secret of the ciphertext into another secret s′ ∈ Z

N while
almost preserving the phase μ0.

Our first idea is to embed Z
N
q and Zq into Rq to utilize the ring structure.

We consider the two polynomials

a := ι(a) =
∑

i∈[N ]

a[i] · Xi ∈ Rq,

s := τ−1 ◦ ι(s) =
∑

i∈[N ]

s[i] · X−i ∈ R,

and we define the polynomial pair ct = (b, a) ∈ R2
q . We remark that ct can

be viewed as an RLWE ciphertext with secret s satisfying 〈ct, (1, s)〉[0] = (b +
as)[0] = μ0, i.e., its phase μ = 〈ct, (1, s)〉 (mod q) of ct stores μ[0] = μ0 in the
constant term but all other coefficients, μ[i] for 0 �= i ∈ [N ], have no valid values.

Though ct is not a valid RLWE ciphertext, we can still apply the KS algo-
rithm. If we perform the KS procedure from s to s′ = τ−1 ◦ ι(s′), then the output
ciphertext also includes a valid value in its constant term from the property of
KS. Finally, we can extract an LWE ciphertext with secret s′.

• LWE-to-LWE ((b,a),K) : Given an LWE ciphertext (b,a) ∈ Z
N+1
q and a KS

key K ∈ RL×2
q , set the RLWE ciphertext ct ← (b, a) ∈ R2

q where a = ι(a).
Compute ct′ = (b′, a′) ← KeySwitch(ct,K) ∈ R2

q and let a′ = ι−1(a′). Return
the ciphertext (b′[0],a′) ∈ Z

N+1
q .

Correctness. We claim that, if K ← KSKeyGen(s, s′) is a KS key from s to
s′, then (b′[0],a′) is an LWE ciphertext under s′ whose phase is approximately
equal to the phase of (b,a) under s. It can be shown by

b′[0] + 〈a′, s′〉 = (b′ + a′s′)[0] ≈ (b + as)[0] = b + 〈a, s〉 (mod q),

where the approximate equality is derived from the property of KeySwitch (see
Eq. (1)).
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Algorithm 1. Homomorphic Evaluation of the Trace Function (EvalTrN/n)
Input: ciphertext ct = (b, a) ∈ R2

q , a power-of-two integer n ≤ N .
1: ct′ ← ct
2: for k = 1 to log(N/n) do
3: ct′ ← ct′ + EvalAuto(ct′; 2log N−k+1 + 1)

4: return ct′ ∈ R2
q

3.3 LWE to RLWE

Our next goal is to design a conversion algorithm from LWE to RLWE. As
explained above, if we set an RLWE ciphertext (b, a = ι(a)) ∈ R2

q from an LWE
ciphertext (b,a) ∈ Z

N+1
q , then its phase has the valid value only in the constant

term. Hence, the key question is how to annihilate useless coefficients of μ except
the constant term μ[0] to generate a valid RLWE ciphertext.

We remark that the field trace TrK/Q : K → Q, a 	→ ∑
τ∈Gal(K/Q) τ(a) has

the required property, i.e., TrK/Q(1) = N and TrK/Q(Xi) = 0 for all 0 �= i ∈ [N ].
Therefore, conversion from LWE into RLWE can be done by evaluating the field
trace homomorphically. A naive solution is to evaluate each automorphism τ(·)
and add up all the resulting ciphertexts, and therefore it requires N KS oper-
ations. We now describe a recursive algorithm that uses an algebraic structure
of cyclotomic fields for reducing the conversion complexity. To be precise, for
the tower of finite fields K = KN ≥ KN/2 ≥ · · · ≥ K1 = Q, where Kn denotes
the (2n)-th cyclotomic field for a power-of-two integer n, the field trace can be
expressed as a composition TrK/Q = TrK2/K1 ◦ · · · ◦ TrKN /KN/2

of log N field
traces and each Galois group Gal (K2�/K2�−1) has a (unique) nontrivial element
τ2�+1|K2�

for � = 1, . . . , log N . Therefore, the evaluation of TrK2�/K2�−1 requires
only one homomorphic rotation.

