
Chapter 2
Types of Uncertainty

Peter F. Pelz , Marc E. Pfetsch , Sebastian Kersting, Michael Kohler,
Alexander Matei, Tobias Melz, Roland Platz, Maximilian Schaeffner ,
and Stefan Ulbrich

Abstract The goal of this chapter is to define different types of uncertainty in tech-
nical systems and to provide a unified terminology for this book. Indeed, uncertainty
comes in different disguises. The first distinction is made with respect to the knowl-
edge on the source of uncertainty: stochastic uncertainty, incertitude or ignorance.
Then three main occurrences of uncertainty are discussed: data, model and structural
uncertainty.

In this book we focus on physical and cyber-physical systems that are designed,
manufactured and used. Hence, our context is that of engineering design, production
and usage, in combination with applied mathematics providing methods and strate-
gies as well as law providing a social and judicial framework. Uncertainty occurs in
every step of system design, production and usage and needs to be anticipated in the
design phase. Supporting the analysis, this chapter is concerned with different types
of uncertainty and their quantification.

Indeed, before mastering uncertainty, uncertainty has to be identified. In order
to do so, it is helpful to define individual uncertainty types. We classify uncertainty
using two independent classifiers identifying its appearance and effect. The first clas-
sifier captures the effect of the uncertainty on the system at its core. It distinguishes
between stochastic uncertainty, incertitude and ignorance. The resulting decision
diagram is shown in Fig. 2.1. The second classifier distinguishes data, components
and structures. Together they lead to the 3 × 3 matrix shown in Fig. 2.2.
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Fig. 2.1 Classifier using effect and probability to separate into stochastic uncertainty, incertitude
and ignorance [8, 18]

This matrix can be applied in all phases of the product life cycle, i.e. design, pro-
duction and usage. This is even more important, since uncertainty quantification has
become a thriving research field in engineering, computer science and mathematics
over the last twenty years [20, 39].

Classification by effect and probability

Fig. 2.1 shows the first classifier as a decision diagram. The first decision is whether
the effect of an uncertain process property on the process or the structure’s function
is known or unknown. This includes the decision of whether the effect on the system
function and quality is known or unknown; recall that the system function is usu-
ally represented as a constraint g(x) ≤ 0 and quality is measured using effort F1,
availability F2 and acceptability F3, see Sect. 1.6.

If the effect is unknown, we speak of ignorance. If the effect is known, then we
speak of probability. The second question is whether the probability of the effect
is known or unknown. If the probability of the effect is only partially quantified,
we speak of incertitude. If the probability of the effect is sufficiently quantified, as
shown schematically in Fig. 1.4, then we speak of stochastic uncertainty [8, 18].
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The category stochastic uncertainty implies that a probability density function
of the process state as sketched in Fig. 1.4 is known. In this case, it is possible to
describe, quantify and evaluate uncertainty. The category incertitude is very common
in mechanical engineering. It is used for many processes in mass production and,
for example, in the Austauschbau described by Franz Relaux in the year 1899 [47],
i.e. a part A fits to a part B even though different people manufacture the two parts on
different machines. The incertitude of theAustauschbau is mastered bymeasurement
data from systematically drawn samples or by experience manifested in tolerance
classes. The two categories stochastic uncertainty and incertitude lead to a non-
deterministic system design whereas ignorance, i.e. disregarded uncertainty, implies
a deterministic system design.

Classification by data, component and structure

The first classifier distinguishes between the effect and quantification of uncertainty.
The second classifier is motivated by system design [42]. This classifier can best be
understood by keeping in mind a physical system, such as one of the three demon-
strators presented in Sect. 3.6, i.e. the lightweight structure MAFDS, the Active Air
Spring and the 3D Servo Press, or the hydrostatic transmission as depicted in Fig. 1.7.
A process chain, a system and a structure consist of components or individual pro-
cesses that fulfil the sub-functions of a system. In the following, when mentioning a
model and model uncertainty, we may refer to the model as the individual process
or component of the system. However, we may also refer to the composed system
satisfying one or more specific system functions gs. As pointed out in Chap. 1, dif-
ferent systems may satisfy the same function. Some possible systems may not be
evaluated. We call this nescience structural uncertainty.

Applying the second classifier yields (a) data, (b) model and (c) structural uncer-
tainty. These classes form the columns of Fig. 2.2. The first classifier shown in Fig. 2.1
leads to the rows (i) stochastic uncertainty, (ii) incertitude and (iii) ignorance of the
3 × 3 matrix shown.

From top to bottom, the confidence in data, models and structures is decreasing.
This distinction into different types of uncertainty in data, i.e. data uncertainty, is then
as follows. Data θ = θ̄ + δθ is subject to stochastic uncertainty if it can be modelled
as realisations of a random variable with a distribution P(θ) or density p(θ) and
expected value/mean θ̄ . Incertitude appears if the data is only known to lie within a
given fuzzy set or interval. If uncertainty of the data is not considered and thus ignored
in the problem analysis, we speak of ignorance. For a more detailed discussion, see
Sect. 2.1.

For model uncertainty the classification is as follows: a validated and verified
model is subject to quantified stochastic uncertainty. There is incertitude, as long as
themodel is only suspected, i.e. assumedwithout experimental evidence. If themodel
is unknown, this is called ignorance, consistentwith the scheme shown inFig. 1.5. The
presented classification is supplemented by the required model characteristics given
in Sect. 1.3; a model has the following three qualities here: consistency, correctness
and conciseness, see Sect. 1.3.
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Fig. 2.2 Classification of uncertainty into (i) stochastic uncertainty, (ii) incertitude, (iii) ignorance;
and into a data, b model, c structural uncertainty

To represent specific components or systems, a model in implicit form

f (u, y, z,m, . . .) = 0, (2.1)

is used, where f is the model function, u are inputs, like control or boundary values,
y are internal variables, such as states, z is the model’s output, i.e. the quantities of
interest, andm are the model parameters which need to be calibrated. Sometimes u is
split into binary design or other decision variables. In many cases, the above equation
can be solved for given u and m such that y and z are uniquely determined. The
model is then reduced to an explicit form. This often occurs if the model represents
an input-output relation.

Asmentioned in Chap.1, in engineering and natural sciences, exact models do not
exist. Consequently, to represent reality, one can use a model discrepancy function
δ f (. . .) that captures the difference between reality and the model given by f . This
leads to the “real” model

f (u, y, z,m, . . .) + δ f (. . .) = 0. (2.2)
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Hence, δ f is in most cases different from zero and its analytical expression is in
general unknown. If δ f can be modelled as a random variable, we consider it as
stochastic model uncertainty. In this case, the distribution of δ f depends on the
parameters m and on additional prior assumptions. If a non-probabilistic approach
is adopted to model the discrepancy function, then the min-max values of δ f have
a functional relation to the parameters m. If δ f cannot be quantified, non-exactness
is assumed and ignorance prevails, as pointed out in Chap. 1. For a more detailed
discussion, we refer to Sect. 2.2.

With respect to structural uncertainty, there are N � 1 competing structures Si ,
i = 1, . . . , N , all satisfying the same specific system function gs within an accuracy
interval gs − g = ±δg. But the structures may differ in quality F . If the complete
design specification is not explored, i.e. S �= Sopt we speak of ignored structural
uncertainty. Structural uncertainty is discussed in more detail in Sect. 2.3.

2.1 Data Uncertainty

Sebastian Kersting, Roland Platz, Michael Kohler, and Tobias Melz

In engineering sciences, generating and evaluating data for and from numerical sim-
ulations, experimental tests of technical systems with high safety requirements, a
representative process or archived data play an important role to adequately predict
and evaluate the system’s performance, cf. Sect. 1.4. Data uncertainty is present, if
the amount, type and distribution of required data, such as model parameters, is
incomplete, unknown or insufficient; and in this context data quality as discussed in
Sect. 1.4 is an important factor. This section clarifies the expression data uncertainty
and classifies various approaches to describe different forms thereof. For the latter,
a brief overview of probabilistic with further differentiation between frequentist and
Bayesian inferences, and non-probabilistic, as well as parametric and non-parametric
approaches to analyse data uncertainty is given. Following these approaches, the
classification illustrated in Fig. 2.1 into stochastic data uncertainty and incertitude
is discussed in this section.