See Algorithm 1 for a description of homomorphic trace evaluation TrKN /Kn

for any power-of-two integer n ≤ N . We use the parameter n = 1 in the following
LWE-to-RLWE conversion algorithm.

• LWE-to-RLWE
(
(b,a) ∈ Zq × Z

N
q

)
: Set the RLWE ciphertext ct ← (b, a) ∈

R2
q where a = ι(a). Then, run Algorithm 1 and return the ciphertext ct′ ←

EvalTrN/1(ct) ∈ R2
q .

The phase of the input LWE ciphertext (b,a) is multiplied by N by the trace
evaluation. We will explain in the next section how to remove the constant N
by adding a pre-processing step.

Correctness. We will prove the correctness of Algorithm 1 for an arbitrary
n ≤ N . Let μ = 〈ct, (1, s)〉 (mod q) be the phase of an input ct. We inductively
show that the phase μ′ = 〈ct′, (1, s)〉 (mod q) satisfies

μ′ ≈ TrKN /K
N/2k

(μ) = 2k ·
∑

2k|i∈[N ]

μ[i] · Xi (mod q) (3)
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at iteration k. For the base case k = 0, the statement is trivially true since
μ′ = μ. Now we assume that (3) is true for k − 1. In the next k-th iteration, we
evaluate the map μ′ 	→ μ′ +τd(μ′) for d = 2log N−k+1+1. We recall from (2) that
τd(Xi) = Xi for 2k | i ∈ [N ] and τd(Xi) = −Xi for i ∈ [N ] such that 2k−1 ‖ i.
From the induction hypothesis,

μ′ ≈ 2k−1 ·
∑

2k−1|i
μ[i] · Xi

= 2k−1 ·
∑

2k|i
μ[i] · Xi + 2k−1 ·

∑

2k−1‖i

μ[i] · Xi (mod q),

τd(μ′) ≈ 2k−1 ·
∑

2k|i
μ[i] · Xi − 2k−1 ·

∑

2k−1‖i

μ[i] · Xi (mod q),

and thereby μ′ + τd(μ′) ≈ 2k · ∑
2k|i μ[i] · Xi. Finally, we obtain

μ′ ≈ TrKN /Kn
(μ) = (N/n) ·

∑

(N/n)|i∈[N ]

μ[i] · Xi (mod q)

after k = log(N/n) iterations. We remark that the noise does not blow up much
during the evaluation since τd(·) preserves the size of elements in R.

The correctness of LWE-to-RLWE is directly derived from this result with a
parameter n = 1. Given an RLWE encryption ct = (b, a), we homomorphically
compute the field trace TrKN /Q and the phase μ′ = 〈ct′, (1, s)〉 of the output
ciphertext is approximately equal to TrKN /Q(b + as) = N · (b + as)[0] = N · (b +
〈a, s〉), as desired.

3.4 LWEs to RLWE

An LWE ciphertext has a phase in Zq, which can store only one scalar message, so
our LWE-to-RLWE conversion algorithm aims to generate an RLWE ciphertext
whose phase μ contains an approximate value of an initial LWE phase in its
constant term. However, in general, an RLWE ciphertext can store at most N
scalars in the coefficients of its phase. So a natural question is how to efficiently
merge multiple LWE ciphertexts into a single RLWE ciphertext.

Suppose that we are given n LWE ciphertexts {(bj ,aj)}j∈[n] for some n =
2� ≤ N and let μj ∈ Zq be the phase of (bj ,aj) under the same secret s ∈ Z

N . A
naive answer for the question above is to run ct′j ← LWE-to-RLWE ((bj ,aj)) ∈ R2

q

for all j ∈ [n] and take their linear combination ct′ =
∑

j∈[n] ct
′
j · Y j for Y =

XN/n. Then the phase of ct′ is approximately equal to N · ∑j∈[n] μj · Y j , which
is an element of the ring of integers of Kn. However, this method is not optimal
in terms of both complexity and noise growth.