2.1.1 Introduction

Within this book, we distinguish between two general types of data: model parame-
ters m and state variables u and z that have a quantifiable value. Model parameters
describe the technical system’s characteristics, such as geometrical andmaterial prop-
erties for a mathematical or computer model, e.g. length or width of a beam element
and mass, Young’s modulus, etc. Aggregating geometrical and material properties of
one or multiple components that effect processes in a system or structure may lead to
newmodel parameter expressions like stiffness or damping as important quantities in
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the system’s computer models for load-bearing systems. The models relate to them
in a mathematical way and model uncertainty may become relevant, see Sect. 2.2.
State variables describe the input and output conditions, such as mechanical loading,
stress and strain, displacement, velocity, acceleration etc. They are mathematically
related to the model parameters via the models.

On the one hand, model parameters m and state variables u are the input data for
numerical simulations with computer models for predicting the system’s behaviour,
for example the dynamic behaviour of a structure due to vibrational excitation. They
are also the input quantities for the experimental tests to validate the prediction.
On the other hand, the system’s behaviour as the output z of both simulation and
test are mostly state variables or other measured quantities that can be inferred
from model parameters by mathematical conversions. For example, the measure-
ment of a lateral force and a resulting lateral deflection of a beam element leads to its
stiffness.

Data in form of model parameters or state variables may have a single or a dis-
tributed value. Both are subject to uncertainty. Single or distributed values may vary
in many possible ways depending on the designer’s knowledge about the data and
other conditions that make them uncertain. For example, a model parameter, such
as the length of a beam element, may vary due to production tolerances, which
influences the output in computer simulations or experimental tests.

In general, two basic types of data uncertainty occur: aleatoric or epistemic
data uncertainty. Aleatoric uncertainty [67] is also known as irreducible uncer-
tainty [62] or variability [67]. It is objective [32], and mostly characterised by a
probabilistic distribution function. In [7], it is presumed to be the intrinsic random-
ness of a phenomenon. Epistemic uncertainty is also known as reducible uncertainty
[50, 62], ignorance uncertainty [50], or simply uncertainty [67]. It is reducible [62],
subjective [32], and occurs due to a lack of knowledge [62], insufficient or incom-
plete data [7]. Both types of uncertainty may be described via probabilistic and
non-probabilistic approaches, cf. [33, 38, 44]. The probabilistic approaches can be
further divided into parametric, with frequentist or Bayesisan inference approaches,
or non-parametric.

Taking into account aleatoric and epistemic data uncertainty, this book distin-
guishes between stochastic data uncertainty and incertitude. They depend on the
knowledge and assumptions about the data distribution and are explained in the
following.

2.1.2 Stochastic Data Uncertainty

We assume that data is subject to stochastic uncertainty, if it can be modelled as
realisations of a random variable � with a distribution P(θ). In this case, a para-
metric or a non-parametric approach as well as a frequentist or a Bayesian inference
approach may be used to approximate the distribution for further uncertainty analy-
sis. The approaches highly depend on the knowledge about the data, e.g. if a sample
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of measured data exists and, if applicable, its sample size. All approaches to anal-
yse stochastic data uncertainty are conducted under the assumption that an event is
possible with a given probability [33].

In the parametric approach, one assumes that the underlying distribution depends
on finite dimensional parameters that fully describe the distribution P(θ). In case
of measuring errors or production tolerances, a typical choice would be a normal
distribution. Here the distribution of a randomvariable� is uniquely identified by the
parametersmean θ̄ and standard deviationσ(θ). If the distribution is incomplete or no
samples are available, engineering or physical knowledge can be used to approximate
the parameters. Otherwise, if an adequate sample is on hand, a maximum likelihood
estimator can be applied to estimate the distribution parameters, cf. [21].

In the non-parametric approach, the description of distributions is based solely on
observations, cf. [57, Chap. 4.8]. The underlying distribution does not need specific
finite dimensional parameters. Instead, e.g. a kernel density estimator can be applied
to estimate the corresponding probability density function p(θ) of P(θ), cf. [43,
49]. In most cases, if only a relatively small sample with less than 50 data points
is available, the maximum-likelihood approach yields more adequate results with
respect to high convergence than the kernel density estimator—if the distribution
assumption is correct. However, the actual sample size needed to achieve sufficient
results may vary and depends on the specific application.

If the distribution of input data is known or estimated as described above, several
methods may be used for a probabilistic computer simulation for obtaining its proba-
bilistic output prediction, e.g. Monte Carlo Simulation (MCS) methods as described
in [5, 10, 15, 39, 41, 51, 54].

MCS methods depend on the selected inference approach, meaning that output
data distributions may vary from a frequentist or Bayesian perspective. They differ
in the underlying assumptions made regarding the nature of data distributions [57].
In the frequentist view, probabilities are defined as the frequency that an event occurs
if an experiment is repeated a large number of times. The Bayesian perspective treats
probabilities as a distribution of subjective values based on prior knowledge and
assumptions. They are constructed or updated as data is observed; algorithms are,
e.g. Markov Chain Monte Carlo Techniques, Metropolis-Hastings Algorithms etc.,
see [57]. Bayesian inference-based approaches are mainly used for model parameter
calibration and to determine model uncertainty, see Sects. 2.2, 4.1 and 4.3. How-
ever, they are computationally demanding because of the need to infer the posterior
distributions of each parameter [9].

2.1.3 Incertitude

We say that data is subject to incertitude, if it can not be modelled as realisations
of�with a distribution P(θ). The distribution of the input data is unknown. Instead,
the analysis may be conducted based on fuzzy set theory or direct interval analysis
that provide information about the possibility that a certain data value lies between
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a minimum and a maximum. These possibilistic approaches, in contrast to proba-
bilistic approaches to assess stochastic data uncertainty, basically analyse whether
an event is possible or impossible [33]. They are explained briefly in the following.

Fuzzy data uncertainty

The fuzzy set theorywas introducedbyZadeh in1965 [66]. Since then, numerous sub-
domains like fuzzy logic, fuzzy modelling, fuzzy arithmetic etc. have emerged [19].
Within the Fuzzy framework, data is expressed as member elements of a set A.
They can be defined by using a characteristic or, respectively, membership func-
tion μA : A → [0, 1]. A membership of an element x is given if μA(x) = 1, non-
membership ifμA(x) = 0, [19]. Themembership functions vary in form, they can be
triangular, Gaussian, exponential etc. A practical way is to use so called α-cuts that
divide the membership function into intervals with the aim to determine possibilities
that a value is inside the interval, [33]. An overview of fuzzy methods for data uncer-
tainty analysis in engineering applications is given in [48], applied fuzzy arithmetic
can be found in [19] and fuzzy set theory based on fuzzy arithmetic is discussed
in [66]. However, due to the absence of a structured and systematic elaboration of
the theory, only a few practical approaches have been conducted [19].

Interval based data uncertainty

If neither distribution nor membership functions are available to describe the occur-
rence of data, an interval based approach may be useful. In this case, it is commonly
assumed that the uncertain data lies between a minimum and a maximum value.
Using a pessimistic perspective, a worst-case scenario is then the object of further
investigations. Each parameter interval consists of a pair of min/max values, the four
basic computation rules for adding, subtracting, multiplying, and dividing are valid
for each interval parameter. However, the quality of the direct interval arithmetic
evaluation depends on how often the interval parameters are present in a governing
function of the deterministic computer model, i.e. the intervals become larger when
they are propagated. Moreover, building a computer model with interval parameters
that include pairedmin/max values can be demanding and time-consuming. Also, the
analysis tends to overestimate uncertainty by using only extreme values that occur
only rarely within the interval arithmetic [1].