In this section, we present a generalized version of our previous algorithm
which takes multiple LWE encryptions as input and returns a single RLWE
ciphertext. This conversion consists of two phases: packing and trace evaluation.
The first step (Algorithm 2) is an FFT-style algorithm which merges n = 2�
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Algorithm 2. Homomorphic Packing of LWE Ciphertexts (PackLWEs)
1: input ciphertexts ctj = (bj , aj) ∈ R2

q for j ∈ [2�]
2: if � = 0 then
3: return ct ← ct0
4: else
5: cteven ← PackLWEs

({ct2j}j∈[2�−1]

)

6: ctodd ← PackLWEs
({ct2j+1}j∈[2�−1]

)

7: ct ←
(
cteven + XN/2� · ctodd

)
+ EvalAuto

(
cteven − XN/2� · ctodd, 2� + 1

)

8: return ct

multiple RLWE ciphertexts into one. The phase μ of an output ciphertext stores
the constant terms of input phases in its coefficients μ[i] for (N/n) | i. All valid
values are now packed into an element of Rn, so in the next step, we use the idea
of the previous section to evaluate the field trace TrKN /Kn

and zeroize useless
coefficients.

• LWEs-to-RLWE
(
{(bj ,aj)}j∈[n]

)
: Given n = 2� LWE ciphertexts (bj ,aj) ∈

Z
N+1
q , do the following:

1. Set ctj ← (bj , aj) ∈ R2
q for each j ∈ [n] where aj = ι(aj).

2. Run Algorithm 2 to get ct ← PackLWEs
({ctj}j∈[n]

)
.

3. Compute and return the ciphertext ct′ ← EvalTrN/n(ct).

The packing algorithm and the subsequent field trace evaluation for n = 2�

ciphertexts require (n − 1) and log(N/n) homomorphic automorphisms, respec-
tively. Hence the total complexity of LWEs-to-RLWE is (n − 1) + log(N/n) < n +
log N automorphisms, yielding an amortized complexity less than (1+n−1·log N)
automorphisms per an input LWE ciphertext. We remark that this conversion
algorithm achieves the asymptotically optimal amortized complexity (O(1) auto-
morphisms) when n = Ω(log N). Similar to the LWE-to-RLWE conversion, the
phase of input ciphertexts are multiplied by the factor of N which can be removed
by a pre-processing step described below.

Correctness. We first show the correctness of our packing algorithm. For j ∈
[2�], let ctj be input ciphertexts of Algorithm 2 such that μj = 〈ctj , (1, s)〉[0]
(mod q). For the output ciphertext ct ← PackLWEs

({ctj}j∈[2�]

)
, we claim that

its phase satisfies

μ
[
(N/2�) · j

] ≈ 2� · μj (mod q) for all j ∈ [2�]. (4)

We again use the induction on � ≥ 0. The base case � = 0 is trivial since
μ[0] = μ0. Suppose that our statement is true for some 0 ≤ � − 1 < log N . For
2� input ciphertexts, Algorithm 2 first divides them into two groups of size 2�−1

and runs PackLWEs twice (in lines 5 and 6). From the induction hypothesis, the
output ciphertexts cteven, ctodd have phases μeven, μodd such that



Efficient Homomorphic Conversion Between (Ring) LWE Ciphertexts 471

μeven

[
(N/2�−1) · j

] ≈ 2�−1 · μ2j (mod q),

μodd

[
(N/2�−1) · j

] ≈ 2�−1 · μ2j+1 (mod q),

for all j ∈ [2�−1]. Then, we compute and return the ciphertext ct whose phase is

μ ≈ (μeven + XN/2� · μodd) + τd

(
μeven − XN/2� · μodd

)

= μ′
even + XN/2� · μ′

odd,

for μ′
even = μeven + τd(μeven) and μ′

odd = μodd + τd(μodd), which satisfies that

μ′
even

[
(N/2�) · (2j)

] ≈ 2� · μ2j , μ′
even

[
(N/2�) · (2j + 1)

] ≈ 0 (mod q),

μ′
odd

[
(N/2�) · (2j)

] ≈ 2� · μ2j+1, μ′
odd

[
(N/2�) · (2j + 1)

] ≈ 0 (mod q)

for all j ∈ [2�−1]. Therefore, their linear combination μ = μ′
even + XN/2� · μ′

odd

has coefficients μ
[
(N/2�) · j

] ≈ 2� · μj for all j ∈ [2�], as desired.
Now let us discuss the LWEs-to-RLWE algorithm. After running the packing

algorithm, the phase μ of ct ← PackLWEs
({ctj}j∈[n]

)
has n ·μj in its coefficients

μ[i] such that (N/n) | i. So we homomorphically evaluate the field trace TrKN /Kn

on the ciphertext ct to zeroize all other coefficients. It follows from the property
of Algorithm 1 that the final output ct′ ← EvalTrN/n(ct) satisfies

〈ct′, (1, s)〉 ≈ TrKN /Kn
(μ) = (N/n) ·

∑

(N/n)|i∈[N ]

μ[i] · Xi

≈ (N/n) ·
∑

j∈[n]

(n · μj) · X(N/n)·j = N ·
∑

j∈[n]

μj · Y j (mod q)

where Y = XN/n, as desired.

Removing the Leading Term. Let {ctj}j∈[n] be n LWE input encryptions of
our LWEs-to-RLWE algorithm and ct′ the output RLWE ciphertext. We denote
their phases by μj = 〈ctj , (1, s)〉 (mod q) and μ′ = 〈ct′, (1, s)〉 (mod q), respec-
tively. As shown in their correctness proofs, our algorithms converting one or
more LWE encryptions into an RLWE ciphertext introduce the additional term
N into the phase of output RLWE ciphertext.

We present a pre-processing technique to remove this constant. We multiply
the constant N−1 (mod q) to the input LWE ciphertexts so that their phases
μj are also multiplied by the same factor. If we run the same algorithm on the
ciphertexts of phases N−1 ·μj (mod q), then the leading term N is naturally can-
celled out and the phase of the output RLWE ciphertext will be approximately
equal to N · ∑j∈[n](N

−1 · μj) · Y j =
∑

j∈[n] μj · Y j , as desired.
We note that this method is depth-free and does not incur extra noise growth.

It requires the ciphertext modulus q to be co-prime to the dimension N , but it
is not a strong assumption in practice2.
2 The ciphertext modulus q is usually set to be a product of primes 1 modulo 2N

so that we can utilize an efficient Number Theoretic Transformation (NTT) for
polynomial arithmetic in Rq.
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Further Computation on a Packed Ciphertext. In a plaintext level, our
conversion algorithm computes the function Z

n
q → Rq, (μj)j∈[n] 	→ ∑

j∈[n] μj ·Y j ,
which is not a multiplicative homomorphism. However, it is often required to
pack multiple values in plaintext slots, instead of coefficients, so that parallel
computation (e.g. element-wise addition or multiplication) is allowed over an
encrypted vector of plaintexts.

It has been studied in several researches about HE bootstrapping [12,14,26,
32] how to represent values from coefficients to slots and vice versa. In the case of
BGV, BFV or CKKS, the transformation can be done by evaluating the encoding
or decoding functions of the underlying scheme, which are expressed as linear
transformations over plaintext vectors. We do not consider it here because this
coefficients-to-slots conversion is scheme-dependent. Moreover, its computational
cost is cheaper than the main part, so that the total/amortized complexities do
not change much even if we add this extra step at the end.

4 Implementation

4.1 Experimental Results

We provide a proof-of-concept implementation to show the performance of our
conversion algorithms. Our source code is developed in C++ by modifying
Microsoft SEAL version 3.5.1 [42]. All experiments are performed on a desktop
with an Intel Core i7-4770K CPU running a single thread at 3.50GHz, compiled
with Clang 9.0.0 (-O3)3.