Intervals can be stochastically motivated, e.g. θ̄ ± 3 σ(θ)2-intervals specify min-
imum and maximum values, if a normal distribution of data is assumed. Eventually,
possibilistic methods can be applied as shown in [1, 40].

In higher dimensions and to avoid using extremevalues that lead to overestimation,
the limiting intervals are typically replaced by ellipsoids for which the worst-case
analysis becomes more complicated. For example and as shown in [11, 28–30, 55],
sophisticated optimisation techniques introducing uncertainty sets are necessary to
master data uncertainty in this pessimistic setting, see also Sect. 6.1.



2 Types of Uncertainty 33

2.2 Model Uncertainty

Alexander Matei, Roland Platz, Stefan Ulbrich, and Maximilian Schaeffner

In science and technology, mathematical models are frequently employed for the
explanation of natural phenomena and for the description, quantification and control
of engineering processes. We specifically focus on mathematical models and their
accuracy, for other types of models we refer to Chap.1. We do so because mathemat-
ical models enable numerical simulations to predict the behaviour, outcome or result
of real technical products, systems and processes along their life cycle, see Sect. 1.2.
However, it is a common observation that the usage of these models is affected by
uncertainty, which can be traced back to the system design phase. Several causes can
be identified for this uncertainty in early stage product development and, particu-
larly, in the mathematical modelling. Our ignorance about the physical behaviour of
a technical system leads to models that are only approximations of reality and may
only be valid for a particular range of inputs and parameters, cf. Fig. 1.5.

There are two categories of ignorance which we briefly want to mention. The first
is called lack of knowledge and stands for objects or processes which are unknown,
unfamiliar and nameless to us. Examples for lack of knowledge arise whenever a
novel material is exposed to new circumstances. Its reaction to the environment, its
behaviour under load or pressure and its wear, all of which needs to be observed, eval-
uated andgeneralised. This is a challenge to scientists and engineers alike. The second
category comprises effects that are known to us, but they are neglected, ignored and
kept out of consideration in the modelling.We call it disregard of knowledge. To give
an example, one may think of a linear elastic spring under load where the deforma-
tion of the spring is proportional to the loading force, only if the latter stays below
a certain threshold. For loads above this limit, the spring material shows nonlinear,
plastic or hysteresis-type behaviour which is difficult to model and thus it is often
neglected.

Another source of model uncertainty arises from the numerical approach used
to discretise such equations that are impossible to solve analytically. In engineer-
ing applications, the finite element method is a common numerical approximation
scheme. In most cases, uncertainty caused by the numerical discretisation with finite
elements can not only be quantified but alsomastered by standard approaches, e.g. by
developing error estimates [46]. In most cases, numerical errors happen on a rela-
tively small scale, whereas the more severe sources of model uncertainty are missing
or incomplete physical or empirical relations. In addition, human factors also con-
tribute to model uncertainty. The methods and technologies to detect, quantify and
master model uncertainty, which are presented in this book, see Sect. 4.3, are gener-
ally applicable, irrespective of the above mentioned causes.

Model uncertainty exists, if the functional relations between input and output,
model parameters and other internal variables, as well as the scope and complexity
of the model, are unknown, incomplete, inadequate or unreasonable. The dilemma
the designer encounters is that in early stage design, before calibration, verification
and validation processes start, the extent of uncertainty is difficult to detect. Even in
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the usage phase, after the final product has been assembled, a degree of uncertainty
remains, since the full-scale product does not exactlymatch the small-scale prototype,
neither does the computer model. Various mathematical approaches using different
prior knowledge about functional relations, scope and complexity as well as the
required data, which can be uncertain as well, have been developed to deal with
model uncertainty.