We set the secret distribution as the uniform distribution over the set
of ternary polynomials in R coefficients in {0,±1}. Each coefficient/entry of
(R)LWE error is drawn according to the discrete Gaussian distribution centered
at zero with standard deviation σ = 3.2. The selected parameter sets provide
at least 128-bit of security level according to the LWE estimator [2] and HE
security standard white paper [1].

Table 2 presents timing results and noise growth of our conversion algorithms.
The ciphertext moduli q of three parameter sets are products of 2, 4, and 8 dis-
tinct primes, respectively. We use an RNS-friendly decomposition method [4] and
exploit an efficient NTT in order to optimize the basic polynomial arithmetic.
As discussed in Sect. 3.4, the LWEs-to-RLWE conversion algorithm achieves
a better amortized running time as the number n of input LWE ciphertexts
increases. For comparison, we implemented the old KS method using the same
parameter sets and decomposition method, and it took 203ms and 1628ms when
(N, log q) = (212, 72) and (213, 174), respectively, compared to 1.0ms and 4.8ms
of our method. We refer the reader to Appendix A which provides noise anal-
ysis of our conversion algorithms. The noise variances of the LWE-to-LWE and
LWE(s)-to-RLWE conversions are O(N) and O(N3), respectively, which align
very well with our experimental results.

3 Currently, our source repository is private to keep the anonymity, but we will make
it public in the final version.
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Table 2. Concrete performance of our conversion algorithms measured by total running
time (amortized timing per ciphertext) and noise growth (an upper bound on the
bit size of coefficients of conversion errors). n stands for the number of input LWE
ciphertexts.

(N, log q) n (212, 72) (213, 174) (214, 389)

Total Noise Total Noise Total Noise
(Amortized) (Amortized) (Amortized)

LWE to LWE - 1.03 ms 7 4.81 ms 8 27.1 ms 10
LWE to RLWE - 11.2 ms 18 57.7 ms 21 361 ms 23
LWEs to RLWE 2 11.4 ms 18 58.7 ms 21 364 ms 23

(5.70 ms) (29.4 ms) (182 ms)
8 16.8 ms 20 83.2 ms 22 492 ms 24

(2.10 ms) (10.4 ms) (61.5 ms)
32 45.0 ms 20 209 ms 22 1168 ms 24

(1.41 ms) (6.53 ms) (36.5 ms)

We did not specify the underlying HE scheme or its plaintext space as the
performance of our conversion algorithms depends only on the parameters N ,
log q and n. Since the bit-size of a conversion noise is only O(log N) bits, the rest
of the space can be used to store a plaintext or be left empty to provide more
homomorphic functionality after conversion. For example, if we use the BFV
scheme with the second parameter set (N, log q) = (213, 174), then our conversion
algorithms work correctly as long as the bit-size of its plaintext modulus is ≤ 152.

4.2 Lightweight Communication with Homomorphic Functionality

HE is a useful cryptographic technology for secure outsourced computation on
the cloud, however, its applications have some common issues in practice. Since
HE schemes are comparably expensive, a client must have enough memory and
computing power. Moreover, the ciphertext expansion rate can be reasonably
small only when we pack a large number of values in a single RLWE ciphertext.
Therefore, the total communication cost may blow up much when the client
sends a small amount of information.

To mitigate this issue, Naehrig et al. [40] came up with a blueprint that the
client sends data, encrypted by a light-weight symmetric encryption scheme, as
well as a homomorphically encrypted secret key of the cryptosystem. Then, the
cloud homomorphically evaluates its decryption circuit to get homomorphically
encrypted data. In this scenario, the main challenge is to construct a symmetric
encryption with low communication cost (expansion rate) and conversion com-
plexity. After the first attempt by Gentry et al. [27] which evaluated the AES-128
circuit using the BGV scheme, there has been a line of studies (e.g. LowMC [3],
Kreyvium [9], FLIP [37], Rasta [21]) to design HE-friendly symmetric encryp-
tion schemes. These block/stream ciphers made progresses in communication
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cost and encryption time, but the transformation of ciphertexts results in a
considerable computational overhead on the cloud side.