It is one aim of this book to understand and to evaluate the uncertainty especially in
load-bearing mechanical systems with high safety requirements. This section gives
a brief overview of different approaches to describe, quantify and master model
uncertainty. In this context, the term ‘master’ means to be aware and to be able to
quantifymodel uncertainty in verification andvalidationprocesses, e.g. bydata-based
training. This leads to an adapted mathematical model that, eventually, adequately
describes and predicts the system and process behaviour observed in reality.

2.2.1 Functional Relations, Scope and Complexity
of Mathematical Models

In this chapter, we considermodels as images of reality in the domain ofmathematical
abstraction. These mappings describe or represent knowledge about a system in the
language of functional relations given in implicit form

f (u, y, z,m) = 0 (2.3)

between input u and output data z, model parameters m, such as material properties,
and internal variables y, like states. Accordingly, we mean bymodel uncertainty that
these images of reality are imperfect, i.e. the governing physical relations f between
inputs, outputs, parameters and internal variables are unknown or incomplete, or
they are partly reduced to physically-inconsistent approximations (Sect. 1.3) of more
complex, but expensive, expressions. Thus, in the presence of model uncertainty,
Eq. (2.3) does not reflect reality. A common representation of model uncertainty
introduces a model discrepancy function δ f which accounts for lack or disregard of
knowledge, numerical errors and human factors in the mathematical modelling as
mentioned before. The “real” functional relation is then considered to be implicitly
given by

f (u, y, z,m) + δ f (. . .) = 0. (2.4)

In many cases, for given u and m, the implicit equation (2.3) is solved to obtain the
model’s output z explicitly. If the model function f is differentiable and its derivative
is invertiblewith respect to the internal variables y, then the implicit function theorem
yields a reduced model η that represents an input-output relation to the quantity of
interest z. The model equation can now be written in explicit form
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η(u,m) = z, (2.5)

and likewise for the casewhere themodel discrepancy function is added, cf. Eq. (2.4).
In the sequel, we follow themain literature on this topic that considers only computer
models η, i.e. reduced models, which describe an input-output relation.

Evidently, different assumptions about functional relations like axiomatic or
empirical, linear or non-linear, and time-invariant or time-variant alter the output
of the model significantly [37]. Moreover, the model’s scope and complexity can be
varied. Thus, any computer simulation that is based upon uncertain models leads to
erroneous predictions of the quantity of interest that affect the verification and valida-
tion process necessary to prove themodel’s consistency and correctness, cf. Sect. 1.3.

The designer has several options to choose from possible modelling assumptions
about functional relations, as well as scope and complexity, as mentioned above.
When a mathematical model has been built, the functional relations are subject to a
verification and calibration process to prove and to update the numerical simulation,
the computer code and, if applicable, the model parameters [2]. Eventually, the com-
puter model is validated against experimental tests of a real system, like the Modular
Active Spring-Damper System, see Sect. 3.6.1. As for the scope and complexity,
the number of degrees of freedom can be high and costly depending on the form
and discretisation of the model, e.g. analytical, finite elements or multi-body-models
that also influence the results of verification, calibration and validation processes.
Furthermore, Occam’s razor can be used as a guiding principle to keep models as
simple as possible, see Sect. 1.3, becausemore complexmodels often tend to bemore
susceptible to uncertainty.

The functional relations as well as the scope and complexity of models are consid-
ered as being independent from howmodel parameters and input data are present—as
a simple value, randomly distributed or as intervals. These are subject to data uncer-
tainty, which is covered in Sect. 2.1.

2.2.2 Approaches to Detect, Quantify, and Master Model
Uncertainty

Basically, two different approaches give information about detectable, quantifi-
able and masterable model uncertainty: a deterministic analysis and a probabilistic
frequentist or probabilistic Bayesian inference-based perspective. The latter needs
subjective prior data distribution information as discussed in Sect. 2.1. The determin-
istic and Bayesian inference-based approach allow data-based training, which is an
important criterion for the verification and validation processes. However, finding
the adequate correction terms or prior information, especially for models with high
complexity, remains a challenge [9]. Using a probabilistic frequentist approach, see
Sect. 2.1, however, does not take into account prior information other than random-
ness of data.
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In accordance to this book’s notation, deterministic approaches do not master
stochastic uncertainty in a mathematical model. However, they may be suited to
quantify and master incertitude, e.g. when only extreme values like minima and
maxima are known or assumed, or when parts of a model are missing to detect igno-
rance, cf. Fig. 2.2. Probabilistic approaches, however, describe and master all three
types of uncertainty. In the following, we give an overview of the two approaches.