In this work, we present a new solution that the client uses an LWE-based
symmetric encryption on the edge device. On receiving the LWE ciphertexts,
the cloud transforms them into RLWE encryptions using our conversion algo-
rithm. In addition, we adapt the idea of Coron et al. [19] to reduce the size
of LWE ciphertexts and communication cost. To be precise, a symmetric key
LWE encryption of secret s is of the form (b,a) ∈ Z

N+1
q for a random vector

a ← U(ZN
q ) and b = −〈a, s〉 + μ (mod q) where μ is the phase from the input

which is a randomized encoding of the plaintext. Since the second component a
is purely random over Z

N
q , we can modify the encryption algorithm such that it

samples a seed se and takes it as the input of a pseudo-random number gener-
ator f : {0, 1}∗ → Z

N
q to generate a = f(se). As a result, a ciphertext can be

represented as a pair (b, se), and this variant remains semantically secure in the
random oracle model. Moreover, when a client sends multiple LWE ciphertexts
to the cloud, the same seed can be reused by computing the random part of
the i-th ciphertext by ai = f(se; i). Hence, the communication cost per an LWE
ciphertext is only log q bits.

Our approach has advantages in computational efficiency compared to prior
works based on block/stream ciphers. Prior works have several minutes’ latency
for the transformation (e.g. 4.1, 63.1, 29.3, 0.65 and 15.2 min of AES-128, LowMC
v1, Kreyvium, FLIP, and Rasta, respectively4), and have to collect a number
of ciphertexts to achieve the minimal amortized complexity. Meanwhile, our
method has significantly better conversion latency and amortized timings (sev-
eral milliseconds), and enables a smooth trade-off between them via the packing
algorithm. As discussed in Sect. 3.4, it requires to collect only Ω(log N) LWE
ciphertexts to obtain a nearly optimal amortized complexity.

Our method is generic in the sense that it preserves the phases of input
ciphertexts approximately regardless of the type of HE schemes or a plaintext
space. Therefore, it is allowed to use the BGV/BFV scheme with a non-binary
plaintext space, or CKKS for approximate computation. Moreover, we provide a
flexible parameter setting that enables us to achieve an almost optimal expansion
rate of 1+o(1) even when a client sends only a small amount of information at a
time. For example, as shown in Table 2, the expansion rate can be reduced down
to 174/(174 − 21) ≈ 1.14 or 389/(389 − 23) ≈ 1.06 when (N, log q) = (213, 174)
or (214, 389), respectively.

Acknowledgments. The work of Kim was supported by the Settlement Research
Fund (No. 1.200109.01) of UNIST (Ulsan National Institute of Science and Technology).

A Noise analysis

The key switching procedure described in Sect. 2.4 is the only source of an extra
noise during our conversion algorithms. Recall that the key-switching procedure
4 These performance benchmarks are taken from Table 10 in [21].
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KeySwitch(ct = (c0, c1);K) introduces the noise eks = 〈g−1(c1), e〉 where e is the
noise of the KS key K. We make a heuristic assumption (which has been widely
used in HE researches, e.g. [17,27,30]) such that a KS noise behaves as if its
coefficients are sampled independently from a Gaussian distribution with a fixed
variance, which will be denoted by Vks. For a random variable a =

∑
i∈[N ] ai ·Xi

over R, we denote by Var(a) the maximum among the variances of its coefficients
{Var(ai) : 0 ≤ i < N}.

In practice, we need to specify the gadget decomposition method to com-
pute Vks. For example, suppose that the ciphertext modulus q =

∏
0≤i<d qi is a

product of relatively co-prime integers and the gadget decomposition is defined
as Rq → ∏

i∈[d] Rqi
, a 	→ g−1(a) = (a (mod qi))0≤i<d

5. Then, the coefficients of
eks = 〈g−1(c1), e〉 have the common variance Vks ≤ 1

12Nσ2 · ∑
i∈[d] q

2
i where σ2

is the variance of RLWE error distribution.