Deterministic framework

On the one hand, a deterministic analysis can be used, for example, in fault diag-
nosis [56] to quantify uncertainty in the model equations. To do so, the model is
adjusted by a model discrepancy function δη which is assumed to stay within a
bounded uncertainty set Uη:

η(u,m) + δη(u) = z, δη ∈ Uη. (2.6)

A standard residual analysis then enables the engineer to distinguish component
failures from the effects of model uncertainty. However, this method strongly relies
on the assumption that the model discrepancy function δη stays within a bounded
uncertainty set Uη.

On the other hand, a deterministic analysis may be used in model verification and
validation processes. In [9, 57], the possibility to approximate the residual between
the model output and the observed quantity of interest via a polynomial p is men-
tioned. In this case, the polynomial p takes the role of the discrepancy function:

η(u,m) + p(u,m, θ) = z. (2.7)

This necessarily leads to an augmented parameter set (m, θ) consisting of the original
physical axiomatic and empiric parameters m as well as the non-physical polyno-
mial parameters θ , which do not give an enhanced physics-based understanding of the
model’s uncertainty or shortcoming in predicting reality [9]. The augmented param-
eter set needs to be calibrated, which is usually performed by an optimisation scheme.

Probabilistic framework

Within the probabilistic framework, Bayesian inference-based approaches are fre-
quently used to assess the prediction quality of a mathematical model under given
experimental data [9, 16, 52, 61]. In [34] or [37], Bayesian calibration techniques
and a plausibility prior argument are used for model selection. Another important
approach introduces a stochastic process δ for the discrepancy function [22]:
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η(u,m) + δ(u,m, φ) + ε = z , (2.8)

where ε is stochastic noise, usually produced by the measurement error, and φ are
hyperparameters, which need to be tuned by an optimisation scheme. Based on this
setting, [64] introduce a technique for model validation. Amethod designed for time-
dependent systems is proposed in [3]. Combinations of a high- and a low-fidelity
model and experimental data are used to construct a multi-fidelity model, which is
proposed in [13] as an improved predictor. A scaled Gaussian Process is used in [17]
for model calibration and prediction. It is claimed that the method bridges the gap
between the least-squares calibration and the Gaussian Process calibration and, thus,
is an improvement of themethod introduced in [22]. Furthermore, a Bayesian interval
hypotheses-based approach [36] and a Bayesian inference-based approach [37] are
used to compare different models based on their internal functional relations from
axiomatic or empiric assumptions, see also Sect. 4.3.3 for assessing model uncer-
tainty in the Modular Active Spring-Damper System, see Sect. 3.6.1.

In order to apply the Bayesianmethods, it is necessary to select prior distributions.
Often, this is subjective and it is unclear how to choose them, which may lead to
unrealistic assumptions. Furthermore, it is pointed out in [60] that the approach
in [22] may lead to inadequate results in case of an imperfect computer model. As a
consequence, further verification of the computer codes needs to be conducted.

From the frequentist’s perspective, a simple approach to quantify model uncer-
tainty is to use validationmetrics, such as the area validationmetric [35] or theMaha-
lanobis distance [68]. They give a quantitative measure of disagreement between the
model output and the observed quantity of interest based upon observed measure-
ments. In order to select themost adequatemodel, an arbitrary threshold on themetric
is imposed, or classical hypothesis testing is performed. Surrogate models are often
used to quantify the uncertainty in a technical system. Usually, these methods use
computer simulations and a small sample of experimental data to estimate properties
of probability distributions, such as quantiles [25–27] or densities [14, 23, 24]. A
detailed description for a method based on an imperfect computer model is given in
Sect. 4.3.8. A case where computer models are assumed to fit the reality is shown in
Sect. 5.2.6. In [12], another method to detect model uncertainty is proposed which is
based on optimum experimental design and hypothesis testing, see also Sect. 4.3.1.
In [65], another approach to quantify the model error is developed. Here, the model
discrepancy function is estimated on bootstrap samples via a regression estimation,
e.g. smoothing splines or artificial neural networks.