A.1 LWE to LWE

Technically, our LWE-to-LWE conversion includes only one KS procedure
between RLWE ciphertexts and then we extract an LWE ciphertext from the
output ciphertext. As shown in the correctness proof in Sect. 3.2, the additional
noise in the final LWE ciphertext is equal to the constant term of the KS noise,
whose variance is Vks.

A.2 LWE to RLWE

We will analyze the noise of homomorphic trace evaluation (EvalTrN/n in Algo-
rithm 1) since the LWE-to-RLWE conversion is a special case where n = 1.

We showed that if μ = b+as (mod q) is the phase of the input ciphertext ct,
then the phase of ct′ is TrKN /K

N/2k
(μ) + ek for some error ek after k iterations.

We will estimate the variance of ek using the induction on k.
If k = 0, we have e0 = 0. For 1 ≤ k ≤ log(N/n), we denote by e′

k ∈ R
the additional noise from the homomorphic automorphism at the k-th iteration.
Then, we get ek = ek−1 + τd(ek−1) + e′

k for d = 2log N−k+1 + 1 and its variance
is bounded by Var(ek) ≤ 4 · Var(ek−1) + Vks. Therefore, the noise of the output
ciphertext from Algorithm 1 is bounded by Var(ek) ≤ (1+4+ · · ·+4k−1) ·Vks ≤
1
3

(
(N/n)2 − 1

) · Vks.
Our LWE-to-RLWE algorithm is the case of n = 1 (or equivalently k = log N)

which returns a ciphertext whose phase is TrK/Q(μ)+elog N for some elog N such
that Var(elog N ) ≤ 1

3 (N2 − 1) · Vks.

A.3 LWEs to RLWE

We first analyze the noise growth of Algorithm 2. We showed that if {ctj =
(bj , aj)}j∈[2�] are the input RLWE ciphertexts such that μj = (bj + aj · s)[0],

5 This method is called the prime decomposition which is widely used in the construc-
tion of RNS-friendly HE schemes such as [4,29,34,42].
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then the phase μ of output ciphertext satisfies that μ[(N/2�) · j] = 2� · μj + e�,j

(mod q) for all j ∈ [2�] and for some e�,j ∈ Z. If � = 0, then there is no extra
noise from the packing algorithm. In the case of � > 0, we divide the input
ciphertexts into two groups and run the packing algorithm on each subgroup
separately. Suppose that the phases of cteven and ctodd satisfy

μeven[(N/2�−1) · j] = 2�−1 · μ2j + e�−1,2j (mod q),

μodd[(N/2�−1) · j] = 2�−1 · μ2j+1 + e�−1,2j+1 (mod q)

for some errors e�−1,2j , e�−1,2j+1 ∈ Z. Let e′
�(X) be the additional noise from

the evaluation of automorphism EvalAuto(cteven −XN/2� · ctodd, 2� +1) and e′
�,j

the (N/2�)) · j-th coefficient of e′
�(X) for j ∈ [2�]. Then, we get a relation e�,j =

2e�−1,j + e′
�,j between errors from the equation μ = μ′

even +XN/2� ·μ′
odd + e′

�(X)
for all j ∈ [2�]. Since e′

�,j has a fixed variance Vks for all � and j, we have
Var(e�,j) = 4 ·Var(e�−1,j)+Vks. Finally, we use the induction on � and show that
Var(e�,j) = (1 + 4 + · · · + 4�−1) · Vks = 1

3 (n2 − 1) · Vks when n = 2�.
In our LWEs-to-RLWE conversion, the packing algorithm is followed by

the trace evaluation EvalTrN/n whose noise growth is analyzed above. Hence,
the phase of the output ciphertext from the LWEs-to-RLWE conversion satis-
fies that μ = (N/n) ·

(∑
j∈[n](nμj + e�,j) · X(N/n)·j

)
+ ek(X) (mod q) where

ek denotes the noise from trace evaluation and k = log(N/n). Therefore, the
variance of total noise (N/n) ·

(∑
j∈[n] e�,j · X(N/n)·j

)
+ ek(X) is bounded by

(N/n)2 · Var(e�,j) + Var(ek) ≤ 1
3 (N2 − 1) · Vks.
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