However, the application of frequentist methods often demands a larger sample
size, which can become a problem, since generating data is an expensive and time-
consuming process.
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2.3 Structural Uncertainty

Peter F. Pelz and Marc E. Pfetsch

Besides data andmodel uncertainty introduced in Sects. 2.1 and 2.2, structural uncer-
tainty forms the third important pillar of uncertainty under consideration in this book.
Structural uncertainty refers to the fact that only part of the possible solutions are
evaluated with respect to uncertainty. In this sense, the model of the system is incom-
plete. However, the focus is on the system and not on the ignorance of the models of
the system components, as in model uncertainty.

Let us start with the viewpoint of classical product design. Given a requested
system function, the designer plans the system structure. The systems are assembled
by components and modules, which then form the system. In production, this arises
when combining single processes to process chains. When a given system function
can be generated by a multitude of different function structures, and each function
structure can be generated by a multitude of elements, this results in a “combina-
torial explosion” of possibilities that, in general, cannot be evaluated by humans
anymore. This lack of knowledge on other possibilities is then called structural
uncertainty.

The consideration of this type of uncertainty seems to be new, but the term “struc-
tural uncertainty” is sometimes used in the sense of “model structure uncertainty”,
i.e. the structure of the model is uncertain. Some examples from different disciplines
can be found in [4, 6, 58, 59]. In our book, the latter meaning is captured by the term
“model uncertainty”, see Sect. 2.2.

In comparison to data andmodel uncertainty, structural uncertainty has the advan-
tage that its presence has no direct negative effect on product safety. However, eco-
nomically better solutions might be lost.

Structural uncertainty can be tackled by using (discrete) mathematical optimisa-
tion methods that allow to consider all possibilities and select the best system choice
with respect to a predefined objective function. These techniques require a combina-
tion of domain knowledge in order to set up a physical model and define the allowed
elements. This is then integrated into a mathematical optimisation model, which is
solved using optimisation software. As usual, one needs to balance the exactness
of the model with the effort to obtain optimal solutions; see Sect. 1.3 for a general
discussion of this balance. Often tailored solution methods need to be developed in
order to achieve practically feasible solution times. Themethod for the quantification
of structural uncertainty is therefore highly context-dependent.

This book contains examples that illustrate this approach, see, for example,
Sects. 1.5 and 6.3.5. Many more examples can be found in the literature, e.g. [31,
45, 53, 63]. These examples show the flexibility of mathematical programming to
deal with different manifestations of structural uncertainty. Nevertheless, currently,
expert knowledge is needed to derive and efficiently solve appropriate models of
reality.

Structural uncertainty has two other aspects that we want to briefly mention.
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1. When using models in order to compose a system, the model predetermines the
possible components that can be chosen, i.e. the model can only be optimised
over its model horizon, see Sect. 1.3. Again, possible interesting solutions might
be lost due to the choice of the model. One needs to be aware of this restriction,
similar to the fact that models are always an approximation of reality.

2. The first aspect arises from the fact that the system is built from smaller elements.
However, a quantitative evaluation of uncertainty usually only takes place on the
level of the single elements, since an analysis for the complete system would
be too complex or taking measurements would be too expensive. This book dis-
cusses several methods to deal with this uncertainty. For instance, a common way
to handle the corresponding uncertainty is by flexibility, see Sect. 6.2. Another
method is to make the system robust or to consider the effect of uncertain param-
eters already in the mathematical model and perform a robust optimisation, see
Sect. 6.1.
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